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Abstract

The free-boundary problems in magnetohydrodynamics (MHD) describe the motion of conducting

fluids in electromagnetic fields. Such problems usually arise from the plasma confinement problems

and some astrophysical phenomena, e.g., the propagation of solar wind. The thesis records the results

for the local well-posedness (LWP) of the free-boundary problems in incompressible MHD with and

without surface tension [52, 53, 28, 29] (joint with Xumin Gu and Chenyun Luo), compressible resistive

MHD [82, 83], and compressible ideal MHD [50] (joint with Hans Lindblad).

For incompressible ideal MHD, we record a comprehensive study for the case with surface tension

[53, 28, 29] which are the first breakthrough in the mathematical study of this direction. The proof

relies on the tangential smoothing, penalization method and a new-developed cancellation structure

enjoyed by the Alinhac good unknowns. When the surface tension is neglected, we present a minimal

regularity result (for LWP) in a small fluid domain [52].

Compressible ideal MHD is a hyperbolic system with characteristic boundary conditions. When

the magnetic field is parallel to the surface, the loss of normal derivatives cannot be compensated due

to the failure of div-curl analysis. On the one hand, we observe that such derivative loss is exactly

compensated by the magnetic diffusion. Based on this, we prove the LWP and the incompressible

limit for compressible resistive MHD [82, 83]. On the other hand, we adopt the anisotropic Sobolev

spaces together with the “modified" Alinac good unknowns to study compressible ideal MHD system.

We establish the first result [50] on the nonlinear a priori estimates without loss of regularity for the
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free-boundary compressible ideal MHD system, which greatly improves the existing results proved by

Nash-Moser iteration.

Primary Readers:
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Chapter 1

Mathematical Formulation and
Backgrounds

We are concerned with 3D free-boundary magnetohydrodynamic (MHD) system8̂̂̂̂
<̂
ˆ̂̂:
�Dtu D �rp C j � B; j WD r � B in D;
Dt�C �.r � u/ D 0 in D;
@tB D �r �E; E WD �u � B C �j in D;
r � B D 0 in D;

(1.0.1)

which describes the motion of an inviscid conducting fluid (plasma) in an electro-magnetic field. Here

D WD
S
0�t�T ftg �Dt and Dt � R3 is the domain occupied by the conducting fluid whose boundary

@Dt moves with the velocity of the fluid. The operator r WD .@x1 ; @x2 ; @x3/ is the standard spatial

derivative and the operator Dt WD @t C u � r is the material derivative. The quantities u; p; � denote

the fluid velocity, the fluid pressure and the fluid density. The quantities B;E; j denote the magnetic

field, the induced electric field and the current density.

We always assume the density � satisfies � � N�0 > 0 where N�0 is a positive constant, i.e., we

assume the fluid is a liquid. In the case of � � N�0, we say the fluid is incompressible and assume

N�0 D 1; otherwise we say the fluid is compressible. In the compressible case, the fluid pressure satisfies

p D p.�; S/ with @p
@�
> 0, where S , the entropy of the fluid, satisfies �DtS D 0. In the thesis, we

assume S to be a constant, i.e., we only consider the isentropic case; otherwise we say the compressible

1



fluid is non-isentropic.

In physics, j D r � B is the Amperè’s law and E D �u � B C �r � B is the Ohm’s law

where � � 0 is the magnetic diffusivity constant. When � D 0, we say (1.0.1) is ideal MHD system,

otherwise we call (1.0.1) resistive MHD. Under the setting above, system (1.0.1) becomes8̂̂̂̂
<̂
ˆ̂̂:
�Dtu � .B � r/B D �rP; P WD p C 1

2
jBj2 in D;

Dt�C �.r � u/ D 0 in D;
DtB C �r � .r � B/ D .B � r/u � B.r � u/ in D;
r � B D 0 in D;

(1.0.2)

where P WD p C 1
2
jBj2 is called the total pressure. In the incompressible case, the quantities u; p;B

and the region D are the unknowns to be determined. In the compressible case, the quantities u; p; �; B

and the region D are the unknowns to be determined with the equation of state p D p.�/.

We would like to study the Cauchy problem of (1.0.2) and thus the boundary conditions and the

initial data need to be specified. The boundary conditions for ideal MHD (� D 0) are

Velocity.@Dt / D u � On on @D (1.0.3a)

P D �H on @D; (1.0.3b)

B � On D 0 on @D; (1.0.3c)

where On denotes the unit exterior normal vector to @Dt , H denotes the mean curvature of @Dt and the

positive constant � � 0 denotes the surface tension coefficient. Condition (1.0.3a) means the boundary

moves with the motion of the fluid, and it can be equivalently expressed as “Dt 2 T .@D/” or “.1; u/ is

tangent to @D” where T .@D/ denotes the tangential bundle of @D. Condition (1.0.3b) is the pressure

balance law and shows that outside the fluid region is a vacuum. Condition (1.0.3c) shows that the

plasma is a perfect conductor.

Remark 1.0.1. The equation r � B D 0 is not an independent equation. When � D 0, the boundary
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condition (1.0.3c) is not an imposed boundary condition. If else, the system would be over-determined.

Instead, they are both constraints for the initial data, i.e., they automatically propagate to any t > 0 if

initially holds. In fact, one can take the divergence in the third equation of (1.0.2) and use the second

equation to derive Dt .�
�1.r � B// D 0, and take Dt in (1.0.3c) to prove its propagation.

Remark 1.0.2. When the magnetic diffusivity constant � > 0, the boundary condition (1.0.3c) should

be replaced by the Dirichlet boundary condition

B D 0 on @D: (1.0.4)

See Section 1.1.1 for the illustration. Concerning the identity r � .r � B/ D �4B Cr.r � B/ and

using r � B D 0, the third equation in (1.0.2) is parabolic when � > 0 and thus (1.0.4) has to be an

imposed condition.

Remark 1.0.3. When � D 0 in (1.0.3b), i.e., the surface tension is neglected, we also need the

Rayleigh-Taylor sign condition

�rP � On � c0 > 0 (1.0.5)

where c0 > 0 is a constant and P WD p C 1
2
jBj2 is the total pressure. When B D 0, Ebin [22] proved

the ill-posedness of the free-boundary incompressible Euler equations when the Rayleigh-Taylor sign

condition is violated. Hao-Luo [34] proved that the free-boundary incompressible MHD system is

ill-posed when (1.0.5) fails. We also note that (1.0.5) is only required for initial data and it propagates in

a short time interval because one can prove it is C
0; 14
t;x Hölder continuous by using Morrey’s embedding.

See [52, Lemma 5.5] for the proof.

Energy conservation/dissipation. System (1.0.2) equipped with the boundary conditions (1.0.3a)-

(1.0.3c) and (1.0.4) gives the following energy conservation for � D 0 and dissipation for � > 0:

3



Define Q.�/ D
R �
N�0
p.r/=r2 dr , then we have

d

dt

�
1

2

Z
Dt
�juj2 dx C

1

2

Z
Dt
jBj2 dx C

Z
Dt
�Q.�/ dx C �

Z
@Dt

dS.@Dt /
�

D� �

Z
Dt
jrBj2 dx � 0:

(1.0.6)

See [53, 83] for the proof.

Equation of states. When the fluid is compressible, we need to specify the equation of state. In the

thesis, we only consider the case of a liquid, and impose the following natural conditions for some

fixed constant A0 > 1 and m � 8

A�10 � j�
.m/.p/j � A0: (1.0.7)

When proving the incompressible limit in Section 5.2, we need to require the following conditions for

1 � m � 6

j�.m/.p/j � A0; A
�1
0 j�

0.p/jm � j�.m/.p/j � A0j�
0.p/jm: (1.0.8)

Compatibility conditions on the initial data. To make the Cauchy problem solvable, we need

to choose suitable initial data .u0; B0; �0; p0;D0/. In particular, the magnetic field should satisfy

r � B0 D 0 and B0 � Onjf0g�D0 D 0 for � D 0 (B0jf0g�D0 D 0 for � > 0). The total pressure

P0 WD p0 C
1
2
jB0j

2 should satisfy P0 D �Hjf0g�@D0 . In the compressible case, we require the

following k-th order compatibility conditions

D
j
t P jf0g�@D0 D D

j
t .�H/jf0g�@D0 at t D 0; 80 � j � k; (1.0.9)

and also the following one for � > 0

D
j
t Bjf0g�@D0 D 0 at t D 0; 80 � j � k: (1.0.10)
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Given a simply-connect domain D0 � R3 and the initial data .u0; B0; �0; p0/ satisfying the

constraints r �B0 D 0 in D0 and .B0 � On/jf0g�@D0 D 0 for � D 0 (B0jf0g�@D0 D 0 for � > 0), we want

to find a set D, the velocity u, the magnetic field B , and the density � solving (1.0.2) satisfying the

boundary conditions in (1.0.3a)-(1.0.5). Specifically, we will record the following results in the thesis:

1. The minimal regularity H 2:5C" estimates of incompressible ideal MHD. See Chapter 4.1.

2. Local well-posedness, the zero surface tension limit, the H 3:5 (low regularity) estimates of

incompressible ideal MHD with surface tension. See Chapter 4.2 and 4.3.

3. Local well-posedness and the incompressible limit of compressible resistive MHD. See Chapter

5.2.

4. Anisotropic a priori estimates of compressible ideal MHD. See Chapter 5.3.

1.1 Background in Physics

The free-boundary problems in MHD arise from the MHD current-vortex sheets and the plasma-vacuum

interface model. The former one can be used to describe the heliopause (the theoretical boundary of

the solar system) observed in the propagation of solar winds, the nightside magnetopause of the earth.

The current-vortex sheets are mathematically formulated as the plasma-plasma interface problem: The

motion of plasmas are governed by MHD system, and the jump conditions on the interface are

ŒP � WD PC � P� D �H; Ḃ � On D 0; Œv�̇ � On D 0: (1.1.1)

In other words, there is no jump allowed in the normal direction.

The plasma-vacuum model describes the plasma confinement: The plasma is confined in a vacuum1

in which there is another magnetic field B�, and there is a free interface � .t/, moving with the motion

1Usually people use a low-density plasma, especially the vacuum, to confine a high-density plasma.
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of plasma, between the plasma region ˝C.t/ and the vacuum region ˝�.t/. This model requires that

(2.4.1) holds in the plasma region ˝C.t/ and the pre-Maxwell system holds in vacuum ˝�.t/:

r � B� D 0; r � B� D 0: (1.1.2)

On the interface � .t/, it is required that there is no jump for the pressure or the normal components of

the magnetic fields:

Ḃ � On D 0; ŒP � WD pC C
1

2
jBCj2 �

1

2
jB�j2 D �H (1.1.3)

Finally, there is a rigid wallW wrapping the vacuum region, on which the following boundary condition

holds

B� � ON D J on W;

where J is the given outer surface current density (as an external input of energy) and ON is the exterior

normal to the rigid wall W . Note that for ideal MHD, the conditions div B D 0 and B � n D 0 should

also be constraints for initial data instead of imposed conditions. For details we refer to [24, Chapter 4,

6]. When the surface tension is not neglected, the model is used to characterize the motion of liquid

metal which is useful in the fusion process. See Molokov [57] for detailed discussion.

Hence, the free-boundary problem (2.4.1) can be considered as the case that the vacuum magnetic

field B� vanishes. It characterizes the motion of an isolated perfect conducting fluid in an electro-

magnetic field.

Remark 1.1.1. For current-vortex sheets and plasma-vacuum models without surface tension, the

Rayleigh-Taylor condition �rŒP � � On � c0 > 0 may be not sufficient for the local well-posedness.

Instead, the Syrovatskij type condition jBC � B�j � c00 > 0 is required on the free interface, which in

fact enhances extra 1/2-order regularity of the free interface. See [68, 73].
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1.1.1 Illustration on the jump conditions on the free interface

The jump conditions (1.1.1) and (1.1.3) actually comes from the Rankine-Hugoniot conditions for

hyperbolic conservation laws. One may rewrite the (non-isentropic) compressible MHD system

(without surface tension) in the conservative form8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

@t�Cr � .�u/ D 0

@t .�u/Cr �

�
�u˝ uC .p C

1

2
jBj2/Id � B ˝ B

�
D 0

@tBCr � .u˝ B � B ˝ u/ D 0

r � B D 0

@t .�S/Cr � .�Su/ D 0:

(1.1.4)

If we exclude the possibility of MHD shocks (i.e., we do not allow the mass flow transferring across

the interface), then u0 WD u � V On satisfies u0n D 0 on the interface where V denotes the velocity of the

moving interface. We then conclude the Rankine-Hugoniot conditions as follows

Œp C
1

2
B2� � D 0; BnŒB� � D 0; BnŒu

0
� � B� � D 0; ŒBn� D 0; BnŒu

0
� � D 0: (1.1.5)

Then we have two possibilities (for ideal MHD without surface tension)

1. MHD contact discontinuity. If the magnetic field intersects the interface (Bn ¤ 0), then we have

� jump: Œ�� ¤ 0;

� continuous: Œu� D 0; Œp� D 0; ŒB� D 0:

Examples are mostly observed in astrophysical phenomena, e.g., the solar wind, fast coronal

mass ejections, where the magnetic fields typically originate in a star and intersect the surface.

2. Tangential discontinuities: If the magnetic field is parallel to the interface (Bn D 0), then
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� jump: Œ�� ¤ 0; Œu0� � ¤ 0; Œp� ¤ 0; ŒB� � ¤ 0;

� continuous: u0n D 0; Bn D 0; Œp C
1
2
jB� j

2� D 0:

Since ŒB� ¤ 0 in this case, the surface current j � WD ŒB� � On ¤ 0, and thus we call the interface

as a “current”-vortex sheet. Examples mostly arise from laboratory plasmas aimed at thermo-

nuclear energy production: confine a high-density plasma by a lower-density one to isolate it

thermally from an outer wall. There are also astrophysical examples, e.g., the heliopause of solar

system that separates the interstellar plasma compressed at the bow shock from the solar wind

plasma compressed at the termination shock.

Remark 1.1.2. As for resistive MHD, the jump condition for Ḃ must be the Dirichlet-type condition

ŒB� D 0. Indeed, the divergence-free condition for B implies ŒB� � On D 0. When the electric resistivity

is nonzero, the surface current is not allowed on the interface when doing the perturbation and thus

ŒB� � On D 0. See [36] for details.

1.2 Overview of Previous Results

In the past a few decades, there have been numerous studies of free-boundary inviscid fluids. In the

absence of magnetic field, the MHD system becomes Euler equations.

Free-boundary Euler equations The free-boundary Euler equations have been studied intensively

by a lot of authors. The first breakthrough in solving the LWP for the incompressible irrotational

problem for general initial data came in the work of Wu [79, 80]. In the case of nonzero vorticity,

Christodoulou-Lindblad [13] first established the a priori estimates and then Lindblad [46, 47] proved

the LWP by using Nash-Moser iteration. Coutand-Shkoller [16, 17] proved the LWP for incompressible

Euler equations with or without surface tension and avoid the loss of regularity. We also refer to

[85, 1, 65] and references therein.
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The study of compressible perfect fluid is not quite developed as opposed to the incompressible case.

Lindblad [48] established the first LWP result by Nash-Moser iteration. See also [72, 49, 51, 49, 23, 54]

for the further study. In the case of nonzero surface tension, we refer to [15, 20].

Free-boundary MHD equations: Incompressible case The study of free-boundary MHD is more

complicated than Euler equations due to the strong coupling between fluid and magnetic field and the

failure of irrotational assumption. For incompressible ideal MHD, Hao-Luo [33, 35] established the a

priori estimates and linearized LWP. Gu-Wang [30] proved the LWP. Luo-Zhang [52] proved the low

regularity a priori estimates when the fluid domain is small. We also mention that Lee [43, 44] obtained

a local solution via the vanishing viscosity-resistivity limit.

For the full plasma-vacuum model, Gu [25, 26] proved the LWP for the axi-symmetric case with

nontrivial vacuum magnetic field in a non-simply connected vacuum domain under Rayleigh-Taylor

sign condition. Hao [32] proved the LWP in the case of J D 0. For the general case, all of the results

require the Syrovatskij condition jB � OBj � c0 > 0 on the free interface. Under this condition, the

results are due to Morando-Trakhinin-Trebeschi [58] and Sun-Wang-Zhang [67]. We also note that the

study of the full plasma-vacuum model in ideal MHD under Rayleigh-Taylor sign condition is still an

open problem when OB is non-trivial with J ¤ 0. For incompressible current-vortex sheets, we refer to

Coulombel-Morando-Secchi-Trebeschi [14] and Sun-Wang-Zhang [66].

For incompressible ideal MHD with surface tension, Luo-Zhang [53] proved the a priori estimates

and Gu-Luo-Zhang [28, 29] proved the LWP and the zero surface tension limit. For incompressible

dissipative MHD with surface tension, we refer to Chen-Ding [8] for the inviscid limit for viscous

non-resistive MHD, Wang-Xin [78] for the GWP of the plasma-vacuum model for inviscid resistive

MHD around a uniform transversal magnetic field, and Padula-Solonnikov [61] and Guo-Zeng-Ni [31]

for viscous-resistive MHD.
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Free-boundary MHD equations: Compressible case Compared with compressible Euler equations

and incompressible MHD, compressible MHD has an extra coupling between the sound wave and

the magnetic field which makes the analysis completely different. Here we emphasize that there is

a normal derivative loss in the div-curl analysis of compressible MHD. On the one hand, the second

author [82, 83] recently observed that the magnetic resistivity exactly compensates the derivative

loss mentioned above. However, it is still hopeless to derive the vanishing resistivity limit. On the

other hand, one can still expect to establish the tame estimates for the linearized equation. Based on

this and Nash-Moser iteration, Trakhinin-Wang [74, 75] recently proved the LWP for free-boundary

compressible ideal MHD with or without surface tension. We also mention that Chen-Wang [9] and

Trakhinin [71] proved the LWP for the current-vortex sheets, and Secchi-Trakhinin [64] proved the

LWP for the full plasma-vacuum problem for compressible ideal MHD under the non-collinearity

condition. However, there is a big loss of regularity caused by the Nash-Moser iteration (H
m
2 C6 loss

with HmC 32 data for m � 20 ). Finding suitable estimates without loss of regularity is still a widely

open problem. Our paper [50] was the first breakthrough in this direction. It also leaves open the

possibility for the further study of current-vortex sheets and plasma-vacuum models which are the

original models in the interface plasma physics. Also it may provide a new, comprehensive approach

to study the nonlinear hyperbolic system with characteristic (free) boundary conditions arising in the

study of inviscid fluids, e.g., the nonlinear stability and incompressible limit of compressible vortex

sheets which are related to the suppression of the Kelvin-Helmholtz instability.
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Chapter 2

Reformulation in Lagrangian
Coordinates and Main Results

We use Lagrangian coordinates to reduce the free-boundary problem to a fixed-domain problem. We

assume˝ WD T2� .�1; 1/ to be the reference domain and � WD T2� .f�1g[ f1g/ to be the boundary.

The coordinates on ˝ is y WD .y0; y3/ D .y1; y2; y3/. We define � W Œ0; T � �˝ ! D as the flow map

of velocity field u, i.e.,

@t�.t; y/ D u.t; �.t; y//; �.0; y/ D �0.y/; (2.0.1)

where �0 is a diffeomorphism between ˝ and D0. For technical simplicity we assume �0 D Id, i.e.,

the initial domain is assumed to be D0 D T2 � .�1; 1/. By chain rule, it is easy to see that the material

derivative Dt becomes @t in the .t; y/ coordinates and the free-boundary @Dt becomes fixed (� D

T2�.f�1g[f1g/). We introduce the Lagrangian variables as follow: v.t; y/ WD u.t; �.t; y//, b.t; y/ WD

B.t; �.t; y//, q.t; y/ WD p.t; �.t; y//, Q.t; y/ WD P.t; �.t; y// and R.t; y/ WD �.t; �.t; y//.

In the thesis, we adapt Einstein summation convetion, i.e., the repeated indices imply taking

summation on this index. All the Greek indices range over 1, 2, 3 and the Latin indices range over 1,

2. Let @ D @y be the spatial derivative in Lagrangian coordinates and we define div Y D @˛Y ˛ to be

the (Lagrangian) divergence of the vector field Y . We introduce the matrix A D Œ@���1, specifically
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A�˛ WD @y�

@x˛
where x˛ D �˛.t; y/ is the ˛-th variable in Eulerian coordinates. From now on, we

define r˛A D
@
@x˛
D A�˛@� to be the covariant derivative in Lagrangian coordinates (or say Eulerian

derivative), div AX WD rA � X D A�˛@�X˛ and .curl AX/˛ WD �˛ˇA
�ˇ@�X to be the Eulerian

divergence and curl of the vector field X . In addition, since �.0; �/ D Id, we have A.0; �/ D I , where I

is the identity matrix, and .u0; B0; p0/ and .v0; b0; q0/ agree respectively.

In terms of �; v; b; q; R, the free-boundary MHD system reads8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@t� D v in Œ0; T � �˝

R@tv D .b � rA/ b � rAQ; Q D q C
1
2
jbj2 in Œ0; T � �˝

@tRCRdiv Av D 0 in Œ0; T � �˝

@tb C �curl Acurl Ab D .b � rA/ v � bdiv Av in Œ0; T � �˝

div Ab D 0 in Œ0; T � �˝

b˛A
�˛N˛ D 0 in Œ0; T � �˝ .� D 0/

b D 0 in Œ0; T � �˝ .� > 0/

Q D 0;� @Q
@N
j� � c0 > 0 on Œ0; T � � � .� D 0/

A�˛N�Q D ��
p
g4g�

˛ on Œ0; T � � � .� > 0/

.�; v; b; q; R/jtD0 D .Id; v0; b0; q0; �0/;

(2.0.2)

where N D .0; 0;̇1/ denotes the unit outer normal vector to � D T2 � ḟ1g and4g is the Laplace-

Beltrami operator of the metric gij on Dt D �.t; � / induced by the embedding �. Specifically we

have

gij D @i�
�@j��; 4g.�/ D g

�1@i .
p
ggij @j .�//; g D detŒgij �: (2.0.3)

Throughout the thesis, we use @ to emphasis that the derivative is tangential to � .

Let J WD detŒ@�� and OA WD JA. Then we have the Piola’s identity @� OA�˛ D 0 and J satisfies

@tJ D J div Av which together with @tRCRdiv Av D 0 gives that �0 D RJ .

Suppose D is the derivative @ or @t , then we have the following identity

DA�˛ D �A�� @ˇD�� A
ˇ˛: (2.0.4)

When � D 0, the magnetic field b can be expressed in terms of b0 and � so that the magnetic field
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is just a parametre instead of an independent unknown. This is called the “frozen effect of the magnetic

field” which means each fluid particle never separates from the magnetic field line passing through it.

Lemma 2.0.1 ([50, Lemma 1.1]). We have b D J�1.b0 � @/� for non-resistive MHD.

2.1 Low-Regularity Estimates of Incompressible Ideal MHD

Under the setting above, the free-boundary incompressible ideal MHD system reads8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in Œ0; T � �˝

@tv � .b0 � @/
2� D �rAQ; Q D q C

1
2
jbj2 in Œ0; T � �˝

div Av D 0 in Œ0; T � �˝

div b0 D 0 in Œ0; T � �˝

b30 D 0 in Œ0; T � �˝

Q D 0; � @Q0
@N
j� � c0 > 0 on Œ0; T � � �:

.�; v/jtD0 D .Id; v0/:

(2.1.1)

The local well-posedness of (2.1.1) was proved by Gu-Wang [30] in H 4 regularity. However, the

low-regularity solution to (2.1.1) has not been studied before. In the absence of magnetic field, (2.1.1)

reduces to the incompressible Euler equations whose local existence in R3 holds iff the regularity

of initial data is strictly higher than H 2:5.R3/. See Bourgain-Li [6] for the ill-posedness result with

H 2:5.R3/-data. On the other hand, Kukavica-Tuffaha-Vicol [40] proved the H 2:5C" regularity esti-

mates for the free-boundary incompressible Euler equations in a bounded simply-connected domain.

We are then interested to study if the similar low-regularity estimates can be established for incom-

pressible ideal MHD. For simplicity of notations, we define k � ks and j � js to be the standard Sobolev

norms in ˝ and on � respectively.

Theorem 2.1.1 ([52, Theorem 1.1]). Let ˝ be the thin domain T2 � .�N"; N"/ for some N" � 1

and ı � 1
2

be a given small constant. Let .�; v; q/ be the solution to (2.1.1) with initial data

13



.v0; b0/ 2 H
2:5Cı.˝/�H 2:5Cı.˝/ satisfying div v0 D div b0 D 0 and b30 j@˝ D 0 and the Rayleigh-

Taylor sign condition. Let

N.t/ WD k�.t/k23 C kv.t/k
2
2:5Cı C k.b0 � @/�.t/k

2
2:5Cı C j@

2:5Cı� � Onj20: (2.1.2)

Then there exists NT D NT .N.0/; N"; c0/ > 0 such that

sup
0�t� NT

N.t/ � P.N.0//; (2.1.3)

where P.� � � / always denotes a polynomial with positive coefficients of its arguments.

Remark 2.1.2. The smallness of the fluid domain is unavoidable. Based on the Cauchy invariance

for Euler equations, one can gain 1=2-order extra regularity for the flow map than the velocity [1, 40],

which is then not possible for ideal MHD. In Gu-Wang [30], they adopted the Alinhac good unknowns

to avoid the extra 1=2-order regularity, but the least required regularity for such method has to be H 4,

equivalently, the second fundamental form of the free surface must be continuous.

2.2 Well-posedness, Zero Surface Tension Limit, and Low-regularity
Estimates of Incompressible Ideal MHD with Surface Tension

When the surface tension is not neglected, we have8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in Œ0; T � �˝

@tv � .b0 � @/
2� D �rAQ; Q D q C

1
2
jbj2 in Œ0; T � �˝

div Av D 0 in Œ0; T � �˝

div b0 D 0 in Œ0; T � �˝

b30 D 0 in Œ0; T � �˝

A�˛N�Q D ��
p
g4g�

˛ on Œ0; T � � �

.�; v/jtD0 D .Id; v0/:

(2.2.1)

To the best of our knowledge, the following theorems are the first breakthrough in the study of ideal

MHD with surface tension.

Theorem 2.2.1 (Local well-posedness [28, Theorem 1.2]). Let v0 2 H 4:5.˝/ \H 5.� / and b0 2
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H 4:5.˝/ be divergence-free vector fields with .b0 � N/j� D 0. Then there exists T > 0, only

depending on �; v0; b0, such that (2.2.1) with initial data .v0; b0; q0/ has a unique strong solution

.�; v; q/ with energy estimate

sup
0�t�T

E.t/ � C.��1; kv0k4:5; kb0k4:5; jv0j5/; (2.2.2)

where the energy functional E.t/ is

E.t/ WD k�.t/k24:5 C

3X
kD0

�@kt v.t/; @kt .b0 � @/�.t/2
4:5

�
C
@4t v.t/; @4t .b0 � @/�.t/20

C

3X
kD0

ˇ̌̌
@
�
˘@3�kt @kv.t/

�ˇ̌̌2
0
C

ˇ̌̌
@
�
˘@3.b0 � @/�.t/

�ˇ̌̌2
0
:

(2.2.3)

Moreover, the H 5.� /-regularity of v on the free-surface can also be recovered, in the sense that there

exists some 0 < T1 � T , depending only on ��1; v0; b0, such that

sup
0�t�T1

j�.t/j25 C jv.t/j
2
5 � C.�

�1; kv0k4:5; kb0k4:5; jv0j5/: (2.2.4)

The proof of Theorem 2.2.1 relies on the adjusted tangential smoothing as an approximation scheme

by combining the ideas of [30] and [16]. We shall first establish the a priori estimates, uniform in the

smoothing parametre, for the approximate system. This will be proved by div-curl decomposition,

tangential estimates which together with the surface tension equation also give the boundary energies.

Then we solve the nonlinear approximate system by freezing the coefficients (linearization) and Picard

iteration. The frozen-coefficient (linearized) problem is solved by the penalization method and Galerkin

approximation. The enhanced boundary regularity relies on the BMO-coefficient elliptic estimates

in [21]. Note that the energy estimate established in Theorem 2.2.1 relies on ��1. When the surface

tension is almost negligible, one may ask if it is possible to establish the uniform-in-� estimate. The

answer is yes.

Theorem 2.2.2 (Zero surface tension limit [29]). Suppose the initial data .v0; b0/ satisfies
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1. div b0 D div v0 D 0, b30 j� D 0

2. v0; b0 2 H 5.˝/,
p
�v0;
p
�b0 2 H

5:5.˝/, �v30 ; �b
3
0 2 H

5:5.� / and �
3
2 v30 ; �

3
2 b30 2 H

6.� /

3. The Rayleigh-Taylor sign condition �@Q0=@N � c0 > 0 on � for all � > 0.

4. The compatibility conditions up to 4-th order, where the j -th order condition reads @jt qjtD0 D

�@
j
tHjtD0 on � .

There exists T 0 > 0 independent of � such that the solution .v� ; .b0 � @/�� ;Q� / to (2.2.1) satisfies

sup
0�t�T 0

E� .t/ � C.c0; k.v0; b0/k5; k.
p
�v0;
p
�b0/k5:5; j.�v0; �b0/j5:5; j.�

3
2 v0; �

3
2 b0/j6/ (2.2.5)

where E� .t/ WD E�1 .t/CE
�
2 .t/ and

E�1 .t/ WD k�
� .t/k

2
5 C

5X
kD0

�@kt v� .t/2
5�k
C

@kt .b0 � @/�� .t/2
5�k

�
C

ˇ̌̌
@5�� .t/ � On.t/

ˇ̌̌2
0

(2.2.6)

and

E�2 .t/ WD k�
� .t/k

2
5:5 C

4X
kD0

�@kt v� .t/2
5:5�k

C

@kt .b0 � @/�� .t/2
5:5�k

�

C

5X
kD0

ˇ̌̌
@6�k@kt �

� .t/ � On.t/
ˇ̌̌2
0
C

ˇ̌̌
@5.b0 � @/�

� .t/ � On.t/
ˇ̌̌2
0
:

(2.2.7)

Hence by the Arzelà-Ascoli lemma and Morrey’s embedding, we have

.v� ; .b0 � @/�
� ;Q� /

C1t;y.Œ0;T ��˝/

����������! .w; .b0 � @/�; r/; as � ! 0; (2.2.8)

where .w; .b0 � @/�; r/ solves (2.1.1) with initial data .v0; b0;Q0/. Moreover, the higher boundary

regularity of v in (2.2.5) can also be recovered

8t 2 .0; T 0�; j�v3.t/j5:5 C j�b
3.t/j5:5 C j�

3
2 v3.t/j6 C j�

3
2 b3.t/j6 � P.E

� .t//: (2.2.9)

Remark 2.2.3. The initial dataQ�
0 is solved by the elliptic equation�4Q�

0 D .@v0/.@v0/�.@b0/.@b0/

with Q�
0 D �H0. When �0 = Id, we have H0 D 0 and thus Q�

0 D Q0. For general diffeomorphism
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�0 ¤ Id, the initial data of Q� is no longer Q0 for the � D 0 problem. Yet we can still prove that

Q�
0

C1

��! Q0. For detailed discussion on the compatibility conditions. we refer to [29, Appendix A] .

When proving the local existence in Theorem 2.2.1, the normal trace of v is controlled by the

BMO-coefficient elliptic estimates for the time-differentiated surface tension equation and thus ��1

appears. In order for the uniform-in-� estimates, we use the normal trace lemma (cf. Lemma 3.2.3)

to convert the boundary normal trace estimate to the interior tangential estimate. Then we apply the

Alinhac good unknowns to avoid the higher regularity of �. The Alinhac good unknowns also reveal

a cancellation structure that simultaneously gives the non-weighted boundary regularity contributed

by the Rayleigh-Taylor sign condition, the weighted boundary regularity contributed by the surface

tension, and an anti-symmetric structure that eliminates the uncontrollable terms on the boundary.

Next, concerning the low-regularity solutions, we are able to generalize Disconzi-Kukavica [18] to

incompressible MHD with surface tension. Due to the presence of surface tension, we need neither the

smallness of the fluid domain nor the extra regularity of the flow map as in Theorem 2.1.1. Compared

with Theorem 2.2.1 and 2.2.2, the second fundamental form of the free surface may not be L1 and thus

the Alinhac good unknown method is no longer valid. Instead, we can use the Kato-Ponce inequalities

(cf. Lemma 3.2.1) together with boundary elliptic estimates to overcome such difficulty.

Theorem 2.2.4 (Low-regularity estimates [53, Theorem 1.1]). Assume that v0 2 H 3:5.˝/ \H 4.� /

and b0 2 H 3:5.˝/ to be divergence free vector fields with b0 � N D 0 on � . Assume that .v; .b0 �

@/�;Q/ solves (2.2.1) with initial data v0 and b0. Define

N.t/ Dk�.t/k23:5 C

2X
kD0

�
k@kt v.t/k

2
3:5�k C k@

k
t .b0 � @/�.t/k

2
3:5�k

�

C k@3t v.t/k
2
0 C k@

3
t .b0 � @/�.t/k

2
0 C

ˇ̌̌
@.˘@2t v/

ˇ̌̌2
0
C

ˇ̌̌
@.˘@@tv/

ˇ̌̌2
0

(2.2.10)

Then there exists a T 00 > 0, chosen sufficiently small, such that N.t/ � C0 for all t 2 Œ0; T �, where C0

only depends on ��1; kv0k3:5; kb0k3:5; jv0j4.
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2.3 Well-posedness and Incompressible Limit of Compressible
Resistive MHD

Next we take into account of the compressibility of the plasma that results in the coupling between

sound wave and magnetic field. The system of compressible ideal MHD in the case of a liquid is a

strictly hyperbolic system with characteristic boundary conditions. The failure of the uniform Kreiss-

Lopatinskiı̆ condition leads to a potential of normal derivative loss. Even worse, the div-curl analysis

does not work in the control of normal derivatives. Concerning the degenerate boundary condition

B � On D 0, the loss of normal derivatives may not be compensated. Indeed, Ohno-Shirota [59] proved

the ill-posedness in standard Sobolev spaces H l .l � 2/.

We found two ways to avoid such derivative loss. On the one hand, we found that the magnetic

diffusion, together with the Christodoulou-Lindblad type ellipeic estimate (cf. Lemma 3.3.3), gives

common control of both magnetic fields and sound waves, as well as the Lorentz force that appears

to be a higher order term. On the other hand, inspired by Chen Shu-Xing [10], we can study the

compressible ideal MHD system in the anisotropic Sobolev spaces instead of standard Sobolev spaces.

The anisotropy is expected to compensate the loss of normal derivatives.
Let us first introduce the results about compressible resistive MHD8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

@t� D v in Œ0; T � �˝

�0@tv D J .b � rA/ b � rAQ; Q D q C
1
2 jbj

2 in Œ0; T � �˝
JR0.q/
�0

@tq C divAv D 0 in Œ0; T � �˝

q D q.R/ strictly increasing in Œ0; T � �˝

@tb C �curlAcurlAb D .b � rA/ v � bdivAv in Œ0; T � �˝

divAb D 0 in Œ0; T � �˝

b D 0; q D 0; � @Q0
@N
j� � c0 > 0 on Œ0; T � � �

.�; v; b; q/jtD0 D .Id; v0; b0; q0/:

(2.3.1)

Theorem 2.3.1 (Local well-posedness [83, Theorem 1.1]). Let the initial data .v0; b0; q0/ 2 H 4.˝/�

H 5.˝/�H 4.˝/ satisfy the compatibility conditions (1.0.9) up to 5-th order, div b0 D 0 and b0j� D 0.

Then there exists some T1 > 0, such that the system (2.3.1) has a unique solution .�; v; b; q/ in Œ0; T1�
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satisfying the following estimates

sup
0�T�T1

E.T / � P .kv0k4 ; kb0k5 ; kq0k4/ ; (2.3.2)

where

E.T / WD e.T /CH.T /CW.T /C

4X
kD0

@4�kt ..b � rA/ b/
2
k
; (2.3.3)

where

e.T / WD k�k24 C
ˇ̌̌
@4� � On

ˇ̌̌2
0
C

4X
kD0

�@4�kt v
2
k
C

@4�kt b
2
k
C

@4�kt q
2
k

�
; (2.3.4)

H.T / WD

Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C

@4t b21 ; (2.3.5)

W.T / WD
@5t q20 C @4t q21 : (2.3.6)

Remark 2.3.2. One may not recover the full H 5 regularity for the magnetic field b due to the

appearance of free boundary, otherwise the H 5-control of � is needed.

The proof of the local existence is based on the tangential smoothing as an approximation scheme

introduced by Coutand-Shkoller [16]. To solve the approximate system, one can freeze the coefficient,

then solve the linearized system by standard fixed-point argument, and finally use Picard iteration

to solve the approximation system. The most difficult step is then the uniform (in the smoothing

parametre) estimates for the approximate system. The velocity is still controlled via div-curl-tangential

decomposition. In the control of divergence, one may find that the wave equation of q contains the

term 4A.12 jBj
2/ in the source term and thus leads to the loss of one normal derivative. We then

observe that the magnetic diffusion, which together with the divergence-free condition contributes to

the Laplacian term4Ab, exactly compensate such derivative loss. On the other hand, we also observe

that the vanishing boundary condition, together with the Christodoulou-Lindblad elliptic estimates,

helps us control the magnetic field b and the Lorentz force .b � rA/b. Finally, one may combine the
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control of heat equation of b and the wave equation of q to close the estimates.

The sound speed c2 WD q0.R/ reflects the compressibility of a compressible fluid. In our setting,

we may parametrize it by " WD R0.q/jRD N�0 . Under this setting, we denote the unknowns to be

.v"; b"; q"; R"/ and the process lim
"!0C

R".p"/ D N�0 can be considered to be the incompressible limit.

This is derived by establishing the energy estimate that is uniform in the sound speed. We may assume

N�0 D 1 for simplicity.

Let .v0;b0/ be the divergence-free and b0j� D 0. Let q0 be the solution to

4.q0 C
1

2
jb0j2/ D �@�v˛0@˛v�0 C @�b˛0@˛b�0 ; q0j� D 0

and satisfy the Rayleigh-Taylor sign condition �@N .q0 C 1
2
jb0j2/ � c0 > 0. Let .v;b;q/ be the

solution to the incompressible resistive MHD with initial data .v0;b0/8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in Œ0; T � �˝

@tv D
�
b � rA.�/

�
b � rA.�/.qC 1

2
jbj2/ in Œ0; T � �˝

div A.�/v D 0 in Œ0; T � �˝

@tbC �curl A.�/curl A.�/b D .b � rA/ v in Œ0; T � �˝

div A.�/b D 0 in Œ0; T � �˝

b D 0; q D 0; � @q0
@N
j� � c0 > 0 on Œ0; T � � �

.�; v;b;q/jtD0 D .Id; v0;b0;q0/:

(2.3.7)

Theorem 2.3.3 (Incompressible limit [82, Theorem 1.3]).

1. There exists .v"0;b0; �
"
0; q

"
0/, the initial data of (2.3.1) with sound speed equal to "�1, satisfying

the conditions mentioned in Theorem 2.3.1 and .v"0; �
"
0/

C1

��! .v0; 1/ as "! 0.

2. Let .v"; b"; R"; q"/ be the solution to (2.3.1) with initial data .v"0;b0; �
"
0; q

"
0/. Then we have

.v"; b"; R"/
C1

��! .v;b; 1/ as "! 0.

Remark 2.3.4. When passing to the incompressible limit, the pressure q" in the compressible system

never converges to the incompressible counterpart. The reason is that the pressure in the incompressible

system is a Lagrangian multiplier (cf. [16, Section 6-7]) instead of the solution to a wave equation.
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Instead, it should be the enthalpy h.R/ WD
R R
1

q0.r/
r
dr that converges to q as "! 0.

To achieve the incompressible limit, it suffices to derive uniform-in-"�1 estimates for (2.3.1) with

the initial data .v"0;b0; �
"
0; q

"
0/. One needs to be careful when doing the control of wave equation of q,

because the time derivative is
p
R0.q/-weighted but the source term needs the non-weighted energy.

The result is listed as follows.

Lemma 2.3.5 ([82, Theorem 1.1]). There exists some T 01 > 0 independent of ", such that the

.�"; v"; b"; q"/ in Œ0; T 01� satisfying the following estimates

sup
0�T�T 0

1

E".T / � P .kv0k4 ; kb0k5 ; kq0k4/ ; (2.3.8)

where

E".T / WD e".T /CH ".T /CW ".T /C

4X
kD0

@4�kt ..b" � rA"/ b
"/
2
k
; (2.3.9)

where

e".T / WD k�"k24 C
ˇ̌̌
@4�" � On

ˇ̌̌2
0
C

4X
kD1

�@4�kt v"
2
k
C

pR0.q"/@4�kt b"
2
k
C

@4�kt q"
2
k

�

C

pR0.q"/@4t v"2
k
C
@4t b"2k C R0.q"/@4t q"2k (2.3.10)

H ".T / WD

Z T

0

Z
˝

ˇ̌
@5t b

"
ˇ̌2

dy dt C
@4t b"21 ; (2.3.11)

W ".T / WD
R0.q"/@5t q"20 C pR0.q"/@4t q"21 : (2.3.12)
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2.4 Anisotropic A priori Estimates of Compressible Ideal MHD
8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in Œ0; T � �˝

�0@tv � .b0 � @/.J
�1.b0 � @/�/ D �rAQ; Q D q C

1
2
jbj2 in Œ0; T � �˝

JR0.q/
�0

@tq C div Av D 0 in Œ0; T � �˝

q D q.R/ strictly increasing in Œ0; T � �˝

div b0 D 0 in Œ0; T � �˝

b30 D 0; Q D 0; �
@Q0
@N
j� � c0 > 0 on Œ0; T � � �

.�; v; b; q/jtD0 D .Id; v0; b0; q0/:

(2.4.1)

So far, it is still difficult to pass the vanishing resistivity limit for (2.3.1) to derive the solution to

(2.4.1). As stated before, it is not suitable to study (2.4.1) in the standard Sobolev space. On the other

hand, Chen Shu-Xing [10] introduced the anisotropic Sobolev space to study hyperbolic systems with

characteristic boundary conditions. Yanagisawa-Matsumura [81] and Secchi [62, 63] adopted this to

proved the local existence of compressible ideal MHD system with perfect conducting wall conditions.

As for the free-boundary problem, Trakhinin-Wang [74] proved the LWP by using Nash-Moser which

leads to a big loss of regularity from the initial data to the solution. Therefore, we would like to

generalize [62, 63] to the free-boundary problem to avoid the regularity loss.

Before stating our result, we shall define the anisotropic Sobolev space Hm
� .˝/ for m 2 N�. Let

� D �.y3/ be a cutoff function on Œ�1; 1� defined by �.y3/ D .1 � y3/.1 C y3/. Then we define

Hm
� .˝/ for m 2 N� as follows

Hm
� .˝/ WD

�
f 2 L2.˝/

ˇ̌̌̌
.�@3/

i4@
i1
1 @

i2
2 @

i3
3 f 2 L

2.˝/; 8i1 C i2 C 2i3 C i4 � m

�
;

equipped with the norm

kf k2Hm� .˝/
WD

X
i1Ci2C2i3Ci4�m

k.�@3/
i4@

i1
1 @

i2
2 @

i3
3 f k

2
L2.˝/

:

For any multi-index I WD .i0; i1; i2; i3; i4/ 2 N5, we define

@I� WD @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 ; hI i WD i0 C i1 C i2 C 2i3 C i4;
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and define the space-time anisotropic Sobolev norm k � km;� by

kf k2m;� WD
X
hI i�m

k@I�f k
2
L2.˝/

D

X
i0�m

k@
i0
t f k

2

H
m�i0
� .˝/

:

We define f.j / D @
j
t f jtD0 for j 2 N. The main result is the following theorem.

Theorem 2.4.1 (Anisotropic regularity of compressible ideal MHD [50, Theorem 1.2]). Let the

initial data be .v0; b0;Q0/ 2 H 8
� .˝/ such that .v.j /; b.j /;Q.j // 2 H

8�j
� .˝/ for 1 � j � 8 and

compatibility condition holds up to 7-th order, i.e., Q.j /j� D 0 for 0 � j � 7. Then there exists some

T2 > 0, such that the solution .�; v;Q/ to the system (2.4.1) satisfies the following estimates in Œ0; T2�

sup
0�t�T2

E.T / � C.E.0//: (2.4.2)

Here the energy functional E.t/ is defined to be

E.t/ WD k�.t; �/k28;�Ckv.t; �/k
2
8;�CkJ

�1.b0 �@/�.t; �/k
2
8;�CkQ.t; �/k

2
8;�C

X
hI iD8

ˇ̌̌
@I�� � On

ˇ̌̌2
0
; (2.4.3)

and C.E.0// > 0 denotes a positive constant depending on E.0/.

Remark 2.4.2. There exists initial data .v0; b0;Q0/ 2 H 8.˝/ ,! H 8
� .˝/ satisfying the compatibility

conditions up to 7-th order, such that

8X
jD1

k.v.j /; b.j /;Q.j //kH8�j .˝/ ≲ P.kv0kH8.˝/; kb0kH8.˝/; kQ0kH8.˝//: (2.4.4)

By the Sobolev embedding H 8�j .˝/ ,! H
8�j
� .˝/ for 0 � j � 8, we have

E.0/ ≲ P.kv0kH8.˝/; kb0kH8.˝/; kQ0kH8.˝//: (2.4.5)

Due to the anisotropy of the function space, it is not possible to establish

8X
jD1

k.v.j /; b.j /;Q.j //kH8�j� .˝/
≲ P.kv0kH8� .˝/

; kb0kH8� .˝/
; kQ0kH8� .˝/

/: (2.4.6)

The only way to prove Theorem 2.4.1 seems to be directly computing @I�-estimates. The interior

23



terms are expected to contribute to the energy of v; b and q, while on the boundary, the top order

derivatives of v �N andQ simultaneously appear. If @I� contains at least one normal derivatives, we can

invoke the MHD system (2.4.1) to replace the normal derivatives of the non-characteristic variables(Q

and v �N ) by the tangential derivatives of the characteristic variables, so that one normal derivative,

as a “second-order” derivative, is replaced by D D @ or .b0 � @/ or @t . Then we use the divergence

theorem to rewrite this boundary integral into the interior and integrate D by part. Finally, using the

anisotropy yields the desired estimates.

However, for the free-boundary problem, the regularity of the free surface is limited, and in

fact enters to the highest order. To overcome this difficulty, we introduce the “modified” Alinhac

good unknowns that take into account the covariance under the change of coordinates to avoid the

derivative loss when commuting @I� with the covariant derivative rA. In specific, the key observation

is that the essential highest order term in @I�.rAf / is not simply rA.@I�f /, but still has the form of

rA.good unknown of f /. This was first observed by Alinhac [2]. In the study of free-surface fluid,

this was first implicitly applied by Christodoulou-Lindblad [13], and then was used explicity [55, 77,

30, 54, 83, 84]. However, due to the anisotropy, the good unknowns applied in [55, 77, 30, 54, 83, 84]

are no longer applicable. Our idea is to fully analyze the “covariant” structure of @I�.r
˛
Af / for f D v˛

and f D Q respectively, and then modify the expression of the Alinhac good unknowns. This idea

never appeared in the previous related works. To achieve this, we need to repeatedly replace a normal

derivative by a tangential one and need to produce a weight function � by using the vanishing boundary

value of Q, b30 and the fundamental theorem of calculus in order to convert the normal derivative @3

into the weighted (tangential) �@3 derivative.
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Chapter 3

Preliminary Lemmas

In this chapter, we record all the lemmata that will be used in the proofs presented in the remaining

chapters.

3.1 Geometric Identities

First we record the geometric identities related to the flow map � and the cofactor matrix A. They are

repeatedly used in the proof, especially in the case of nonzero surface tension.

The explicit form of the matrix A is

A D J�1

0@@2�2@3�3 � @3�2@2�3 @3�
1@2�

3 � @2�
1@3�

3 @2�
1@3�

2 � @3�
1@2�

2

@3�
2@1�

3 � @1�
2@3�

3 @1�
1@3�

3 � @3�
1@1�

3 @1�
1@1�

2 � @1�
1@3�

2

@1�
2@2�

3 � @2�
2@1�

3 @2�
1@1�

3 � @1�
1@2�

3 @1�
1@2�

2 � @2�
1@1�

2

1A (3.1.1)

Moreover, since A D JA, and in view of (3.1.1), we can write

A1i D �ijk@2�j @3�k ; A2i D ��ijk@1�j @3�k ; A3i D �ijk@1�j @2�k : (3.1.2)

Here, �ijk is the sign of the 3-permutation .ijk/ 2 S3. We will repeatedly use that fact that A1�;A2�

consist of @� � @3� and A3� consists of @1� � @2�.

We also record the following identity: Suppose D is the derivative @ or @t , then

DAli D �Alr @kD�r A
ki : (3.1.3)
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Lemma 3.1.1 ([18, Lemma 2.5]). Let On be the unit outer normal to �.� / and T ;N be the tangential

and normal bundle of �.� / respectively. Denote ˘ W T j�.� / ! N to be the canonical normal

projection. Denote @ to be @t or @1; @2. Then

On WD n ı � D
A>N

jA>N j
; (3.1.4)

jA>N j Dj.A31; A32; A33/j D
p
g; (3.1.5)

˘˛
� DOn

˛
On� D ı

˛
� � g

kl@k�˛@l��; (3.1.6)

˘˛
� D˘

˛
�˘

�

�
; (3.1.7)

�4g.�
˛
j� / DH ı � On˛; (3.1.8)

p
g4g�

˛
D
p
ggij˘˛

� @i@j�
�
D
p
ggij @i@j�

˛
�
p
ggijgkl@k�

˛@l�
�@i@j��; (3.1.9)

@.
p
g4g�

˛/ D@i

�
p
ggij˘˛

� @@j�
�
C
p
g.gijgkl � gikglj /@j�

˛@k��@@l�
�

�
; (3.1.10)

@ On� D� g
kl@k@�

�
On�@l��; (3.1.11)

@t .
p
ggij / D

p
g.gijgkl � 2gljgik/@kv

�@l��: (3.1.12)

Remark 3.1.2. Recall that gij D @i��@j�
� and g D detŒgij � and Œgij � D Œgij �

�1. This means that

gij ; g and gij are rational functions of @� and so is ˘ .

Notation 3.1.3. We shall use the notation Q.@�/ and Q.@�/ to denote the rational functions of @� and

@�, respectively. This Q notation allows us to record error terms in a concise way and so it will be

used frequently throughout the rest of this paper. For example, for any tangential derivative @, we have

@Q.@�/ D QQi
˛.@�/@@i�

˛ where the term QQi
˛.@�/ is also a rational function of @�. For more details of

such notation, we refer readers to [16, Section 11] and [18, Remark 2.4].
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3.2 Sobolev Inequalities

Lemma 3.2.1 (Kato-Ponce type Inequalities). Let J D .1 � 4/1=2, s � 0. Then the following

estimates hold:

(1) 8s � 0, we have

kJ s.fg/kL2 ≲ kf kW s;p1 kgkLp2 C kf kLq1 kgkW s;q2 ; (3.2.1)

with 1=2 D 1=p1 C 1=p2 D 1=q1 C 1=q2 and 2 � p1; q2 <1;

(2) 8s 2 .0; 1/, we have

kJ s.fg/ � f .J sg/ � .J sf /gkLp ≲ kf kW s1;p1 kgkW s�s1;p2 ; (3.2.2)

where 0 < s1 < s and 1=p1 C 1=p2 D 1=p with 1 < p < p1; p2 <1;

(2’) 8s � 1, we have

kJ s.fg/ � .J sf /g � f .J sg/kLp ≲ kf kW 1;p1 kgkW s�1;q2 C kf kW s�1;q1 kgkW 1;q2 (3.2.3)

for all the 1 < p < p1; p2; q1; q2 <1 with 1=p1 C 1=p2 D 1=q1 C 1=q2 D 1=p.

(3) 8s � 1, we have

kJ s.fg/ � f .J sg/kL2 ≲ kf kW s;p1 kgkLp2 C kf kW 1;q1 kgkW s�1;q2 ; (3.2.4)

where 1=2 D 1=p1 C 1=q1 D 1=p2 C 1=q2 with 1 < p < p1; p2 <1;

(3’) 8s � 0 and 1 < p <1, we have

kJ s.fg/ � f .J sg/kLp ≲ k@f kL1kJ
s�1gkLp C kJ

sf kLpkgkL1 I (3.2.5)

(3”) For 1 < p <1 and 1 < p1; q1; p2; q2 � 1 satisfying 1=p D 1=p1C 1=p2 D 1=q1C 1=q2,

the following hold:
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� If 0 < s � 1, then

kJ s.fg/ � f .J sg/kLp ≲ kJ s�1@f kLp1 kgkLp2 I (3.2.6)

� If s > 1, then

kJ s.fg/ � f .J sg/kLp ≲ kJ s�1@f kLp1 kgkLp2 C k@f kLq1 kJ
s�2@gkLq2 : (3.2.7)

Proof. See Li [45] for (3’) and (3”) and Kato-Ponce [38] for the others.

Lemma 3.2.2 (Fractional Sobolev Interpolation [7]). Suppose ˝ is a domain in Rd . Suppose also

0 � s1 � s � s2 and 1 � p; p1; p2 � 1. If the condition

1 � s2 2 Z and p2 D 1 and s2 � s1 � 1 �
1

p1

fails, then the following interpolation result holds for all � 2 .0; 1/:

kf kW s;p.˝/ ≲d;s1;s2;p1;p2;˝;� kf k
�
W s1;p1 .˝/kf k

1��
W s2;p2 .˝/;

provided s D �s1 C .1 � �/s2 and 1=p D �=p1 C .1 � �/=p2 hold.

Lemma 3.2.3 (Normal trace lemma [30, Lemma 3.4]). Let X be a smooth vector field. Then

ˇ̌̌
@X �N

ˇ̌̌
�0:5

≲ k@Xk0 C kdiv Xk0 (3.2.8)

Lemma 3.2.4 (Harmonic trace lemma [69, Prop. 5.1.7]). Suppose that s � 0:5 and u solves the

boundary-valued problem (
4u D 0 in ˝;

u D g on �

where g 2 H s.� /. Then it holds that

jgjs ≲ kuksC0:5 ≲ jgjs
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Lemma 3.2.5 (Anisotropic Sobolev trace lemma [60, Theorem 1]). Let m � 1; m 2 N�, then we have

the following trace lemma for the anisotropic Sobolev space.

1. If f 2 HmC1
� .˝/, then its trace f j� belongs to Hm.� / and satisfies

jf jm ≲ kf k
H
mC1
� .˝/

:

2. There exists a linear continuous operator RT W H
m.� /! HmC1

� .˝/ such that .RT g/j� D g

and

kRT gkHmC1� .˝/
≲ jgjm:

Remark 3.2.6. The condition m � 1 is necessary and analogous result may not hold when m D 0.

Indeed, we need to integrate one tangential derivative by part and thus m � 1 is necessary.

Lemma 3.2.7 (Anisotropic Sobolev embedding [74, Lemma 3.3]). We have the following inequalities

Hm.˝/ ,! Hm
� .˝/ ,!H

bm=2c.˝/; 8m 2 N�

kukL1 ≲ kukH3� .˝/; kukW 1;1 ≲ kukH5� .˝/:

3.3 Elliptic Estimates

Lemma 3.3.1 (Hodge-type decomposition and the inverse theorem).

(1) Let X be a smooth vector field and s � 1, then it holds that

kXks ≲ kXk0 C kcurl Xks�1 C kdiv Xks�1 C j@X �N js�1:5: (3.3.1)

(2) Let ˝ � R3 be a bounded H kC1-domain with k > 1:5. Given F; G 2 H l�1.˝/ with

div F D 0. Consider the equations

curl X D F; div X D G in ˝: (3.3.2)
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If F satisfies
R


F �N dS D 0 for each connected component  of @˝ and h 2 H l�0:5.@˝/ satisfiesR
@˝
h dS D

R
˝
G dy, then 81 � l � k, there exists a solution X 2 H l .˝/ to (3.3.2) with boundary

condition X �N j@˝ D h such that

kXkH l .˝/ � C.j@˝jHkC0:5/
�
kFkH l�1.˝/ C kGkH l�1.˝/ C jhjH l�0:5.@˝/

�
: (3.3.3)

Such solution is unique if ˝ is the disjoint union of simply connected open sets.

Proof. (1) This follows from the well-known identity �4X D curl curl X � rdiv X and integrating

by parts. (2) This is the main result of Cheng-Shkoller [12].

Lemma 3.3.2 (H 1 elliptic estimates [37, Lemma 3.2]). Assume B�� satisfies kBkL1 � K and the

ellipticity B��.x/���� �
1
K
j�j2 for all x 2 ˝ and � 2 R3. Assume W to be an H 1 solution to(

@�.B
��@�W / D div � in ˝

B��@�WN� D h on @˝;
(3.3.4)

where �; div � 2 L2.˝/ and h 2 H�0:5.@˝/ with the compatibility condition

Z
@˝

.� �N � h/dS D 0:

If kB � IkL1 � "0 which is a sufficently small constant depending on K, then

kW �W k1 ≲ k�k0 C jh � � �N j�0:5; where W WD
1

j˝j

Z
˝

Wdy: (3.3.5)

Lemma 3.3.3 (Christodoulou-Lindblad elliptic estimate [54, Lemma 2.7]). If f j@˝ D 0, then the

following elliptic estimate holds for r � 2.

krAf kr � P.k�kr /
�
k4Af kr�1 C k@�krkf kr

�
: (3.3.6)

When r D 1, k�kr should be replaced by k@�k1.
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3.4 Properties of Tangential Mollifiers

Let � D �.y1; y2/ 2 C1c .R2/ be a cut-off function such that Spt � D B.0; 1/ � R2; 0 � � � 1 andR
R2 � D 1. The dilation is ��.y1; y2/ D 1

�2
�
�
y1
�
; y2
�

�
; � > 0: Now we define

��f .y1; y2; y3/ WD

Z
R2
��.y1 � z1; y2 � z2/f .z1; z2/ dz1 dz2: (3.4.1)

The following lemma records the basic properties of tangential smoothing.

Lemma 3.4.1 ([28, Lemma 2.7]). Let f W R2 ! R be a smooth function. For � > 0, we have:

k��f ks ≲ kf ks; 8s � 0I (3.4.2)

j��f js ≲ jf js; 8s � �0:5I (3.4.3)

j@��f j0 ≲ ��sjf j1�s; 8s 2 Œ0; 1�I (3.4.4)

jf ���f jL1 ≲
p
�j@f j0:5 (3.4.5)

jf ���f jLp ≲ �j@f jLp ; (3.4.6)

jf ���f jL2 ≲
p
�j@

1
2 f j0: (3.4.7)

Define the commutator Œ�� ; f �g WD ��.fg/ � f��.g/. Then it satisfies

jŒ�� ; f �gj0 ≲ jf jL1 jgj0; (3.4.8)

jŒ�� ; f �@gj0 ≲ jf jW 1;1 jgj0; (3.4.9)

jŒ�� ; f �@gj0:5 ≲ jf jW 1;1 jgj0:5: (3.4.10)

31



Chapter 4

Free-Boundary Incompressible MHD
with or without Surface Tension

4.1 A Glimpse at Incompressible MHD without Surface Tension

We start with the simplest case, i.e., the incompressible ideal MHD without surface tension (2.1.1).

