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Abstract

The free-boundary problems in magnetohydrodynamics (MHD) describe the motion of conducting
fluids in electromagnetic fields. Such problems usually arise from the plasma confinement problems
and some astrophysical phenomena, e.g., the propagation of solar wind. The thesis records the results
for the local well-posedness (LWP) of the free-boundary problems in incompressible MHD with and
without surface tension [52}53} 28, [29] (joint with Xumin Gu and Chenyun Luo), compressible resistive

MHD [82} 83]], and compressible ideal MHD [50] (joint with Hans Lindblad).

For incompressible ideal MHD, we record a comprehensive study for the case with surface tension
[531 128, 29] which are the first breakthrough in the mathematical study of this direction. The proof
relies on the tangential smoothing, penalization method and a new-developed cancellation structure
enjoyed by the Alinhac good unknowns. When the surface tension is neglected, we present a minimal

regularity result (for LWP) in a small fluid domain [52].

Compressible ideal MHD is a hyperbolic system with characteristic boundary conditions. When
the magnetic field is parallel to the surface, the loss of normal derivatives cannot be compensated due
to the failure of div-curl analysis. On the one hand, we observe that such derivative loss is exactly
compensated by the magnetic diffusion. Based on this, we prove the LWP and the incompressible
limit for compressible resistive MHD [82} [83]]. On the other hand, we adopt the anisotropic Sobolev
spaces together with the “modified" Alinac good unknowns to study compressible ideal MHD system.

We establish the first result [50]] on the nonlinear a priori estimates without loss of regularity for the
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free-boundary compressible ideal MHD system, which greatly improves the existing results proved by

Nash-Moser iteration.

Primary Readers:

Hans Lindblad (Advisor), Christopher Sogge, Jacob Bernstein, Gregory Eyink, Tyrel M. McQueen.

Alternate Readers:

Benjamin Dodson, Ibrahima Bah.
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Chapter 1

Mathematical Formulation and
Backgrounds

We are concerned with 3D free-boundary magnetohydrodynamic (MHD) system

pDiu=—-Vp+jxB, j:=VxB in D,

%B=-VxE, E:=-uxB+Aj inD, o
V-B=0 in D,

which describes the motion of an inviscid conducting fluid (plasma) in an electro-magnetic field. Here
D :=Up<i<rit} x Dy and D, C R3 is the domain occupied by the conducting fluid whose boundary
0D; moves with the velocity of the fluid. The operator V := (0x,, dx,, 0x;) is the standard spatial
derivative and the operator D; := d; + u - V is the material derivative. The quantities u, p, p denote
the fluid velocity, the fluid pressure and the fluid density. The quantities B, E, j denote the magnetic

field, the induced electric field and the current density.

We always assume the density p satisfies p > po > 0 where pg is a positive constant, i.e., we
assume the fluid is a liquid. In the case of p = pgy, we say the fluid is incompressible and assume
po = 1; otherwise we say the fluid is compressible. In the compressible case, the fluid pressure satisfies
p = p(p,S) with g—’/; > 0, where S, the entropy of the fluid, satisfies pD;S = 0. In the thesis, we

assume S to be a constant, i.e., we only consider the isentropic case; otherwise we say the compressible



fluid is non-isentropic.

In physics, j = V x B is the Ampere’s law and E = —u x B + AV x B is the Ohm’s law
where A > 0 is the magnetic diffusivity constant. When A = 0, we say (I.0.T)) is ideal MHD system,
otherwise we call (I.0.I)) resistive MHD. Under the setting above, system (I.0.1) becomes

pDiu—(B-V)B=-VP, P:=p+1iB?> inD,
Dip+p(V-u)=0 in D,
DB+ AV X (VxB)=(B-V)u—B(V-u) in D,
V-B=0 inD,

(1.0.2)

where P := p + %|B|2 is called the total pressure. In the incompressible case, the quantities u, p, B
and the region D are the unknowns to be determined. In the compressible case, the quantities u, p, p, B

and the region D are the unknowns to be determined with the equation of state p = p(p).

We would like to study the Cauchy problem of (I.0.2) and thus the boundary conditions and the

initial data need to be specified. The boundary conditions for ideal MHD (A = 0) are

Velocity(dD;) =u-i  on dD (1.0.3a)
P =0H ondD, (1.0.3b)
B-n=0 ondD, (1.0.3¢)

where 71 denotes the unit exterior normal vector to dD;, H denotes the mean curvature of dD; and the
positive constant o > 0 denotes the surface tension coefficient. Condition (I.0.3a) means the boundary
moves with the motion of the fluid, and it can be equivalently expressed as “D; € T (dD)” or “(1, u) is
tangent to 9D~ where 7 (dD) denotes the tangential bundle of dD. Condition (1.0.3b) is the pressure
balance law and shows that outside the fluid region is a vacuum. Condition shows that the

plasma is a perfect conductor.

Remark 1.0.1. The equation V - B = 0 is not an independent equation. When A = 0, the boundary



condition (1.0.3¢) is not an imposed boundary condition. If else, the system would be over-determined.
Instead, they are both constraints for the initial data, i.e., they automatically propagate to any ¢ > 0 if
initially holds. In fact, one can take the divergence in the third equation of (I.0.2) and use the second

equation to derive D;(p~'(V - B)) = 0, and take D, in (T.0.3d) to prove its propagation.

Remark 1.0.2. When the magnetic diffusivity constant A > 0, the boundary condition should

be replaced by the Dirichlet boundary condition
B =0 ondD. (1.0.4)

See Section for the illustration. Concerning the identity V x (V x B) = —AB + V(V - B) and
using V - B = 0, the third equation in (T.0.2) is parabolic when A > 0 and thus (T.0.4) has to be an

imposed condition.

Remark 1.0.3. When 0 = 0 in (1.0.3b), i.e., the surface tension is neglected, we also need the

Rayleigh-Taylor sign condition
—VP -n>¢cp>0 (1.0.5)

where ¢p > O is a constant and P := p + %|B |2 is the total pressure. When B = 0, Ebin [22] proved
the ill-posedness of the free-boundary incompressible Euler equations when the Rayleigh-Taylor sign
condition is violated. Hao-Luo [34] proved that the free-boundary incompressible MHD system is
ill-posed when (T.0.5) fails. We also note that (T.0.3) is only required for initial data and it propagates in
a short time interval because one can prove it is C 2;% Holder continuous by using Morrey’s embedding.

See [52) Lemma 5.5] for the proof.

Energy conservation/dissipation. System (1.0.2)) equipped with the boundary conditions (T.0.3a)-

(T.0.3d) and (T.0.4) gives the following energy conservation for A = 0 and dissipation for A > 0:




Define Q(p) = 5; p(r)/r? dr, then we have

d (1 1
— (—/ p|u|2dx+—/ |B|2dx+/ pQ(p)dx—i—o[ dS(BDt))
dt \2 Jp, 2 Jp, Dy ID;

= [ |[VB|*dx < 0.
D:

(1.0.6)

See [53}183] for the proof.

Equation of states. When the fluid is compressible, we need to specify the equation of state. In the
thesis, we only consider the case of a liquid, and impose the following natural conditions for some

fixed constant Ay > 1 and m < 8
A7 < 10" (p)| < Ao. (1.0.7)

When proving the incompressible limit in Section[5.2] we need to require the following conditions for
1<m<6

1™ (p)] < Ao, A1o' (P)I™ < 1™ (p)] < Aolp (p)I™. (1.0.8)

Compatibility conditions on the initial data. To make the Cauchy problem solvable, we need
to choose suitable initial data (1, Bo, po, Po, Do). In particular, the magnetic field should satisfy
V- By = 0and By - ii|goyxp, = 0 for A = 0 (Bolgoyxp, = 0 for A > 0). The total pressure
Py = po + %|Bo|2 should satisfy Py = oH|0}xap,- In the compressible case, we require the

following k-th order compatibility conditions
DtjP|{o}an0 = Dzj (0H)|{oyxopo att =0, VO < j <k, (1.0.9)
and also the following one for A > 0

D] Bloyxap, = 0att =0, VO < j <k. (1.0.10)



Given a simply-connect domain Dy C R3 and the initial data (1o, By, po. po) satisfying the
constraints V- By = 01in Dy and (B - 1) |{0yxap, = 0 for A = 0 (Boloyxap, = 0 for A > 0), we want
to find a set D, the velocity u, the magnetic field B, and the density p solving (L.0.2) satisfying the

boundary conditions in (1.0.3a))-(1.0.5). Specifically, we will record the following results in the thesis:

1. The minimal regularity H 2% estimates of incompressible ideal MHD. See Chapter 4. 1]

2. Local well-posedness, the zero surface tension limit, the H 35 (low regularity) estimates of

incompressible ideal MHD with surface tension. See Chapter [#.2]and [4.3]

3. Local well-posedness and the incompressible limit of compressible resistive MHD. See Chapter

52

4. Anisotropic a priori estimates of compressible ideal MHD. See Chapter [5.3]
1.1 Background in Physics

The free-boundary problems in MHD arise from the MHD current-vortex sheets and the plasma-vacuum
interface model. The former one can be used to describe the heliopause (the theoretical boundary of
the solar system) observed in the propagation of solar winds, the nightside magnetopause of the earth.
The current-vortex sheets are mathematically formulated as the plasma-plasma interface problem: The

motion of plasmas are governed by MHD system, and the jump conditions on the interface are
[P]:=Pt—P =0H,BE¥-i=0,[v]F-4A=0. (1.1.1)

In other words, there is no jump allowed in the normal direction.

The plasma-vacuum model describes the plasma confinement: The plasma is confined in a vacuunﬂ

in which there is another magnetic field B~, and there is a free interface I"(¢), moving with the motion

!Usually people use a low-density plasma, especially the vacuum, to confine a high-density plasma.



of plasma, between the plasma region £2 (¢) and the vacuum region §2_(¢). This model requires that

(2:4.1) holds in the plasma region £2 (¢) and the pre-Maxwell system holds in vacuum $2_(¢):
VxB =0, V-B™ =0. (1.1.2)

On the interface I'(t), it is required that there is no jump for the pressure or the normal components of

the magnetic fields:

1 1
BE.i=0, [P]:= p++§|B+|2—§|B_|2=o*H (1.1.3)

Finally, there is a rigid wall W wrapping the vacuum region, on which the following boundary condition
holds

B~ xN=J onW,

where J is the given outer surface current density (as an external input of energy) and N is the exterior
normal to the rigid wall W. Note that for ideal MHD, the conditions div B = 0 and B - n = 0 should
also be constraints for initial data instead of imposed conditions. For details we refer to [24, Chapter 4,
6]. When the surface tension is not neglected, the model is used to characterize the motion of liquid

metal which is useful in the fusion process. See Molokov [57]] for detailed discussion.

Hence, the free-boundary problem (2.4.T) can be considered as the case that the vacuum magnetic
field B~ vanishes. It characterizes the motion of an isolated perfect conducting fluid in an electro-

magnetic field.

Remark 1.1.1. For current-vortex sheets and plasma-vacuum models without surface tension, the
Rayleigh-Taylor condition —V[P] -7 > ¢ > 0 may be not sufficient for the local well-posedness.
Instead, the Syrovatskij type condition |[BT x B~| > ¢y > 0 is required on the free interface, which in

fact enhances extra 1/2-order regularity of the free interface. See 68! [73]].



1.1.1 TIllustration on the jump conditions on the free interface

The jump conditions (I.1.1)) and (I.1.3) actually comes from the Rankine-Hugoniot conditions for
hyperbolic conservation laws. One may rewrite the (non-isentropic) compressible MHD system

(without surface tension) in the conservative form

A p+V - (pu) =0
1
9 (pu)+V - (pu Qu+(p+ §|B|2)1d -B® B) =0

B+V-W®B—B®u)=0 (1.1.4)

;(pS)+V - (pSu) = 0.
If we exclude the possibility of MHD shocks (i.e., we do not allow the mass flow transferring across
the interface), then u’ := u — V1 satisfies u,, = 0 on the interface where V' denotes the velocity of the

moving interface. We then conclude the Rankine-Hugoniot conditions as follows
p+ %B?] =0, By[B:] =0, Byu},-B;] =0, [B,] =0, By[u},] =0. (1.1.5)
Then we have two possibilities (for ideal MHD without surface tension)
1. MHD contact discontinuity. If the magnetic field intersects the interface (B, # 0), then we have

e jump: [p] # 0,

e continuous: [u] =0, [p] =0, [B] =0.

Examples are mostly observed in astrophysical phenomena, e.g., the solar wind, fast coronal

mass ejections, where the magnetic fields typically originate in a star and intersect the surface.

2. Tangential discontinuities: If the magnetic field is parallel to the interface (B, = 0), then



e jump: [p] # 0. [uf] # 0. [p] # 0, [B:] # 0.

e continuous: uj, =0, B, =0,[p + 3|B:|*] = 0.

Since [B] # 0 in this case, the surface current j* := [B] x 71 # 0, and thus we call the interface
as a “current”-vortex sheet. Examples mostly arise from laboratory plasmas aimed at thermo-
nuclear energy production: confine a high-density plasma by a lower-density one to isolate it
thermally from an outer wall. There are also astrophysical examples, e.g., the heliopause of solar
system that separates the interstellar plasma compressed at the bow shock from the solar wind

plasma compressed at the termination shock.

Remark 1.1.2. As for resistive MHD, the jump condition for B must be the Dirichlet-type condition
[B] = 0. Indeed, the divergence-free condition for B implies [B] - 77 = 0. When the electric resistivity
is nonzero, the surface current is not allowed on the interface when doing the perturbation and thus

[B] x i = 0. See [36] for details.

1.2 Overview of Previous Results

In the past a few decades, there have been numerous studies of free-boundary inviscid fluids. In the

absence of magnetic field, the MHD system becomes Euler equations.

Free-boundary Euler equations The free-boundary Euler equations have been studied intensively
by a lot of authors. The first breakthrough in solving the LWP for the incompressible irrotational
problem for general initial data came in the work of Wu [79, [80]. In the case of nonzero vorticity,
Christodoulou-Lindblad [13]] first established the a priori estimates and then Lindblad [46l 47]] proved
the LWP by using Nash-Moser iteration. Coutand-Shkoller [[16}[17] proved the LWP for incompressible
Euler equations with or without surface tension and avoid the loss of regularity. We also refer to

[85, 11, 165]] and references therein.



The study of compressible perfect fluid is not quite developed as opposed to the incompressible case.
Lindblad [48] established the first LWP result by Nash-Moser iteration. See also [[72} 149} 1511149, 23 54]

for the further study. In the case of nonzero surface tension, we refer to [[15} [20]].

Free-boundary MHD equations: Incompressible case The study of free-boundary MHD is more
complicated than Euler equations due to the strong coupling between fluid and magnetic field and the
failure of irrotational assumption. For incompressible ideal MHD, Hao-Luo [33} 35]] established the a
priori estimates and linearized LWP. Gu-Wang [30]] proved the LWP. Luo-Zhang [52] proved the low
regularity a priori estimates when the fluid domain is small. We also mention that Lee [43] 44] obtained

a local solution via the vanishing viscosity-resistivity limit.

For the full plasma-vacuum model, Gu [25, 26] proved the LWP for the axi-symmetric case with
nontrivial vacuum magnetic field in a non-simply connected vacuum domain under Rayleigh-Taylor
sign condition. Hao [32]] proved the LWP in the case of J = 0. For the general case, all of the results
require the Syrovatskij condition | B x l§| > ¢o > 0 on the free interface. Under this condition, the
results are due to Morando-Trakhinin-Trebeschi [58]] and Sun-Wang-Zhang [67]]. We also note that the
study of the full plasma-vacuum model in ideal MHD under Rayleigh-Taylor sign condition is still an
open problem when B is non-trivial with J = (. For incompressible current-vortex sheets, we refer to

Coulombel-Morando-Secchi-Trebeschi [[14] and Sun-Wang-Zhang [66].

For incompressible ideal MHD with surface tension, Luo-Zhang [53]] proved the a priori estimates
and Gu-Luo-Zhang [28} [29] proved the LWP and the zero surface tension limit. For incompressible
dissipative MHD with surface tension, we refer to Chen-Ding [8]] for the inviscid limit for viscous
non-resistive MHD, Wang-Xin [78]] for the GWP of the plasma-vacuum model for inviscid resistive
MHD around a uniform transversal magnetic field, and Padula-Solonnikov [61] and Guo-Zeng-Ni [31]]

for viscous-resistive MHD.



Free-boundary MHD equations: Compressible case Compared with compressible Euler equations
and incompressible MHD, compressible MHD has an extra coupling between the sound wave and
the magnetic field which makes the analysis completely different. Here we emphasize that there is
a normal derivative loss in the div-curl analysis of compressible MHD. On the one hand, the second
author [82] 83] recently observed that the magnetic resistivity exactly compensates the derivative
loss mentioned above. However, it is still hopeless to derive the vanishing resistivity limit. On the
other hand, one can still expect to establish the tame estimates for the linearized equation. Based on
this and Nash-Moser iteration, Trakhinin-Wang [74, [75] recently proved the LWP for free-boundary
compressible ideal MHD with or without surface tension. We also mention that Chen-Wang [9]] and
Trakhinin [71]] proved the LWP for the current-vortex sheets, and Secchi-Trakhinin [64] proved the
LWP for the full plasma-vacuum problem for compressible ideal MHD under the non-collinearity
condition. However, there is a big loss of regularity caused by the Nash-Moser iteration (H 716 Joss
with H™+3 data for m > 20 ). Finding suitable estimates without loss of regularity is still a widely
open problem. Our paper [S0] was the first breakthrough in this direction. It also leaves open the
possibility for the further study of current-vortex sheets and plasma-vacuum models which are the
original models in the interface plasma physics. Also it may provide a new, comprehensive approach
to study the nonlinear hyperbolic system with characteristic (free) boundary conditions arising in the
study of inviscid fluids, e.g., the nonlinear stability and incompressible limit of compressible vortex

sheets which are related to the suppression of the Kelvin-Helmholtz instability.

10



Chapter 2

Reformulation in Lagrangian
Coordinates and Main Results

We use Lagrangian coordinates to reduce the free-boundary problem to a fixed-domain problem. We
assume 2 := T2 x (=1, 1) to be the reference domain and I" := T2 x ({—1} U {1}) to be the boundary.
The coordinates on §2 is y := (', ¥3) = (y1, Y2, y3). We define 1 : [0, T] x §2 — D as the flow map

of velocity field u, i.e.,

den(t,y) = u(t,n(,y)), n0,y) =no(y), (2.0.1)

where 1y is a diffeomorphism between §2 and Dy. For technical simplicity we assume 19 = Id, i.e.,
the initial domain is assumed to be Dy = T2 x (—1, 1). By chain rule, it is easy to see that the material
derivative D; becomes 0; in the (¢, y) coordinates and the free-boundary dD; becomes fixed (I" =
T2 x({—1}U{1})). We introduce the Lagrangian variables as follow: v(z, y) := u(z, n(t, y)), b(t, y) :=

B(t,n(t,y)),q(t,y) = p,n(,y), O, y) = P(t,n(, y)) and R(z, y) := p(t,n(z, y)).

In the thesis, we adapt Einstein summation convetion, i.e., the repeated indices imply taking
summation on this index. All the Greek indices range over 1, 2, 3 and the Latin indices range over 1,
2. Let d = 0y, be the spatial derivative in Lagrangian coordinates and we define div Y = 0, Y “ to be

the (Lagrangian) divergence of the vector field Y. We introduce the matrix A = [dn]~!, specifically

11



ARY = gfc—i.f where x® = (¢, y) is the a-th variable in Eulerian coordinates. From now on, we
define V§ = axia = A"*9,, to be the covariant derivative in Lagrangian coordinates (or say Eulerian
derivative), div 4 X = V4 - X = A**9, X, and (curl 4 X)q := eaﬁyA“ﬂ d,, X, to be the Eulerian

divergence and curl of the vector field X. In addition, since 7(0, -) = Id, we have A(0,-) = I, where /

is the identity matrix, and (u¢, Bo, po) and (vo, bo, qo) agree respectively.