The local well-posedness was proved by Gu-Wang [30] in H 4 regularity. However, the low-regularity

solution to (2.1.1) has not been studied until our paper [52] appears. Below we present the proof of the

H 2:5Cı -estimates as stated in Theorem 2.1.1. We introduce the following a priori assumptions

Lemma 4.1.1 ([52, Lem 2.1 and Lem 5.5]). For every 0 < " � 1, there exists some T0 > 0 sufficiently

small, such that the following inequality holds in Œ0; T0�:

kA�� � ı
�
� kH1:5Cı.˝/ � "; kA

�
˛A

�
˛ � ı

��
kH1:5Cı.˝/ � ": (4.1.1)

�@NQ � c0=2 > 0: (4.1.2)

4.1.1 Elliptic estimates of the pressure

In this section we derive the estimates for kQk3Cı and kQtk2:5Cı . These quantities are both required

in Section 4.1.2. We denote P D P.kvk2:5Cı ; kbk2:5Cı/ and so P0 D P.kv0k2:5Cı ; kb0k2:5Cı/.
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Lemma 4.1.2. Assume Lemma 4.1.1 holds. Then the total pressure Q satisfies:

kQk3Cı ≲ P0 C P C P.k�k3Cı/
�
kQ0k2Cı C

Z t

0

kQtk2Cı

�
; (4.1.3)

and its time derivative Qt satisfies:

kQtk2:5Cı ≲ P0 C P C P.kvk2:5Cı/
�
kQ0k2Cı C

Z t

0

kQtk2Cı

�
: (4.1.4)

Proof. Applying A�˛@� to the first equation of (2.1.1), we have:

A�˛@�.A
�
˛@�Q/ D �A

�˛@�@tv˛ C A
�˛@�.b

�
0 @�b˛/: (4.1.5)

Invoking Piola’s identity, we get �A�˛@�@tv˛ D @tA�˛@�v˛ and

A�˛@�.b
�
0 @�b˛/ D A

�˛@�b
�
0 @�b˛ C @ˇbA

�Aˇ˛@�b˛ � @ˇb
�
0 A

ˇ˛@�b˛:

Thus, the total pressure Q satisfies

@�@�Q D@tA
�˛@�v˛ C @�..ı

��
� A�˛A

�˛/@�Q/

C A�˛@�b
�
0 @�b˛ C @ˇbA

�Aˇ˛@�b˛ � @ˇb
�
0 A

ˇ˛@�b˛;

(4.1.6)

with the boundary conditions

Q D 0 on � (4.1.7)

The standard elliptic estimate yields that

kQk3Cı ≲ k@tA
�˛@�v˛k1Cı„ ƒ‚ …

Q1

Ck.ı�� � A�˛A
�˛/@�Qk2Cı„ ƒ‚ …

Q2

C kA�˛@�b
�
0 @�b˛k1Cı C k@ˇbA

�Aˇ˛@�b˛k1Cı C k@ˇb
�
0 A

ˇ˛@�b˛k1Cı„ ƒ‚ …
Q3

(4.1.8)

Bounds for Q1: We have:

k@tA
�˛@�v˛k1Cı ≲ P.k�k2:5Cı/kvk

2
2:5Cıkvk

2
2Cı : (4.1.9)
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Bounds for Q2: Invoking (3.2.1), we have:

k.ı�� � A�˛A
�˛/@�Qk2Cı

≲ "kQk3Cı C P.k�k3Cı/

�
kQ0k2Cı C

Z t

0

kQtk2Cı ds
�
;

(4.1.10)

Bounds for Q3: All the terms in Q3 can be controlled by P.k�k2:5Cı/kbk2:5Cıkb0k2:5Cı C

Ckbk2
2:5Cı

via the multiplicative Sobolev inequality. We only write the first term and the others

are treated similarly.

kA�˛@�b
�
0 @�b˛k1Cı ≲ kA

�˛
k1:5Cık@�b

�
0 @�b˛k1Cı ≲ P.k�k2:5Cı/kbk2:5Cıkb0k2:5Cı : (4.1.11)

Summing up the bounds for Q1-Q3, then absorbing the "-term to LHS, we conclude the estimates of

Q as:

kQk3Cı ≲ P0 C P C P.k�k3Cı/
�
kQ0k2Cı C

Z t

0

kQtk2Cı ds
�
: (4.1.12)

Now we prove the estimates of Qt . Taking time derivative of (4.1.6), we obtain:

@�@�Qt D @t tA
�˛@�v˛ C @tA

�˛@�@tv˛

� @�.@tA
�
˛A

�˛@�Q/ � @�.A
�
˛@tA

�˛@�Q/C @�..ı
��
� A�˛A

�
˛/@�Qt /

C A�˛t @�b
�
0 @�b˛ C A

�˛@�b
�
0 @t@�b˛ C @t .@ˇb@�b˛/A

�Aˇ˛

C @ˇb@t .A
�Aˇ˛/@�b˛ � @ˇb

�
0 A

ˇ˛@t@�b˛ � @ˇb
�
0 A

ˇ˛
t @�b˛:

(4.1.13)

with the boundary condition Qt D 0 on � . By the elliptic estimate and the multiplicative Sobolev

inequality, we similarly have:

kQtk2:5Cı ≲ "kQtk2:5Cı C P0 C P C P.kvk2:5Cı/
�
kQ0k2Cı C

Z t

0

kQtk2Cı

�
; (4.1.14)

which yields (4.1.4) by letting " sufficiently small.
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4.1.2 Tangential Estimates

In this section, we establish the tangential energy estimates.

Theorem 4.1.3. Let S D @2:5Cı . Let NN.t/ D kSvk2
L2
C kSbk2

L2
C

c0
4
kA3˛S�

˛k2
L2.� /

. Then there

exists a T > 0 such that for each t 2 Œ0; T �, such that

NN.t/ ≲ P0 C
Z t

0

P C
Z t

0

P.kQk3Cı ; kQtk2:5Cı ; k�k3Cı/ ds (4.1.15)

First, we derive the tangential estimates of v.

1

2

d

dt

Z
˝

.Sv˛/.Sv˛/ dy D
Z
˝

.Sv˛/.@tSv˛/ dy

D�

Z
˝

.Sv˛/.S.A�˛@�Q// dy C
Z
˝

.Sv˛/.S.bˇA
�ˇ@�b˛// dy DW I C J:

(4.1.16)

To control I , we have:

I D �

Z
˝

.Sv˛/.S.A�˛@�Q// dy

D �

Z
˝

.Sv˛/.A�˛ /.S@�Q/ dy„ ƒ‚ …
I1

�

Z
˝

.Sv˛/.SA�˛ /.@�Q/ dy„ ƒ‚ …
I2

�

Z
˝

.Sv˛/ŒS.A�˛@�Q/ � A
�
˛ .S@�Q/ � .SA

�
˛ /@�Q� dy„ ƒ‚ …

I3

:

(4.1.17)

Control of I3: This is a direct consequence of inequality (3.2.3),

I3 � kSvkL2.kA
�
˛kW 1;6k@�QkW 1:5Cı;3 C kA�˛kW 1:5Cı;3k@�QkW 1;6/

≲ kvk2:5Cık�k
2
3CıkQk3Cı :

(4.1.18)
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Control of I1: We integrate @� by parts to get:

I1 D�

Z
˝

Sv˛A�˛ .@�SQ/ dy

D

Z
˝

A�˛S@�v
˛.SQ/ dy �

Z
�

. SQ„ƒ‚…
D0

/.A�˛Sv
˛N�/ dS.� /

D

Z
˝

S.A�˛@�v
˛/„ ƒ‚ …

D0

.SQ/ dy �
Z
˝

.SA�˛ /@�v
˛.SQ/ dy

�

Z
˝

ŒS.A�˛@�v
˛/ � .SA�˛ /@�v

˛
� A�˛S@�v

˛�.SQ/ dy;

(4.1.19)

The last term in the third line is controlled by using (3.2.3):

�

Z
˝

ŒS.A�˛@�v
˛/ � .SA�˛ /@�v

˛
� A�˛S@�v

˛�.SQ/ dy

≲ .kA�˛kW 1:5Cı;3k@�v
˛
kW 1;3 C kA�˛kW 1;6k@�v

˛
k1:5Cı/kSQkL3

≲ kQk3Cık�k
2
3Cıkvk2:5Cı :

(4.1.20)

For the second term in the last line of (4.1.19), we need to integrate 1=2-tangential derivatives by parts

and then apply (3.2.1):

�

Z
˝

SA�˛@�v
˛SQ dy D

Z
˝

@2CıA�˛@
0:5.SQ@�v

˛/

≲kAk2Cı.kSQkH0:5k@�v
˛
kL1 C kSQkL3k@�v

˛
kW 0:5;6/

≲k�k23CıkQk3Cıkvk2:5Cı :

(4.1.21)

Summing these up, we have:

I1 ≲ k�k
2
3CıkQk3Cıkvk2:5Cı : (4.1.22)
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Control of I2: Let Sm WD �.I �4/0:25C0:5ı@m. Then one may decompose S as:

S D ..I �4/1:25C0:5ı � .I �4/0:25C0:5ı/C .I �4/0:25C0:5ı„ ƒ‚ …
DWS0

D .I �4/0:25C0:5ı.�4/C S0 DW

2X
mD1

Sm@m C S0:

(4.1.23)

For I2 we have:

I2 D �

2X
mD1

Z
˝

.Sv˛/.Sm@mA
�
˛ /.@�Q/ dy �

Z
˝

.Sv˛/S0A
�
˛@�Q dy„ ƒ‚ …

R1

D

2X
mD1

Z
˝

.Sv˛/.Sm@ˇ@m�
�/.A��A

ˇ
˛ /@�Q dy„ ƒ‚ …

I21

C

Z
˝

.Sv˛/ŒSm.A
�
� @ˇ@m�

�Aˇ˛ / � .Sm@ˇ@m�
�/.A��A

ˇ
˛ /�@�Q dy CR1

(4.1.24)

Here,R1 is bounded by P.k�k2:5Cı/kQkH1:5kvk2:5Cı via the multiplicative Sobolev inequality, while

the last term in the third line of (4.1.24) can be controlled by using Kato-Ponce inequality (3.2.4)Z
˝

.Sv˛/ŒSm.A
�
� @ˇ@m�

�Aˇ˛ / � .Sm@ˇ@m�
�/.A��A

ˇ
˛ /�@�Q dy

≲ .kA��A
ˇ
˛kW 1;6k@ˇ@m�

�
kW 0:5Cı;3 C k@ˇ@m�

�
kL6kA

�
�A

ˇ
˛kW 1:5Cı;3/k@�QkL1kSv

˛
kL2

≲ P.k�k3Cı/kQk2:5Cıkvk2:5Cı :
(4.1.25)

It remains to control I21. Writing
P2
mD1Sm@m D S � S0, we have:

I21 D

Z
˝

.Sv˛/.S@ˇ�
�/.A��A

ˇ
˛ /.@�Q/ dy �

Z
˝

.Sv˛/.S0@ˇ�
�/.A��A

ˇ
˛ /.@�Q/ dy: (4.1.26)

It is easy to see the second term in (4.1.26) can be bounded by kvk2:5CıkQkH1:5P.k�k2:5Cı/. For the
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first term, we integrate @ˇ by parts to obtain:

I21 D �

Z
˝

.@ˇSv
˛/.S��/.A��A

ˇ
˛ /.@�Q/ dy„ ƒ‚ …

I211

�

Z
˝

.Sv˛/.S��/.@ˇA
�
� /A

ˇ
˛ .@�Q/ dy

�

Z
˝

.Sv˛/.S��/.A��A
ˇ
˛ /.@ˇ@�Q/ dy C

Z
�

.Sv˛/.S��/A��A
ˇ
˛ .@�Q/Nˇ dS.� /„ ƒ‚ …

I212

CR2

≲ I211 C I212 C P C P.kQkH3/;
(4.1.27)

Now, we bound I211 by the Kato-Ponce commutator estimate (3.2.3), because we want to move the

derivatives on v to a in order to control v.

I211 D �

Z
˝

.S@ˇv
˛Aˇ˛ /.A

�
� S�

�/.@�Q/ dy

D

Z
˝

.@ˇv
˛/SAˇ˛ .A

�
� S�

�/.@�Q/ dy

C

Z
˝

.A�� S�
�@�Q/ŒS.A

ˇ
˛@ˇv

˛/ � .SAˇ˛ /@ˇv
˛
� Aˇ˛S.@ˇv

˛/� dy:

(4.1.28)

The term on the second line of (4.1.28) is controlled by (3.2.1) after integrating 0:5 derivatives by parts,

i.e., Z
˝

.@ˇv
˛/SAˇ˛ .A

�
� S�

�/.@�Q/ dy D
Z
˝

@1=2.S��A�� @�Q@ˇv
˛/@2CıAˇ˛ dy

≲P.k�k3Cı/kvk2:5CıkQk2:5Cı

(4.1.29)

In addition, we apply (3.2.3) to the term on the third line of (4.1.28) and get:Z
˝

.A�� S�
�@�Q/ŒS.A

ˇ
˛@ˇv

˛/ � .SAˇ˛ /@ˇv
˛
� Aˇ˛S.@ˇv

˛/� dy

≲ P.k�k3Cı/kvk2:5CıkQk2:5Cı

(4.1.30)

Therefore,

I211 ≲ P.k�k3Cı/kvk2:5CıkQk2:5Cı : (4.1.31)
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Now we come to control I212. We shall compute its time integral, which then allows us to integrate

@t by parts to eliminate 0:5 more derivatives falling on v.Z t

0

I212 ds D
Z t

0

Z
�

.@tS�
˛/.S��/A3�A

ˇ
˛Nˇ .@3Q/ dS.� / ds

� �
c0

4
kA3˛S�

˛
k
2
L2.� /

C P.kv0k2:5Cı ; kb0k2:5Cı/C

Z t

0

P.k�k3Cı ; kQk2:5Cı ; kQtk2:5Cı/ ds:

(4.1.32)

Summing up (4.1.17), (4.1.22), (4.1.24), (4.1.27), (4.1.31), (4.1.32), we obtain:

Z t

0

I.s/ dsC
c0

4
kA3˛S�

˛
k
2
L2.� /

≲ P0C
Z t

0

P C
Z t

0

P.k�k3Cı ; kQk3Cı ; kQtk2:5Cı/ ds: (4.1.33)

Control of J : We will use (3.2.5) in the following proof.

J D

Z
˝

.Sv˛/.S.bˇA
�ˇ@�b˛// dy D

Z
˝

.Sv˛/.S.b
�
0 @�b˛// dy

D

Z
˝

.Sv˛/b
�
0 S@�b˛ dy„ ƒ‚ …
J1

C

Z
˝

Sv˛ŒS.b
�
0 @�b˛/ � b

�
0 S@�b˛S@�b˛� dy

≲ J1 C kvk2:5Cıkb0k2:5Cıkbk2:5Cı :

(4.1.34)

The term J1 cannot be controlled directly, but it actually cancels with the highest order term in the

energy of b. We will see that in the next step.

We derive the tangential estimates of b in this subsection and then conclude the tangential energy

estimates.Using (3.2.4), we have:

1

2

d

dt
kSbk2

L2
D

Z
˝

.Sb˛/S.bˇA
�ˇ@�v

˛/ dy D
Z
˝

.Sb˛/S.b
�
0 @�v

˛/ dy

D

Z
˝

.Sb˛/b
�
0 .S@�v

˛/ dy„ ƒ‚ …
K1

C

Z
˝

Sb˛ŒS.b
�
0 @�v

˛/ � b
�
0 .S@�v

˛/� dy

≲ K1 C kvk2:5Cıkb0k2:5Cıkbk2:5Cı :

(4.1.35)
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We find that J1 cancels K1: Integrating @� in J1 CK1 by parts, we have

J1 CK1 D

Z
˝

.Sv˛/b
�
0 S@�b˛ dy C

Z
˝

.Sb˛/b
�
0 S@�v

˛ dy

D �

Z
˝

Sv˛Sb˛ @�b
�
0„ƒ‚…

div b0D0

dy C
Z
@˝

Sv˛Sb˛ bˇA
�ˇN�„ ƒ‚ …

B �ND0

dS.y/ D 0:
(4.1.36)

Combining (4.1.16), (4.1.33), (4.1.34), (4.1.35), (4.1.36), we derive

kSvk2
L2
C kSbk2

L2
C
c0

4
kA3˛S�

˛
k
2
L2.� /

≲ P0 C
Z t

0

P C
Z t

0

P.kQk3Cı ; kQtk2:5Cı ; k�k3Cı/ ds

(4.1.37)

which implies in (4.1.15).

4.1.3 The div-curl type estimates

H 2:5Cı -estimates of v and b: We do the div-curl type estimate of v and b to derive the control of full

H 2:5Cı norms. Although for Euler equations one can use the Cauchy invariance to give linear estimates

for curl v and div v, there is no such analogue for MHD equations. Instead, inspired by Gu-Wang [30],

we can derive the evolution equations of curl v to control the curl v and curl b simultaneously thanks

to the identity b D .b0 � @/�. Then we apply the div-curl estimate to derive the control of full H 2:5Cı

norms of v and b.

Let X D .X1; X2; X3/ be a vector field. We denote the “curl operator" and the “div operator" in

the Eulerian coordinate by

.curlAX/� D ���˛A��@�X˛; and divAX D A�˛@�X
˛;

respectively, where ���˛ is the sign of the permutation .��˛/ 2 S3.
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Proposition 4.1.4. For sufficiently small T > 0, the following estimates hold:

kcurl vk1:5Cı C kcurl bk1:5Cı ≲ ".kvk2:5Cı C kbk2:5Cı/C P0 C
Z t

0

PI

kdiv vk1:5Cı C kdiv bk1:5Cı ≲ ".kvk2:5Cı C kbk2:5Cı/;

(4.1.38)

whenever t 2 Œ0; T �.

Proof. The divergence estimates are easy because divAv D 0 and divAb D 0, so:

kdiv vk1:5Cı D k divAv„ƒ‚…
D0

C.AI � divA/vk1:5Cı ≲ "kvk2:5Cı I

kdiv bk1:5Cı D k divAb„ƒ‚…
D0

C.AI � divA/bk1:5Cı ≲ "kbk2:5Cı :

The estimates for kcurl vk1:5Cı and kcurl bk1:5Cı are more dedicate. Since

kcurl vk1:5Cı C kcurl bk1:5Cı

� kcurlI�Avk1:5Cı C kcurlI�Abk1:5Cı C kcurlAvk1:5Cı C kcurlAbk1:5Cı

≲ ".kvk2:5Cı C kbk2:5Cı/C kcurlAvk1:5Cı C kcurlAbk1:5Cı ;

(4.1.39)

and so it suffices to control kcurlAvk1:5Cı and kcurlAbk1:5Cı . As mentioned in the beginning of this

subsection, we derive the evolution equation for curlAv

.curlA@tv/� D .curlA..b0 � @/2�//�: (4.1.40)

Commuting @t and b0 � @ with curlA on both sides of (4.1.40), we have:

@t .curlAv/� � .b0 � @/curlA..b0 � @/�/� D ���˛@tA��@�v˛ C ŒcurlA; b0 � @�..b0 � @/�/�: (4.1.41)

Taking @1:5Cı derivatives, and then commuting it with @t and b0 � @, respectively, we get the

evolution equation of curlAv:

@t .@
1:5CıcurlAv/� � .b0 � @/.@1:5CıcurlA.b0 � @/�/� D F�; (4.1.42)
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where

F� D Œ@
1:5Cı ; b0 �@�.curlA.b0 �@/�/�C@1:5Cı.���˛@tA��@�v˛C ŒcurlA; b0 �@�..b0 �@/�/�/: (4.1.43)

Taking the L2 inner product with @1:5Cı and integrating @� by parts ,we have:

1

2

d

dt

Z
˝

j@1:5CıcurlAvj2 C j@1:5CıcurlA.b0 � @/�j2 dy D
Z
˝

F � @1:5CıcurlAv dy„ ƒ‚ …
B1

C

Z
˝

@1:5Cı.curlA.b0 � @/�/ � Œ@1:5CıcurlA; b0 � @�v dy„ ƒ‚ …
B2

C

Z
˝

@1:5Cı.curlA.b0 � @/�/�@1:5Cı.���˛@tA��@�.b0 � @�˛// dy„ ƒ‚ …
B3

;

(4.1.44)

where the boundary term vanishes since b30 D 0. The control of B3 is straightforward,

B3 ≲ kbk22:5CıkAk1:5CıkAtk1:5Cı ≲ kbk
2
2:5Cıkvk2:5Cık�k

6
2:5Cı : (4.1.45)

To control B2, it suffices to control kŒ@1:5CıcurlA; b0 � @�vkL2 . We simplify the commutator term as

follows:

Œ@1:5CıcurlA; b0 � @�v D ���˛
�
@1:5Cı.A��@�.b

�
0@�v

˛// � @�@
1:5Cı.b�0A

��@�v
˛/
�

„ ƒ‚ …
B21

C ���˛

�
@�@

1:5Cı.b�0A
��@�v

˛/ � b�0@�@
1:5Cı.A��@�v

˛/
�

„ ƒ‚ …
B22

:

(4.1.46)

Invoking the Kato-Ponce commutator estimate (3.2.5), we can control B22 as

k@�@
1:5Cı.b�0A

��@�v˛/ � b
�
0@�@

1:5Cı.A��@�v˛/kL2 ≲ kb0k2:5Cıkvk2:5Cık�k
2
2:5Cı : (4.1.47)
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For B21, we have

B21 D ���˛@1:5Cı.A��@�.b�0@�v˛// � @�.b�0A��@�v˛//

D ���˛@
1:5Cı.A��@�b

�
0@�v

˛
C @ˇ ..b0 � @/� /A

�Aˇ�@�v
˛
� @ˇb

�
0@��A

�Aˇ�@�v
˛„ ƒ‚ …

D@ˇb
�
0
ı
�
� A

ˇ�@�v˛

/:

(4.1.48)

Therefore, the L2 norm of B21 can be controlled by:

kB21kL2 ≲ P.k�k2:5Cı/.kb0k2:5Cı C kbk2:5Cı/kvk2:5Cı : (4.1.49)

It remains to control B1, specifically, we need to bound kF kL2 given by (4.1.43). The first term is

controlled by using Kato-Ponce commutator estimate (3.2.5).

kŒ@1:5Cı ; b0 � @�.curlA.b0 � @/�/kL2 ≲ P.k�k2:5Cı/kb0k2:5Cıkvk2:5Cı : (4.1.50)

For the commutator term in (4.1.43), we can proceed similarly as in (4.1.48)

kŒcurlA; b0 � @�..b0 � @/�/k1:5Cı ≲ P.k�k2:5Cı/kb0k2:5Cıkvk2:5Cı : (4.1.51)

The remaining term in F can be easily bounded by P.k�k2:5Cı/kb0k2:5Cıkvk2:5Cı .

Combining (4.1.46), (4.1.47), (4.1.49), (4.1.50) and (4.1.51), we have

kcurlAvk1:5Cı C kcurlAbk1:5Cı ≲ P0 C kb0k2:5Cı
Z t

0

P : (4.1.52)

Therefore, invoking Lemma 4.1.1, we ends the proof by:

kcurl vk1:5Cı C kcurl bk1:5Cı ≲ ".kvk2:5Cı C kbk2:5Cı/C P0 C
Z t

0

P : (4.1.53)

Now we can derive the estimate of full H 2:5Cı derivative estimate of v and b. First applying
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Hodge’s decomposition inequality, we get

kvk2:5Cı ≲ kvkL2 C kcurl vk1:5Cı C kdiv vk1:5Cı C j.@v/ �N j1Cı ; (4.1.54)

For the tangential term, we apply Lemma 3.2.3 to get:

j@v �N j1Cı ≲ k@
1:5Cı@v3k0 C kdiv vk1:5Cı ; (4.1.55)

Combining (4.1.4) and (4.1.55) and absorbing "kvk2:5Cı to LHS, we have :

kvk2:5Cı ≲ P0 C
Z t

0

P ds C kSvkL2 : (4.1.56)

The estimate of kbk2:5Cı can be derived exactly in the same way as kvk2:5Cı .

kbk2:5Cı ≲ P0 C
Z t

0

P ds C kSbkL2 : (4.1.57)

In conclusion, we have proved

Theorem 4.1.5. The following estimates hold in a sufficiently small Œ0; T �:

kvk2:5Cı C kbk2:5Cı ≲ P0 C
Z t

0

P ds C kSvkL2 C kSbkL2 : (4.1.58)

□

H 3Cı -estimate of �: We derive the H 3Cı estimate for � via the div-curl estimate:

k�k3Cı ≲ k�kL2 C kcurl �k2Cı C kdiv �k2Cı C k.@�/ �N kH1:5Cı.@˝/: (4.1.59)

The divergence part is easy to treat owing to the div-free condition divAv D 0, i.e., the Eulerian

44



divergence of v is identically zero.

kdiv �k2Cı ≲ kdiv @�k1Cı C kdiv �k1Cı ≲ kdivA@�k1Cı C k.divI�A/@�k1Cı C k�k2Cı

≲ kdivA@�k1Cı C "k�k3Cı C k�.0/k2Cı C
Z t

0

kvk2Cı :

(4.1.60)

Now it remains to control divA@�. We have:

divA@�.t/ D div @�.0/C
Z t

0

divAt @�C @.divAv/„ ƒ‚ …
divAvD0

�div@Av ds:

Therefore, it can be controlled as

kdivA@�.t/k1Cı � kdiv @�.0/k1Cı C
Z t

0

kdivAt @�k1Cı C kdiv@Avk1Cı ds

≲ k�.0/k3Cı C
Z t

0

k�k3Cıkvk2:5Cı ds:

(4.1.61)

Summing up (4.1.60) and (4.1.61), then absorbing the "-term to LHS, we get

kdiv �k2Cı ≲ k�.0/k3Cı C
Z t

0

P.k�k3Cı ; kvk2:5Cı/ ds: (4.1.62)

For the boundary estimate, we have:

k.@�/ �N kH1:5Cı.� / ≲c0
c0

4
kA3˛S�

˛
kL2.� / C "k�kH3 C k�.0/kH2 C

Z t

0

kvkH2 : (4.1.63)

Here we remark that the term c0
4
kA3˛S�

˛kL2.� / is exactly the boundary energy term derived from the

physical sign condition in the tangential estimate. It remains to control kcurl �k2Cı , we start with

kcurl �k2Cı � kcurlA@�k1Cı C kcurlI�A@�k1Cı C kcurl �k1Cı : (4.1.64)

Recall that the i-th component of curlA@� (resp. curlI�A@�) is of the form �ijkA
�j @�@�

k (resp.

�ijk.ı
�j � A�j /@�@�

k). So we apply the multiplicative Sobolev inequality to get:

kcurlI�A@�k1Cı � kI � Ak1:5Cık�k3Cı � "k�k3Cı : (4.1.65)
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In addition, using multiplicative Sobolev inequality, Young’s inequality and Jensen’s inequality, we

have:
kcurlA@�k1Cı ≲ kAk1:5Cık�k3Cı ≲ "�1k�k42:5Cı C "k�k

2
3Cı

≲ "�1k�.0/k42:5Cı C "
�1

Z t

0

kvk42:5Cı C "k�k
2
3Cı

(4.1.66)

holds for sufficiently small t . Also,

kcurl �.t/k1Cı ≲ k�.t/k2Cı � k�.0/k2Cı C
Z t

0

kvk2Cı ; (4.1.67)

and hence

kcurl �k2Cı ≲ "�1P.k�.0/k2:5Cı/C "P.k�k3Cı/C "
�1

Z t

0

P.kvk2:5Cı/: (4.1.68)

Now summing up (4.1.62), (4.1.63) and (4.1.68), we get the H 3Cı estimates of �.

Theorem 4.1.6. In a sufficiently short time interval Œ0; T �, it holds that

k�k3Cı ≲c0
c0

4
kA3˛S�

˛
kL2.� / C "P.k�k3Cı/C "

�1

�
P.k�.0/k2:5Cı/C

Z t

0

P.kvk2:5Cı/

�
:

(4.1.69)

4.1.4 Closing the estimates

Now we recall that

N.t/ WD k�.t/k23Cı C kv.t/k
2
2:5Cı C kb.t/k

2
2:5Cı : (4.1.70)

From (4.1.15), (4.1.58) and (4.1.69), we have :

N.t/ ≲ "P.k�.t/k3Cı/C P.N.0//C P.N.t//

Z t

0

P.N.s// ds

C "�1P.k�.0/k2:5Cı/C "
�1

Z t

0

kv.s/k2:5Cı ds:

(4.1.71)
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For fixed "� 1, recall that ˝ D T2 � .0; "/ and �.0/ D Id , one may choose " sufficiently small so

that "�1P.k�.0/k2:5Cı/ � 1. Then by a Gronwall-type argument, we conclude that:

N.t/ ≲ 1C P.N.0//; when t 2 Œ0; NT �; (4.1.72)

for some NT D NT .N.0/; "/. The justification of the a priori assumptions is straightforward and we refer

it to [52, Lem. 2.1 and Lem. 5.5]. Therefore, Theorem 2.1.1 is proven.

4.2 Well-posedness of the Free-Boundary Problem in Incompress-
ible MHD with Surface Tension

When the surface tension is not neglected, we establish the first result on the local well-posedness

theory of the free-boundary problem in incompressible ideal MHD. First we present the proof of

Theorem 2.2.1 about the LWP of (2.2.1).

4.2.1 The nonlinear approximate system

For � > 0, we denote �� to be the standard mollifier on R2 defined as (3.4.1). Define Q� to be the

smoothed version of � solved by the following elliptic system(
�4Q� D �4�; in ˝;

Q� D �2�� on @˝;
(4.2.1)

and QA WD Œ@ Q���1, QJ WD detŒ@ Q��, QA WD QJ QA and Qn D On ı Q�. Now we introduce the nonlinear �-

approximation system of (2.2.1).8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

@t� D v in Œ0; T � �˝I

@tv � .b0 � @/
2�Cr QAQ D 0 in Œ0; T � �˝I

div QAv D 0; in Œ0; T � �˝I

div b0 D 0 in ft D 0g �˝I

v3 D b30 D 0 on �0I
QA3˛Q D ��pg.4g� � Qn/ Qn˛ C �

�
.1 �4/.v � Qn/

�
Qn˛ on � I

b30 D 0 on �;

.�; v/ D .Id; v0/ in ft D 0g�˝:

(4.2.2)
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Here 4 WD @21 C @
2
2 is the (flat) tangential Laplacian. For technical simplicity, we only assume the

upper boundary T2 � f1g correponds to the free surface, and the bottom �0 D T2 � f0g satisfies the

perfect conducting wall condition. The re-formulated boundary condition on � is used here since

we find that it is more convenient to apply when studying (4.2.2). We remark here that in absence of

�
�
.1 �4/.v � Qn/

�
Qn˛ the boundary condition is just a reformulation of

QA3˛Q D ��
p
g4g�

˛: (4.2.3)

Invoking (3.1.4) and the identity QJ j QATN j D
p
Qg, where Qg D g. Q�/, we have

QA3˛=
p
Qg D QJ QA�˛N�= QJ j QA

TN j D Qn˛; (4.2.4)

and (4.2.3) becomes Q Qn˛ D ��
p
g
p
Qg
4g�

˛: Also, due to Qn � Qn D 1, we obtain Q Qn˛ D Q. Qn � Qn/ Qn˛ D

��
p
g
p
Qg
.4g� � Qn/ Qn

˛: In the view of (4.2.4), this is equivalent to QA3˛Q D ��pg.4g� � Qn/ Qn˛ By adding

the artificial viscosity term �
�
.1 �4/.v � Qn/

�
Qn˛ on the RHS, the boundary condition of (4.2.2) is

then achieved:

QA3˛Q D ��
p
g.4g� � Qn/ Qn

˛
C �

�
.1 �4/.v � Qn/

�
Qn˛: (4.2.5)

In addition, since QA3˛ Qn˛ D
p
Qg, (4.2.5) can be written as

p
QgQ D ��

p
g.4g� � Qn/C �.1 �4/.v � Qn/: (4.2.6)

Despite being equivalent to each other, (4.2.5) and (4.2.6) will be adapted to different scenarios. In

fact, (4.2.5) will be used in Section 4.2.3 for the tangential energy estimate, whereas we find (4.2.6)

more convenient when dealing with the boundary estimate in Section 4.2.2.3.

Remark 4.2.1 (Necessity of tangential smoothing). It is often highly nontrivial to prove the local

well-posedness for a free-boundary problem of inviscid fluid, especially when equipped with the

Young-Laplace boundary condition, by a simple iteration scheme and fixed-point argument for the

linearized equations. The reason is that the linearization breaks the subtle cancellation structure on
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the free surface and thus causes the loss of tangential derivatives of the flow map �, which also occurs

for incompressible Euler equations with surface tension. For ideal MHD, one cannot directly define

Q� D �2�� as in [16]. Indeed, such construction is not applicable to MHD because we also need

to control kŒ�2� ; .b0 � @/��k4:5 in which there is a normal derivative b30@3 in the interior that is not

compatible with the tangential mollification.

Remark 4.2.2 (Necessity of the artifical viscosity). An essential reason for introducing such artificial

viscosity term is that the presence of surface tension forces us to control all of the time derivatives. In

particular, the pressure Q satisfies an elliptic equation and it appears that one can only get control of it

by considering the Neumann boundary condition instead of Dirichlet boundary condition due to the

presence of surface tension. The Neumann boundary condition contains the time derivative of v, and

thus we have to include the time derivatives in our energy.

However, the full time derivatives of v and .b0 � @/� only has L2.˝/ regularity and we cannot

get estimates of the full time derivatives of Q due to the low spatial regularity. Therefore, we do not

have any control for the terms containing full time derivatives on the boundary due to the failure of

Sobolev trace lemma. For the original system, one can use the subtle cancellation structure developed

in [18, 53] to resolve this difficulty. But such cancellation structure no longer holds for the nonlinear �-

approximate problem due to the presence of tangential smoothing. Therefore, introducing the artificial

viscosity term could produce �-weighted higher order terms on the boundary, which enables us to finish

the energy control.

The Young-Laplace boundary condition only gives us the information in the Eulerian normal

direction. Therefore, the artificial viscosity can only be imposed in the smoothed Eulerian normal

direction �
�
.1 �4/.v � Qn/

�
Qn˛ instead of all the components, otherwise the system would be over-

determined.
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Remark 4.2.3 (Difficulty in vanishing viscosity limit). Very recently, Gu-Lei [27] proved the LWP of in-

compressible elastodynamics with surface tension by proving the inviscid limit of visco-elastodynamics

system in standard Sobolev spaces. We also note that the inviscid limit of free-boundary MHD was

recently proved by Chen-Ding [8] in co-normal Sobolev spaces. However, analogous inviscid limit in

standard Sobolev space is not applicable to MHD due to the existence of MHD boundary layers.

Our goal is to derive the uniform-in-� a priori estimates for the system (4.2.2).

Proposition 4.2.4. Given the divergence-free vector fields v0 2 H 4:5.˝/\H 5.� / and b0 2 H 4:5.˝/

satisfying b30 D 0 on � [ �0, there exists some T > 0 independent of � > 0, such that the solution

.�.�/; v.�/; q.�// to (4.2.2) satisfies the following uniform-in-� estimates

sup
0�t�T

E�.t/ � C; (4.2.7)

where C is a constant depends on kv0k4:5; kb0k4:5; jv0j5, provided the following a priori assumption

hold for all t 2 Œ0; T1�

k QJ .t/ � 1k3:5 C k Id� QA.t/k3:5 C k Id� QAT QA.t/k3:5 � ": (4.2.8)

Here the energy functional E� of (4.2.2) is defined to be

E� D E
.1/
� CE

.2/
� CE

.3/
� ; (4.2.9)

where

E.1/� WD k�.�/k
2
4:5 C

3X
kD0

�@kt v.�/2
4:5�k

C

@kt .b0 � @/�.�/2
4:5�k

�

C
@4t v.�/20 C @4t .b0 � @/�.�/20

C

3X
kD0

ˇ̌̌
@
�
˘@kt @

3�kv.�/
�ˇ̌̌2
0
C

ˇ̌̌
@
�
˘@3.b0 � @/�.�/

�ˇ̌̌2
0
;

(4.2.10)
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E.2/� WD�

4X
kD1

Z T

0

� ˇ̌̌p
�@kt v.�/ � Qn.�/

ˇ̌̌2
5�k
C
ˇ̌p
�.b0 � @/v.�/ � Qn.�/

ˇ̌2
4

�
dt; (4.2.11)

E.3/� WD

4X
kD1

Z T

0

�p�@kt v.�/2
5:5�k

C

p�@kt .b0 � @/�2
5:5�k

�
dt: (4.2.12)

By the Gronwall-type argument, we only need to show

E�.T / � P0 C C."/E�.T /C P
Z T

0

P; (4.2.13)

Before going to the proof, we need the following preliminary estimates.

Lemma 4.2.5 ([28, Lem. 3.2]). We have

k Q�k4:5 ≲k�k4:5 (4.2.14)

k.b0 � @/ Q�k4:5 ≲P.kb0k4:5; k.b0 � @/�k4:5; k�k4:5/: (4.2.15)

Lemma 4.2.6 ([28, Lem. 3.3]). Assume that k�k4:5; kvk4:5 � N0, where N0 � 1. If T � "=P.N0/

for some fixed polynomial P and �; v is defined on Œ0; T �, then the following inequality holds for

t 2 Œ0; T �:

k QA�˛ � ı�˛k3:5 C kA�˛ � ı�˛k3:5 C k QA�˛ � ı�˛k3:5 ≲ "; (4.2.16)

80 � s � 1:5; j@s. Qn �N/jL1.� / ≲ "; j@s. On �N/jL1.� / ≲ "; (4.2.17)

j Qn �N j3 ≲ "; j On �N j3 ≲ "; (4.2.18)

jıij �
p
ggij j3 � "; (4.2.19)

j@� � nj3 � "; j@
2�j2 � ": (4.2.20)
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Remark 4.2.7. The inequalities in Lemma 4.2.6 can in fact be viewed as an extended list of the a priori

assumptions. Moreover, (4.2.8) is in fact a direct consequence of (4.2.16).

Lemma 4.2.8 ([28, Lem. 3.4]). Let k D 0; � � � ; 4. Then

k@@kt . Q� � �/k0 ≲ k
p
�@kt �k1:5: (4.2.21)

Further, for ` D 0; 1; 2, there holds

k@@`t . Q� � �/kL1 ≲ k
p
�@`t�k3:5: (4.2.22)

Finally, we state the following two lemmas that concern the boundary elliptic estimates of
p
� Q�

and �.b0 � @/ Q�. These lemmas will be adapted to control the boundary error terms generated when

derivatives land on the Eulerian normal Qn.

Lemma 4.2.9 ([28, Lem. 3.5]). Let M0 D P.kv0k4:5;
p
�kv0k8:5;

p
�kb0k8:5;

p
�jv0j10/. Then

j
p
��j25 �M0 C C."/E�.T /C P

Z T

0

P; (4.2.23)

Z T

0

j
p
�vj25 �M0 C C."/E�.T /C P

Z T

0

P; (4.2.24)

Z T

0

j
p
�.b0 � @/�j

2
5 �M0 C C."/E�.T /C P

Z T

0

P : (4.2.25)

4.2.2 A priori estimates of the approximate system

4.2.2.1 Elliptic estimates of pressure

We prove the following proposition in this section.

Proposition 4.2.10. The pressure Q in (4.2.2) and its time derivatives satisfy the following estimates

kQk4:5 C k@tQk3:5 C k@
2
tQk2:5 C k@

3
tQk1 ≲ P : (4.2.26)

First, we give control of the pressure Q. Taking div QA in the second equation of (4.2.2) we get the

52



following elliptic system for Q:

�4 QAQ WD � div QA.r QAQ/ D
�
div QA; @t

�
v C

�
div QA; .b0 � @/

�
.b0 � @/�C .b0 � @/div QA ..b0 � @/�/

D� @t QA�˛@�v˛ � ..b0 � @/ QA�˛/@�.b0 � @/�˛ C QA�˛.@�b0 � @/.b0 � @/�˛

C .b0 � @/ div a ..b0 � @/�/„ ƒ‚ …
Ddiv b0D0

C.b0 � @/
�
. QA�˛ � A�˛/@�.b0 � @/�˛

�
;

and thus

�4Q DW � div .@Q/ D �@�
�
.ı�� � QA�˛ QA�˛/@�Q

�
� @t QA�˛@�v˛ � ..b0 � @/ QA�˛/@�.b0 � @/�˛

C QA�˛.@�b0 � @/.b0 � @/�˛ C .b0 � @/
�
. QA�˛ � A�˛/@�.b0 � @/�˛

�
:

(4.2.27)

We impose Neumann boundary condition to (4.2.27) by contracting QA�˛N� D QA3˛ with the second

equation of (4.2.2)

@Q

@N
D .ı�3 � QA�˛ QA3˛/@�Q � QA3˛@tv˛ C QA3˛.b0 � @/2�˛; on �: (4.2.28)

Also, since QA31 D QA32 D 0, QA33 D 1, v3 D 0, and b30 D 0 implies .b0 � @/�3 D b
j
0@j�3 D 0 on �0,

(4.2.28) yields

@Q

@N
D 0; on �0: (4.2.29)

By the standard elliptic estimates, we have

kQk4:5 ≲ kRHS of (4.2.27)k2:5 C jRHS of (4.2.28)j3 C jQj0:

Here, jQj0 can be directly bounded by invoking the boundary condition of Q, i.e.,

Q D ��

p
gp
Qg
.4g� � Qn/C �

1p
Qg
.1 �4/.v � Qn/; (4.2.30)
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and thus

jQj0 ≲ P : (4.2.31)

Invoking the a priori assumption (4.2.8), we have

kRHS of (4.2.27)k2:5 ≲ "kQk4:5 C P.kb0k4:5; k.b0 � @/�k4:5; k�k3:5; kvk3:5/ (4.2.32)

and

jRHS of (4.2.28)j3 ≲ "kQk4:5 C P.k�k4:5/ .k@tvk3:5 C kb0k3:5k.b0 � @/�k4:5/ : (4.2.33)

Summing up (4.2.31)-(4.2.33) and choosing " > 0 sufficiently small, we get

kQk4:5 ≲ P : (4.2.34)

Next we take @t in (4.2.27)-(4.2.28) to get the equations of @tQ:

�4@tQ D� @�

�
.ı�� � QA�˛ QA�˛/@�@tQ

�
� @�

�
.ı�� � @t . QA�˛ QA�˛//@�Q

�

� @2t
QA�˛@�v˛ � @t QA�˛@t@�v˛

C @t

�
QA�˛.@�b0 � @/.b0 � @/�˛ � ..b0 � @/ QA�˛/@�.b0 � @/�˛

�

C .b0 � @/
�
.@t QA � @tA/@..b0 � @/�/C . QA � A/@..b0 � @/v/

�
;

(4.2.35)

with Neumann boundary condition

@@tQ

@N
D.ı�3 � QA�˛ QA3˛/@�@tQ � @t . QA�˛ QA3˛/@�Q

� QA3˛.@2t v˛ � .b0 � @/
2v˛/ � @t QA3˛.@tv � .b0 � @/2�/˛; on �;

(4.2.36)

and

@@tQ

@N
D 0; on �0: (4.2.37)
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Invoking the standard elliptic equation again, we have

k@tQk3:5 ≲ kRHS of (4.2.35)k1:5 C jRHS of (4.2.36)j2 C j@tQj0:

The control of the first two terms follows similarly as above

kRHS of (4.2.35)k1:5 C jRHS of (4.2.36)j2 ≲ P : (4.2.38)

As for the boundary term, we take @t in the surface tension equation to get

@tQ D ��

p
gp
Qg
.4gv � Qn/C �

1p
Qg
.1 �4/.@tv � Qn/C lower-order temrs

and thus

k@tQk0 ≲ P : (4.2.39)

Summing up (4.2.38)-(4.2.39) and choosing " > 0 to be sufficiently small, we get

k@tQk3:5 ≲ P : (4.2.40)

Taking @t again, we can silimarly get the estimates of k@2tQk2:5:

k@2tQk2:5 ≲ P : (4.2.41)

However, we cannot use the similar method to control k@3tQk1 because the standard elliptic

estimates requires at least H 2-regularity. Instead, we invoke Lemma 3.3.2 which allows us to perform

the low regularity H 1-estimate for @3t -differentiated elliptic system (4.2.27)-(4.2.28). We need to first

rewrite the elliptic equations into the divergence form. Recall that the elliptic equation (4.2.27) is

derived by taking smoothed Eulerian divergence div QA. This, together with Piola’s identity gives that

�@�. QA�˛ QA�˛@�Q/ D @�
�
QA�˛.@tv � .b0 � @/2�/˛

�
;
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with the boundary condition

QA3˛ QA�˛@�Q D QA3˛.@tv � .b0 � @/2�/˛; on �;

and @Q
@N
D 0 on �0. Taking @3t derivatives, we get

@�. QA�˛ QA�˛@3t @�Q/ D@�
�h
QA�˛ QA�˛; @3t

i
@�Q

�
C @�@

3
t

�
QA�˛.@tv � .b0 � @/2�/˛

�
; (4.2.42)

with the boundary condition

QA3˛ QA�˛@�@3tQ D
h
QA3˛ QA�˛; @3t

i
@�QC @

3
t

�
QA3˛.@tv � .b0 � @/2�/˛

�
; on �: (4.2.43)

Now if we set

B��
WD QA�˛ QA�˛; h WD RHS of (4.2.43)

and

�� WD
h
QA�˛ QA�˛; @3t

i
@�QC @

3
t

�
QA�˛.@tv � .b0 � @/2�/˛

�
then the elliptic system (4.2.42)-(4.2.43) is exactly of the form (3.3.4). The a priori assumption (4.2.8)

shows that kB � Id kL1 is sufficiently small. Now it is straightforward to see that �; div � 2 L2, i.e.,

k�k0 C kdiv �k0 ≲ P : (4.2.44)

Also, since

h � � �N D 0; (4.2.45)

then by Lemma 3.3.2 and invoking (4.2.34), (4.2.40), (4.2.41), we have

@3tQ � @3tQ
1
≲ k�k0 ≲ P : (4.2.46)
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Lastly, we need to control the H 1-norm of @3tQ by P .

@3tQ D
1

vol .˝/

Z
˝

@3tQ dy D
1

vol .˝/

Z
˝

@3tQ@1y1 dy D �
1

vol .˝/

Z
˝

y1@1@
3
tQ

�C.vol .˝//k@@3tQk0ky1k0 D C.vol .˝//
@.@3tQ � @3tQ/

0
ky1k0

�C.vol.˝//
@3tQ � @3tQ

1
:

(4.2.47)

This concludes the control of k@3tQk1, and we have

k@3tQk1 ≲ P : (4.2.48)

4.2.2.2 The div-curl estimates

Invoking Lemma 3.3.1, we have the following inequalities for 0 � k � 3

kvk24:5 ≲kvk
2
0 C kdiv vk23:5 C kcurl vk23:5 C j@v

3
j
2
3; (4.2.49)

k.b0 � @/�k
2
4:5 ≲k.b0 � @/�k

2
0 C kdiv .b0 � @/�k23:5 C kcurl .b0 � @/�k23:5 C j@.b0 � @/�

3
j
2
3;

(4.2.50)

k@kt vk
2
4:5�k ≲k@kt vk

2
0 C kdiv @kt vk

2
3:5�k C kcurl @kt vk

2
3:5�k C j@@

k
t v
3
j
2
3�k ; (4.2.51)

k@kt .b0 � @/�k
2
4:5�k ≲k@kt .b0 � @/�k

2
0 C kdiv @kt .b0 � @/�k

2
3:5�k (4.2.52)

C kcurl @kt .b0 � @/�k
2
3:5�k C j@@

k
t .b0 � @/�

3
j
2
3�k :

Here, notice that we do not pick up terms on �0 since v3 D 0 and .b0 � @/�3 D bi0@i�
3 D 0 there. Also,

the L2-norms in (4.2.49) and (4.2.50) are controlled by energy conservation law. We will omit the

control of L2-norms.
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Divergence estimates. For the velocity vector field, one has

div v D div QAv„ƒ‚…
D0

C.ı�˛ � QA�˛/@�v˛ D div Id� QAv; (4.2.53)

and thus

kdiv vk3:5 � kdiv QAvk3:5 C k.ı
�˛
� QA�˛/@�v˛k3:5 � 0C "kvk4:5: (4.2.54)

Time differentiating (4.2.53), one has

kdiv @tvk2:5 ≲ "k@2t vk2:5 C P.kv0k3:5/C k�k3:5

Z T

0

P.kvk4:5/; (4.2.55)

where in the last step we write kvk3:5 in terms of initial data plus time integral and use Young’s

inequality. The divergence estimates of k@kt vk3:5�k , k D 2; 3 are parallel and so we omit the details.

kdiv @2t vk1:5 C kdiv @3t vk0:5 ≲ ".k@2t vk2:5 C k@
3
t vk1:5/C P0 C P

Z T

0

P : (4.2.56)

As for .b0 � @/�, one no longer has div QA..b0 � @/�/ D 0 due to the tangential mollification. Instead,

one can compute the evolution equation verified by div QA..b0 � @/�/. Invoking div QAv D 0 and @t� D v,

we have

@t .div QA..b0 � @/�// D Œdiv QA; .b0 � @/�v C div @t QA.b0 � @/�: (4.2.57)

The commutator Œdiv QA; .b0 � @/�v only contains first order derivative of v and .b0 � @/�. Using the

identity

@ QA�˛ D � QA�@ˇ@ Q� QA
ˇ˛; (4.2.58)

one has

Œdiv QA; .b0 � @/�v D @ˇ ..b0 � @/ Q� / QA
� QAˇ˛@�v˛: (4.2.59)
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Moreover,

div @t QA.b0 � @/� D @t
QA�˛@�.b0 � @/�˛ D �a

�@ˇ Qv QA
ˇ˛@�.b0 � @/�˛: (4.2.60)

Taking @3:5 in (4.2.57) and testing it with @3:5div QA.b0 � @/�, we get

kdiv QA.b0 � @/�k
2
3:5 � kdiv b0k23:5 (4.2.61)

C

Z T

0

kdiv QA.b0 � @/�k3:5
�
kŒdiv QA; .b0 � @/�vk3:5 C kdiv @t QA.b0 � @/�k3:5

�
:

This suggests that we need to control
R T
0
kŒdiv QA; .b0 � @/�vk3:5 and

R T
0
kdiv @t QA.b0 � @/�k3:5 on the

right hand side. In light of (4.2.59) and (4.2.60), we have

Z T

0

kŒdiv QA; .b0 � @/�vk3:5 C kdiv @t QA.b0 � @/�k3:5 �
Z T

0

P :

Therefore,

kdiv QA.b0 � @/�k
2
3:5 � kdiv b0k23:5 C

Z T

0

P � P0 C
Z T

0

P; (4.2.62)

which implies, after invoking (4.2.16), that

kdiv .b0 � @/�k23:5 ≲ "2k.b0 � @/�k
2
4:5 C P0 C

Z T

0

P : (4.2.63)

Similarly, one can take @3:5�k@kt for 1 � k � 3 in (4.2.57) to get

kdiv QA@
k
t .b0 � @/�k

2
3:5�k ≲ "2k@kt .b0 � @/�k

2
4:5�k C P0 C

Z T

0

P : (4.2.64)

Curl estimates. Taking curl QA in the second equation of (4.2.2) yields

@t .curl QAv/ � .b0 � @/curl QA..b0 � @/�/ D curl @t QAv C Œcurl QA; .b0 � @/�.b0 � @/�: (4.2.65)
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Then we take @3:5, test it with .b0 �@/3:5.curl QAv/ and integrate .b0 �@/ by parts (recall that b0 �N j@˝ D 0
and div b0 D 0) to get

1

2

d

dt

Z
˝
j@3:5curl QAvj

2
C j@3:5curl QA.b0 � @/�j

2 dy

D

Z
˝

�h
@3:5.b0 � @/

i
curl QA.b0 � @/�C @

3:5
�

curl
@t QAv C Œcurl QA; .b0 � @/�.b0 � @/�

��
.@3:5curl QAv/ dy

C

Z
˝
@3:5.curl QA.b0 � @/�/ �

�h
@3:5curl QA; .b0 � @/

i
v C @3:5.curl

@t QA.b0 � @/�/
�

dy

≲P.kb0k4:5; k.b0 � @/�k4:5; kvk4:5; k QAk3:5; k.b0 � @/ Q�k4:5/ ≲ P;

(4.2.66)

and thus by the a priori assumption (4.2.8), we have

kcurl vk23:5 C kcurl .b0 � @/�k23:5 ≲ "2.kvk24:5 C k.b0 � @/�k
2
4:5/C

Z T

0

P dt: (4.2.67)

Replacing @3:5 by @3:5�k@kt for 1 � k � 3, we similarly get

kcurl QA@
k
t .b0 � @/�k

2
3:5�k ≲ "2k@kt .b0 � @/�k

2
4:5�k C P0 C

Z T

0

P dt: (4.2.68)

4.2.2.3 Boundary estimates

We need to control the boundary term j@@kt v � N j3�k and j@@kt .b0 � @/� � N j3�k : In the case of zero

surface tension, one can use the normal trace theorem to reduce j@X �N js�1:5 to the interior tangential

estimates k@sXk0. But the interior tangential estimates, especially in the full spatial derivative case,

cannot be controlled due to the appearance of surface tension.

Control of j@@kt v �N j3�k

Theorem 4.2.11. For k D 0; 1; 2; 3, one has

j@@kt v
3
j
2
3�k ≲ j@.˘@3�k@kt v/j

2
0 C P

Z T

0

P : (4.2.69)

First we study the case when k D 3. Let us consider the projection of @3t v to the Eulerian normal

direction, i.e., .˘@3t v/
3 instead of Lagrangian normal direction. The reason is twofold.
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1. Recall that (3.1.9) in Lemma 3.1.1 gives that

p
ggij4g�

˛
D �
p
ggij˘˛

� @
2
ij�

�:

So if we test @4t -differentiated version of (3.1.9) with @4t v and integrate by parts, then the term

j@.˘@3t v/j
2
0 is produced as part of energy term,i.e.,

Z
�

�
p
ggij˘˛

� @
4
t @
2
ij�

�
� @4t v˛ D �

1

2

d

dt

Z
�

ˇ̌̌
@.˘@3t v/

ˇ̌̌2
dS C � � � (4.2.70)

2. The difference between X3 and .˘X/3 is small within a short period of time.

We make the above assertions precise. For any vector field X one has

X3 D ı3�X
�
D.ı3� � g

kl@k�
3@l��/X

�
C gkl@k�

3@l��X
�

D˘3
�X

�
C gkl@k�

3@l��X
�
D .˘X/3 C gkl@k�

3@l��X
�:

(4.2.71)

Using @�3 D
R T
0
@v3 dt (this is true since @�3 D 0 initially), we can control the difference between

.˘X/3 and X3 asˇ̌̌
@
�
.˘X/3 �X3

�ˇ̌̌2
0
≲
ˇ̌̌
gkl@k�

3@l��@X
�
ˇ̌̌2
0
C

ˇ̌̌
@.gkl@k�

3@l��/X
�
ˇ̌̌2
0

≲kXk21:5P.j@�jL1/
Z T

0

P :

(4.2.72)

Let X D @3t v. Since k@3t vk
2
1:5 is included in the energy E.1/� , then (4.2.72) implies

ˇ̌̌
@
�
.˘@3t v/

3
� @3t v

3
�ˇ̌̌2
0
≲ P

Z T

0

P; (4.2.73)

and thus

ˇ̌̌
@@3t v

3
ˇ̌̌2
0
≲
ˇ̌̌
@.˘@3t v/

ˇ̌̌2
0
C P

Z T

0

P : (4.2.74)

Finally, (4.2.69) follows from a parallel argument.
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Control of j@@kt .b0 � @/� �N j3�k . First, when k � 1, the control of j@@kt .b0 � @/� �N j3�k requires to

that of j@@ltv �N j3�l (modulo lower order terms generated when derivatives land on b0) for l D 0; 1; 2,

which has been done in the previous subsection.

Thus it suffices to study the control of j.b0 � @/�3j4. In [53], the boundary condition forms an

elliptic equation ��
p
g4g�

˛ D A3˛Q and thus one can take .b0 � @/ and then use elliptic estimates.

However, the boundary condition now takes the form (4.2.6) in the smoothed approximate equations

and there is no appropriate boundary H 2-control for �.b0 � @/4.v � Qn/ due to the lack of time integrals.

Our strategy here is to use the inequality (4.2.72) with X D @3.b0 � @/�.

ˇ̌̌
@
�
.˘@3.b0 � @/�/

3
� @3.b0 � @/�

3
�ˇ̌̌2
0
≲ k@3.b0 � @/�k

2
1:5P.j@�jL1/

Z T

0

P ≲ P
Z T

0

P; (4.2.75)

where the last inequality holds since k.b0 � @/�k24:5 is included in E.1/� . Therefore,

ˇ̌̌
@4.b0 � @/�

3
ˇ̌̌2
0
≲
ˇ̌̌
@.˘@3.b0 � @/�/

ˇ̌̌2
0
C P

Z T

0

P : (4.2.76)

Remark 4.2.12. The term
ˇ̌̌
@.˘@3.b0 � @/�/

ˇ̌̌2
0

is part of the energy E.1/� defined in (4.2.9), which is

a positive term generated by the @3.b0 � @/ tangential energy estimate (See Section 4.2.3). There is

no problem to study the @3.b0 � @/-differentiated equations (4.2.2) since it is analogous to the @3@t -

differentiated equations. Indeed, as mentioned before, .b0 � @/� and @t� (which is v) have the same

space-time regularity.

4.2.3 Tangential energy estimates

The purpose of this section is to investigate the a priori estimates for the tangentially differentiated ap-

proximate �-problem (4.2.2). In particular, we will study the energy estimate for @4t ; @@
3
t ; @

2@2t ; @
3@t ; @

3.b0�

@/ differentiated �-problem, respectively.
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4.2.3.1 Control of full time derivatives

We do the L2-estimate of @4t v and @4t .b0 � @/�. This turns out to be the most difficult case compare to

the cases with at least one tangential spatial derivatives that will be treated in Section 4.2.3.2. This

is due to the fact that @4t v can only be controlled in L2.˝/ and so one has to control some higher

order interior terms instead. These interior terms will be treated by adapting the geometric cancellation

scheme introduced in [18] together with an error term which can be controlled by terms in E.3/� .t/.

For the sake of simplicity and clean arguments, we shall focus on treating the leading order terms.

We henceforth adopt:

Notation 4.2.13. We use L
D to denote equality modulo error terms that are effectively of lower order.

For instance, X L
D Y means that X D Y CR, where R consists of lower order terms with respect to

Y .

Invoking (4.2.2) and integrating .b0 � @/ by parts, we get

1

2

Z T

0

d

dt

Z
˝

j@4t vj
2
C
ˇ̌
@4t .b0 � @/�

ˇ̌2
dy

D

Z T

0

Z
˝

@4t v˛@
5
t v
˛ dy dt C

Z T

0

Z
˝

@4t .b0 � @/�˛@
4
t .b0 � @/v

˛ dy dt

D

Z T

0

Z
˝

@4t v˛@
4
t .b0 � @/

2�˛ dy dt �
Z T

0

Z
˝

@4t v˛@
4
t .
QA�˛@�Q/ dy dt

C

Z T

0

Z
˝

@4t .b0 � @/�˛@
4
t .b0 � @/v

˛ dy dt

D�

Z T

0

Z
˝

@4t .b0 � @/v˛@
4
t .b0 � @/�˛ dy dt �

Z T

0

Z
˝

@4t v˛@
4
t .
QA�˛@�Q/ dy dt

C

Z T

0

Z
˝

@4t .b0 � @/�˛@
4
t .b0 � @/v

˛ dy dt

D�

Z T

0

Z
˝

@4t v˛@
4
t .
QA�˛@�Q/ dy dt DW I:

(4.2.77)
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Then we integrate @� by parts, I becomes

Z T

0

Z
˝

@4t @�v˛@
4
t .
QA�˛Q/ �

Z T

0

Z
�

@4t v˛@
4
t .
QA3˛Q/„ ƒ‚ …

I0

C

Z T

0

Z
�0

@4t v˛@
4
t .
QA3˛Q/„ ƒ‚ …

I 0
0

D

Z T

0

Z
˝

QA�˛@4t @�v˛@
4
tQC

Z T

0

Z
˝

@4t @�v˛Œ@
4
t ;
QA�˛�Q„ ƒ‚ …

I1

CI0

D

Z T

0

Z
˝

@4t div QAv„ ƒ‚ …
D0

@4tQ �

Z T

0

Z
˝

Œ@4t ;
QA�˛�@�v˛@4tQ„ ƒ‚ …
L

CI1 C I0 C I
0
0: (4.2.78)

I 00 D 0 since on �0, we have QA31 D QA32 D 0, QA33 D 1, and v3 D 0.