In terms of 1, v, b, ¢, R, the free-boundary MHD system reads

9n = in[0,T] x 2
Rov=(b-Va)b—V4Q, Q=g+ 31b> in[0,T]x8

3R+ Rdiv 4v =0 in[0,T] x 2

d:b + Acurl 4curl 4b = (b - V4) v — bdiv g4v in[0,T] x £2

div4b =0 in[0,T] x 2

. (2.0.2)

by A** Ny =0 in[0,T] x 2 (A =0)
b=0 in[0,T]x 2 (A>0)
0=0-22r>¢>0 on[0,T|x I (o = 0)
AN, Q = —0, /g Aen* onl[0,T]xI" (o >0)
(n,v,b,9, R)|1=0 = (Id, vo, bo, qo, Po),

where N = (0,0, £1) denotes the unit outer normal vector to I” = T? x {£1} and A, is the Laplace-
Beltrami operator of the metric g;; on D; = n(¢, I') induced by the embedding 7. Specifically we

have
gij = 0" 0mu, Dg() =g '9;(V2g" (), g = det[gi;]- (2.0.3)
Throughout the thesis, we use dto emphasis that the derivative is tangential to I".

Let J := det[dn] and A := JA. Then we have the Piola’s identity Buff’“" = 0 and J satisfies

d;J = Jdiv qv which together with 9; R + Rdiv 4v = 0 gives that pg = RJ.

Suppose D is the derivative d or d,, then we have the following identity

DAM = — A" 35D, AP, (2.0.4)

When A = 0, the magnetic field b can be expressed in terms of by and 7 so that the magnetic field

12



is just a parametre instead of an independent unknown. This is called the “frozen effect of the magnetic

field” which means each fluid particle never separates from the magnetic field line passing through it.

Lemma 2.0.1 ([50, Lemma 1.1]). We have b = J =1 (bg - 3)n for non-resistive MHD.
2.1 Low-Regularity Estimates of Incompressible Ideal MHD

Under the setting above, the free-boundary incompressible ideal MHD system reads

In=v in[0,T] x £2

90— (bo-9)*n=—-Va0, Q=q+3[b]> n[0,T]x

div 4v =0 in[0, 7] x 2

divbg =0 in[0,T] x £ (2.1.1)
by =0 in[0, 7] x 2
QZO,—%|F200>O on[0,T] x I

(1, v)|r=0 = (Id, vo).

The local well-posedness of (2.1.1)) was proved by Gu-Wang [30] in H* regularity. However, the
low-regularity solution to (2.1.1)) has not been studied before. In the absence of magnetic field, (Z.1.1)
reduces to the incompressible Euler equations whose local existence in R3 holds iff the regularity
of initial data is strictly higher than H2->(R3). See Bourgain-Li [6] for the ill-posedness result with
H??(R3)-data. On the other hand, Kukavica-Tuffaha-Vicol [40] proved the H?->¢ regularity esti-
mates for the free-boundary incompressible Euler equations in a bounded simply-connected domain.
We are then interested to study if the similar low-regularity estimates can be established for incom-
pressible ideal MHD. For simplicity of notations, we define || - ||s and | - |5 to be the standard Sobolev

norms in §2 and on I” respectively.

Theorem 2.1.1 ([52| Theorem 1.1]). Let £2 be the thin domain T? x (—&,&) for some ¢ K 1

and § < % be a given small constant. Let (1, v,q) be the solution to (Z.1.I) with initial data
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(vo, bo) € H>T8(2) x H?5F3 () satisfying div vo = div by = 0 and b3|se = 0 and the Rayleigh-

Taylor sign condition. Let
N@) == [In15 + 1013 515 + 1o - D)3 545 + 1070 Af5. (2.1.2)
Then there exists T = T (N(0), £, co) > 0 such that

sup N(t) < P(N(0)), (2.1.3)
0<t<T

where P(---) always denotes a polynomial with positive coefficients of its arguments.

Remark 2.1.2. The smallness of the fluid domain is unavoidable. Based on the Cauchy invariance
for Euler equations, one can gain 1/2-order extra regularity for the flow map than the velocity [11 140],
which is then not possible for ideal MHD. In Gu-Wang [30]], they adopted the Alinhac good unknowns
to avoid the extra 1/2-order regularity, but the least required regularity for such method has to be H*,

equivalently, the second fundamental form of the free surface must be continuous.

2.2 Well-posedness, Zero Surface Tension Limit, and Low-regularity
Estimates of Incompressible Ideal MHD with Surface Tension

When the surface tension is not neglected, we have

dn=v in[0,T] x 2
dv—(bo-9)?*n=-V40, Q=g+ 1b]> in[0,T]x £

div4v =0 in[0,7] x £

divbo =0 in[0,T] x 2 (2.2.1)
by =0 in[0, 7] x £

AMENLQ = —0 /8 Aen® on[0, T x I

(1, v)|r=0 = (1d, vo).

To the best of our knowledge, the following theorems are the first breakthrough in the study of ideal

MHD with surface tension.

Theorem 2.2.1 (Local well-posedness [28, Theorem 1.2]). Let vg € H*(£2) N H>(I") and by €
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H*3(£2) be divergence-free vector fields with (bg - N)|r = 0. Then there exists T > 0, only
depending on o, vg, bg, such that (Z.2.T) with initial data (ve, bo,go) has a unique strong solution

(n, v, q) with energy estimate

sup E(t) <C(6~", |lvollas. [1boll4.s. |vols). (22.2)

0<t<T

where the energy functional E(t) is

3
E@) = n®l}s+ Y. (\ Po(e), 9 bo - o) 5) + [atv(0). 83 b0 - (o)
k=0 ’
(2.2.3)

+ 23: 3(m934500)|, + 317 bo - 1)
k=0

Moreover, the H> (I")-regularity of v on the free-surface can also be recovered, in the sense that there

exists some 0 < 77 < T, depending only on o1, vg, by, such that

sup 0|2+ [v@)|2 < C(e™ ", lvollas. 1boll4.s, [vols). (224
0<t<T)

The proof of Theorem[2.2.T|relies on the adjusted tangential smoothing as an approximation scheme
by combining the ideas of [30] and [[16]. We shall first establish the a priori estimates, uniform in the
smoothing parametre, for the approximate system. This will be proved by div-curl decomposition,
tangential estimates which together with the surface tension equation also give the boundary energies.
Then we solve the nonlinear approximate system by freezing the coefficients (linearization) and Picard
iteration. The frozen-coefficient (linearized) problem is solved by the penalization method and Galerkin
approximation. The enhanced boundary regularity relies on the BMO-coefficient elliptic estimates
in [21]. Note that the energy estimate established in Theorem relies on 0!, When the surface
tension is almost negligible, one may ask if it is possible to establish the uniform-in-o estimate. The

answer is yes.

Theorem 2.2.2 (Zero surface tension limit [29]). Suppose the initial data (vg, bg) satisfies
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1. div by = divve = 0,b3|r =0
2. vo, by € H?(R2), \/ovo, /Obo € H>3(2), 0v3,0b3 € H>>(I") and o%vg,ogbg e HS(IN)
3. The Rayleigh-Taylor sign condition —dQ¢/dN > ¢o > Oon I forall ¢ > 0.

4. The compatibility conditions up to 4-th order, where the j-th order condition reads 8{ qli=0 =
08{H|t=0 onl.
There exists 7’ > 0 independent of o such that the solution (v, (bg - 9)1°, Q%) to (2.2.1) satisfies
3 3
sup E%(t) < C(co. ||(vo.bo)|s. [[(v/ovo. V/Obo)ll5.5. | (0V0. 0hg)|5.5. | (0209, 02bg)|6) (2.2.5)
0<t<T’

where E°(¢t) := E{(t) + EJ () and

ol +]

5
E7(1) = |n° ()3 + Z(
k=0

oo o)+ [Fro o], ez

and

3% (1) H2 +
! 5.5k

4
ES(t) :==n°(0)||25 + Z (
k=0

ool )

55—k
(2.2.7)
d 56—/(8/( o ~ 2 55 bo - Nn° ~ 2
+ 32 [0k - A+ B b - 07 (-0
k=0
Hence by the Arzela-Ascoli lemma and Morrey’s embedding, we have
¢}, ([0,T1x£)

%, (b - )n°, Q%) ———— (w, (bo - )¢, 1), aso — 0, (2.2.8)

where (w, (b - 9)¢, 1) solves 2.1.1) with initial data (v, by, Qo). Moreover, the higher boundary

regularity of v in (2.2.3)) can also be recovered
Vi € (0.7'), [ov* ()]s +0b>Dlsis + 030> (0)ls + [036°(0)le < P(ET(@).  (22.9)

Remark 2.2.3. The initial data Qf is solved by the elliptic equation —A QJ = (dvo)(dvo)—(0bo)(3bo)

with QO = 0Ho. When 1o =Id, we have Ho = 0 and thus QF = Qo. For general diffeomorphism

16



no # Id, the initial data of Q¢ is no longer Q¢ for the 0 = 0 problem. Yet we can still prove that

C 1
0§ — Qo. For detailed discussion on the compatibility conditions. we refer to [29, Appendix A] .

When proving the local existence in Theorem [2.2.1] the normal trace of v is controlled by the
BMO-coefficient elliptic estimates for the time-differentiated surface tension equation and thus ¢!
appears. In order for the uniform-in-o estimates, we use the normal trace lemma (cf. Lemma [3.2.3)
to convert the boundary normal trace estimate to the interior tangential estimate. Then we apply the
Alinhac good unknowns to avoid the higher regularity of 1. The Alinhac good unknowns also reveal
a cancellation structure that simultaneously gives the non-weighted boundary regularity contributed

by the Rayleigh-Taylor sign condition, the weighted boundary regularity contributed by the surface

tension, and an anti-symmetric structure that eliminates the uncontrollable terms on the boundary.

Next, concerning the low-regularity solutions, we are able to generalize Disconzi-Kukavica [18] to
incompressible MHD with surface tension. Due to the presence of surface tension, we need neither the
smallness of the fluid domain nor the extra regularity of the flow map as in Theorem [2.1.1} Compared
with Theorem[2.2.T|and [2.2.2] the second fundamental form of the free surface may not be L and thus
the Alinhac good unknown method is no longer valid. Instead, we can use the Kato-Ponce inequalities

(cf. Lemma[3.2.T)) together with boundary elliptic estimates to overcome such difficulty.

Theorem 2.2.4 (Low-regularity estimates [53, Theorem 1.1]). Assume that vy € H3>(2) N H*(I")
and by € H3>(£2) to be divergence free vector fields with by - N = 0 on I". Assume that (v, (b -
d)n, Q) solves (2.2.1)) with initial data vy and by. Define
2
N0 =I10135+ 3 (10500135 + 15 o - D001 5_)

k=0 (2.2.10)

3 2 3 2, Eeraenl 1 5o 2

+ 10703 + 133 Go - I3 + [3(T9v) |+ [(Td0,v)]|
Then there exists a T” > 0, chosen sufficiently small, such that 91(¢) < Cy for all ¢ € [0, T'], where Cy

only depends on 6, ||vo||3.5, |boll3.5. |vol4-
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2.3 Well-posedness and Incompressible Limit of Compressible
Resistive MHD

Next we take into account of the compressibility of the plasma that results in the coupling between
sound wave and magnetic field. The system of compressible ideal MHD in the case of a liquid is a
strictly hyperbolic system with characteristic boundary conditions. The failure of the uniform Kreiss-
Lopatinskii condition leads to a potential of normal derivative loss. Even worse, the div-curl analysis
does not work in the control of normal derivatives. Concerning the degenerate boundary condition
B -7 = 0, the loss of normal derivatives may not be compensated. Indeed, Ohno-Shirota [59] proved

the ill-posedness in standard Sobolev spaces H! (I > 2).

We found two ways to avoid such derivative loss. On the one hand, we found that the magnetic
diffusion, together with the Christodoulou-Lindblad type ellipeic estimate (cf. Lemma[3.3.3)), gives
common control of both magnetic fields and sound waves, as well as the Lorentz force that appears
to be a higher order term. On the other hand, inspired by Chen Shu-Xing [10], we can study the
compressible ideal MHD system in the anisotropic Sobolev spaces instead of standard Sobolev spaces.

The anisotropy is expected to compensate the loss of normal derivatives.

Let us first introduce the results about compressible resistive MHD

an=v in[0,T] x £2

podiv =J (b-Va)b—VaQ, Q=g+ 3b|> in[0,T] xS

IR@ g + div 4v =0 in[0, 7] x 2

q = q(R) strictly increasing in[0, T] x £2 @3.1)
0¢b + Acurl g4curl gb = (b - V4) v — bdiv g4v in[0,T] x £2

div 46 =0 in[0,T] x £2

b=0.g=0 280 >cH>0 on[0, 7] x I"

(1,v.b,9)|t=0 = (14, vo, bo, 90)-

Theorem 2.3.1 (Local well-posedness [83, Theorem 1.1]). Let the initial data (vo, bo. go) € H*(£2) x
H?>(£2) x H*(£2) satisfy the compatibility conditions (T.0.9) up to 5-th order, div by = 0 and bg| = 0.

Then there exists some 77 > 0, such that the system (2.3.1) has a unique solution (1, v, b, ¢) in [0, T1]
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satisfying the following estimates

sup  E(T) < P (volls» Ibolls » lgolls) (23.2)
0<T<T,
where
4 2
E(T) = o(T) + H(T) + W(T) + >_ [6:7% (b - Va) b) Hk (2.33)
k=0
where
2 e P~ sk |? 4ty ||? 4k |?
o(T) = Il + [3*n |+ Z( o ko] +[ats| + o an), 2.3.4)
k=0
T
H(T) ;=f / 835> dy dr + |92b]} (23.5)
0 2
Wy = 35l + %l 236)

Remark 2.3.2. One may not recover the full A3 regularity for the magnetic field » due to the

appearance of free boundary, otherwise the H>-control of 7 is needed.

The proof of the local existence is based on the tangential smoothing as an approximation scheme
introduced by Coutand-Shkoller [[16]. To solve the approximate system, one can freeze the coefficient,
then solve the linearized system by standard fixed-point argument, and finally use Picard iteration
to solve the approximation system. The most difficult step is then the uniform (in the smoothing
parametre) estimates for the approximate system. The velocity is still controlled via div-curl-tangential
decomposition. In the control of divergence, one may find that the wave equation of ¢ contains the
term A A(% |B|?) in the source term and thus leads to the loss of one normal derivative. We then
observe that the magnetic diffusion, which together with the divergence-free condition contributes to
the Laplacian term A 4b, exactly compensate such derivative loss. On the other hand, we also observe
that the vanishing boundary condition, together with the Christodoulou-Lindblad elliptic estimates,

helps us control the magnetic field b and the Lorentz force (b - V4)b. Finally, one may combine the
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control of heat equation of b and the wave equation of ¢ to close the estimates.

The sound speed ¢2 := ¢’(R) reflects the compressibility of a compressible fluid. In our setting,
we may parametrize it by ¢ := R’(q)|r=p,- Under this setting, we denote the unknowns to be
(v8, b, %, R?) and the process 621(1)1 R?(p®) = po can be considered to be the incompressible limit.
This is derived by establishing the energy estimate that is uniform in the sound speed. We may assume
po = 1 for simplicity.

Let (v, bo) be the divergence-free and bo|r = 0. Let q, be the solution to
1
A(qo + §|b0|2) = —3;LV‘5‘3an + aubgaabu» Qlr =0

and satisfy the Rayleigh-Taylor sign condition —dx (q, + %lbolz) > ¢o > 0. Let (v,b, q) be the

solution to the incompressible resistive MHD with initial data (vg, bg)

=V in[0,T] x £2
9:v=(b-Var)b—Vae)(q+3bl>) in[0.7T]x

div AV = 0 in [0, T] x §2

0:b + Acurl 4ycurl 4b = (b- Vo) v in[0,T] x £2 2.3.7)
div A(;)b =0 in [0, T] X 2
b=0,q=0,—%|pzco>0 on[0, T x I"

(6, v,b,q)|s=0 = (Id, vo, bo, qy).

Theorem 2.3.3 (Incompressible limit [82, Theorem 1.3]).

1. There exists (v§, bo, p§. ¢¢), the initial data of (Z.3.1)) with sound speed equal to ¢!, satisfying

C 1
the conditions mentioned in Theorem|2.3.1|and (v§, p§) —> (vo,1) as e — 0.

2. Let (v®, b®, R®,q®) be the solution to (2.3.1) with initial data (v, bo, pj, gg). Then we have

Cl
(ve, b%, R®) — (v,b,1) as e — 0.

Remark 2.3.4. When passing to the incompressible limit, the pressure ¢° in the compressible system
never converges to the incompressible counterpart. The reason is that the pressure in the incompressible

system is a Lagrangian multiplier (cf. [16, Section 6-7]) instead of the solution to a wave equation.
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Instead, it should be the enthalpy /(R) := [ IR @d r that converges to ¢ as ¢ — 0.

To achieve the incompressible limit, it suffices to derive uniform-in-¢~! estimates for with
the initial data (v, bo, p§, g5). One needs to be careful when doing the control of wave equation of ¢,
because the time derivative is 1/ R’(q)-weighted but the source term needs the non-weighted energy.

The result is listed as follows.

Lemma 2.3.5 ([82] Theorem 1.1]). There exists some Tl/ > 0 independent of &, such that the

(n°,v%,b%, ¢°) in [0, T7] satisfying the following estimates

sup EX(T) = P (llvoll4. 1bolls . lIgoll) . (2.3.8)
0<T<T|
where
4 2
EN(T) = (T) + H(T) + WHT) + Y ‘ F+F ((b® - Vg4e) b®) i (2.3.9)
k=0
where
e e112 _46"2 ! 4—k6‘2 ’ 4—k.»32 4—k£2
(T) 1= |3 + [ -n‘0+2 9+ky k+H,/R(q8)at b k+‘at |
k=1
2
+ | VR |+ ot + [ R @)t (2.3.10)
r 2 2
HE(T) ;:/ /|8be| dyde + [|976°|; . (2.3.11)
0 2

2
WD) = |R@%a o + | VR @0t | (23.12)
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2.4 Anisotropic A priori Estimates of Compressible Ideal MHD

In=v in[0,T] x £2

podiv — (bo - (T 1 (bo- ) = —VAQ, O =q+ b2 in[0,T] x 2

IBD b4 + div 4v = 0 in[0,T] x 2

q = q(R) strictly increasing in[0,T] x 2 2.4.1)
divby =0 in[0,T] x 2
b3=0,Q=o,—%|pzc0>0 on[0,T] x I
(1.v,0.9)|t=0 = (I1d, vo, bo. qo)-

So far, it is still difficult to pass the vanishing resistivity limit for to derive the solution to
(2:4.1). As stated before, it is not suitable to study (2.4.) in the standard Sobolev space. On the other
hand, Chen Shu-Xing [[10]] introduced the anisotropic Sobolev space to study hyperbolic systems with
characteristic boundary conditions. Yanagisawa-Matsumura [[81]] and Secchi [62}63]] adopted this to
proved the local existence of compressible ideal MHD system with perfect conducting wall conditions.
As for the free-boundary problem, Trakhinin-Wang [74]] proved the LWP by using Nash-Moser which
leads to a big loss of regularity from the initial data to the solution. Therefore, we would like to

generalize [62,163] to the free-boundary problem to avoid the regularity loss.

Before stating our result, we shall define the anisotropic Sobolev space H™(§2) for m € N*. Let
o = o(y3) be a cutoff function on [—1, 1] defined by o(y3) = (1 — y3)(1 + y3). Then we define

H["(£2) for m € N* as follows

HM(Q) = {f € L2(2)|(003)#0"1 0203 f € L2(R2), Viy + iy +2is+is <m| .

equipped with the norm

1 gy = Y, 1032480705 f117 2.0,
i1+ix+2i3+ig<m

For any multi-index [ := (ig, i1, i2,13,i4) € N>, we define

ol = 010(003) 48 0202, (1) :=io + i1 + ia + 2i3 + i4,
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and define the space-time anisotropic Sobolev norm || - |, « by

2 L I 2 . io 2
IS M3, = Z 195 S 17200y = Z ”a’(f“H;”“'O(:z)'

(I'<m iop<m

We define f(;) = 8{ fli=0 for j € N. The main result is the following theorem.

Theorem 2.4.1 (Anisotropic regularity of compressible ideal MHD [50, Theorem 1.2]). Let the
initial data be (vo, bo, Qo) € HE(82) such that (v(;),b(j), Q())) € Hf_j(.Q) for1 < j < 8 and
compatibility condition holds up to 7-th order, i.e., Q(j)|r = 0 for 0 < j < 7. Then there exists some

T, > 0, such that the solution (1, v, Q) to the system (2.4.T)) satisfies the following estimates in [0, 75]

sup &(T) < C(€(0)). 24.2)

0<t<T»

Here the energy functional &(¢) is defined to be

2
€)= (MR 10 R+ 17 o DR+ 10 R+ Y |60 -] . 243)

(I)=8

and C(€(0)) > 0 denotes a positive constant depending on &(0).

Remark 2.4.2. There exists initial data (vg, bg, Qo) € H8(£2) — HZE($2) satisfying the compatibility

conditions up to 7-th order, such that

8
> 1wy biy Qi llms—r ey S Plvollgscay- 150l s e)- 11 Qoll s 2y)- (2.4.4)
j=1

By the Sobolev embedding H3~/ (2) — Hf_j (£2) for 0 < j < 8, we have

£(0) S P(lvollgsca)- 1bollas(a). | Qollmse))- (2.4.5)

Due to the anisotropy of the function space, it is not possible to establish
8
Z ”(v(./')’b(j)’ Q(j))”Hf—./'(_Q) N P(HUOHHE(Q), ||b0||H§(Q)v I Q0||H§(g))- (2.4.6)

Jj=1

The only way to prove Theorem seems to be directly computing dL-estimates. The interior
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terms are expected to contribute to the energy of v, b and ¢, while on the boundary, the top order
derivatives of v - N and Q simultaneously appear. If 3. contains at least one normal derivatives, we can
invoke the MHD system (2.4.1)) to replace the normal derivatives of the non-characteristic variables(Q
and v - N) by the tangential derivatives of the characteristic variables, so that one normal derivative,
as a “second-order” derivative, is replaced by © = 9 or (bo - d) or d;. Then we use the divergence
theorem to rewrite this boundary integral into the interior and integrate © by part. Finally, using the

anisotropy yields the desired estimates.

However, for the free-boundary problem, the regularity of the free surface is limited, and in
fact enters to the highest order. To overcome this difficulty, we introduce the “modified” Alinhac
good unknowns that take into account the covariance under the change of coordinates to avoid the
derivative loss when commuting . with the covariant derivative V4. In specific, the key observation
is that the essential highest order term in 9% (V4 f) is not simply V,4(dL f), but still has the form of
V4(good unknown of f'). This was first observed by Alinhac [2]]. In the study of free-surface fluid,
this was first implicitly applied by Christodoulou-Lindblad [13]], and then was used explicity [55.[77,
30, 154} 183, 184]. However, due to the anisotropy, the good unknowns applied in [55} 77 30} 154} 83} 184]]
are no longer applicable. Our idea is to fully analyze the “covariant” structure of 9. (VS f) for f = vy
and f = Q respectively, and then modify the expression of the Alinhac good unknowns. This idea
never appeared in the previous related works. To achieve this, we need to repeatedly replace a normal
derivative by a tangential one and need to produce a weight function ¢ by using the vanishing boundary
value of Q, bg and the fundamental theorem of calculus in order to convert the normal derivative 03

into the weighted (tangential) o d3 derivative.
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Chapter 3

Preliminary Lemmas

In this chapter, we record all the lemmata that will be used in the proofs presented in the remaining

chapters.
3.1 Geometric Identities

First we record the geometric identities related to the flow map 7 and the cofactor matrix A. They are

repeatedly used in the proof, especially in the case of nonzero surface tension.

The explicit form of the matrix A is

027%030° — 030?021 03n'020> — 920" 03n>  92n'03n% — 031! d2n?
A= J_l 337]2817]3—817]233773 8177183773—837’)1317]3 817]1817’}2—817’}1831’]2 3.1.1)
3177232773—327]231773 3277131773—3177132773 a1']132772—8277131’72

Moreover, since A = JA, and in view of (3.1.1), we can write

AY = kG 03, A% = —€VKG1n;03mk, A = €7k ;05 (3.1.2)

Here, €/% is the sign of the 3-permutation (ijk) € S3. We will repeatedly use that fact that A", A%

consist of 57] x 931 and A% consists of ER n X ER n.

We also record the following identity: Suppose D is the derivative 0 or d;, then
DA = —A" 9, Dy, A¥'. (3.1.3)
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Lemma 3.1.1 ([18 Lemma 2.5]). Let /i be the unit outer normal to n(I") and 7, N be the tangential

and normal bundle of (") respectively. Denote IT : T, — N to be the canonical normal

projection. Denote 9 to be d; or 51 , 52. Then

ATN

ﬁ::no =,
TTTATN

|ATN| =|(4%, 432, 4%%)| = /3,
g =i%; = 8¢ — g dknadims,
oy =nemt,
—Ag(*r) =H o nit®,
VELN® =28  I$;9;m* = /2" 0:9;n" — Vgg" g den 0, 0;9,m,..
(/g Lgn™) =0; («/Eg"jﬂfﬁj "+ Vg(g gk — g’k gy, n“gknx%m*),
as klq q9.1t4 9
oy =— g 00N i 0y,

3:(Vgg") =g(g" g — 24" ¢™*),v 915

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

Remark 3.1.2. Recall that g;; = 51'7’M§j n* and g = det[g;;] and [g”/] = [g;;]~". This means that

gij,» & and gij are rational functions of 5r} and so is 7.

Notation 3.1.3. We shall use the notation Q(d7) and Q(97) to denote the rational functions of 5 and

577, respectively. This Q notation allows us to record error terms in a concise way and so it will be

used frequently throughout the rest of this paper. For example, for any tangential derivative 9, we have

30(n) = 0 é(gn)@i 1% where the term O l (97) is also a rational function of 97. For more details of

such notation, we refer readers to [[16, Section 11] and [18, Remark 2.4].
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3.2 Sobolev Inequalities

Lemma 3.2.1 (Kato-Ponce type Inequalities). Let J = (1 — A)Y/2, s > 0. Then the following

estimates hold:

(1) Vs > 0, we have

17Dz S NS lwseiliglers + 1Lf Lo liglwsaa, (3.2.1)
with1/2 =1/p1 4+ 1/p2 = 1/q1 + 1/g2 and 2 < py, g < 00;
(2) Vs € (0, 1), we have
17°(f8) = f(I°8) = (J* N)glLr S IS llwsr-rrliglws=s1.r2, (3.22)
where 0 < sy <sand 1/p; +1/p, =1/pwith1 < p < py, p2 < 00;
(2°) Vs > 1, we have
17°(f8) = (J* g = (P DIee S IS llwro gllys—1.a + 1 f lws—rai lglwran  (3:2.3)
forallthe I < p < p1, p2,q1,q2 <oowith1/p1 + 1/p2 =1/q1 + 1/q2 = 1/p.
(3) Vs > 1, we have
17°Cfe) = F(P )Lz S IS Mws-erliglers + 1Lf llyrai Igllws—1.42 (324
where 1/2=1/p1 +1/q1 = 1/p2+ 1/q2 with 1 < p < pq, pa < 00;
(3)Vs>=0and 1 < p < oo, we have
(3.2.5)

175(fg) = fTED e SN0f Lo lT5 7 gller + 175 fllLrllgllLee;
(3 Forl < p<oocand1 < p1,q1, p2,q2 < ocosatisfying 1/p =1/p1+1/p> = 1/q1 + 1/q2,
the following hold:
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e If0 < s <1, then

1°(f8) = F(T e SN e liglLra: (3:2.6)

e If s > 1, then
17°C(fg) = fF° e S NI 0f e llglnrz + 18 Lo [|7°720g Lz (327
Proof. See Li [45]] for (3’) and (3”) and Kato-Ponce [38]] for the others. O]

Lemma 3.2.2 (Fractional Sobolev Interpolation [7]). Suppose 2 is a domain in R?. Suppose also

0<sy<s=<spandl < p, p1, p» < oo. If the condition

1
l<s;e€eZand pp =lands, —s1 <1——
P1

fails, then the following interpolation result holds for all 8 € (0, 1):

0 1-6
”f”WJ'J’(Q) ,Sd,sl,sz,pl,pz,ﬂ,g ”f”WslvPl(Q)”f”WSZ:PZ(Q)’

provided s = 0s; + (1 —0)s, and 1/p = 0/p; + (1 — 0)/ p2 hold.
Lemma 3.2.3 (Normal trace lemma [30, Lemma 3.4]). Let X be a smooth vector field. Then
)éx : N‘ oo S13X]lo + lldiv X o (3.2.8)

Lemma 3.2.4 (Harmonic trace lemma [[69, Prop. 5.1.7]). Suppose that s > 0.5 and u solves the

boundary-valued problem
Au=0 in £2,
u=g onl’

where g € H¥(I"). Then it holds that

lgls S lulls+os Sgls
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Lemma 3.2.5 (Anisotropic Sobolev trace lemma [60, Theorem 1]). Letm > 1, m € N*, then we have

the following trace lemma for the anisotropic Sobolev space.

1. If f € H"T1(£2), then its trace f | belongs to H™(I") and satisfies
Ll S 1S g1 -

2. There exists a linear continuous operator Ry : H™(I') — H™T1(2) such that (Rrg)|r = g

and

”ng”Hf"i‘l(g) 5 |g|m

Remark 3.2.6. The condition m > 1 is necessary and analogous result may not hold when m = 0.

Indeed, we need to integrate one tangential derivative by part and thus m > 1 is necessary.

Lemma 3.2.7 (Anisotropic Sobolev embedding [74, Lemma 3.3]). We have the following inequalities

H™(2) — H™(2) ->H"/?(Q2), Vm e N*

lullzee S Mllggacay: Mellwroe S lellgs ay-
3.3 Elliptic Estimates

Lemma 3.3.1 (Hodge-type decomposition and the inverse theorem).

(1) Let X be a smooth vector field and s > 1, then it holds that

1X0ls S 1Xlo + lleurl X [ls—1 + [[div X [ls—1 + [0X - N|s—1.5. (3.3.1)

(2) Let 2 C R3 be a bounded H¥*!-domain with k > 1.5. Given F,G € H'~1(£2) with

div F = 0. Consider the equations
curl X =F, divX =G in£2. (3.3.2)
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If F satisfies fy F- N dS = 0 for each connected component y of 382 and h € H'~0-5(982) satisfies
J30hdS = [5 Gdy,then V1 <[ <k, there exists a solution X € H' () to (3.3.2) with boundary

condition X - N |y = h such that
||X||HI(Q) =< C(|BQ|Hk+05) (”F”Hl—l(g) + ||G ||HI—I(Q) + |h|Hl—O45(3_Q)) . (333)
Such solution is unique if £2 is the disjoint union of simply connected open sets.

Proof. (1) This follows from the well-known identity —A X = curl curl X — Vdiv X and integrating

by parts. (2) This is the main result of Cheng-Shkoller [12]. O

Lemma 3.3.2 (H ! elliptic estimates [37, Lemma 3.2]). Assume B/ satisfies ||B||L < K and the

ellipticity B (x)£,6y > % €[> forall x € £2 and § € R®. Assume W to be an H! solution to

0,(B*9, W) =divr in$2 (33.4)
BHYO,WN, =h on 052,
where 7, div € L?(2) and h € H~%3(d£2) with the compatibility condition
/ (m-N —h)dS =0.
a2
If |8 — I'||L < g¢ which is a sufficently small constant depending on K, then
— — 1
W =Wl < liwllo 4+ |1 — 7 - N|—o.5, where W := IEI/ wdy. (3.3.5)
2

Lemma 3.3.3 (Christodoulou-Lindblad elliptic estimate [54, Lemma 2.7]). If |32 = O, then the

following elliptic estimate holds for r > 2.

194 71l < Pl (184S -1 + 10017 11r)- (33.6)

When r = 1, ||5||, should be replaced by ||d7n]|1.
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3.4 Properties of Tangential Mollifiers

Let ¢ = ¢(y1,y2) € CZ°(R?) be a cut-off function such that Spt { = B(0,1) CR?, 0<¢ <1and

Jr2 ¢ = 1. The dilation is & (y1, y2) = K%f (2.22), k> 0. Now we define
A,Cf(yl, yz,yg,) = /2 Zlc(yl —Z1,Y2 — Zz)f(Zl, Zz) dZ] de. (341)
R

The following lemma records the basic properties of tangential smoothing.

Lemma 3.4.1 ([28, Lemma 2.7]). Let f : R2 — R be a smooth function. For ¥ > 0, we have:

[Acflls SUfNls. Vs =05 (3.4.2)

A fls S 1S ls, Vs = —0.5; (3.4.3)

04 flo S&7°1f li=s, Vs €[0,1]; (3.4.4)

|f = A flree S Vil flos (3.4.5)
|f = A floe Seldf]Le. (3.4.6)
|f = Acflzz S VKB flo. (3.4.7)

Define the commutator [A, f]g := Ac(fg) — fA(g). Then it satisfies

[Ar. flglo S 1 1L<lglo. (3.4.8)
[Ac. £19glo <1 f lwr.olglo. (3.4.9)
[Ae, £19glo.s S 1 f lwr.olglos. (3.4.10)
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Chapter 4

Free-Boundary Incompressible MHD
with or without Surface Tension

4.1 A Glimpse at Incompressible MHD without Surface Tension

We start with the simplest case, i.e., the incompressible ideal MHD without surface tension (2.1.1).
The local well-posedness was proved by Gu-Wang [30] in H* regularity. However, the low-regularity
solution to (2.1.1) has not been studied until our paper [52] appears. Below we present the proof of the

H?5%3 _estimates as stated in Theorem We introduce the following a priori assumptions

Lemma 4.1.1 ([52] Lem 2.1 and Lem 5.5]). For every 0 < ¢ < 1, there exists some 7y > 0 sufficiently

small, such that the following inequality holds in [0, Tp]:
1AL — 8 rstoggy < & ALAL = 8" | 1548y < . @.1.1)
—INO > /2 > 0. 4.12)
4.1.1 Elliptic estimates of the pressure

In this section we derive the estimates for || Q||34s and || Q¢||2.5+s. These quantities are both required

in Section|4.1.2} We denote P = P(||v|l2.545. [|b]l2.545) and so Po = P(||voll2.5+s. lIboll2.5+s)-
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Lemma 4.1.2. Assume Lemma holds. Then the total pressure Q satisfies:

t
101345 SPo+ P+ P(nlz+s) (||Q0||2+8 +/0 ||Qt||2+8) . (4.1.3)

and its time derivative Q; satisfies:
t
1Q¢ll25+5 < Po+ P+ P(lvl25+s) (||Q0||z+3 + / ”Qt”2+8) . 4.1.4)
0
Proof. Applying A9, to the first equation of (2.1.T)), we have:
AY*9, (A 9,,0) = —A"*0,0,v4 + A"*0y (b} 0,,b¢). 4.1.5)
Invoking Piola’s identity, we get —AY%*0d,0;v4 = 9;A¥d, v, and
A3, (bl 3,ubg) = AV 3,bY by + dpby AYY AP%Y,by — Dbl APD,by.

Thus, the total pressure Q satisfies

040, 0 =0,A"0yvq + 3, ((6*" — AL AY¥)0,0)

(4.1.6)
+ AY0,bY0,by + dpby AV AP2Y,by — Dpblt APYD, by,

with the boundary conditions

Q=0onTl 4.1.7)
The standard elliptic estimate yields that
1Oll34s < 10: A" 0vvalli4s + (8" — A5 AY)9,. Q245
Qi (9)]
(4.1.8)
+ [1479,bg Dball1s + 19pby A AP 0,bq 145 + 10pbG AP*D,ball1+s
3
Bounds for Q;: We have:

104" 0vallies S PUnllzses) 1013 54500135 (4.1.9)
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Bounds for Q,: Invoking (3.2.1)), we have:

(8" — AL AY)0, Q245

, (4.1.10)
< e0lls4s + P(Inlass) (||Qo||z+8 + /0 1011245 ds) ,

Bounds for Qz: All the terms in Q3 can be controlled by P(||9]l2.5+6)102.5+5lPoll2.548 +
C ||b||§.5 +¢ Via the multiplicative Sobolev inequality. We only write the first term and the others

are treated similarly.

A°%0,b5 3,be 145 S A" N1.545110vbh 0uballi+s S PInll2.s+8)1b]2.5+51boll2.545. (4.1.11)

Summing up the bounds for Q1-Qj3, then absorbing the e-term to LHS, we conclude the estimates of
Q as:

t
101345 < Po+ P+ P(lInll3+s) (||Q0||2+8 + / Q1245 dS) - (4.1.12)
0

Now we prove the estimates of Q,. Taking time derivative of (4.1.6), we obtain:

auath = 8”Avaavva + 8tA”°‘8v8tva

— 9, (0, AR A0, 0) — 3, (A%D,4*0,,0) + 3, (8" — AL A%)3,.0,)
(4.1.13)
4 AV 0,b10 by + AV 0,b10,0,by + 0, (Db, dybg) A”Y AP

+ 9gby 0, (A" AP®)3, by — Dbk AP*D,0,,bg — dgbl AP*D by
with the boundary condition Q; = 0 on I'. By the elliptic estimate and the multiplicative Sobolev

inequality, we similarly have:

t
10¢l2.5+5 S ellQtllz.s+s +Po+ P+ P(l|vll2.5+5) (||Q0||2+8 +/ ||Qt||2+8) . (4114
0

which yields (4.1.4) by letting ¢ sufficiently small. O
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4.1.2 Tangential Estimates

In this section, we establish the tangential energy estimates.

Theorem 4.1.3. Let S = 92+, Let N(1) = || Sv||2, + [|SbII2, + LNAGSn* |72 Then there
exists a T > 0 such that for each ¢ € [0, T'], such that
_ t t
FO£Po+ [ P [ PUQIss. 10l ass: Inlles) ds @.1.15)
0 0
First, we derive the tangential estimates of v.
1d o o
sar vty = [ (S@.Su) dy
2dt Jo 2
(4.1.16)
- —/ (Sv?)(S(443,0)) dy +/ (Sv*)(S(bg A3, by))dy =: T + J.
Q Q
To control 7, we have:
1= [ sesiaona
=~ [ 500,018y - [ (5($40.0) ey
11 s 4.1.17)
—[(Z(Sv“)[S(A53uQ)—Ag(SauQ)—(SAﬁ)auQ]dy-
I3
Control of /3: This is a direct consequence of inequality (3.2.3),
I3 < [|Svllp2(1 45 w1610 Qllwrs+ss + [ AL lw1.5+5.310,Qllwr.e)
(4.1.18)

2
S llzs+sllnllz sl Qlls+s-

35



Control of /;: We integrate d,, by parts to get:

I =—/ Sv* AL (0,50)dy
Q

=f AZSauv“(SQ)dy—/( SO )(ALSV*N,)dS(I")
2 r \:0
(4.1.19)

_ f S(A29,0%)(SQ) dy — / (SAL)8,v%(SQ) dy
2 N — e’ 2

=0
- / [S(Akd,v*) — (SAK)0,v* — AL S, v*](SQ) dy,
Q
The last term in the third line is controlled by using (3.2.3):

~ [ IS0 - (S0 - ALS,1(SQ)dy
2
< (AL I 548318, s + 1A Dy 6100 15401 SO (4.1.20)

2
S 1Qls+slnlzyslvllz.s+s

For the second term in the last line of (4.1.19), we need to integrate 1/2-tangential derivatives by parts

and then apply (3:2.1):

- [ SA%3,0%SQ dy = / 2+ 41505 (SQd,v%)
2 2
SN All245 (1Sl ro5 10, 0% oo + SOl 2310, 0% Iwo.s.s) (4.121)

SInl34s1Qls+sllvlizs+s.