II yields a top order interior term when all 4 time derivatives land on QA�˛ , i.e.,

I11 D

Z T

0

Z
˝

@4t @�v˛.@
4
t
QA�˛/Q: (4.2.79)

If QA�˛ were A�˛ then this term could have been controlled by the cancellation scheme developed in

[18]. This motivate us to consider

Z T

0

Z
˝

@4t @�v˛.@
4
tA

�˛/QC

Z T

0

Z
˝

@4t @�v˛

�
@4t .
QA�˛ � A�˛/

�
Q D I111 C I112: (4.2.80)

Invoking (3.1.1) we get

@4t .
QA � A/ D

X
iCjD3

bij @
i
t@ Q� � @@

j
t . Qv � v/C

X
iCjD3

b0ij @
i
t .@ Q� � @�/ � @@

j
t v;
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and so k@4t . QA � A/k0 consists the sum of ki`k0, ` D 1; � � � ; 8, where

i1 D .@@
2
t Qv/@. Qv � v/; i2 D .@@t Qv/@@t . Qv � v/; i3 D .@ Qv/@@

2
t . Qv � v/;

i4 D .@ Q�/@@
3
t . Qv � v/; i5 D @@

2
t . Qv � v/@v; i6 D @@t . Qv � v/@@tv;

i7 D @. Qv � v/@@
2
t v; i8 D @. Q� � �/@@

3
t v:

The L2-norm of these quantities can be controlled by invoking Lemma 4.2.8.

8X
ND1

kiN k0 �
p
�P.kvk3:5; k@tvk3:5; k@

2
t vk1:5; k@

3
t vk1:5; k�k3:5/

Summing these up and moving
p
� to k@4t @vk0, we obtain

I112 �

Z T

0

k@4t @vk0k@
4
t .
QA�˛ � A�˛/k0kQkL1 �

"

2

Z T

0

k
p
�@4t @vk

2
0 C

1

2"

Z T

0

P; (4.2.81)

where the first term on the RHS contributes to "P , and we bound kQkL1 by kQk2 � P through

(4.2.26).

We next control I111. The argument relies on exploiting the geometric structure to create cancella-

tion among the leading order terms. Invoking (3.1.1) we have

I111 D

Z T

0

Z
˝

Q�˛��@2@
3
t v�@3��@1@

4
t v˛ �

Z T

0

Z
˝

Q�˛��@1@
3
t v�@3��@2@

4
t v˛

C

Z T

0

Z
˝

Q�˛��@3@
3
t v�@2��@1@

4
t v˛ �

Z T

0

Z
˝

Q�˛��@1@
3
t v�@2��@3@

4
t v˛

C

Z T

0

Z
˝

Q�˛��@2@
3
t v�@1��@3@

4
t v˛ �

Z T

0

Z
˝

Q�˛��@3@
3
t v�@1��@2@

4
t v˛ C Ilow

DWI1111 C I1112 C � � � C I1116 C Ilow ; (4.2.82)

where Ilow consists terms of the form
R T
0

R
˝
Q@@2t v@v@@

3
t v. This term can be treated by integrating

65



@t by parts,

Z T

0

Z
˝

Q@@2t v@v@@
4
t v D

Z
˝

Q@@2t v@v@@
3
t v
ˇ̌̌T
0
�

Z T

0

Z
˝

@t .q@@
2
t v@v/@@

3
t v;

where the second term is controlled by
R T
0

P , whereas

ˇ̌̌̌Z
˝

Q@@2t v@v@@
3
t v
ˇ̌̌T
0

ˇ̌̌̌
≲ P0 C "jj@3t vjj21 C

Z T

0

P :

To control the leading terms in (4.2.82), we consider I1111CI1112, I1113CI1114, and I1115CI1116.

For I1111 C I1112, integrating @t by parts in I1112, we have

I1111 C I1112 �

Z T

0

Z
˝

Q�˛��@2@
3
t v�@3��@1@

4
t v˛ �

Z T

0

Z
˝

Q�˛��@1@
4
t v�@3��@2@

3
t v˛„ ƒ‚ …

D0

�

Z
˝

Q�˛��@1@
3
t v�@3��@2@

3
t v˛

ˇ̌̌T
0
C I 0low ; (4.2.83)

where I 0
low

consists terms of the form
R T
0

R
˝
Q�˛��@t .q@�/.@@

3
t v/

2 which can be controlled by
R T
0

P .

Next we treat the first term on the RHS of (4.2.83). Expanding in � , we find

T WD �
Z
˝

Q�˛�i@1@
3
t v�@3�i@2@

3
t v˛ �

Z
˝

Q�˛�3@1@
3
t v�@3�3@2@

3
t v˛: (4.2.84)

Since @3�i jtD0 D 0, we can write @3�i D
R T
0
@3vi , and so

�

Z
˝

Q�˛�i@1@
3
t v�@3�i@2@

3
t v˛ � P

Z T

0

P : (4.2.85)

In addition to this, we have @3�3 D 1C
R T
0
@3v3, and so

�

Z
˝

Q�˛�3@1@
3
t v�@3�3@2@

3
t v˛ � �

Z
˝

Q�˛�3@1@
3
t v�@2@

3
t v˛ C P

Z T

0

P : (4.2.86)

To treat the first term on the RHS, we expand �˛�3 and get

�

Z
˝

Q�˛�3@1@
3
t v�@2@

3
t v˛ D �

Z
˝

Q.@1@
3
t v2@2@

3
t v1 � @1@

3
t v1@2@

3
t v2/: (4.2.87)
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Integrating by parts @2 in the first term and @1 in the second term, we have

�

Z
˝

Q.@1@
3
t v2@2@

3
t v1 � @1@

3
t v1@2@

3
t v2/

D

Z
˝

Q@1@2@
3
t v2@

3
t v1 �

Z
˝

Q@3t v1@1@2@
3
t v2„ ƒ‚ …

D0

C

Z
˝

@2Q@1@
3
t v2@

3
t v1 �

Z
˝

@1Q@
3
t v1@1@

3
t v2:

Here,

ˇ̌̌ Z
˝

@2Q@1@
3
t v2@

3
t v1 �

Z
˝

@1Q@
3
t v1@1@

3
t v2

ˇ̌̌
≲ "jj@3t vjj

2
1 C P0 C

Z T

0

P :

Therefore,

I1111 C I1112 � "E.T /C P0 C P
Z T

0

P : (4.2.88)

On the other hand, I1113 C I1114 and I1115 C I1116 are treated similarly with only one exception.

Previously, we integrated @1 and @2 by parts in (4.2.87) and so there is no boundary terms. However,

when controlling I1113 C I1114, we need to integrate @1 and @3 by parts when treating (4.2.87), and

thus the following boundary term appears:

Z
�

Q@3t v1@1@
3
t v3: (4.2.89)

To control this term, we invoke the identity

@1@
3
t v
3
D ˘3

�@1@
3
t v
�
C gkl@k�

3@l��@1@
3
t v
�
D ˘3

�@1@
3
t v
�
C gkl

 Z T

0

@kv
3

!
@l��@1@

3
t v
�;

(4.2.90)
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and thus (4.2.89) becomes

Z
�

Q@3t v1˘
3
�@1@

3
t v
�
C

Z
�

Q@3t v1g
kl

 Z T

0

@kv
3

!
@l��@1@

3
t v
�

≲"j˘@@3t vj
2
0 C jqj

2
L1 j@

3
t vj

2
0 C

ˇ̌̌̌
ˇq@3t v1gkl

 Z T

0

@kv
3

!
@l��

ˇ̌̌̌
ˇ
0:5

j@@3t v
�
j�0:5

≲"j˘@@3t vj
2
0 C P0 C P

Z T

0

P :

The extra term generated when analyzing I1115 C I1116 is of the same type integral and thus can be

treated by the same method. Therefore,

I111 � "E.T /C P0 C P
Z T

0

P : (4.2.91)

Next we study

I1 � I11 D4
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3
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@4t @�v˛@t
QA�˛@3tQ D I12 C I13 C I14:

(4.2.92)

For I12, we integrating @t by parts and obtain
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@3t @�v˛@
3
t
QA�˛@tQ � 4

Z T
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Z
˝

@3t @�v˛@t .@
3
t
QA�˛@tQ/:

Here, the second term is �
R T
0

P , and since @3t QA D Q.@ Q�/@@2t Qv C lower order terms, the first term is

bounded by "jj@3t vjj
2
1CP0C

R T
0

P : Then I13 is treated by a similar method and so we omit the details.

However, we cannot integrate @t by parts in order to control I14 as we do not have a bound for @4tQ.

We integrate @� by parts instead.

I14 D 4
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0

Z
�

@4t v˛@t
QA3˛@3tQ � 4
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0

Z
˝

@4t v˛@�.@t
QA3˛@3tQ/:

There is no problem to control the second integral by
R T
0

P . For the first integral, invoking the boundary
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condition (4.2.6), we obtain

� 4�

Z T
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Z
�

@4t v˛@t
QA3˛@3t

�pgp
Qg
4g� � Qn

�
(4.2.93)
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Z
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�@4t v˛@t
QA3˛@3t

� 1p
Qg
.1 �4/.v � Qn/

�
DW I141 C I142:

Invoking (3.1.9), I141 becomes

I141 D� 4�
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Qg
gijgkl@l�
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�
:

It suffices for us to consider the first integral only since the second integral is of the same type.

Integrating by parts @j first and then @t , the first integral becomes
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Since k@3t vk3:5 is part of E.1/� .t/, the trace lemma implies that the first integral is bounded straightfor-

wardly by
R T
0

P . Moreover, for the second integral, we have
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Z
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�
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In addition,
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p
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:

Integrating @ by parts,then
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Now we analyze the boundary integral I0 in (4.2.78). This is essentially identical to the case of the

incompressible Euler equations [16, Sect. 12]. Indeed, as what appears in [53] concerning the a priori

estimate, we found that the magnetic field plays no role in the estimate of I0.

By plugging the boundary condition QA3˛Q D ��pg.4g� � Qn/ Qn˛ C �
�
.1 �4/.v � Qn/

�
Qn˛ in I0

we obtain

1
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@4t v˛@
4
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Z
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4
t Œ.1 �4/.v � Qn/ Qn

˛� dS dt;

(4.2.95)

where, after integrating one tangential derivative by parts, the second term becomes
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@`@4t v˛@
4
t Œ@

`.v � Qn/ Qn˛� dS dt C
Z T

0

Z
�
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4
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`.v � Qn/@` Qn˛� dS dt
�
: (4.2.96)

The first term on the RHS contributes to the energy term �
�

R T
0

R
�

ˇ̌
@4t v � Qn

ˇ̌2
1

dS dt together with errors

terms. The most difficult error term is

�
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Z
�

.@@4t v � Qn/.v � @
4
t @ Qn/ dS dt; (4.2.97)

where the other errors are either with the same type of integrand or are effectively of lower order by

one derivative with the case above. Since @ Qn D Q.@ Q�/@2 Q� � Qn, we have
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Here, the last term can be controlled appropriately because

j@ Q�jL1.� / ≲ k�k3 � k�0k3 C
Z T

0

kvk3; jvjL1.� / ≲ kvk2 � kv0k2 C
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0
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and so supt P.j@ Q�jL1.� /; jvjL1.� // � P0 C P
R T
0

P . In addition, the second term on the RHS of

(4.2.96) can be treated by the same argument.

Next we analyze the first term on the RHS of (4.2.95). Since On � On D 1, invoking (3.1.8) in Lemma

3.1.1 and we obtain

4g� � On On
˛
D �H ı � On˛ D 4g�˛; (4.2.98)

and so we are able to rewrite
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In light of this, the first term on the RHS of (4.2.95) becomes
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We shall study the main term I00 D
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R
�
@4t v˛@

4
t .
p
g4g�

˛/ dS dt . The error terms involving Qn � On

are treated using (3.4.6) and they are identical to the Euler case. We refer [16, (12.16)-(12.19)] for the

details. Invoking (3.1.9)-(3.1.10), we have
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(4.2.101)
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Integrating @i by parts and expanding the parenthesis, we get
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The main terms are I01 and I02 which produces j@.˘@3t v/j
2
0 as a part of energy, and the others can

be controlled by estimating I03 C I04; I05 C I06; I07 C I08 and integrating @t by parts. In I01, we

integrate @t by parts and use (3.1.7)

I01 D�
1

2

Z
�

p
ggij˘˛

� @
3
t @j v

�@3t @iv˛

ˇ̌̌̌T
0

C
1

2

Z T

0

Z
�

@t .
p
ggij˘˛

� /@
3
t @j v

�@3t @iv˛ dS dt

D
1

2

Z
�

p
ggij @i .˘

˛
�@

3
t v˛/@j .˘

�

�
@3t v

�/C

Z
�

p
ggij @˘˛

�@
3
t v˛@j .˘

�

�
@3t v

�/

�
1

2

Z
�

@i˘
˛
�@j˘

�

�
@3t v˛@

3
t v
�
C
1

2

Z T

0

Z
�

@t .
p
ggij˘˛

� /@
3
t @j v

�@3t @iv˛ dS dt C I01jtD0

DWI011 C I012 C I013 C I014 C I01jtD0:
(4.2.103)
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The term I011 produces the energy term
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The terms I012; I013; I014 can all be directly controlled. By @2�jtD0 D 0,
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I013 ≲ "k@3t vk
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3
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Combining (4.2.103) with (4.2.104)-(4.2.107), we get the estimates of I01 as follows
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Next we control I02 WD �
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0

R
�

p
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3
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summation on l; i and find that:
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Here, we use g�1 to denote detŒg�1� D g11g22 � g12g21. Therefore, we have
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(4.2.109)

The first term in the last line of (4.2.109) can be expanded into two terms
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It can be seen that the top order terms cancel with each other if one integrates @1 by parts in the first term

and @2 by parts in the second. The remaining terms are all of the form �
R
�
Q��.@�; @
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�,

which can be controlled as
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The second term of (4.2.109) can be directly controlled, i.e.,
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Therefore, we get the estimates of I02:
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Next we control the remaining terms in I0, i.e., I03; � � � ; I08. The strategy here is to study

I03 C I04; I05 C I06; I07 C I08, where

I03 C I04 D� 3

Z T

0

Z
�

@t .Q.@�//@
2
t @v@

4
t @v dS dt

@t
D3

Z T

0

Z
�

@2t .Q.@�//@
2
t @v@

3
t @v C 3

Z T

0

Z
�

@t .Q.@�//@
3
t @v@

3
t @v

C 3

Z
�

@t .Q.@�//@
2
t @v@

3
t @v

ˇ̌̌̌T
0

D3

Z T

0

Z
�

0B@Q.@�/@v„ ƒ‚ …
@t .Q.@�//

@v CQ.@�/@@tv

1CA @2t @v@3t @v

C 3

Z T

0

Z
�

Q.@�/@v@3t @v@
3
t @v C

Z
�

Q.@�/@v@2t @v@
3
t @v dS

ˇ̌̌̌T
0

≲"k@3t vk
2
1:5 C P0 C

Z T

0

P :

(4.2.114)

Similarly, by plugging @3t .Q.@�// D Q.@�/.@@tv@v@v C @@tv@v C @@
2
t v/ into I05 C I06, we get
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Following the same way as above, we can control I07 C I08 by P0 C
R T
0

P C "k@3t vk21:5 so we

omit the details. Combining this with (4.2.102), (4.2.108), (4.2.113)-(4.2.115), we get the estimates of
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Now the only term left to control in (4.2.78) is L. Expanding Œ@4t ; QA�˛�, we have
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Despite having the right amount of derivatives, there is no direct control of k@4tQk0 and so we have to

make some extra efforts to control L21; � � � ; L24.

The hardest term to treat here is L21. Since
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Since

QAˇ˛@4tQ D @
4
t .
QAˇ˛Q/ � .@4t QA

ˇ˛/Q � 4.@3t
QAˇ˛/@tQ � 6.@2t QA

ˇ˛/@2tQ � 4.@t
QAˇ˛/@3tQ;

and thus one can write the RHS of (4.2.119) as

Z T

0

Z
˝

QA��@ˇ@
3
t Qv�@�v˛@

4
t .
QAˇ˛Q/ � 4

Z T

0

Z
˝

QA��@ˇ@
3
t Qv�@�v˛@

3
t
QAˇ˛@tQ

� 6

Z T

0

Z
˝

QA��@ˇ@
3
t Qv�@�v˛@

2
t
QAˇ˛@2tQ � 4

Z T

0

Z
˝

QA��@ˇ@
3
t Qv�@�v˛@t

QAˇ˛@3tQ

DWL211 C L212 C L213 C L214:

It is not hard to see that L212; L213; L214 can all be controlled directly by
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treat L211, we integrate @ˇ by parts and get
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DWL21121 C L21122:

Now, since @ˇ QAˇ˛ D 0, we can write
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Moreover, by plugging the boundary condition (4.2.6) to L2111 we obtain
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77



Invoking (3.1.9), we have
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It suffices to control the first term only since the second term has a highest order contribution with the

same type of integrand. Also,
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3
t v � QnC lower-order terms; (4.2.122)

and so we have, after using the Sobolev embedding and trace lemma, that
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In addition, by integrating @i by parts and then using the trace lemma, we have
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Moreover, we still need to control L21112. In light of (4.2.122), we only need to study the case when

all four time derivatives land on4v, i.e.,
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Z
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Integrating @ by parts, this term has the contributes to
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up to terms with the same type integrand, whose analysis (and bound) is identical. To control the main

term, one has
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Finally, combining (4.2.77) with the computations above, we finally get the control of full time

derivatives

@4t v20C@4t .b0 � @/�20C ˇ̌̌@ �˘@3t v�ˇ̌̌20 ≲ E.3/� C.E
.3/
� /2CP0CC."/E�.T /CP

Z T
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P : (4.2.125)

4.2.3.2 Control of mixed space-time tangential derivatives

To finish the control of E�.T /, it remains to study the tangential energies generated by the @@3t , @
2@2t ,

@3@t and @3.b0 � @/-differentiated �-problem. Such energy estimate becomes much simpler when the

tangential spatial derivative(s) @t is taken into account. This is due to that we can avoid the terms

associated to I11 in (4.2.79). This can be done by thanks to the extra 0:5 interior regularity.

The @@3t -tangential energy: Similar to (4.2.77), we have
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(4.2.126)
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By integrating .b0 � @/ by parts in the second term, we can get the cancellation with the third term at

the top orderZ T
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(4.2.127)

The main term I � is treated a bit differently compare to I in (4.2.78). Specifically, one commutes

QA�˛ with @@3t first and then integrate by parts. This allows us to avoid the appearance of the higher

order interior terms.
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(4.2.128)

Here, I ��B D 0 because QA13 D QA23 D 0, QA33 D 1 and v3 D 0 on �0. Also, L�1 and L�2 can be directly
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controlled. For simplicity we only list the computation of the highest order terms
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(4.2.129)

and
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(4.2.130)

Next we analyze the boundary integral I �B .
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(4.2.131)

Since we have H 1:5.˝/ regularity for @3t v and H 1.˝/ regularity for @3tQ, the top order terms

contributed by J1 to J7 can all be directly controlled by the trace lemma. In the end, we have

J1 C � � � C J7 ≲
Z T

0

P : (4.2.132)

By plugging the boundary condition

QA3˛Q D ��
p
g.4g� � Qn/ Qn

˛
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Qn˛
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in J0, we obtain
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(4.2.133)

For the second term, integrating @ by parts, it contributes to the energy term
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and some error terms. Here, the most difficult error term reads
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which can be treated as follows:
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The first term in (4.2.133) is treated analogous to the first term in (4.2.95). The main term we need

to study in this case reads
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Integrating @i by parts, we get
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(4.2.136)

where R0 consists terms that can be treated in the same way as in I03; � � � ; I08 in (4.2.102).

In J01, we can integrate @t by parts and mimic the proof of (4.2.103) to get
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J02 can also be controlled similarly as I02. We find that the integrand is zero if l D i . So it suffices to

compute the case .l; i/ D .1; 2/ and .2; 1/. Similarly we get
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The main term can be computed as followsZ
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(4.2.139)

and thus we get the control of J02
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Combining (4.2.126)-(4.2.137) and (4.2.140), we get the @@3t -tangential estimates as follows
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0

P :

(4.2.141)

The @2@2t , @3@t and @3.b0 � @/-tangential energies: The control of the other tangential energies that

involving at least one @ is follows from the arguments above by replacing @@3t to the corresponding

derivatives. Hence, we shall omit the details and only illustrate the major differences. First, we mention

that the derivatives @3@t and @3.b0 � @/ behave the same since both v and .b0 � @/� are of the same

interior regularity. Second, one needs to pay attention to the terms that analogous to the error term

generated by (4.2.133) during the construction of the energy term. In particular, we need to study the

top order error term analogous to (4.2.135). Setting D D @t ; @ or .b0 � @/ and we consider
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When D2 D @2t then (4.2.142) is treated similar to (4.2.135). This is due to that
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On the other hand, when D2 D @@t ; @.b0 � @/, then using the fact that D Qn D Q.@ Q�/D@ Q� � Qn, we

have

�

�

Z T

0

Z
�

.@4@tv � Qn/.v � @
4@t Qn/ dS dt LD

�

�

Z T

0

Z
�

.@4@tv � Qn/.v � @
5v � Qn/ dS dt; (4.2.143)
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The terms on the RHS requires
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5, respectively, to control. However,
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Notice that the RHS relies on M0, which is given in Lemma 4.2.9. In Section 4.2.5, in fact, we are

able to control M0 by C.kv0k4:5; kb0k4:5; jv0j5/.

4.2.4 Estimates for the higher order weighted interior norms

It remains to control E.3/� .T / in order to complete the proof of Proposition 4.2.4.

4.2.4.1 Full time derivatives

We shall first study the first two terms, i.e.,

Z T

0

�p�@4t v21:5 C p�@4t .b0 � @/�21:5� dt D K1 CK2:

These terms appear to be the most difficult ones to control. In particular, they yield error terms that

contribute to the top order and can only be controlled in L2.Œ0; T �/.
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The goal is to show:
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The control of K1; K2 relies on the div-curl estimate
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For K11, we have
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Since kA � QAk21:5C � �P.k�k3:5/, the error term can be controlled by
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which can be controlled by the RHS of (4.2.146) when � is small. For the first term, since div QAv D 0

we have
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It is not hard to see that that
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since @t QA�˛ D Q.@ Q�/; we obtain
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The control of K21 is a bit more involved. We cannot commute @4t to (4.2.57) as this would yield

div @5t QA.b0 � @/� on the RHS which cannot be controlled. However, by writing div @4t .b0 � @/� D
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(4.2.153)

The second term on the RHS is similar with (4.2.150). The first term can be similarly controlled by

commuting div QA with @3t .b0 � @/.

Bound forK12 andK22: We would like to state the following strategy that will come in handy when

dealing with the leading order terms in K12 and K22. Let X be the term such that
R T
0
k
p
�Xk20:5 is

part of E.3/� and Y be a lower order term such that kY k21:5C is controlled by E.1/� . Then

Z T

0

Z t

0

k
p
�XY k20:5 dt �T

Z T

0

k
p
�XY k20:5 ≲ T sup

t
kY k21:5C

Z T

0

k
p
�Xk20:5

�
"

2

� Z T

0

k
p
�Xk20:5

�2
C
T 2

2"
sup
t
kY k41:5C; (4.2.154)

which is bounded by the RHS of (4.2.13) if T is sufficiently small.

K12 and K22 will be considered together via studying the evolution equation verified by curl @4t v

and curl @4t .b0 � @/�. But this cannot be derived by taking @4t to (4.2.65) as this yields curl @5t QAv in the

source term which cannot be controlled. Instead, we commute @4t curl QA to the equation @tvC.b0 �@/2� D

r QAQ and get

@4t curl QA@tv C @
4
t curl QA..b0 � @/

2�/ D 0:
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This yields the following evolution equation:

@tcurl QA@
4
t v C curl QA..b0 � @/

2@4t �/ D �@t .Œ@
3
t ; curl QA�@tv/ � Œ@

4
t ; curl QA�.b0 � @/

2� WD f; (4.2.155)

and, after expansion, the source term f becomes:

f D @t

� X
1�j�3

�˛ˇ .@
j
t
QA�ˇ /@�@

4�j
t v

�
C

X
1�j�4

�˛ˇ .@
j
t
QA�ˇ /@�.b0 � @/

2@
4�j
t � : (4.2.156)

Then we integrate .b0 � @/ by parts in
R
˝
�
�

curl QA..b0 � @/
2@4t �

�
@.curl QA@

4
t v/, then integrate @

1
2 by parts,

and integrate in time one more time, we get

1

2

Z T

0
k
p
�curl QA@

4
t vk

2
0:5 C

1

2

Z T

0
k
p
�curl QA@

4
t .b0 � @/�k

2
0:5

≲
Z T

0
P0 C

Z T

0

Z t

0
k
p
�f k0:5k

p
�curl QA@

4
t vk0:5 dt

C

Z T

0

Z t

0
k
p
�Œcurl QA; .b0 � @/�.b0 � @/@

4
t �k0:5k

p
�curl QA@

4
t vk0:5 dt

C

Z T

0

Z t

0
k
p
�Œcurl QA; .b0 � @/�@

4
t vk0:5k

p
�curl QA.b0 � @/@

4
t �k0:5 dt

C

Z T

0

Z t

0
k
p
�curl

@t QA
@4t .b0 � @/�k0:5k

p
�curl QA.b0 � @/@

4
t �k0:5 dt: (4.2.157)

We have

Z T

0

Z t

0

k
p
�Œcurl QA; .b0 � @/�.b0 � @/@

4
t �k

2
0:5 dt

≲
Z T

0

Z t

0

k
p
��˛ˇ QA

�ˇ .@�b
�
0/.@�.b0 � @/@

4
t �

k
2
0:5 dt

C

Z T

0

Z t

0

k
p
��˛ˇ .b

�
0@�
QA�ˇ /.@�.b0 � @/@

4
t �

k
2
0:5 dt;

which can be controlled by the RHS of (4.2.146) by adapting (4.2.154). The third and forth term are
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treated analogously. For
R T
0

R t
0
k
p
�f k20:5 dt , invoking (4.2.156), we need to consider

i D
X
1�j�3

Z T

0

Z t

0

k
p
�@t

�
�˛ˇ .@

j
t
QA�ˇ /@�@

4�j
t v

�
k
2
0:5 dt; (4.2.158)

i i D
X
1�j�4

Z T

0

Z t

0

k
p
��˛ˇ .@

j
t
QA�ˇ /@�.b0 � @/

2@
4�j
t �k20:5 dt: (4.2.159)

Here, i LD
R T
0

R t
0
k
p
�.@t QA/.@@

4
t v/k

2
0:5 is controlled by (4.2.154). Moreover,

i i
L
D

Z T

0

Z t

0

k
p
��˛ˇ .@t QA

�ˇ /@�.b0 � @/
2@3t �


k
2
0:5 (4.2.160)

≲
Z T

0

Z t

0

k
p
�.@t QA/@@

3
t Œ.b0 � @/

2��k20:5 dt �
Z T

0

P :

This concludes the control of K1 CK2.

Remark 4.2.14. There is an alternative way to control the last integral in (4.2.161). We may use the

equation to replace .b0 � @/2� by @tv Cr QAq, and this allow us to control this integral without usingR T
0
k
p
�@3t .b0 � @/�k

2
2:5. In fact, one can show

Z T

0

Z t

0

k
p
�@3tQk

2
2:5 dt � P

by employing the elliptic estimate we used in Section 4.2.2.1, and so
R T
0

R t
0
k
p
�.@t QA/@@

3
t Œ.b0 �

@/2��k20:5 dt �
R T
0

P :

4.2.4.2 Mixed space-time derivatives

The treatment for the remaining terms of E.3/� is parallel. We shall consider

Z T

0

�p�@kt v25:5�k C p�@kt .b0 � @/�25:5�k� dt; k D 1; 2; 3:

First, the boundary normal trace contributed by the time derivative(s) of .b0 � @/� reads
R T
0
j
p
�@kt .b0 �

@/�j5�k ; k D 1; 2; 3: Generally speaking, for each fixed k, the control of the above term requires that

of
R T
0
j
p
�@k�1t vj6�k , and this process stops when k D 1. In particular, for each fixed k D 2; 3, we
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write
R T
0
j
p
�@kt .b0 � @/�j

2
5�k

as
R T
0
j@k�1t .b0 � @/vj

2
5�k

, which can then be controlled together withR T
0
j@itvj

2
5�i with i D 1; 2. On the other hand, when k D 1, the control of

R T
0
j
p
�@t .b0 �@/�j4 requires

Z T

0

j
p
�.b0 � @/vj

2
4 ≲ P.kb0k4:5/

Z T

0

j
p
�vj25;

where, in view of (4.2.23), we have
R T
0
j
p
�vj25 �M0 C C."/E�.T /C P

R T
0

P .

Second, the control of the analogous terms of i i (defined in (4.2.159)) for k D 1; 2; 3 requires a

similar analysis as above. For each fixed k, we need to investigate

i i 0 D
X
1�j�k

Z T

0

Z t

0

k
p
��˛ˇ .@

j
t
QA�ˇ /@�.b0 � @/

2@
k�j
t �k24:5�k dt: (4.2.161)

Again, it suffices to consider the most difficult term contributed by setting j D 1, i.e.,

i i 0 D

Z T

0

Z t

0

k
p
��˛ˇ .@t QA

�ˇ /@�.b0 � @/
2@k�1t �k24:5�k dt (4.2.162)

≲
Z T

0

Z t

0

P.kvk4:5; kb0k4:5; k�k4:5/k
p
�@3@k�1t �k24:5�k dt: (4.2.163)

In (4.2.163), it can be seen that when k D 2; 3,
R T
0

R t
0
k
p
�@3@k�1t �k4:5�k dt is bounded by

R T
0

R t
0
k
p
�@3vk22:5 dt

and
R T
0

R t
0
k
p
�@3@tvk

2
1:5 dt , respectively. Moreover, when k D 1, we need to consider (4.2.162) in-

stead. The strategy here is to replace .b0 � @/2� by @tv Cr QAQ, and so

i i 0 D

Z T

0

Z t

0

k
p
��˛ˇ .@t QA

�ˇ /@�@tv

k
2
3:5 dt C

Z T

0

Z t

0

k
p
��˛ˇ .@t QA

�ˇ /@�r


QA
Qk23:5 dt;

(4.2.164)

where the first term is bounded by the RHS of (4.2.146) owing to (4.2.154). For the second term, since

v 2 H 4:5.˝/, so it suffices to consider the case when all derivatives land on r QAQ, whose control

requires that of

Z T

0

Z t

0

k
p
�r QAQk

2
4:5 dt (4.2.165)

after adapting (4.2.154). Actually, we have a slightly stronger bound by removing one time integral,
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i.e.,
R T
0
k
p
�r QAQk

2
4:5. By the div-curl estimate, one has

Z T

0

k
p
�r QAQk

2
4:5 ≲

Z T

0

�
k
p
�divr QAQk

2
3:5 C k

p
�curl r QAQk

2
3:5 C j

p
�N � r QAq

ˇ̌2
3
C j
p
�qj20

�
:

Here,

Z T
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p
�divr QAQk

2
3:5 ≲

Z T

0

k
p
�4 QAQk

2
3:5 C

Z T

0

k
p
�div QA�ır QAQk

2
3:5; (4.2.166)

and by (4.2.16), (4.2.26), (4.2.154), we have

Z T
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k
p
�div QA�ır QAQk

2
3:5 ≲ "

Z T

0

k
p
�r QAQk

2
4:5 C

Z T
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Similarly, because curl QAr QAQ D 0, we have
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0
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p
�curl r QAQk

2
3:5 ≲ "

Z T

0
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p
�r QAQk

2
4:5 C

Z T
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P :

Moreover, invoking (4.2.18), (4.2.154) and the trace lemma, then
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j
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�N � r QAQj
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� Qn � r QAQj
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3 C
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�r QAQk
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4:5 C
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As a consequence, (4.2.166) becomes

Z T

0

k
p
�r QAQk

2
4:5 ≲

Z T

0

�
k
p
�4 QAQk

2
3:5 C j

p
� Qn � r QAQ
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C j
p
�qj20

�
: (4.2.167)

To control the RHS, we recall that Q verifies

�4 QAQ D �@t
QA�˛@�v˛ C @ˇ ..b0 � @/ Q��/@� QA

�� QAˇ˛@�.b0 � @/�˛ (4.2.168)
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with the Dirichlet and Neumann boundary conditions

p
QgQ D� �

p
g.4g� � Qn/C �.1 �4/.v � Qn/; (4.2.169)

Qn � r QAQ D� @tv � QnC .b0 � @/
2� � Qn: (4.2.170)

Now,
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�4 QAQk
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�k@t QA@vk
2
3:5 C

Z T

0

�k@..b0 � @/�/.@ta/.a@.b0 � @/�/k
2
3:5; (4.2.171)

where the RHS is bounded by
R T
0

P . Also, it is not hard to see, via the Dirichlet boundary condition,

that
R T
0
j
p
�Qj20 �

R T
0

P :

Next, we control
R T
0
j
p
� Qn � r QAqj

2
3. In view of the Neumann boundary condition (4.2.170), it

contributes to Z T

0

�j@tv � Qnj
2
3;

Z T

0

j
p
�.b0 � @/

2� � Qnj23:

For the first term, since @tv 2 H 3:5.˝/ and � 2 H 4:5.˝/ a priori, as well as @ Qn D Q.@�/@2�, we

have
R T
0
�j@tv � Qnj

2
3 �

R T
0

P : Also, for the second term,

Z T

0

j
p
�.b0 � @/

2� � Qnj23
L
D

Z T
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j
p
�.b0 � @/

2@3� � Qnj20 �

Z T

0

P.kb0k4:5; jj�jj4:5/j
p
�@5�j20;

which can be controlled by M0 C C."/E�.T /C P
R T
0

P owing to (4.2.23).

In summary, we have

E.3/� �M0 C C."/E�.T /C P
Z T

0

P : (4.2.172)

4.2.5 Closing the nonlinear energy estimate

We now conclude the proof of Proposition 4.2.4.
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4.2.5.1 Regularity of initial data

Our first task is to remove the extra regularity assumptions on the initial data. These additional

regularities are introduced in M0 (cf. Lemma 4.2.9). In addition to this, one has to control

kq.0/k4:5; kqt .0/k3:5; kqt t .0/k2:5 in terms of v0 and b0 by the elliptic estimate, and extra regular-

ity on v0 and b0 shall appear due to the viscosity.

Note that Q0 verifies the elliptic equation8̂<̂
:
�4Q0 D .@v0/.@v0/ � .@b0/.@b0/ in ˝

Q0 D �.1 �4/v
3 on �

@Q0
@N
D 0 on �0

(4.2.173)

by standard elliptic estimates, we get kQ0k4:5 ≲ k@v0k22:5Ck@b0k
2
2:5C�kv

3
0k4:5C�jv

3
0 j6:Moreover,

note that the energy functional contains time derivatives of v and .b0 � @/�, so we need to express their

initial data in terms of v0 and b0 as well. We invoke @tv.0/� .b0 � @/b0 D �@Q0 to get k@tv.0/k3:5 ≲

kb0k3:5kb0k4:5 C kQ0k4:5 and k@t .b0 � @/�.0/k3:5 ≲ kb0k3:5kv0k4:5: Similarly, we consider the @t -

differentiated elliptic equation of Q to get k@tQ.0/k3:5 ≲ P.kv0k4:5; kb0k4:5/.jv
3
0 j5 C �j@tv.0/j5/

and further k@2tQ.0/k2:5 C k@
3
tQ.0/k1 ≲ P.kv0k4:5; kb0k4:5; jv0j5/.1C �j4@

2
t v.0/j2/:

By Sobolev trace lemma, we need to bound �k@2t v.0/k4:5 which requires the control of �.kv0k6:5C

kb0k5:5Ck@tQ.0/k5:5/. We replace 3.5 by 5.5 in the estimates of @tQ.0/, and thus we need to control

�2j@tv.0/j7 ≲ �2.kb0k7:5kb0k8:5 C kQ0k8:5/: Finally, replacing 4.5 by 8.5 in the estimates of Q0,

we need to control �2.kv0k27:5 C kb0k
2
7:5/C �

3.jv0j8 C jv0j10/:

We need to control �-weighted norms of kv0k8:5; kb0k8:5 and jv0j10. However, our given initial

data is v0 2 H 4:5.˝/ \H 5.� / and b0 2 H 4:5 and so we have to remove the additional regularity

assumptions on the initial data. We define ˝� to be the regularized version of ˝ tangentially mollified

by �exp�� and define E˝� to be the extension operator from ˝ to ˝� . Next we set

v0 WD �exp�� �E˝� .v0/; b0 WD �exp�� �E˝� .b0/; q0 WD �exp�� �E˝� .Q0/:
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Integrating by parts repeatedly to transfer derivatives to the mollifier �exp�� , we get

k�v0k8:5Ck�b0k8:5Ck�q0k8:5Cj�v0j10 ≲ kv0k4:5Ckb0k4:5CkQ0k4:5Cjv0j5 � C; (4.2.174)

where C is the constant that appears in (4.2.7).

4.2.5.2 Nonlinear a priori estimates

We summarize the a priori estimates of the nonlinear approximate system (4.2.2).

1. (4.2.26) gives the elliptic estimates of Q and its time derivatives.

2. (4.2.54)-(4.2.56) and (4.2.63), (4.2.64) give the divergence estimate and (4.2.67)-(4.2.68) give

the curl estimate.

3. (4.2.69) and (4.2.76) control the boundary normal traces.

4. (4.2.125), (4.2.141), (4.2.145) provide control of the mixed tangential derivatives of v and

.b0 � @/� and the normal traces of v. Note that these estimate depends on E.3/� on the RHS.

5. Finally, (4.2.172) provides the estimate for E.3/� .

Thus, by combining these estimates and then invoking (4.2.174), we obtain

E�.T / �E�.0/ ≲ C."/E�.T /C C.kv0k4:5; kb0k4:5/C P.E�.T //
Z T

0

E�.t/ dt: (4.2.175)

We pick " > 0 suitably small such that the "-terms can be absorbed to LHS. Therefore, by the nonlinear

Gronwall inequality, we know there exists some time T > 0 independent of �, such that

sup
0�t�T

E�.t/ � C: (4.2.176)

This concludes the proof for Proposition 4.2.4.
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4.2.6 Well-posedness for the linearized approximate system

Since we obtained an uniform-in-� a priori energy estimate for (4.2.2), our next goal is to construct a

solution for this system for each fixed � > 0.

Let T > 0. We define

X D fu 2 L1.0; T IH 4:5.˝// W sup
Œ0;T �

kuk4:5 � 2kv0k4:5 C 1g; (4.2.177)

which is a closed subset of the space L1.0; T IH 4:5.˝//.

To solve the approximate �-problem (4.2.2) for each fixed � > 0, we study the following linearized

problem whose fixed-point provides the desired solutions. Fix an arbitrary function V� D V�.t; y/ whose

time derivative V�t 2 X, we denote by VA, Vg, VJ and VA the associated quantities in Lagrangian coordinates

and VQ� WD �� V�; VQA WD Œ@VQ���1; VQJ WD detŒ@VQ��; VQA WD VQJ VQA and VQn to be the associated smoothed quantities.

We aim to construct � and v that solve8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@t� D v in Œ0; T � �˝I

@tv � .b0 � @/
2�Cr

VQA
Q D 0 in Œ0; T � �˝I

div
VQA
v D 0; div b0 D 0 in Œ0; T � �˝I

v3 D b30 D 0 on �0I

VQA
3˛

Q D ��
p
Vg.4

Vg V� �
VQn/ Qn˛ C �.1 �4/.v � VQn/ VQn

˛
on � I

.�; v/ D .Id; v0/ on ft D 0g�˝:

(4.2.178)

We show the existence of �; v by first establishing the existence of the weak solution and then boosting

up their regularity. The construction of the solution for the nonlinear �-problem will be postponed

until the next subsection. We will adapt the method developed in [16] to study the weak solution for

(4.2.178). Also, due to technical reasons, it is convenient for us to first construct the weak solution of

(4.2.178) in L2.0; T IH�1.˝// and then prove that this solution has L2.0; T IH 1.˝// regularity.
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4.2.6.1 The penalized problem

The goal of this subsection is to study the penalized version (of the divergence-free condition on the

velocity) of the linearized �-problem (4.2.178). In particular, for 0 < �� 1, letw�; �� be the solutions

for (4.2.178) with

div
VQA
w� D ��Q� (4.2.179)

where Q� is defined to be the penalized pressure. In this case, (4.2.178) becomes8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@t�� D w� in Œ0; T � �˝I

@tw� � .b0 � @/
2�� Cr VQA

Q� D 0 in Œ0; T � �˝I

div
VQA
w� D ��Q�; div b0 D 0 in Œ0; T � �˝I

w3
�
D b30 D 0 on �0I

VQA
3˛

q� D ��
p
Vg.4

Vg V� �
VQn/ VQn

˛
C �.1 �4/.v � VQn/ VQn

˛
on � I

.��; w�/ D .Id; v0/ on ft D 0g�˝:

(4.2.180)

Since each penalized problem is indexed by � (recall � is fixed), we shall denote them by “�-problem"

throughout the rest of this section.

Weak solution for the �-problem. First of all, for each fixed �, we will solve the �-problem by the

Galerkin approximation and obtain a weak solution. By introducing a basis .ek/1kD1 ofL2.˝/\H 1.˝/,

and considering the approximation

@t�m.t; y/ Dwm.t; y/; (4.2.181)

wm.t; y/ D

mX
kD1

zk.t/ek.y/; m � 2; t 2 Œ0; T �; (4.2.182)

one can form a system of ODE by multiplying a test vector field �, whose component �˛ 2

span.e1; � � � ; em/ to the �-problem. Specifically, we have

Z
˝

.w˛m/t�˛ �

Z
˝

Œ.b0 � @/
2�˛m��˛ C

Z
˝

Œ VA�˛@�Qm��˛ D 0: (4.2.183)
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We recall that .b0 � @/j� is tangential to � . Owing to this and the boundary condition of qm, we

obtain, after integration by parts, that

Z
˝

.w˛m/t�˛ C

Z
˝

Œ.b0 � @/�
˛
m�Œ.b0 � @/�˛�C �

X
lD0;1

Z
�

@l .wm � VQn/@
l .� � VQn/

�

Z
˝

QmŒ
VQA
�˛

@��˛� D �

Z
�

.

q
Vg4
Vg V� �
VQn/.� � VQn/; (4.2.184)

wm.0/ D .v0/m; �m.0/ D Id; (4.2.185)

where .v0/m is the projection of v0 onto span.e1; � � � ; em/.

Let �˛ D ek , k D 1; � � � ; m. Then (4.2.184)-(4.2.185) and (4.2.179) yield an ODE system, and the

standard ODE theory gives the the existence and uniqueness of �m and wm in Œ0; T�� for some T� > 0.

We mention that it is important to introduce the penalized pressure (4.2.179), or else (4.2.184) would

not form an ODE system.

Setting � D wm, and since � j
p
Vg4
Vg V�
˛j0 � N0, where N0 denotes a generic polynomial function

such that N0 D P.k�0k4:5; kv0k4:5; kb0k4:5/; then (4.2.184) gives us

kwmk
2
0 C k.b0 � @/�mk

2
0 C �

Z t

0

kqmk
2
0 C �

Z t

0

jwm � VQnj
2
1 � N0; t 2 Œ0; T�� (4.2.186)

Since the RHS of (4.2.186) is independent of �, we know the solution .�m; wm/ is defined on Œ0; T �

(possibly after setting T smaller). In addition, there is a subsequence, which is still denoted with the

index m, satisfying

.b0 � @/�m * .b0 � @/��; wm * w�; Qm *Q�; in L2.0; T IL2.˝//; (4.2.187)

wm � VQn * w� � VQn; in L2.0; T IH 1.� //; (4.2.188)
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where w�, .b0 � @/��, and q� verify the estimate

kw�k
2
0 C k.b0 � @/��k

2
0 C �

Z t

0

kq�k
2
0 C �

Z t

0

jw� � VQnj
2
1 � P0; t 2 Œ0; T �: (4.2.189)

Now, let Y be a Banach space. We denote its dual by Y 0, and, for 	 2 H s.˝/0 D H�s.˝/ and

˚ 2 H s.˝/, the pairing between 	 and ˚ is denoted by h	;˚is . It follows from the ODE (4.2.184)

defining wm, that @tw� 2 L2.0; T IH�
1
2C/, where H�

1
2C WD H�

1
2Cı for some 0 < ı � 1, and

.b0 � @/
2�� 2 L

2.0; T IH�
1
2C/ as well. Now, for � 2 L2.0; T IH

1
2�/, we haveZ T

0

h@tw
˛
� ; �˛i 1

2�
C

Z T

0

h.b0 � @/
2��; �˛i 1

2�

C �
X
lD0;1

Z T

0

Z
�

@l .w� � VQn/@
l .� � VQn/ �

Z T

0

hQ�;
VQA
�˛

@��˛i 1
2C

D�

Z T

0

Z
�

.

q
Vg4
Vg V� �
VQn/.� � VQn/:

(4.2.190)

In light of (4.2.190), we can see that @tw� 2 L2.0; T IH�
1
2C/, and q� 2 L2.0; T IH

1
2C/, and the

regularity of q� implies r
VQA
Q� 2 L

2.0; T IH�
1
2�/. Therefore, we have that

@tw� � .b0 � @/
2�� Cr VQA

Q� D 0 (4.2.191)

holds in L2.0; T IH�
1
2�.˝// � L2.0; T IH�1.˝//. In addition, by commuting curl

VQA
through

(4.2.191) we get the following evolution equation

@t .curl
VQA
w�/ � .b0 � @/curl

VQA
..b0 � @/��/ D Œcurl

VQA
; .b0 � @/�..b0 � @/��/C curl

@t
VQA
w�: (4.2.192)

The limit as �! 0. By (4.2.179) and (4.2.189) we have

Z t

0

�
kw�k

2
0 C k.b0 � @/��k

2
0 C

1

�
kdiv

VQA
w�k

2
0 C �jw� �

VQnj21

�
dt � N0; t 2 Œ0; T � (4.2.193)
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Thus, fw�g and f.b0 � @/��g admit converging subsequences such that

w� * v; .b0 � @/�� * .b0 � @/�; div
VQA
w� * div

VQA
v; in L2.0; T IL2.˝//; (4.2.194)

w� � VQn * v � VQn in L2.0; T IH 1.� //: (4.2.195)

Moreover, in view of (4.2.189), we must have that

div
VQA
v D 0; in L2.0; T IL2.˝//: (4.2.196)

Also, this implies the evolution equation verified by div .b0 � @/�, i.e.,

@tdiv
VQA
..b0 � @/�/ D Œdiv

VQA
; .b0 � @/�v C .@t

VQA
�˛

/@�..b0 � @/�˛/: (4.2.197)

Our next goal is to show that .�; v/ is a weak solution for (4.2.178) and we also need to get a bound

for
R t
0
kvtk

2

H
� 1
2
C
.˝/

for t 2 Œ0; T �. This ties to the L2.0; T IH
1
2C/ regularity of the pressure function

Q (to be defined later in this section). First, we consider a vector field f 2 L2.0; T IH
1
2�/. Define '

be the solution of

4
VQA
' D div

VQA
f; in ˝; (4.2.198)

' D 0; on @˝; (4.2.199)

and let g, h be the vector fields such that g D r
VQA
' and h D f � g. Here, it is clear that g; h 2

L2.0; T IH
1
2�/ and div

VQA
h D 0. Now, (4.2.190) yields, after replacing � by h, that h verifies the

following variational equation

Z T

0

h@tw�; hi 1
2�
C

Z T

0

h.b0 � @/
2��; hi 1

2�
C �

X
lD0;1

Z T

0

Z
�

@l .w� � VQn/@
l .h � VQn/

D�

Z T

0

Z
�

.

q
Vg4
Vg V� �
VQn/.h � VQn/: (4.2.200)
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On the other hand, since div
VQA
v D 0, we have VA�˛@�@tv˛ D �.@t VQA

�˛

/@�v˛ . This identity and

(4.2.199) yield

hvt ; gi 1
2�
D hvt ;r VA'i 12�

D

Z
˝

.@t
VQA
�˛

/@�v˛':

In light of this and (4.2.200), we obtain

lim
�!0

Z T

0

h@tw�; f i 1
2�
C

Z T

0

h.b0 � @/
2�˛� ; f i 1

2�

D

Z T

0

Z
˝

.@t
VQA
�˛

/@�v˛' � �
X
lD0;1

Z T

0

Z
�

@l .v � VQn/@l .h � VQn/ (4.2.201)

C �

Z T

0

Z
�

.

q
Vg4
Vg V� �
VQn/.h � VQn/;

and so

lim
�!0

Z T

0

kw�tk
2

H
� 1
2
C
C k.b0 � @/

2��k
2

H
� 1
2
C
� N0: (4.2.202)

As a consequence, we have w�t * vt and .b0 � @/2�� * .b0 � @/
2� in L2.0; T IH�

1
2C/. The former

ensures that v 2 C 0.0; T IL2/ and so the initial data of w�.0/ and v.0/ agrees and equals to v0.

Moreover, by employing [16, Lem. 7.4]1, there exists q 2 L2.0; T IH
1
2C/, in terms of the pressure

function, such thatZ T

0

h@tv; �i 1
2�
C

Z T

0

h.b0 � @/
2�; �i 1

2�
�

Z T

0

hQ; VQA
�˛

@��˛i 1
2C

C �
X
lD0;1

Z T

0

Z
�

@l .v � VQn/@l .� � VQn/

D�

Z T

0

Z
�

.

q
Vg4
Vg V� �
VQn/.� � VQn/:

(4.2.203)

1We need a small modification. Since we need our q 2 H
1
2C, we need to consider the linear functional hdiv

VA
�;pi 1

2C

defined onX.t/, whereX.t/ D f� 2H
1
2�.˝/ W div

VQA
� 2H�

1
2�.˝//g.
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holds for any test function � 2 L2.0; T IH
1
2�/. This yields that .�; v;Q/ verifies

@tv � .b0 � @/
2�Cr

VQA
Q D 0; and div

VQA
v D 0; in L2.0; T IH�1/;

and so we’ve shown that �; v is indeed a weak solution for (4.2.178). Furthermore, (4.2.202) together

with [16, Lem. 7.4] implies that

Z T

0

kQk2

H
1
2
C
� P0: (4.2.204)

Remark 4.2.15. The 1
2
C interior regularity of Q is required here as this controls the H 0C.� /-norm

of Q on the boundary. We refer Section 4.2.6.2 for the details. Finally, we consider the difference

between (4.2.203) with v and v0,

Z T

0

h@t .v � v
0/; �i 1

2�
C

Z T

0

h.b0 � @/
2.� � �0/; �i 1

2C

C�
X
lD0;1

Z T

0

Z
�

@l ..v � v0/ � VQn/@l .� � VQn/ �

Z T

0

h.q � q0/; VQA
�˛

@��i 1
2C
D 0: (4.2.205)

where .v0; �0/ is assumed to be another solution with the initial data. The uniqueness of the weak

solution follows from setting � D v � v0.

4.2.6.2 H 1 Regularity estimates of v, .b0 � @/� and Q

We shall show that v, .b0 � @/� and Q are in fact L2.0; T IH 1.˝//. Let

e.t/ WD

Z t

0

k�k21 C kvk
2
1 C k.b0 � @/�k

2
1 dt; t 2 Œ0; T �: (4.2.206)

Our goal is to show

e.T / � P.N0/: (4.2.207)

It suffices to consider
R T
0
kvk21 and

R T
0
k.b0 � @/�k

2
1 only since

Z T

0

k�k21 �

Z T

0

�
k�0k

2
1 C

Z t

0

kvk21 dt
�

dt:
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Thanks to Lemma 3.3.1, it suffices for us to control
R T
0
kdiv vk20;

R T
0
kcurl vk20;

R T
0
jv3j20:5; as

well as
R T
0
kdiv .b0 � @/�k20;

R T
0
kcurl .b0 � @/�k20;

R T
0
j.b0 � @/�

3j20:5; in order to control
R T
0
kvk21 andR T

0
k.b0 � @/�k

2
1.

Control of the divergence and curl The estimates we need here are essentially the same as in

Section 4.2.2.2 but without considering the time differentiated quantities. Firstly, since (4.2.16) in

Lemma 4.2.6 remains true with QA replaced by VQA, then

Z T

0

kdiv vk20 �
Z T

0

k. VQA
�˛

� ı�˛/@�v˛k
2
0 � "

Z T

0

k@vk20 � "e.T /: (4.2.208)

Secondly, because div
VQA
.b0 � @/� verifies the evolution equation

@tdiv
VQA
..b0 � @/�/ D Œdiv

VQA
; .b0 � @/�v C .@t

VQA
�˛

/@�..b0 � @/�˛/: (4.2.209)

So, one needs to bound
R T
0

R t
0
kRHS of (4.2.209)k20 dt in order to control

R T
0
kdiv

VQA
..b0 � @/�/k

2
0. We

have

Z T

0

Z t

0

k@t
VQA
�˛

@�..b0 � @/�/k
2
0 dt �

Z T

0

Z t

0

k@t
VQAk2L1k@..b0 � @/�/k

2
0 dt

�

Z T

0

Z t

0

N0k@..b0 � @/�/k20 dt � TN0e.T /: (4.2.210)

Moreover, Œdiv
VQA
; .b0 � @/�v D VA�˛..@�b0/ � @/v˛ � ..b0 � @/ VA�˛/@�v˛ yields

Z T

0

Z t

0

kŒdiv
VQA
.b0 � @/�vk

2
0 �

Z T

0

Z t

0

N0k@vk20 dt � TN0e.T /: (4.2.211)

Thus,

Z T

0

kdiv
VQA
..b0 � @/�/k

2
0 � TN0e.T /: (4.2.212)
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In addition, usingkdiv .b0 � @/�k20 � kdiv
VQA
.b0 � @/�k

2
0 C k

VA � ık2L1k@.b0 � @/�k
2
0 and (4.2.16), we

conclude that

Z T

0

kdiv .b0 � @/�k20 � "e.T /C TN0e.T /: (4.2.213)

Thirdly, the evolution equation satisfied by curl
VQA
v and curl

VQA
.b0 � @/� reads

@t .curl
VQA
v/˛ � .b0 � @/curl

VQA
..b0 � @/�/˛ D Œcurl

VQA
; .b0 � @/�..b0 � @/�/˛ C curl

@t
VQA
v˛; (4.2.214)

and this yields the followingL2.Œ0; T �IL2.˝//-energy identity after testing with curl
VQA
v and integrating

in space and time:

kcurl
VQA
vk20 C kcurl

VQA
.b0 � @/�k

2
0 ≲

Z t

0

kŒ.b0 � @/; curl
VQA
�.b0 � @/�k

2
0 C

Z t

0

kcurl
@t
VQA
vk20

C

Z t

0

kŒ.b0 � @/; curl
VQA
�.b0 � @/vk

2
0 C

Z t

0

kcurl
@t
VQA
.b0 � @/�k

2
0:

Integrating in time one more time, we achieve

Z T

0

�
kcurl

VQA
vk20 C kcurl

VQA
.b0 � @/�k

2
0

�
≲
Z T

0

Z t

0

�
kŒ.b0 � @/; curl

VQA
�.b0 � @/�k

2
0 C kcurl

@t
VQA
vk20

�
dt

C

Z T

0

Z t

0

�
kŒ.b0 � @/; curl

VQA
�.b0 � @/vk

2
0 C kcurl

@t
VQA
.b0 � @/�k

2
0

�
dt:

It suffices to control the first two terms on the RHS since the third and fourth term can then be controlled

by an analogous method with the same bound.

For the first term on the RHS, since one can express

Œ.b0 � @/; curl
VQA
�.b0 � @/�˛ D �˛ˇ ..b0 � @/

VQA
�ˇ

/@��

� �˛ˇ

VQA
�ˇ

.@�b0 � @/�


and so
R T
0

R t
0
kŒ.b0 � @/; curl

VQA
�.b0 � @/�˛k0 dt ≲ TN0e.T /: Similarly, kŒ.b0 � @/; curl

VQA
�.b0 � @/v˛k0 �

TN0e.T /: In addition, for the second term, we obtain
R T
0

R t
0
kcurl

@t
VQA
vk0 dt � TN0e.T /: Summing
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these up, we obtain

Z T

0

Z t

0

�
kcurl

VQA
vk20 C kcurl

VQA
.b0 � @/�k

2
0

�
dt � TN0e.T /: (4.2.215)

Control of the boundary terms First we remark here that (4.2.17), (4.2.18) remain true by replacing

Qn by VQn.

Control of
R T
0
jv3j20:5: It suffices to control

R T
0
jv � VQnj20:5 since

Z T

0

jv3j20:5 �

Z T

0

jv � VQnj20:5 C

Z T

0

jv � . VQn �N/j20:5; (4.2.216)

whence

Z T

0

jv � . VQn �N/j20:5 �

Z T

0

jvj20:5j
VQn �N j21C ≲ "e.T /: (4.2.217)

Moreover, the control of
R T
0
jv � VQnj20:5 is a consequence of (4.2.193) as �! 0,

Z T

0

jv � VQnj20:5 ≲
1

�

Z T

0

jv � VQnj21 �
N0
�
: (4.2.218)

Control of
R T
0
j.b0�@/�

3j20:5: Similar to the control
R T
0
jv3j20:5, it suffices to bound

R T
0
j.b0�@/.�� VQn/j

2
0:5

only. Since .b0 � @/j� D b0 � @ and @.� � VQn/jtD0 D @�3jtD0 D 0, we have

.b0 � @/.� � VQn/ D

Z T

0

@t .b0 � @/.� � VQn/ dt: (4.2.219)

Hence,

Z T

0

j.b0 � @/.� � VQn/j
2
0:5 �

Z T

0

ˇ̌̌̌Z t

0

@t .b0 � @/.� � VQn/

ˇ̌̌̌2
0:5

dt ≲
Z T

0

Z t

0

j@t .b0 � @/.� � VQn/j
2
0:5 dt;

by Jensen’s inequality. Here, the term on the second line is equal to

Z T

0

Z t

0

j.b0 � @/.v � VQn/j
2
0:5 dt C

Z T

0

Z t

0

j.b0 � @/.� � @t VQn/j
2
0:5 D I C II:
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Since @t VQn D Q.@VQ�/@ VQv � VQn, we have II � TN0e.T /.

Next, we have I ≲ jjb0jj0:5
R T
0

R t
0
jv � VQnj22 dt: By employing the boundary condition we obtain the

following elliptic equation of v � VQn on � :

4.v � VQn/ D
1

�

�
.v � VQn/C

q
VQgQC �

q
Vg4
Vg V� �
VQn
�
: (4.2.220)

By the virtual of the elliptic estimate, we have

Z T

0

Z t

0

jv � VQnj22C dt � ��1
Z T

0

Z t

0

�
jv � VQnj20C C j

q
VQgQj20C C � j

q
Vg4
Vg V�
3
j
2
0C

�
dt: (4.2.221)

It is clear that the third term can be controlled by TN0, and first term is bounded by TN0e.T / via the

trace lemma. Therefore,

Z T

0

Z t

0

jv � VQnj22C �
1

�
.TN0e.T /C

Z T

0

Z t

0

N0jqj20C dt /: (4.2.222)

Here, in light of (4.2.204), we have
R t
0
jqj20C � N0. In summary, we have

e.T / � ��1N0 C "e.T /C TN0e.T /; (4.2.223)

and this implies (4.2.207) if T is chosen sufficiently small, say T D "
N0

.

The strong solution for the linearized equations Since v; .b0 � @/� 2 L2.0; T IH 1.˝// and so

vt ; .b0 � @/
2� 2 L2.0; T IL2.˝//, we can now proceed as what has been done in Section 7 of [16] to

bound Q in L2.0; T IH 1.˝//. Alternatively, one may also adapt Lemma 3.3.2 to achieve the same

objective. Therefore, we have obtained a strong solution for the linearized �-problem (4.2.178). This

allows us to further boost the regularity of the linearized solution to H 4:5.˝/ via classical methods in

the upcoming section. Then we achieve a solution for the nonlinear �-problem by approximating it by

a sequence of linearized solutions.
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4.2.7 Existence for the nonlinear approximate �-problem

We construct a solution to the nonlinear �-problem for each fixed � > 0. Let .�0; v0;Q0/ D

.Id; 0; 0/. For each m � 0, Let .�.mC1/; v.mC1/;Q.mC1// be the solution for (4.2.178) with ini-

tial data .Id; v0;Q0/, where the (linearized) coefficients are determined by .�.m/; v.m/;Q.m//. The

goal is to prove the sequence f.�.m/; v.m//gm�0 strongly converges and the limit verifies the nonlinear

approximate �-problem. This can be done by Picard iteration. We will first establish the H 4:5-energy

estimate for .�.m/; v.m//, and then this estimate can be carried over to the difference between two

successive systems (4.2.178) which yields the convergence of .�.m/; v.m// as m!1.