Summing these up, we have:

I S b3 450 Qlls4sllvllzses. (4.1.22)
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Control of I,: Let Sy, := —(1 — A)*25+0-583  Then one may decompose S as:

S = ((1 _ Z)1.25+0.58 _ (1 _ Z)0.25+0.58) + ([ _ Z)0'25+0‘58
N——

=:80
(4.1.23)
o . 2
— (I = D)O25F058 LAYy 4 5 = Z Simdm + So.
m=1
For I, we have:
2
L==% [ <Sv“>(5m8mAx>(auQ)dy—f (Sv*)So Al 9, Q0 dy
m=1 2 2
R
2
= Z [Q(Sv"‘)(Sma,s8mn”)(AﬁA§)auQ dy + (4.1.24)
m=1

I

[ (SvS(AL0p01" A2) = (SN ALALNDLQ Ay + R
2
Here, R; is bounded by P (||1]l2.5+8) | Q1 g1.5]v]l2.5+s viathe multiplicative Sobolev inequality, while

the last term in the third line of (4.1.24)) can be controlled by using Kato-Ponce inequality (3.2.4)
| SV (A3 A2) = (St (AL AL, Q
S AL AL w6188 mn” llwo.s+s.5 + 119 dmn” o | AL AL w1 5+5.5)118, Q1o SVl 2
S PUnls+6) 1 Qll2.s5451v]2.545-

(4.1.25)

It remains to control /,;. Writing Z;Zn=1 Smom = S — Sy, we have:
Iy = fg (Sv™)(Sdpn") (AL AZ)(3.0) dy — /ﬂ (Sv*)(Sodpn*) (Al A5) (3, 0)dy.  (4.1.26)

It is easy to see the second term in can be bounded by ||v|l2.5+5]| Q1.5 P(II1]|2.5+5)- For the
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first term, we integrate dg by parts to obtain:

Ly = /Q (05 Sv%) (Sn") (A% AP )(3,,0) dy — /Q (Sv)(Sn*)(9p A1) A (3,,0) dy

I>11

- /Q (Sv)(Sn*) (AL AB)(940,,0) dy + /F (Sv*)(Sn*) A AB (9, 0)Ng dS(I") + R

Iz

S i+ i +P+ P(|Ollg3).
4.1.27)

Now, we bound /517 by the Kato-Ponce commutator estimate (3.2.3)), because we want to move the

derivatives on v to a in order to control v.

I == [ (S0 ADALST)0,0)
- / (0p0%)SAB(ALS ") (3, 0) dy 4.1.28)
2

+ / (A4S0 9,0)[S(ABdpv™) — (SAL)dgv® — AES(0pv™)]dy.
2
The term on the second line of (@.1.28)) is controlled by (3.2.1)) after integrating 0.5 derivatives by parts,

ie.,

[ @avrsabiatsi@.0)dy = [ 3250 a0, 00505 4L dy

(4.1.29)
SPUnlls+e)llvll2.54+51Qll2.545
In addition, we apply (3.2.3) to the term on the third line of (#.1.28)) and get:
/Q(A‘v’“Sn"GM O)[S(ABdgvY) — (SAB)dgv™ — AL S(35v%)] dy
(4.1.30)
S Pdmlls+s)vll2.5+51Q1l2.5+5
Therefore,
L S P(Inlls+)vll2.s+51Qll2.545- (4.1.31)
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Now we come to control /1,. We shall compute its time integral, which then allows us to integrate

d; by parts to eliminate 0.5 more derivatives falling on v.

t t
/ Itz ds = / / (0:S7*)(Sn*) A3 A Ng (95 0) dS(I) ds
0 0 r

C
< = 143812, (4.132)

t
+ P(Ilvollz.s+8,IIbollz.s+s)+/ P(lnllz+s.11QN2.546- 1 Q:ll2.545) ds.
0

Summing up (#1.17), F1.22), @1.24), @.1.27), (#1.31), (#.1.32)), we obtain:

t t t
Co
[ 16085+ 1ALy <Pt [ P [ PUnars, 1915 1012559 ds. (41,33

Control of J: We will use (3.2.5) in the following proof.

J = / (Sv*)(S(bg A" 3,,b)) dy = / (Sv*)(S(b0,ba)) dy
2 2

= / (Sv“)b{,‘SBMba dy + / Sv"‘[S(b{,‘BMba) - bﬁsaﬂbasauba] dy (4.1.34)
2 2

J1

S I+ vllzs+sllbollzs+s 002,545
The term J; cannot be controlled directly, but it actually cancels with the highest order term in the

energy of b. We will see that in the next step.

We derive the tangential estimates of b in this subsection and then conclude the tangential energy

estimates.Using (3.2.4), we have:

1d

3 1501 = [ (SBSBaa 0,000y = [ ($b)S@48,0%) v
! 2 2

= /ﬂ (Sho)bl (S3,v%) dy + /9 Sba[S(by 3, v*) — by (S, vM)]dy  (4.1.35)

K,

S Ki + [vll2.s+5lboll2.5+511612.5+5-
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We find that J; cancels K;: Integrating 9, in J; + K by parts, we have

Ji + K, :/(SUN)bgsaMba dy+/ (Sba)bh S 0,0 dy
2 2

(4.1.36)
= —/ Sv¥Shy d,bl dy +/ Sv¥Shy bg AN, dS(y) = 0.
2 S—— 02 ———
div bg=0 B-N=0
Combining @.1.16), @.1.33), @.1.34), @.1.33), (4.1.36)), we derive
S 2 Sh 2 co A3S a2
15012, + ISBIZ2 + S IAZSH 22
(4.1.37)

t t
5%+AP+APmemwmﬂ%mmmm

which implies in @.1.15).

4.1.3 The div-curl type estimates

H?58_estimates of v and b:  We do the div-curl type estimate of v and b to derive the control of full
H?>%% norms. Although for Euler equations one can use the Cauchy invariance to give linear estimates
for curl v and div v, there is no such analogue for MHD equations. Instead, inspired by Gu-Wang [30],
we can derive the evolution equations of curl v to control the curl v and curl b simultaneously thanks
to the identity b = (bg - 3)7. Then we apply the div-curl estimate to derive the control of full H2-5+8

norms of v and b.

Let X = (X!, X2, X3) be a vector field. We denote the “curl operator” and the “div operator” in

the Eulerian coordinate by
(CuI'lAX))\ =qu‘”8MX"‘, and divy X = AZ’({)MXO[,

respectively, where €, is the sign of the permutation (Ata) € S3.
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Proposition 4.1.4. For sufficiently small 7 > 0, the following estimates hold:

t
[curl vy .545 + lcurl bll1s4s S e(lvllzs+s + 16]2.5+8) + Po +/ P;
0

(4.1.38)
[div v[l1.54+5 + |div bll15+5 S e(l|vll2545 + [1D]12.5+48).
whenever ¢t € [0, T.
Proof. The divergence estimates are easy because divqv = 0 and divgb = 0, so:
[div vli.545 = || divav +(A; —diva)vis545 S ellvll2.546:
———
=0
div bl1.54+5 = || divab +(Ar —diva)bll15+s < ellbllas+s-
——
=0
The estimates for ||curl v||1 54+ and ||curl b||; 545 are more dedicate. Since
[curl v]|1.5+5 + [[curl |1 545
< |lcurly—4v|1.545 + |lcurl;—4b|[1.54+5 + |lcurlav]||1.545 + [|curlab||1 545 (4.1.39)

Se(lvlz.sts + 16ll2.545) + llcurlgv|l1 545 + [lcurlab|l 1545,

and so it suffices to control ||curl4v||; 545 and |[curlgb||; 545. As mentioned in the beginning of this

subsection, we derive the evolution equation for curlgv
(curlgd;v); = (curlg((bo - 3)*n))a. (4.1.40)
Commuting 9, and by - d with curly on both sides of (@.1.40), we have:

¢ (curlgv); — (bo - Dcurly ((bo - NMa = €210 A*T, 0% + [curly, bo - 3]((bo - D))a.  (4.1.41)

Taking 9'-°+% derivatives, and then commuting it with 8, and by - 9, respectively, we get the

evolution equation of curlsv:
3,(0" > curlyv) ) — (b - 9)(0" >+ curly (b - D)n)x = Fy. (4.1.42)
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where
Fy = [0"°7% by 8] (curly (bo-0)n)s + "8 (€1700r AT, 0% + [curla, bo-8]((bo-0));). (4.1.43)

Taking the L2 inner product with 8'-5*% and integrating 9, by parts ,we have:

1d

——/ |0 curlyv|? + (815 curly (bo - 9)y|* dy =[ F -3 Hcurlyvdy
2dt Jo Q

B

+[ 0" (curly (bo - 0)n) - [0 curly, bo - O]v dy
2

(4.1.44)
Bz
[ 015 urlabo - 1) 05 (er0q0, A0 bo - D) .
2
B3
where the boundary term vanishes since b3 = 0. The control of B; is straightforward,
By S 1015 51514l s+l Acllists S UBIS s lvllasesllnlyss- (4.1.45)

31'5+8

To control B, it suffices to control ||| curly, bo - d]v| 2. We simplify the commutator term as

follows:

[31'5+SCHI'IA7 by - 8]1) = €)ra <81.5+8 (Auraﬂ(bgavva)) _ aval.5+8 (b(l))Autana))

B2
(4.1.46)

+ enca (0,015 (BY AP T0,0%) — 3,015 (447 ,0%))

Bao

Invoking the Kato-Ponce commutator estimate (3.2.5)), we can control B,, as

199"+ (bg A*T9,v6) — by 8" >0 (A* 0, v0) L2 S 1bollastslvlastslnll3 spse  (4147)
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For B,1, we have

Bat = €3200" 5T (4170, (bL3,v)) — 3, (bY AHT0,,v%))

= €700 T3 (AMTD,bY 3,0 + D ((bo - D)1y ) AMY APTY 0™ — Dgbydyn, AN APTH,0%).

=dbY 8L ABT Y, 0

Therefore, the L? norm of 3,; can be controlled by:

1B21llr2 S Pnll2.54+8)(1boll2.545 + 1ll2.548)[V]|2.545-

(4.1.48)

(4.1.49)

It remains to control By, specifically, we need to bound || F ||, 2 given by (#1.43). The first term is

controlled by using Kato-Ponce commutator estimate (3:2.3).

118" %, bo - d](curla(bo - NMI2 S Pllnllzs+5)bollzs+sllvl2.54s-

For the commutator term in (4.1.43), we can proceed similarly as in (4.1.48)

[[curla, bo - 8]((bo - )M I1.5+5 S PUInll2.5+8) boll2.5+slvII2.5+5-

The remaining term in F can be easily bounded by P(||9]l2.5+8)1b0ll2.5+s|V]2.5+5-

Combining @.1.46), @1.47), @.1.49), (#1.50) and (#.1.31), we have

t
lcurlqvlly.s4s + lcurlabllisss < Po + ||b0||2.5+8/ P.
0
Therefore, invoking Lemma@.T.1] we ends the proof by:

t
[curl vy 545 + lcurl bll1s4s S e(l[vllzs4s + 1D]2.54+8) + Po +/ P.
0

(4.1.50)

(4.1.51)

(4.1.52)

(4.1.53)

O

Now we can derive the estimate of full H2->+% derivative estimate of v and b. First applying
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Hodge’s decomposition inequality, we get
vll2.546 S llvlizz + lleurl vl 545 + [div v[l1.545 + [(0v) - N|14s. (4.1.54)
For the tangential term, we apply Lemma[3.2.3]to get:

190 - N14s < 1958030 + [|div v]l1.545, (4.1.55)

Combining @.1.4) and @.1.53)) and absorbing ¢||v||5.5.5 to LHS, we have :

t
Iollsss S Pot [P ds -+ S0lla. (4.1.56)
0
The estimate of ||b||2.5+s can be derived exactly in the same way as ||v||2.5+5-
t
[bllssa S Pot [P ds -+ 5Bl (4.1.57)
0

In conclusion, we have proved

Theorem 4.1.5. The following estimates hold in a sufficiently small [0, T]:

t
vll2.548 + [1bll2.5+5 < Po +/ P ds+ ||SvllL2 + IISb] 2. (4.1.58)
0

H?3t%_estimate of 7:  We derive the H 3% estimate for 7 via the div-curl estimate:
nll3+5 < Inllz2 + lleurl nllags + [Idiv nllags + 1130) - Nllg15+500)- (4.1.59)

The divergence part is easy to treat owing to the div-free condition divqv = 0, i.e., the Eulerian
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divergence of v is identically zero.

[div nll24+s < Idiv 0nlli4+s + Idiv nll14s S divaon|li+s + [(divi—a)0n|li+s + [nll2+5

t
S Ndivadnllis + ellnllz+s + 110) 245 +/ lvll2+s-
0

Now it remains to control div4d7n. We have:

t

div4dn(t) = div an(0) + / divg4, dn + d(divqv) —divyqv ds.
0 N— e’

div4v=0

Therefore, it can be controlled as

t
[div4dn(r) 145 < lldiv 9n(0)[|145 +/ [diva, dnll1+5 + [ldivagv|l14s ds
0

t
< 1) 345 + /0 Illass 10 ll2.545 ds.

Summing up (@.1.60) and (4.1.61)), then absorbing the e-term to LHS, we get

t
[div nll24s S 1(0) 345 +/0 P(l[nll3+s. [Iv]l2.5+5) ds.

For the boundary estimate, we have:

(4.1.60)

(4.1.61)

(4.1.62)

t
— Co
1@n) - Nl g5+ Seo Z||A2S77(X||L2(I‘) +ellnllas + [0l 2 +/0 lollg2.  (4.1.63)

Here we remark that the term || A3 Sn¥| L2(r) 1s exactly the boundary energy term derived from the

physical sign condition in the tangential estimate. It remains to control ||curl |45, we start with

llcurl nlla4s < llcurlgdnlli4+s + llcurl;—4dnll14s + [lcurl nfl14s.

(4.1.64)

Recall that the i-th component of curl4dn (resp. curl;_497) is of the form ;% AN 8M8nk (resp.

€ijk (8 — AM)3,,0n%). So we apply the multiplicative Sobolev inequality to get:

lcurly—4dnlli4s < 11 = Allseslnlzs < ellnlls+s.

45
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In addition, using multiplicative Sobolev inequality, Young’s inequality and Jensen’s inequality, we

have:
-1 4 2
curladnlli+s S I Alls+slnllz+s S e Inllzsps +elnllzys

. (4.1.66)
S e O3 55+ /0 10113 545 + €lnli31s
holds for sufficiently small ¢. Also,
t
Ieurl n(@)ll1+s < (D) |24 < [11(0)l|245 +/ vll2+s. (4.1.67)
0
and hence
t
leurl nll245 < &7 P(I0O)ll2.5+8) + eP(Inll3+5) + & / P(|[v]l2.5+5)- (4.1.68)
0

Now summing up @.1.62)), @1.63) and @.1.68), we get the H3*3 estimates of 7.

Theorem 4.1.6. In a sufficiently short time interval [0, T'], it holds that

t
Inlass Seo SIAZST Ly + ePUllass) + 67 (PANONasin) + [ Polasin)).
(4.1.69)
4.1.4 Closing the estimates
Now we recall that
N@) = O34 + 10OI3.545 + 15ON3 545 (4.1.70)
From @.1.13), @.1.58) and @#.1.69), we have :
t
N(@) < eP(In(®)l3+s) + P(N(0)) + 1”(1\7(1))/0 P(N(s))ds
(4.1.71)

t
4 e PO 2s4s) + ¢ /0 10(5) .55 ds.
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For fixed ¢ < 1, recall that 2 = T? x (0,%) and (0) = Id, one may choose g sufficiently small so

that 1 P(||7(0)|l2.5+5) < 1. Then by a Gronwall-type argument, we conclude that:
N(t) <14 P(N(0)), when t€l0,T], (4.1.72)

for some T = T (N(0), ). The justification of the a priori assumptions is straightforward and we refer

it to [52| Lem. 2.1 and Lem. 5.5]. Therefore, Theorem [2.1.1]is proven.

4.2 Well-posedness of the Free-Boundary Problem in Incompress-
ible MHD with Surface Tension

When the surface tension is not neglected, we establish the first result on the local well-posedness
theory of the free-boundary problem in incompressible ideal MHD. First we present the proof of

Theorem [2.2.T|about the LWP of (2.2.1).

4.2.1 The nonlinear approximate system

For ¥ > 0, we denote A, to be the standard mollifier on R? defined as (3.4.1). Define j to be the

smoothed version of 7 solved by the following elliptic system

—Af = —An, in £2,

- “2.1)
= A2p on 942,

=
I
>

and A := [97]7!, J := det[d7], A := JA and o 7. Now we introduce the nonlinear «-

approximation system of (2.2.1).

n=v in[0,T] x £2;

v —(bo-9)*n+Vz0 =0 in[0,T] x 2;

div ;v = 0, in [0, T] x £2;

divbg =0 in{t =0} x 2;

B =b=0 on I'y: (4.2.2)
A3 = o Jg(Agn- )% 4« ((1 N -ﬁ)) A% onT:

bS =0 on I,

(n.v) = (1d, vo) in{r = 0}x82.
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Here A = 5? + 5% is the (flat) tangential Laplacian. For technical simplicity, we only assume the
upper boundary T? x {1} correponds to the free surface, and the bottom Iy = T? x {0} satisfies the
perfect conducting wall condition. The re-formulated boundary condition on I" is used here since
we find that it is more convenient to apply when studying (#.2.2). We remark here that in absence of

K ((1 YNICE ﬁ)) 7% the boundary condition is just a reformulation of
A3Q = —0. /ghg1°. (4.2.3)
Invoking and the identity J|AT N| = \/E, where g = g(7), we have
A%/)\Jg = JA*N,/J|ATN| = i®, (4.2.4)

and (#.2.3) becomes Qi = —G%Agn“. Also, due to 71 - 77 = 1, we obtain Q7% = Q71 - 1)A* =
—a%(Agn -n)n®. In the view of (4.2.4), this is equivalent to A3 0 = —0./g(Agn-n)in* By adding
the artificial viscosity term x ((1 —N)(v- ﬁ)) 1% on the RHS, the boundary condition of (#.2.2) is

then achieved:

A Q = —0 /g(Dgn- )% + ((1 ST -ﬁ)) . (4.2.5)

In addition, since A3/, = /g, @FZ2.3) can be written as

VZ0 = —0/g(Lgn i) + (1 = D) (v -7 (4.2.6)

N
~

Despite being equivalent to each other, (4.2.5)) and (@.2.6)) will be adapted to different scenarios. In
fact, @.2.5) will be used in Section[4.2.3] for the tangential energy estimate, whereas we find (4.2.6)

more convenient when dealing with the boundary estimate in Section[4.2.2.3]

Remark 4.2.1 (Necessity of tangential smoothing). It is often highly nontrivial to prove the local
well-posedness for a free-boundary problem of inviscid fluid, especially when equipped with the
Young-Laplace boundary condition, by a simple iteration scheme and fixed-point argument for the

linearized equations. The reason is that the linearization breaks the subtle cancellation structure on
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the free surface and thus causes the loss of tangential derivatives of the flow map 1, which also occurs
for incompressible Euler equations with surface tension. For ideal MHD, one cannot directly define
i = A2n as in [16]. Indeed, such construction is not applicable to MHD because we also need
to control |[[A2, (bo - 3)]n|4.5 in which there is a normal derivative b3d3 in the interior that is not

compatible with the tangential mollification.

Remark 4.2.2 (Necessity of the artifical viscosity). An essential reason for introducing such artificial
viscosity term is that the presence of surface tension forces us to control all of the time derivatives. In
particular, the pressure Q satisfies an elliptic equation and it appears that one can only get control of it
by considering the Neumann boundary condition instead of Dirichlet boundary condition due to the
presence of surface tension. The Neumann boundary condition contains the time derivative of v, and

thus we have to include the time derivatives in our energy.

However, the full time derivatives of v and (bg - d)n only has L2(£2) regularity and we cannot
get estimates of the full time derivatives of Q due to the low spatial regularity. Therefore, we do not
have any control for the terms containing full time derivatives on the boundary due to the failure of
Sobolev trace lemma. For the original system, one can use the subtle cancellation structure developed
in [18}153] to resolve this difficulty. But such cancellation structure no longer holds for the nonlinear «-
approximate problem due to the presence of tangential smoothing. Therefore, introducing the artificial
viscosity term could produce k-weighted higher order terms on the boundary, which enables us to finish
the energy control.

The Young-Laplace boundary condition only gives us the information in the Eulerian normal
direction. Therefore, the artificial viscosity can only be imposed in the smoothed Eulerian normal
direction k <(1 —YNICE ﬁ)) n® instead of all the components, otherwise the system would be over-

determined.
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Remark 4.2.3 (Difficulty in vanishing viscosity limit). Very recently, Gu-Lei [27] proved the LWP of in-
compressible elastodynamics with surface tension by proving the inviscid limit of visco-elastodynamics
system in standard Sobolev spaces. We also note that the inviscid limit of free-boundary MHD was
recently proved by Chen-Ding [8] in co-normal Sobolev spaces. However, analogous inviscid limit in

standard Sobolev space is not applicable to MHD due to the existence of MHD boundary layers.