4.2.7.1 A priori estimate of the linearized approximate problem

Let m � 0 be fixed and assume the solutions .�.l/; v.l/; q.l// are known for all l � m. For the sake of

clean notations, we will denote .�.mC1/; v.mC1/;Q.mC1// by .�; v/ and .�.m/; v.m/;Q.m// by . V�; Vv; Vq/

if no confusion is raised.

Proposition 4.2.16. For each fixed � > 0, there exists some T� > 0 such that the solution .�; v/ for

(4.2.178) satisfies

sup
0�t�T�

bE.t/ � C; (4.2.224)

where C is a constant depends on kv0k4:5, kb0k4:5; jv0j5, provided that

k
VQJ .t/ � 1k3:5 C k Id� VQA.t/k3:5 C k Id� VQA

T
VQA.t/k3:5 � ": (4.2.225)

holds for all t 2 Œ0; T� �. Here the energy functional bE of (4.2.178) is defined to be

bE.t/ D bE.1/.t/C bE.2/.t/; (4.2.226)
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where bE.1/.t/ WD k�k24:5 C 3X
kD0

@kt v; @kt .b0 � @/�2
4:5�k

C
@4t v; @4t .b0 � @/�20

bE.2/.t/ WD �

�

Z T

0

ˇ̌̌
@4t v �

VQn
ˇ̌̌2
1

dt C �
�Z T

0

k@4t vk
2
1:5 C

Z T

0

k@4t .b0 � @/�k
2
1:5

�
:

It can be seen that bE.t/ is significantly simpler than E�.t/ given in (4.2.9). In particular, no

boundary terms appear in bE.1/.t/ since ��
p
Vg.4

Vg V� �
VQn/ VQn

˛
is a fixed term in the linearized equations.

In addition to this, we only need to perform the tangential energy estimate consists four time derivatives.

Since � is fixed, the boundary terms that involve at least two spatial derivatives can be controlled by

study the elliptic equation generated by the boundary condition (i.e., (4.2.236)). Also, the following

observation shall be used frequently throughout the rest of this section.;

Removing extra (tangential) spatial derivatives: By (3.4.4), we can absorb additional tangential

spatial derivatives when necessary. This allows us to greatly simplify most of the estimates on the

boundary. Thus, (4.2.224) is a direct consequence of

sup
0�t�T�

bE.t/ ≲��1 C.kv0k4:5; kb0k4:5; jv0j5/C C."/ sup
0�t�T�

bE.t/C . sup
0�t�T�

P/
Z T

0

P; (4.2.227)

where P D P.bE.t/; k Vvk4:5; k.b0 � @/ V�k4:5/. Also, we will drop the subscript � and denote T� D T for

the sake of clean notations. Similar to (4.2.13) we shall assume that sup0�t�T bE.t/ D bE.T /, and this

allows us to drop sup sup0�t�T� in (4.2.227). In other words, we only need to show

bE.T / ≲��1 P0 C C."/bE.T /C P
Z T

0

P; (4.2.228)

where P0 D P.bE.0/; kq.0/k4:5; kqt .0/k3:5; kqt t .0/k2:5/. We remark here that (4.2.228) does not

have to be uniform in �, and so the RHS may depend on 1
�

. This fact allows us to greatly simplify some

of the boundary estimates (See Section 4.2.7.1).
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Interior estimates We control

k@kt vk
2
4:5�k ; k@

k
t .b0 � @/�k

2
4:5�k ; k D 0; 1; 2; 3; (4.2.229)

by applying the div-curl estimate:

k@kt vk
2
4:5�k ≲k@kt div vk23:5�k C k@

k
t curl vk23:5�k C j@

k
t v
3
j4�k ; (4.2.230)

k@kt .b0 � @/�k
2
4:5�k ≲k@kt div .b0 � @/�k23:5�k C k@

k
t curl .b0 � @/�k23:5�k C j@

k
t .b0 � @/�

3
j4�k :

(4.2.231)

These are identical to those in Section 4.2.2.2so we shall not repeat the proofs. We also need the

estimates for the interior Sobolev norms of the pressure Q, which is identical to Section 4.2.2.1.

Furthermore, the top order interior term in bE.2/ that

�
� Z T

0

k@4t vk
2
1:5 C

Z T

0

k@4t .b0 � @/�k
2
1:5

�
� P0 C C."/bE.T /C P

Z T

0

P (4.2.232)

is identical to Section 4.2.4.

Boundary estimates This subsection is devoted to control the boundary terms j@kt v
3j4�k and j@kt .b0 �

@/�3j4�k for k D 0; 1; 2; 3. Our goal is to show

Lemma 4.2.17. For k D 0; 1; 2; 3, we have

j@kt v
3
j
2
4�k ≲��1 P0 C C."/bE.T /C P

Z T

0

P; (4.2.233)

j@kt .b0 � @/�
3
j
2
4�k ≲��1 P0 C C."/bE.T /C P

Z T

0

P : (4.2.234)

Note that we no longer require the energy bound to be �-independent. Hence, we can use (3.4.4)

to absorb extra tangential spatial derivatives on the smoothed variables. Recall that the boundary
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condition in the linearized equations reads

q
VQgQ D ��

q
Vg4
Vg V� �
VQnC �.1 �4/.v � VQn/: (4.2.235)

This can be converted to an elliptic equation satisfied by v � VQn, i.e.,

4.v � VQn/ D v � VQn � ��1
�q
VQgq C �

q
Vg4
Vg V� �
VQn

�
: (4.2.236)

Now, invoking the standard elliptic estimate and (3.1.9), we get

jv � VQnj24 ≲ jv � VQnj
2
2 C �

�1

 ˇ̌̌̌q
VQgQ

ˇ̌̌̌2
2

C �P.j@ V�jL1 ; j@
2
V�jL1/j V�j

2
4

!
≲��1 P0 C

Z T

0

P; (4.2.237)

where the used the trace lemma and (4.2.26) in the second inequality.

Since .b0 � @/ D b
j
0@j on � and hence .b0 � @/.� � VQn/jtD0 D 0, we have

.b0 � @/.� � VQn/ D

Z T

0

@t

�
.b0 � @/.� � VQn/

�
D

Z T

0

.b0 � @/.v � VQn/C

Z T

0

.b0 � @/.� � @t VQn/: (4.2.238)

Since @t VQn D �VQg
kl
@k VQv � VQn@l VQ� D Q.@VQ�/@ VQv � VQn, and invoking (3.4.4) we haveˇ̌̌̌
ˇ
Z T

0

.b0 � @/.� � @t VQn/

ˇ̌̌̌
ˇ
2

4

≲ T

Z T

0

j.b0 � @/.� � @t VQn/j
2
4 ≲��1

Z T

0

P (4.2.239)

Here, we need (3.4.4) to control the leading order term generated when @4.b0 � @/ fall on @ VQv (which is

part of @t VQn), i.e.,

Z T

0

Q.j VQ�jL1 ; j@VQ�jL1/j.b0 � @/@ VQvj
2
4 ≲��1

Z T

0

jb0j
2
4Q.j

VQ�jL1 ; j@VQ�jL1/j Vvj
2
4:

In addition, ˇ̌̌̌
ˇ
Z T

0

.b0 � @/.v � VQn/

ˇ̌̌̌
ˇ
2

4

≲ T

Z T

0

j.b0 � @/.v � VQn/j
2
4; (4.2.240)

and the RHS can be controlled by studying the elliptic equation satisfied by .b0 � @/.v � VQn/. Taking
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.b0 � @/ on (4.2.236) and we get

4.b0 �@/.v � VQn/ D Œ4; .b0 �@/�.v � VQn/C.b0 �@/.v � VQn/��
�1

�
.b0 � @/.

q
VQgq/C �.b0 � @/.

q
Vg4
Vg V� �
VQn/

�
;

(4.2.241)

then the elliptic estimate implies

Z T

0

j.b0 � @/.v � VQn/j
2
4 ≲��1

Z T

0

P : (4.2.242)

Thus,

j.b0 � @/.� � VQn/j
2
4 ≲�

Z T

0

P : (4.2.243)

We can obtain the bounds for jv3j24 and j.b0 � @/�3j24 from (4.2.237) and (4.2.243), respectively. Indeed,

we have

jv3j24 �jv �
VQnj24 C jv � .N �

VQn/j24; (4.2.244)

j.b0 � @/�
3
j
2
4 �j.b0 � @/.� �

VQn/j24 C j.b0 � @/.� � .N �
VQn//j24: (4.2.245)

Since N � VQn D �
R T
0
@t VQn D

R T
0
Q.@VQ�/@ VQv � VQn; invoking the proof for (4.2.18) and (3.4.4), we have

jN � VQnj5 ≲��1

Z T

0

P : (4.2.246)

Therefore,

jv � .N � VQn/j24 C j.b0 � @/.� � .N �
VQn//j24 ≲��1 P

Z T

0

P : (4.2.247)

Now, we can take time derivative @t in (4.2.236) to get the elliptic equation of @t .v � VQn/ on the

boundary, i.e.,

4@t .v � VQn/ D@t .v � VQn/ � �
�1

�
@t .

q
VQgq/C �@t .

q
Vg4
Vg V� �
VQn/

�
: (4.2.248)
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Then standard elliptic estimate gives

j@t .v � VQn/j
2
3 ≲��1 P0 C

Z T

0

P : (4.2.249)

This estimate implies the estimate for j@tv3j23 by writing j@tv3j23 � j@t .v � VQn/j
2
3 C j@t .v � .N �

VQn//j23.

Moreover, in light of the estimate for jv3j24, we have

j@t .b0 � @/�
3
j3 D j.b0 � @/v

3
j
2
3 � P.jb0j3/jv

3
j
2
4 ≲��1 P0 C P

Z T

0

P : (4.2.250)

Similarly, by taking two time derivatives to (4.2.236), we can control j@2t .v � VQn/j2 by the standard

elliptic estimate j@2t .v � VQn/j
2
2 ≲��1 P0 C

R T
0

P; and this yields

j@2t v
3
j
2
2 ≲��1 P0 C P

Z T

0

P : (4.2.251)

In addition to this, j@2t .b0 � @/�
3j22 reduces to j@tv3j23, whose bound is given above. Also j@3t .b0 � @/�

3j21

reduces to j@2t v
3j22, which is just (4.2.251).

Finally, j@3t v
3j21 can be controlled with the help bE.2/. We can make use of the �-weighted higher

order terms to directly control the time integrated terms on the boundary. Specifically, by writing

j@3t v
3j1 � P0 C

R T
0
j@4t v

3j1; we have

j@3t v
3
j
2
1 ≲ P0 C

 Z T

0

j@4t v
3
j1

!2
≲ P0 C T

Z T

0

j@4t v
3
j
2
1; (4.2.252)

where T
R T
0
j@4t v

3j21 � T
R T
0
j@4t v �

VQnj21 C T
R T
0
j@4t v � .N �

VQn/j21: Here, the second term on the RHS is

≲��1 TC."/
R T
0
k@4t vk

2
1:5 whereas the first term is ≲��1 T

R T
0
j@4t v �

VQnj21. Therefore, by choosing T

sufficiently small, we have

j@3t v
3
j
2
1 ≲��1 P0 C C."/bE.T /C P

Z T

0

P : (4.2.253)

Tangential estimate with four time derivatives We still need to control k@4t vk
2
0; k@

4
t .b0 � @/�k

2
0

to finish the control of bE. In fact, we only need to control k@4t vk
2
0 since k@4t .b0 � @/�k

2
0 reduces to

k@3t vk
2
1. Now we compute the L2-estimate of @4t v and @4t .b0 � @/�. Invoking (4.2.178) and integrating
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.b0 � @/ by parts, we get

1

2

Z T

0

d

dt

Z
˝
j@4t vj

2
C

ˇ̌̌
@4t .b0 � @/�

ˇ̌̌2
dy dt D �

Z T

0

Z
˝
@4t v˛@

4
t .
VQA
�˛

@�Q/ dy dt

D�

Z T

0

Z
˝
@4t v˛

VQA
�˛

@4t @�Q dy dt �
Z T

0

Z
˝
@4t v˛

�
@4t ;
VQA
�˛
�
@�Q dy dt„ ƒ‚ …

VI1

D

Z T

0

Z
˝

VQA
�˛

@4t @�v˛@
4
t q dy dt �

Z T

0

Z
�
@4t v˛

VQA
3˛

@4tQ dS dt„ ƒ‚ …
VIB

C

Z T

0

Z
�0

@4t v˛
VQA
3˛

@4tQ dS dt„ ƒ‚ …
D0

C VI1

D

Z T

0

Z
˝
@4t .div

VQA
v/„ ƒ‚ …

D0

@4tQ dy dt C
Z T

0

Z
˝

�
VQA
�˛

; @4t

�
@�v˛ @

4
tQ dy dt„ ƒ‚ …

VI2

C VIB C VI1:

(4.2.254)

Here, VI1 and VI2 can be controlled by
R T
0

P . We analyze the boundary integral IB .

VIB D�

Z T

0

Z
�

@4t v˛
VQA
3˛

@4tQ D �

Z T

0

Z
�

q
VQg.@4t v �

VQn/.@4tQ/

D�

Z T

0

Z
�

q
VQg.@4t v �

VQn/@4t .

q
Vg VQg
� 12
4
Vg V� �
VQn/

��

Z T

0

Z
�

q
VQg.@4t v �

VQn/@4t

�
VQg
� 12
.1 �4/.v � VQn/

�
WD VIB1 C VIB2:

(4.2.255)

Invoking the identity (3.1.9), we have

VIB1 D�

Z T

0

Z
�

q
VQg.@4t v �

VQn/@4t .

q
Vg VQg
� 12
Vgij @i@j V� � VQn/

� �

Z T

0

Z
�

q
VQg.@4t v �

VQn/@4t .

q
Vg VQg
� 12
Vgij Vgkl@l V�

�@i@j V��@k V� � VQn/

D VIB11 C VIB12:

(4.2.256)
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Since VIB11
L
D �

R T
0

R
�
.@4t v �

VQn/.
p
Vg Vgij @i@j @

3
t Vv �
VQn/, we integrate @i by parts,

VIB11
L
D� �

Z T

0

Z
�

.@i@
4
t v �
VQn/.

q
Vg Vgij @j @

3
t Vv �
VQn/

≲��1"
Z T

0

k
p
�@4t vk

2
1:5 C

Z T

0

P � "bE.T /C Z T

0

P;

and VIB12 can be treated in the same fashion.

Next we study VIB2. We have

VIB2
L
D �

Z T

0

Z
�

.@4t v �
VQn/4.@4t v �

VQn/C �

Z T

0

Z
�

.@4t v �
VQn/4.v � @4t

VQn/ WD VIB21 C VIB22; (4.2.257)

where VIB21 contributes to the positive energy term
R T
0
j@4t v �

VQnj21 after integrating @ by parts and moving

the resulting term to the LHS. In addition, since @4t VQn D Q.@VQ�/@@
3
t
VQv � VQnC lower-order terms,

VIB22
L
D� �

Z T

0

Z
�

.@@4t v �
VQn/.v �Q.@VQ�/@2@3t

VQv � VQn/

≲"
Z T

0

k@4t vk
2
1:5 C

Z T

0

jvj2L1Q.j@
VQ�jL1/j@

2@3t
VQvj20

≲��1"bE.T /C Z T

0

jvj2L1Q.j@
VQ�jL1/j@@

3
t Vvj

2
0 � "

bE.T /C Z T

0

P : (4.2.258)

This concludes the proof of Proposition 4.2.16.

4.2.7.2 Picard iteration

Now we prove that the sequence f.�.m/; v.m/;Q.m//gm2N� has a strongly convergent subsequence.

We define Œf �.m/ WD f.mC1/ � f.m/ for any function f and then .Œ��.m/; Œv�.m/; ŒQ�.m// satisfies the

following system8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t Œ��.m/ D Œv�.m/ in ˝;

@t Œv�.m/ � .b0 � @/
2Œ��.m/ Cr QA.m/ ŒQ�.m/ D �rŒ QA�.m�1/Q.m/ in ˝;

div QA.m/ Œv�.m/ D �div Œ QA�.m�1/v.m/ in ˝;

ŒQ�.m/ D �.1 �4/.Œv�.m/ � Qn.m//C h.m/ on �;

.Œ��.m/; Œv�.m//jtD0 D .0; 0/:

(4.2.259)
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where

h.m/ D�.1 �4/.v.m/ � Œ Qn�.m�1//

� �
�p
Qg.m/g

ij

.m/
˘�
.m/˛@i@j�.m/� Qn

˛
.m/ �

p
Qg.m�1/g

ij

.m�1/
˘�
.m�1/˛@i@j�.m�1/� Qn

˛
.m�1/

�

We also define the energy functional of .Œ��.m/; Œv�.m/; ŒQ�.m// to be

ŒbE�.m/ WD ŒbE�.1/.m/ C ŒbE�.2/.m/; (4.2.260)

where

ŒbE�.1/
.m/
.T / WD

Œ��.m/23:5 C 2X
kD0

@kt Œv�.m/; @kt .b0 � @/Œ��.m/2
3:5�k

C
@3t Œv�.m/; @3t .b0 � @/Œ��.m/20

ŒbE�.2/
.m/
.T / WD

�

�

Z T

0

ˇ̌
@3t Œv�.m/ � Qn.m/

ˇ̌2
1

dt C �
�Z T

0

k@3t Œv�.m/k
2
1:5 C

Z T

0

k@3t .b0 � @/Œ��.m/k
2
1:5

�
:

(4.2.261)

The div-curl estimates For k D 0; 1; 2

k@kt Œv�.m/k3:5�k ≲k@kt Œv�.m/k0 C kdiv @kt Œv�.m/k2:5�k (4.2.262)

C kcurl @kt Œv�.m/k2:5�k C j@@
k
t Œv�.m/ �N j2�k ;

k@kt .b0 � @/Œ��.m/k3:5�k ≲k@kt .b0 � @/Œ��.m/k0 C kdiv @kt .b0 � @/Œ��.m/k2:5�k (4.2.263)

C kcurl @kt .b0 � @/Œ��.m/k2:5�k C j@@
k
t .b0 � @/Œ��.m/ �N j2�k :
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Again, each part in the div-curl estimates should follow in the same way as in Section 4.2.2.2 so we

omit the proof. Similarly, to control the interior terms in ŒbE�.2/
.m/

, we follow Section 4.2.4 to get

�

�Z T

0

k@3t Œv�.m/k
2
1:5 C

Z T

0

k@3t .b0 � @/Œ��.m/k
2
1:5

�

≲P0 C "ŒbE�.m/.T /C P.ŒbE�.m/.T /; bE.m/;.m�1/.T // Z T

0

P.ŒbE�.m/;.m�1/.t/; bE.m/;.m�1/.t// dt:

(4.2.264)

Elliptic estimates of pressure Similarly as in Section 4.2.2.1, one can derive the elliptic equation

verified by ŒQ�.m/ and its time derivatives with Neumann boundary conditions. The only difference

is that we need to control the contribution of .rŒ QA�.m�1/Q.m// and its time derivatives, but this is

straightforward. For example, we need to control kdiv QA.m/.rŒ QA�.m�1/Q.m//k1:5 in the estimate of

kŒQ�.m/k3:5.

kdiv QA.m/.rŒ QA�.m�1/Q.m//k1:5 ≲ P.kŒ QA�.m�1/k2:5; kQ.m/k3:5; k QA.m/k2:5/;

and the boundary contribution

j QA.m/N � rŒ QA�.m�1/Q.m/j2 ≲ P.kŒ QA�.m�1/k2:5; kQ.m/k3:5; k QA.m/k2:5/:

Boundary estimates The boundary estimates also follow in the same way as Section 4.2.7.1 because

the energy is not required to be indepedent of �. We can derive an elliptic equation on � , analogous

with (4.2.236)

�4.Œv�.m/ � Qn.m// D �.Œv�.m/ � Qn.m//C h.m/ � ŒQ�.m/: (4.2.265)

Then using the boundary elliptic estimates, we get

jŒv�.m/ � Qn.m/j3 ≲��1 jŒv�.m/ � Qn.m/j1 C jh.m/j1 C kŒQ�.m/k1:5

≲P0 C P.bE.m/;.m�1/.T // Z T

0

P.ŒbE�.m/;.m�1/.t/; bE.m/;.m�1/.t// dt:

(4.2.266)
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As for the magnetic field, we use the fact that .b0 � @/ D b
j
0@j on � to get

.b0 � @/Œ��.m/ � Qn.m/ D 0C

Z T

0

.b0 � @/Œv�.m/ � Qn.m/ C .b0 � @/Œ��.m/ � @t Qn.m/:

Similarly as in Section 4.2.7.1, one can directly control the H 3.� /-norm of the second term. Then

the first term can be controlled by using elliptic estimates in .b0 � @/-differentiated elliptic equation

(4.2.265). We omit the detailed proof because there is no essential difference from the argument in

Section 4.2.7.1.

j.b0 � @/Œ��.m/ � Qn.m/j3 ≲��1

Z T

0

P.ŒbE�.m/.t/; bE.m/.t// dt: (4.2.267)

Taking one time derivative, we can similarly control the boundary norm of @t Œv�.m/ and @t .b0 �

@/Œ��.m/. We skip the details.

ˇ̌
@t Œv�.m/ � Qn.m/; @t .b0 � @/Œ��.m/

ˇ̌
2

(4.2.268)

≲��1P0 C P.bE.m/;.m�1/.T // Z T

0

P.ŒbE�.m/;.m�1/.t/; bE.m/;.m�1/.t// dt:

For the H 1.� /-norm of @2t Œv�.m/ and @2t .b0 � @/Œ��.m/, one can use the �-weighted interior terms in

ŒbE�.2/
.m/

and Sobolev trace lemma to get the controlˇ̌̌
@2t Œv�

3
.m/; @

2
t .b0 � @/Œ��

3
.m/

ˇ̌̌
1
≲
@2t Œv�.m/; @2t .b0 � @/Œ��.m/1:5

≲P0 C
r
T

�

p�@3t Œv�.m/;p�@3t .b0 � @/Œ��.m/L2tH1:5y ≲��0:5 P0 C
p
TP.ŒbE�.2/

.m/
.T //:

(4.2.269)

Finally, we need to control the difference between X �N and X � Qn.m/, which should be done in

the same way as (4.2.244)-(4.2.246), so we do not repeat the calculations. For k D 0; 1, we have for

X D Œv�.m/; .b0 � @/Œ��.m/

j@kt X
3
� @kt .X � Qn.m//j3�k ≲��1

Z T

0

P.ŒbE�.m/; bE.m/;.m�1/.t// dt: (4.2.270)
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Combining (4.2.266)-(4.2.270), we get the boundary estimates as

2X
kD0

ˇ̌̌
@kt .Œv�

3
.m/; .b0 � @/Œ��

3
.m//

ˇ̌̌
3�k

(4.2.271)

≲��1P0 C P.bE.m/;.m�1/.T // Z T

0

P.ŒbE�.m/;.m�1/.t/; bE.m/;.m�1/.t// dt:

Estimates of full time derivatives Now it remains to control the L2-norm of full time derivatives.

By replacing @4t in Section 4.2.7.1 by @3t , we can do analogous computation to control k@3t Œv�.m/k0

and k@3t .b0 � @/Œ��.m/k0. The �-weighted boundary terms in ŒbE�.2/
.m/

are produced in the analogues of

(4.2.255). The only difference is that we should control the extra contribution (under time integral)

of rŒ QA�.m�1/Q.m/ in the interior and the �-coefficient part in the term h.m/ on the boundary. These

quantities can all be directly controlled

k@3trŒ QA�.m�1/Q.m/k0 ≲ P

�
kŒv�.m�1/; @t Œv�.m�1/; @

2
t Œv�.m�1/k2;

k@3tQ.m/k1; k@
2
tQ.m/; @tQ.m/;Q.m/k2

�
:

j@3t h.m/;� j0 ≲ P
�
j@2t v.m/;.m�1/j2; j@�.m/;.m�1/; @v.m/;.m�1/; @@tv.m/;.m�1/jL1

�
:

Therefore, one can get

k@3t Œv�.m/k
2
0 C k@

3
t .b0 � @/Œ��.m/k

2
0 C

�

�

Z T

0

ˇ̌
@3t Œv�.m/ � Qn.m/

ˇ̌2
1

dt

≲P0 C
Z T

0

P.ŒbE�.m/.t/; bE.m/;.m�1/.t// dt

(4.2.272)

4.2.7.3 Well-posedness of the nonlinear approximate problem

We conclude this section with the following proposition.

Proposition 4.2.18. For each fixed � > 0, 9T 0� > 0 such that the nonlinear �-problem (4.2.2) has a
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unique strong solution .�.�/; v.�/; q.�// in Œ0; T 0� � that satisfies

sup
0�t�T 0�

bE 0.t/ � C (4.2.273)

where bE 0.t/ D bE.1/0.t/C bE.2/0.t/
bE.1/.t/ WD k�k24:5 C 3X

kD0

@kt v; @kt .b0 � @/�2
4:5�k

C
@4t v; @4t .b0 � @/�20

bE.2/.t/ WD �

�

Z T

0

ˇ̌̌
@4t v �

VQn
ˇ̌̌2
1

dt C �
�Z T

0

k@4t vk
2
1:5 C

Z T

0

k@4t .b0 � @/�k
2
1:5

�
:

Proof. Summarizing (4.2.262)-(4.2.264), (4.2.271)-(4.2.272), we get

ŒbE�.m/.T / ≲�1� P0 C "ŒbE�.T /C TP.ŒbE�.m/.T //
C P.ŒbE�.m/.T /; bE.m/;.m�1/.T // Z T

0

P.ŒbE�.m/;.m�1/.t/; bE.m/;.m�1/.t//:
By Proposition 4.2.16, there exists some T 0� > 0, such that 8t 2 Œ0; T 0� �; ŒbE�.m/.t/ � 1

4
ŒbE�.m�1/.t/;

which implies ŒbE�.m/.t/ � 4�mP0. Let m ! 1, we know the sequence f.�.m/; v.m/;Q.m//g must

strongly converge. The strong limit is denoted by .�.�/; v.�/; q.�// which exactly solves (4.2.2). By

takingm!1 in the energy of linearized equation (4.2.178), one can also get the energy estimates.

4.2.8 Local well-posedness

4.2.8.1 Uniqueness and continuous dependence on initial data

Combining the conclusions of Proposition 4.2.4 and Propostion 4.2.18 and letting � ! 0C, we actually

prove that there exists some time T 0 > 0 (only depends on the initial data), such that the original

system (2.2.1) has solution .�; v; q/ satisfying the energy estimates

sup
0�t�T

E.t/ � C;
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where C D C.kv0k4:5; kb0k4:5; jv0j5/, and the energy functional E is defined to be

E.t/ WD k�k24:5 C

3X
kD0

@kt v; @kt .b0 � @/�2
4:5�k

C
@4t v; @4t .b0 � @/�20

C

3X
kD0

ˇ̌̌
@
�
˘@kt @

3�kv
�ˇ̌̌2
0
C

ˇ̌̌
@
�
˘@3.b0 � @/�

�ˇ̌̌2
0
;

(4.2.274)

It remains to prove the uniqueness. Let f.�.m/; v.m/;Q.m//gmD1;2 be two solutions of (2.2.1)

satisfying (4.2.274). Then we define

Œ�� WD �.1/ � �.2/; Œv� WD v.1/ � v.2/; ŒQ� WD Q.1/ �Q.2/; ŒA� WD A.1/ � A.2/:

Then .Œ��; Œv�; ŒQ�/ satisfies the following system8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

@t Œ�� D Œv� in Œ0; T � �˝I

@t Œv� � .b0 � @/
2Œ��CrA.1/ ŒQ� D �rŒA�Q.2/ in Œ0; T � �˝I

div A.1/ Œv� D �div ŒA�v.2/; in Œ0; T � �˝I

div b0 D 0 in Œ0; T � �˝I

Œv3� D b30 D 0 on �0I

ŒQ� On.1/ D ��g
ij

.1/
˘.1/@

2
ij Œ�� � �

p
g.1/4Œg��.2/ on � I

b30 D 0 on �;

.Œ��; Œv�/ D .0; 0/ on ft D 0g�˝:

(4.2.275)

Define

ŒE�.t/ WD kŒ��k23:5 C

2X
kD0

@kt Œv�; @kt .b0 � @/Œ��2
3:5�k

C
@3t Œv�; @3t .b0 � @/Œ��20

C

2X
kD0

ˇ̌̌
@
�
˘.1/@

k
t @
2�k Œv�

�ˇ̌̌2
0
C

ˇ̌̌
@
�
˘.1/@

2.b0 � @/�
�ˇ̌̌2
0
:

(4.2.276)

Then we can mimic the proof in Section 4.2.1 to get the energy estimates of ŒE�

ŒE�.T / ≲ P.ŒE�.T /; E.T //

Z T

0

P.ŒE�.t/; E.t// dt;
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which together with Gronwall-type inequality yields

9T 2 Œ0; T 0�; ŒE�.t/ D 0 8t 2 Œ0; T �

which establishes the local well-posedness of (2.2.1) in Œ0; T �. The continuous dependence on the

initial data also follows from an identical argument.

4.2.8.2 Regularity of initial data and free surface

Finally, we need to prove the norms of time derivatives can be controlled by kv0k4:5; kb0k4:5 and jv0j5.

This part is exactly the same as in [53, Section 7.1]. The conclusion is

jv.t/j5 ≲ P.E.t// in Œ0; T �:

This concludes the proof of Theorem 2.2.1.

4.3 The Zero Surface Tension Limit

In the proof of Theorem 2.2.1, the energy estimate for E.t/ in (2.2.3) depends on ��1. When the

surface tension is sufficiently small, the energy bound itself will go to infinity. Therefore, it is natural

to ask if one can establish uniform-in-� estimates such that the solutions to (2.2.1) converges to the

solution to (2.1.1) as � ! 0. The answer is yes if the Rayleigh-Taylor sign condition is also satisfied

for the initial data.

The key point is that, in Section 4.2.2.3, the boundary normal traces of v and .b0 � @/� (and their

time derivatives) are controlled by the comparison with Eulerian normal projections, whose � -weighted

energy is contributed by the surface tension in the estimates of one more time derivative. The reason

for that is the failure of @4:5-estimates which requires k�k5 or j
p
��j5 regularity. Even if one uses the

BMO-coefficient elliptic estimates posteriori, the energy still depends on ��1.

We can use the Alinhac good unknowns to avoid the interior higher-order terms. As for the boundary
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terms, we can alternatively define the energy functional to be the form of E1 C �E2 where E1 is the

Hm energy functional for the “� D 0 problem" (2.1.1) and E2 is the HmC0:5 energy functional for

(2.2.1) (i.e., replace the H 4:5-setting of E.t/ by HmC0:5). In the proof, we may use A D @� � @� to

find an anti-symmetric structure in order to cancel the highest order term. This is a 3D generalization

of the 2D analogous structure discovered by Gu-Lei [27] in the study of elastodynamics with surface

tension. Below we start to prove Theorem 2.2.2. For technical simplicity, we assume the energy

functional E� to be the H 5 C �H 5:5 setting, i.e., we assume the mean curvature of the free surface

is Lipschitz. The div-curl estimates, elliptic estimates and the tangential estimates containing time

derivatives are identical to Section 4.2.1. So we only present the proof of those different aspects. We

will drop the script � in the weight energy functional (2.2.5).

Remark 4.3.1 (Necessity of weight energy functional). In the tangential estimates, especially in the

boundary integrals, there are a lot of terms which have 5 derivatives weighted by the surface tension

coefficients. Therefore, it is reasonable to include the weighted H 5:5-energy �E2.t/ to control these

boundary terms via the trace lemma. To control the weighted higher order energy �E2.t/, we again do

the div-curl decomposition, while the
p
�-weighted normal traces, i.e., the

p
�-weighted Lagrangian

normal projections, are no longer reduced by using Lemma 3.2.3. Instead, we notice that the boundary

energies contributed by the surface tension in the non-weighted tangential estimates are exactly the

p
�-weighted Eulerian normal projections with the same order as those

p
�-weighted normal traces.

Therefore, it remains to control the gap between the Eulerian normal On and the Lagrangian normal N ,

which is expected to be small due to the short time and On D N at t D 0. Hence, the energy estimates

for E� .t/ D E1.t/C �E2.t/ are closed.

4.3.1 Interior estimates for the full spatial derivatives: Alinhac good unknowns

The boundary normal traces jv3j4:5 and j.b0 � @/�3j4:5 are reduced to k@5.v; .b0 � @/�/k0. However,

we cannot directly commute @5 with the covariant derivative rA because the commutator contains
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@5A D @5@� � @� whose L2 norm cannot be controlled. The reason is that the essential highest

order term in @5.rAf /, i.e., the standard derivatives of a covariant derivative, is actually the covariant

derivative of Alinhac good unknown f WD @5f � @5� � rAf instead of the term produced by simply

commuting @5 with rA. Specifically,

@5.r˛Af / D r
˛
A.@

5f /C .@5A�˛/@�f C Œ@
5; A�˛; @�f �

D r
˛
A.@

5f / � @4.A�@@ˇ�A
ˇ˛/@�f C Œ@

5; A�˛; @�f �

D r
˛
A.@

5f / � Aˇ˛@ˇ@
5�A

�@�f � .Œ@
4; A�Aˇ˛�@@ˇ� /@�f C Œ@

5; A�˛; @�f �

D r
˛
A.@

5f � @5�A
�@�f /„ ƒ‚ …

Dr˛
A

f

C @5�r
˛
A.r


Ag/ � .Œ@

4; A�Aˇ˛�@@ˇ� /@�f C Œ@
5; A�˛; @�f �„ ƒ‚ …

DWC˛.f /

;

We introduce the Alinhac good unknowns of v and q with respect to @5 by

V WD @5v � @5� � rAv; Q WD @5q � @5� � rAq: (4.3.1)

Then direct computation (e.g., see [30, Section 4.2.4]) shows that the good unknowns enjoy the

following properties

@5 .rA � v/„ ƒ‚ …
D0

D rA � VC C.v/; @5.rAq/ D rAQC C.q/ (4.3.2)

and

kC.f /k0 ≲ P.k�k5/kf k5: (4.3.3)

Under this setting, we take @5 in the second equation of (2.1.1) and invoke (4.3.1) to get the
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evolution equation of the Alinhac good unknowns

@tV D �rAQC .b0 � @/.@5.b0 � @/�/C @t .@5� � rAv/ � C.q/C Œ@5; .b0 � @/�..b0 � @/�/„ ƒ‚ …
DWf0

: (4.3.4)

Taking L2.˝/ inner product with V, we get

1

2

d

dt

Z
˝

jVj2 dy D �
Z
˝

rAQ � V dy C
Z
˝

�
.b0 � @/.@

5.b0 � @/�/
�
� V dy C

Z
˝

f0 � V dy; (4.3.5)

where the last term can be directly controlled

Z
˝

f0 � V dy ≲ P.k�k5; kvk5; k@tvk4; kqk5; kb0k5; k.b0 � @/�k5/ ≲ P.E1.t//: (4.3.6)

Then we integrate .b0 � @/ by parts in the second integral of (4.3.5) to produce the tangential energy

of the magnetic field .b0 � @/�. Note that b0 �N D 0 on @˝ and div b0 D 0, no boundary term appears

in this step.Z
˝

�
.b0 � @/.@

5.b0 � @/�/
�
� V dy D �

Z
˝

.@5.b0 � @/�/ � .b0 � @/V dy

D�

Z
˝

.@5.b0 � @/�/ � .b0 � @/.@
5@t�/ dy C

Z
˝

.@5.b0 � @/�/ � .b0 � @/.@
5� � rAv/ dy

D�
1

2

d

dt

Z
˝

ˇ̌̌
@5..b0 � @/�/

ˇ̌̌2

C

Z
˝

.@5.b0 � @/�
˛/.Œ@5; .b0 � @/�v˛ C .b0 � @/.@

5� � rAv˛// dy

≲ �
1

2

d

dt

Z
˝

ˇ̌̌
@5..b0 � @/�/

ˇ̌̌2
C P.E1.t//:

(4.3.7)

Next we analyze the first integral of (4.3.5). Integrate by parts, using Piola’s identity @�A�˛ D 0
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and invoking (4.3.2), we get

�

Z
˝

rAQ � V dy D
Z
˝

Q.rA � V/ dy �
Z
�

A3˛QV˛ dS„ ƒ‚ …
DWJ

�

Z
�0

A3˛QV˛„ ƒ‚ …
D0

dS

D�

Z
˝

Q C.v/ dy C J ≲ kQk0kC.v/k0 C J

≲ P.k�k5; kqk5; jvk5/C J;

(4.3.8)

where the boundary integral on �0 vanishes due to �j�0 D Id and thus A3˛V˛ D @5v3 D 0. Therefore,

it remains to analyze the boundary integral J .

4.3.2 Boundary estimates and cancellation structure

The boundary integral now reads

J D�

Z
�

A3˛QV˛ dS

D�

Z
�

A3˛@5qV˛ dS C
Z
�

A3˛.@5� � rAq/V˛ dS„ ƒ‚ …
DW RT

D�

Z
�

@5.A3˛q/V˛ dS„ ƒ‚ …
DW ST

C

Z
�

q.@5A3˛/V˛ dS

C

Z
�

4X
kD1

 
5

k

!
@5�kA3˛@kqV˛ dS C RT

DW STC J1 C J2 C RT:

(4.3.9)
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4.3.2.1 Non-weighted boundary energy: Rayleigh-Taylor sign condition

The term RT together with the Rayleigh-Taylor sign condition yields the non-weighted boundary energy.

Recall that V D @5v � @5� � rAv, then we have

RT D
Z
�

A3˛@5�ˇA
3ˇ@3q@

5v˛ dS

�

Z
�

A3˛@5�ˇA
3ˇ@3q@

5�A
�@�v˛ dS

C

2X
iD1

Z
�

A3˛@5�ˇA
iˇ@iq.@

5v˛ � @
5� � rAv˛/ dS

DW RT1 C RT2 C RT3:

(4.3.10)

The term RT1 gives the boundary energy term by writting v˛ D @t�˛ .

RT1 D
Z
�

A3˛@5�ˇA
3ˇ@3q@t@

5�˛ dS

D �
1

2

d

dt

Z
�

.�@3q/
ˇ̌̌
A3˛@5�˛

ˇ̌̌2
dS

C

Z
�

.@tA
3˛/A3ˇ@5�ˇ@3q@

5�˛ dS C
1

2

Z
�

@t@3q
ˇ̌̌
A3˛@5�˛

ˇ̌̌2
dS

DW �
1

2

d

dt

Z
�

.�@3q/
ˇ̌̌
A3˛@5�˛

ˇ̌̌2
dS C RT11 C RT12:

(4.3.11)

The term RT12 can be directly controlled by

RT12 ≲ j@t@3qjL1
ˇ̌̌
A3˛@5�˛

ˇ̌̌2
0
≲ P.E1.t//: (4.3.12)

The term RT11 is exactly canlled by RT2 after plugging @tA3˛ D �A3@�vA�˛

RT11 D �
Z
�

A3@�vA
�˛A3ˇ@5�ˇ@3q@

5�˛ dS D � RT2: (4.3.13)

Finally, invoking q D ��
p
g�g� � On D �Q.@�/@2� � On, we can control RT3 by the weighted
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energy and trace lemma

RT3 D �
Z
�

A3˛@5�ˇA
iˇ@i .Q.@�/@

2� � On/.@5v˛ � @
5� � rAv˛/ dS

≲ P.j@�jL1/j@
3�jL1 j

p
�@5�j0.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/

≲ P.k�k3/k�k5 k
p
��k5:5.k

p
�vk5:5 C k

p
��k5:5kvk3/„ ƒ‚ …

�
p
�E2.

p
�E2C

p
E1
p
�E2/

≲ P.E1.t//.�E2.t//:

(4.3.14)

Summarizing (4.3.10)-(4.3.14), we conclude the estimate of RT by

Z T

0

RT dt ≲ �
c0

4

ˇ̌̌
A3˛@5�˛

ˇ̌̌2
0
C

Z T

0

P.E1.t//.�E2.t// dt: (4.3.15)

4.3.2.2 Control of the weighted boundary energy: surface tension

Now we analyze the term ST, where the surface tension gives the
p
�-weighted top order boundary

energy. Invoking A3˛q D ��
p
ggij On˛ Onˇ@i@j�

ˇ , we get

ST D �
Z
�

p
ggij On˛ Onˇ@5@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C 5�

Z
�

@.
p
ggij On˛ Onˇ /@4@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C �

Z
�

@5.
p
ggij On˛ Onˇ /@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C

4X
kD2

�

Z
�

 
5

k

!
@k.
p
ggij On˛ Onˇ /@5�k@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

DW ST1 C ST2 C ST3 C ST4:

(4.3.16)

The term ST4 can be directly controlled with the help of
p
� -weighted energy

ST4 ≲ P.E1.t//.�E2.t//: (4.3.17)
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In ST1, we first integrate @i by parts.

ST1
@i
D � �

Z
�

p
ggij On˛ Onˇ@5@j�ˇ@i .@

5v˛ � @
5� � rAv˛/ dS

� �

Z
�

@i .
p
ggij On˛ Onˇ /@5@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

DW ST11 C ST12:

(4.3.18)

In ST11, we write v˛ D @t�˛ to produce the energy term

ST11 D � �
Z
�

p
ggij On˛ Onˇ@5@j�ˇ@i .@

5@t�˛ � @
5� � rAv˛/ dS

D �
�

2

d

dt

Z
�

ˇ̌̌
@5@� � On

ˇ̌̌2
dS �

�

2

Z
�

.
p
ggij � ıij /

�
@5@i� � On

� �
@5@j� � On

�
dS

�
�

2

Z
�

p
g@tg

ij .@5@i� � On/.@
5@j� � On/ dS

C �

Z
�

gij @t .
p
g On˛„ƒ‚…
DA3˛

/@5@i�˛.@
5@j� � On/ dS

C �

Z
�

p
ggij On˛ Onˇ@5@j�ˇ@i@

5�A
�@�v˛ dS

C �

Z
�

p
ggij On˛. Onˇ@5@j�ˇ /.@

5� � @i .rAv˛//

DW �
�

2

d

dt

Z
�

ˇ̌̌
@6� � On

ˇ̌̌2
dS C ST111 C ST112 C ST113 C ST114 C ST115:

(4.3.19)

Invoking (4.2.19), the term ST111 can be absorbed by the weighted energy term

ST111 � "
ˇ̌̌p
�@6� � On

ˇ̌̌2
0
: (4.3.20)

The terms ST112 and ST115 can be directly controlled

ST112 ≲ j
p
g@tg

ij
jL1

ˇ̌̌p
�@6� � On

ˇ̌̌2
0
≲ P.E1.t//.�E2.t//: (4.3.21)

ST115 ≲ j
p
ggij @.rAv/jL1

ˇ̌̌p
�@6� � On

ˇ̌̌
0
k
p
��k5:5 ≲ P.E1.t//.�E2.t//: (4.3.22)
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In ST113, we use (3.1.4)-(3.1.5), i.e.,
p
g On˛ D A3˛ and @tA3˛ D �A3@�vA�˛ to produce

cancellation with ST114

ST113 D ��
Z
�

gijA3@�vA
�˛@5@i�˛.@

5@j� � On/ dS D � ST114: (4.3.23)

Summarizing (4.3.19)-(4.3.23), we conclude the estimate of ST11 by choosing " > 0 sufficiently

small Z T

0

ST11 dt ≲ �
�

2

ˇ̌̌
@5@� � On

ˇ̌̌2
0

ˇ̌̌̌T
0

C

Z T

0

P.E1.t//.�E2.t// dt: (4.3.24)

Next we control ST12. First we have

ST12 D � �
Z
�

@i .
p
ggij On˛/.@5@j� � On/.@

5v˛ � @
5� � rAv˛/ dS

� �

Z
�

p
ggij On˛.@i On

ˇ /@5@j�ˇ .@
5v˛ � @

5� � rAv˛/ dS

DW ST121 C ST122:

(4.3.25)

The term ST121 can be directly controlled

ST121 ≲ P.E1.t//.�E2.t//: (4.3.26)

To control ST122, we first integrate @j by parts.

ST122 D � �
Z
�

p
ggij On˛.@i On

ˇ /@5�ˇ@j @
5v˛ dS

C �

Z
�

p
ggij On˛.@i On

ˇ /@5�ˇ@j @
5� .A

�@�v˛/ dS

C �

Z
�

p
ggij On˛.@i On

ˇ /@5�ˇ@
5�@j .A

�@�v˛/ dS

C �

Z
�

@j .
p
ggij On˛@i On

ˇ /@5�ˇ .@
5v˛ � @

5� � rAv˛/ dS

DW ST1221 C ST1222 C ST1223 C ST1224:

(4.3.27)

128



The term ST1223 can be directly controlled by the weighted energy

ST1223 C ST1224 ≲ P.E1.t//.�E2.t//: (4.3.28)

To control ST1221, we write v˛ D @t�˛ and then integrate @t by parts. When @t falls on
p
g On˛ D

A3˛ , the structure analogous to (4.3.23) is again produced.Z T

0

ST1221 dt @tD �
Z T

0

Z
�

@t .g
ij @i On

ˇ@5�ˇ /.@j @
5�˛ On

˛/ dS

C �

Z T

0

Z
�

.�A3@�vA
�˛/„ ƒ‚ …

@t .
p
g On˛/

gij @i On
ˇ@5�ˇ@j @

5�˛ dS

≲
Z T

0

P.E1.t//.k
p
�vk5:5 C k

p
��k5:5/j

p
�@6� � Onj0 dt C .� ST1222/:

(4.3.29)

Therefore, ST122 is controlled by

Z T

0

ST122 dt ≲
Z T

0

P.E1.t//.�E2.t// dt; (4.3.30)

which together with (4.3.24) and (4.3.26) gives the control of ST1

Z T

0

ST1 dt ≲ �
�

2

Z
�

ˇ̌̌
@6� � On

ˇ̌̌2
dS
ˇ̌̌̌T
0

C

Z T

0

P.E1.t//.�E2.t// dt: (4.3.31)

It remains to control ST2 and ST3 in (4.3.16). From (4.3.18), we find that ST2 has the same form

as ST12, so we omit the analysis of ST2 and only list the result

Z T

0

ST2 dt ≲
Z T

0

P.E1.t//.�E2.t// dt: (4.3.32)
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As for ST3, we have

ST3 D �
Z
�

p
ggij On˛.@5 Onˇ /@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C �

Z
�

p
ggij .@5 On˛/ Onˇ@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C �

Z
�

@5.
p
ggij / On˛ Onˇ@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

C

4X
kD1

�

Z
�

@k.
p
ggij /@5�k. On˛ Onˇ /@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

DW ST31 C ST32 C ST33 C ST34;

(4.3.33)

where ST34 can be directly controlled

ST34 ≲ P.j�jW 3;1/j
p
��j5.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/ ≲ P.E1.t//.�E2.t//: (4.3.34)

To control ST31 and ST32, we need to invoke (3.1.11) to get

@5 On˛ D �@4
�
gkl .@@k� � On/@l�

˛
�
D �gkl .@5@k� � On/@l�

˛
� Œ@4; gkl@l�

˛�.@@k� � On/;

and thus plug it into ST31 and ST32:

ST31 D� �
Z
�

p
ggijgkl .@5@k� � On/@l�

ˇ@i@j�ˇ On˛.@
5v˛ � @

5� � rAv˛/ dS

� �

Z
�

p
ggij

�
Œ@4; gkl@l�

˛�.@@k� � On/
�
@i@j�ˇ On˛.@

5v˛ � @
5� � rAv˛/ dS

≲ P.E1.t//j
p
�@6� � Onj0.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/

C P.E1.t//j
p
�@5�j0.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/

≲ P.E1.t//.�E2.t//;

(4.3.35)
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and similarly

ST32 ≲ P.E1.t//j
p
�@6� � Onj0.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/

C P.E1.t//j
p
�@5�j0.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/

≲ P.E1.t//.�E2.t//;

(4.3.36)

For ST33, we use the identity (3.1.12) to get

@5.
p
ggij / D

p
g

�
1

2
gijgkl � gikgjl

�
.@5@k�

�@l�� C @k�
�@5@l��/

C

�
@4; @l�

�

�
1

2
gijgkl � gikgjl

��
@@k�� C

�
@4; @k�

�

�
1

2
gijgkl � gikgjl

��
@@l��„ ƒ‚ …

R
ij
33

;

and thus

ST33 D �
Z
�

p
g

�
1

2
gijgkl � gikgjl

�
.@5@k�

�@l�� C @k�
�@5@l��/

On˛ Onˇ@i@j�ˇ .@
5v˛ � @

5� � rAv˛/ dS

C �

Z
�

R
ij
33 On

˛
Onˇ@i@j�ˇ .@

5v˛ � @
5� � rAv˛/ dS

DW ST331 C ST332:

(4.3.37)

The term ST332 can be directly controlled

ST332 ≲ P.E1.t//j
p
��j5.j

p
�@5vj0 C j

p
�@5�j0jrAvjL1/: (4.3.38)
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In ST331, we integrate the derivative @k in @5@k�� (resp. @l in @5@l��) by parts

ST331 D� �
Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@5��@l�� On

˛
Onˇ@i@j�ˇ@kV˛ dS

� �

Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@k�

�@5�� On
˛
Onˇ@i@j�ˇ@lV˛ dS

� �

Z
�

@k

�
p
g

�
1

2
gijgkl � gikgjl

�
@l�� On

˛
Onˇ@i@j�ˇ

�
@5��V˛ dS

� �

Z
�

@l

�
p
g

�
1

2
gijgkl � gikgjl

�
@k�� On

˛
Onˇ@i@j�ˇ

�
@5��V˛ dS

DW ST3311 C ST3312 C ST3313 C ST3314;

(4.3.39)

where ST3313 and ST3314 can be directly controlled

ST3313 C ST3314 ≲ P.E1.t//.�E2.t//: (4.3.40)

For ST3311 and ST3312, we need to write v˛ D @t�˛ and then integrate @t by parts. For simplicity
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we only show the control of ST3311.

Z T

0

ST3311 dt

D� �

Z T

0

Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@5��@l�� On

˛
Onˇ@i@j�ˇ@k@

5@t�˛ dS (4.3.41)

C �

Z T

0

Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@5��@l�� On

˛
Onˇ@i@j�ˇ@k@

5�A
�@�v˛ dS (4.3.42)

C �

Z T

0

Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@5��@l�� On

˛
Onˇ@i@j�ˇ@

5� � @k.rAv˛/ dS (4.3.43)

@t
D �

Z T

0

Z
�

p
g

�
1

2
gijgkl � gikgjl

�
@5v�@l�� On

ˇ@i@j�ˇ .@k@
5�˛ On

˛/ dS (4.3.44)

C �

Z T

0

Z
�

�
1

2
gijgkl � gikgjl

�
@5��@l��@t .

p
g On˛/ Onˇ@i@j�ˇ@k@

5�˛ dS (4.3.45)

C �

Z T

0

Z
�

p
g@t

��
1

2
gijgkl � gikgjl

�
@l�� On

ˇ@i@j�ˇ

�
@5��. On˛@k@

5�˛/ dS (4.3.46)

C (4.3.42)C (4.3.43):

Note that @tA.
p
g On˛/ D @tA

3˛ D �A3@�vA
�˛ , we know (4.3.45) C (4.3.42) D 0. The

remaining quantities (4.3.43), (4.3.44) and (4.3.46) are all directly controlled

(4.3.43) ≲
Z T

0

j
p
��j25P.E1.t// �

Z T

0

P.E1.t//.�E2.t// dt; (4.3.47)

(4.3.44) ≲
Z T

0

j
p
�@6� � Onj0j

p
�vj5P.E1.t// �

Z T

0

P.E1.t//.�E2.t// dt; (4.3.48)

(4.3.46) ≲
Z T

0

j
p
�@6� � Onj0j

p
��j5P.E1.t// �

Z T

0

P.E1.t//.�E2.t// dt: (4.3.49)

Combining (4.3.37)-(4.3.49), we get the control of ST33

Z T

0

ST33 dt ≲
Z T

0

P.E1.t//.�E2.t// dt; (4.3.50)
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whic together with (4.3.34), (4.3.35) and (4.3.36) gives the control of ST3

Z T

0

ST3 dt ≲
Z T

0

P.E1.t//.�E2.t// dt: (4.3.51)

Finally, (4.3.16), (4.3.17), (4.3.31), (4.3.32) and (4.3.51) yields the
p
� -weighted boundary energy

Z T

0

ST dt ≲ �
�

2

Z
�

ˇ̌̌
@6� � On

ˇ̌̌2
dS
ˇ̌̌̌T
0

C

Z T

0

P.E1.t//.�E2.t// dt: (4.3.52)

4.3.2.3 Control of the error terms

It remains to control J1 and J2 in (4.3.9). Note that q D ��
p
g�g� � On D �Q.@�/@2� � On on the

boundary and A3˛ D @1� � @2�. The term J2 can be directly controlled

J2 D 5�

Z
�

@4A3˛@.Q.@�/@2�/.@5v˛ � @
5� � rAv˛/ dS

C 10�

Z
�

@3A3˛@2.Q.@�/@2�/.@5v˛ � @
5� � rAv˛/ dS

C 10�

Z
�

@2A3˛@3.Q.@�/@2�/.@5v˛ � @
5� � rAv˛/ dS

C 5�

Z
�

@A3˛@4.Q.@�/.@2� � On//.@5v˛ � @
5� � rAv˛/ dS

≲ P.j@�jL1/j@
3�jL1

�
j
p
��j5 C j

p
�@6� � nj0

� �
j
p
�@5vj0 C j

p
�@5�j0jrAvjL1

�

≲ P.j@�jL1/j@
3�jL1 j@vjL1

�p
E1 C

p
�E2

�p
�E2 � P.E1.t//.�E2.t//:

(4.3.53)
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J1 needs more decliate computation. Recall that A3˛ D .@1� � @2�/˛ , we have that

J1 D

Z
�

�H.@5@1� � @2�/ � @5@t� dS C
Z
�

�H.@1� � @5@2�/ � @5@t� dS

�

Z
�

�H.@5@1� � @2�/ � .@5�A�@�v/ dS

�

Z
�

�H.@1� � @5@2�/ � .@5�A�@�v/ dS

C

4X
kD1

Z
�

�H.@k@1� � @4�k@2�/ � .@5v � @5� � rAv/ dS

DW J11 C J12 C J13 C J14 C J15:

(4.3.54)

Again, the term J15 is directly controlled by the weighted energy

J15 � P.E1.t//.�E2.t//: (4.3.55)

Below we only show the control of J11 and J13, and the control of J12 and J14 follows in the same

way. For J11, we integrate @t by parts to getZ T

0

J11 dt D�
Z T

0

Z
�

�H.@5@1v � @2�/ � @5� dS �
Z T

0

Z
�

�H.@5@1� � @2v/ � @5� dS

�

Z T

0

Z
�

�@tH.@5@1� � @2�/ � @5� dS C
Z
�

�H.@5@1� � @2�/ � @5� dS
ˇ̌̌̌T
0

DW J111 C J112 C J113 C J114:

(4.3.56)
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Next we integrate @1 by parts in J111 and use the vector identity .u � v/ � w D �.u � w/ � v to get

J111
@1
D

Z T

0

Z
�

�H.@5v � @2�/ � @1@5� dS dt

C

Z T

0

Z
�

�@1H.@5v � @2�/ � @5� dS dt C
Z T

0

Z
�

�H.@5v � @1@2�/ � @5� dS dt

D�

Z T

0

Z
�

�H.@5@1� � @2�/ � @5v dS dt„ ƒ‚ …
D�

R T
0 J11 dt

C

Z T

0

Z
�

�@1H.@5v � @2�/ � @5� dS dt C
Z T

0

Z
�

�H.@5v � @1@2�/ � @5� dS dt

≲ �
Z T

0

J11 dt C
Z T

0

P.E1.t//.�E2.t//:

(4.3.57)

Therefore, we have

Z T

0

J11 dt ≲
1

2
.J112 C J113 C J114/C

Z T

0

P.E1.t//.�E2.t// dt: (4.3.58)

Next we need to control J114 by P0 C P.E1.T //.�E2.T //
R T
0
P.E1.t//.�E2.t// dt . For that we

need the following identity ı˛ˇ D On˛ Onˇ C gij@i�
˛@j�

ˇ which yields

J114 D

Z
�

�H.@5@1� � @2�/˛ On˛ Onˇ@5�ˇ dS

C

Z
�

�H.@5@1� � @2�/˛gij@i�
˛@j�

ˇ@5�ˇ dS

DWJ1141 C J1142:

(4.3.59)

In J1141 we integrate @1 by parts

J1141
@1
D�

Z
�

�H.@5� � @2�/˛ On˛ Onˇ@1@5�ˇ dS �
Z
�

�@1.H On˛ Onˇ@2�/@5�@5� dS

≲ P.j�jW 3;1/
�
j
p
�@5�j0j

p
�@6� � Onj0 C j

p
�@5�j20

�

≲P.E1.T //.�E2.T //
Z T

0

k
p
�@5v.t/k0 dt;

(4.3.60)
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where we used @5�jtD0 D 0. In J1142, we notice that the integral vanishes if i D 2 due to .@5@1� �

@2�/ � @2� D 0. If i D 1, then

J1142 D

Z
�

�H.@5@1� � @2�/ � @1� g1j @j�ˇ@5�ˇ dS

D �

Z
�

�H .@1� � @2�/„ ƒ‚ …
D
p
g On

�@5@1� g
1j @j�

ˇ@5�ˇ dS

≲ j
p
�@5@1� � Onj0j

p
�@5�j0P.j@�jL1/j@

2�jL1 dS ≲ P.E1/.�E2/

Z T

0

P.E1/ dt

(4.3.61)

The term J113 can be controlled in the same way as J114 so we omit the proof. Thus we already

get

J113 C J114 ≲ P.E.T //

Z T

0

P.E.t// dt: (4.3.62)

It remains to analyze
1

2
J112 which should be controlled together with J13. Again we have

1

2
J112 D

1

2

Z T

0

Z
�

�H.@5@1� � @2v/˛ On˛ Onˇ@5�ˇ dS

C
1

2

Z T

0

Z
�

�H.@5@1� � @2v/˛gij @i�˛@j�ˇ@5�ˇ dS

DW J1121 C J1122;

(4.3.63)

and the control of J1121 follows in the same way as (4.3.60) by integrating @1 by parts

J1121 ≲
Z T

0

P.E1.t//.�E2.t// dt; (4.3.64)
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For J1122 we need to do further decomposition

J1122 D�
1

2

Z T

0

Z
�

�H.@i� � @2v/˛gij @5@1�˛@j�ˇ@5�ˇ dS dt

D�
1

2

Z T

0

Z
�

�H
�
.@i� � @2v/ On


On˛@5@1�˛

�
gij @j�

ˇ@5�ˇ dS dt

�
1

2

Z T

0

Z
�

�H
�
.@i� � @2v/g

kl@k�
@l�

˛@5@1�˛

�
gij @j�

ˇ@5�ˇ dS dt

DW J11221 C J11222;

(4.3.65)

where J11221 is directly controlled by

J11221 ≲
Z T

0

P.E1.t//j
p
�@5@1� � Onj0j

p
�@5�j0 dt ≲

Z T

0

P.E1.t//C �E2.t/ dt: (4.3.66)

In J11222, the integral vanishes if i D k, so we only need to investigate the cases .i; k/ D .1; 2/

and .i; k/ D .2; 1/, which contribute to

J11222 D�
1

2

Z T

0

Z
�

�H
�
.@1� � @2v/g

2l@2�
@l�

˛@5@1�˛

�
g1j @j�

ˇ@5�ˇ dS dt

�
1

2

Z T

0

Z
�

�H
�
.@2� � @2v/g

1l@1�
@l�

˛@5@1�˛

�
g2j @j�

ˇ@5�ˇ dS dt

D�
1

2

Z T

0

Z
�

�H
�
.@1� � @2v/ � @2�

� �
g2l@l� � @

5@1�
� �
g1j @j� � @

5�
�

dS dt

C
1

2

Z T

0

Z
�

�H
�
.@1� � @2v/ � @2�

� �
g1l@l� � @

5@1�
� �
g2j @j� � @

5�
�

dS dt:

(4.3.67)

Next we analyze J13. First we do the following decomposition

@5�A
�@�v˛ D @

5�ˇ On
ˇ
OnA

�@�v˛ C @
5�ˇg

ij @i�
ˇ @j�A

�„ ƒ‚ …
Dı

�

j

@�v˛

D @5�ˇ On
ˇ
OnA

�@�v˛ C @
5�ˇg

ij @i�
ˇ@j v˛;
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and thus
J13 D

Z
�

�H.@5@1� � @2�/ � .@5�ˇ Onˇ OnA�@�v/ dS

C

Z
�

�H.@5@1� � @2�/ � .@5�ˇgij @i�ˇ@j v/ dS

DW J131 C J132:

(4.3.68)

The term J131 can be controlled similarly as J1141 in (4.3.60)

J131 ≲ P.E1.t//.�E2.t//: (4.3.69)

In J132, we need do further decomposition

J132 D

Z
�

�H.@5@1� � @2�/ On On˛.@5�ˇgij @i�ˇ@j v˛/ dS

C

Z
�

�H.@5@1� � @2�/gkl@k�@l�˛.@5�ˇgij @i�ˇ@j v˛/ dS

DW J1321 C J1322:

(4.3.70)

The integral in J1322 vanishes if k D 2. When k D 1, we again use the vector identity .u�v/ �w D

�.u � w/ � v and invoke .@1� � @2�/ D
p
g On to get

J1322 D

Z
�

�H.@5@1� � @2�/g1l@1�@l�˛.@5�ˇgij @i�ˇ@j v˛/ dS

D�

Z
�

�H
�
.@1� � @2�/ � @

5@1�
�
g1l@l�

˛.@5�ˇg
ij @i�

ˇ@j v˛/ dS

≲ j
p
�@5@1� � Onj0j

p
�@5�j0jH g2@� @� @vjL1 ≲ P.E1.t//.�E2.t//

(4.3.71)

We recall On D
p
g�1.@1� � @2�/ and use the vector identities .u � v/ � w D �.u � w/ � v and
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u � .v � w/ D .u � w/v � .u � v/w to get

.@5@1� � @2�/ � .@1� � @2�/ D �.@
5@1� � .@1� � @2�// � @2�

D� .@5@1� � @2�/ .@1� � @2�/„ ƒ‚ …
Dg12D�.detg/g12

C.@5@1� � @1�/ .@2� � @2�/„ ƒ‚ …
Dg22D.detg/g11

:

Plugging this into J1321 yields

J1321 D

Z
�

�H.@5@1� � @2�/ � .@1� � @2�/
p
g
�1
On˛.@5�ˇg

ij @i�
ˇ@j v˛/ dS

D

Z
�

�H.g1l@l� � @5@1�/.gij @i� � @5�/.@j v˛ On˛
p
g/ dS

D

Z
�

�H.g1l@l� � @5@1�/.g1i@i� � @5�/.@1v � .@1� � @2�// dS

C

Z
�

�H.g1l@l� � @5@1�/.g2i@i� � @5�/.@2v � .@1� � @2�// dS

DW J13211 C J13212:

(4.3.72)

Integraing @1 by parts in J13211, the highest order term is exactly the same as J13211 itself but with

a minus sign. Therefore,

J13211 D�
1

2

Z
�

�.g1l@l� � @
5�/.g1i@i� � @

5�/@1.H@1v � .@1� � @2�// dS

≲ j
p
�@5�j20P.j@�jL1/.j@

2� @vjL1/ ≲ P.E1.t//.�E2.t//:

(4.3.73)

Now J13212 reads

J13212 D �

Z
�

�H.g1l@l� � @5@1�/.g2i@i� � @5�/..@1� � @2v/ � @2�/ dS; (4.3.74)

which together with (4.3.67) yields that

J11222 C J13212 D�
1

2

Z
�

�H.g1l@l� � @5@1�/.g2i@i� � @5�/..@1� � @2v/ � @2�/ dS

�
1

2

Z
�

�H.g1l@l� � @5�/.g2i@i� � @5@1�/..@1� � @2v/ � @2�/ dS;

(4.3.75)
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and thus integrating @1 by parts in the first integral yields the cancellation with the second integral due

to the symmetry

J11222 C J13212 D
1

2

Z
�

�H.@1.g1l@l�/ � @5�/.g2i@i� � @5�/..@1� � @2v/ � @2�/ dS

C
1

2

Z
�

�H.g1l@l� � @5�/.@1.g2i@i�/ � @5�/..@1� � @2v/ � @2�/ dS

C
1

2

Z
�

�H.g1l@l� � @5�/.g2i@i� � @5�/@1..@1� � @2v/ � @2�/ dS

≲ j
p
�@5�j20P.E1.t// � P.E1.t//.�E2.t//:

(4.3.76)

Summarizing (4.3.54)-(4.3.56), (4.3.62)-(4.3.66), (4.3.68)-(4.3.76), we conclude the estimate of

J1 by

Z T

0

J1 dt ≲ P.E1.T //.�E2.T //

Z T

0

P.E1.t// dt C
Z T

0

P.E1.t//.�E2.t// dt: (4.3.77)

Finally, combining (4.3.9), (4.3.15), (4.3.52), (4.3.53) and (4.3.77), we conclude the @5-boundary

estimate byZ T

0

J dt ≲ �
c0

4

ˇ̌̌
@5� � On

ˇ̌̌2
0
�
�

2

ˇ̌̌
@6� � On

ˇ̌̌2
0

C P.E1.T //.�E2.T //

Z T

0

P.E1.t// dt C
Z T

0

P.E1.t//.�E2.t// dt:

(4.3.78)

4.3.2.4 Finalizing the tangential estimate of spatial derivatives

Summarizing (4.3.5)-(4.3.8) and (4.3.78), we conclude the estimate of the Alinhac good unknowns by

kVk20 C
c0

4

ˇ̌̌
@5� � On

ˇ̌̌2
0
C
�

2

ˇ̌̌
@6� � On

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P.kv0k5/C P.E1.T //.�E2.T //

Z T

0

P.E1.t// dt C
Z T

0

P.E1.t//.�E2.t// dt:

(4.3.79)
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Finally, from the definition of the good unknowns (4.3.1) and @5�jtD0 D 0, we know

k@5v.T /k20 ≲ kV.T /k
2
0 C k@

5�.T /k20krAv.T /k
2
L1 ≲ kV.T /k20 C P.E1.T //

Z T

0

k@5v.t/k20 dt;

and thus

k@5vk20 C k@
5.b0 � @/�k

2
0 C

c0

4

ˇ̌̌
@5� � On

ˇ̌̌2
0
C
�

2

ˇ̌̌
@6� � On

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P.kv0k5/C P.E1.T //.�E2.T //

Z T

0

P.E1.t//.�E2.t// dt:

(4.3.80)

4.3.3 Tangential estimates of time derivatives

Following the same method as in Chapter 4.2.3, we may derive the following tangential estimates of

time derivatives. For the details one can refer to [29, Section 6].

5X
kD1

k@5�k@kt vk
2
0 C k@

5�k@kt .b0 � @/�k
2
0 C

�

2

ˇ̌̌
@6�k@k�1t v � On

ˇ̌̌2
0

≲ ".�E2.T //C P0 C P.E1.T //.�E2.T //
Z T

0

P.E1.t//.�E2.t// dt:

(4.3.81)

4.3.4 Control of weighted Sobolev norms

4.3.4.1 Weighted div-curl estimates

The estimate for k
p
�vk24:5 and k

p
�.b0 � @/�k

2
4:5 is done similarly as before so we again omit the

details. For the divergence, we directly get

�kdiv vk24:5 C �kdiv .b0 � @/�k24:5 ≲ "�
�
kvk25:5 C k.b0 � @/�k

2
5:5

�
; (4.3.82)

and similarly

4X
kD0

�kdiv @kt vk
2
4:5�k C �kdiv @kt .b0 � @/�k

2
4:5�k

≲
4X
kD0

"�
�
k@kt vk

2
5:5�k C k@

k
t .b0 � @/�k

2
5:5�k

�
C P.E.0//C

Z T

0

P.E.t// dt:

(4.3.83)
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For the curl we have

k
p
�curl vk24:5 C k

p
�curl .b0 � @/�k24:5 ≲ "�

�
kvk25:5 C k.b0 � @/�k

2
5:5

�
C

Z T

0

P.E.t//; (4.3.84)

and similarly

4X
kD0

�kcurl @kt vk
2
4:5�k C �kcurl @kt .b0 � @/�k

2
4:5�k

≲
4X
kD0

"�
�
k@kt vk

2
5:5�k C k@

k
t .b0 � @/�k

2
5:5�k

�
C P.E.0//C

Z T

0

P.E.t// dt:

(4.3.85)

4.3.4.2 Control of the weighted boundary norms

We still need to control
p
� j@5�k@kt v � N j0 and

p
� j@5�k@kt .b0 � @/� � N j0 for 0 � k � 4. For the

boundary estimates of v, one can directly compare them with the energy terms contributed by surface

tension. (cf. (4.3.80)- (4.3.81))

p
�
ˇ̌̌
.@5�k@kt v �N/ � @

5�k@kt v � On
ˇ̌̌
0
≲
p�@kt v

5:5�k

Z T

0

j@t . On �N/j
2
L1 dt (4.3.86)

As for .b0 � @/�, when k � 1, we can directly control them by the norms of v

p
� j@5�k@kt .b0 � @/� �N j0 D

p
� j@5�k@k�1t .b0 � @/v �N j0

≲kb0kL1k
p
�@k�1t @vk5:5�k C lower order terms:

(4.3.87)

When k D 0, again we need to compare it with the Eulerian normal projections

p
�
ˇ̌̌
.@5..b0 � @/�/ �N/ � @

5.b0 � @/� � On
ˇ̌̌
0
≲
p�.b0 � @/�5:5 Z T

0

j@t . On �N/j
2
L1 dt; (4.3.88)

and thus it remains to control
p
� j@5.b0 � @/� � Onj0. In fact, this term naturally appears as a boundary

energy term contributed by the surface tension in the @4.b0 � @/ tangential estimate, which can be

proceeded in the same way as @4@t -estimate by just replacing @t by .b0 � @/. The reason for that is

.b0 � @/� and � have the same spatial regularity, which is similar with the fact that @t� D v has the
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same spatial regularity as �. In other words, the tangential derivative .b0 � @/ (note that b0 �N D 0 on

@˝!) plays the same role as a time derivative if it falls on the flow map �. We just list the result of

@4.b0 � @/-estimate

k@4.b0 � @/vk
2
0 C k@

4.b0 � @/
2�k20 C

�

2

ˇ̌̌
@5.b0 � @/� � On

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E1.T //.�E2.T //
Z T

0

P.E1.t//.�E2.t// dt:

(4.3.89)

4.3.5 The zero surface tension limit

Now we conclude the energy estimates. First, straightforward computation gives the div-curl control of

the non-weighted Sobolev norms. Then the boundary normal traces are reduced to the interior tangential

estimates which are established in (4.3.80) for spatial derivatives and (4.3.81) for time derivatives. In

the control of the non-weighted Sobolev norms, the weighted energy �E2.t/ is needed to close the

energy estimates. The
p
�-weighted div-curl estimates are established in (4.3.83) and (4.3.85), while

the boundary normal traces are no longer reduced to the interior tangential estimates via Lemma 3.2.3.

Instead, we notice that, in the non-weighted tangential estimates, the surface tension contributes to

p
� -weighted boundary energies which are exactly the Eulerian normal traces of the weighted variables.

Therefore, it suffices to estimate the difference between the
p
�-weighted Lagrangian normal traces

and the
p
� -weighted Eulerian normal traces, which is established in (4.3.86)-(4.3.88). Finally we get

E.T / D E1.T /C �E2.T / ≲ "E.t/C P.E.0//C P.E.T //

Z T

0

P.E.t// dt; (4.3.90)

which together with Gronwall inequality implies that there exists some T 0 > 0, independent of � , such

that

sup
0�t�T 0

E.t/ � P.E.0// � C: (4.3.91)

Finally, we recover the higher boundary regularity. This is done by the elliptic estimate in [21].
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Taking @t in the surface tension equation and letting ˛ D 3 yields

�
p
ggij .@2ij v

3
� � kij @kv

3/ D �@t .
p
ggij /@2ij�

3
� �@t .

p
ggij� kij /@k�

3
� @t .A

33Q/; on �:

(4.3.92)

We then have

j�v3.T /j5:5 ≲ jRHS of (4.3.92)j3:5 ≲ P.E1.T //C P.E1.T //

Z T

0

j�@2v.t/j3:5 dt; (4.3.93)

where we use @2�jtD0 D 0 and @�3jtD0 D 0. Note that, when estimating jRHS of (4.3.92)j3:5, the

top order term jQt j3:5 ≲ kQtk4 is controlled by considering the Neumann boundary condition of

Qt , which then avoids circular arguments. Therefore, the standard Gronwall-type argument gives the

control of j�v3j5:5. As for j�
3
2 v3j6, one can multiply

p
� in (4.3.92) and again invoke the elliptic

estimate to get

j�
3
2 v3.T /j6 ≲ P.E1.T //.�E2.T //C P.E1.T //.�E2.T //

Z T

0

j�
3
2 @2v3.t/j4 dt (4.3.94)

which yields j�
3
2 v3.T /j6 � P.E.T //. The bounds for b D .b0 � @/� follow in the same way but just

differentiating .b0 � @/ instead of @t in the surface tension equation.

Now we prove the zero surface tension limit. Assume .w; .b0 � @/�; r/ to be the solution to (2.1.1)

and .v� ; .b0 � @/�� ; q� / to be the solution to (2.2.1) with � > 0. Then Sobolev embedding implies

kv�k2
C1.Œ0;T ��˝/

C k.b0 � @/�
�
k
2
C1.Œ0;T ��˝/

C kq�k2
C1.Œ0;T ��˝/

≲ C:

By Morrey’s embedding, we can prove v� ; .b0�@/�� ; q� 2 C 1t H
4
y .Œ0; T ��˝/ ,! C 1t C

2; 12
y .Œ0; T ��˝/;

which implies the equi-continuity of .v� ; .b0 � @/�� ; q� / in C 1.Œ0; T � �˝/. By Arzelà-Ascoli lemma,

we prove the uniform convergence (up to subsequence) of .v� ; .b0 � @/�� ; q� / as � ! 0C, and the

limit is the solution .w; .b0 � @/�; r/ to (2.1.1). Theorem 2.2.2 is proven.
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4.4 Low-Regularity Estimates of Incompressible MHD with Sur-
face Tension

For the low-regularity solution, we can lower down the regularity to H 3:5 with the help of refined

Kato-Ponce inequalities (cf. Lemma 3.2.1) applied to div-curl analysis and the BMO-coefficient elliptic

estimates applied to the boundary normal traces.

4.4.1 Div-Curl estimates for time derivatives via refined Kato-Ponce inequalities

Due to the low-regularity issue, the div-curl analysis requires the refined Kato-Ponce inequalities

recorded in Lemma 3.2.1 (3). First one gets

kdiv vtk1:5 D kdiv@tAvk1:5 C k.divI�A/vtk1:5

≲ P.kv0k2:5/C

Z t

0

P.kvt .s/k2:5/ds C "kvtk2:5;

(4.4.1)

and similarly,

kdiv btk1:5 ≲ P.kb0k2:5/C

Z t

0

P.kbt .s/k2:5/ds C "kbtk2:5: (4.4.2)

Now we start to control curl vt and curl bt . First, we have

kcurl vtk1:5 � kcurlAvtk1:5 C k.curlI�A/vtk1:5 ≲ kcurlAvtk1:5 C "kvtk2:5

kcurl btk1:5 � kcurlAbtk1:5 C k.curlI�A/btk1:5 ≲ kcurlAbtk1:5 C "kbtk2:5:

(4.4.3)

The control of curlAvt and curlAbt is slightly different from that of curlAv and curlAb. We start with

the first equation of (2.2.1). Taking the time derivative at first, and then apply curlA on both sides, we

get

@t .curlAvt /� � .curlA.b0 � @/2v/� D .curl@tAv/� � ���˛A
��@�.A

�˛
t @�Q/„ ƒ‚ …

G�

:

Commuting .b0 � @/ with curlA on LHS, we have

@t .curlAvt /� � .b0 � @/.curlA.b0 � @/v/� D G� C ŒcurlA; b0 � @�bt :
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Taking @1:5 on both sides and commuting b0 � @ with curlA, we get the evolution equation of curl vt :

@t@
1:5.curlAvt /�.b0 �@/@1:5.curlAbt / D @1:5.G� C ŒcurlA; b0 � @�bt /C Œ@1:5; b0 � @�curlAbt„ ƒ‚ …

F �

: (4.4.4)

Next we again mimic [52, Prop. 5.2] and get

1

2

d

dt

Z
˝

j@1:5curlAvt j2 C j@1:5curlAbt j2dy D
Z
˝

F � � @1:5curlAvtdy„ ƒ‚ …
B�
1

C

Z
˝

@1:5.curlAbt / � Œ@1:5curlA; b0 � @�vtdy„ ƒ‚ …
B�
2

C

Z
˝

@1:5.curlAbt /�@1:5.���˛A
��
t @�b

˛
t /dy„ ƒ‚ …

B�
3

:

(4.4.5)

B�3 can be controlled directly by the multiplicative Sobolev inequality:

B�3 ≲ k@1:5curlAbtk0k@1:5.���˛A
��
t @�b

˛
t /k0

≲ kAk2kbtk2:5k@tAk2kbtk2:5 ≲ kvk3kbtk
2
2:5:

(4.4.6)

To control B�2 , it suffices to control kŒ@1:5curlA; b0 � @�vtkL2 . First we simplify the commutator:

Œ@1:5curlA; b0 � @�vt D ���˛
�
@1:5.A��@�.b

�
0@�v

˛
t // � b

�
0@�@

1:5.A��@�v
˛
t /
�

D ���˛
�
@1:5.A��@�.b

�
0@�v

˛
t // � @�@

1:5.b�0A
��@�v

˛
t /
�„ ƒ‚ …

B�
21

C ���˛
�
@�@

1:5.b�0A
��@�v

˛
t / � b

�
0@�@

1:5.A��@�v
˛
t /
�„ ƒ‚ …

B�
22

:

(4.4.7)

For B�22, we invoke the refined Kato-Ponce estimate (3.2.7)

kB�22kL2 ≲ kb0kW 1:5;3kA��@�v
˛
t kL6 C k@b0kL1kA

��@�v
˛
t k1:5 ≲ kb0k3kvtk2:5: (4.4.8)
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For B�21, we have

B�21 D ���˛@1:5.A��@�.b�0@�v˛t // � @�.b�0A��@�v˛t //

D ���˛@
1:5
�
A��@�b

�
0@�v

˛
t C A

��b�0@�@�v
˛
t � b

�
0@�A

��@�v
˛
t � b

�
0A

��@�@�v
˛
t

�
D ���˛@

1:5
�
A��@�b

�
0@�v

˛
t C b

�
0@ˇ@��A

�Aˇ�@�v
˛
t

�

D ���˛@
1:5.A��@�b

�
0@�v

˛
t C @ˇ ..b0 � @/� /A

�Aˇ�@�v
˛
t � @ˇb

�
0 A

ˇ�@�v
˛
t /;

(4.4.9)

Therefore, one can get:

kB�21kL2 ≲ kb0k3kvtk2:5: (4.4.10)

It remains to control B�1 , specifically, kF �kL2 . The two commutator terms can be controlled in the

same way as B�21 and straightforward computation

kŒ@1:5; b0 � @�curlAbtk0 C k@1:5.ŒcurlA; b0 � @�bt /k0 ≲ kb0k3kvtk2:5; (4.4.11)

and

kcurl@tAvk1:5 C kA
��@�.A

�˛
t @�Q/k1:5 ≲ kvk3.kvk3:5 C kQk3:5/C kvk3:5kQk3: (4.4.12)

Combining (4.4.3)-(4.4.12), and absorbing the "-term to LHS we have:

kcurl vtk1:5 C kcurl btk1:5 ≲ P0 C
Z t

0

P : (4.4.13)

The boundary term jb3t j2 can be directly controlled

kb3t k2;� D kb0 � @@t�k2;� ≲ kb0k2;� jv
3
j3;� : (4.4.14)
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Summing up (4.4.1), (4.4.2), (4.4.13) and (4.4.14), then absorbing the "-term to LHS, we have

kvtk2:5 ≲ P0 C
Z t

0

P C jv3t j2I

kbtk2:5 ≲ P0 C
Z t

0

P :

(4.4.15)

Again, from Hodge’s decomposition inequality applied to vt t and bt t , we have:

kvt tk1:5 ≲ kvt tk0 C kcurl vt tk0:5 C kdiv vt tk0:5 C jv3tt j1I

kbt tk1:5 ≲ kbt tk0 C kcurl bt tk0:5 C kdiv bt tk0:5 C jb3tt j1;

(4.4.16)

We have

kdiv vt tk0:5 ≲ P.kvk2:5Cı/.kvk1:5 C kvtk1:5/C "kvt tk1:5 (4.4.17)

and similarly,

kdiv bt tk0:5 ≲ P.kvk2:5Cı ; kbk2:5Cı/.kvk1:5 C kvtk1:5 C kbtk1:5/C "kbt tk1:5; (4.4.18)

where ı > 0 can be arbitratily small.

The boundary term jb3tt j1 is controlled in the same way as (4.4.14)

jb3tt j1 D jb0 � @v
3
t j1;� ≲ jb0j2jv

3
t j2: (4.4.19)

It remains to control curl vt t and curl bt t . We have:

@t .curlAvt t / � curlA.b0 � @/2vt D G��; (4.4.20)

where

G�� WD �curl@2tAvt � curl@tAvt t C curl@2tA.b0 � @/b C 2curl@tA.b0 � @/bt : (4.4.21)

Commuting .b�@/ with curlA on LHS of (4.4.20), taking @0:5 derivative and then commuting it with
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b0 � @, we get the evolution equation:

@t .@
0:5curlAvt t / � .b0 � @/.@0:5curlAbt t /

D @0:5.G�� C ŒcurlA; b0 � @�bt t /C Œ@0:5; b0 � @�.curlAbt t /„ ƒ‚ …
DWF ��

:

(4.4.22)

Analogous to (4.4.5), we can derive the following energy identity:

1

2

d

dt

Z
˝

j@0:5curlAvt t j2 C j@0:5curlAbt t j2dy D
Z
˝

F �� � @0:5curlAvt tdy„ ƒ‚ …
B��
1

C

Z
˝

@0:5.curlAbt t / � Œ@0:5curlA; b0 � @�vtdy„ ƒ‚ …
B��
2

C

Z
˝

@0:5.curlAbt t /�@0:5.���˛A
��
t @�b

˛
tt /dy„ ƒ‚ …

B��
3

:

(4.4.23)

Then we have

B��3 ≲ kbt tk1:5kb0k1:5kvtk2:5kvk2: (4.4.24)

For B��2 , it suffices to control kŒ@0:5curlA; b0 � @�vt tkL2 . Analogous to (4.4.7), we have

Œ@0:5curlA; b0 � @�vt t D ���˛
�
@0:5.A��@�.b

�
0@�v

˛
tt // � @�@

0:5.b�0A
��@�v

˛
tt /
�„ ƒ‚ …

B��
21

C ���˛
�
@�@

0:5.b�0A
��@�v

˛
tt / � b

�
0@�@

0:5.A��@�v
˛
tt /
�„ ƒ‚ …

B��
22

:

(4.4.25)

For B��22 , we invoke the refind Kato-Ponce type commutator estimate as in (4.4.8)

kB�22kL2 ≲ kb0kW 1:5;6kA��@�v
˛
ttkL3 C k@b0kL1kA

��@�v
˛
ttk1:5 ≲ kb0k3kvt tk1:5: (4.4.26)

For B��21 , we have

B��21 D ���˛@0:5.A��@�b�0@�v˛tt C @ˇ ..b0 � @/� /A�Aˇ�@�v˛tt � @ˇb
�
0 A

ˇ�@�v
˛
tt /; (4.4.27)

Therefore, we get

kB�21kL2 ≲ kb0k3kvt tk1:5: (4.4.28)
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It remains to control B��1 , specifically, kF ��kL2 . The two commutator terms can be controlled by

kb0k3kbt tk1:5 in the same way as B�1 . Therefore it remains to control kG��k0:5, which is directly

controlled by using multiplicative Sobolev inequality

kG��k0:5 ≲ k@
2
tAk1.kvtk2 C kb0k3kbk3/C k@tAk2.kvt tk1:5kb0k3kbtk2:5/ ≲ P : (4.4.29)

Combining (4.4.3), (4.4.5), (4.4.24), (4.4.26), (4.4.28), and(4.4.29), and absorbing the "-term to LHS

we have:

kcurl vt tk0:5 C kcurl bt tk0:5 ≲ P0 C
Z t

0

P C ".kvt tk1:5 C kbt tk1:5/: (4.4.30)

Summing up (4.4.17), (4.4.18), (4.4.19) and (4.4.30), then absorbing the "-term to LHS, and finally

using Young’s inequality and Jensen’s inequality, we have

kvt tk1:5 ≲ P0 C
Z t

0

P ds C kv3ttk1;� C P.kvk2:5Cı/ .kvk1:5 C kvtk1:5/„ ƒ‚ …
≲P0C

R t
0 P

≲ P0 C
Z t

0

P ds C kv3ttk1;� C P.kvk2:5Cı/I

kbt tk1:5 ≲ P0 C
Z t

0

P ds C P.kvk2:5Cı ; kbk2:5Cı/ .kvk1:5 C kvtk1:5 C kbtk1:5/„ ƒ‚ …
≲P0C

R t
0 P

≲ P0 C
Z t

0

P ds C P.kvk2:5Cı ; kbk2:5Cı/;

(4.4.31)

where ı > 0 can be arbitratily small.

The control of the boundary terms containing v and its time derivatives as well as the lower order

terms (i.e., kvk2:5Cı and kbk2:5Cı are still needed. This will be done in the next subsection.
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4.4.2 Boundary traces controlled by elliptic estimates

Taking @t in the surface tension equation A�˛N�Q C �
p
g4g�

˛ D 0 and letting ˛ D 3 yield the

following elliptic equation on � .

p
ggij .@2ij v

3
� � kij @kv

3/ D @t .
p
ggij /@i@j�

3
� @t .

p
ggij� kij /@k�

3
�
1

�
@t .A

�3Q/N�: (4.4.32)

By the critical Sobolev embedding one can easily prove g 2 BMO.� / and thus

jv3j3 ≲ kQtk1 C P.kvk2:5Cı ; jQj1:5/C P.kvk3:5/

Z t

0

P.kvk3:5/

≲ P0 C P
Z t

0

P C P.kvk2:5Cı/;

(4.4.33)

As for b D .b0 � @/�, we replace @t by .b0 � @/ in the step above and similarly get

jb3j3 D jb0 � @�j3 ≲ P.kb0k3:5; kQ.0/k2:5/C

Z t

0

kQtk2:5: (4.4.34)

Finally, we need to reduce the lower order term kvk2:5Cı by interpolation. Since kvk2:5Cı �

1
2
C

1
2
kvk2

2:5Cı
, we may assume P.kvk2:5Cı/ is the combination of terms of the form kvkd

2:5Cı
with

d � 2. By Lemma 3.2.2, we have kvkd
2:5Cı

≲ kvk2ıd3 kvk
.1�2ı/d
0 : Then choose ı sufficiently close to

0, for different d ’s, such that pd WD 1
dı
> 1: One can use "-Young’s inequality with pd and its dual

index to derive

kvkk2:5Cı ≲ "kvk23 C kvk
b
0 ≲ "kvk23:5 C P.kv0k2:5/C

Z t

0

P.kvt .s/k2:5/ds;

for some b > 0 and thus Theorem 2.2.4 is proven by Gronwall-type inequality.
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Chapter 5

Free-Boundary Compressible MHD

5.1 Loss of Normal Derivatives for Compressible Ideal MHD

The free-boundary compressible ideal MHD system in the case of a liquid is a strictly hyperbolic system

with characteristic boundary conditions. In the case of B � Onj@Dt D 0, the uniform Kreiss-Lopatinskiı̆

is violated and thus there is a potential of loss of normal derivatives. For incompressible ideal MHD

and compressible Euler, one can use the div-curl decomposition (cf. Lemma 3.3.1) and the normal

trace lemma (cf. Lemma 3.2.3) to control the normal derivatives. However this fails for compressible

ideal MHD due to the extra coupling between the magnetic field and the sound wave, or namely the

magnetoacoustic wave. We refer to [82, Sect 1.5] for detailed discussion.

Previously the local existence was proved by Trakhinin-Wang [74, 75] and see also Chen-Wang

[9], Trakhinin [70, 71] and Secchi-Trakhinin [64] for the study of the current-vortex sheets and the

plasma-vacuum model in compressible ideal MHD. It should be noted that, all the aforementioned

results rely on the Nash-Moser iteration to prove the local existence, and thus one may not find a

higher-order energy estimate without loss of regularity even for the linearized equations.

On the one hand, I was the first one that observed the magnetic diffusion could exactly compensate

the normal derivative loss: the diffusion together with the Christodoulou-Lindblad elliptic estimate

could give the common control of the heat equation of b and the wave equation of q as well as
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the Lorentz force which is a higher order term. Based on this, the local well-posedness and the

incompressible limit are established [82, 83]. On the other hand, we proved the first result on the

nonlinear a priori estimate without loss of regularity of free-boundary compressible ideal MHD [50].

We use the anisotropic Sobolev space that was first introduced by Chen [10], and the modified Alinhac

good unknown method and delicate analysis of the structure of MHD system.

5.2 Well-posedness and Incompressible Limit of the Free-Boundary
Problem in Compressible Resistive MHD

In this section we study the free-boundary problem in compressible resistive MHD. We will prove the

local well-posedness and justify the incompressible limit. To prove the local existence, we shall first

define the approximate system.

5.2.1 A priori estimates of the nonlinear approximate system

For � > 0, we introduce the nonlinear �-approximation system.8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@t� D v C  in ˝;

�0 QJ
�1@tv D .b � r QA/b � r QAQ; Q D q C

1
2
jbj2 in ˝;

QJR0.q/
�0

@tq C div QAv D 0 in ˝;

@tb C curl QAcurl QAb D .b � r QA/v � bdiv QAv; in ˝;

div QAb D 0 in ˝;

q D 0; b D 0 on �;

.�; v; b; q/jftD0g D .Id; v0; b0; q0/:

(5.2.1)

The quantities with “tilde" are defined in the same way as in Chapter 4.2. The term  D  .�; v/ is a

correction term which solves the Laplacian equation(
4 D 0 in ˝;

 D 4�1P¤0
�
4�ˇ QA

iˇ@i�
2
�v �4�

2
��ˇ
QAiˇ@iv

�
on �;

(5.2.2)

where P¤0 denotes the standard Littlewood-Paley projection in T2 which removes the zero-frequency

part. 4 WD @21 C @
2
2 denotes the tangential Laplacian operator.
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Remark 5.2.1.

1. Taking div QA in the fourth equation yields @t .div QAb/ C .div QAv/.div QAb/ D 0, which implies

div QAb D 0 if div b0 D 0 by the Gronwall-type argument. The identity curl QAcurl QAb D �4 QAb C

r QAdiv QAb and div QAb D 0 shows that b satisfies the heat equation @tb � 4 QAb D .b � r QA/v �

b.div QAv/ with bj� D 0.

2. The corrector  ! 0 as � ! 0 which is used to eliminate higher order boundary terms which

appears in the tangential estimates of v. These terms are zero when � D 0 but cannot be

controlled when � > 0. This is necesssary, otherwise we need higher regularity of � than v

which is impossible for MHD.

3. The Littlewood-Paley projection is necessary because we will repeatedly use

j4
�1P¤0f js � jP¤0f jH s�2 � jf j PH s�2 ;

which can be proved by using Bernstein inequality.

4. The initial data is the same of origin system because the compatibility conditions stay unchanged

after mollification by QA.0/ D a.0/ D Id. Such initial data has been constructed in [82, Section

9], so they are omitted here.

5. The precise form of the commutators can be found in [82, Section 4.4]. Details are omitted here.

Now, we define the energy functional of (5.2.1)

E�.T / WD e�.T /CH�.T /CW�.T /C
@4�kt

��
b � r QA

�
b
�2
k
; (5.2.3)
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where

e�.T / WD k�k
2
4 C

ˇ̌̌
QA3˛@4���˛

ˇ̌̌2
0
C

4X
kD0

�@4�kt v
2
k
C

@4�kt b
2
k
C

@4�kt q
2
k

�
; (5.2.4)

H�.T / WD

Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C

@4t b21 ; (5.2.5)

W�.T / WD
@5t q20 C @4t q21 (5.2.6)

denote the energy functional of fluid, higher order heat equation of b, and wave equation of q,

respectively. The context of this section is the uniform-in-� a priori estimates of (5.2.1).

Proposition 5.2.2. There exists some T > 0 independent of �, such that the energy functional E�

satisfies

sup
0�t�T

E�.t/ � P.kv0k4; kb0k5; kq0k4; k�0k4/; (5.2.7)

provided the following assumptions hold for all t 2 Œ0; T �

�.@NQ/.t/ � c0=2 on �; (5.2.8)

k QJ .t/ � 1k3 C kId � QA.t/k3 � " in ˝: (5.2.9)

Remark 5.2.3. The a priori assumptions can be easily justified once the energy bounds are established

by using QA.T / � Id D
R T
0
@t QA D

R T
0
QA W @t@ Q� W QA dt and the smallness of T . See Lemma 5.2.7.

In Section 5.2.2, we will prove the local well-posedness of (5.2.1) in an �-dependent time interval

Œ0; T� �. Therefore, the uniform-in-� a priori estimate guarantees that the solution .�.�/; v.�/; b.�/; q.�//

to (5.2.1) converges to the solution to the original system as � ! 0, i.e., the local existence of the

solution to free-boundary compressible resistive MHD system is established. For simplicity, we omit

the � and only write .�; v; b; q/ in this manuscript.
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5.2.1.1 Estimates of the correction term

First we bound the flow map and the correction term together with their smoothed version by the

quantities in E� . The following estimates will be repeatedly used.

Lemma 5.2.4 ([83, Lemma 3.2]). The following estimates for .v;  ; �/ holds.

k Q�k4 ≲ k�k4; (5.2.10)

k k4 ≲ P.k�k4; kvk3/; (5.2.11)

k@t k4 ≲ P.k�k4; kvk4; k@tvk3/; (5.2.12)

k@2t k3 ≲ P.k�k4; kvk4; k@tvk3; k@
2
t vk2/; (5.2.13)

k@3t k2 ≲ P.k�k4; kvk4; k@tvk3; k@
2
t vk2; k@

3
t vk1/; (5.2.14)

k@4t k1 ≲ P.k�k4; kvk4; k@tvk3; k@
2
t vk2; k@

3
t vk1; k@

4
t vk0/: (5.2.15)

and

k@t Q�k4 ≲ k@t�k4 ≲ P.k�k4; kvk4/; (5.2.16)

k@2t Q�k3 ≲ k@
2
t �k3 ≲ P.k�k4; kvk4; k@tvk3/; (5.2.17)

k@3t Q�k2 ≲ k@
3
t �k2 ≲ P.k�k4; kvk4; k@tvk3; k@

2
t vk2/; (5.2.18)

k@4t Q�k1 ≲ k@
4
t �k1 ≲ P.k�k4; kvk4; k@tvk3; k@

2
t vk2; k@

3
t vk1/ (5.2.19)

k@5t Q�k0 ≲ k@
5
t �k0 ≲ P.k�k4; kvk4; k@tvk3; k@

2
t vk2; k@

3
t vk1; k@

4
t vk0/: (5.2.20)
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5.2.1.2 Estimates of the magnetic field

For ideal MHD, the magnetic field can be written as b D J�1.b0 � @/�, which should be controlled

together with the same derivatives of v D @t�, and higher order terms are expected to vanish due to

subtle cancellation. But for resistive MHD, invoking the well-known identity �4 QAb D curl QAcurl QAb �

r QAdiv QAb D curl QAcurl QAb, the magnetic field actually satisfies a heat equation. Thus, the magnetic

diffusion, together with the boundary condition b D 0, allows us to control the higher order term4 QAb

directly, and .b � r QA/b (Lorentz force) with the help of Christodoulou-Lindblad type elliptic estimates

Lemma 3.3.3.

Control of @kt b when k � 2 First we estimate k@4�kt bkk . When k � 1, we have

@k�1@˛@
4�k
t b D @k�1. QA�˛@�@

4�k
t b/C @k�1..ı�˛ �

QA�˛ /@�@
4�k
t b/;

which gives

k@4�kt bk2k ≲ kr QA@
4�k
t bk2k�1 C kId � QAk

2
k�1k@

4�k
t bk2k � kr QA@

4�k
t bk2k�1 C "

2
k@4�kt bk2k :

Here the "-term can be absorbed into the LHS. When k D 1; 2, kId � QAkk�1 should be replaced by

kId� QAkL1 . Therefore, we have that for 1 � k � 4, k@4�kt bkk ≲ kr QA.@
4�k
t b/kk�1, which motivates

us to use Lemma 3.3.3.

Applying Lemma 3.3.3 to b, we have

kbk4 � kr QAbk3 ≲ P.k Q�k3/.k4 QAbk2 C k@ Q�k3kbk3/ (5.2.21)

Invoking the heat equation4 QAb D @tb � .b � r QA/v C bdiv QAv, we have

kbk4 ≲P.k Q�k3/
�
k@tbk2 C k.b � r QA/vk2 C kbdiv QAvk2 C k@ Q�k3kbk3

�

≲P.k Q�k3/P .k@tbk2; kbk2; kuk3/C P.k Q�k3/k@ Q�k3kbk3

(5.2.22)
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The first term P.k Q�k3/P .k@tbk2; kbk2; kuk3/ can be directly controlled by P0 C
R T
0
P.e�.t// dt .

For the second term, we notice that k@ Q�k3 ≲ k@ Q�k0 C k@3@ Q�k0, and @i�˛jtD0 D ıi˛ , @3@�jtD0 D 0,

so

k@ Q�k3 ≲ 1C

Z T

0

k@t@ Q�k3 dt:

Plugging this into the second term
�
k@�k0 C k@@ Q�k2

�
P.k Q�k3/kbk3, we know

�
k@�k0 C k@@ Q�k2

�
P.k Q�k3/kbk3

≲P.k Q�k3/kbk3

Z T

0

k@t@ Q�k3 dt C P.k Q�k3/

 
kb0k3 C

Z T

0

k@tbk3 dt

!

≲P0 C P.e�.T //
Z T

0

P.e�.t// dt:

Therefore, (5.2.22) becomes

kbk4 ≲ P0 C P.e�.T //
Z T

0

P.e�.t// dt (5.2.23)

Since @t is tangential on � , @tb also vanishes on the boundary. Applying elliptic estimates as in

(5.2.21), we get

k@tbk3 � kr QA@tbk2 ≲ P.k Q�k2/
�
k4 QA@tbk1 C k@ Q�k2k@tbk2

�
(5.2.24)

k@2t bk2 � kr QA@
2
t bk1 ≲ P.k Q�k2/

�
k4 QA@

2
t bk0 C k@ Q�k2k@

2
t bk1

�
: (5.2.25)

Taking time derivatives in the heat equation of b, we have

4 QA@
k
t b D @

kC1
t b � @kt

�
.b � r QA/v � bdiv QAv

�
;

of which the RHS is of one less derivative than LHS. Therefore, we are able to control k@tbk3; k@2t bk2
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in the same way as (5.2.23):

k@tbk3 C k@
2
t bk2 ≲ P0 C P.e�.T //

Z T

0

P.e�.t// dt (5.2.26)

Control of @3t b: Heat equation Note that k@3t bk1 � kr QA@
3
t bk0 is a part of the energy of 3-rd order

time-differentiated heat equation

@4t b �4 QA@
3
t b D @

3
t

�
.b � r QA/v/ � bdiv QAv

�
C Œ@3t ;4 QA�b;

of which the RHS only contain terms with � 4 derivatives.

Taking L2 inner product with QJ@4t b, integrating in y 2 ˝ and t 2 Œ0; T �, and then integrating by

parts, one has

LHS D

Z T

0

Z
˝

QJ
ˇ̌
@4t b

ˇ̌2
dy dt �

Z T

0

Z
˝

@4t b �
QJ4 QA@

3
t b dy dt

D

Z T

0

Z
˝

QJ
ˇ̌
@4t b

ˇ̌2
dy dt C

Z T

0

Z
˝

QJr QA@
4
t b � r QA@

3
t b dy dt

D

Z T

0

Z
˝

QJ
ˇ̌
@4t b

ˇ̌2
dy dt C

1

2

Z
˝

QJ
ˇ̌
r QA@

3
t b
ˇ̌2

dy
ˇ̌̌̌T
0

�
1

2

Z T

0

Z
˝

@t QJ
ˇ̌
r QA@

3
t b
ˇ̌2

dy dt C
Z T

0

Z
˝

QJ
�
r QA; @t

�
@3t b � r QA@

3
t b dy dt

RHS D

Z T

0

Z
˝

@4t b �
�
@3t
�
.b � r QA/v/ � bdiv QAv

�
C Œ@3t ;4 QA�b

�
dy dt
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Therefore, one hasZ T

0

Z
˝

QJ
ˇ̌
@4t b

ˇ̌2
dy dt C

1

2

Z
˝

QJ
ˇ̌
r QA@

3
t b.T /

ˇ̌2
dy

D
1

2

Z
˝

QJ
ˇ̌
r QA@

3
t b.0/

ˇ̌2
dy C

1

2

Z T

0

Z
˝

@t QJ
ˇ̌
r QA@

3
t b
ˇ̌2

dy dt

�

Z T

0

Z
˝

QJ
�
r QA; @t

�
@3t b � r QA@

3
t b dy dt

C

Z T

0

Z
˝

@4t b �
�
@3t
�
.b � r QA/v/ � bdiv QAv

�
C Œ@3t ;4 QA�b

�
dy dt

≲P0 C
Z T

0

P.e�.t// dt;

(5.2.27)

which gives the H 1 control of @3t b.

Control of @4t b: Higher order estimates needed There are two ways to control k@4t bk0. One way is

to use Poincaré’s inequality

k@4t bk0 ≲ k@
4
t bk1 � kr QA@

4
t bk0 (5.2.28)

due to @4t bj� D 0. Another way is direct computation

1

2
k@4t bk

2
0 D

1

2
k@4t b.0/k

2
0 C

Z T

0

@4t b � @
5
t b dt

≲P0 C
@5t bL2tL2x.Œ0;T ��˝/ @4t bL2tL2x.Œ0;T ��˝/

≲P0 C "
Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C

1

4"

Z T

0

Z
˝

ˇ̌
@4t b

ˇ̌2
dy dt

≲"
Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C P0 C

Z T

0

P.e�.t// dt:

(5.2.29)

From (5.2.28) and (5.2.29), we find that either kr QA@
4
t bk

2
0 or k@5t bkL2tL2x is required to control k@4t bk

2
0.

On the other hand, we notice that these two terms exactly come from the energy functional of 4-th
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time-differentiated heat equation of b:

@5t b �4 QA@
4
t b D

�
@4t ;4 QA

�
b C @4t

�
.b � r QA/v � bdiv QAv

�
:

The energy estimate cannot be controlled in the same way as in Section 5.2.1.2 because the RHS of

this heat equation contains 5-th order derivatives. Instead, we will seek for a common control of b and

p via the heat equation and wave equation. This part will be postponed to Section 5.2.1.4.

Estimates of Lorentz force Later on we will see both the estimates of u and common control of

higher order heat and wave equations require the control of 5-th derivatives of magnetic field, all of

which are actually 4-th space-time derivatives of Lorentz force .b � r QA/b. Notice that b D 0 on the

boundary implies .b � r QA/b also vanishes on � . Therefore, we can apply the elliptic estimate Lemma

3.3.3 to .b � r QA/b.

We start with k.b � r QA/bk4. Similarly as in (5.2.21), we have

k.b �r QA/bk4 � kr QA..b �r QA/b/k3 ≲ P.k Q�k3/
�
k4 QA..b � r QA/b/k2 C k@ Q�k3k.b � r QA/bk3

�
(5.2.30)

The second termP.k Q�k3/k@ Q�k3k.b�r QA/bk3 can again be controlled by P0CP.e�.T //
R T
0
P.e�.t// dt

by writting k@ Q�k3 ≲ 1C
R T
0
k@t@ Q�k3 as in (5.2.23). For the first term, we invoke the heat equation of

b to get

4 QA

�
.b � r QA/b

�
D.b � r QA/

�
4 QAb

�
C Œ4 QA; b � r QA�b

D.b � r QA/
�
@tb � .b � r QA/v C bdiv QAv

�
C Œ4 QA; b � r QA�b;

of which the RHS only contains terms with � 2 derivatives. So we have

k4 QA

�
.b � r QA/b

�
k2 ≲ P.e�.T //;
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and thus

k.b � r QA/bk4 ≲ P.e�.T //C P0 C P.e�.T //
Z T

0

P.e�.t// dt: (5.2.31)

When k D 1; 2, k@kt ..b � r QA/b/k4�k can be controlled in the same way as (5.2.24), (5.2.25) and

(5.2.26):
k@t ..b � r QA/b/k3 C k@

2
t ..b � r QA/b/k2

≲P.k Q�k2/
�
k4 QA@t ..b � r QA/b/k1 C k4 QA@

2
t ..b � r QA/b/k0

�
C P.k Q�k2/k@ Q�k2

�
k@t ..b � r QA/b/k2 C k@

2
t ..b � r QA/b/k1

�
≲P.k Q�k2/

�
k@t .b � r QA/.4 QAb/k1 C kŒ4 QA; @t .b � r QA/�bk1

C k@2t .b � r QA/4 QAbk0 C kŒ4 QA; @
2
t .b � r QA/�bk0

�

C P0 C P.e�.T //
Z T

0

P.e�.t// dt

≲P.e�.T //C P0 C P.e�.T //
Z T

0

P.e�.t// dt:

(5.2.32)

When k D 3, we have @.@3t .b � r QA/b/ D .b � r QA/@@
3
t b C Œ@@

3
t ; b � r QA�b, where the commutator

only contains the terms of � 4-th order derivative, so

k@3t .b � r QA/bk1 ≲ kbk2kr QA@
3
t bk1 C P.e�.T // (5.2.33)

Then by elliptic estimates Lemma 3.3.3 and the heat equation,

kr QA@
3
t bk1 ≲P.k Q�k2/.k4 QA@

3
t bk0 C k@ Q�k2k@

3
t bk1/

≲P.k Q�k2/
�
k@4t bk0 C k@

3
t ..b � r QA/v � bdiv QAv/k0 C kŒ4 QA; @

3
t �bk0

�
C P.e�.T //

≲P.e�.T //
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Similarly, for k D 4, we have @4t ..b � r QA/b/ D .b � r QA/@
4
t bC Œ@

4
t ; b � r QA�b, where the commutator

only contains the terms of � 4-th order derivative, so

k@4t .b � r QA/bk0 ≲k.b � r QA/@
4
t bk0 C kŒ@

4
t ; b � r QA�bk0

≲kbk2kr QA@
4
t bk0 C P.e�.T //;

(5.2.34)

where the term kr QA@
4
t bk

2
0 is exactly part of the energy functional H�.T / of 4-th time-differentiated

heat equation. Summing up (5.2.31), (5.2.32), (5.2.33) and (5.2.34), we get the estimates of Lorentz

force

4X
kD0

@4�kt ..b � r QA/b/
2
k
≲ kbk22

r QA@4t b20CP.e�.T //CP0CP.e�.T //
Z T

0

P.e�.t// dt (5.2.35)

Therefore, we find that the estimates of Lorentz force are again reduced to the control of higher

order heat equation.

5.2.1.3 Estimates of the velocity and the pressure

In this part we control the space-time Sobolev norm of v and q. We first apply the Hodge-type div-curl

decomposition (Lemma 3.3.1) to v (and its time derivatives). The curl part can be directly controlled

by the counterpart of Lorentz force. The boundary term can be reduced to interior tangential estimates

by using Sobolev trace Lemma. The divergence part together with the estimates of q can be reduced

to the control of full time derivatives, which is also part of tangential estimates. One should keep in

mind that, we no longer seek for subtle cancellation to eliminate higher order terms as what was done

for ideal MHD, no matter in curl or tangential estimates. Instead, those higher order terms (with 5

derivatives) can be controlled either by Lorentz force, or by the combination of heat equation and wave

equation, i.e., H�.T / and W�.T /.
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Let X D v; @tv; @2t v; @
3
t v and s D 4; 3; 2; 1 in Lemma 3.3.1 respectively. We have

kvk4 ≲ kvk0 C kdiv vk3 C kcurl vk3 C jv �N j3:5

k@tvk3 ≲ k@tvk0 C kdiv @tvk2 C kcurl @tvk2 C j@tv �N j2:5

k@2t vk2 ≲ k@
2
t vk0 C kdiv @2t vk1 C kcurl @2t vk1 C j@

2
t v �N j1:5

k@3t vk1 ≲ k@
3
t vk0 C kdiv @3t vk0 C kcurl @3t vk0 C j@

3
t v �N j0:5:

(5.2.36)

First, the L2-norms are of lower order. The L2-norm of v has been controlled in the energy dissapation.

While for k@tvk0; k@2t vk0 and k@3t vk0, we commute @t through �0 QJ�1@tv D .b � r QA/b � r QAQ and

obtain

k@tv.T /k0 C k@
2
t v.T /k0 C k@

3
t v.T /k0 ≲ P0 C

Z T

0

P.e�.t// dt (5.2.37)

Boundary estimates: Reduced to tangential estimates The boundary part of div-curl decomposition

can be reduced to the interior tangential estimates by invoking the normal trace Lemma 3.2.3

j@v3j2:5 ≲ k@
4vk0 C kdiv vk3: (5.2.38)

Similarly we have for 1 � k � 3

j@kt v
3
j3:5�k ≲ k@4�k@kt vk0 C kdiv @kt vk3�k (5.2.39)

Curl control: Reduced to Lorentz force By the a priori assumption (5.2.9), we can estimate the

Lagrangian vorticity via Eulerian vorticity plus a small error, for 1 � k � 4

kcurl @4�kt vk2k�1 ≲ kcurl QA@
4�k
t vk2k�1 C "

2
k@4�kt vk2k (5.2.40)

Taking curl QA in �0 QJ�1@tv D .b � r QA/b � r QAQ, we have

�0 QJ
�1@tcurl QAv D curl QA

�
.b � r QA/b

�
C
�
�0 QJ

�1@t ; curl QA
�
v; (5.2.41)
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where the commutator only contains first order derivative of v; �; @t�.

Taking @4�kt @k�1 in (5.2.41), we get the evolution equation of curl QAv:

�0 QJ
�1@t .@

k�1curl QA@
4�k
t v/ D @4�kt @k�1curl ..b � r QA/b/

C @4�kt @k�1
��
�0 QJ

�1@t ; curl QA
�
v
�

C Œ@4�kt @k�1; �0 QJ
�1@t �curl QAv C �0 QJ

�1@t@
k�1.Œcurl QA; @

4�k
t �v/

DW@4�kt @k�1curl ..b � r QA/b/C Fk

(5.2.42)

then taking L2-inner product with @k�1curl QA@
4�k
t v, we have

1

2

Z
˝

�0 QJ
�1
ˇ̌̌
@k�1curl QA@

4�k
t v.T /

ˇ̌̌2
dy �

1

2

Z
˝

�0 QJ
�1
ˇ̌̌
@k�1curl QA@

4�k
t v.0/

ˇ̌̌2
dy

D
1

2

Z T

0

Z
˝

@t
�
�0 QJ

�1
� ˇ̌̌
@k�1curl QA@

4�k
t v

ˇ̌̌2
dy dt

C

Z T

0

Z
˝

�0 QJ
�1@k�1curl QA@

4�k
t v � @k�1curl QA@

4�k
t ..b � r QA/b/ dy dt

C

Z T

0

Z
˝

�0 QJ
�1@k�1curl QA@

4�k
t v � Fk dy dt

≲
Z T

0

��0 QJ�1�2L1 @4�kt v
2
k

dt C
Z T

0

@4�kt v

k

@4�kt

�
.b � r QA/b

�
k

dt

C

Z T

0

@4�kt v

k
kFkkL2 dt

≲"T sup
0�t�T

@4�kt

�
.b � r QA/b

�2
k
C

Z T

0

P.e�.t// dt:

(5.2.43)

Here we used the fact that all terms in Fk are of� 4 derivatives, and thus can be controlled by P.e�.t//.

Divergence Control: Reduction to full time derivatives Before going into the proof, we briefly

describe the procedure of such reduction. The second and third equations of (5.2.1) give the following
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if we omit the coefficients �0 QJ�1 and
QJR0.q/
�0

:

@@kt q � r QA@
k
t q � �@

kC1
t v C @kt

�
.b � r QA/b �

1

2
jbj2

�
;

and

@@kt v
div
��! @kt div QAv C curlC boundary � @kC1t q C curlC boundary:

Since the terms containing magnetic field b can be reduced to lower order with the help of magnetic

diffusion, the procedure above allows us to control div v by @tq, and control @q by @tv. In other words,

we are able to trade one spatial derivative by one time derivative, and finally reduce the control to the

full time derivative estimates.

@4q
(5.2.1)
���! @3@tv

div
��! @2@2t q

(5.2.1)
���! @@3t v

div
��! @4t q

@3@tq
(5.2.1)
���! @2@2t v

div
��! @@3t q

(5.2.1)
���! @4t v:

(5.2.44)

Step 1: Reduce q to @tv

First we investigate k@3t qk1. We take @3t in the second equation in (5.2.1) to get

@@3t q D @
3
t .r QAq/CrI� QA@

3
t q D �@

3
t

�
�0 QJ

�1@tv
�
C @3t

�
.b � r QA/b �

1

2
r QAjbj

2

�
CrI� QA@

3
t q;

where we have Therefore, @3t q is estimated as

@3t q1 ≲" @3t q1 C @3t .�0 QJ�1@tv/0 C @3t �.b � r QA/b � 12r QAjbj2
�

0

≲"
@3t q1 C �0 QJ�1L1 @4t v0 C P0 C

Z T

0

P.e�.t// dt C L:O:T:;

(5.2.45)

where " > 0 can be chosen suitably small in order for being absorbed by LHS. The P0C
R T
0
P.e�.t// dt

comes from the magnetic field according to Section 5.2.1.2.
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Similarly as in the derivation of (5.2.45), we get the following estimates

k@2t qk2 ≲
�0 QJ�1L1 k@3t vk1 C P0 C

Z T

0

P.e�.t// dt C L:O:T: (5.2.46)

k@tqk3 ≲
�0 QJ�1L1 k@2t vk2 C P0 C

Z T

0

P.e�.t// dt C L:O:T: (5.2.47)

kqk4 ≲
�0 QJ�1L1 k@tvk3 C P0 C

Z T

0

P.e�.t// dt C L:O:T: (5.2.48)

Step 2: Divergence estimates of v

The Eulerian divergence is div QAX D div X C . QA�˛ � ı�˛/@�X˛ , which together with (5.2.9)

implies

8s > 2:5 W kdiv Xks�1 ≲ kdiv QAXks�1 C kI � QAks�1kXks ≲ kdiv QAXks�1 C "kXks

81 � s � 2:5 W kdiv Xks�1 ≲ kdiv QAXks�1 C kI � QAkL1kXks ≲ kdiv QAXks�1 C "kXks :
(5.2.49)

The "-terms can be absorbed by kXks on LHS by choosing " > 0 sufficiently small. So it suffices to

estimate the Eulerian divergence which satisfies div QAv D �
R0.q/ QJ
�0

@tq. Taking time derivatives in this

equation, we get

div QA@
k
t v D �@

k
t

 
R0.q/ QJ

�0
@tq

!
� Œ@kt ;

QA�˛�@�v˛ �
R0.q/ QJ

�0
@kC1t q � Œ@kt ;

QA�˛�@�v˛:

Therefore, we have
kdiv QAvk3 ≲ kR

0.q/ QJ kL1k@tqk3 C L:O:T:

kdiv QA@tvk2 ≲ kR
0.q/ QJ kL1k@

2
t qk2 C L:O:T:

kdiv QA@
2
t vk1 ≲ kR

0.q/ QJ kL1k@
3
t qk1 C L:O:T:

kdiv QA@
3
t vk0 ≲ kR

0.q/ QJ kL1k@
4
t qk0 C L:O:T:

(5.2.50)

Combining (5.2.49) and (5.2.50), by choosing " > 0 in (5.2.49) to be suitably small, we know the
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divergence estimates are all reduced to one more time derivative of q:

kdiv vk3 ≲ "kvk4 C kR
0.q/ QJ kL1k@tqk3 C L:O:T: (5.2.51)

kdiv @tvk2 ≲ "kvtk3 C kR
0.q/ QJ kL1k@

2
t qk2 C L:O:T: (5.2.52)

kdiv @2t vk1 ≲ "k@2t vk2 C kR
0.q/ QJ kL1k@

3
t qk1 C L:O:T: (5.2.53)

kdiv @3t vk0 ≲ "k@3t vk1 C kR
0.q/ QJ kL1k@

4
t qk0 C L:O:T: (5.2.54)

Combining (5.2.45)-(5.2.48). (5.2.51)-(5.2.54) with the previous analysis of curl and boundary

estimates, the control of k@4�kt qkk and k@4�kt vk0 are reduced to k@4t vk0 and k@4t qk0 together with the

tangential estimates of v.

Tangential space-time derivative estimates Denote D D @ or @t . First we consider the case

D4 D @4t ; @
3
t @; @

2
t @
2; @t@

3, i.e., there are at least one time derivative in the four tangential derivatives.

Direct computation gives

1

2

Z
˝

�0 QJ
�1
ˇ̌
D4v

ˇ̌2
dy
ˇ̌̌̌T
0

D

Z T

0

Z
˝

D4.�0 QJ
�1@tv/ �D

4v dy dt

C
1

2

Z T

0

@t
�
�0 QJ

�1
� ˇ̌
D4v

ˇ̌2
dy dt C

Z T

0

Z
˝

�
D4; �0 QJ

�1
�
@tv �D

4v dy dt„ ƒ‚ …
L1

D�

Z T

0

Z
˝

D4.r QAQ/ �D
4v dy dt C

Z T

0

Z
˝

D4
�
.b � r QA/b

�
D4v dy dt„ ƒ‚ …

L2

CL1;

(5.2.55)

where L1 can be directtly bounded by
R T
0
P.e�.t// dt , and L2 can be controlled by the Lorentz force

L2 ≲
Z T

0

D4v

0

D4
�
.b � r QA/b

�
0

dt ≲ "

Z T

0

D4
�
.b � r QA/b

�2
0

dt C
Z T

0

D4v
2
0

dt:
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For the first term, we first commute D4 with r QA, then integrate r QA by parts to get

�

Z T

0

Z
˝

D4.r QAQ/ �D
4v dy dt

D�

Z T

0

Z
˝

r QAD
4Q �D4v dy dt C

Z T

0

Z
˝

�
D4; QA�˛

�
@�Q �D

4v˛ dy dt„ ƒ‚ …
L3

D�

Z T

0

Z
�

QA3˛ D4Q„ƒ‚…
D0

D4v˛ dS dt C
Z T

0

Z
˝

D4QD4.div QAv/ dy dt„ ƒ‚ …
K1

C

Z T

0

Z
˝

D4Q �
�
D4; QA�˛

�
@�v˛ dy dt„ ƒ‚ …

L4

C

Z T

0

Z
˝

@� QA
�˛D4QD4v˛„ ƒ‚ …
L5

:

(5.2.56)

Notice that, D4 D D3@t now contains at least one time derivative, and QA � @ Q� � @ Q�, so by the

estimates correction term  , we know the L2-norm of D4 QA � D3@@t Q� �@ Q�CL:O:T: can be controlled

by P.e�.t//, and thus L3; L4 can be controlled by
R T
0
P.e�.t// dt . The term L5 is also directly

bounded by
R T
0
P.e�.t// dt .

Next we plug div QAv D �
QJR0.q/
�0

@tq and Q D q C 1
2
jbj2 into K1 to get

K1 D�

Z T

0

Z
˝

D4qD4

 
QJR0.q/

�0
@tq

!
�

Z T

0

Z
˝

D4

�
1

2
jbj2

�
D4

 
QJR0.q/

�0
@tq

!