Our goal is to derive the uniform-in-« a priori estimates for the system (@.2.2).

Proposition 4.2.4. Given the divergence-free vector fields vg € H*3(2)NH>(I") and by € H*>(R2)
satisfying b3 = 0 on I U Iy, there exists some T > 0 independent of x > 0, such that the solution
(n(k), v(k), q(k)) to @.2.2) satisfies the following uniform-in-x estimates
sup E.(t) <C, 4.2.7)
0<t<T
where C is a constant depends on ||vg||4.5, ||Poll4.5, |vo|5, provided the following a priori assumption

hold for all ¢ € [0, T1]

[T (@) =135+ [ Id=A@) |35 + [ Id-ATA@)||55 < & (4.2.8)

Here the energy functional E, of (@.2.2) is defined to be

E.=EY +E® L E®, (4.2.9)
where
) 2 ° k 2 k 2
ED = n@is+ Y (|okvo |, + ] @o-omea],
P . .
+ [|9dvo)|g + || 8¢ bo - D) 3 (4.2.10)

2
9
0

B ) v o
k=0
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4 T
E® :=OZ/ ()ﬁa’;u(x)-ﬁ(x)]z + |ﬁ(b0~a)v(;<)-ﬁ(/<)|j)dr, “2.11)
k=170 B

4T 2 2
3)._ k kep
E® = kz_:l /0 (H Ve () HS.S_k n H Vi (bo a)nHS.S_k) dr. 42.12)
By the Gronwall-type argument, we only need to show
T
E((T)<Po+ C(e)E(T) + 73/ P, (4.2.13)
0
Before going to the proof, we need the following preliminary estimates.
Lemma 4.2.5 ([28, Lem. 3.2]). We have

7llas Slinllas (4.2.14)

|(Bo - Nillas SP(bollas, [[(Bo - )nllas, [I1]l4.5)- (4.2.15)

Lemma 4.2.6 ([28] Lem. 3.3]). Assume that ||1]|4.5, ||v]l4.5 < No, where No > 1. If T < g/ P(Nyp)

for some fixed polynomial P and 5, v is defined on [0, 7], then the following inequality holds for

tel0,T]:
[ AH® — §RY|13 5 4 [| AR — §1%||5 5 + |APY — 81|35 < &, (4.2.16)
VO <s <15, |0°(i— N)|poory S 05— N)|Loor) S e, (4.2.17)
i—N|3<e |i—-Nls3<Se, (4.2.18)
187 — /28" 15 <. 4.2.19)
|0n-nls <e [8%n <e. (4.2.20)
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Remark 4.2.7. The inequalities in Lemma4.2.6|can in fact be viewed as an extended list of the a priori

assumptions. Moreover, (4.2.8)) is in fact a direct consequence of (4.2.16).

Lemma 4.2.8 ([28, Lem. 3.4]). Letk = 0,--- ,4. Then

1895 — mllo S vkl 5. 4.221)

Further, for £ = 0, 1, 2, there holds

1894 i — m)llLee < IIVKdEnlls.s. (4.2.22)

Finally, we state the following two lemmas that concern the boundary elliptic estimates of /k7j
and k (bg - 0)7]. These lemmas will be adapted to control the boundary error terms generated when

derivatives land on the Eulerian normal 7.

Lemma 4.2.9 (|28, Lem. 3.5]). Let Mo = P(||vo|l4.5, v/k|[volls.5, v/ [[bolls.5, +/k|vo|10). Then

T
|Vkn|3 <M + C(e)Ec(T) + P/ P, (4.2.23)
0
T T
/ IVkv|2 <Mo + C(e)E(T) + P/ P, (4.2.24)
0 0
T T
/ |V (bo - D)n|Z <M + C(e)Ec(T) + P/ P. (4.2.25)
0 0

4.2.2 A priori estimates of the approximate system

4.2.2.1 Elliptic estimates of pressure

We prove the following proposition in this section.

Proposition 4.2.10. The pressure Q in {#.2.2)) and its time derivatives satisfy the following estimates
1045+ 118:Qlls.s + 197 Qll2s + 137 Q111 < P- (4.2.26)

First, we give control of the pressure Q. Taking divy in the second equation of (4.2.2) we get the
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following elliptic system for Q:
—Az0 = —div (V5 Q) = [divg, d;] v + [divg, (bo - )] (bo - )1 + (bo - D)divg ((bo - 9)n)
= — 3, A" D00 — ((bo - A" )3, (bo - D)1 + A (3,bo - 3)(bo - ) e

+ (bo - ) div a ((bo - D)) +(bo - ) (R — 4", (bo - D)

=div bp=0
and thus

—AQ =i —div(3Q) = —, (6" — A"*A*), 0 ) — 8, A3, v — ((bo - A" )2 (bo - )na

+ A (@,ubo - 0)(bo - D) + (bo - 9) (AN = A")2,,(bo - D))
(4.2.27)

We impose Neumann boundary condition to by contracting A“* N,, = A3 with the second

equation of (#.2.2)

d . - -
% = (8"° — AM¥A>)9,0 — A>*9,vg + A (bo - 9)*a, on I (4.2.28)

Also, since A3 = A32 = 0,A% =1, v3 = 0, and b3 = 0 implies (bo - d) 13 = bééj n3 = 0on Iy,

(B228) yields

0

W — 0, on F(). (4229)

By the standard elliptic estimates, we have

Q145 < IRHS of @2.27)]12.5 + [RHS of @.228)[3 + |Qlo.

Here, |Q|o can be directly bounded by invoking the boundary condition of Q, i.e.,

0= —oﬁ(Agn-ﬁHK%(l — AN)(v - i), (4.2.30)

Ve V&
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and thus

1Qlo S P

Invoking the a priori assumption #.2:8), we have

IRHS of @#.2.27)|l2.5 < €l Qllas + Pllbolla.s. [|(bo - Dnllas. lInllss. [lv]5.5)

and

IRHS of @#2.28)|3 < €l| Qlla.s + P(Inlla.s) (10:vll3.5 + [boll3.s5]l(Po - 9)nlla.5) -

Summing up @#231)-@2:33) and choosing ¢ > 0 sufficiently small, we get

1Olla.s S P.

Next we take 9, in @.2.27)-@2.28) to get the equations of 9, Q:

—00,0 == 9, (6" = A*A")9,,0,0) - 8, (8" — 8, (A"*A*))3,.0)
— O7ACY, 00 — 0, A0, v
+ ¢ (A @,ubo - 9)(bo - D)1 = (bo - DA )3, (bo - D)

+ (bo - 9) (@A = 8: A)3((bo - D)) + (A = A)d((bo - D))
with Neumann boundary condition

82;‘VQ :(8u3 _ AMQASa)aMat Q _ 8t(AMOtA30{)8MQ

— A3%(32vy — (bo - 3)2vg) — 3,;A3%(,v — (bo - 3)*1)q, on T,

and

=0, onlyp.

54

(4.2.31)
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(4.2.33)
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(4.2.35)
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Invoking the standard elliptic equation again, we have

[0:Qll3.s < IRHS of @233)|1.5 + [RHS of @2Z36)[> + [9: Qlo.

The control of the first two terms follows similarly as above

IRHS of @#2.35)||1.5 + [RHS of @2:36)|, < P. (4.2.38)

As for the boundary term, we take d; in the surface tension equation to get

J—?(Agv -n) +«k !

Ve NG

3,0 =—0o (1= A)(;v - ii) + lower-order temrs

and thus

10:Qllo S P. (4.2.39)

Summing up @#2:38)-(@#2:39) and choosing ¢ > 0 to be sufficiently small, we get

10: 0135 SP. (4.2.40)

Taking 9, again, we can silimarly get the estimates of |37 Q||».s:

102025 < P. (4.2.41)

However, we cannot use the similar method to control [[3>Q||; because the standard elliptic
estimates requires at least H 2-regularity. Instead, we invoke Lemma which allows us to perform
the low regularity H !-estimate for 9 -differentiated elliptic system (#.2.27)-[#.2:28). We need to first
rewrite the elliptic equations into the divergence form. Recall that the elliptic equation #.2:27) is

derived by taking smoothed Eulerian divergence divy. This, together with Piola’s identity gives that

—3,(AY*AMY, 0) = 3, (Ava(a,v — (bo - a)zn)a) ,
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with the boundary condition
A3YARY O = A% (3,0 — (bo - 3)°n)g, on T,
and g—% = 0 on Ip. Taking 97 derivatives, we get
0,(A"8920,0) =0, ([A*A",07]8,0) + .07 (A" @ = (bo - 0)*1)a)
with the boundary condition
R3Am9,070 = [A%A", 52 0,0 + 07 (A (@,v — (bo - )0 ), on I

Now if we set

BYH = A"A** = RHS of F243)

and

7= [Av A 97,0 + 07 (A"(0,0 = (bo - )1

(4.2.42)

(4.2.43)

then the elliptic system [#.2.42)-(@.2.43) is exactly of the form (3:3:4). The a priori assumption (#.2:8)

shows that ||B — Id || L is sufficiently small. Now it is straightforward to see that 7z, div 7 € L2, i.e.,

7 llo + lldiv llo S P.
Also, since
h—m-N =0,

then by Lemma [3.3.2]and invoking (4.2.34), .2.40), @.2.41), we have

070 -970| 5 l7lo S P.
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Lastly, we need to control the H !-norm of 33 Q by P.

_ 1 3 _ 1 317 _ 1 T 93
70 = —vol(.Q)/gathy = Vol(.Q)/gatQalyldy = —vol(Q)/lealatQ
=C(vol (@))][33; Qllollyillo = C(vol (2)) 3330 ~ 3 0)]| l1v1lo (42.47)
=C(wol(®)) |970 - 370 .

This concludes the control of |33 Q||1, and we have

10200 < P. (4.2.48)

4.2.2.2 The div-curl estimates
Invoking Lemma (3.3.1] we have the following inequalities for 0 < k <3

loliZs SIvIE + Idiv vll3s + lleurl v]3 s + [30*[3, (4.2.49)

1bo - )il 5 Sl - )nllg + Idiv (bo - )11l13.5 + llcurl (bo - D)nl13.5 + [3(bo - )3,

(4.2.50)
05v12 o, <Id%vl|2 + [|div ¥ v]|2 5, + [leurl 3¥v|2 o, + [00%03 2, (4.2.51)
195 (o - 00113 5_x SIOF (Bo - DG + Ildiv 35 (bo - D)7l13.5_s (42.52)

+ [leurl 3% (bo - ) l|2 5_y + [00% (bo - D32,

Here, notice that we do not pick up terms on I since v3 = 0 and (b - 9)n> = bf)g,- n® = 0 there. Also,

the L2-norms in (#.2.49) and @.2.50) are controlled by energy conservation law. We will omit the

control of L2-norms.
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Divergence estimates. For the velocity vector field, one has

div v = div jv +(8** — A"*)d vy = div v, (4.2.53)
N —
=0
and thus
Idiv vlla.s < [[div zvllss + [|(8*% — A**)d,vall3.5 < 0+ e][v]l4s. (4.2.54)

Time differentiating (4.2.53)), one has

T
Idiv 8;v]12.5 S €lld7vll2s + P(llvollas) + ||Tl||3.5/ P(|[v]la.5), (4.2.55)
0

where in the last step we write ||v||3.5 in terms of initial data plus time integral and use Young’s

inequality. The divergence estimates of ||8’,‘ v||3.5—k, kK = 2, 3 are parallel and so we omit the details.
T
|div 87v]l1.5 + [Idiv 87vlo.s < e(97v]25 + (197 vll1.5) + Po + 73/ P. (4.2.56)
0

As for (bg - 9)n, one no longer has div ;((bo - 9)n) = 0 due to the tangential mollification. Instead,
one can compute the evolution equation verified by div ;((bo - d)7). Invoking div ;v = 0 and 9,7 = v,
we have

¢ (div ;((bo - 9)n)) = [div z, (bo - )]V + div 3“;(1)0 -0)n. (4.2.57)

The commutator [div z, (bo - d)]v only contains first order derivative of v and (bo - d)n. Using the

identity
JAR® = — A1V 9507, AP, (4.2.58)
one has

[div 5, (bo - 9)]v = 8 ((bo - D)7ly) A"Y AP=9 v, (4.2.59)
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Moreover,
div o 5(bo - 9)n = 0, 41D, (bo - D)o = —a" Dgy AP0, (o - ). (4.2.60)
Taking 8°-° in @2.57) and testing it with 8->div ;(bg - 9)7, we get

ldiv 3(bo - D)1l135 < lldiv boll3 5 (4.2.61)

T
+ [ i sbo - s (v g o - Dol + i 5, 10 - D)nlas).

This suggests that we need to control fOT I[div 7, (bo - 0)]v||3.5 and fOT lldiv 4, 7(bo - 9)nl|3.5 on the

right hand side. In light of (#.2.539) and (#.2.60), we have

T T
| vz o 0lvllas + laiv 5, 1o Drallas < [ P.
0 0
Therefore,
T T
lwu@rwﬁjswwﬂ&+/'Ps%+/‘ﬂ (4.2.62)
0 0
which implies, after invoking [.2.16)), that
T
Jdiv (o lRs S e%l(bo - Dl 5+ Po+ [P 4263
0
Similarly, one can take 33>~ 9* for 1 < k < 3 in #@2.57) to get

T
Mm&%ﬂm&%SﬂW%ﬂmm%+%+/P. (4.2.64)
0

Curl estimates. Taking curl ; in the second equation of (#.2.2)) yields

¢ (curlgv) — (bo - d)curly ((bo - 9)n) = curl y zv + [curlg, (bo - 9)](bo - I)n. (4.2.65)
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Then we take 9%, test it with (bo-3)>* (curl; v) and integrate (bo-d) by parts (recall that b N |y = 0
and div by = 0) to get

1d

>qr /9 |83'Scur11§v|2 + |33'5curlg(bo -9yl dy

:/ ([33’5(170 . 8)] curlg (bo - 9)n + 33> (curl 5,20 t [curly, (bo - 3)](bo - 3)7))) (83’50urlgv) dy
Q t

(4.2.66)
+ /Q 8% (curlg (bo - )n) - ([83'5curlg, (bo - a)] v+ 8>3 (curl 5 (bo - a)n)) dy
SP(bollas. |(bo - Dnllas. [vas. |Allzs. [[(bo - Diillas) S P
and thus by the a priori assumption (@.2.8)), we have
T
Jeurl vl 5 + leurl (o - )nll3s S (vl 5 + I Go - )nll35) + /0 P (4267)
Replacing 333 by 9357%9% for 1 < k < 3, we similarly get
T
lleurlz ¥ (bo - D)2 s < €285 (bo - D)2 5s_4 + Po + / Pdr. (4.2.68)
0

4.2.2.3 Boundary estimates

We need to control the boundary term |58’t‘v - N|3—x and |58],c (bo - 0)n - N|3—k. In the case of zero
surface tension, one can use the normal trace theorem to reduce |5X - N|s—1.5 to the interior tangential
estimates ||3° X [|o. But the interior tangential estimates, especially in the full spatial derivative case,
cannot be controlled due to the appearance of surface tension.
Control of |§8’,‘v “N|3—k
Theorem 4.2.11. For k = 0, 1, 2, 3, one has

_ o T

199%v3 12, < [0(T8> %ok v)[2 + 73/ P. (4.2.69)

0
First we study the case when k = 3. Let us consider the projection of 8;” v to the Eulerian normal

direction, i.e., (IT 8? v)3 instead of Lagrangian normal direction. The reason is twofold.
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1. Recall that (3.1.9) in Lemma[3.1.T] gives that
\/Egij Agn® = a@gijﬂfgfj .

So if we test d7-differentiated version of (3.1.9) with 3%v and integrate by parts, then the term

|0(IT33v)|2 is produced as part of energy term,i.e.,

y 1d _ 2
/ o Vg ITE¥ 2t - %0y = —= — (a(nafv)‘ s +--- (4.2.70)
r 4 2dt Jr

2. The difference between X3 and (/7 X)3 is small within a short period of time.

‘We make the above assertions precise. For any vector field X one has

X3 =83x* =8 — P Xt + ¢ m x*
4.2.71)
=IGX* 4+ gMan®am Xt = (1 X)® + g"on®amax*.

Using 97° = fOT v dt (this is true since 37 = 0 initially), we can control the difference between
(ITX)3 and X3 as

33 = X)[] 2[5 amaax [ + [0t 5en inn X[

(4.2.72)
T
SIX IR 5P (@l [ P.
Let X = d3v. Since ||33v||3 5 is included in the energy ED, then @2272) implies
_ 2 T
‘a ((T9v)® — 8?1}3)‘0 < 73/ P, 4.2.73)
0
and thus
_ 2= 2 T
)aafqﬁ‘o < ‘a(naiu)‘o +7D/ P. (4.2.74)
0

Finally, (#:2.69) follows from a parallel argument.
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Control of |§8’,‘ (bo - 9)n - N|3_. First, when k > 1, the control of |§8’,‘ (bo - 9)n - N|3_j requires to
that of |58£ v - N |3—; (modulo lower order terms generated when derivatives land on bg) for/ = 0, 1, 2,

which has been done in the previous subsection.

Thus it suffices to study the control of |(hg - 3)n3|4. In [53], the boundary condition forms an
elliptic equation —o ,/gAgn* = A3*Q and thus one can take (bo - d) and then use elliptic estimates.
However, the boundary condition now takes the form {#.2.6) in the smoothed approximate equations

and there is no appropriate boundary H 2-control for « (bg - ) A (v - i) due to the lack of time integrals.

Our strategy here is to use the inequality @2.72) with X = 33 (b - 9)1.
o 3 > 3 T T
3((T3 @0 00° =T (ko - 00|, < 1T ol Pl [ PP [P @4275)
0 0

where the last inequality holds since ||(bo - d)n]|Z 5 is included in E,El). Therefore,

‘54(190 ) ]z < ]5(1733(190 : a)n)(z P /O “p. (4.2.76)
Remark 4.2.12. The term ‘5(1753 (bo - 9)1) ‘z is part of the energy ES" defined in (@F2Z9), which is
a positive term generated by the 33(bo - 9) tangential energy estimate (See Section . There is
no problem to study the 3°(by - 9)-differentiated equations (#2.2) since it is analogous to the 9°9,-
differentiated equations. Indeed, as mentioned before, (bg - d)n and 9,1 (which is v) have the same

space-time regularity.
4.2.3 Tangential energy estimates

The purpose of this section is to investigate the a priori estimates for the tangentially differentiated ap-
proximate i -problem (@#2.2)). In particular, we will study the energy estimate for 3%, 303, 9292, 39,, 0> (bo-

d) differentiated «-problem, respectively.
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4.2.3.1 Control of full time derivatives

We do the L2-estimate of 8;‘1) and Bﬁ(bo - d)n. This turns out to be the most difficult case compare to
the cases with at least one tangential spatial derivatives that will be treated in Section [#.2.3.2] This
is due to the fact that 3fv can only be controlled in L?(£2) and so one has to control some higher
order interior terms instead. These interior terms will be treated by adapting the geometric cancellation

scheme introduced in [[18]] together with an error term which can be controlled by terms in E ,53) ().

For the sake of simplicity and clean arguments, we shall focus on treating the leading order terms.

‘We henceforth adopt:

Notation 4.2.13. We use = to denote equality modulo error terms that are effectively of lower order.

. L . .
For instance, X = Y means that X = Y + R, where R consists of lower order terms with respect to

Y.