D�
1

2

Z
˝

QJR0.q/

�0

ˇ̌
D4q.t/

ˇ̌2
dy
ˇ̌̌̌T
0

�

Z T

0

Z
˝

D4Q �

"
D4;

QJR0.q/

�0

#
@tq dy dt„ ƒ‚ …

L6

�

Z T

0

Z
˝

QJR0.q/

�0
D4

�
1

2
jbj2

�
D4@tq dy dt„ ƒ‚ …

K2

:

(5.2.57)

From the computation above, we find that the energy term k@4t qk
2
0 automatically appears if D4 D @4t .
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The commutator term L6 can be directly bounded by
R T
0
P.e�.t// dt . The term K2 satisfies

K2 ≲
Z T

0

D4

�
1

2
jbj2

�
0

�
D4@tq


0

dt ≲ "

Z T

0

D4@tq
2
0

dt C
Z T

0

P.e�.t// dt; (5.2.58)

therefore we need the energy of 4-th time differentiated wave equation of q and elliptic estimates

Lemma 3.3.3 to bound K2. This will be postponed to Section 5.2.1.4.

Tangential spatial derivative estimates: Alinhac good unknowns When D4 D @4, the above

analysis no longer works due to Œ@4; QA�˛�@�f being uncontrollable. According to the discussion in

Section 1.4, we introduce the Alinhac good unknowns. In specific, we replace @4 by @
2
4 due to the

special structure of correction term  . Then for any function f and its corresponding Alinhac good

unknown

f WD @
2
4f � @

2
4Q� � r QAf;

the following equality holds

@
2
4.r˛

QA
f / D r˛

QA
.@
2
4f /C .@

2
4 QA�˛/@�f C Œ@

2
4; QA�˛; @�f �

D r
˛
QA
.@
2
4f / � @4. QA�@@ˇ Q� QA

ˇ˛/@�f C Œ@
2
4; QA�˛; @�f �

D r
˛
QA
.@
2
4f / � QAˇ˛@ˇ@

2
4Q� QA

�@�f � .Œ@4; QA
� QAˇ˛�@@ˇ Q� /@�f

C Œ@
2
4; QA�˛; @�f �

D r
˛
QA
.@
2
4f � @

2
4� QA

�@�f /„ ƒ‚ …
Dr˛
QA
f

C @
2
4�r

˛
QA
.r



QA
f / � .Œ@4; QA� QAˇ˛�@@ˇ Q� /@�f C Œ@

2
4; QA�˛; @�f �„ ƒ‚ …

DWC˛.f /

;

171



where Œ@
2
4; g; h� WD @

2
4.gh/ � @

2
4.g/h � g@

2
4.h/. Direct computation yields

k@
2
4�r

˛
QA
.r



QA
f /k0 ≲ k Q�k4kr

˛
QA
.r



QA
f /kL1

k.Œ@4; QA� QAˇ˛�@@ˇ Q� /@�f k0 ≲ kŒ@4; QA
� QAˇ˛�@@ˇ Q�k0kf kW 1;1 ≲ P.k Q�k4/kf k3

kŒ@
2
4; QA�˛; @�f �k0 ≲ P.k Q�k4/kf k4:

Therefore, Alinhac good unknown enjoys the following important properties:

@
2
4.r˛

QA
f / D r˛

QA
fC C ˛.f / (5.2.59)

with

kC ˛.f /k ≲ P.k Q�k4/kf k4: (5.2.60)

For (5.2.1), we define V D @
2
4v� @

2
4Q� � r QAv and Q D @

2
4Q� @

2
4Q� � r QAQ to be the Alinhac

good unknowns for v and Q D q C 1
2
jBj2. Taking @

2
4 in the second equation of (5.2.1), we get

�0 QJ
�1@tVCr QAQ D F (5.2.61)

where

F WD @
2
4
�
.b � r QA/b

�
C Œ�0 QJ

�1; @
2
4�@tv˛ C �0 QJ

�1@t .@
2
4Q� � r QAv/C C.Q/

subject to

Q D �@
2
4Q�ˇ QA

3ˇ .@NQ/ on �: (5.2.62)

and

r QA � V D @
2
4.div QAv/ � C

˛.v˛/ in ˝: (5.2.63)
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Taking L2 inner product with V and time integral, we have

1

2

Z
˝

�0 QJ
�1
jV.t/j2 dy

ˇ̌̌̌T
0

D �

Z T

0

Z
˝

r QAQ � V dy dt

C

Z T

0

Z
˝

1

2
�0@t QJ

�1
jVj2 C F � V dy dt:

(5.2.64)

By (5.2.59)-(5.2.60) and direct computation, we know the last term on RHS can be directly controlled:

Z T

0

Z
˝

1

2
�0@t QJ

�1
jVj2 C F � V dy dt ≲

Z T

0

P.e�.t// dt C "
Z T

0

@24 �.b � r QA/b�2
0

dt: (5.2.65)

We integrate r QA by parts to get

�

Z T

0

Z
˝

r QAQ � V dy dt D �
Z T

0

Z
˝

QA�˛Q � V˛ dy dt

D�

Z T

0

Z
�

Q. QA3˛V˛/ dS dt C
Z T

0

Z
˝

Q.r QA � V/ dy dt C
Z T

0

Z
˝

.@� QA
�˛/QV˛ dy dt„ ƒ‚ …

J1

D

Z T

0

Z
�

.@NQ/@
2
4Q�ˇ QA

3ˇ QA3˛V˛ dS dt C
Z T

0

Z
˝

Q@
2
4.div QAv/ dy dt

�

Z T

0

Z
˝

QC ˛.v˛/ dy dt C J1

DWI0 C I1 C J2 C J1:

(5.2.66)

The term J1; J2 can be directly controlled by
R T
0
P.e�.t// dt . Next we investigate I1. Invoking

div QAv D �
QJR0.q/
�0

@tq,

I1 D

Z T

0

Z
˝

Q@
2
4.div QAv/ dy dt

D

Z T

0

Z
˝

�
@
2
4q C @

2
4

�
1

2
jbj2

�
� @

2
4Q� � r QAQ

�
@
2
4

 
�
QJR0.q/

�0
@tq

! (5.2.67)

173



D�

Z T

0

Z
˝

@
2
4q � @

2
4

 
�
QJR0.q/

�0
@tq

!
dy dt

C

Z T

0

Z
˝

@
2
4Q� � r QAQ@

2
4

 
�
QJR0.q/

�0
@tq

!
dy dt

�

Z T

0

Z
˝

@
2
4

�
1

2
jbj2

�
� @
2
4

 
�
QJR0.q/

�0
@tq

!
dy dt

DWI11 C I12 C I13:

(5.2.68)

The term I11 and I13 can be similarly computed as in K1 and K2 (5.2.58):

I11 ≲ �
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P.e�.t// dt; (5.2.69)

I13 ≲ "

Z T
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@24@tq2
0

dt C
Z T

0

P.e�.t// dt: (5.2.70)

One can see that I11 has been controlled, while I13 requires the control of 5-th order wave equation

of q to absorb that "-term. This will again be postponed in Section 5.2.1.4. For I12, we just need to

integrate @t by parts
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(5.2.71)

Here in the last step we use "-Young’s inequality to deal with the first term in the second line. The

second term can be directly controlled by using the estimates of k@t Q�k4. It remains to control the
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boundary integral I0. Plugging V˛ D @
2
4v˛ � @

2
4� � r QAv˛ into I0, we get
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The first term in (5.2.72) produces the Taylor sign term contributing to the boundary term in E�.t/

after commuting a �� :
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(5.2.73)

L7 can be directly controlled after integrating @1=2 by parts
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(5.2.74)

In I01, we have @t QA3˛ D � QA3@�@t Q� QA�˛ . Note that @t� D v C  . The  term can be directly
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bounded by using the mollifier property, which the contribution of v cannot be bounded directly.

Luckily, later on we will see that term can be cancelled together with another higher order term in

(5.2.72) with the help of  . We have
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(5.2.75)

L8 can be directly bounded by the boundary energy
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L9 can be bounded by using j@
2
4���j ≲ ��1=2j�j7=2 and sacrificing ��1=2.
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Z T
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1
p
�
j�j7=2
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@ Q 
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This can be compensated by estimating j@ jL1 and W 1;4.T2/ ,! L1.T2/. Since  removes the

zero-frequency part (so the lowest frequency iṡ1 because the frequency on T2 is discrete), we know
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j4 jL4 is comparable to j@ jW 1;4 . Therefore,
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Therefore we know L9 can be bounded uniformly in �
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The estimate of I02 will be postponed after computing the third term in (5.2.72), for which we

repeat the steps above to get
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(5.2.78)

The first term can be bounded by Taylor sign after commuting one �� :
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Therefore, it remains to control
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Z
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2
4 : (5.2.79)
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Plugging the expression of4 into (5.2.79), we get
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Clearly, (5.2.83) exactly cancels with (5.2.81), (5.2.84) can be bounded by
R T
0
P.e�.t// dt , and

(5.2.85) can be controlled by Bernstein’s inequality jP¤0f j2 � jf j0.
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In (5.2.82), we move one �� on �ˇ to �˛ to cancel I02:

.3:93/ D�

Z T

0

Z
�

.@NQ/ QA
3ˇ@

2
4���ˇ

�
QA3˛@i�

2
�v˛

� �
QAi@

2
4���

�
(5.2.87)

�

Z T

0

Z
�

.@NQ/ QA
3ˇ@

2
4���ˇ

�h
�� ; QA

3˛ QA3ˇ QAir@i�
2
�v˛

i
@
2
4�

�
(5.2.88)

�

Z T

0

Z
�

.@NQ/ QA
3˛ QA3ˇ@

2
4Q�ˇ

�h
@2; QAi@i�

2
�v˛

i
4�

�
(5.2.89)

D� I02 C .3:99/C .3:100/: (5.2.90)

Summarising (5.2.72)-(5.2.78), (5.2.82)-I045 and I0414, we are able to control the boundary

integral I0 by invoking Taylor sign condition (5.2.8): .@NQ/ � � c02
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Combining (5.2.91) with previous estimates (5.2.64)-(5.2.71), we finish the estimates of full tangential

derivatives by
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(5.2.92)

5.2.1.4 Control of the higher order heat and wave equations

Summarizing the previous energy estimates Before going to the next step, let us summarize what

energy estimates we have gotten. First, from div-curl restimates((5.2.36), (5.2.38), (5.2.39), (5.2.42),

(5.2.45)-(5.2.48), (5.2.51)-(5.2.54)) and tangential estimates ((5.2.55)-(5.2.58) and (5.2.92)) in Section
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5.2.1.3, we got
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(5.2.93)

The magnetic field b has the following estimates by combining (5.2.23), (5.2.26), (5.2.27) and

(5.2.29):
4X
kD0

@4�kt b.T /
2
k
≲ P0 C P.e�.T //

Z T
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P.e�.t// dt C "H�.T /: (5.2.94)

Summing up (5.2.93) and (5.2.94), we get the estimates of E�.T / as
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! (5.2.95)

(5.2.95) shows that we need H� ; W� together with Lorentz force to absorb the "-term in (5.2.95).

From (5.2.35), we know Lorentz force can be controlled by E�.T / plus a term in H�.T /

4X
kD0

@4�kt ..b � r QA/b/
2
k
≲ kbk22

r QA@4t b20 C P.e�.T //C P0 C P.e�.T //
Z T

0

P.e�.T // dt:

(5.2.96)

Also notice that @tq D 0 on � , which allows us to reduce the space-time control of @tq to

the full time derivative case by using Lemma 3.3.3 (See Section 5.2.1.4). Therefore, all the esti-

mates of the total energy E� in (5.2.3) are reduced to seek for a common control of W�.T / and

H�.T /, the energy functionals of 4-th time-differentiated heat and wave equations, by "E�.T /C P0 C

P.E�.T //
R T
0
P.E�.t// dt .
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Elliptic estimates of @tq Let us recall the heat equation of b and wave equation of q

@tb �4 QAb D .b � r QA/v � bdiv QAv; (5.2.97)
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!
.@tq/

2

DWb � 4 QAb C w0:

(5.2.98)

Here we note that all the terms in w0 only contain first-order derivative!

In (5.2.95), there are 4-th order space-time tangential derivatives of @tq. It seems that we can

directly consider the energy functional of D4-differentiated wave equation of q (5.2.98). However,

that also requires the control of commutator ŒD4; div QA�r QAq, which is uncontrollable when D4 D @4.

Therefore, we have to use Lemma 3.3.3 to reduce spatial derivatives to time derivatives.

We start with full spatial derivatives. Since k@tqk4 � kr QA@tqk3, we have

k@tqk4 ≲ P.k Q�k3/k@t4 QAqk2 C P.e�.T // (5.2.99)

Invoking the @t -differentiated wave equation, we find that
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�0
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Then using the heat equation (5.2.97) to reduce4 QAb to lower order terms, we get
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�
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Plugging this back to (5.2.99), we trade two spatial derivatives by two time derivatives

k@tqk4 ≲ P.k Q�k3/k@
3
t qk2 C P.e�.T //: (5.2.100)

Repeating the same thing for k@2t qk3; k@
3
t qk2, we get the following reduction
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From (5.2.100)-(5.2.102), we are able to reduce the energy estimates of @tq to kr QA@
4
t qk0 and

k@5t qk0, which motivates us to consider the 4-th time-differentiated wave equation (5.2.98) together

with 4-th time differentiated heat equation (5.2.97).

4-th time differentiated heat and wave equation Taking @4t in (5.2.97) and (5.2.98), we get
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(5.2.103)

In h5, there are 5 derivatives of v. We can invoke the second equation of (5.2.1) to reduce to q and

B , e.g., k@5t vk0 ≲ k@
4
t ..b � r QA/b/k0Ck@

4
tr QAQk0C � � � ; in which the leading order terms are r QA@

4
t b

and r QA@
4
t q, the same as part of W� and H� .
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Taking L2tL
2
x-inner product with @5t b and integrating by parts, we get
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(5.2.104)

Since b D 0 on the boundary, we know the boundary integral vanishes. The first and second

integrals give the energy functional H�.T / �H�.0/. Therefore, we have
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(5.2.105)

Here W� appears in the last term because @5t v contains r QA@
4
t q which is part of W�.t/.
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Next we @4t differentiate (5.2.98) to get

QJR0.q/

�0
@6t q �4 QA@

4
t q

D b � 4 QA@
4
t b C @

4
tw0 C

�
b � 4 QA; @

4
t

�
C
�
@4t ;4 QA

�
q C

"
QJR0.q/

�0
; @4t

#
@2t q:

Then plug the heat equation (5.2.103)4 QAb D @
5
t b � h5 to get

QJR0.q/

�0
@6t q �4 QA@

4
t q

Db �
�
@5t b � h5

�
C @4tw0 C

�
b � 4 QA; @

4
t

�
C
�
@4t ;4 QA

�
q C

"
QJR0.q/

�0
; @4t

#
@2t q DW w5

(5.2.106)

Taking L2tL
2
x inner product with @5t q, we have

RHS D

Z T

0

Z
˝

w5 � @
5
t q dy dt

LHS D

Z T

0

Z
˝

QJR0.q/

�0
@6t q@

5
t q dt �

Z T

0

Z
˝

@5t q � 4 QA@
4
t q dy dt

D
1

2

Z
˝

QJR0.q/

�0

ˇ̌
@5t q

ˇ̌2
dy
ˇ̌̌̌T
0

C

Z T

0

Z
˝

@t
�
r QA@

4
t q
�
�
�
r QA@

4
t q
�

dy dt

C

Z T

0

Z
˝

@� QA
�˛
�
@5t q

�
�
�
r QA@

4
t q
�

dy dt C
Z T

0

Z
˝

��
r QA; @t

�
@4t q

�
�
�
r QA@

4
t q
�

dy dt

�

Z T

0

Z
�

QA3˛ @5t q„ƒ‚…
0

�
�
r QA@

4
t q
�
˛

dS dt �
Z T

0

Z
˝

1

2
@t

 
QJR0.q/

�0

! ˇ̌
@5t q

ˇ̌2
dy dt;

(5.2.107)
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and thus we have

W�.T / �W�.0/ D
1

2

Z
˝

QJR0.q/

�0

ˇ̌
@5t q

ˇ̌2
dy
ˇ̌̌̌T
0

C
1

2

Z
˝

ˇ̌
r QA@

4
t q
ˇ̌2

dy
ˇ̌̌̌T
0

D

Z T

0

Z
˝

w5 � @
5
t q dy dt C

Z T

0

Z
˝

1

2
@t

 
QJR0.q/

�0

! ˇ̌
@5t q

ˇ̌2
dy dt

�

Z T

0

Z
˝

@� QA
�˛
�
@5t q

�
�
�
r QA@

4
t q
�

dy dt �
Z T

0

Z
˝

��
r QA; @t

�
@4t q

�
�
�
r QA@

4
t q
�

dy dt:

(5.2.108)

The term kw5k20 can be controlled by H�.T /CW�.T /C P.e�.T //, because all the terms in w5

are of � 5 derivatives, and can be controlled by either heat or wave energy. The detailed estimate is

referred to [82, (7.12)-(7.19)]. Therefore, we have

W�.T / �W�.0/ ≲ " .W�.T /CH�.T //C

Z T

0

H�.t/CW�.t/C P.e�.t// dt (5.2.109)

Summing up (5.2.105) and (5.2.109), we get the common control of H� and W�

.H�.t/CW�.t//
ˇ̌T
0
≲ " .W�.T /CH�.T //C

Z T

0

H�.t/CW�.t/C P.e�.t// dt (5.2.110)

Closing the energy estimates Combining (5.2.95), (5.2.96) and (5.2.110), we get the inequality

E�.T / � E�.0/ D
 
e� CH� CW� C

4X
kD0

@4�kt ..b � r QA/b/
2
k

! ˇ̌̌̌T
0

≲" .H�.T /CW�.T //C P.e�.T //
Z T

0

P.E�.t// dt:

(5.2.111)

By choosing " > 0 sufficiently small, we get

E�.T / � E�.0/ ≲ P.e�.T //

Z T

0

P.E�.t// dt: (5.2.112)
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Finally, by the Gronwall-type inequality, we know there exists some T > 0 only depending on

kv0k4; kb0k5; kq0k4; k�0k4, such that

sup
0�t�T

E�.t/ � P.E�.0//: (5.2.113)

This finalizes the proof of Proposition 5.2.2, i.e., the uniform-in-� a priori estimate for the nonlinear

approximation system (5.2.1).

5.2.2 Well-posedness pf the nonlinear approximate system

In this section we are going to prove the local existence of the nonlinear �-approximation system (5.2.1).

The method is standard Picard type iteration. We start with the trivial solution .�.0/; v.0/; b.0/; q.0// D

.�.1/; v.1/; b.1/; q.1// D .Id; 0; 0; 0/. Suppose we have already constructed f.�.k/; v.k/; b.k/; q.k//g0�k�n

for some given n 2 N�. Inductively we define .�.nC1/; v.nC1/; b.nC1/; q.nC1// by linearzing (5.2.1)

near a.n/ WD Œ@�.n/��1.

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@t�
.nC1/ D v.nC1/ C  .n/ in ˝;

�0
QJ .n/
@tv

.nC1/ D .b.n/ � r QA.n//b
.nC1/ � r QA.n/Q

.nC1/; in ˝;
QJ .n/R0.q.n//

�0
@tq

.nC1/ C div QA.n/v
.nC1/ D 0 in ˝;

.@t C curl QA.n/curl QA.n//b
.nC1/ D .b.n/ � r QA.n//v

.nC1/ � b.n/div QA.n/v
.nC1/; in ˝;

div QA.n/b
.nC1/ D 0 in ˝;

q.nC1/ D 0; b.nC1/ D 0 on �;

.�.nC1/; v.nC1/; b.nC1/; q.nC1//jftD0g D .Id; v0; b0; q0/:

(5.2.114)

Here QA.n/ WD .@ Q�.n//�1 and the correction term  .n/ is determined by (5.2.2) with � D �.n/; v D

v.n/; QA D QA.n/ in that equation. What we need to verify are

1. System (5.2.114) has a (unique) solution .�.nC1/; v.nC1/; b.nC1/; q.nC1// (in a suitable function

space).

2. The solution of (5.2.114) satifies an energy estimate uniformly in n.
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3. The approximate solutions f.�.n/; v.n/; b.n/; q.n//g1nD0 converge strongly.

We denote .�.n/; v.n/; b.n/; q.n// by . V�; Vv; Vb; Vq/, and .�.nC1/; v.nC1/; b.nC1/; q.nC1// by .�; v; b; q/

for the simplicity of notations. Then (5.2.114) becomes

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

@t� D v C V in ˝;

�0 VJ
�1@tv D . Vb � r VQA

/b � r
VQA
Q; Q D q C 1

2
jbj2 in ˝;

VQJR0. Vq/
�0

@tq C div
VQA
v D 0 in ˝;

@tb C curl
VQA
curl

VQA
b D . Vb � r

VQA
/v � Vbdiv

VQA
v; in ˝;

div
VQA
b D 0 in ˝;

q D 0; b D 0 on �;

.�; v; b; q/jftD0g D .Id; v0; b0; q0/:

(5.2.115)

The divergence-free condition for b is still a constraint for initial data and b still satisfies a heat equation.

5.2.2.1 A priori estimates of the linearized approximation system

We first prove the a priori estimate of the linearized system (5.2.114) (or equivalently (5.2.115)) because

such a priori bound helps us to choose a suitable function space when proving the existence of the

linearized system by fixed-point argument.

Define the energy functional for .�.nC1/; v.nC1/; b.nC1/; q.nC1// by

E .nC1/.T / WD e.nC1/.T /CH .nC1/.T /CW .nC1/.T /C

4X
kD0

@4�kt

�
.b.n/ � r QA.n//b

.nC1/
�2
k
;

(5.2.116)
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where

e.nC1/.T / WD
�.nC1/2

4
C

4X
kD0

@4�kt v.nC1/
2
k
C

4X
kD0

@4�kt b.nC1/
2
k
C

4X
kD0

@4�kt q.nC1/
2
k

(5.2.117)

H .nC1/.T / WD

Z T

0

Z
˝

ˇ̌̌
@5t b

.nC1/
ˇ̌̌2

dy dt C
@4t b.nC1/2

1
(5.2.118)

W .nC1/.T / WD

4X
kD0

r QA.n/@4�kt q.nC1/
2
k
C

@5t q.nC1/2
0
: (5.2.119)

The conclusion is

Proposition 5.2.5. Suppose .�.nC1/; v.nC1/; b.nC1/; q.nC1// satisfies (5.2.114), then there exists T� >

0 sufficiently small, independent of n. such that

sup
0�t�T�

E .nC1/.t/ � P0: (5.2.120)

Remark 5.2.6. Compared with E� in (5.2.3), we find that there are extra terms inW .nC1/.T /. We note

that these extra terms are not needed in the uniform-in-n a priori estimates bacause the elliptic estimates

of @tq helps us reduce k@4�kt qkkC1 to the L2-norm of @5t q and r
VQA
@4t q, and kr

VQA
qk4 is not needed.

However, these terms are needed when we verify the fixed-point argument in the construction of

the solution to (5.2.115): The H 4-norm of v has to be controlled by

v.T / D v0 C

Z T

0

k@tv.t/k4 dt;

and thus the H 4-norm of r
VQA
Q is definitely needed.

5.2.2.2 Estimates of the frozen coefficients

We prove Proposition 5.2.5 by induction on n. When n D �1; 0, it auotmatically holds for the trivial

solution. Suppose the energy bound (5.2.120) holds for all E .k/ with 1 � k � n. Then we have the

following estimates for VA; V�; VJ .
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Lemma 5.2.7. Let T 2 .0; T�/. Then there exists some " 2 .0; 1/ sufficiently small and constant

C > 1 such that

V 2 L1t .Œ0; T �IH
4.˝//; @lt

V 2 L1t .Œ0; T �IH
5�l .˝//; 81 � l � 4I (5.2.121)

k VJ � 1k3 C k
VQJ � 1k3 C kId � VQAk3 C kId � VAk3 � "I (5.2.122)

@t V� 2 L
1.Œ0; T �IH 4.˝//; @lC1t V� 2 L1.Œ0; T �IH 5�l .˝//; 81 � l � 4I (5.2.123)

VJ ; @t VJ 2 L
1
t .Œ0; T �IH

3.˝//; @1Clt
VJ 2 L1t .Œ0; T �IH

4�l .˝//; 81 � l � 4I (5.2.124)

1=C �
VQJR0. Vq/

�0
; �0
VQJ
�1

� C; @lt

0@ VQJR0. Vq/
�0

; �0
VQJ
�1

1A 2 L1.Œ0; T �IH 5�l .˝//; 81 � l � 5:

(5.2.125)

Proof. (5.2.121) follows in the same way as Lemma 5.2.4. VJ D detŒ@ V�� and VA D Œ@ V���1 prove

(5.2.123) and (5.2.124) because the elements are multilinear functions of @ V�. The smallness of QJ � 1

and Id� VA follows from VJ D detŒ@ V�� and

Id � VA D �
Z T

0

@t VA D

Z T

0

VA W .@. Vv C  .n�1/// W VA dt

and choosing " (depending on T�) sufficiently small. (5.2.125) is similarly proven.

5.2.2.3 Control of E .nC1/

The control of E .nC1/ follows nearly in the same way as the nonlinear functional E�.T / except the

extra term kr
VQA
qk4 and boundary integral in the tangential estimates.

Step 1: Estimates of magnetic field and Lorentz force

Since b D 0 on the boundary and div
VQA
b D 0 in ˝, we are able to directly mimic the proof in
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Section 5.2.1.2 to get the analogues of (5.2.23)-(5.2.29):

4X
kD0

@4�kt b.T /
2
k
≲ P0 C P.e.nC1/.T //

Z T

0

P.e.nC1/.t// dt C "H .nC1/.T / (5.2.126)

and an analogue of (5.2.31)

4X
kD0

@4�kt .. Vb � r
VQA
/b/
2
k

≲ kbk22

r VQA@4t b20 C P.e.nC1/.T //C P0 C P.e.nC1/.T //
Z T

0

P.e.nC1/.t// dt:

(5.2.127)

Step 2: Div-Curl estimates of v

By (5.2.122), we know the div-curl estimates follow in the same way as Section 5.2.1.3-5.2.1.3.

For 1 � k � 4, we have

1

2

Z
˝

�0
VQJ
�1 ˇ̌̌

curl
VQA
@4�kt v.t/

ˇ̌̌2
dy
ˇ̌̌̌T
0

≲"T sup
0�t�T

@4t .. Vb � r VQA/b/2k C
Z T

0

P.e.nC1/.t// dt:

(5.2.128)

div
VQA
@4�kt v


k�1

≲"
@4�kt v


k
C

@5�kt q

k�1
C L:O:T: (5.2.129)

ˇ̌̌
@4�kt v3

ˇ̌̌
k�1=2

≲
@k@4�kt v


0
C kdiv @4�kt vkk�1: (5.2.130)

@4�kt q

k
≲

4X
kD1

@5�kt v

k�1
C P0 C

Z T

0

P.e.nC1/.t// dt C L:O:T: (5.2.131)

Step 3: Space-Time tangential estimates

Let D D @ or @t . When D4 contains at least one time derivative, we are able to directly ocmmute

VQA with D4 because @t V� has the same regularity as V�, see Lemma 5.2.7. Since the boundary condition

of (5.2.115) is the same as (5.2.1), we are able to mimic the proof of the nonlinear functional. The

result is
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3X
kD0

@k@4�kt v
2
k
C

@k@4�kt q
2
k

≲"

 
3X
kD0

@4�kt v
2
k
C

@4�kt q
2
k

!
C P0 C P.e.nC1/.T //

Z T

0

P.e.nC1/.t// dt

C "

4X
kD0

Z T

0

@k@4�kt

�
.b � r QA/b

�2
0
C

@k@4�kt @tq
2
0

dt

(5.2.132)

Step 4: Tangential spatial derivative estimates

This part contains a non-trivial boundary integral. In the nonlinear estimates, that boundary term

together with Taylor sign condition gives the boundary part of nonlinear functional E�.T /. However,

here we no longer need Taylor sign condition. Instead, we can sacrifise 1=� to directly control the

boundary integral by using the mollifier property, because the derivative loss is only tangential.

Similarly as in Section 5.2.1.3, we rewrite the equation in terms of Alinhac good unknonws. Define

the Alinhac good unknowns of v;Q in (5.2.115) by

VV WD @
2
4v � @

2
4VQ� � r

VQA
v; VQ WD @

2
4Q � @

2
4VQ� � r

VQA
Q:

Then we take @
2
4 in the second equation of (5.2.115)

�0
VQJ
�1

@t VVCr VQA
VQ D VF (5.2.133)

where

VF WD @
2
4.. Vb � r

VQA
/b/C Œ�0

VQJ
�1

; @
2
4�@tv C �0

VQJ
�1

@t .@
2
4VQ�r

VQA
v/C VC.Q/:

The equation is subjected to

VQ D �@
2
4VQ�ˇ

VQA
3ˇ

.@NQ/ on �; (5.2.134)
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and

r
VQA
� VV D @

2
4.div

VQA
v/ � VC ˛.v˛/ in ˝: (5.2.135)

Multiplying VQJ VV and take space-time integral, we have

1

2

Z
˝

�0

ˇ̌̌
@t VV.t/

ˇ̌̌2
dy
ˇ̌̌̌T
0

D �

Z T

0

Z
˝

VQJr
VQA

VQ � VV dy dt C
Z T

0

Z
˝

VF � VV dy dt

D

Z T

0

VQJ .@NQ/@
2
4VQ�ˇ

VQA
3ˇ
VQA
3˛
VV˛ dS dt C

Z T

0

VQJ VQ@
2
4

�
div
VQA
v
�

dy dt

�

Z T

0

Z
˝

Q VC.v/ dy dt

D W LI0 C LI1 C LJ1:

(5.2.136)

Mimicing the estimates (5.2.68)-(5.2.71), we are able to control LI1 as

LI1 ≲ �
1

2

Z
˝

VQJR0. Vq/

�0

ˇ̌̌
@
2
4q

ˇ̌̌2
dy
ˇ̌̌̌T
0

C "

Z T

0

@24@tq2
0

dt

C P0 C
Z T

0

P.e.nC1/.t// dt:

(5.2.137)

For the boundary integral LI0, we integral @1=2 by parts to get

LI0 D

Z T

0

VQJ .@NQ/@
2
4VQ�ˇ

VQA
3ˇ
VQA
3˛
VV˛ dS dt

D

Z T

0

@1=2
�
VQJ .@NQ/@

2
4VQ�ˇ

VQA
3ˇ
VQA
3˛
�
@�1=2 VV˛ dS dt

≲
Z T

0

 
j.@NQ/jL1

ˇ̌̌̌
VQJ VQA

ˇ̌̌̌2
L1

ˇ̌̌
@
2
4VQ�

ˇ̌̌
1=2
C

ˇ̌̌̌
.@NQ/

VQJ VQA
3ˇ
VQA
3˛
ˇ̌̌̌
W
1
2
;4

ˇ̌̌
@
2
4VQ�ˇ

ˇ̌̌
L4

! ˇ̌̌
VV
ˇ̌̌
�1=2

dt:

By the mollifier property j@
2
4VQ�j1=2 ≲ ��1j V�j7=2 andH 1=2.T2/ ,! L4.T2/, we are able to control

LI0 by

LI0 ≲
1

�
P
�
kQk3; kvk4; k V�k4

�
: (5.2.138)

This together with (5.2.138) gives the tangential spatial estimates
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1

2

Z
˝

�0

ˇ̌̌
@4v

ˇ̌̌2
0

dy C
1

2

Z
˝

VQJR0. Vq/

�0

ˇ̌̌
@4q

ˇ̌̌2
0

dy

≲P0 C
Z T

0

P.e.nC1/.t// dt C "
Z T

0

@24 �. Vb � r VQA/b�20 C @24@tq20 dt

(5.2.139)

Step 5: Elliptic estimates of q

The control of k@5�kt qkk is the same as Section 5.2.1.4 so we omit the proof. However, we still

need to control kr
VQA
qk4. By Lemma 3.3.3, we have

kr
VQA
qk4 ≲ P.kVQ�k4/.k4 VQA

qk3 C k@VQ�k4kqk4/ ≲ P.kVQ�k4/k4 VQA
qk3 C

1

�
P.e.nC1/.T //: (5.2.140)

Taking div
VQA

in the second equation of (5.2.115), we get the wave equation of q

VQJR0. Vq/

�0
@2t q �4 VQA

q

Db � 4
VQA
b CR@t

VQA
�˛

@�v˛ �
h
div
VQA
; . Vb � r

VQA
/
i
b C jr

VQA
bj2

C

VQJR0. Vq/

�0

�
.r
VQA
Q � . Vb � r

VQA
/b/ � r

VQA
q
�
C

�
VQJ
R0. Vq/

�0
�
VQJR00.q/�0

�
.@tq/

2

DWb � 4
VQA
b C w00:

(5.2.141)

So k4
VQA
qk3 can be reduced to kb � 4

VQA
bk3 C kw00k3. Then k4

VQA
bk3 can again be reduced to the

terms with no more than 4 derivatives by the heat equation

@tb D 4 VQA
b D . Vb � r

VQA
/v � Vbdiv

VQA
v: (5.2.142)

Therefore we are able to reduce kr
VQA
qk4 to the finished estimates by sacrifising a 1=� with the help of

mollifier.
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Combining (5.2.140) with (5.2.100)-(5.2.102) (but replacing QA by VQA), we get

r VQAq4 C
4X
kD2

@5�kt q

k�1

≲

�
1C

1

�

��
P.e.nC1/.T //C

r VQA@4t q0 C @5t q0� (5.2.143)

Step 6: Common control of higher order heat and wave equation

We differentiate @4t in (5.2.141) and (5.2.142) to get

@5t b �4 VQA
@4t b D @

4
t

�
. Vb � r

VQA
/v � Vbdiv

VQA
v
�
C Œ@4t ;4 VQA

�b

D. Vb � r
VQA
/@4t v C b

VQJR0.q/

�0
@5t q C

h
@4t ;4 VQA

i
b C

h
@4t ;
Vb � r

VQA

i
v C

24@4t ; b VQJR0.q/�0

35 @tq
D W h55

(5.2.144)

and

VQJR0. Vq/

�0
@6t q �4 VQA

@4t q

Db � 4
VQA
@4t b C @

4
tw0 C

h
b � 4

VQA
; @4t

i
C

h
@4t ;4 VQA

i
q C

24 VQJR0. Vq/
�0

; @4t

35 @2t q:
Then plug the heat equation (5.2.144)4

VQA
b D @5t b � h55 to get

VQJR0.q/

�0
@6t q �4 VQA

@4t q

Db �
�
@5t b � h55

�
C @4tw0 C

h
b � 4

VQA
; @4t

i
C

h
@4t ;4 VQA

i
q C

24 VQJR0.q/
�0

; @4t

35 @2t q
DWw55

(5.2.145)

Similarly as in Section 5.2.1.4, we are able to get a common control of the energy functional of

these 2 equations. Define

eW .nC1/
WD
@5t q20 C r VQA@4t q20 ;
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then we have the analogue of (5.2.110)�
H .nC1/.T /C eW .nC1/.T /

�
�

�
H .nC1/.0/C eW .nC1/.0/

�

≲"
�
H .nC1/.T /C eW .nC1/.T /

�
C

Z T

0

H .nC1/.t/C eW .nC1/.t/C P.e.nC1/.t// dt

(5.2.146)

Step 7: Finalizing the a priori estimates

Summing up (5.2.126), (5.2.127), (5.2.128), (5.2.129), (5.2.130), (5.2.131), (5.2.132), (5.2.139),

(5.2.143) and (5.2.146), we get

E .nC1/.T / � E .nC1/.0/ ≲1=� "E .nC1/.T / C P.e.nC1/.T //C
Z T

0

P.E .nC1/.t// dt:

By Gronwall inequality, we can find some T� > 0 independent of n, such that

sup
0�t�T�

E .nC1/.t/ � P.E .nC1/.0// ≲ P0:

This finalizes the proof of Proposition 5.2.5.

5.2.2.4 Well-posedness of the linearized approximation system

This part presents a fixed-point argument to solve the linearized system (5.2.115)8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

@t� D v C V in ˝;

�0
VQJ
�1

@tv D . Vb � r VQA
/b � r

VQA
Q; Q D q C 1

2
jbj2 in ˝;

VQJR0. Vq/
�0

@tq C div
VQA
v D 0 in ˝;

@tb C curl
VQA
curl

VQA
b D . Vb � r

VQA
/v � Vbdiv

VQA
v; in ˝;

div
VQA
b D 0 in ˝;

q D 0; b D 0 on �;

.�; v; b; q/jftD0g D .Id; v0; b0; q0/:

Define the norm k � kXr by

kf k2Xr WD

rX
mD0

X
kClDm

@kt @lf 2
0
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and a Banach space on Œ0; T � �˝

X.M; T / WD
�
.�; w; h; �/

ˇ̌̌̌
.�; w; h; �/

ˇ̌̌̌
tD0

D .Id; v0; b0; q0/ ; k.�; w; h; �/kX �M

�

where

k.�; w; h; �/k2X WD
��; @t�; w; h;r VQAh; �; @t�;r VQA��2L1t X4

C k@5t hk
2

L2tL
2
x

Next we define the solution map

� W X.M; T /! X.M; T /

.�; w; h; �/ 7! .�; v; b; q/

as follows:

1. Define � by @t� D w C V with �.0/ DId

2. Define v by �0 VQJ
�1

@tv WD . Vb � r VQA
/h � r

VQA
.� C 1

2
jhj2/: with v.0/ D v0

3. Define b; q by the coupled system of heat equation and wave equation8̂̂̂̂
<̂̂
ˆ̂̂̂:
@tb C curl

VQA
curl

VQA
b D . Vb � r

VQA
/v � Vbdiv

VQA
v

div
VQA
b D 0

bj� D 0
b.0/ D b0

(5.2.147)

and8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

R0. Vq/@2t q �4 VQA
q D 4

VQA

�
1
2
jbj2

�
�

h
div
VQA
; . Vb � r

VQA
/
i
b

C �0
VQJ
�1

@t
VQA
�˛

@�v˛ C
VQA
�˛

@�.�0
VQJ
�1

/@tv˛ �
VQJ
�1

@t

�
VQJR0. Vq/

�
@tq

qj� D 0;

.q.0/; @tq.0// D .q0; q1/:

(5.2.148)

We need to verify the following things to prove the existence and uniqueness of the system (5.2.115).

1. The image of X.M; T / under � still lies in X.M; T /.

196



2. � is a contraction on X.M; T /.

We first prove � is a self-mapping of X.M; T /. The velocity is directly controlled by

�0
VQJ
�1

@tv WD . Vb � r VQA
/h � r

VQA
.� C

1

2
jhj2/:

k@4�kt v.T /k2k ≲k@4�kt v.0/k20 C

Z T

0

@4�kt

�
. Vb � r

VQA
/h � r

VQA
.� C

1

2
jhj2/

�2
k

≲k@4�kt v.0/k20 C

Z T

0

r VQAh2X4 C r VQA�2X4 dt

(5.2.149)

And thus the bound for k@t�kX4 and k�kX4 directly follows.

Next we control kbkX4 by elliptic estimates as in Section 5.2.1.2. For example

kbk4 � kr VQA
bk3 ≲ P.kVQ�k3/

�
k4 QAbk2 C k@

VQ�k3kbk3

�
:

Then invoking4
VQA
b D @tb � . Vb � r VQA

/v C Vbdiv
VQA
v to get

kbk4 ≲ P.kVQ�k3/
�
.kbk2 C k Vbk2/kvk3 C k@VQ�k3kbk3

�
:

Combining the estimates of v above, we are able to write

kbk4 ≲ P.kVQ�k3/k@VQ�k3kbk3 C kv.0/kX3 C

Z T

0

r VQAhX3
C

r VQA�X3
dt

Then one can repeat the same steps for kbk3 to get

kbk4 ≲ P0 C P.k V�k3/
Z T

0

r VQAhX3
C

r VQA�X3
dt (5.2.150)

Similar estimates hold for k@4�kt bkk for 1 � k � 4, while k@4t bk
2
0 is again reduced to

R T
0
k@5t bk

2
0 dt as

before.

One can mimic the proof above to estimate the space-time derivative of r
VQA
b or @tb. One exception
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is kr
VQA
bk4, for which we have to use the mollifier property.

kr
VQA
bk4 ≲ P.k V�k4/

�
k4
VQA
bk3 C

1

�
k V�k4kbk4

�
:

Again, invoking the heat equation and the X4 estimates of v, we get

kr
VQA
bk4 ≲ P0 C P.k V�k4/

Z T

0

r VQAhX4
C

r VQA�X4
dt

Similar estimates holds for the space-time derivatives except k@5t bkL2tL2x and kr
VQA
@4t bk0.

4X
kD1

r VQA@4�kt b
2
k
≲ P0 C P.k V�k4/

Z T

0

P
�r VQAhX4

;
r VQA�X4

�
dt: (5.2.151)

Analogously, we can apply the elliptic estimates and wave equation to q in order to reduce the

estimates to the full time derivatives. For example

kqk4 � kr VQA
qk3 ≲ P.kVQ�k3/

�
k4
VQA
qk2 C k@VQ�k3kqk3

�
Invoking the wave equation and heat equation

4 QAq D @
2
t q �4 QA.1=2jbj

2/C � � � D @2t q � @tb � .
Vb � r

VQA
/v C Vbdiv

VQA
v C � � � ;

we are able to reduce k4
VQA
qk2 to k@2t qk2 plus the terms with � 3 derivatives. Repeat the steps above,

we are able to reduce kqkX4 to k@4t qk0 and k@3t qk1. Similarly,

kr
VQA
qk4 ≲ P.kVQ�k4/

�
k4
VQA
qk3 C �

�1
k V�k4kqk4

�
Therefore, the control of kr

VQA
qkX4 and k@tqkX4 are reduced to k@5t qk0 and kr

VQA
@4t qk0.

The final step is to seek for a common control of 4-th order time-differetiated heat and wave

equations. The proof is the same as in Section 5.2.1.4 and step 6 in Section 5.2.2.3. The only thing we

would like to remark here is that there are terms like @5t v and @@4t v appearing in the time integral of the

source term. In this case, we can invoke the equation of v to eliminate one time derivative and reduce
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to the X4 norm of r QA� and . Vb � r
VQA
/h.

Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C

�r VQA@4t b20 C @5t q20 C r VQA@4t q20
� ˇ̌̌̌T

0

≲"
Z T

0

Z
˝

ˇ̌
@5t b

ˇ̌2
dy dt C

Z T

0

P
�@5t bL2tL2x ; �v;r VQAb; b; @tq; q;r VQAq�X4

�
dt

C P0 C
Z T

0

P
�r VQAhX4

;
r VQA�X4

; k@t�kX4

�
dt

(5.2.152)

By choosing " > 0 sufficiently small, we can absorb the "-term to LHS.

Summarizing these steps above, we find that, there exists some T� > 0 sufficiently small and M

chosen suitably large, such that

��; @t�; b;r VQAb; q; @tq;r VQAq�X4
<1: (5.2.153)

Next we prove � is a contraction. Pick any .�i ; wi ; hi ; �i / 7! .�i ; vi ; bi ; qi / and define Œf � WD

f1 � f2. Then by the linearity of the equations above, we know .Œ��; Œv�; Œb�; Œq�/ satisfies the same

equation with .�; w; h; �/ replaced by .Œ��; Œw�; Œh�; Œ��/ and zero initial data. Thus .Œ��; Œv�; Œb�; Œq�/

satisfies

k.Œ��; Œv�; Œb�; Œq�/kX ≲��1

Z T

0

P .k.Œ��; Œw�; Œh�; Œ��/kX/ dt:

Choosing a suitably small T� > 0 such that

k.Œ��; Œv�; Œb�; Œq�/kX �
1

2
k.Œ��; Œw�; Œh�; Œ��/kX ;

we know � is indeed a contraction. By Contraction Mapping Theorem, � has a unique fixed point

.�; v; b; q/, and thus the local existence and uniqueness of the solution to the linearized equation

(5.2.115) is established.
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5.2.2.5 Iteration to the nonlinear approximation system

For each n, we have already established the local existence and uniqueness of solution .�.nC1/; v.nC1/; b.nC1/; q.nC1//

to the n-th linearized approximation system8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@t�
.nC1/ D v.nC1/ C  .n/ in ˝;

�0
QJ .n/
@tv

.nC1/ D .b.n/ � ra.n//b
.nC1/ � r QA.n/Q

.nC1/; in ˝;
QJ .n/R0.q.n//

�0
@tq

.nC1/ C div QA.n/v
.nC1/ D 0 in ˝;

.@t C curl QA.n/curl QA.n//b
.nC1/ D .b.n/ � ra.n//v

.nC1/ � b.n/div QA.n/v
.nC1/; in ˝;

div QA.n/b
.nC1/ D 0 in ˝;

q.nC1/ D 0; b.nC1/ D 0 on �;

.�.nC1/; v.nC1/; b.nC1/; q.nC1//jftD0g D .Id; v0; b0; q0/:

This part shows the Picard-type iteration of the sequence f.�.n/; v.n/; b.n/; q.n//gn2N which gives

a subsequential limit .�; v; b; q/ converging in H 3-norm. Such limit .�; v; b; q/ exactly solves the

nonlinear �-approximation problem (5.2.1).

Define Œ��.n/ WD �.nC1/ � �.n/; Œv�.n/ WD v.nC1/ � v.n/; Œb�.n/ WD b.nC1/ � b.n/; Œq�.n/ WD

q.nC1/ � q.n/; and Œa�.n/ WD a.n/ � a.n�1/; ŒA�.n/ WD A.n/ �A.n�1/; Œ �.n/ WD  .n/ �  .n�1/. Then

these quantities satisfy the following system consisting of:

The equation of momentum

�0@t Œv�
.n/
D

�
b.n/ � r QA.n/

�
Œb�.n/ � r QA.n/ ŒQ�

.n/

C b.n/ � rŒ QA�.n/b
.n/
C Œb�.n�1/ � r

VQA
.n�1/b.n/ � r QA.n/Q

.n/:

(5.2.154)

Continuity equation:

r .n/@t Œq�
.n/
C div QA.n/ Œv�

.n/
D �div Œ QA�.n/v

.n/
C Œr�.n/@tq

.n/; (5.2.155)

here r .n/ WD VQJ
.n/

R0.q.n//=�0.
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Equation of magnetic field:

@t Œb�
.n/
�4 QA.n/ Œb�

.n/
D.b.n/ � r QA.n//Œv�

.n/
� b.n/div QA.n/ Œv�

.n/

C b.n/ � rŒ QA�.n/v
.n/
� b.n/div Œ QA�.n/v

.n/

C Œb�.n�1/ � r
VQA
.n�1/v.n/ � Œb�.n�1/div

VQA
.n�1/v.n/

C div QA.n/
�
rŒ QA�.n/b

.n/
�
C div Œ QA�.n/

�
r
VQA
.n�1/b.n/

�
:

(5.2.156)

Divergence-free condition for b:

div QA.n/ Œb�
.n/
D �div Œ QA�.n/b

.n/: (5.2.157)

The initial data of .Œ��; Œv�; Œb�; Œq�/ D .0; 0; 0; 0/. The boundary conditions are

Œb�.n/ D 0; Œq�.n/ D 0: (5.2.158)

Define the energy functional

ŒE �.n/.T / WD Œe�.n/.T /C ŒH �.n/.T /C ŒW �.n/.T /C
3X
kD0

@3�kt r QA.n/ Œb�
.n/
2
k
; (5.2.159)

where

Œe�.n/.T / WD

3X
kD0

�@3�kt Œv�.n/
2
k
C

@3�kt Œb�.n/
2
k
C

@3�kt Œq�.n/
2
k

�
; (5.2.160)

ŒH �.n/.T / WD

Z T

0

@4t Œb�n20 dt C
@3tr QA.n/ Œb�.n/2

0
; (5.2.161)

ŒW �.n/.T / WD
@4t Œq�.n/2

0
C

@3tr QA.n/ Œq�.n/2
0
: (5.2.162)

The conclusion is
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Proposition 5.2.8. For n sufficiently large and T� > 0 suitably small, we have that 8T 2 Œ0; T� �

Œe�.n/.T / �
1

4

�
ŒE�.n�1/.T /C ŒE�.n�2/.T /

�
:

□

By Proposition 5.2.8, we know Œe�.n/ � 1
2n
P�.P0/, and thus yields the limit for each fixed � > 0:

�
�.n/; v.n/; b.n/; q.n/

� converge strongly
����������! .�.�/; v.�/; b.�/; q.�// as n!1:

Such limit exactly solves the nonlinear approximation system 5.2.1.

Corollary 5.2.9. The limit .�.�/; v.�/; b.�/; q.�// gotten in Proposition 5.2.8 is the unique strong

solution to the nonlinear approximation system (5.2.1) and satisfies the energy estimates in Œ0; T� �

sup
0�T�T�

eE�.T / � 2 �kv0k24 C kb0k25 C kq0k24� ;
where

eE�.T / WDee�.T /C eH�.T /C eW�.T /C 4X
kD0

@4�kt

�
.b.�/ � r QA/b.�/

�2
k
; (5.2.163)

and

ee�.T / WD k�k24 C 4X
kD0

@4�kt v.�/
2
k
C

4X
kD0

@4�kt b.�/
2
k
C

4X
kD0

@4�kt q.�/
2
k

(5.2.164)

eH�.T / WD Z T

0

Z
˝

ˇ̌
@5t b.�/

ˇ̌2
dy dt C

@4t b.�/21 (5.2.165)

eW�.T / WD 4X
kD0

r QA@4�kt q.�/
2
k
C
@5t q.�/20 : (5.2.166)

□

The proof process is nearly the same as in the a priori estimates part, so we do not write all details

here but still state the main steps.
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Step 1: Correction Terms

First we estimate the coefficients and correction terms.

Œ �.n/ satisfies �4Œ �.n/ D 0 with the boundary condition

Œ �.n/ D 4�1P¤0
�
4Œ��

.n�1/

ˇ
QA.n/iˇ@i�

2
�v
.n/
C @�

.n�1/

ˇ
Œ QA�.n/iˇ@i�

2
�v
.n/

C @�
.n�1/

ˇ
QA.n�1/iˇ@i�

2
� Œv�

.n�1/
�4�2� Œ��

.n�1/

ˇ
QA.n/iˇ@iv

.n/

�4�2��
.n�1/

ˇ
Œ QA�.n/iˇ@iv

.n/
�4�2��

.n�1/

ˇ
QA.n�1/iˇ@i Œv�

.n�1/

�
:

By the standard elliptic estimates, we have the control for Œ �.n/

kŒ �.n/k23 ≲ jŒ �
.n/
j2:5 ≲ P0

�
kŒ��.n�1/k23 C kŒv�

.n�1/
k
2
2 C kŒ

QA�.n/k21

�
: (5.2.167)

On the other hand, we have

Œa�.n/��.T / D

Z T

0

@t .a
.n/��

� a.n�1/��/ dt

D �

Z T

0

Œa�.n/�@ˇ@t�
.n/
 a.n/ˇ� C a.n�1/�@ˇ@t Œ��

.n�1/
 a.n/ˇ� C a.n�1/�@ˇ@t�

.n�1/
 Œa�.n/ˇ� ;

which gives

kŒa�.n/.T /k2 ≲ P0
Z T

0

kŒa�.n/.t/k22.kŒv�
.n�1/
k3 C kŒ �

.n�1/
k3// dt: (5.2.168)

Therefore we get

sup
Œ0;T �

kŒa�.n/k22 ≲ P0T 2
�
kŒa�.n/; Œa�.n�1/kL1t H2 C kŒv�

.n�1/; Œv�.n�2/; Œ��.n�2/k2
L1t H

3

�
; (5.2.169)

and the bound for Œ�� via @t Œ��.n/ D Œv�.n/ C Œ �.n/:

sup
Œ0;T �

kŒ��.n/k23 ≲ P0T 2
�
kŒa�.n/k2

L1t H
2 C kŒv�

.n/; Œv�.n�1/; Œ��.n�1/k2
L1t H

3

�
(5.2.170)
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Similar as in Lemma 5.2.4, we control the time derivatives of Œ�� and Œ �

kŒ@t �
.n/
k
2
3 ≲P0

�
kŒa�.n/k22 C kŒ@tv�

.n�1/
k
2
2 C kŒv�

.n�1/; Œ��.n�1/k23

�
(5.2.171)

kŒ@2t �
.n/
k
2
2 ≲P0

�
kŒa�.n/k22 C kŒ@

2
t v�

.n�1/
k
2
1 C kŒ@tv�

.n�1/
k
2
2 C kŒv�

.n�1/; Œ��.n�1/k23

�
(5.2.172)

kŒ@3t �
.n/
k
2
1 ≲P0

�
kŒa�.n/k22 C kŒ@

2
t v�

.n�1/
k
2
1 C kŒ@

3
t v�

.n�1/
k
2
0

C kŒ@tv�
.n�1/
k
2
2 C kŒv�

.n�1/; Œ��.n�1/k23
�

(5.2.173)

kŒ@t��
.n/
k
2
3 ≲P0T 2

�
kŒa�.n/; Œ@tv�

.n/; Œ@tv�
.n�1/
k
2
L1t H

2 C kŒv�
.n/; Œv�.n�1/; Œ��.n�1/k2

L1t H
3

�
(5.2.174)

kŒ@2t ��
.n/
k
2
2 ≲P0T 2

�
kŒ@2t v�

.n/;.n�1/
k
2
L1t H

1 C kŒa�
.n/; Œ@tv�

.n/;.n�1/
kL1t H

2

C kŒv�.n/;.n�1/; Œ��.n�1/k2
L1t H

3

�
(5.2.175)

kŒ@3t ��
.n/
k
2
1 ≲P0

�
kŒ@2t v�

.n/;.n�1/
k
2
L1t H

1 C kŒa�
.n/; Œ@tv�

.n/;.n�1/
k
2
L1t H

2

C kŒv�.n/;.n�1/; Œ��.n�1/k2
L1t H

3

�
: (5.2.176)

kŒ@4t ��
.n/
k
2
0 ≲P0

�
kŒ@3t v�

.n;n�1/
k
2

L1t L
2
x
C kŒ@2t v�

.n;n�1/
k
2
L1t H

1 C kŒa�
.n/; Œ@tv�

.n;n�1/
k
2
L1t H

2

(5.2.177)

C kŒv�.n;n�1/; Œ��.n�1/k2
L1t H

3

�
: (5.2.178)

Step 2: Magnetic field and Lorentz force

The first step is still the elliptic estimates of Œb�.n/. We show an example of kŒb�.n/k3:

kŒb�.n/k3 ≲ P.kVQ�
.n/
k2/

�
k4 QA.n/ Œb�

.n/
k1 C P.k@VQ�k2/kŒb�

.n/
k2

�
:
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One can still use the heat equation (5.2.156) to eliminate the Laplacian terms, but now we have two

more higher order terms when “[�]" falls on div
VQA

or VQA. Such terms can be controlled directly by

E .n�1;n;nC1/ and thus by P0. In specific, such terms are

div QA.n/
�
rŒ QA�.n/b

.n/
�
1
C

div Œ QA�.n/

�
r
VQA
.n�1/b.n/

�
1

:

The leading order part in these two terms can be written as Œ QA�.n/ times the top order derivatives (4-th

order) of b.n/ which has been controlled uniformly in n in Proposition 5.2.5. For example,

div QA.n/
�
rŒ QA�.n/b

.n/
�
1
≲
Œ QA�.n/

2

b.n/
4
� � � � ≲ P0

Œ QA�.n/
2

Therefore, the control of Œb�.n/ can be controlled in the same manner as before. Similar estimates

hold for @t Œb�.n/. The control of k@2t Œb�k1 and k@3t Œb�k0 is reduced to the estimates of heat equation

(5.2.156). The proof is the same as Section 5.2.1.2 so we omit it here.

The Lorentz force is controlled in a silimar way. For example,

r QA.n/ Œb�.n/
3
≲ P

�
kVQ�
.n/
k3

��4 QA.n/ Œb�.n/
2
C

@VQ�.n/
3

Œb�.n/
3

�

We again use the heat equation (5.2.156) to eliminate the Laplacian term, and the extra terms can be

controlled in the same way as above. (Note that kr
VQA
bk4 is controlled in Proposition 5.2.5). Therefore,

r QA.n/ Œb�.n/
3
≲ ��1P0

Œ QA�.n/
2
:

Similar estimates hold for the time derivatives of Lorentz force.
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Step 3: Div-Curl estimates

The control of Œv�.n/ and Œq�.n/ also follows the same way as Section 5.2.1.3. The equation of

curl QA.n/ Œv�
.n/ is

�0@tcurl QA.n/ Œv�
.n/
Dcurl QA.n/

�
.b.n/ � r QA.n//Œb�

.n/
�
C
�
�0@t ; curl QA.n/

�
Œv�.n/

C curl QA.n/
�
Œb�.n�1/ � r

VQA
.n�1/b.n/ C b.n�1/ � rŒ QA�.n/b

.n/
� rŒ QA�.n/Q

.n/

�
(5.2.179)

The first two terms in the second line is controlled in the same way as before(just consider curl QA.n/ as

the covariant derivative r QA.n/ . Also

curl QA.n/
�
rŒ QA�.n/Q

.n/
�
2
≲ kŒa�.n/k2kQ

.n/
k4P0 ≲ kŒa�.n/k2P0:

Therefore,

kcurl Œv�.n/k22 ≲ "kŒv�.n/k23 C P�.P0/T 2 sup
Œ0;T �

ŒE �.n/;.n�1/.t/:

And similarly

kcurl Œ@tv�.n/k21 ≲ "kŒ@tv�
.n/
k
2
2 C P�.P0/T 2 sup

Œ0;T �

ŒE �.n/;.n�1/.t/;

kcurl Œ@2t v�
.n/
k
2
0 ≲ "kŒ@2t v�

.n/
k
2
1 C P�.P0/T 2 sup

Œ0;T �

ŒE �.n/;.n�1/.t/:

Invoking (5.2.155), we are still able to reduce that control to @3t v and @3t q.