Invoking (#.2.2) and integrating (bo - d) by parts, we get

1 (Td
3 | 1ot + ot ol oy
T T
:/ / 8;‘va3fv°‘dydt+/ / 3% (bo - 0)1a 07 (bo - )v* dy dt
0 2 0 2
T T _
=/ /a?uaa;‘(bo-a)znadydz—/ /8‘t‘va8‘t‘(A“"‘8MQ)dydt
0 2 0 2
T
+ [ / 3% (bo - 00t (bo - D)v* dy dt (4.2.77)
0 2
T T .
:—/ /a;‘(bo-a)vaa;‘(bo-a)nadydt—/ /a;‘vaa;‘(AwaMQ)dydz
0 2 0 2
T
+/ /98‘,‘(}70-a)naa‘t‘(bo-a)v"‘dydz
0
T ~
=—/ Laﬁvaa;‘(AM“aMQ)dydz =1
0
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Then we integrate d,, by parts, / becomes

T T T
/ /B?GMUQG?(A““Q)—/ /vaaa‘t‘(AwQ)—i—/ f 3,07 (A3 Q)
0 2 0 r 0 Io

Iy ]6

T T
:/ /lewa‘;auvaanJrf /Qa;‘a,tva[a“,AM“]Q +1y
0 0

I
T T .
:/ d7div ;v 370 —/ / [07, A*)9,,v407 O +11 + Io + 1. (4.2.78)
0 2 ~——— 0 2
=0

L

1(’, = 0 since on [, we have A3l = A32 = 0, A33 = 1, and vz = 0.

I; yields a top order interior term when all 4 time derivatives land on A*® i.e.,

T
Iy = / / 549,00 (92 A4) 0. (4.2.79)
0 2

If A“® were AM® then this term could have been controlled by the cancellation scheme developed in

[18]]. This motivate us to consider
T T ;
/ f 0710 va (37 4") 0 + / / 03000 (9 A" = 4"))Q = L + [z (4280)
o Je o Ja
Invoking (B-1.1)) we get

0FA—A)= Y bi0}0ii x 00/ (5 —v) + Y b};05(37 — In) x 30/ v,

i+j=3 i+j=3
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and so ||8‘,‘(1~& — A)||o consists the sum of ||i¢|lo, £ = 1,---, 8, where
i1 = (3070)d(D —v), ir = (09,0)30,; (D —v), i3 = (39)dd*(D — v),
ig = (07)393 (D —v), is = d02(D —v)dv, i = 09,( — v)dd,v,
i7=0d0— v)aafv, ig =d(n— r])BB?v.
The L2-norm of these quantities can be controlled by invoking Lemmam
8
Z linllo < Ve P(|vll3.5, 10:v]l5.5, 02015, 183v]1.5, [7]13.5)
N=1
Summing these up and moving /k to [|3%dv]o, we obtain
" g 40A e [T ag w2 LT
hia = [ 10f0ulolaf @4 - 4ol @l < 5 [ 1VRstaulE + o [P sy
0 0 0

where the first term on the RHS contributes to ¢P, and we bound || Q| ze by [|Q]2 < P through
We next control /1. The argument relies on exploiting the geometric structure to create cancella-

tion among the leading order terms. Invoking (3.1.1)) we have

T T
I =/ / Qe 9,30, 831:010% vy —f / Qe 79,33v;030,020% vy

0 2 0 2
T _ _ T _ _

+/ / Qe““asafvtamala;‘va—f / 081030, 021,,030% vy
0 2 0 2
T _ _ T _ _

+/ / Qe““azafvtam%ajva—/ / Qe 33030,0113,020% v + Low
0 2 0 2

=111+ Iz + -+ hiis + liows (4.2.82)

where [j,,, consists terms of the form fOT [ ©802v9vdd}v. This term can be treated by integrating
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d; by parts,

T T T
/0 /A;Qaafvavaafv=/;?Q885v8v38?v0 —/(; /Qa,(qaafvav)aai’v,

where the second term is controlled by fOT P, whereas

T T
. ‘ < Po + ¢l|03v]3 +[ P.
0

/;2 Q09?v0vdd’v

To control the leading terms in (£.2.82)), we consider I11114+I1112, T1113+ 11114, and I1115+ [1116-

For 11111 + 11112, integrating d; by parts in /1112, we have

T T
It + Tz S/ /ﬂ Qe"‘haza?vlawrala‘;va —/ /Q QEaATaIB?UAaSUraza?Ua
0 0

=0

— _ T
—fg 0670197 ,,031:029; vg o+ low (4.2.83)

where ] consists terms of the form foT Jo Q€79 (qdn) (893v)? which can be controlled by foT P.

Next we treat the first term on the RHS of (4.2.83). Expanding in 7, we find
T .= —/ QGaMgl 8;”1}183771-528?1)& - / Qe““glakaag,nﬁzafva. (4284)
2 2

. . T
Since d37;|r=0 = 0, we can write d37; = fo d3v;, and so

_/9 Q9,020,031 0,07v4 < P/OT P. (4.2.85)

In addition to this, we have d3n3 = 1 + fOT 033, and so
—/;2 Qe“)‘3518§’0183n3§28?va < —/Q Qe"‘“glafvﬁzafva —i—P/OT P. (4.2.86)

To treat the first term on the RHS, we expand €43 and get
—/;2 Qe”‘“gla?vkgza?va = —/;2 Q(ﬁlafvzgza?vl —518?1)1528?1)2). (4.2.87)
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Integrating by parts 95 in the first term and 9; in the second term, we have
— / Q(gl 8?02523:;1)1 — 51 8?01523?1)2)
Q

Z/ Q51528?v28f1}1 —/ Q8fv151523?v2+/ 52Q518?028?U1 —/ 51Q8?U1§13?02.
2 2 22 2

=0

Here,
_ _ _ _ T
|| 320010200701~ [ 5100} uB5 | <ellofol + Po+ [P
2 2 0
Therefore,

T
I + Iz < €E(T) + Po +P[ P. (4.2.88)
0

On the other hand, /1713 + 11114 and 17115 + 11116 are treated similarly with only one exception.
Previously, we integrated 91 and 05 by parts in (4.2.87)) and so there is no boundary terms. However,
when controlling 7113 + /1114, we need to integrate 3; and 93 by parts when treating @237), and

thus the following boundary term appears:

/ 033v10,03v3. (4.2.89)
r
To control this term, we invoke the identity

T
11930 = [M38,030* + g0 nP0n;0,030* = 139,030 + g¥ (/ Bkv3) 10193 0*,
0

(4.2.90)
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and thus (4.2.89) becomes

T
/FQafvlnjalavar/FQa?vlg"’ (/ Bkv3) I
0

T
qd3vigh! (/ 3kv3) 012
0

|58?U'1 |-0.5
0.5

SelTaov[g + |ql7 00107 v]3 +

T
§e|naa§v|g+7>0+7>f P.
0

The extra term generated when analyzing /1115 + 1116 1s of the same type integral and thus can be

treated by the same method. Therefore,

T
I < €E(T) +Po + 79/ P. (4.2.91)
0

Next we study

T T
I — I =4[ f 340,403 A1), Q +6/ / 98,0, 02 A1 32 0
0 2 0 2
(4.2.92)

T
+ 4/ / 070,00, A3 Q = I1o + I13 + 4.
0o Jo
For I1,, we integrating d, by parts and obtain
~ T ~
4/52 330,,v,0°A"*3,Q —4/ La?aﬂvaat(af’A““B,Q).
0

Here, the second term is < fOT P, and since B?A = Q(07)39? + lower order terms, the first term is
bounded by ¢|[03v||? + Po + fOT P. Then I3 is treated by a similar method and so we omit the details.
However, we cannot integrate d, by parts in order to control /14 as we do not have a bound for 37 Q.

We integrate 9, by parts instead.
T _ T _
Ly = 4/ / 37040, A%%07 0 —4/ / 07v00,,(0,A%*07 Q).
o Jr o Jo

There is no problem to control the second integral by fOT ‘P. For the first integral, invoking the boundary
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condition (4.2.6), we obtain

T
—40/ /a;‘vaatziwa?(igAgn-ﬁ) (4.2.93)
o Jr N

T
~ 1 _ .
+ 4[ / Ka;*vo,a,AMaf(—(l — A)(v-n)) =: 141 + I142.
0 r

Jz

Invoking (3.1.9), 7141 becomes

T
1141 = - 46/ / 8?Uaat1i3aa?(£gij5i§jn 171)
0 r

Vi
r X V8 ij KT uFT T
—40] /vaaa,Az’“B?(—Ng”g Bln“aia_/nﬂakmﬁ).
o Jr NG

It suffices for us to consider the first integral only since the second integral is of the same type.

Integrating by parts 5j first and then 9;, the first integral becomes
T
—40] / 8?51- V0, A3 (\/—?gijgjafv ﬁ) — 40/ 8?51- Ve 0, A3 (\/—?g"jgjaﬁv ﬁ) + R.
o Jr Vg r V&

Since [|d3v]3.5 is part of E,El)(t), the trace lemma implies that the first integral is bounded straightfor-

wardly by fOT ‘P. Moreover, for the second integral, we have
35 30 (VE ijF a2 = 312 T
40 [ 83ived,A <—~g 0020 -71) Seldvlis+Po+ | P, (4.2.94)
r NG 0

In addition,

Iy & _4/0T/F(ﬁaﬁva)a,A3“(ig~Z(ﬁa§v .ﬁ)).

Integrating F] by parts,then

S
~

T
_ N
Lo é4/ /(ﬁaafva)atA3“—~(x/E33?v'~
o Jr Vi

T T
ss/ W +7>o+/ P,
0 0
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Now we analyze the boundary integral /o in (4.2.78). This is essentially identical to the case of the
incompressible Euler equations [16} Sect. 12]. Indeed, as what appears in [53]] concerning the a priori
estimate, we found that the magnetic field plays no role in the estimate of /.

By plugging the boundary condition AQ = —0./g(Agn-A)A% + « ((1 —N)(v- ﬁ)) n%in I
we obtain

1 r r _
~1Io :/ f a;‘vaaﬁ(\/@gnﬁﬁ“)dsm—f/ / I vad7[(1 — D) (v - #)ia®]dS dt,
o o Jr 0Jo Jr

(4.2.95)

where, after integrating one tangential derivative by parts, the second term becomes

T T
K > ( / / 340%v, 0410 (v - )] dS dr + / f 30,040 (v - 1)07%] dS dt). (4.2.96)
o o Jr o Jr

£=0,1
The first term on the RHS contributes to the energy term fOT / r |8?v 7] ﬁ dS dr together with errors

terms. The most difficult error term is
T p— p—
K / / (307 - i) (v - 9F9ii) dS dr, (4.2.97)
o Jr

where the other errors are either with the same type of integrand or are effectively of lower order by

one derivative with the case above. Since dii = Q(97)9%7 - ii, we have
K (f a4 47~ L [T a4, =~ 72493
—/ /(aatv-ﬁ)(v-atan)detz—/ /(88,1}-11)(1}-8 070 -7)dS dt
0Jo Jr 0Jo Jr
T —_— —_— —
< [ Py ol RO 1o |VET i
T _ T 5
S [ 1R + sup PBiluoecr. ol + ([ 1R -
0 0
T T 2 —
S [ avRatols+ ([ IVRBIE )+ sup P(Flecr ol

<ES + (ES)? + sup P (|97l Loory. [v|oo(r))-
t
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Here, the last term can be controlled appropriately because

T T
IBﬁILoo(r)Sllnllss||no||3+/ ||v||3,|v|Loo(m5||v||zs||vo||z+/ el
0 0

and so sup, P(|97|Loo(r), [v|Loo(r)) < Po + PfOT P. In addition, the second term on the RHS of

([@2:96) can be treated by the same argument.

Next we analyze the first term on the RHS of (.2.93). Since 71 - 7i = 1, invoking (3.1.8) in Lemma
B.I1land we obtain

DNgn-ain®* = =Honn® = Agn®, (4.2.98)

and so we are able to rewrite
VELgn i =\/glgn - 1A + JgDgn A(AY — %) + JgDgn - (1 — A)A®

= JZAgn* + ST ([ — A%) + JTAgN - (i — )R (4.2.99)

In light of this, the first term on the RHS of (#:2.95) becomes
T T
/0 /F 33va 07 (/g Lgn™)dS dt + /O /F 30907 (/g Lgn - i1(7* —A%)] dS dt

T
+ / / 002/ Dgn - (7 — A)A®] dS dt. (4.2.100)
0 r

We shall study the main term Iop = fOT [ 0tva07 (/g Agn™) dS dr. The error terms involving 71 — 7

are treated using (3.4.6) and they are identical to the Euler case. We refer [16, (12.16)-(12.19)] for the

details. Invoking (3.1.9)-(3:1.10), we have

T
Ioo = / / 3;‘1)&8?5,- (\/gg’-jﬂfgjvl) dsS dr
o Jr
(4.2.101)

T
+/ /Fa?vaaiai (ﬁ(gl’gk’—g”g”‘)am“akmazv’l).
0
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Integrating 9; by parts and expanding the parenthesis, we get
r .. — _
€200 =~ / fr vag! I a70;v* 9790
0
—fo Lﬁ(g”gkl — " ¢™)3,;7%8n2.029;0* 840, v4 42.102)
T - ~ ~
- / / 0 (V&g IT3)370;0" 07 0ive S dt
o Jr
T .. . . — _ _ _
— 3/0 /Fa, (ﬂ(gzjgkl _ gljglk)ajﬁaakm) 3?311213?& Ve
r .. — _
_3/(-) /;a%(\/ggunf)atajl))la?aivadel
— 3/0 /Faf <ﬁ(gzjgkl —gljg'k)a/ﬂaakm) 8t81v*8;‘8iva
T 23 _ —
_/ /3?(\/§g”17,‘{‘)8jv*8‘}a,~vad3d,
o Jr
' ij Skl _ lj jik\g o ag = 4T
_/0 /1"8? (\/E(g’jg —glg )81-,70681{7];») v 3?31'%1

=toy + -+ + los.
The main terms are o, and Io, which produces |3(IT d3v)|2 as a part of energy, and the others can
be controlled by estimating o3 + lo4, lo5 + lo6, lo7 + log and integrating d; by parts. In I, we

integrate d, by parts and use (3.1.7)

T

1 iy _ _ 1 T . _ _
101=—§/F¢§g’fnga§ajv*afaiva +5/0 /Fa,(@glfng)afa,v*agaivadsdt

0
1 o _ L B
:E/F\/Egljai(ﬂﬁafva)aj(ﬂfaka)+/F\/Egl/angagvaaj(nfaivx)
1 a7y a3 3. I i e a3F Aa3E
_ 5 FB,-I'I;LEJ/HA 8tvaazv + E A Fa,(@g- Hx)atajv 8,8,-1)(1 dS dr + Io1ls=0

=:o11 + lo12 + lo13 + lo14 + Io1]s=o.
(4.2.103)
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The term /o7 produces the energy term

1 _ 2 1 . o _
Io11 = — E/F ‘3(173?1))‘ ds — 3 L(ﬁgz/ _gu)ai(nga?va)aj(nfafvl) ds
<~ Yamarw[ + [aaer| i gl
S5 (I19;v) . + [0(IT9;v) . |\/§g |1'5 (4.2.104)

1 - 2 _ 2 T _ _
<= o]+ s, [ Pt )

The terms Io12, 1013, [o14 can all be directly controlled. By 52n|,:0 =0,

Ioiz S|vVEE ' oo 01T | o< |97 v]o|0(TT 07 v) o

. (4.2.105)
_ 2
<e (\a(na?wjo + ||a?v||%.s) +Po+ [ Pl ol 10follo) dr,
f— T -—
Iows S el 37vll7 5 + P(llanllz)llaivllo/ 19%v]l dr (4.2.106)
0
T, _ 2 . T
lo1a S / 3330)0 19:(Vgg" M|, o 5/ P((|87v]l1.5. lv]3. [Inl13) dz. (4.2.107)
0 0
Combining (@.2.103) with (#.2.704)-(@.2.107), we get the estimates of Io; as follows
_ 2 T
Io1 S ¢ ((a(naiv)‘o + ||a?u||§5) +Po + P/ Pdt. (4.2.108)
0
. _ (T ij okl _ olj 4ik\9 .09 39 . Aq47.
Next we control loz := — [, [ /8(8" g g7 g'")d;n®0xnx0;0;v"970; ve. We expand the

summation on /, i and find that:

e [/ =i, this integral is zero thanks to the symmetry.
e [ =1,i =2, the integrand is @_1(5177152% —5177055277,‘)8?511))‘8?521)“.

e | =2,i =1, the integrand is —ﬁ_l(glﬂxgzﬂa —51na52nx)3?52v’18‘t‘51v“.
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Here, we use g~ ! to denote det[g™!] = g!!g?? — g!2g?!. Therefore, we have

T
1 9 P 9 a9 q - —_ f—
Iozz—/o /Fﬁ(amazna—amaazm) (a?alvlai}azva_I_a?azv,\a;;alva) dsS dr
81%8?511)“ 51%8?5212“
3 0 =5 1
/ / fdt [32%3?8111“ 331, 830200 + lower order terms

3’/ —deth / /a,( )detm

The first term in the last line of (#.2.109) can be expanded into two terms

(4.2.109)

1 IV e s
/F—gdetmz/rﬁ(amuamalaiv“azaf&—amuazmaza?vﬂalafv*). (4.2.110)

It can be seen that the top order terms cancel with each other if one integrates ER by parts in the first term
and 9, by parts in the second. The remaining terms are all of the form — [ 0,2 (91, 02)33v 303 v*,

which can be controlled as
~ [ Qur@n vt
r
SP(10°nlLes, [9n]Lo0)[97v]0]007 v]o

1 rooo_
Sella?vl25 + 4—8||83’v||o.5/O P([3%0]2) dr. “2.111)

The second term of (4.2.109) can be directly controlled, i.e.,

/ /a,( )detA<|8 8n|Loo|8n|Loo|883v|odt</ P. 4.2.112)

Therefore, we get the estimates of /g;:

T
Tz S el|dv)|3 s + Po + P[ Pdt, (4.2.113)
0

74



Next we control the remaining terms in [y, i.e., o3, -, Ipg. The strategy here is to study

Loz + loa, Los + loe, Lo7 + log, where

T
Ioz + Ios = — 3/ / 3,(Q(3n))0?dva*dv dS dr
o Jr

T _ _ _ T _ _ _
3:’3/0 /Faf(Q(an))afavaiavH/O /Fa,(Q(an))afavafav

T
+3 [ a0@m0naiin
r

0
(4.2.114)

T

=3 / / Q(0n)dv dv + Q(9n)dd, v | 9%9vd? v
0 r |\ >——
3:(Q@n))

T

T
+3 / f Q@) dvd>avd>dv + / Q(0n)vd?dvd’dv dS
0 r r 0

T
Selgfolts+Pot [ P,
0
Similarly, by plugging 3>(Q(3)) = Q(31)(39,vdvdv + 3d,vdv + 39?v) into Ios + Ios, We get

T
los + Tog 2 — f / 32(0(01))d,9vd3dv dS dt
0 r

T

T
- / / F?(Q () d*0vd3 dv + / 32(Q(3n))d,dvd>dv (4.2.115)
0 r r

0
T
<Py +/ P+ el03v]2s.
0

Following the same way as above, we can control Io7 + Iog by Py + fOT P+ &||d3v]|3 5 so we

omit the details. Combining this with @.2.102), (¢.2.108)), #.2.113)-@.2.113)), we get the estimates of

Iy by

— 2 T
Io + ‘a(naiv)‘o §8||8?v||%.5+730+73/(; P. (4.2.116)
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Now the only term left to control in (@.2.78) is L. Expanding [0%, A“?], we have
T 5 T B
L =/ / ITAMY), 0,07 O dy dt +4/ / 3AY,0,,v,07Q dy dt
0 2 0 2
r N r N 42.117
+6/0 /QafA“”‘Bfauvaa‘,‘Q dy dt +4/0 /QB,A“"‘a?E)MvO,B;‘Q dydr 42117

=:Ly1 + Loy + Loz + Log.
Despite having the right amount of derivatives, there is no direct control of |04 Qo and so we have to

make some extra efforts to control Loy, -, Log.

The hardest term to treat here is L,1. Since
ALY, vy = 94 (T A0 00 £ — A" 05035,AP90 0, (42.118)
we have
L [T z <
Ly = / /Q A" 3p035,AP%9,0,0% 0. (4.2.119)
0
Since
APt Q = 0} (AP* Q) — (07 AP*) Q0 — 4(07AP*)0, 0 — 6(07A7*)07 Q — 4(0,AP*)d] Q.
and thus one can write the RHS of (#.2.119) as
T _ . T B .
fo /Q A 95035,0,0404 (AP 0) — 4 /0 /9 05935, 8,0074P%9, 0
T ~ _ T B _
—6[ / AP 35835,0,0,0?AP*92 0 —4[ / ARV 95035,0,0,0,AP%33 0
0o Je 0 Je
=:Lon + La12 + L213 + Lo21a.

It is not hard to see that L5, L213, L214 can all be controlled directly by foT P thanks to @.2.26). To
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treat Loy, we integrate d g by parts and get
T _ ~ T _ ~
/ /F A“”Bf’f)vauvaa?(AwQ) —/ /;2 8?51,85 (A“”auvaa‘t‘(AB“ Q)) = L2111 + L2112.
0 0
Since La112 L_ fOT [ 930, AR 9,,040% g (AP ), we integrate 9, by parts in the last term and get

T T
—/ 95, A19,,0,0305(AP* Q) +[ /at(aﬁﬁvfiﬂvauva)afaﬂ(liﬂ“g) (4.2.120)
2 0 0 2

=:Ls1121 + L21122.

Now, since 8/31&3 ® = (0, we can write
295(APY Q) = —d%v® + 33 (b - )2 (4.2.121)

In light of this, we have L1122 < fOT P and

T
Lotz =— /ﬂ 330, A9, vg (—0F0* 4 33 (bo - 3)*1%)
0

SPo + A8 vallLee 187 v 0(18F 010 + lbollzoc 187 (B - d)ll1)
<SPo + (187015 + 1197 (bo - DIT) + P17 v]lo, | 48, 04ll2)
T
<P+ el + 10} ko -0l + P [ P.
Moreover, by plugging the boundary condition (#.2.6) to L11; we obtain
T ~
- a/ / AR 935,0,, 0407 (Vg L gn - i1
o Jr

T ~ —
+ "[ f Aﬂvaiavauvaa;‘( ((1 - A)(v 'ﬁ)> ﬁa) =: La1111 + L21112-
o Jr
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Invoking (3.1.9), we have
T ~ P —
Lo == [ [ 2%030,0,0001(/38" 8,3, i)
0
T ~ .. -_— — — p—
+o / / A”"B?ﬁvaﬂvaf)?(«/?g”gkla; n*0;0;n,0kn - in%).
o Jr

It suffices to control the first term only since the second term has a highest order contribution with the

same type of integrand. Also,
T ~ . ——
—0/ / ARV 330,0,,0407 (/gg"” 0;0;1 - %)
o Jr
L T ~ . ——
=— o/ / ARV 335,00y /287 0;0,03v - iid*
o Jr
T ~ . ——
—a/ / ARV 335,00y /287 0; 0,1 - (D).
0 r
Now, since

3% = Q(07)09>v - it + lower-order terms, (4.2.122)

and so we have, after using the Sobolev embedding and trace lemma, that

T T
o / / )Aﬂvaiﬁvauua@gﬁﬁiﬁjn-ﬁ(a;‘ﬁ“) < [ P. (4.2.123)
0 r 0

In addition, by integrating 9; by parts and then using the trace lemma, we have

T T
0/ / )Aﬂvagﬁvaﬂva@gl‘@iﬁjaiv-ﬁﬁ“ 5/ P. (4.2.124)
0 r 0

Moreover, we still need to control Ly112. In light of (#.2.122), we only need to study the case when

all four time derivatives land on Av, i.e.,

T
—K / / AR 935,00 A (3% - )A*.
0 r
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Integrating 0 by parts, this term has the contributes to
T ~ —_— —_—
K / / AR 939%,0,,04007v - i,
o Jr

up to terms with the same type integrand, whose analysis (and bound) is identical. To control the main

term, one has
T 3 3 B r B ) .
K/ /Awa?aﬁvauvaaa?v-ﬁﬁ“ = ﬁ/ / 0 (37, 8v)30;v/x 0} v
o Jr o Jr
’ 3 T
<V [ QUL a0l ol sl VRD vl s < VRES + [ .
0 0

Finally, combining with the computations above, we finally get the control of full time

derivatives
4,112, a4 2 5 ma3nl? < 7G4 (r@h2 r
||8tv|}0+||8t(b0-8)77H0+‘8(178,v)‘0§EK +(EP) +PO+C(8)EK(T)+P/O P. (4.2.125)
4.2.3.2 Control of mixed space-time tangential derivatives

To finish the control of E,(T), it remains to study the tangential energies generated by the 993, 9> a2,
339, and 83 (b - 9)-differentiated x-problem. Such energy estimate becomes much simpler when the
tangential spatial derivative(s) d, is taken into account. This is due to that we can avoid the terms

associated to /17 in @.2.79). This can be done by thanks to the extra 0.5 interior regularity.
The 39>-tangential energy: Similar to (#2.77), we have

V(Td [ o3 2 |=n3 2

5/0 = /9 ’88,1)’0 + ’88,(1)0 : a)n‘ dy dr

T 0 _ _
=—/0 /9 993 (AH*9,,0)393 ve dy dt

I*

(4.2.126)

T _ _ T _ _
+/ / 88?(b0-8)2na38?vadydt+/ / 393 (bo - 9)nadd? (bo - d)ve dy dr.
0 2 0 2
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By integrating (bo - d) by parts in the second term, we can get the cancellation with the third term at

the top order

T T
/ / 303 (bo - 3)?14 003 vy dy df + / / 303 (bo - D)nadd (b - v dy dt
0 2 0 2
T _ _ T _ _
:-/ /aai(bo.a)naaai(bo.a)uadydt+/ /aaf(bo.a)naaaf(bo.a)vadydz
0 2 0 2
T — f— f— [
+/ / [a, (bo-a)] a?(bo-a)n“-aaiua—aaﬁ(bo-a)n“-[(bo-a),a] e dy df
0 2

T
5/0 P(Ibolls. [133v]l1. 182v]) dr
(4.2.127)

The main term [ * is treated a bit differently compare to I in {#.2.78). Specifically, one commutes
AMY with 58? first and then integrate by parts. This allows us to avoid the appearance of the higher

order interior terms.

T T
I z_/ / 533%{,&#‘15333&—/ / 393 va [533,1&““] 9,0
0 2 0 2

Ly

T T T
O / [ AHG39,0,003 0 — / / 3020,A%3030 + / / 9030,A% 300 +L*
0o Jo o Jr o Jry

I3 Iy

T T
:/ / 393 (divzv) 39 Q +/ / Ak, 503 | 9,va D070 +15 + 157 + L},
0 2 ——— 0 2

=0

L3
(4.2.128)

Here, I;* = 0 because A13 = A23 = 0, A33 =1and v3 = 0 on Ip. Also, LT and L can be directly
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controlled. For simplicity we only list the computation of the highest order terms

T
L =_/ /Eaiva (303 An] 8,0 dy ar
0 2
(4.2.129)

T T
é—/ /ﬁaiva gafA““SMQdydtg/ P dr.
0 2 0

and
T ~ f— f—
L} =/ [ A, 307 | 9,000 997 0 dy de
0 2
(4.2.130)

T T
é/ /{288?1&““8“1)& 300 dydzgf Pdr.
0 0

Next we analyze the boundary integral /5.
T _— _— ~
I} = —/ / 303v,007 (A** Q) dS dt
o Jr
T 0 o T 0 o
+/ / 30304007 A3 Q dS dt +/ / 303v,07A¥9Q dS dr
o Jr o Jr

T T _ o
+ 3/ / 9930,002A3*9, 0 dS dr + 3/ / 0030,02A3%99,Q dS dt
0 Jr 0 Jr (4.2.131)

T T _
+ 3/0 /Fﬁafvﬁa,z&“afg ds dr + 3/0 [F 003v,0,A%*902Q dS dt
T -_— —_—
+/ / 90;v40A¥07 Q0 dS dt
(] r

=Jo+ i+ + .
Since we have H'-*(£2) regularity for d3v and H!(£2) regularity for 33 Q, the top order terms

contributed by J; to J7 can all be directly controlled by the trace lemma. In the end, we have
T
Jitot I 5/ P (4.2.132)
0

By plugging the boundary condition

ARQ = 0. Jg(Lgn-A)i® + i ((1 “ M) -ﬁ)) i
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in Jo, we obtain

1 T _ _ T _ o _
—Jo :/ / 303 (/gL gn - A%)30;ve dS dz—f/ / aaf[((l —A)(v~ﬁ)) 7i*1007 vy dS dt
g 0 r 0 Jo r

(4.2.133)
For the second term, integrating El by parts, it contributes to the energy term
c (T
—/ [ |03v - 7|3 dS dr, (4.2.134)
06Jo Jr
and some error terms. Here, the most difficult error term reads
kK (T - -
—[ /(828?1)%)(1) -030%7) dS dt (4.2.135)
6 Jo Jr

which can be treated as follows:
k(T 243, =~ 372~ Lk T 293~ 392~ =~
—/ /(8 ;v-n)(v-0;0°n)dSdr = —/ /(8 0;v-ni)(v-0°0;0-n1)dS dt
0Jo Jr 0Jo Jr
T -_— — —
< [ PUBiluoecry. oluoe ) VRT O 0lo VKT -l
0
T T 5 _
S [ IRBs+ ([IVEBOIB )+ sup (Tl ol
T
<E® + (EOV + Py +P / P.
0

The first term in (4.2.133) is treated analogous to the first term in (4.2.95)). The main term we need

to study in this case reads
T —_— —_—
| [ @esamn@aias a
o Jr

T
:/ /1‘58?5,' (@gijﬂfgj v 4 (g gk — gV g™*)a o’y v,l) 99307 dS dr
0
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Integrating 3 by parts, we get

= T
oo & _/ / VB¢ 149073, v*5930; v, dS dr
0 r
/ [ JE(e7 ¢ — gU g,y Ten 3,920,977, 3va dS di + R (4.2.136)

=: Jo1 + Joz2 + Ro,

where R consists terms that can be treated in the same way as in fo3, -+ , Iog in @.2.102).

In Jo1, we can integrate 9, by parts and mimic the proof of @.2.103) to get
3279207 320 | 2112 g
Jor + 0 (na,v))o <e (‘a(naatv)‘o + ||3,v||2.5) + P + 79/0 Pdr (4.2.137)

Jo2 can also be controlled similarly as 7y,. We find that the integrand is zero if [ = i. So it suffices to

compute the case (/,7) = (1,2) and (2, 1). Similarly we get
y _/ e | Brmedid%00r i, 820%000 | T
27 Jr /g | 92nu0:10%00%  051,,0,0200"
The main term can be computed as follows
/' Blnua F2 vt 8117“828 FhL ds
f azrm 8 JuH 8217,L828 P

1 — -
:/F . (alnualafavﬂaznuazafauﬂ — 011, 007900y, 81 970" )

T
+/ P+ R. (4.2.138)
0

(4.2.139)
o / 0’ (. 3 n)ao2"5;30%0* dS
r
T
<ell2vlZ 5+ Po + / P,
0
and thus we get the control of Jy;
T
Joo Se(197v)35) + Po + P/ P. (4.2.140)
0
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Combining (#2.126)-@2.137) and (@2.140), we get the 3d>-tangential estimates as follows

[Fo3], + [03eo - ora + [ (13020) || < £+ (EOP + elvls + Po+ P "

(4.2.141)

The 3202, 30, and 0> (b - 0)-tangential energies: The control of the other tangential energies that
involving at least one 9 is follows from the arguments above by replacing 58? to the corresponding
derivatives. Hence, we shall omit the details and only illustrate the major differences. First, we mention
that the derivatives 39, and 3°(bg - 9) behave the same since both v and (b - 3)7 are of the same
interior regularity. Second, one needs to pay attention to the terms that analogous to the error term
generated by (4.2.133)) during the construction of the energy term. In particular, we need to study the

top order error term analogous to @.2.133). Setting ® = d;, d or (o - 9) and we consider
K (T - -
- / / @*D2%v - i) (v - 3*D%7)dS dr. (4.2.142)
0Jo Jr
When D2 = 9?2 then #.2.142) is treated similar to @.2.133). This is due to that
9° 8? i = Q(07)9*,7 - i1 + lower-order terms,
and [ [9%v]25 is included in ES. In the end, we obtain
« T 1 _ 3 T
E/o /F(a333v ) (v- 922y dS dr < ES + (ES)? + Py + P/O P.

On the other hand, when ©2 = 39,, 8(b - 9), then using the fact that D71 = Q(37)Dd7 - i1, we

have

T T
f/ /(54a,v-ﬁ)(v-54a,ﬁ)d5dz L f/ /(54a,v-ﬁ)(v-55v-ﬁ)d5dz, (4.2.143)
oJo Jr 0Jo Jr
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T
l f / (@*(bo - d)v - 1) (v - 9* (b - D)it) S dt (4.2.144)
oJo Jr

T
LK ST o ms o
_0/0 /F(a (bo - v -ii)(v-0°(bg - 0)7j - 71) dS dr.

The terms on the RHS requires fOT |/kv|2 and fOT |/ (bo - 0)n|2, respectively, to control. However,

owing to (#.2.23)) and @.2.23), both of them can be controlled by Mg + C(e) E,(T) + P fOT ‘P. Hence,

s+ [P ol i) s

ngf)%v .

[l [P ol + i )

[P [Pon-ar] + o (- )]
SE® 4 (E®) 4+ ¢E(T) + Mo + P f “p
0

Notice that the RHS relies on My, which is given in Lemma[.2.9] In Section[d.2.3] in fact, we are

able to control Mg by C([lvolla.s. [Iboll4.5. [vols).

4.2.4 Estimates for the higher order weighted interior norms

It remains to control E ,53) (T) in order to complete the proof of Propositionm

4.2.4.1 Full time derivatives

We shall first study the first two terms, i.e.,
T 2 2
/0 (|| Vit || s+ || Vkd? (bo - 3)77H1.5) dt = K1 + K.

These terms appear to be the most difficult ones to control. In particular, they yield error terms that

contribute to the top order and can only be controlled in L2([0, T]).
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The goal is to show:
T
K+ K> 5730+C(8)EK(T)+73/ P. (4.2.146)
0
The control of K, K5 relies on the div-curl estimate

T
Ki < / (Iidiv o5 5 + | Vieeurl a3v[[5 5 + [Vioio®[}) dr = Kuy + Kio + Kis,
0
(4.2.147)

T
K= [ (I viaivt oo, + |Viewt oo o3, + Voo - 0°f}) a
= Ko1 + Koo + K. (4.2.148)

T
For K3, there holds K3 < / |Vicdtv - i3 —i—fOT | /kd#v - (N —7i)|2, and for the error term, we
0

<E®
have fOT |VKdtv- (N —n)|3 < fOT [V&ofvlis-IN —|}, < *P.Tocontrol Kp3, since 9,7 = v we

2 . 2 .
have fOT | /icd? (bo - 9)v3|| and so it suffices to control fOT | /icd?v3|;. This term can then be treated

similar to K;3.

For K11, we have
T
Ki < [ (IVRdiv ool s + [VRdiv o_z0foll o) (42.149)
0
Since |4 — AH%.SJF < kP(||n]l3.5), the error term can be controlled by

T T _

/ [Vidiv 707035 < / 14— Al s, 1VkddFv |3 s, (4.2.150)

0 0

which can be controlled by the RHS of (#.2.146) when « is small. For the first term, since div ;v = 0

we have

T T
. L - -
/ | Vidiv 707035 = / V(0 A*)3,,03 06|25 + Vi (3F A**)dve 15 5. (4.2.151)
0 0
It is not hard to see that that fOT | vkd, A0d3v]|2 5 < fOT P as d3v € H'>(£2) a priori. In addition,
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since 9; A** = Q(d7), we obtain
T 5 L T T
[ iveatiais £ [ iveoamasiantis < [P (42.152)

The control of K> is a bit more involved. We cannot commute 97 to as this would yield
div 53 5(bo - d)n on the RHS which cannot be controlled. However, by writing div % (bo - A =
div 87 (bo - d)v and then we have

T T T
[ 1Raivazeo ool < [ Vi to-o0lEs + [ IVRaiv 5,020 0l
0 0 0

(4.2.153)

The second term on the RHS is similar with (#.2.150). The first term can be similarly controlled by

commuting div 7 with 93 (bg - 9).

Bound for K, and K»>: We would like to state the following strategy that will come in handy when
dealing with the leading order terms in K1, and K,. Let X be the term such that fOT [VEX |25 is

part of E ,53) and Y be a lower order term such that || Y [|? 4 is controlled by E,Sl). Then

T t T T
[0 [o IVEXY |25 dr <T /0 IVRXY IR S Tsup ¥ [R5, [0 IVEX |25

2

T 2

£ T

5‘(/ 1vie X ||§.s) + S sup[|Y |17 54 (4.2.154)
2 0 2¢e t

which is bounded by the RHS of (4.2.13) if T is sufficiently small.

K1, and K5, will be considered together via studying the evolution equation verified by curl 8;‘1)
and curl 9% (bo - d)n. But this cannot be derived by taking 97 to (#.2.63) as this yields curl g5V in the
source term which cannot be controlled. Instead, we commute 97 curl  to the equation d,v+ (bo-0)*n =

V ;0 and get

dFcurl ;0,v + djcurl 7((bo - 9)*n) = 0.
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This yields the following evolution equation:
dcurl 77v + curl 7((bo - 9)*97n) = —0,([03, curl 7]d,v) — [97, curl 7] (bo - )*n := f, (4.2.155)
and, after expansion, the source term f becomes:

f :a,( > eaﬂy(a{fiﬂﬁ)aua;“fvy) + Y eapy (0] AMBYD(bo - 0)207 . (4.2.156)

1<j=<3 1=j=4

Then we integrate (b - d) by parts in [, & (curl i((bo - 9)20¢ n)g(curl Eafv), then integrate a2 by parts,
and integrate in time one more time, we get

1 (T 1 (T
7f0 [Vkeurl 707035 + 7/0 I/keurl 707 (bo - )1ll§ 5

2 2
T T t
< /0 Po + /0 /0 IVE £ llosllecurl g82vllo.s dr
T t
+ /0 [0 | V&lcurl . (bo - 8)](bo - )3 nllo.slVcurl ;5¢vllo s di

T t
4 /0 /0 | leurl 1. (bo - 9)13%vllo sl Vicurl ;(bo - 9)tnlo.s di

T ,t
[ iR , gt o - pnll.slEeur g0 -1atnlsar (42.157)

We have
T t
[ f I Rleurl . (bo - 9)](bo - 9)2n|2.5 di
0 0
T pt 3
< / / v/Keapy A7 (3,53) (3, (bo - )27 125
0 0

T t
4 / / /Ry (B2 A1) (3,0 (bo - )07 12 5 .
0 0

which can be controlled by the RHS of (¢.2.146) by adapting (#.2.154). The third and forth term are
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treated analogously. For fOT fot vk f113 5 dz, invoking #2.156), we need to consider

T ot . )
i = Z/ /|Iﬁat(eaﬁy(a{Aﬂﬂ)aﬂa;“fvy)ugﬁdz, (4.2.158)
1<j<3v0 70
T ot - .
=) / / IV/keapy (0] AP )0, (bo - 0)20; /07 |13 5 dt. (4.2.159)
1<j=<470 /0

Here, i = fOT fé V(3 A)(33%v)||3 5 is controlled by @#2.154). Moreover,

T t
i £ [ [ ey 000, 00020007 1 (42.160)
0 0

T ot T
s[ [ Ivk@ oo e < [P
o Jo 0
This concludes the control of K; + K.