Step 4: Space-time tangential estimates

Let D3 D @2@t ; @@
2
t ; @

3
t . Follwing Section 5.2.1.3, we derive the estimates

3X
kD1

@3�k@kt Œv�.n/2
0
C

@3�k@kt Œq�.n/2
0
≲
Z T

0

P.ŒE �.n/;.n�1/;.n�2/.t// dt: (5.2.180)
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Step 5: Spatial tangential estimates

We adopt the same method as in Section 5.2.1.3. For each n, we define the Alinhac good unknowns by

V.nC1/ D @3v.nC1/� @3 Q�.n/ � r QA.n/v
.nC1/; Q.nC1/

D @3Q.nC1/
� @3 Q�.n/ � r QA.n/Q

.nC1/: (5.2.181)

Their difference is denoted by

ŒV�.n/ WD V.nC1/ � V.n/; ŒQ�.n/ WD Q.nC1/
�Q.n/:

Similarly as in Section 5.2.1.3, we can derive the analogue of (5.2.61) as

�0@t ŒV�.n/ Cr QA.n/ ŒQ�
.n/
D �rŒ QA�.n/Q

.n/
C F.n/; (5.2.182)

subject to the boundary condition

ŒQ�.n/j� D �
�
@3 Q�

.n/

ˇ
QA.n/3ˇ@3ŒQ�

.n/
C @3Œ Q��

.n�1/

ˇ
QA.n/3ˇ .@NQ/

.n/
C @3 Q�

.n�1/

ˇ
Œ QA�.n/3ˇ .@NQ/

.n/
�
;

(5.2.183)

and

r QA.n/ � ŒV�
.n/
D �rŒ QA�.n/ � V

.n/
CG.n/; (5.2.184)

207



where

F.n/˛ D Œ�0; @3�@t Œv�.n/˛ C @3
�
.b.n/ � r QA.n//Œb�

.n/
C .b.n/ � r

Œ QA�.n/
/b.n/ C .Œb�.n�1/ � r QA.n�1//b

.n/
�

C �0@t

�
@3Œ Q��

.n�1/
ˇ

QA.n/�ˇ@�v
.nC1/
˛ C @3 Q�

.n�1/
ˇ

Œ QA�.n/�ˇ@�v
.nC1/
˛ C @3 Q�

.n�1/
ˇ

QA.n/�ˇ@�Œv�
.n/
˛

�
C Œ QA�.n/�ˇ@�. QA

.n/˛@Q
.nC1//@3 Q�

.n/
ˇ
C QA.n�1/�ˇ@�.Œ QA�

.n/˛@Q
.nC1//@3 Q�

.n/
ˇ

C QA.n�1/�ˇ@�. QA
.n�1/˛@ ŒQ�

.n//@3 Q�
.n/
ˇ
C QA.n�1/�ˇ@�.Œ QA�

.n/˛@h
.n//@3Œ Q��

.n�1/
ˇ

�

h
@2; Œ QA�.n/�ˇ QA.n/˛@

i
@ Q�

.n/
ˇ
@�Q

.nC1/
�

h
@2; QA.n�1/�ˇ Œ QA�.n/˛@

i
@ Q�

.n/
ˇ
@�Q

.nC1/

�

h
@2; QA.n�1/�ˇ QA.n�1/˛@

i
@ Œ Q��

.n�1/
ˇ

@�Q
.nC1/

�

h
@2; QA.n�1/�ˇ QA.n�1/˛@

i
@ Q�

.n�1/
ˇ

@�ŒQ�
.n/

�

h
@3; Œ QA�.n/�˛ ; @�Q

.nC1/
i
�

h
@3; QA.n�1/�˛ ; @�ŒQ�

.n/
i

and

G.n/
D @3.div QA.n/ Œv�

.n/
� div Œ QA�.n/v

.n//

�

h
@2; Œ QA�.n/�ˇ QA.n/˛@

i
@ Q�

.n/

ˇ
@�v

.nC1/
˛ �

h
@2; QA.n�1/�ˇ Œ QA�.n/˛@

i
@ Q�

.n/

ˇ
@�v

.nC1/
˛

�

h
@2; QA.n�1/�ˇ QA.n�1/˛@

i
@ Œ Q��

.n�1/

ˇ
@�v

.nC1/
˛

�

h
@2; QA.n�1/�ˇ QA.n/˛@

i
@ Q�

.n�1/

ˇ
@�Œv�

.n/
˛

�

h
@3; Œ QA�.n/�˛; @�v

.nC1/
˛

i
�

h
@3; QA.n�1/�˛; @�Œv�

.n/
˛

i

C Œ QA�.n/�ˇ@�. QA
.n/˛@v

.nC1/
˛ /@3 Q�

.n/

ˇ
C QA.n�1/�ˇ@�.Œ QA�

.n/˛@v
.nC1/
˛ /@3 Q�

.n/

ˇ

C QA.n�1/�ˇ@�. QA
.n�1/˛@ Œv�

.n/
˛ /@3 Q�

.n/

ˇ
C QA.n�1/�ˇ@�.Œ QA�

.n/˛@v
.n/
˛ /@3Œ Q��

.n�1/

ˇ
:
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Multiplying ŒV�.n/ in (5.2.182) and integrate by parts, we get

1

2

d

dt

V.n/
2
0
D

Z
˝

ŒQ�.n/
�
r QA.n/ � ŒV�

.n/
� @� QA

�˛ŒV�.n/˛
�

dy

C

Z
˝

.F.n/ � rŒ QA�.n/Q
.n// � ŒV�.n/ dy

�

Z
�

ŒQ�.n/ QA.n/3˛ŒV�.n/˛ dS:

Similarly as in Section 5.2.1.3, we are able to control the first three terms by using ŒQ� D

Œq�C 1
2
Œjbj2�

�
1

2

d

dt

@4Œq�.n/2
0
C P0P.ŒE �.n/;.n�1/.t//:

For the boundary term, we integrate @1=2 by parts as in (5.2.138) to get

�

Z
�

ŒQ�.n/ QA.n/3˛ŒV�.n/˛ dS

D

Z
�

@3ŒQ�
.n/ QA.n/3˛ŒV�.n/˛

�
@3 Q�

.n/

ˇ
QA.n/3ˇ C @3Œ Q��

.n�1/

ˇ
QA.n/3ˇ C @3 Q�

.n�1/

ˇ
Œ QA�.n/3ˇ

�

≲ jŒV�.n/j PH�0:5
�
1

�
P0
ˇ̌̌
Œ��.n�1/

ˇ̌̌
2:5
C
Œ QA�

2

�
:

This finalizes the tangential estimates.

Step 6: Elliptic estimates of Œ@tq�.n/

Since Œq�.n/ vanishes on the boundary, we can still use Lemma 3.3.3 to reduce the spatial derivative

to time derivative by replacing the Laplacian term with @2t plus source terms. We only list the wave
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equation of Œq�.n/ and omit the computation.

�
VQJ
.n/

R0.q.n//@2t Œq�
.n/
�4 QA.n/ Œq�

.n/

D
1

2
4 QA.n/ Œjbj

2�.n/ � div QA.n/
�
.b.n/ � r QA.n//Œb�

.n/
�
C @t

�
VQJ
.n/

R0.q.n//

�
@t Œq�

.n/

C div QA.n/
�
r QA.n/Q

.n/
� .b.n/ � rŒ QA�.n//b

.n/
� .Œb�.n�1/ � r QA.n�1//b

.n/
�

�

�
div Œ QA�.n/v

.n/
C Œ VQJR0.q/�.n/@tq

.n/

�
:

(5.2.185)

Note that div QA.n/
�
.b.n/ � r QA.n//Œb�

.n/
�

only contains first order derivative of Œb�.n/ because of the

divergence-free condition on b.n/.

Step 7: Common control of heat and wave equations

Differentiate @3t in (5.2.156) and (5.2.185), we are able to get similar estimates of ŒW �.nC1/ andH .nC1/

as in Section 5.2.1.4. We omit the proof here.

Finally, we conclude that

ŒE �.nC1/ ≲� P0T 2
�
ŒE �.n/ C ŒE �.n�1/

�
;

where we pick T� suitably small such that the coefficient � 1=4. This ends the proof of Proposition

5.2.8 and Corollary 5.2.9.

5.2.3 Local well-posedness of the original system

As stated in Corollary 5.2.9, the local well-posedness of the nonlinear approximation system (5.2.1)

is established in an �-dependent time interval Œ0; T� �. Combining the uniform-in-� nonlinear a priori

estimates Proposition 5.2.2, we know that there exists a �-independent time T1 > 0, such that the local

existence of the solution .�; v; b; q/ to the original equation (2.3.1) holds in Œ0; T1� by letting � ! 0. It
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remains to prove the uniqueness of the solution. Let us recall the original equation first8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in ˝;

�0J
�1@tv D .b � rA/b � rAQ; Q D q C

1
2
jbj2 in ˝;

JR0.q/
�0

@tq C div av D 0 in ˝;

@tb C curl Acurl Ab D .b � rA/v � bdiv av; in ˝;

div ab D 0 in ˝;

q D 0; b D 0; � .@NQ/jtD0 � c0 > 0 on �;

.�; v; b; q/jftD0g D .Id; v0; b0; q0/:

Suppose .�i ; vi :bi ; qi /; i D 1; 2 solves (2.3.1) with the same initial data .Id; v0; b0; q0/. Then we

consider the system of .Œ��; Œv�; Œb�; Œq�/ by setting Œf � WD f 1 � f 2. Then we have

The flow map:

@t Œ�� D Œv�:

The momentum equation:

�0.J
1/�1@t Œv� D .b

1
� ra1/Œb� � ra1 ŒQ� � �0ŒJ

�1�@tv
2
C .b1 � rŒa�/b

2
C Œb� � ra2b

2
� rŒa�Q

2:

The continuity equation:

J 1R0.q1/

�0
@t Œq�C div a1 Œv� D

�
JR0.q/

�0

�
@tq

2
� div Œa�v2 in ˝:

The equation of magnetic field:

@t Œb� �4a1 Œb� D.b
1
� ra1/Œv� � bdiv aŒv�

C div a1
�
rŒa�b

2
�
C div Œa�

�
ra2b

2
�

C .b1 � rŒa�/v
2
C .Œb� � ra2/v

2

� b1div Œa�v2 � Œb�div a2v
2;
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and

div a1 Œb� D �div Œa�b2:

The boundary conditions:

Œq� D 0; Œb� D 0; � .@NQ/1 and � .@NQ/2jtD0 � c0 > 0;

and zero initial data.

Define the energy functional

ŒE �.T / WD Œe�.T /C ŒH �.T /C ŒW �.T /C
@2�kt

��
b1 � ra1

�
Œb�
�2
k
;

where

Œe�.t/ WD kŒ��k22 C
ˇ̌̌
QA3˛@2Œ��˛

ˇ̌̌2
0
C

2X
kD0

�@2�kt Œv�
2
k
C

@2�kt Œb�
2
k
C

@2�kt Œq�
2
k

�
;

ŒH �.T / WD

Z T

0

Z
˝

ˇ̌
@3t Œb�

ˇ̌2
dy dt C

@2t Œb�21 ;
ŒW �.T / WD

@3t Œq�20 C @2t Œq�21 :
The energy estimate of ŒE � is almost the same as E� except that ŒQ� no longer satisfies Taylor sign

condition. So what we need to do is to investigate the boundary integral

Z
�

ŒQ�.a1/3˛ŒV�˛ dS;

where we define the Alinhac good unknowns

Vi D @2vi � @2�i � rai v
i ; Qi

D @2Qi
� @2�i � raiQ

i ;

and

ŒV� WD V1 � V2; ŒQ� WD Q1
�Q2:
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The boundary terms then becomes

Z
�

ŒQ�.a1/3˛ŒV�˛ D �
Z
�

@3ŒQ�@
2�2ˇ .a

2/3ˇ .a2/3˛ŒV�˛ dS

�

Z
�

.@NQ/
1.@2Œ��ˇ .a

1/3ˇ C @2�2ˇ Œa�
3ˇ /.a1/3˛ŒV�˛ dS

≲ �
1

2

d

dt

Z
�

.@NQ/
1
j.a1/3˛@2Œ��˛j

2
0 dS

�

Z
�

.@NQ/
1.a1/3@2Œ�� .@

2�2ˇ Œa�
�ˇ@�v

1
˛ � @

2�2ˇ .a
2/�ˇ@�Œv�˛/.a

1/3˛ dS

�

Z
�

.@NQ/
1.@2Œ��ˇ .a

1/3ˇ C @2�2ˇ Œa�
3ˇ /.a1/3˛ŒV�˛ dS

≲ �
c0

2

d

dt

Z
�

j.a1/3˛@2Œ��˛j
2
0 dS C P.initial data/P.ŒE �.t//:

Here in the second step we use the precise formula of ŒV�, and in the third step we use Taylor sign

condition for Q1. Thus similarly we get

sup
t2Œ0;T1�

ŒE �.t/ � initial dataC
Z T0

0

P.ŒE �.t// dt:

Since the initial data of the system of .Œ��; Œv�; Œb�; Œq�/ is 0, we know ŒE �.t/ D 0 for all t 2 Œ0; T1�.

Conclusively, the local well-posedness of (2.3.1) is established in Lagrangian coordinates with Sobolev

initial data.

5.2.4 The Incompressible limit

The incompressible limit requires the energy estimate for .�; v; b; q/ that is uniform in the sound speed,

or equivalently, does not rely on 1=R0.q/. The problem arises in the control of the wave equation

R0.q/@tq �4Aq D � � � ;
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and its time differentiatied versions (cf. Section 5.2.1.4). Note that LHS only gives the energy

of
p
R0.q/@tq but the RHS requires the control of @tq. To avoid the loss of weight function, we

can add R0.q/ in the control of full time derivatives. Rigorously speaking, we first parametrize the

reciprocal of the sound speed to be " WD R0.q/jRD1. Under this setting, we denote the unknowns to be

.v"; b"; q"; R"/ and lim"!0C R
".p"/ D 1. Then, for (2.3.1) with the initial data .v"0;b0; �

"
0; q

"
0/ whose

sound speed is "�1, we define the weighted energy to be

E".T / WD e".T /CH ".T /CW ".T /C

4X
kD0

@4�kt ..b" � rA"/ b
"/
2
k
; (5.2.186)

where

e".T / WD k�"k24 C
ˇ̌̌
@4�" � On

ˇ̌̌2
0
C

4X
kD1

�@4�kt v"
2
k
C

pR0.q"/@4�kt b"
2
k
C

@4�kt q"
2
k

�

C

pR0.q"/@4t v"2
k
C
@4t b"2k C R0.q"/@4t q"2k (5.2.187)

H ".T / WD

Z T

0

Z
˝

ˇ̌
@5t b

"
ˇ̌2

dy dt C
@4t b"21 ; (5.2.188)

W ".T / WD
R0.q"/@5t q"20 C pR0.q"/@4t q"21 : (5.2.189)

Following the same method as in Section 5.2.1, we can prove that: there exists some T 01 > 0, such that

the .�"; v"; b"; q"/ in Œ0; T 01� satisfying the following estimates

sup
0�T�T 0

1

E".T / � P .kv0k4 ; kb0k5 ; kq0k4/ : (5.2.190)

Let .v0;b0/ be the divergence-free vector fields with b0j� D 0. Let q0 be the solution to

4.q0 C
1

2
jb0j2/ D �@�v˛0@˛v�0 C @�b˛0@˛b�0 ; q0j� D 0

and satisfy the Rayleigh-Taylor sign condition �@N .q0 C 1
2
jb0j2/ � c0 > 0. Let .v;b;q/ be the
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solution to the incompressible resistive MHD equations with initial data .v0;b0/8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t� D v in Œ0; T � �˝

@tv D
�
b � rA.�/

�
b � rA.�/.qC 1

2
jbj2/ in Œ0; T � �˝

div A.�/v D 0 in Œ0; T � �˝

@tbC �curl A.�/curl A.�/b D .b � rA/ v in Œ0; T � �˝

div A.�/b D 0 in Œ0; T � �˝

b D 0; q D 0; � @q0
@N
j� � c0 > 0 on Œ0; T � � �

.�; v;b;q/jtD0 D .Id; v0;b0;q0/:

(5.2.191)

Therefore, by the compactness argument, we can pass the limit as " ! 0 to the incompressible

counterpart. This concludes the proof of Theorem 2.3.1.

1. There exists .v"0;b0; �
"
0; q

"
0/, the initial data of (2.3.1) with sound speed equal to "�1, satisfying

the conditions mentioned in Theorem 2.3.1 and .v"0; �
"
0/

C1

��! .v0; 1/ as "! 0.

2. Let .v"; b"; R"; q"/ be the solution to (2.3.1) with initial data .v"0;b0; �
"
0; q

"
0/. Then we have

.v"; b"; R"/
C1

��! .v;b; 1/ as "! 0.

5.3 Anisotropic Regularity of the Free-Boundary Problem in Com-
pressible Ideal MHD

Now we turn to prove the a priori estimates of the free-boundary compressible ideal MHD system in

the anisotropic Sobolev space, i.e., Theorem 2.4.1. We first impose the following a priori assumptions:

There exists some T1 > 0, such that the solution .�; v;Q/ to the system (2.4.1) satisfies

kJ � 1k7;� �
1

4
(5.3.1)

�
@Q

@N
�
3

4
c0: (5.3.2)

5.3.1 Control of purely non-weighted normal derivatives

We first consider the case of purely normal derivatives. We aim tio prove
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Proposition 5.3.1. The following energy inequality holds

k@43vk
2
0 C

@43 �J�1.b0 � @/��20 C k@43qk20 C c0

4

ˇ̌
A3˛@43�˛

ˇ̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.3)

5.3.1.1 Evolution equation of Alinhac good unknowns

We first compute the estimates of purely normal derivatives. When hI i D 8, the purely non-weighted

normal derivative should be @I� D @
4
3. First we introduce the following Alinhac good unknowns of v

and Q with respect to @43

V˛ WD @43v˛ � @
4
3�� A

�� @�v˛; Q WD @43Q � @
4
3�� A

�� @�Q: (5.3.4)

Then we have that for any function f

@43.r
i
Af / D r

˛
A.@

4
3f /C .@

4
3A

�˛/@�f C Œ@
4
3; A

�˛; @�f �

D r
i
A.@

4
3f / � @

3
3.A

�� @3@ˇ�� A
ˇ˛/@�f C Œ@

4
3; A

�˛; @�f �

D r
i
A.@

4
3f � @

4
3�� A

�� @�f„ ƒ‚ …
good unknowns

/

C @43��r
i
A.r

p
Af / � .Œ@

3
3; A

��Aˇ˛�@3@ˇ��/@�f C Œ@
4
3; A

�˛; @�f �„ ƒ‚ …
DWC i .f /

;

(5.3.5)

and thus

rA � V D @43.div Av/ � C i .v˛/; rAQ D @43.rAQ/ � C.Q/; (5.3.6)

where the commutator satisfies the estimate

kC.f /k4 ≲ P.k�k4/kf k4: (5.3.7)

216



Now taking @43 yields the evolution equation of the Alinhac good unknowns

R@tV � J�1.b0 � @/@43
�
J�1.b0 � @/�

�
CrAQ

D
�
R; @43

�
@tv C

�
@43; J

�1.b0 � @/
�
b � C.Q/ �R@t .@

4
3� � rAv/„ ƒ‚ …

DWF

:

(5.3.8)

Taking L2.˝/-inner product of (5.3.8) and JV and using �0 D RJ yields

1

2

d

dt

Z
˝

�0 jVj2 dy D
Z
˝

.b0 � @/@
4
3.J
�1.b0 � @/�/ � V �

Z
˝

.rAQ/ � VC
Z
˝

JF � V: (5.3.9)

5.3.1.2 Interior estimates

The third integral on the RHS of (5.3.9) can be directly controlled

Z
˝

JF � V ≲ kJFk0kVk0 ≲ P.k�0k4; kb0k4; k�k4; kJ
�1.b0 � @/�k4; kQk4; kvk4; k@tvk3/kVk0:

(5.3.10)

The first integral on the RHS of (5.3.9) gives the energy of magnetic field b D J�1.b0 � @/� after

integrating .b0 � @/ by parts. Note that b30 j� D 0 and div b0 D 0, there will be no boundary integral. In

specific, we haveZ
˝

.b0 � @/@
4
3.J
�1.b0 � @/�/ � V dy D �

Z
˝

@43.J
�1.b0 � @/�/ � .b0 � @/V dy

D�

Z
˝

@43.J
�1.b0 � @/�/ � .b0 � @/@

4
3v dy C

Z
˝

@43.J
�1.b0 � @/�/ � .b0 � @/.@

4
3� � rAv/ dy„ ƒ‚ …

DWL1

D�

Z
˝

J@43.J
�1.b0 � @/�/ � @

4
3@t .J

�1.b0 � @/�/ dy

�

Z
˝

J@43.J
�1.b0 � @/�/ �

�
J�1.b0 � @/; @

4
3@t
�
� dy„ ƒ‚ …

K1

CL1

D�
1

2

d

dt

Z
˝

J
ˇ̌
@43.b0 � @/�

ˇ̌2
dy C

1

2

Z
˝

@tJ
ˇ̌
@43.b0 � @/�

ˇ̌2
dy CK1 C L1:

(5.3.11)
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The term L1 can be directly controlled

L1 ≲ P .k.b0 � @/�k4; k�k4; kb0k4; kvk4/ : (5.3.12)

The term K1 produces a higher order term when @43@t falls on J�1. We invoke @tJ D J div QAv to

get
�
�
J�1.b0 � @/; @

4
3@t
�
�

D@43@t .J
�1/ .b0 � @/�C

3X
ND0

@N3 @t .J
�1/ @4�N3 b0 � @�

C

3X
MD0

@t

�
@M3 .J

�1bl0/ @�@
4�M
3 �

�

D� J�1@43.div QAv/ .b0 � @/�C
�
Œ@43; J

�1�div QAv
�
.b0 � @/�

C

3X
ND0

@N3 @t .J
�1/.@4�N3 bl0/.@��/C

3X
MD0

@t

�
@M3 .J

�1bl0/@�@
4�M
3 �

�

DW � J�1@43.div QAv/ .b0 � @/�CKL1

(5.3.13)

and thus
K1 D�

Z
˝

J@43.J
�1.b0 � @/�/ �

�
J�1.b0 � @/�

�
@43.div QAv/ dy„ ƒ‚ …

K11

C

Z
˝

J@43.J
�1.b0 � @/�/ � .KL1/

≲K11 C kJ kL1kJ
�1.b0 � @/�k4kKL1k0

≲K11 C P .k.b0 � @/�k4; k�k4; kb0k4/ :

(5.3.14)

Summarizing (5.3.11)-(5.3.14), we get the following estimatesZ
˝

.b0 � @/@
4
3.J
�1.b0 � @/�/ � V dy

≲ �
1

2

d

dt

Z
˝

J
ˇ̌
@43.b0 � @/�

ˇ̌2
dy CK11 C P .k.b0 � @/�k4; k�k4; kb0k4; kvk4/ :

(5.3.15)
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We note that the termK11 cannot be directly controlled, but will be cancelled by another term produced

by �
R
˝
.rAQ/ �V. Next we analyze the second integral on the RHS of (5.3.9). Integraing by parts and

invoking Piola’s identity @�Ali D 0, we get

�

Z
˝

.rAQ/ � V dy D
Z
˝

JQ.rA � V/ dy �
Z
�

JQA�˛N�V˛ dS DW I C IB: (5.3.16)

Plugging (5.3.4) and (5.3.6) as well as Q D q C 1
2
jbj2 into I , we get

I D

Z
˝

J@43q @
4
3.div QAv/C

Z
˝

J@43

�
1

2

ˇ̌
J�1.b0 � @/�

ˇ̌2�
@43.div QAv/

�

Z
˝

@43�� A��@�Q@43.div QAv/ �
Z
˝

@43QC.v/

DWI1 C I2 C I3 C I4:

(5.3.17)

The term I4 can be directly controlled by using (5.3.7)

I4 ≲ kQk4kC.v/k0 ≲ P.k�k4/kQk4kvk4: (5.3.18)

The term I1 gives the energy of q by invoking div QAv D �
@tR

R
D �

JR0.q/

�0
@tq

I1 D�

Z
˝

J@43q @
4
3

�
JR0.q/

�0
@tq

�

D�
1

2

d

dt

Z
˝

J 2R0.q/

�0

ˇ̌
@43q

ˇ̌2
dy C

1

2

Z
˝

@t

�
J 2R0.q/

�0

� ˇ̌
@43q

ˇ̌2
�

Z
˝

J@43q

��
@43;

JR0.q/

�0

�
@tq

�

≲ �
1

2

d

dt

Z
˝

J 2R0.q/

�0

ˇ̌
@43q

ˇ̌2
dy C P.kqk8;�; k�0k4; k�k4/:

(5.3.19)
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The term I2 will produce another higher order term to cancel with K11

I2 D

Z
˝

J@43
�
J�1.b0 � @/�

�
�
�
J�1.b0 � @/�

�
@43.div QAv/„ ƒ‚ …

exactly cancel withK11

C

Z
˝

3X
ND1

 
4

N

!
J@N3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

�
@43.div QAv/

D�K11 �

Z
˝

3X
ND1

 
4

N

!�
J 2R0.q/

�0

�
@N3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

�
@43@tq

C

Z
˝

3X
ND1

 
4

N

!
J@N3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

� ��
@43;

JR0.q/

�0

�
@tq

�

DW �K11 C I21 C I22:

(5.3.20)

We should control I21 by integrating @t by parts under time integral

Z T

0
I21

@t
D

Z T

0

Z
˝

3X
ND1

 
4

N

!
@t

 
J 2R0.q/

�0

!
@N3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

�
@43q

C

Z T

0

Z
˝

3X
ND1

 
4

N

! 
J 2R0.q/

�0

!
@t@

N
3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

�
@43q

�

Z
˝

3X
ND1

 
4

N

! 
J 2R0.q/

�0

!
@N3

�
J�1.b0 � @/�

�
� @4�N3

�
J�1.b0 � @/�

�
@43q

ˇ̌̌̌T
0

≲
Z T

0
P.kJ�1.b0 � @/�k4; k@t .J

�1.b0 � @/�/k3; kqk4/C P0 C kJ�1.b0 � @/�k23k@
4
3qk0

≲P0 C
Z T

0
P.E.t// dt C "k@43qk

2
0:

(5.3.21)

Then I22 can be directly controlled since at most three @3’s fall on @tq.

I22 ≲ kJ�1.b0 � @/�k
2
3kqk7;�: (5.3.22)
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The term I3 should also be controlled under time integral. We haveZ T

0
I3 D

Z T

0

Z
˝

JR0.q/

�0
@43�� A��@�Q@43@tq C

Z T

0

Z
˝
@43�� A��@�Q

�
@43;

JR0.q/

�0

�
@tq„ ƒ‚ …

L2

@t
D�

Z T

0

Z
˝
@t

�
JR0.q/

�0
@43�� A��@�Q

�
@43q C

Z
˝

JR0.q/

�0
@43�� A��@�Q@43q

ˇ̌̌̌T
0

C L2

≲P0 C
Z T

0
P.E.t// dt C

JR0.q/�0
A@Q


L1
k@43qk0

Z T

0
k@43v.t/k0 dt

≲P0 C P.E.t//
Z T

0
P.E.t// dt;

(5.3.23)

where we use @4�jtD0 D 0 in the last step. Summarizing (5.3.18)-(5.3.23) and choosing " > 0 suitably

small, we get the estimates of I under time integral

Z T

0

I dt ≲ �
1

2

Z
˝

J 2R0.q/

�0

ˇ̌
@43q

ˇ̌2
dy
ˇ̌̌̌T
0

C P0 C P.E.t//
Z T

0

P.E.t// dt: (5.3.24)

5.3.1.3 Boundary estimates

To finish the estimates of purely non-weighted normal derivative, it remains to control the boundary

integral IB in (5.3.16) which reads

�

Z
�

JQA�˛N�V˛ dS D�
Z
�

A3˛N3 @43QV˛ dS

C

Z
�

A3˛N3@43�� A
3�@3Q@43v˛ dS

�

Z
�

A3˛N3@43�� A
3�@3Q.@43� A

ˇ @ˇv˛/ dS

DWIB0 C IB1 C IB2:

(5.3.25)

First, IB1 will produce the boundary energy with the help of Rayleigh-Taylor sign condition (5.3.2)
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and the error terms will be cancelled with IB2. In specific, we have

IB1 D�

Z
�

�
�
@Q

@N

�
JA3˛@43�� A

3�@43@t�˛ dS

D�
1

2

d

dt

Z
�

�
�J
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@N

� ˇ̌
A3˛@43�˛

ˇ̌2
dS

�
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2

Z
�

@t

�
J
@Q

@N

� ˇ̌
A3˛@43�˛

ˇ̌2
dS C

Z
�

�
�J

@Q

@N

�
@tA

3˛ @43�� A
3�@43�˛ dS

DWIB11 C IB12 C IB13:

(5.3.26)

Invoking Rayleigh-Taylor sign condition, we get

Z T

0

IB11 dt ≲ �
c0

4

Z
�

ˇ̌
A3˛@43�˛

ˇ̌2
dS
ˇ̌̌̌T
0

; (5.3.27)

and thus the term IB12 can be directly controlled by the boundary energy

IB12 ≲ j@t .J @3Q/jL1
ˇ̌
A3˛@43�˛

ˇ̌2
0
≲ P.E.t//: (5.3.28)

Then we plug @tA3˛ D �A3 @ˇv Aˇ˛ into IB13 to get

IB13 D

Z
�

�
@Q

@N

�
A3@ˇv Aˇ˛@43�� A

3�@43�˛ dS; (5.3.29)

and this term exactly cancel with IB2 if we replace the indices .˛; / by .; ˛/.

It now remains to control IB0. We have

IB0 D �

Z
�

N3J @
4
3Q .A3˛@43v˛/ dS C

Z
�

A3˛N3@43Q@43�� A
��@�v˛ dS DW IB01 C IB02:

(5.3.30)

To control IB0, we shall differentiate the following relations

A3˛@3v˛ Ddiv QAv � A
1˛@1v˛ � A

2˛@2v˛ D �
JR0.q/

�0
@tq � A

1˛@1v˛ � A
2˛@2v˛: (5.3.31)
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In IB01, we use the relation (5.3.31) to get

A3˛@43v˛ D@
3
3.A

3˛@3v˛/ � @
3
3A

3˛ @3v˛ � 3@
2
3A

3˛ @23v˛ � 3@3A
3˛ @33v˛

D� @33

�
JR0.q/

�0
@tq

�
�

2X
LD1

@33.A
L˛@Lv˛/

� @33A
3˛ @3v˛ � 3@

2
3A

3˛ @23v˛ � 3@3A
3˛ @33v˛;

(5.3.32)

and thus IB01 becomes

IB01 D

Z
�

N3J @
4
3Q @33

�
JR0.q/

�0
@tq

�
C

2X
LD1

Z
�

N3J @
4
3Q @33.A

L˛@Lv˛/

C

Z
�

N3J@
4
3Q

�
@33A

3˛ @3v˛ C 3@
2
3A

3˛ @23v˛ C 3@3A
3˛ @33v˛

�
DWIB011 C IB012 C IB013:

(5.3.33)

In IB012, the highest order term contains @33A
L˛ D @43� � @� C � � � which cannot be directly

controlled. However, this term can produce cancellation with IB02.

@33A
L˛
D� @23.A

L� @3@ˇ�� A
ˇ˛/

D� AL�@43��A
3˛
�

2X
MD1

AL�@33@M��A
M˛
� Œ@23; A

L�Aˇ˛�@3@ˇ�� ;

(5.3.34)

and thus IB012 can be written as

IB012 D�

2X
LD1

Z
�

A3˛N3@43Q@43�� A
L�@Lv˛ (5.3.35)

�

2X
LD1

Z
�

N3J@
4
3Q

 
2X

MD1

AL�@33@M�� A
M˛
C Œ@23; A

L�Aˇ˛�@3@ˇ��

!
: (5.3.36)
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On the other hand, we write IB02 as

IB02 D

Z
�

A3˛N3@43Q@43�� A
3�@3v˛ dS (5.3.37)

C

2X
LD1

Z
�

A3˛N3@43Q@43�� A
L�@Lv˛ dS: (5.3.38)

Therefore, (5.3.38) exactly cancels with the main term (5.3.35) in IB012.

Now it remains to control IB011; IB013 and (5.3.36), (5.3.37). Invoking

A3˛@3Q D�
2X

LD1

ALi@LQ � �0@tvi C .b0 � @/.J�1.b0 � @/�i /; (5.3.39)

we get

A3˛@43Q D@
3
3.A

3˛@3Q/ � @
3
3A3˛ @3Q � 3@23A3˛ @23Q � 3@3A3˛ @33Q

D@33
�
��0@tv

i
C .b0 � @/.J

�1.b0 � @/�/
�
�

2X
LD1

@33.A
Li@LQ/

� @33A3˛ @3Q � 3@23A3˛ @23Q � 3@3A3˛ @33Q:

(5.3.40)

Note that

� The term A3˛ is of the form @� � @�, so the leading order term in @33A
3˛ should be .@33@�/.@�/.

� The highest order term in @33.A
Li@LQ/ is @33ALi @LQ D 0 due to @LQj�D0.

� The highest order term in @33..b0 �@/.J
�1.b0 �@/�// is .b0 �@/@33.J

�1.b0 �@/�/ because b30 j� D 0

makes .b0 � @/ tangential on the boundary.

Therefore, we can rewrite @43Q to be the terms of at most 3 normal derivatives and one tangential

224



derivative:
@43Q DJ

�1A3˛@3�˛„ ƒ‚ …
D1

@43Q D J
�1@3�˛.A3˛@43Q/
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.@N3 ALi /.@3�N3 @LQ/

� @33A3˛ @3Q � 3@23A3˛ @23Q � 3@3A3˛ @33Q
�
:

(5.3.41)

In (5.3.37), we need to rewrite A3�@43�� by using A3�@3�� D 1 in N̋ (and thus @33.A
3�@3��/ D 0)

A3�@43�� D �@
3
3A

3� @3�� � 3@
2
3A

3� @23�� � 3@3A
3� @33�� : (5.3.42)

In the light of (5.3.40)-(5.3.42), we are able to write IB011; IB013 and (5.3.36), (5.3.37) in the

form of Z
�

N3.@
3
3Df /.@

3
3Dg/h dS C lower order terms; (5.3.43)

where D D @ or @t or b0 � @, and f; g can be �; v; q; J�1.b0 � @/�, and h contains at most first order

derivative of �; v. Then (5.3.43) can be controlled as followsZ
�

N3.@
3
3Df /.@

3
3Dg/h dS

D

�Z
˝

.@43Df /.@
3
3Dg/h �

Z
˝

.@33Df /.@
4
3Dg/h �

Z
˝

.@33Df /.@
3
3Dg/.@3h/

�
D
D�

Z
˝

.@43f /.@
3
3D

2g/h �

Z
˝

.@43f /.@
3
3Dg/.Dh/

C

Z
˝

.@33D
2f /.@43g/hC

Z
˝

.@33Df /.@
4
3g/.Dh/ �

Z
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.@33Df /.@
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2f k0/.k@
4
3gk0 C k@

3
3D

2gk0/k@hkL1 ≲ kf k8;�kgk8;�khk3;

(5.3.44)

which gives the control of IB011; IB013 and (5.3.36), (5.3.37).

Remark 5.3.2. If we integrate D D @t by parts in (5.3.44) (such term appears in @33@tv from @43Q),
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then we should proceed the estimate under time integral:Z
˝

.@43v/.@
3
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(5.3.45)

According to (5.3.44)-(5.3.45), we can finalize the estimates of the boundary integral IB as follows

IB ≲ "k@43vk
2
0 �

c0

4

d

dt

Z
�

ˇ̌
A3˛@43�˛

ˇ̌2
dS C P.E.t//: (5.3.46)

5.3.1.4 Energy estimates of purely normal derivatives

Now, (5.3.46) together with (5.3.9), (5.3.10), (5.3.15), (5.3.24) gives the estimates of Alinhac good

unknowns of v;Q in the case of purely non-weighted normal derivatives
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P.E.t// dt:

(5.3.47)

Finally, by the definition of Alinhac good unknown (5.3.4) and @43�jtD0 D 0, @43v is controlled by

k@43vk
2
0 ≲ kVk

2
0 C ka@vk

2
L1

Z T

0

k@43vk
2
0 dt ≲ kVk0 C P.E.T //

Z T

0

P.E.t// dt; (5.3.48)

and thus by choosing " > 0 sufficiently small, we get

k@43vk
2
0 C

@43 �J�1.b0 � @/��20 C k@43qk20 C c0

4

ˇ̌
A3˛@43�˛

ˇ̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.49)
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5.3.2 The case of full tangential spatial derivatives

Now we consider the purely tangential derivatives. In this case, the top order derivative becomes

@I� D @
i0
t @

i1
1 @

i2
2 with i0 C i1 C i2 D 8. We will prove the following estimates by a modified Alinhac

good unknown method.

Proposition 5.3.3. The following holds for any sufficiently small " > 0

X
i3Di4D0

k@I�vk
2
0 C

@I� �J�1.b0 � @/��2
0
C k@I�qk

2
0 C

c0

4

ˇ̌̌
A3˛@I��˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ "k@3@
6
t vk

2
0 C P0 C P.E.T //

Z T

0

P.E.t// dt:

(5.3.50)

For simplicity, we mainly study the case i0 D 0, i.e., @I� D @
i1
1 @

i2
2 with i1 C i2 D 8. For sake

of clean notations, we denote @8 D @
i1
1 @

i2
2 . In fact, most of the steps of the proof in this section are

completely applicable to the case of i0 > 0.

5.3.2.1 Derivation of “modified Alinhac good unknowns" in anisotropic Sobolev space

We still use Alinhac good unknowns to control the tangential derivatives. However, we cannot directly

replace @43 by @8 in (5.3.4) because the commutator contains the terms like @7@�, @7@v and @7@Q whose

L2-norm cannot be controlled in H 8
� . In specific, we have

@8.riAf / Dr
˛
A.@

8f /C .@8A�˛/@�f C Œ@
8; A�˛; @�f �

Dr
i
A.@

8f / � @7.A�� @@ˇ�� A
ˇ˛/@�f C Œ@

8; A�˛; @�f �

Dr
i
A.@

8f � @8�� A
�� @�f /C @

8�� r
i
A.r

�
Af /

� .Œ@7; A��Aˇ˛�@@ˇ��/@�f C Œ@
8; A�˛; @�f �:

(5.3.51)
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We notice that the L2.˝/-norm of the following quantities coming from the last two terms of (5.3.51)

cannot be controlled because @7 may fall on a D @� � @� and @f .

e1 WD �@
7.A��Aˇ˛/ @@ˇ�� @�f; e2 WD �7@.A

��Aˇ˛/ @7@ˇ�� @�f

e3 WD 8.@
7A�˛/.@@�f /; e4 WD 8.@A

�˛/.@7@�f /:

(5.3.52)

Here 8@7 means there are 8 terms of the form @
i1
1 @

i2
2 with i1 C i2 D 7. We will repeatedly use similar

notations throughout the manuscript.

Our idea to overcome this difficulty is mainly based on the following three techniques:

1. Modify the definition of “Alinhac good unknowns": Rewrite these quantities in terms of

r˛A.� � � /C L2-bounded terms, and then merge the terms inside the covariant derivative r˛A into

the “Alinhac good unknowns".

2. Produce a weighted normal derivative to replace a non-weighted one: There are terms like

.@7@3�/.@Q/. Since Qj� D 0, we know @Qj� D 0. Therefore, we can estimate the L1-norm

of @Q by fundamental theorem of calculus: (Suppose y3 > 0 without loss of generality)

j@Q.t; y3/jL1.T2/ D

ˇ̌̌̌
0C

Z y3

1

@@3Q.t; �3/d�3

ˇ̌̌̌
L1.T2/

� .1 � y3/k@@3QkL1 � �.y3/k@@3QkL1 ;

then we move the �.y3/ to @7@3� to get a weighted normal derivative .�@3/1@7� whoseL2-norm

can be directly bounded in H 8
� .

3. Replace rAQ (contains a normal derivative) by ��0@tv C .b0 � @/.J�1.b0 � @/�/ (only contains

tangential derivative) in order to make the order of the derivatives lower thanks to the anisotropy

of Hm
� .

Now we analyze these extra terms from the commutator. We start with 8.@7A�˛/.@@�f / and
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8.@A�˛/.@7@�f / coming from Œ@8; A�˛; @�f � in (5.3.51). Since @A�˛ D �A�� @@ˇ�� Aˇ˛ , we

have

@7A�˛ D �A�� @7@ˇ�� A
ˇ˛
� Œ@6; A��Aˇ˛�@ˇ�� ;

where the highest order term in Œ@6; A��Aˇ˛�@ˇ�� is @6@ˇ�� whose L2-norm can be directly bounded

by k�k8;�. Therefore, we have

8.@7A�˛/.@@�f / D �8.A
ˇ˛ @ˇ@

7�� A
��/@@�f � 8.Œ@

6; A��Aˇ˛�@ˇ��/@@�f

D� 8r˛A.@
7�� A

��@@�f /C8r
˛
A.r

�
A@f /@

7�� � 8.Œ@
6; A��Aˇ˛�@ˇ��/@@�f„ ƒ‚ …

DWC1.f /

DW � 8r˛A.@
7� � rA@f /C C1.f /;

(5.3.53)

where C1.f / can be controlled by using H 1=2 ,! L3 and H 1 ,! L6 in 3D domain

C1.f / ≲kAk
2
L1k@

2@f kL6k@
7�kL3 C kA@f @AkL1k@

7�kL2 C P.k�k8;�/k@@f kL1

≲kAk2L1k@
2@f k1kh@i

1=2@7�k0 C P.k�k8;�/k@@f kL1

≲kAk2L1k@
2@f k1k@

7�k
1=2
0 k@

8�k
1=2
0 C P.k�k8;�/k@@f kL1 ≲ P.k�k8;�/kf k7;�:

The term 8.@A�˛/.@7@�f / should be treated differently in the case of f D v˛ and f D Q

respectively.

� When f D v˛ , then this term becomes

8.@A�˛/.@7@�v˛/ D� 8A
�� @@ˇ�� A

ˇ˛@7@�v˛ D �8A
�˛ @@ˇ�˛ A

ˇ� @7@�v�

D� 8r˛A.@
7v� A

ˇ� @@ˇ�˛/C 8r
˛
A.@@ˇ�˛ A

ˇ�/@7v�„ ƒ‚ …
DWC2.v/

DW � 8r˛A.@
7v � rA@�˛/C C2.v/;

(5.3.54)

and similarly we have kC2.v/k0 ≲ P.k�k7;�/kvk8;�.
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� When f D Q, we cannot mimic the simplification as above. Instead, we need to invoke the

MHD equation to replace rAQ by tangential derivatives. We consider

8.J @A�˛/.@7@�Q/ D �8.A�� @@ˇ�� Aˇ˛/@7@�Q

D� 8@7.A��@�Q/Aˇ˛@@ˇ�� C 8.@7A��/.@�Q/.@@ˇ�� Aˇ˛/

C 8

6X
ND1

 
7

N

!
.@NA��/.@7�N @�Q/.@@ˇ�� Aˇ˛/

D8@7
�
�0@tv

�
� .b0 � @/.J

�1.b0 � @/�
�/
�
Aˇ˛@@ˇ�� C 8.@

7A��/.@�Q/.@@ˇ�� Aˇ˛/

C 8

6X
ND1

 
7

N

!
.@NA��/.@7�N @�Q/.@@ˇ�� Aˇ˛/

DWC21 C C22 C C23:
(5.3.55)

The L2-norm of C23 can be directly controlled

kC23k0 ≲ k�k8;�kQk8;�P.k�k7;�/: (5.3.56)

The L2-norm of C22 can be directly controlled when l D 3 because A3� consists of @� � @�.

When l D 1; 2, we need to invoke the second technique above, i.e., using @Qj� D 0 to produce

a weight function �.y3/.

kC22k0 ≲k@
7A3�k0k@3Q@@� akL1 C

2X
LD1

k.@7AL�/.@LQ/.@@ˇ�� Aˇ˛/k0

≲P.k�k7;�/k@
8�k0kQk3 C

2X
LD1

k.@7AL�/.�.y3/@3@LQ/.@@ˇ�� Aˇ˛/k0

≲P.k�k7;�/k@
8�k0kQk3 C

2X
LD1

k�@7AL�k0k.@3@LQ/.@@ˇ�� Aˇ˛/kL1

≲P.k�k7;�/kQk7;�
�
k@8�k0 C k.�@3/@

7�k0

�
;

(5.3.57)
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where we use the fact that AL� consists of .@3�/.@�/ in the last step.

Finally, C21 can also be directly bounded because the top order derivatives are @7@t and @7.b0 �@/.

Note that b30 j� D 0 yields the following estimates by using the second technique mentioned

above.

kb30@3@
7.J�1.b0 � @/�/k0 ≲ k@b0k2k.�@3/@

7.J�1.b0 � @/�/k0;

and thus

C21 ≲ P.k�k7;�/.k�0k7;�kvk8;� C kb0k7;�k.b0 � @/�k8;�/: (5.3.58)

Therefore, we have the estimates for C2.Q/ WD 8@A�˛@7@�Q

kC2.Q/k0 ≲ P.k�k8;�; kvk8;�; kb0k7;�; kJ
�1.b0 � @/�k8;�; k�0k7;�; kQk8;�/: (5.3.59)

Next we analyze �.@7.A��Aˇ˛/ @@ˇ��/@�f coming from �.Œ@7; A��Aˇ˛�@@ˇ��/@�f . There

are two terms of top order derivatives:

�@7.A��Aˇ˛/ @@ˇ�� @�f D � .@
7A��/Aˇ˛ @@ˇ�� @�f � A

��.@7Aˇ˛/ @@ˇ�� @�f

�

6X
ND1

 
7

N

!
.@NA��/.@6�NAˇ˛/@@ˇ�� @�f;

where the L2-norm of the last term can be directly controlled
6X

ND1

 
7

N

!
.@NA��/.@6�NAˇ˛/@@ˇ�� @�f


0

≲ P.k�k8;�/kf k3:

Similarly as (5.3.53), the term �A��.@7Aˇ˛/@@ˇ�� @�f can be written as the covariant derivatives
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plus L2-bounded terms

� A��.@7Aˇ˛/@@ˇ�� @�f

DA��Aˇ�.@k@
7��/A

ki @@ˇ�� @�f C .Œ@
6; Aˇ�Aki �@@k��/A

�� @@ˇ�� @�f

Dr
˛
A.@

7�� A
ˇ� @@ˇ�� A

�� @�f /

�@7�� r
˛
A.A

ˇ� @@ˇ�� A
�� @�f /C .Œ@

6; Aˇ�Aki �@@k��/A
�� @@ˇ�� @�f„ ƒ‚ …

DWC3.f /

DWr
˛
A.@

7� � rA@� � rAf /C C3.f /;

(5.3.60)

where C3.f / can be directly controlled similarly as C1.f /

kC3.f /k0 ≲ P.k�k8;�/k@f k2:

We then compute �.@7A��/Aˇ˛ @@ˇ�� @�f .

� When f D v˛: Similarly as in (5.3.60), we have

� .@7A��/Aˇ˛ @@ˇ�� @�v˛

DA��.@7@k��/A
krAˇ˛ @@ˇ�� @�v˛ � .Œ@

6; A��Akr �@@k��/A
ˇ˛ @@ˇ�� @�v˛

DA��.@7@k��/A
kiAmr @@ˇ�˛ @�vr � .Œ@

6; A��Akr �@@k��/A
ˇ˛ @@ˇ�� @�v˛

Dr
˛
A.@

7�� A
�� @�vr A

mr @@ˇ�˛/

�r
˛
A.A

��Amr@@ˇ�˛ @�vr /@
7�� � .Œ@

6; A��Akr �@@k��/A
ˇ˛ @@ˇ�� @�v˛„ ƒ‚ …

DWC4.v/

DWr
˛
A.@

7� � rAv � rA@�˛/C C4.v/;

(5.3.61)
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where C4.v/ can be directly controlled similarly as C1.f /

kC4.v/k0 ≲ P.k�k8;�/k@vk2:

� When f D Q: If l D 3, then this term can be directly controlled since A3� D J�1@� � @� only

contains first-order tangential derivatives. If l D 1; 2, then we can mimic the treatment of C22,

i.e., using @LQj� D 0 and fundamental theorem of calculus to produce a weight function �.y3/

and move that to @7A�� . Define C4.Q/ WD �.@7A��/Aˇ˛ @@ˇ�� @�Q, then

kC4.Q/k0 ≲ k.@
7A3�/Aˇ˛ @@ˇ�� @3Qk0 C

2X
LD1

k.@7AL�/Aˇ˛ @@ˇ�� @LQk0

≲k@8�k0kQk3P.k@�k2; k@@�k2/C
2X

LD1

k�@7AL�k0kA
ˇ˛ @@ˇ�� @L@3QkL1

≲
�
k@8�k0 C k.�@3/@

7�k0

�
P.kQk3; k@Qk3; k�k7;�/:

(5.3.62)

Next we analyze �7@.A��Aˇ˛/@7@ˇ�� @�f coming from �Œ@7; A��Aˇ˛�@@ˇ�� @�f . This term

cannot be directly controlled when m D 3. We should analyze it term by term. First we have

� 7@.A��Aˇ˛/@7@ˇ�� @�f D �7@A
�� Aˇ˛ @7@ˇ�� @�f � 7A

�� @Aˇ˛ @7@ˇ�� @�f

D7A�� @�@�� A
��Aˇ˛ @7@ˇ�� @�f C 7A

��Aˇ� @�@�� A
�˛ @7@ˇ�� @�f:

The first term can be directly rewritten as follows

7A�� @�@�� A
��Aˇ˛ @7@ˇ�� @�f

D7r˛A.@
7�� A

�� @�@�� A
�� @�f /�7r

˛
A.A

�� @�@�� A
�� @�f /@

7��„ ƒ‚ …
C5.f /

DW7r˛A.@
7� � rA@� � rAf /C C5.f /;

(5.3.63)
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where C5.f / can be similarly controlled as C1.f /

kC5.f /k0 ≲ P.k�k8;�/k@f k3:

Then we analyze 7A��Aˇ�.@�@��/A�˛.@7@ˇ��/@�f , which needs different treatment for f D v˛

and f D Q respectively.

� When f D v˛ , we have the following simplification

7A��Aˇ�@k@�� A
�˛ @7@ˇ�� @�v˛ D 7A

��Aˇ˛ @�@�˛ A
�� @7@ˇ�� @�v�

D7r˛A.@
7�� A

�� @�v� A
�� @@��˛/C 7r

˛
A.A

�� @�v� A
�� @@��˛/@

7��„ ƒ‚ …
C6.v/

DW7r˛A.@
7� � rAv � rA@�˛/C C6.v/;

(5.3.64)

and kC6.v/k0 ≲ P.k�k8;�/kvk3 follows from direct computation.

� When f D Q, this term becomes

C6.Q/ WD �7A
��.@Aˇ˛/.@7@ˇ��/@�Q

D� 7

0BB@@7.A��@ˇ��/„ ƒ‚ …
D@7ılmD0

�.@7A��/.@ˇ��/ �

6X
ND1

 
7

N

!
.@NA��/.@7�N @ˇ��/

1CCA @Aˇ˛ @�Q

D7.@7A3�/@ˇ�� @A
ˇ˛ @3QC

2X
LD1

.@7AL�/@ˇ�� @A
ˇ˛ @LQ

C 7

6X
ND1

 
7

N

!
.@NA��/.@7�N @ˇ��/@A

ˇ˛ @�Q

DWC61 C C62 C C63:
(5.3.65)

Since A3� D J�1@� � @�, we know the top order term is of the form @8� � @� and thus C61 can
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be directly controlled

kC61k0 ≲ P.k�k8;�/k@3Qk2:

The term C62 can be treated in the same way as C4.Q/ in (5.3.62) by using @LQj� D 0 to

produce a weight function �

kC62k0 ≲ .k.�@3/@
7�k C k@8�k0/P.k�k7;�/k@@3Qk2 ≲ P.k�k8;�/kQk7;�:

Finally, C63 can be directly controlled

kC63k0 ≲ P.k�k8;�/k@Qk2;

and thus

kC6.Q/k0 ≲ P.k�k8;�/kQk7;�: (5.3.66)

Now we plug (5.3.53)-(5.3.54), (5.3.59)-(5.3.66) into (5.3.51) and define the “modified Alinhac

good unknowns" of v and Q with respect to @8 as

V�˛ WD @
8v˛ � @

8� � rAv˛

� 8@7� � rA@v˛ � 8@
7v � rA@�˛

C @7� � rA@� � rAv˛ C @
7� � rAv � rA@�˛

C 7@7� � rA@� � rAv˛ C 7@
7� � rAv � rA@�˛

D @8v˛ � @
8� � rAv˛

� 8@7� � rA@v˛ � 8@
7v � rA@�˛ C 8@

7� � rA@� � rAv˛ C 8@
7� � rAv � rA@�˛;

(5.3.67)

and

Q� WD @8Q � @8� � rAQ � 8@7� � rA@QC 8@7� � rA@� � rAQ: (5.3.68)
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Then the modified good unknowns satisfy the following relations

@8.div QAv/ D rA � V
�
C

6X
MD0

CM .v/; @8.rAQ/ D rAQ� C
6X

MD0

CM .Q/; (5.3.69)

where C0.f / comes from the directly controllable terms in the RHS of (5.3.51)

C0.f / WD@
8�r r

˛
A.r

r
Af / �

6X
ND2

 
7

N

!
@N .A��Aˇ˛/@7�N .@@ˇ�r /@�f

C

6X
ND2

 
8

N

!
.@NA�˛/.@8�N @�f /;

(5.3.70)

satisfies

kC0.f /k0 ≲ P.k�k8;�/kf k8;�;

and C1 � C6 are constructed in (5.3.53)-(5.3.54), (5.3.59)-(5.3.66).

Now we denote C �.f / WD C0.f /C C1.f /C � � � C C6.f / and the “extra modification terms" in

the modified Alinhac good unknowns by

.4�v/i WD � 8@
7� � rA@v˛ � 8@

7v � rA@�˛ C 8@
7� � rA@� � rAv˛ C 8@

7� � rAv � rA@�˛;

4
�
Q WD � 8@

7� � rA@QC 8@
7� � rA@� � rAQ:

Then the modified Alinhac good unknowns become

V� D @8v � @8� � rAv C4�v ; Q� D @8Q � @8� � rAQC4�Q:

Remark 5.3.4. There are more modification terms in V� than in Q�. The reason is that we can replace

rAQ which contains a normal derivative with tangential derivative (@tv and .b0 � @/.J�1.b0 � @/�/) by

invoking the MHD equation. However, similar relation only holds for div QAv instead of rAv. Therefore,

for those terms in the commutators containing v, we have to rewrite them to be the covariant derivatives

of the modifition terms plus L2.˝/-bounded terms.
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It is straightforward to see that theL2.˝/ norms of4�v ;4
�
Q; @t .4

�
v/ and @t .4Q/ can be controlled

by P.E.t//

k@t .4
�
v/k0 ≲k@

7vk0.krA@vk2 C krA@�k2krAvk2/C k@
7@tvk0krA@�k2

C k@7�k0.krA@@tvk2 C krA@�k2krA@tvk2 C krA@vk2krAvk2/

≲P.k�k8;�; kvk8;�/;

(5.3.71)

k@t .4
�
Q/k0 ≲k@

7vk0.krA@Qk2 C krA@�k2krAQk2/

C k@7�k0.krA@@tQk2 C krA@�k2krA@tQk2 C krA@vk2krAQk2/

≲P.k�k8;�; kvk7;�; kQk8;�/;

(5.3.72)

k4
�
Qk0 C k4

�
vk0 ≲ P.k�k7;�; kvk7;�; kQk7;�/: (5.3.73)

Now we take @8 and invoking (5.3.69) to get the evolution equation of V� and Q�

R@tV� � J�1.b0 � @/@8
�
J�1.b0 � @/�

�
CrAQ�

D

h
R; @8

i
@tv C

h
@8; J�1.b0 � @/

i �
J�1.b0 � @/�

�
� C �.Q/CR@t .�@

8� � rAv C4
�
v/

(5.3.74)

We denote the RHS of (5.3.74) by F�. Similarly as in Section 5.3.1, we compute the L2-inner

product of (5.3.74) and JV� to get the energy identity

1

2

d

dt

Z
˝

�0 jV�j
2 dy D

Z
˝

.b0 � @/@
8.J�1.b0 � @/�/ �V� �

Z
˝

.rAQ�/ �V�C
Z
˝

JF� �V�: (5.3.75)

5.3.2.2 Interior estimates

Using (5.3.71), the third integral on RHS of (5.3.75) is controlled directly

Z
˝

JF� � V� ≲ kJF�k0kV�k0 ≲ P
�
k.�0; �; v;Q; b0; .b0 � @/�/k8;�

�
kV�k0: (5.3.76)
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The first integral on RHS of (5.3.75) can be similarly treated as (5.3.11)-(5.3.15) by replacing @43

by @8 and k � k4-norm by k � k8;�-norm. We omit the details

Z
˝

.b0 � @/@
8.J�1.b0 � @/�/ � V� dy ≲ �

1

2

d

dt

Z
˝

J
ˇ̌̌
@8..b0 � @/�/

ˇ̌̌2
dy CK�11 C P.E.t//; (5.3.77)

where K�11 is defined to be

K�11 WD �

Z
˝

J@8.J�1.b0 � @/�/ �
�
J�1.b0 � @/�

�
@8.div QAv/ dy: (5.3.78)

Next we analyze the term �
R
˝
JrAQ � V. Integrating by parts and using Piola’s identity, we get

�

Z
˝

.rAQ�/ � V� D
Z
˝

JQ.rA � V�/ �
Z
�

JQA�˛N�V�˛ dS DW I � C IB�: (5.3.79)

Invoking (5.3.67), (5.3.69) and Q D q C 1
2
jJ�1.b0 � @/�j

2, we get

I � D

Z
˝

J@8q @8.div QAv/C
Z
˝

J@8
�
1

2

ˇ̌
J�1.b0 � @/�

ˇ̌2�
@8.div QAv/

C

Z
˝

.�@8�� A�� @�QC4�Q/@
8.div QAv/ �

Z
˝

@8Q C �.v/

DWI �1 C I
�
2 C I

�
3 C I

�
4 ;

(5.3.80)

where I �4 can be directly controlled by using the estimates of C �.v/

I �4 ≲ k@8Qk0kC
�.v/k0 ≲ P.k�k8;�/k@

8Qk0kvk8;�: (5.3.81)
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Similarly, I �2 produces another higher order term to cancel with K�11

I2 D

Z
˝

J@8
�
J�1.b0 � @/�

�
�
�
J�1.b0 � @/�

�
@8.div QAv/„ ƒ‚ …

exactly cancel withK�
11

C

7X
ND1

 
8

N

!Z
˝

J@N
�
J�1.b0 � @/�

�
� @8�N

�
J�1.b0 � @/�

�
@8.div QAv/

D�K�11 �

7X
ND1

 
8

N

!Z
˝

J 2R0.q/

�0
@N

�
J�1.b0 � @/�

�
� @8�N

�
J�1.b0 � @/�

�
@8@tq

�

7X
ND1

 
8

N

!Z
˝

J@N
�
J�1.b0 � @/�

�
� @8�N

�
J�1.b0 � @/�

� ��
@8;

JR0.q/

�0

�
@tq

�

DW �K�11 C I
�
21 C I

�
22

(5.3.82)

Similarly as in (5.3.21)-(5.3.22), the term I �21 should be controlled by integrating @t by parts under

time integral and I �22 can be directly controlled. We omit the details

Z T

0

I �21 ≲"k@
8qk20 C P0 C

Z T

0

P.E.t// dt (5.3.83)

I �22 ≲kJ
�1.b0 � @/�k

2
7;�kqk8;�: (5.3.84)

The term I �1 produces the energy term k@8qk20 as in (5.3.19).

I �1 ≲ �
1

2

d

dt

Z
˝

J 2R0.q/

�0
j@8qj2 C P.kqk8;�; k�0k8;�; k�k8;�/: (5.3.85)

I �3 can be controlled by integrating @t by parts under time integral after invoking div QAv D
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�
JR0.q/
�0

@tq and (5.3.72)-(5.3.73).

Z T

0

I �3 D

Z T

0

Z
˝

JR0.q/

�0
.@8�� A�� @�Q �4�Q/@

8@tq

C

Z T

0

Z
˝

.@8�� A�� @�Q �4�Q/
��
@8;

JR0.q/

�0

�
@tq

�
„ ƒ‚ …

L�
2

@t
D�

Z T

0

Z
˝

@t

�
JR0.q/

�0
@8�� A�� @�Q �4�Q

�
@8q

C

Z
˝

JR0.q/

�0
.@8�� A�� @�Q �4�Q/@

8q

ˇ̌̌̌T
0

C L�2

≲"k@8qk20 C P0 C
Z T

0

P.E.t// dt;

(5.3.86)

Summarizing (5.3.80)-(5.3.86) and choosing " > 0 to be sufficiently small, we get the estimates of

I � under time integral

Z T

0

I � dt ≲ �
1

2

Z
˝

J 2R0.q/

�0

ˇ̌̌
@8q

ˇ̌̌2
dy
ˇ̌̌̌T
0

C P0 C
Z T

0

P.E.t// dt: (5.3.87)

5.3.2.3 Boundary estimates

Now it remains to deal with the boundary integral IB�. Since Qj� D 0, we know

Q�j� D �@8�� A3� @3QC4�Q;

and

4
�
Qj� D �8@

7�� A
3� @@3QC 8@

7� � rA@�r A
3� @3Q:
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Then the boundary integral IB� reads

IB� D

Z
�

A3˛N3@8�� A3� @3Q@8v˛ dS �
Z
�

A3˛N3.@8��A3�@3Q/.@8� � rAv˛/ dS

�

Z
�

A3˛N34�Q @
8v˛ dS C

Z
�

A3˛N34�Q @
8� � rAv˛ dS

�

Z
�

A3˛N34�Q.4
�
v/i dS C

Z
�

A3˛N3.@8�� A3� @3Q/.4�v/i dS

DWIB�1 C IB
�
2 C IB

�
3 C IB

�
4 C IB

�
5 C IB

�
6 :

(5.3.88)

Before going to the proof, we would like to state our basic strategy to deal with the boundary

control

� IB�1 together with the Raylor-Taylor sign condition gives the boundary energy jA3˛@8�˛j20 and

the extra terms can be cancelled by IB�2 . This step also appears in the study of Euler equations

[13, 17, 49, 51, 54] and incompressible MHD [33, 30, 25, 26] and compressible resistive MHD

[83]. It actually gives the control of the second fundamental form of the free surface [13].

� IB�3 : We can write @8v˛ D @8@t�˛ and integrate @t by parts. When @t falls on4�Q, the boundary

integral can be directly controlled by using trace lemma. When @t falls on A3˛ , such terms

exactly cancel with the top order term in IB�4 .

� IB�5 and IB�6 : Direct computation together with the trace lemma gives the control.

We first compute IB�1 . Similarly as (5.3.26), we have

IB�1 D�

Z
�

�
�
@Q

@N

�
JA3˛@8�� A

3� @8@t�˛ dS

D�
1

2

d

dt

Z
�

�
�J

@Q

@N

� ˇ̌̌
A3˛@8�˛

ˇ̌̌2
dS

�
1

2

Z
�

@t

�
J
@Q

@N

� ˇ̌̌
A3˛@8�˛

ˇ̌̌2
dS C

Z
�

�
�J

@Q

@N

�
@tA

3˛ @8�� A
3� @8�˛ dS

DWIB�11 C IB
�
12 C IB

�
13;

(5.3.89)
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The term IB�11 together with the Rayleigh-Taylor sign condition gives the boundary energy

Z T

0

IB�11 � �
c0

4

ˇ̌̌
A3˛@8�˛

ˇ̌̌2
0

ˇ̌̌̌T
0

; (5.3.90)

and IB�12 can be directly controlled by the boundary energy

IB�12 ≲
ˇ̌̌
A3˛@8�˛

ˇ̌̌2
0

ˇ̌̌̌
@t

�
J
@Q

@N

�ˇ̌̌̌
L1

≲ P.E.t//: (5.3.91)

Then we plug @tA3˛ D �A3�@ˇv�Aˇ˛ into IB�13 to get the cancellation structure

IB�13 D

Z
�

J
@Q

@N
A3� @ˇv�A

ˇ˛ @8�� A
3�@8�˛ D �IB

�
2 (5.3.92)

Next we analyze IB�3 . We write v˛ D @t�˛ and integrate this @t by partsZ T

0

IB�3 D�

Z T

0

Z
�

JA3˛N34
�
Q @

8@t�˛ dS dt

@t
D

Z T

0

Z
�

J @tA
3˛ N34

�
Q @

8�˛ dS dt

�

Z T

0

Z
�

A3˛N3 @t .J4
�
Q/ @

8�˛ dS dt �
Z
�

JA3˛N3 4
�
Q @

8�˛ dS
ˇ̌̌̌T
0

DWIB�31 C IB
�
32 C IB

�
33:

(5.3.93)

Again, plug @tA3˛ D �A3�@ˇv�Aˇ˛ into IB�31 to get the cancellation with IB�4

IB�31 D�

Z T

0

Z
�

JA3� @ˇv�A
ˇ˛ N3 4

�
Q @

8�˛ dS dt

D�

Z T

0

Z
�

JA3˛ @ˇv�A
ˇ˛ N3 4

�
Q @

8�r dS dt D �IB�4 :

(5.3.94)

For IB�33, we use the fact that @7�jtD0 D 0 (and thus 4�Qj� D 0 when t D 0) together with
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Lemma 3.2.5 to getZ
�

JA3˛N34
�
Q @

8�˛ dS
ˇ̌̌̌
tDT

D �

Z
�

JA3˛N3.8@
7�� A

3� @@3Q � 8@
7� � rA@�� A

3� @3Q/@
8�˛ dS

≲
ˇ̌̌
A3˛@8�˛

ˇ̌̌
0
jJ jL1.jA

3�@@3QjL1 C j.rA@��/A
3�@3QjL1/

Z T

0

j@7v.t/j0 dt

≲
ˇ̌̌
A3˛@8�˛

ˇ̌̌
0
P.k�k8;�; kQk8;�/

Z T

0

kv.t/k8;� dt:

(5.3.95)

In IB�32, we invoke the relation (5.3.39) to get

@t .J4
�
Q/j� D� 8@

7v� A3� @@3QC 8@7v � rA@�r A3r@3Q

� 8@7�� @t .A3�@@3Q/C 8@7� � @t .rA@�r A3r@3Q/

D� 8@7v� A3� @@3QC 8@7v � rA@�r A3r@3Q

� 8@7��@t@.A3�@3Q/C 8@7��@t .@A3� @3Q/C 8@7� � @t .rA@�r A3r @3Q/

(5.3.39)
D � 8@7v� A3� @@3QC 8@7v � rA@�r A3r@3Q

C 8@7��@t@
�
�0@tv

�
� .b0 � @/.J

�1.b0 � @/�/
�
�
C 8@7�� @t .@A3� @3Q/

C 8@7� � @t .rA@�� A3�@3Q/:

Then we use H
3
2 .T2/ ,! L1.T2/, Lemma 3.2.5 and standard Sobolev trace lemma to get

ˇ̌
@t .J4

�
Q/j�

ˇ̌
0
≲ P.k�k8;�; kvk8;�; kQk8;�; kbk8;�; k�0k3/;
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and thus

IB�32 ≲
Z T

0

ˇ̌̌
A3˛@8�˛

ˇ̌̌
0
P.k�k8;�; kvk8;�; kQk8;�; kbk8;�; k�0k3/ dt: (5.3.96)

From (5.3.88), we know it suffices to control the product of “error part" IB�5

IB�5 ≲ jA3˛jL1 j4�Qj� j0j.4
�
v/˛j0;

and the RHS can be directly controlled by Lemma 3.2.5 and standard trace lemma

ˇ̌
4
�
Qj�

ˇ̌
0
≲
ˇ̌̌
@7��

ˇ̌̌
0

�
jA3�@@3QjL1 C jrA@�� A

3�@3QjL1
�
≲ P.k�k8;�; kQk7;�/;

j4
�
v j0 ≲j@

7�j0

�
jrA@vjL1 C jrA@� � rAvjL1 C jrAv � rA@�jL1

�
C j@7vj0jrA@�jL1

≲P.k�k8;�; kvk8;�/:

Therefore,

IB�5 ≲ P.k�k8;�; kvk8;�; kQk7;�/; (5.3.97)

and similarly

IB�6 ≲ jA3˛@3QjL1 jA3�@8�� j0j.4�v/i j0: (5.3.98)

Summarizing (5.3.88)-(5.3.98) gives the control of the boundary integral

Z T

0

IB� ≲ �
c0

4

ˇ̌̌
A3˛@8�˛

ˇ̌̌2
0
C P0 C P.E.T //

Z T

0

P.E.t// dt: (5.3.99)

Combining (5.3.75), (5.3.76), (5.3.77), (5.3.87) and (5.3.99) and choosing " > 0 in (5.3.83) to be

suitably small, we get the following energy inequality

kV�k20 C
@8b2

0
C k@8qk20 C

c0

4

ˇ̌̌
A3˛@8�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt: (5.3.100)
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Finally, invoking (5.3.67), we get the @8-estimates of v by using @m�jtD0 D 0 for any m � 2;m 2 N�

k@8vk0 ≲ kV�k0 C P.kvk7;�; k�k7;�/
Z T

0

P.kvk8;�/; (5.3.101)

and thus

k@8vk20 C
@8 �J�1.b0 � @/��2

0
C k@8qk20 C

c0

4

ˇ̌̌
A3˛@8�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.102)

5.3.3 The case of one time derivative @7@t

If we replace @I� D @
8 by @7@t , then most of steps in the proof above are still applicable because we do

not integrate the derivative(s) in D8 by parts. However, we still need to do the following modifications

due to the presence of time derivative.

5.3.3.1 Extra difficulty: non-vanishing initial data of @I��

If @I� D @7@t , then we can no longer derive @7@t�jtD0 D 0 from �jtD0 D Id due to the presence of

time derivative and @t� D v. This property is used in the analysis of IB�33 and the control of the

difference between V� and @I�v. Before we analyze the analogues of IB�33 and (5.3.101) in the case

of @I� D @7@t , we have to find out the precise form of the modified Alinhac good unknowns when

@I� D @
7@t .

5.3.3.2 The modified Alinhac good unknowns

Recall the “extra modification terms"4�Q;4
�
v in (5.3.74) come from the bad terms (5.3.52). Now we

replace @8 by @7@t . In e1; e2; e3 in (5.3.52), if we replace @7 by @6@t (i.e., the time derivative falls on

the higher order term), then their L2 norms can be directly controlled since @ta has the same spatial

regularity as a. Therefore, the remaining quantities whose L2-norms cannot be directly controlled in
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the case of @I� D @
7@t are

e1 WD �@
7.A��Aˇ˛/@t@ˇ�� @�f; e2 WD �7@t .A

��Aˇ˛/ @7@ˇ�� @�f

e3 WD 8.@
7A�˛/@t@�f; e4 WD .@tA

�˛/.@7@�f /C 7.@A
�˛/.@6@t@�f /:

(5.3.103)

Then the corresponding Alinhac good unknowns now becomes (with the abuse of terminology)

V� D @7@tv � @7@t� � rAv C4�v ; Q� D @7@tQ � @7@t� � rAQC4�Q:; (5.3.104)

where
.4�v/i WD � 8@

7� � rA@tv˛ � 8@
7v � rAv˛ C 16@

7� � rAv � rAv˛;

4
�
Q WD � 8@

7� � rA@tQC 8@
7� � rAv � rAQ;

(5.3.105)

and

@7@t .div QAv/ D rA � V
�
C C �.v/; @7@t .rAQ/ D rAQ� C C �.Q/; (5.3.106)

with

kC �.f /k0 ≲ P.E.t//kf k8;�:

Now, the analogue of IB�33 becomes the following quantity (recall such term comes from the

product of4Q and @7@tv

Z
�

JA3˛N3.8@
7�� A

3� @t@3Q � 8@
7� � rA@t�r A

3� @3Q/@
7@t�˛ dS; (5.3.107)

and we can still use @7�jtD0 D 0.

The analogue of (5.3.101) is

k@7@tvk0 ≲kV�k0 C k@7vk0krAvkL1 C k@7�k0
�
8krA@tvkL1 C 16krAvk

2
L1

�
≲kV�k20 C P0 C P.E.T //

Z T

0

P.E.t// dt:

(5.3.108)

The remaining analysis should follow in the same way as before, so we omit those details. The
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result is

k@7@tvk
2
0 C

@7@t �J�1.b0 � @/��2
0
C k@7@tqk

2
0 C

c0

4

ˇ̌̌
A3˛@7@t�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.109)

5.3.4 The case of 2�7 time derivatives

If the number of time derivatives in @I� is between 2 and 7, i.e,. @I� contains at least one spatial and

two time derivatives, we can still mimic most steps in Section 5.3.3. In this case we write @I� D D6@2t

where D D @ or @t and D6 contains at least one @.

The extra time derivatives allow us to eliminate most of the “extra modification terms" in the

modified Alinhac good unknowns as in (5.3.74), (5.3.104)-(5.3.105) and thus much simplify the

analysis of Alinhac good unknowns and tne boundary control. The reason is that the L2-norm of the

analogues of e1 � e3 in (5.3.52) can be directly controlled in the case of D8 D D6@2t . In specific, we

have

D6@2t .r
i
Af / Dr

˛
A.D

6@2t f /C .D
6@2tA

�˛/@�f C ŒD
6@2t ; A

�˛; @�f �

Dr
i
A.D

6@2t f / �D6@t .A
�� @t@ˇ�r A

ˇ˛/@�f C ŒD
6@2t ; A

�˛; @�f �

Dr
i
A.D

6@2t f �D6@2t �� A
��@�f /

CD6@2t �� r
˛
A.r

�
Af / � .ŒD

6@t ; A
��Aˇ˛�@t@ˇ��/@�f„ ƒ‚ …

C0.f /

CŒD6@2t ; A
�˛; @�f �

(5.3.110)

and

kC0.f /k0 ≲ P.k�k8;�; kvk8;�/kf k8;�:

Therefore, the analogous analysis of C1; C3 � C6 in Section 5.3.2 are no longer needed here.

The only problematic term is �2.@tA�˛/.D6@t@�f / � 6.DA
�˛/.D5@2t @�f / which comes from

247



ŒD6@2t ; A
�˛; @�f �. By mimicing the treatment of C2.Q/ and C2.v/ in (5.3.54)-(5.3.55), we can define

the modified Alinhac good unknowns in the case of @I� D @
N
t @

8�N .2 � N � 7/ as the following

V� D D6@2t v �D6@2t � � rAv C4
�
v ; Q� D D6@2tQ �D6@2t � � rAQ; (5.3.111)

where

.4�v/i WD �6D
5@2t v � rAD�˛ � 2D

6@tv � rAv˛ (5.3.112)

and

D6@2t .div QAv/ D rA � V
�
C C �.v/; D6@2t .rAQ/ D rAQ� C C �.Q/; (5.3.113)

with

kC �.f /k0 ≲ P.E.t//kf k8;�:

In this case,4�Q D 0, and thus the boundary integrals IB�3 ; IB
�
4 ; IB

�
5 all vanish. The analogues

of IB�1 ; IB
�
2 ; IB

�
6 in this case can still be controlled in the same way as before. In the control of the

difference between V� and D6@2t , we have by (5.3.111)-(5.3.112) that

kD6@2t vk0 ≲kV
�
k0 C kD

6@tvk0krAvkL1 C kD
5@2t vk0krAD�kL1

≲kV�k0 C kD6@tvk
2
0 C krAvk

2
2 C kD

5@2t vk
2
0 C krAD�k

2
2

≲ ≲ kV�k0 C P0 C
Z T

0

P.E.t// dt

(5.3.114)

The remaining analysis should follow in the same way as in Section 5.3.2 and 5.3.3 so we omit the

details. The result is

kD6@2t vk
2
0 C

D6@2t
�
J�1.b0 � @/�

�2
0
C kD6@2t qk

2
0 C

c0

4

ˇ̌
A3˛D6@2t �˛

ˇ̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt;

(5.3.115)

where D6 contains at least one spatial derivative @.
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5.3.5 The case of full time derivatives

In the case of full time derivatives, the modified Alinhac good unknown is still defined similarly as in

(5.3.111)-(5.3.113):

V� D @8t v � @
8
t � � rAv C4

�
v ; Q� D @8tQ � @

8
t � � rAQ; (5.3.116)

where

.4�v/i WD �8@
7
t v � rAv˛ (5.3.117)

and

@8t .div QAv/ D rA � V
�
C C �.v/; @8t .rAQ/ D rAQ� C C �.Q/; (5.3.118)

with

kC �.f /k0 ≲ P.E.t//kf k8;�:

Extra difficulty: trace lemma is no longer applicable When @I� D @
8
t , there are terms of the form

@7t v in the boundary integrals. In the case of full time derivative, one cannot apply Lemma 3.2.5 to

control j@7t vj0. This difficulty appears in the estimates of the analogue of IB�6 . Instead, we need to
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write IB�6 in terms of interior integrals by using a similar technique in (5.3.44).

IB�6 D� 8

Z
�

A3˛N3 @8t �� A
3�@3Q @7t v A

�@�v˛ dS

D� 8

Z
�

A3˛N3 @7t v� A
3�@3Q @7t v A

�@�v˛ dS

D� 8

Z
˝

A3˛@3@7t v� A
3�@3Q @7t v A

�@�v˛ dy

� 8

Z
˝

A3˛@7t v� A
3�@3Q @3@

7
t v A

�@�v˛ dy

� 8

Z
˝

@7t v� @
7
t v @3.A

3˛A3�@3Q A�@�v˛/ dy

DWIB�61 C IB
�
62 C IB

�
63:

(5.3.119)

The term IB�63 can be directly controlled

IB�63 ≲ P.k@7t vk0; k@vk3; k@Qk3; kAk3/ ≲ P.kvk8;�; kQk8;�; k�k4/: (5.3.120)

The term IB�61; IB
�
62 should be controlled by integrating @t by parts under time integral.Z T

0

IB�61 D� 8

Z T

0

Z
˝

A3˛@3@7t v� A
3�@3Q @7t v A

�@�v˛ dy dt

@t
D� 8

Z
˝

A3˛@3@6t v� A
3�@3Q @7t v A

�@�v˛ dy

C 8

Z T

0

Z
˝

A3˛@3@6t v� A
3�@3Q @8t v A

�@�v˛ dy dt

C 8

Z T

0

Z
˝

A3˛@3@6t v� @
7
t v @t .A

3�@3Q A�@�v˛/ dy dt

≲"k@3@
6
t vk

2
0 C P0 C

Z T

0

P.E.t// dt;

(5.3.121)

IB�62 can be controlled in the same way, so we omit the details. Summarizing the estimates above,
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we get the energy inequality of the full time derivatives

k@8t vk
2
0 C

@8t �J�1.b0 � @/��20 C k@8t qk20 C c0

4

ˇ̌
A3˛@8t �˛

ˇ̌2
0

ˇ̌̌̌
tDT

≲ "k@3@
6
t vk

2
0 C P0 C P.E.T //

Z T

0

P.E.t// dt;

(5.3.122)

which together with (5.3.102), (5.3.109), (5.3.115) concludes the proof of Proposition 5.3.3.

5.3.6 Control of purely spatial derivatives

The case of mixed non-weighted derivatives correspond to @I� D @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 with 1 � i3 �

3; i4 D 0. In this case, the modified Alinhac good unknowns introduced in Section 5.3.2 are still

needed when commuting @I� with rA. On the other hand, the highest order term @I�Q no longer

vanishes on the boundary due to the presence of normal derivatives, so we need to use the method in

Section 5.3.1 to deal with the boundary integral. Therefore, we should combine the methods in Section

5.3.1 and Section 5.3.2 to get the control of mixed non-weighted derivatives. The result of this section

is

Proposition 5.3.5. The following energy inequality holds for sufficiently small " > 0

X
1�i3�3; i4D0

k@I�vk
2
0 C

@I� �J�1.b0 � @/��2
0
C k@I�qk

2
0 C

c0

4

ˇ̌̌
A3˛@I��˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ "k@43vk
2
0 C P0 C P.E.T //

Z T

0

P.E.t// dt:

(5.3.123)

We still start with the control of purely spatial derivatives. Let N D 1; 2; 3 and we consider

@I� D @
N
3 @

8�2N .
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5.3.6.1 The modified Alinhac good unknowns

Similarly as in Section 5.3.2.1, we have

@N3 @
8�2N .riAf / D r

˛
A.@

N
3 @

8�2Nf /C .@N3 @
8�2NA�˛/@�f C Œ@

N
3 @

8�2N ; A�˛; @�f �

Dr
i
A.@

N
3 @

8�2Nf / � @N3 @
7�2N .A�� @@ˇ�r A

ˇ˛/@�f C Œ@
N
3 @

8�2N ; A�˛; @�f �

Dr
i
A.@

N
3 @

8�2Nf � @N3 @
8�2N�r A

�� @�f /C .@
N
3 @

8�2N�r /r
i
A.r

r
Af /

� .Œ@N3 @
7�2N ; A��Aˇ˛�@@ˇ�r /@�f C Œ@

N
3 @

8�2N ; A�˛; @�f �;

(5.3.124)

where the last line still contains the terms whose L2.˝/-norms cannot be directly bounded under the

setting of anisotropic Sobolev space H 8
� .˝/. The reason is that @N3 @

7�2N may fall on A D @� � @�

and @�f . The following quantities are exactly these terms.

e
]
1 WD �@

N
3 @

7�2N .A��Aˇ˛/.@@ˇ��/@�f; e
]
2 WD �.7 � 2N/@.A

��Aˇ˛/.@N3 @
7�2N @ˇ��/@�f;

e
]
3 WD .8 � 2N/.@

N
3 @

7�2NA�˛/.@@�f /; e
]
4 WD .8 � 2N/.@A

�˛/.@N3 @
7�2N @�f /:

(5.3.125)

One can mimic the derivation of (5.3.67) and (5.3.68) to define the “modified Alinhac good

unknowns" of v and Q with respect to @N3 @
8�2N to be

V]˛ WD@
N
3 @

8�2N v˛ � @
N
3 @

8�2N� � rAv˛

� .8 � 2N/@N3 @
7�2N� � rA@v˛ � .8 � 2N/@

N
3 @

7�2N v � rA@�˛

C .8 � 2N/@N3 @
7�2N� � rA@� � rAv˛ C .8 � 2N/@

N
3 @

7�2N� � rAv � rA@�˛;

(5.3.126)

and

Q]
WD@N3 @

8�2NQ � @N3 @
8�2N� � rAQ

� .8 � 2N/@N3 @
7�2N� � rA@QC .8 � 2N/@

N
3 @

7�2N� � rA@� � rAQ:

(5.3.127)

252



Then V] and Q] satisfy the following relations

@N3 @
8�2N .div QAv/ D rA � V

]
C C ].v/; @N3 @

8�2N .rAQ/ D rAQ� C C ].Q/; (5.3.128)

where the commutator C ] satisfies

kC ].f /k0 ≲ P.E.t//kf k8;�: (5.3.129)

Denote4]v and4]Q to be

.4]v/i WD � .8 � 2N/@
N
3 @

7�2N� � rA@v˛ � .8 � 2N/@
N
3 @

7�2N v � rA@�˛

C .8 � 2N/@N3 @
7�2N� � rA@� � rAv˛ C .8 � 2N/@

N
3 @

7�2N� � rAv � rA@�˛;

4
]
Q WD � .8 � 2N/@

N
3 @

7�2N� � rA@QC .8 � 2N/@
N
3 @

7�2N� � rA@� � rAQ:

Then we can derive the evolution equation of V] and Q]

R@tV] � J�1.b0 � @/@N3 @
8�2N

�
J�1.b0 � @/�

�
CrAQ]

DŒR; @N3 @
8�2N �@tv C

h
J�1.b0 � @/; @

N
3 @

8�2N
i �
J�1.b0 � @/�

�
C C ].Q/CR@t .�@

N
3 @

8�2N� � rAv C4
]
v/:

(5.3.130)

Denote the RHS of (5.3.130) to be F], then direct computation yields that

kF]k0 ≲ P .k�k8;�; kvk8;�; kQk8;�/ :

Now we take L2.˝/ inner product of (5.3.130) and JV] to get the following energy identity

1

2

d

dt

Z
˝

�0jV]j2 dy D
Z
˝

.b0 � @/@
N
3 @

8�2N
�
J�1.b0 � @/�

�
� V]

�

Z
˝

.rAQ/ � V] C
Z
˝

JF] � V]:

(5.3.131)
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5.3.6.2 Interior estimates

The last integral on RHS of (5.3.131) is directly controlled

Z
˝

JF] � V] ≲
Z
˝

kF]k0kV]k0: (5.3.132)

Then for the first term on RHS of (5.3.131) we integrate .b0 � @/ by parts to produce the energy

of magnetic field. Again, there is one term which cannot be directly controlled but will cancel with

another term produced by �
R
˝
.rAQ/ � V]. The proof follows in the same way as (5.3.15) so we omit

the details.Z
˝

.b0 � @/@
N
3 @

8�2N
�
J�1.b0 � @/�

�
� V]

≲ �
1

2

d

dt

Z
˝

J
ˇ̌̌
@N3 @

8�2N .J�1.b0 � @/�/
ˇ̌̌2
CK

]
11 C P

�
k.�; v; b0; .b0 � @//k8;�

�
;

(5.3.133)

where

K
]
11 WD �

Z
˝

J@N3 @
8�2N .J�1.b0 � @/�/ �

�
J�1.b0 � @/�

�
@N3 @

8�2N .div QAv/ dy: (5.3.134)

Next we analyze the term �
R
˝
.rAQ/ �V]. Integrating by parts and using Piola’s identity @�Ali D

0, we get

�

Z
˝

.rAQ/ � V] D
Z
˝

JQ].rA � V]/ �
Z
�

JQ]A�˛N�V]˛ dS DW I ] C IB]: (5.3.135)

Plugging (5.3.128) into I ], we get

I ] D

Z
˝

J@N3 @
8�2N q@N3 @

8�2N .div QAv/

C

Z
˝

J@N3 @
8�2N

�
1

2

ˇ̌
J�1.b0 � @/�

ˇ̌2�
@N3 @

8�2N .div QAv/

C

Z
˝

�
�.@N3 @

8�2N��/A�� @�QC4]Q
�
@N3 @

8�2N .div QAv/ �
Z
˝

.@N3 @
8�2NQ/C ].v/

DW I
]
1 C I

]
2 C I

]
3 C I

]
4 ;

(5.3.136)
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where I ]4 can be directly controlled by using the estimates of C ].v/

I
]
4 ≲ k@N3 @

8�2NQk0kC
].v/k0 ≲ P.k�k8;�/k@

N
3 @

8�2NQk0kvk8;�: (5.3.137)

The term I
]
1 produces the energy of fluid pressure

I
]
1 ≲ �

1

2

d

dt

Z
˝

J 2R0.q/

�0

ˇ̌̌
@N3 @

8�2N q
ˇ̌̌2
C P.kqk8;�; k�0k8;�; k�k8;�/: (5.3.138)

Similarly as in (5.3.82), the term I
]
2 produces the cancellation with K]11.

I
]
2 D

Z
˝
J@N3 @

8�2N
�
J�1.b0 � @/�

�
�

�
J�1.b0 � @/�

�
@N3 @
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N�N1
3 @8�2N�N2

�
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�
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D �K
]
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� CN1;N2

Z
˝
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�
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�
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N�N1
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�
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Z
˝
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3 @N2
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N�N1
3 @8�2N�N2

�
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���
@8;

JR0.q/

�0

�
@tq

�

DW �K
]
11 C I

]
21 C I

]
22

(5.3.139)

and by direct computation we have

Z T

0

I
]
21 ≲"k@

N
3 @

8�2N qk20 C P0 C
Z T

0

P.E.t// dt (5.3.140)

I
]
22 ≲kJ

�1.b0 � @/�k
2
7;�kqk8;�: (5.3.141)

Then I ]3 can be controlled by integrating @t by parts under time integral after invoking divAv D

�
JR0.q/
�0

@tq. The proof is similar to (5.3.86) so we do not repeat the proof.

Z T

0

I
]
3 ≲ "k@8�2N @N3 qk

2
0 C P0 C

Z T

0

P.E.t// dt: (5.3.142)
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Summarizing (5.3.136)-(5.3.142) and choosing " > 0 sufficiently small, we get the interior esti-

mates

Z T

0

I ] dt ≲ �
1

2

Z
˝

J 2R0.q/

�0

ˇ̌̌
@N3 @

8�2N q
ˇ̌̌2

dy
ˇ̌̌̌T
0

C P0 C
Z T

0

P.E.t// dt: (5.3.143)

Therefore, it suffices to analyze the boundary integral IB].

5.3.6.3 Boundary estimates

Invoking (5.3.126)-(5.3.127), the boundary integral now reads

IB] D�

Z
�

Q]JA3˛N3V]˛ dS

D�

Z
�

JA3˛N3.@
N
3 @

8�2NQ/V]˛ dS
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Z
�

A3˛N3.@N3 @
8�2N��/A

3�@3Q @N3 @
8�2N v˛ dS

�

Z
�

A3˛N3.@N3 @
8�2N�� A

3�@3Q/.@
N
3 @

8�2N� � rAv˛/ dS

�

Z
�

A3˛N3.4]Q/.@
N
3 @

8�2N v˛/ dS C
Z
�

A3˛N3.4]Q/@
N
3 @

8�2N� � rAv˛ dS

�

Z
�

A3˛N34]Q.4
]
v/i dS C

Z
�

A3˛N3.@N3 @
8�2N�� A

3� @3Q/.4
]
v/i dS

DWIB
]
0 C IB

]
1 C IB

]
2 C IB

]
3 C IB

]
4 C IB

]
5 C IB

]
6:

(5.3.144)

To control IB], we only need to combine the techniques used in Section 5.3.1.3 and Section 5.3.2.3:

� IB
]
1; IB

]
2 together with the Rayleigh-Taylor sign condition produces the boundary energy

jA3˛@N3 @
8�2N�˛j

2
0, similarly as IB1 C IB2 in Section 5.3.1.3 and IB�1 C IB

�
2 Section 5.3.2.3.

� The term IB
]
0 is the analogue of IB0 in Section 5.3.1.3 and can be controlled with similar method

as in Section 5.3.1.3.
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� IB
]
3 � IB

]
6 are the analogues of IB�3 � IB

�
6 in Section 5.3.2.3. These terms can be controlled

exactly in the same way as IB�3 � IB
�
6 .

First, IB]1 and IB]2 give the boundary energy with the help of Rayleigh-Taylor sign condition. The

proof is exactly the same as in Section 5.3.1.3 and Section 5.3.2.3 by merely replacing @43 or @8 with

@N3 @
8�2N , so we do not repeat the computations here.

Z T

0

IB
]
1 C IB

]
2 D�

c0

4

ˇ̌̌
A3˛@N3 @

8�2N�˛

ˇ̌̌2
0

ˇ̌̌̌T
0

C

Z T

0

P.E.t// dt: (5.3.145)

We then analyze IB]0. Invoking (5.3.126), we have

IB
]
0 D�

Z
�

N3.J @
N
3 @

8�2NQ/.A3˛ @N3 @
8�2N v˛/ dS

C

Z
�

JA3˛N3.@
N
3 @

8�2NQ/.@N3 @
8�2N� � rAv˛/ dS

�

Z
�

JA3˛N3.@
N
3 @

8�2NQ/.4]v/˛ dS

DWIB
]
01 C IB

]
02 C IB

]
03:

(5.3.146)

We note that IB]01 and IB]02 are the analogues of IB01 and IB02 in Section 5.3.1.3, so we do not repeat

all the details here. The extra term IB
]
03 can be directly controlled (cf. (5.3.153) below).

We differentiate the continuity equation (5.3.31) by @N3 @
8�2N to simplify the top order term

containing v in IB]01:

A3˛@N3 @
8�2N v˛ D� @

N�1
3 @8�2N

�
JR0.q/

�0
@tq

�
�

2X
LD1

@N�13 @8�2N .AL˛@Lv˛/

�

X
N1CN2�1;N1�N�1

 
N � 1

N1

! 
8 � 2N

N2

!�
@
N1
3 @N2A3˛

� �
@
N�N1
3 @8�2N�N2v˛

�
;

(5.3.147)

where the term contains @N�13 @8�2NAL˛ D @N3 @
8�2N�� @�CL:O:T: which cannot be controlled on
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the boundary. Invoking (3.1.3) with D D @, we expand this problematic term to be

.@N�13 @8�2NAL˛/@Lv˛ D�
�
@N�13 @7�2N .AL� @@ˇ�� A

ˇ˛/
�
@Lv˛

D� AL� @N3 @
8�2N�� A

3˛@Lv˛

�

2X
MD1

AL�.@N�13 @8�2N @M��/A
M˛@Lv˛

� .Œ@N�13 @7�2N ; AL�Aˇ˛�@@ˇ��/@Lv˛:

(5.3.148)

On the other hand, in IB]02 we have

A3˛@N3 @
8�2N� � rAv˛ D A

3˛

2X
LD1

@N3 @
8�2N��A

L�@Lv˛ C A
3˛@N3 @

8�2N��A
3�@3v˛; (5.3.149)

where the first term exactly cancels with the first term in the RHS of (5.3.148). In fact, this is the

analogue of (5.3.35)-(5.3.38) by merely replacing @43 with @N3 @
8�2N . Thus we get the cancellation of

the top order terms in IB]01 and IB]02.

The second term in (5.3.149) could be treated similarly as in (5.3.42) by invoking A3�@3�� D 1

@N3 @
8�2N��A

3� L
D @N�13 @8�2N .@3��A

3�/„ ƒ‚ …
D0

�.@N�13 @8�2NA3�/@3�� � .@A
3�/.@N3 @

7�2N��/:

(5.3.150)

To control IB]0, we still need to analyze @N3 @
8�2NQ. Following the aruments in (5.3.39)-(5.3.41)

and replacing @43 with @N3 @
8�2N , we can reduce one normal derivative of Q to one tangential derivative

of v and .b0 � @/� via

@N3 @
8�2NQ DJ�1@3�˛

�
�0@

N�1
3 @8�2N @tv

˛
C .b0 � @/@

N�1
3 @8�2N .J�1.b0 � @/�

˛/
�

�

2X
LD1

ALi .@N�13 @8�2N @LQ/

� .N � 1/.@N�13 @8�2NA3˛/.@3Q/C lower order terms.

(5.3.151)

Plugging the expression of4]v and (5.3.147)-(5.3.151) into (5.3.146), we find that every highest order
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term in IB]0 must be one of the following forms

K
]
1 WD

Z
�

N3.@
N�1
3 @8�2NDf /.@N�13 @9�2Ng/.@h/r dS;

K
]
2 WD

Z
�

N3.@
N�1
3 @8�2NDf /.@N3 @

7�2Ng/.@@h/r dS;

K
]
3 WD

Z
�

N3.@
N�1
3 @8�2NDf /.@N3 @

7�2Ng/.@h/r dS;

where D D @ or @t or .b0 � @/, the functions f; g; h can be �; v;Q; J�1.b0 � @/�, and r contains at

most one derivative of �; v or Q. We note that the term K
]
2 comes from IB

]
03 where4]v contributes to

@N3 @
7�2Ng � @@h � r .

Since 1 � N � 3, we know 7 � 2N � 1 and thus we can directly apply lemma 3.2.5 to control

K
]
1 � K

]
3.

K
]
1 ≲j@

N�1
3 Df j8�2N j@

N�1
3 gj9�2N j@h r jL1 ≲ k@N�13 Df kH9�2N�

k@N�13 gkH10�2N�
k@h rkH2

≲kf k2.N�1/C1C.9�2N/;�kgk2.N�1/C.10�2N/;�khk3krk2 D kf k8;�kgk8;�khk3krk2:
(5.3.152)

and

K
]
2 ≲j@

N�1
3 Df j8�2N j@

N
3 gj7�2N j.@@h/r jL1 ≲ j@N�13 Df j8�2N j@

N
3 gj7�2N j.@@h/r j1:5

≲k@N�13 Df kH9�2N�
k@N3 gkH8�2N�

k.@@h/rk2 ≲ kf k8;�kgk8;�khk7;�krk2;

(5.3.153)

and

K
]
3 ≲j@

N�1
3 Df j8�2N j@

N
3 gj7�2N j.@h/r jL1 ≲ j@N�13 Df j8�2N j@

N
3 gj7�2N j.@h/r j1:5

≲k@N�13 Df kH9�2N�
k@N3 gkH8�2N�

k.@h/rk2 ≲ kf k8;�kgk8;�khk3krk2:

(5.3.154)

One can use either trace lemma or similar techniques as in (5.3.43)-(5.3.45) to analyze the remaining

terms which are all of lower order than K]1 � K
]
3. This completes the control of IB]0.

The analysis of IB]3 � IB
]
6 can be proceeded exactly in the same way as IB�3 � IB

�
6 . Since these
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quantities involving the modification terms4]Q;4
]
v are of lower order, we do not repeat the details

again. We can finally prove that

Z T

0

IB
]
3 C IB

]
4 dt ≲

Z T

0

ˇ̌̌
A3˛@N3 @

8�2N�˛

ˇ̌̌
0
P .k.�; v; b/k8;�; kQk8;�; k�0k3/ dt; (5.3.155)
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Z T

0

kv.t/k8;� dt
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]
5 ≲jA

3˛
jL1 j4

]
Qj0j.4

]
v/i j0 ≲ P.k�k8;�; kvk8;�; kQk7;�/; (5.3.156)

IB
]
6 ≲jA

3˛@3QjL1 jA
3�@N3 @

8�2N�� j0j.4
]
v/i j0 ≲ P.k�k8;�; kvk8;�; kQk7;�/:

(5.3.157)

Summarizing the estimates above, we get the control of the boundary integral

Z T

0

IB] ≲ �
c0

4

ˇ̌̌
A3˛@N3 @

8�2N�˛

ˇ̌̌2
0
C P0 C P.E.T //

Z T

0

P.E.t// dt: (5.3.158)

Combining (5.3.131)-(5.3.133), (5.3.143), (5.3.158) and choosing " > 0 in (5.3.140) to be suitably

small, we get the following inequality

kV]k20 C
@N3 @8�2N �J�1.b0 � @/��2

0
C k@N3 @

8�2N qk20 C
c0

4

ˇ̌̌
A3˛@N3 @

8�2N�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.159)

Finally, invoking (5.3.126), we get the @N3 @
8�2N .N D 1; 2; 3/-estimates of v by using @m�jtD0 D 0

for any m � 2;m 2 N�,

k@N3 @
8�2N vk0 ≲ kV]k0 C P.kvk7;�; k�k7;�/

Z T

0

P.kvk8;�/; (5.3.160)

and thus @N3 @8�2N �v; J�1.b0 � @/�; q�2
0
C
c0

4

ˇ̌̌
A3˛@N3 @

8�2N�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.161)
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5.3.7 Control of time derivatives

In the case of @I� D @
N
3 @

8�2N�k@kt for 1 � k � 8 � 2N , most of steps in the proof are still applicable.

However, the presence of time derivative(s) could simplify the “modified Alinhac good unknowns".

We note that most of the modifications are essentially similar to Section (5.3.3) � Section 5.3.5, so we

omit the proof.

5.3.7.1 One time derivative

When k D 1, the modified Alinhac good unknowns can be defined by replacing 8@7 by .8 �

2N/@N3 @
7�2N in Section 5.3.3.2, i.e.,

V] D @N3 @
7�2N @tv� @

N
3 @

7�2N @t� � rAvC4
]
v; Q]

D @N3 @
7�2N @tQ� @

N
3 @

7�2N @t� � rAQC4
]
Q:;

(5.3.162)

where

.4]v/i WD � .8 � 2N/@
N
3 @

7�2N� � rA@tv˛ � .8 � 2N/@
N
3 @

7�2N v � rAv˛

C .16 � 4N/@N3 @
7�2N

� rAv � rAv˛;

4
]
Q WD � .8 � 2N/@

N
3 @

7�2N� � rA@tQC .8 � 2N/@
N
3 @

7�2N� � rAv � rAQ;

(5.3.163)

and

@N3 @
7�2N @t .div QAv/ D rA � V

]
C C ].v/; @N3 @

7�2N @t .rAQ/ D rAQ]
C C ].Q/; (5.3.164)

with

kC ].f /k0 ≲ P.E.t//kf k8;�:

The difference between @N3 @
7�2N v and V] should be controlled in the same way as (5.3.108) by
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replacing @7 with @N3 @
7�2N

k@N3 @
7�2N @tvk0 ≲ kV�k20 C P0 C P.E.T //

Z T

0

P.E.t// dt; (5.3.165)

and thus @N3 @7�2N @t �v; J�1.b0 � @/�; q�2
0
C
c0

4

ˇ̌̌
A3˛@N3 @

7�2N @t�˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲P0 C P.E.T //
Z T

0

P.E.t// dt:

(5.3.166)

5.3.7.2 2�(7-2N) time derivatives

When 2 � k � 7 � 2N , we can mimic the analysis in Section 5.3.4: We just need to replace D6@2t by

@N3 D
6�2N @2t where D denotes @ or @t and D6�2N contains at least one @. The analogous problematic

term becomes �2.@tA�˛/.@N3 D
6�2N @t@�f / � .6 � 2N/.DA

�˛/.@N3 D
5�2N @2t @�f / which comes

from Œ@N3 D
6�2N @2t ; A

�˛; @�f �. Following (5.3.111)-(5.3.113), we can similarly define

V] D @N3 D
6�2N @2t v � @

N
3 D

6�2N @2t � � rAv C4
]
v; Q]

D @N3 D
6�2N @2tQ � @

N
3 D

6�2N @2t � � rAQ;

(5.3.167)

where

.4]v/i WD �.6 � 2N/@
N
3 D

5�2N @2t v � rAD�˛ � 2@
N
3 D

6�2N @tv � rAv˛ (5.3.168)

and

@N3 D
6�2N @2t .div QAv/ D rA � V

]
C C ].v/; @N3 D

6�2N @2t .rAQ/ D rAQ� C C ].Q/; (5.3.169)

with

kC ].f /k0 ≲ P.E.t//kf k8;�:

Again we have4]Q in this case, and thus the analogues of IB]3 � IB
]
5 all vanish. The boundary

integrals IB]0; IB
]
1; IB

]
2; IB

]
6 and the interior terms can be controlled in the same way as Section 5.3.6.
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Finally, one has@N3 D6�2N @2t
�
v; J�1.b0 � @/�; q

�2
0
C
c0

4

ˇ̌̌
A3˛@N3 D

6�2N @2t �˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲P0 C P.E.T //
Z T

0

P.E.t// dt;

(5.3.170)

where D6�2N contains at least one spatial derivative @.

5.3.7.3 Full time derivatives

When @I� D @
N
3 @

8�2N
t for N D 1; 2; 3, there is not tangential spatial derivative on the boundary and

thus Lemma 3.2.5 is no longer applicable. In this case, the modified Alinhac good unknowns become

V] D @N3 @
8�2N
t v � @N3 @

8�2N
t � � rAv C4

]
v; Q]

D @N3 @
8�2N
t Q � @N3 @

8�2N
t � � rAQ; (5.3.171)

where

.4]v/i WD �.8 � 2N/@
N
3 @

8�2N
t v � rAv˛ (5.3.172)

and

@N3 @
8�2N
t .div QAv/ D rA � V

]
C C ].v/; @N3 @

8�2N
t .rAQ/ D rAQ]

C C ].Q/; (5.3.173)

with

kC ].f /k0 ≲ P.E.t//kf k8;�:

The proof follows in the same way as Section 5.3.5 after replacing @7t by @7�2Nt and the coefficient

8 by .8 � 2N/. So we no longer repeat the details. Finally, we get

k@N3 @
8�2N
t vk20 C

@N3 @8�2Nt

�
J�1.b0 � @/�

�2
0
C k@N3 @

8�2N
t qk20 C

c0

4

ˇ̌̌
A3˛@N3 @

8�2N
t �˛

ˇ̌̌2
0

ˇ̌̌̌
tDT

≲"k@NC13 @6�2Nt vk20 C P0 C P.E.T //
Z T

0

P.E.t// dt;

(5.3.174)

which together with (5.3.161), (5.3.166), (5.3.170) concludes the proof of Proposition 5.3.5.
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5.3.8 Control of weighted normal derivatives

Now we consider the most general case @I� D @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 with i1 C i2 C 2i3 C i4 D 8 and

i4 > 0. The presence of the weighted normal derivatives .�@3/i4 makes the following difference from

the non-weighted case.

1. Extra terms are produced when we commute @I� with @3 because � is a function of y3. Once @3

falls on the weight function, we will lose a weight and .�@3/ becomes @3, which causes a loss of

derivative. This appears when we commute @I� with r˛A that falls on Q or v˛ and commute @I�

with .b0 � @/.

2. There is no boundary integral because the weight function � vanishes on � .

To overcome the difficulty mentioned above, we can again use the techniques, similar with those in

the previous sections.

� Invoke the MHD equation and the continuity equation to replace rAQ and div QAv by tangential

derivatives.

� Produce a weight funtion by using b30 j� D 0 and @Qj� D 0.

� In particular, if @I� does not contain time derivative, we need to add an extra modification term in

the good unknown of v.

First we analyze Œ.b0 � @/; @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 �f . Compared with the non-weighted case, we need

to control the extra term

b30@3.�
i4/ .@

i0
t @

i1
1 @

i2
2 @

i3Ci4
3 f / D i4b

3
0.@3�/

�
@
i0
t .�@3/

i4�1@
i1
1 @

i2
2 @

i3C1
3

�
f:
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Using b30 j� D 0, one can produce a weight function � as in (5.3.58). Therefore

b30.@3�/ �@i0t .�@3/i4�1@i11 @i22 @i3C13 f
�
0

≲k@3b0kL1k.�@3/@
i0
t .�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 f k0 � kb0k3kf k8;�:

Next we analyze the commutator between @I� D @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 and rAf . Compared with the

non-weighted case, we shall analyze an extra term C� below. In specific, one has

@
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 .A

�˛@�f / D �
i4@

i0
t @

i1
1 @

i2
2 @

i3Ci4
3 .A�˛@�f /

D� i4
�
A�˛@�.@

i0
t @

i1
1 @

i2
2 @

i3Ci4
3 /f

�
C � i4 Œ@

i0
t @

i1
1 @

i2
2 @

i3Ci4
3 ; A�˛�@�f„ ƒ‚ …
VC

DA�˛@�

�
� i4@

i0
t @

i1
1 @

i2
2 @

i3Ci4
3 f

�
� .i4@3�/A

3˛
�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3C1
3 f

�
„ ƒ‚ …

C�

C VC :

(5.3.175)

The term VC consists of the commutators produced in the same way as the non-weighted case. It can

be analyzed in the same way as in previous sections by just considering .�@3/ as a tangential derivative

on the boundary. As for the extra term, we do the following computation

A3˛
�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3C1
3 f

�

D.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

3˛@3f / �
h
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 ; A

3˛
i
@3f

DWC �1 .f /C C
�
2 .f /:

(5.3.176)

Note that i0Ci1Ci2Ci4 D 8�2i3. We know the leading order terms inC �2 are
�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 A

3˛
�
f

and .DA3˛/.D6�2i3@
i3C1
3 f /, where D represents any one of .�@3/; @t ; @1; @2. Recall that A3˛

cosists of @� � @�. This shows that the highest order term in
�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 A

3˛
�
@3f is

.D8�2i3@
i3
3 �/.@�/f whose L2.˝/ norm can be directly controlled by k�k8;�k@�kL1k@3f kL1 . As
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for the second term, we have

k.DA3˛/.D6�2i3@
i3C1
3 f /k0 ≲ k.D@�/.@�/kL1kf k8;�:

Therefore, C �2 can be directly controlled.

The control of C �1 is more complicated. We should use the structure of MHD system (2.4.1) to

replace one normal derivative by one tangential derivative.

A3˛@3Q D�

2X
LD1

AL˛@LQ �R@tv
˛
C J�1.b0 � @/.J

�1.b0 � @/�/
˛ (5.3.177)

A3˛@3v˛ Ddiv QAv � A
1˛@1v˛ � A

2˛@2v˛ D �
JR0.q/

�0
@tq �

2X
LD1

AL˛@Lv˛ (5.3.178)

When f D Q, we plug (5.3.177) into C �1 .Q/ to get

C �1 .Q/ D.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

3˛@3Q/

D�

2X
LD1

.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

L˛@LQ/

� .�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .R@tv

˛/

C .�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3

�
J�1.b0 � @/.J

�1.b0 � @/�
˛//
�

DWC �11.Q/C C
�
12.Q/C C

�
13.Q/:

(5.3.179)

When f D v˛ , we plug (5.3.178) into C �1 .v/ to get

C �1 .v/ D.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

3˛@3v˛/

D�

2X
LD1

.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

L˛@Lv˛/ � .�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3

�
JR0.q/

�0
@tq

�

DWC �11.v/C C
�
12.v/:

(5.3.180)
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The terms C �12.Q/ and C �12.v/ can be directly controlled. Note that i0Ci1Ci2C.i4�1/ D 7�2i3,

so

kC �12.Q/k0 ≲kRk7;�kvk8;� ≲ kqk7;�kvk8;�; (5.3.181)

kC �12.v/k0 ≲k�0k7;�kqk8;�: (5.3.182)

Using b30 j� D 0, one can produce a weight function � as in (5.3.58) when all the derivatives fall

on J�1.b0 � @/�.

kC �13.Q/k0 ≲kJ
�1.b0 � @/.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 .J

�1.b0 � @/�/k0

C

h.�@3/i4�1@i0t @i11 @i22 @i33 ; J�1.b0 � @/i .J�1.b0 � @/�/
0

≲k@3.J
�1b0/kL1k.�@3/

i4@
i0
t @

i1
1 @

i2
2 @

i3
3 .J

�1.b0 � @/�/k0

≲kb0k7;�kJ
�1.b0 � @/�k8;�:

(5.3.183)

As for C �11, the highest order term can be merged into the modified Alinhac good unknowns. One

has

C �11.f / WD �

2X
LD1

.�@3/
i4�1@

i0
t @

i1
1 @

i2
2 @

i3
3 .A

L˛@Lf /

D�

2X
LD1

�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 A

L˛
�
@Lf

�

2X
LD1

h
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 ; A

L˛
i
@Lf„ ƒ‚ …

C�
111

.f /

(5.3.184)
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which again is equal to

�

2X
LD1

AL�
�
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 @ˇ��

�
Aˇ˛@Lf

�

2X
LD1

�h
.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 ; A

L�Aˇ˛
i
@ˇ��

�
@Lf„ ƒ‚ …

C�
112

.f /

CC �111.f /:

(5.3.185)

Since i0C i1C i2C i4 D 8� 2i3, one can directly control the L2.˝/-norms of C �111.f /; C
�
112.f / by

P.k�k8;�/kf k8;�. For the first term in the RHS of (5.3.184), one can proceed in the following ways

� f D Q: Since @LQj� D 0, one can produce a weight function as in (5.3.62) and thusAL� �.�@3/i4�1@i0t @i11 @i22 @i33 @ˇ���Aˇ˛@LQ
0

≲
2X

MD1

AL� �.�@3/i4�1@i0t @i11 @i22 @i33 @M���AM˛@LQ
0

C kAL�A3˛@@3QkL1k.�@3/
i4@

i0
t @

i1
1 @

i2
2 @

i3
3 ��k0

≲P.k�k3/kQk7;�k�k8;�:

(5.3.186)

� f D v˛: When @I� contains time derivative .i0 > 0/, then it can be directly controlled due to

@t� D v

AL� �.�@3/i4�1@i0t @i11 @i22 @i33 @ˇ���Aˇ˛@Lv˛
0
≲ P.k�k3/kvk5;�kvk8;�: (5.3.187)
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If i0 D 0, then it can be written in the form of covariant derivative plus a controllable term.

� AL�
�
.�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 @ˇ��

�
Aˇ˛@Lv˛

D� Aˇ˛@ˇ

�
.�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 ��A

L�@Lv˛

�

C A3˛.@3�/
�
.i4 � 1/.�@3/

i4�2@
i1
1 @

i2
2 @

i3C1
3 ��

�
AL�@Lv˛

Cr
˛
A.A

L�@Lv˛/
�
.�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 ��

�

DW � r
˛
A

�
.�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 ��A

L�@Lv˛

�
C C �113.v˛/:

(5.3.188)

We note that the first term in C �113.f / appears when @k .k D 3/ falls on the weight function and

i4 � 2 and can also be directly controlled by P.k�k8;�/kf k8;�.

Next we merge the covariant derivative terms in C� into the modified Alinhac good unknowns, i.e.,

for @I� D @
i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3 we define V�˛ to be8̂<̂

:
@I�v˛ � @

I
�� � rAv˛ C .4

�
v /˛; i0 � 1

@I�v˛ � @
I
�� � rAv˛ C .4

�
v /˛ C

2P
LD1

�
.i4@3�/.�@3/

i4�1@
i1
1 @

i2
2 @

i3
3 ��

�
AL�@Lv˛; i0 D 0;

(5.3.189)

and

Q�
WD @I�Q � @

I
�� � rAQC4

�
Q: (5.3.190)

Then one has

@I�.rA � v/ D rA � V
�
C C � .v/; (5.3.191)

@I�.rAQ/ D rAQ�
C C � .Q/; (5.3.192)

with kC � .f /k0 ≲ P.E.t//kf k8;�: Here the “extra modification terms"4�v and4�Q comes from the

analysis of VC in (5.3.175) whose precise expressions can be derived in the same way as before. The
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term
�
.i4@3�/.�@3/

i4�1@
i0
t @

i1
1 @

i2
2 @

i3
3 ��

�
AL�@Lf comes from (5.3.175) and (5.3.188). Finally, the

commutator C � .f / consists of the commutator part in VC , C �111.f / � C
�
113.f /; C

�
12.f / and C �13.Q/:

Recall that � j� D 0 and @Qj� D 0 imply Q� j� D 0. Therefore the boundary integralR
�
N3A3˛Q�V�˛ dS vanishes. Hence, we can get the following estimates for @I� WD @

i0
t .�@3/

i4@
i1
1 @

i2
2 @

i3
3

k@I�vk
2
0 C

@I� �J�1.b0 � @/��2
0
C k@I�qk

2
0

ˇ̌̌̌
tDT

≲ P0 C P.E.T //
Z T

0

P.E.t// dt: (5.3.193)

5.3.9 A priori estimates of the compressible MHD system

5.3.9.1 Finalizing the energy estimates

Combining the L2-energy conservation with (5.3.3), (5.3.50), (5.3.123) and (5.3.193), and then choos-

ing " > 0 to be suitably small, we finally get the following energy inequality

E.T / � E.0/ ≲ P0 C P.E.T //
Z T

0

P.E.t// dt (5.3.194)

under the a priori assumptions (5.3.1)-(5.3.2). By the Gronwall-type inequality, one can find some

T2 > 0 depending only on the initial data, such that

sup
0�t�T2

E.t/ � C.E.0//; (5.3.195)

where C.E.0// denotes a positive constant depending on E.0/. This completes the a priori estimates of

(2.4.1).

5.3.9.2 Justification of the a priori assumptions

It suffices to justify the a priori assumptions (5.3.1)-(5.3.2). First, invoking @tJ D J div QAv and

J jtD0 D 1, we get

kJ � 1k7;� �

Z T

0

kJ div QAvk7;� dt ≲
Z T

0

P.k@�kL1/k@tqk7;� dt
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Therefore choosing T > 0 to be sufficiently small yields (5.3.1). The Rayleigh-Taylor sign condition

in Œ0; T1� can be justified by proving @Q=@N is a Hölder-continuous function in t and y variables. In

specific, from the energy estimates we know that

@Q

@N
2 L1.Œ0; T �IH

5
2 .� //; @t

�
@Q

@N

�
2 L1.Œ0; T �IH

3
2 .� //:

By using the 2D Sobolev embedding H
1
2 .� / ,! L4.� / and Morrey’s embedding W 1;4 ,! C 0;

1
4 in

3D domain, we get its Hölder continuity

@Q

@N
2 W 1;1.Œ0; T �IH

3
2 .� // ,! W 1;4.Œ0; T � � � / ,! C

0; 14
t;x .Œ0; T � � � /:

Therefore, (5.3.2) holds in a positive time interval provided that �
@Q0

@N
� c0 > 0 holds initially.

Theorem 2.4.1 is proved.

5.3.10 Initial data satisfying the compatibility conditions

Define f.j / WD @
j
t f jtD0 to be the initial data of @jt f for j 2 N. Finally, we need to prove the existence

of initial data satisfying the following properties:

� The compatibility conditions (1.0.9) up to 7-th order.

� The constraints r � B0 D 0; B0 � njf0g�@D0 D 0 and the Rayleigh-Taylor sign condition (1.0.5)

on f0g � @D0.

� The norms of the initial datum of the time derivatives of .v; b;Q/ can be controlled by the norms

of initial data .v0; b0;Q0/.

We note that the compatibility conditions up to orderm can be expressed in Lagrangian coordinates

by using the formal power series solution to (2.4.1) in t :

Ov.t; y/ D
X

v.j /.y/
tj

j Š
; Ob.t; y/ D

X
b.j /.y/

tj

j Š
; OQ.t; y/ D

X
Q.j /.y/

tj

j Š
;
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satisfyingQ.j /j� D 0 for j D 0; 1; � � � ; m. Since the solutions are inH 8
� , the compatibility conditions

have to be expressed in a weak form

Q.j /.y/ 2 H
1
0 .˝/; 0 � j � m: (5.3.196)

From .v0; b0;Q0/ 2 H 8
� .˝/ and the system (2.4.1), one can only get .v.j /; b.j /;Q.j // 2

H
8�2j
� .˝/ for 0 � j � 4. To guarantee .v.j /; b.j /;Q.j // 2 H

8�j
� .˝/ and Q.j / 2 H 1

0 .˝/, the

initial data should be constructed in H 8.˝/ with

8X
jD1

k.v.j /; b.j /;Q.j //k8�j ≲ P.kv0k8; kb0k8; kQ0k8/;

instead of in H 8
� .˝/. See [74, Lemma 4.1] for the proof.

On the one hand, by Lemma 3.2.7 we know .v.j /; b.j /;Q.j // 2 H
8�j .˝/ ,! H

8�j
� .˝/ which

satisfies our requirement and implies E.0/ ≲ P.kv0k8; kb0k8; kQ0k8/. On the other hand, if we

directly construct the initial data .v0; b0; q0/ 2 H 8
� .˝/ such that .v.j /; b.j /;Q.j // 2 H

8�j
� .˝/, then

it is not clear in which sense the boundary conditions and the compatibility conditions are satisfied. For

example, Q.7/ 2 H 1
� .˝/, but the trace of such function in that space has no meaning in general. This

also explains why we require Q.7/ 2 H 1
0 .˝/ in (5.3.196). Therefore, the initial data .v0; b0;Q0/ has

to be constructed in the standard Sobolev space H 8.˝/.
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Chapter 6

Open Problems

The last chapter records some open problems in the study of free-interface problems in MHD. Recall

in Chapter 1.1 that such free-boundary problems arise from the current-vortex sheets and the plasma-

vacuum models. In the case of compressible ideal MHD, all the previous results about the local

existence [9, 74, 75, 70, 71, 64] rely on the Nash-Moser iteration method which yields a big loss of

regularity from the initial data to the solution. It is natural to ask if one can prove the local existence such

that there is no loss of regularity for the higher order energy. Our paper [50] is the first breakthrough in

this direction. Specifically, the following problems are unsolved

Problem 6.0.1. 1. Use the energy functional in [50] to prove the local existence.

2. Extend to current-vortex sheets and plasma-vacuum model with Syrovatskij condition and prove

the incompressible limit. (Magnetic shear suppresses the Kelvin-Helmholtz instability.)

3. Extend to current-vortex sheets and plasma-vacuum model with surface tension but drop the

Syrovatskij condition and prove the incompressible limit. (Surface tension eliminates the Kelvin-

Helmholtz instability.)

Problem 6.0.1 is never a simple generalization of [50]. For problem 1, one may need to find a new

way to define the approximate system other than the tangential smoothing method. From the proof
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of Theorem 2.3.1 in Chapter 5.2, we find the “corrector"  in the approximate system is necessary in

order for the uniform-in-� estimates. In fact, this cannot be avoided because it is not likely to have

higher regularity of � than v and thus the analogous proofs for Euler equation (cf. [16, 17, 15]) are no

longer valid. Due to the structure of  in (5.2.2), it is not likely to close the uniform-in-� estimate in

the control of less than 2 tangential derivatives (the contribution of  on the boundary is4 ).

For problem 2�3, an extra difficulty arises from the nonvanishing boundary condition for the total

pressure Q. Recall in (5.3.62) that we use Qj� D 0 to produce a weight function in the derivation of

“modified" Alinhac good unknown, which seems unavoidable if one use Lagrangian coordinates. To

overcome this difficulty, one might alternatively assume the free interface as a graph of function  .

Under this setting, the extension of  to the interior, namely ', still has full Sobolev regularity even

if all the unknowns only have anisotropic Sobolev regularity. However, it is still unknown if one can

derive the a prori estimates due to the extremely complicated computation on the free interface. Even

so, it is still highly non-trivial to prove the local existence with this energy. Indeed, in the iteration

scheme, the boundary energy of  (or its smoothed version) cannot be derived for the frozen-coefficient

linearized system. One may alternatively apply the idea of Wu [79] to control the evolution of the free

interface. So far, all the aforementioned results only proved the tame estimates for the linearized system,

which is far from what we desire. Further, the study of the incompressible limit of compressible vortex

sheets is completely open, while the incompressible counterpart is related to the “suppression effects”

(contributed by magnetic fields, elasticity, surface tension, etc) on the Kelvin-Helmholtz instability.

Next, concerning the plasma-vacuum model, we raise the following question

Problem 6.0.2. What should be the necessary and sufficient “stablization condition" on the interface

for the local existence?

The Syrovatskij condition jBC � B�j � c0 > 0 which comes from the study of current-vortex

sheets is shown to be sufficient (cf. [64, 67]), but it is still unknown if it is necessary. On the other
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hand, Gu [25, 26] proved the local existence for the axi-symmetric case under the Rayleigh-Taylor sign

condition. Mathematically, if we assume the free interface as a graph of function  and the initial data

is in H r , then the Rayleigh-Taylor sign condition gives H r .� / regularity for  but the Syrovatskij

condition gives H rC 12 .� / regularity because the latter one allows us the rewrite r in terms of the

linear combination of Ḃ. But so far, there is no result that shows the latter one implies the former one.

See also Trakhinin [73] for detailed discussion.

Yet there are more interesting and deep problems. Recall in Chapter 1.1.1 we exclude the case of

MHD shocks, for which one of the jump condition becomes Œu0n� ¤ 0. Blokhin-Trakhinin [5] studies

the stability of MHD shocks. However, it is still widely unknown about the formation mechanisms.

The only related result is due to An-Chen-Yin [3] for the instantaneous fast MHD shock driven by

low-regularity data, whereas the general case is completely unknown and extremely difficult due to

the multiple speeds (fast and slow magnetosonic waves, entropy wave and sound wave). The study of

MHD transonic shocks is also completely open. However, this phenomenon happens when the solar

winds pass across the termination shock [24, Chap. 20].
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