Remark 4.2.14. There is an alternative way to control the last integral in (@.2.161). We may use the

equation to replace (bg - 3)2n by 9;v + V ;9 and this allow us to control this integral without using

fOT /x93 (bo - )13 5. In fact, one can show
T pt
| [ iveiopsa<p

by employing the elliptic estimate we used in Section , and so fOT fé V& (3; A)303[(bo -

T
N*nlllgsde < [y P

4.2.4.2 Mixed space-time derivatives

The treatment for the remaining terms of E ,53) is parallel. We shall consider

T
| (Wesolie, + IWesao-omls ) ar k=123

First, the boundary normal trace contributed by the time derivative(s) of (bg - )7 reads fOT [ VK Bf (bo -
Nnls—k.k = 1,2, 3. Generally speaking, for each fixed k, the control of the above term requires that

of fOT |ﬁ8’f‘1 v]¢—k, and this process stops when k = 1. In particular, for each fixed k = 2, 3, we
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write fOT [k (b - 8)n|§_k as fOT |8’,‘_1(b0 - d)v g—k’ which can then be controlled together with

fOT |8%v|2_; withi = 1,2. On the other hand, when k = 1, the control of fOT |/k0; (bg - 3)7|4 TEquires
T T
|1k 000 < PAlbolas) [ 1Rl
0 0

where, in view of (#.2.23), we have fOT |Vkv|2 < Mo + C(e)Ee(T) + PfOT P.
Second, the control of the analogous terms of /i (defined in (4.2.159)) for k = 1,2, 3 requires a

similar analysis as above. For each fixed k, we need to investigate

T pt .o —j
ii'= 3 / / |Viceapy (3] A##)a, (bo - 928 7 15 5 1. (4.2.161)
0 0

1<j<k

Again, it suffices to consider the most difficult term contributed by setting j = 1, i.e.,

T t
i’ = / / | Viceapy (D A*P), (bo - 9)20K1nY |12 o, dt (4.2.162)
0 0

T t
< /0 /0 P(ollas, [Bollas, [nllas)l V0% 0l o, dr. “42.163)

In (#2163, it can be seen that when k = 2, 3,f0T f(f | /k3205 17| 4.5_x dt is bounded by fOT fé VK333 5 dt
and fOT fot | v/k039,v|3 5 dt, respectively. Moreover, when k = 1, we need to consider (#.2.162) in-

stead. The strategy here is to replace (bg - 9)?n by d;v + V 50, and so

T pt T
i’ :/0 /0 ||\/Eeaﬂy(8,A“’3)8M8,v7||§5 dt +/0 /(; ||\/E6aﬂy(3zA“B)auVr;Q||§.s dr,
(4.2.164)

where the first term is bounded by the RHS of (#.2.146) owing to (4.2.154). For the second term, since
v € H*3(£2), so it suffices to consider the case when all derivatives land on V 19, whose control

requires that of

T t
/ / IVkV ;0155 dt (4.2.165)
0 0

after adapting (4.2.154). Actually, we have a slightly stronger bound by removing one time integral,
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ie., fOT ||\/EV/;Q||§.5. By the div-curl estimate, one has
T T )
/0 IVkV 013 5 5[0 (IVkdiv V5015 + I Vieurl V50135 + IVEN -V a3 + |V&al3 ).
Here,
T T T
/0 IVkdivV ;013 5 5/0 ||¢EAJQ||§.5+[0 IVkdiv z_sV £01135. (4.2.166)

and by (#.2.16), @-2:26), (#2.154), we have

T T T
[ IRd Vil < [ IVR 01+ [ P
Similarly, because curl ;V ;0 = 0, we have
T T T
[ vk Vil se [ 1vRv 0+ [P
0 0 0
Moreover, invoking (@.2.18)), (4.2.154) and the trace lemma, then

T T T
| IVEN V0B s [ v vi08+ [ Ve —)-9,08

0
T T T
<[ IvEn ViR e [ IRV + [ P
0 0 0
As a consequence, (@.2.166) becomes
T T R
[ veviols s [0 (18101 + 1VRi - Vi0L 4 1VRaR). @160
To control the RHS, we recall that Q verifies

—A ;0 = —3; A",,v4 + dp((bo - )Tiy)dy AM” APD,, (by - D)1a (4.2.168)
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with the Dirichlet and Neumann boundary conditions
VE0 =—0.y2g(Lgn i) + k(1 = D) (v-7), (4.2.169)
i-V;Q=—0v-ii + (bo-0)*n-i. (4.2.170)

Now,

T

T T
/0 IVkD ;0135 < /0 clde Adv]3.5 + /0 ld((bo - HM@:a)(@d(bo - I35 @2.171)

where the RHS is bounded by fOT ‘P. Also, it is not hard to see, via the Dirichlet boundary condition,
T T
that [j |VkOI§ < [, P.
Next, we control fOT |k -V zq|3. In view of the Neumann boundary condition #2.170), it

contributes to
T T
/ K|3tv-ﬁ|§, / |ﬁ(b0-3)2n-ﬁ|§.
0 0

For the first term, since 3,v € H3-(2) and n € H*>(£2) a priori, as well as 37 = Q(91)3%7, we

have fOT K|0sv - ﬁ|§ < fOT P. Also, for the second term,

T T T
/ |ﬁ(bo-a)2n-fz|§é/ W(bo-afa%-m%s/ P(lbolls.s. |nlla.s)| VKT nI2.
0 0 0

which can be controlled by Mgy + C(e) E((T) + P fOT P owing to {#.2.23).

In summary, we have
T
E® < Mo + C(e)E(T) + P/ P. (4.2.172)
0
4.2.5 Closing the nonlinear energy estimate

We now conclude the proof of Proposition [4.2.4]
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4.2.5.1 Regularity of initial data

Our first task is to remove the extra regularity assumptions on the initial data. These additional
regularities are introduced in M, (cf. Lemma [.2.9). In addition to this, one has to control
lg(0)|l4.5, g (0)|l3.5, [|g¢:(0)||2.5 in terms of vy and by by the elliptic estimate, and extra regular-

ity on vg and by shall appear due to the viscosity.

Note that Q verifies the elliptic equation

—A Qg = (9v9)(dvg) — (3bo)(dby) in £2

Qo = k(1 — A3 onI” (4.2.173)
33% =0 on [y

by standard elliptic estimates, we get || Qolla.5 < [[dvoll3 s + 10boll3 s + K ||vg 4.5 + k|v3 6. Moreover,
note that the energy functional contains time derivatives of v and (bg - )7, so we need to express their
initial data in terms of vy and bg as well. We invoke d;v(0) — (bg - 9)bg = —0Q¢ to get ||d,v(0)]|3.5 <
1boll3.511bolla.5 + [[Qolla.s and [[3¢(bo - )n(0)[I3.5 < l1boll3.5]|voll4.s- Similarly, we consider the d;-
differentiated elliptic equation of Q to get |0, Q(0)|l3.5 < P(||volla.s, [boll4.5)(|v3]s + «[9:v(0)]s5)
and further [[32Q(0)]l2.5 + 1320 0)[l1 < P(|[volla.s, |bolla.s, [vols)(1 + K|Z3%U(0)|2)-

By Sobolev trace lemma, we need to bound k [|0?v(0)||4.5 which requires the control of i (||v ||6.5 +
lbolls.5 + 1|19: O(0)]|5.5). We replace 3.5 by 5.5 in the estimates of d; Q(0), and thus we need to control
k210:v(0)|7 < k2(||boll7.51lbolls.5s + I|Qolls.5). Finally, replacing 4.5 by 8.5 in the estimates of Qy,

we need to control /<2(||vo||%5 + ||b0||%.5) + 13 (Jvolg + [vol10)-

We need to control x-weighted norms of ||vg||s.5, [|bol|s.5s and |vg|10. However, our given initial
datais v € H*>(£2) N H>(I') and by € H** and so we have to remove the additional regularity
assumptions on the initial data. We define £2, to be the regularized version of §2 tangentially mollified

by {exp—« and define E g, to be the extension operator from £2 to §2,.. Next we set

Vo = gexp_" * E.QK (Uo), bO = é‘exp_" * E.Q,((bO)a qo -= éexp—" * E.QK(QO)'
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Integrating by parts repeatedly to transfer derivatives to the mollifier {c—«, we get

llkvollg.s + [lkbolls.s + llkqolls.s + [k Voli0 S lvollas + 1bolla.s + | Qolla.s + [vols < C, (4.2.174)

where C is the constant that appears in [#.2.7).

4.2.5.2 Nonlinear a priori estimates

We summarize the a priori estimates of the nonlinear approximate system (#.2.2)).

1. (@2726) gives the elliptic estimates of Q and its time derivatives.

2. B235%)-@236) and @.2:63), (@.2.64) give the divergence estimate and #.2.67)-([@.2.68) give

the curl estimate.

3. (@2.69) and (@.2.76) control the boundary normal traces.

4. @F2123), @E2141), (@F2.143) provide control of the mixed tangential derivatives of v and

(bo - d)n and the normal traces of v. Note that these estimate depends on E,53) on the RHS.

5. Finally, F2.172) provides the estimate for E.
Thus, by combining these estimates and then invoking @.2.174), we obtain
T
Ee(T) = Ec(0) S C(e) E(T) + C(l[volla.s. 1boll4.5) + P(EK(T))/ Ee(t)de. (42.175)
0

We pick ¢ > 0 suitably small such that the e-terms can be absorbed to LHS. Therefore, by the nonlinear

Gronwall inequality, we know there exists some time 7" > 0 independent of «, such that
sup E.(t) <C. (4.2.176)

0<t<T

This concludes the proof for Proposition [4.2.4]
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4.2.6 Well-posedness for the linearized approximate system

Since we obtained an uniform-in-k a priori energy estimate for (4.2.2)), our next goal is to construct a

solution for this system for each fixed ¥ > 0.

Let T > 0. We define

X ={uel®0,T;H*(£2)): [SUP] lullas < 2lvollas + 15, (4.2.177)
0,7

which is a closed subset of the space L>®(0, T; H*>(£2)).

To solve the approximate x-problem (#.2.2)) for each fixed ¥ > 0, we study the following linearized
problem whose fixed-point provides the desired solutions. Fix an arbitrary function 7 = 7(¢, y) whose

o o o
time derivative 17, € X, we denote by A, g, J and A the associated quantities in Lagrangian coordinates

o o

2

and 7% = A, A:=[oq]"L, T = det[arg]], A := J A and ji to be the associated smoothed quantities.

We aim to construct  and v that solve

In=v in [0, T] x £2;
8,v—(b0-8)2n+ViQ=0 in [0, T] x 2;

divev =0, divby=0 in [0, T] x £2;

3203 (4.2.178)
v =5b=0 on [p;

o 3a o — o o

A 0 =-0VELgh-mi® + k(1 —D)(v-n)n on I

(n,v) = (Id, vo) on {t = 0}x£.

We show the existence of 7, v by first establishing the existence of the weak solution and then boosting
up their regularity. The construction of the solution for the nonlinear x-problem will be postponed
until the next subsection. We will adapt the method developed in [16] to study the weak solution for
#.2178). Also, due to technical reasons, it is convenient for us to first construct the weak solution of

in L2(0, T; H~1(£2)) and then prove that this solution has L2(0, T; H!(£2)) regularity.
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4.2.6.1 The penalized problem

The goal of this subsection is to study the penalized version (of the divergence-free condition on the
velocity) of the linearized «-problem (@.2.178). In particular, for 0 < A < 1, let wy, £, be the solutions

for with
diviwk = —AQ0, 4.2.179)

where Q) is defined to be the penalized pressure. In this case, becomes

de6x = wa in [0, T] x £2;
drw) — (bo - 9)*Ex +V20;=0 in [0, T] x £2;
divew; = —AQ;, divhy =0 in [0, 7] x £2;
A (4.2.180)
wy =by =0 on I'y;
o 3a o ol — o o«
A qp=-0&Lgi-mn +k(1—B)w-mn  onl:
(€x,wp) = (Id, vo) on {t = 0}x82.

Since each penalized problem is indexed by A (recall « is fixed), we shall denote them by “A-problem"

throughout the rest of this section.

Weak solution for the A-problem. First of all, for each fixed A, we will solve the A-problem by the
Galerkin approximation and obtain a weak solution. By introducing a basis (ex )7~ of L2(Q2)NHY(R2),

and considering the approximation

AEm(t,y) =wm(, ), (4.2.181)
wp(t,y) = Z zrMer(y), m=>2, te]0,T], (4.2.182)
k=1

one can form a system of ODE by multiplying a test vector field ¢, whose component ¢, €

span(ey, -+ , ep) to the A-problem. Specifically, we have

/ (W) e — f [(bo - 9)°E% ] + / [R493,, Ol = 0. (4.2.183)
2 2 2
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We recall that (bg - 0)| is tangential to I". Owing to this and the boundary condition of g,, we

obtain, after integration by parts, that

RCA R NCIEA (TS R B R Lo

1=0,1
g p ° o © o
~ [ 0ul gl =0 [ (Jingh-ie-h. (42.184)
wm(0) = (V0)m, Em(0) =1d, (4.2.185)
where (vg), is the projection of vy onto span(ey,--- , ex).

Let ¢y = ex, k = 1,--- ,m. Then @2.184)-(@.2.183)) and (#.2.179) yield an ODE system, and the

standard ODE theory gives the the existence and uniqueness of &,, and w,, in [0, T;] for some T, > 0.
We mention that it is important to introduce the penalized pressure @.2.179), or else (4.2.184) would

not form an ODE system.

Setting ¢ = wyy,, and since o \/E Ag 1%lo < N, where Ny denotes a generic polynomial function

such that No = P([[n0l4.5. lvolla.s. [Iboll4.5). then @.2.184) gives us
t t °
||wm||%+||<bo-a>sm||3+x/ ||qm||3+:</ W A2 <Moo 1€[0.T3]  (42.186)
0 0

Since the RHS of (#.2.186) is independent of A, we know the solution (&, wy,) is defined on [0, T']
(possibly after setting T smaller). In addition, there is a subsequence, which is still denoted with the

index m, satisfying

(bo - Dm — (b - NEL, Wm — Wy, Om — 0y, in L*(0,T;L*(R2)), (4.2.187)

o

W 71— wy -7, in L2(0,T; H\(I')), (4.2.188)
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where w), (b - 9)§,, and ¢, verify the estimate
t t °
sl + 1o - Dl + 4 [ laald 4« [ fwn-Af<Po rep.7) @218
0 0

Now, let Y be a Banach space. We denote its dual by Y’, and, for ¥ € HS(£2)' = H™*(£2) and
& € H*(82), the pairing between ¥ and @ is denoted by (¥, @),. It follows from the ODE ([@.2.184)
defining w,y, that d;,w, € L?(0, T; H_%Jr), where H—2% := H~28 for some 0 < § < 1, and

(bo - 0)%E;, € L%(0, T H_%Jr) as well. Now, for ¢ € L%(0, T H%_), we have

T T
| @wggay_+ [ (00026100
0 0

1_
2

T — o — o T o Ha
w3 [0 [ P i b- [ 100 A )y, (42.190)

1=0,1

= [ [ fengi-fro-h

In light of (@2.190), we can see that d,w; € L2(0,T: H=2%), and q; € L2(0,T: H2%), and the

regularity of g, implies Vi 0, €L*0,T;:H 5 ). Therefore, we have that
diwy = (bo - 0)*61 + V502 =0 4.2.191)

holds in L2(0,T; H=27(2)) C L2(0,T; H-'(2)). In addition, by commuting curli through

([@.2.191) we get the following evolution equation

8,(curl§w,1) — (bg - 8)curl§((b0 -0)E)) = [curli, (bo - )] ((bg - 0)E,) + curl Btiwk' (4.2.192)

The limit as A — 0. By (@.2.179) and (@.2.189) we have

t
1. )
/0 (Iwall} + G0 - DEal15 + 7 l1div swa 3 + w7} ) di < No. 1€ [0.7]  @2.193)
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Thus, {w, } and {(bo - 9)€,} admit converging subsequences such that

wy, — v, (bg-d)E, — (bo-d)7, div swy — divev, in L?(0,T; L*(2)). (4.2.194)

wy i —v-ii in L2(0,T; HY(I')).  (4.2.195)
Moreover, in view of (#.2.189), we must have that
divev =0, in L?(0,T; L*(2)). (4.2.196)
Also, this implies the evolution equation verified by div (bg - 9)7, i.e.,

edivs ((bo - 9)m) = [dive, (b - v + (8,1§Ma)8u((b0 - 9) ). 4.2.197)

Our next goal is to show that (7, v) is a weak solution for and we also need to get a bound

for [3 [vell® . fort [0, T]. This ties to the L2(0, T; H?2*) regularity of the pressure function
H 2T (@)

Q (to be defined later in this section). First, we consider a vector field f € L2(0, T:H %_). Define ¢

be the solution of
Aiw = dlvif, in £2, (4.2.198)
¢ =0, on 052, (4.2.199)

and let g, h be the vector fields such that g = Vi ¢ and h = f — g. Here, it is clear that g,h €
L%(0,T; H%_) and divih = 0. Now, [@.2.190) yields, after replacing ¢ by #, that h verifies the

following variational equation

T T T ° _ °
[ sy [ oremy_ v 3 [0 [ S bd b

[=0,1

T
— SAof V7). 4.2.200
o/ofr(\/;gnn)( 7 (4.2.200)
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o Uo

On the other hand, since divi v = 0, we have 10&‘“"8“8, Vy = —(B,A )0, vq. This identity and
(@.2.199) yield
o na
(v,,g)%_ = (v,,VKgo)%_ = [ (0:A )0,vq0.
Q

In light of this and (4.2.200), we obtain

T T
im [ (@wa f)y + [ (B - DL )1
A—0 0 2 0 2
T o pe T — o — o
:/ (0:A )3, 040 —K Z/ /a’(v.ﬁ)a’(h.ﬁ) (4.2.201)
0 2 0 r

1=0,1

vo [ [ fengi-han-

and so

T
im [ wl® o+ 10067y, < Ao (42.202)
A—=0Jo H™ 2 H™2

As a consequence, we have wy; — v; and (bg - 9)2&; — (bo - )2 in L2(0, T; H~2+). The former
ensures that v € C°(0,7; L?) and so the initial data of w(0) and v(0) agrees and equals to vy.
Moreover, by employing [[16, Lem. 7.4 there exists ¢ € L2(0,T; H %+), in terms of the pressure

function, such that

T T T o o
| gy [ (Goorneny - [ (@A B,
0 0 0

2

T o — o
+r Y /0 /F ' (v-n)d(¢-n) (4.2.203)

1=0,1

o [ [ Jaogi-frg-

I'We need a small modification. Since we need our ¢ € H 2 +, we need to consider the linear functional {div X¢’ p) 14

defined on X (¢), where X(¢) = {¢ € H%_(.Q) : dividu € H_%_(.Q))}.
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holds for any test function ¢ € L?(0,T; H %_). This yields that (n, v, Q) verifies
9;v — (bo - 9)*n + VeQ =0, and divev =0, in L?(0,T; H™Y,

and so we’ve shown that 7, v is indeed a weak solution for (¢.2.178). Furthermore, (4.2.202)) together

with 16, Lem. 7.4] implies that
L = Po. (4.2.204)

T
/ 1)
0 H

Remark 4.2.15. The %—i— interior regularity of Q is required here as this controls the H°*(I")-norm

D=

of Q on the boundary. We refer Section [4.2.6.2] for the details. Finally, we consider the difference

between (@.2.203)) with v and v’,

T T
[ @w=vrohy_+ [ (o011,
0 0

T o — o T o Mna
= N () o L —o. 5
+/c§ /O /FB((v v')-n)d (¢ - 1) /0 (@—q).A up)r, =0 (4.2.205)

1=0,1
where (v’, ') is assumed to be another solution with the initial data. The uniqueness of the weak

solution follows from setting ¢ = v — v’.

4.2.6.2 H' Regularity estimates of v, (by - 9)1 and Q
We shall show that v, (bg - d)n and Q are in fact L2(0, T; H'(£2)). Let
t
elt) := /0 113 + Ioll} + o - D)nl3 dr. 1 € [0.7). (42.206)

Our goal is to show

e(T) < P(Np). (4.2.207)

It suffices to consider fOT [v]|? and fOT [|(bo - d)n|? only since

T T t
o= [ (ol + [ horar)ar
0 0 0
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Thanks to Lemma , it suffices for us to control foT [[div o3, fOT [|curl v||%,f0T [v3)2 5, as
well as [/ |div (bo - 9)7lI2. i llcurl (bo - )nlI2. i |(bo - )72, in order to control [ [[v]|? and

T 1o - d)ml2-

Control of the divergence and curl The estimates we need here are essentially the same as in
Section [4.2.2.2] but without considering the time differentiated quantities. Firstly, since (4.2.16)) in

Lemmaremains true with A replaced by A, then
T T oua T
[ taivol < [ 1A -5l <o [ 100l < cer). (42.208)
0 0 0
Secondly, because divi (bo - d)n verifies the evolution equation
o pot
8,diV§((b0 -0)n) = [divi, (bo - D)]v + (3:A )3, ((Do - D)1g)- (4.2.209)

So, one needs to bound fOT f(; IRHS of (#.2:209)||2 d¢ in order to control fOT ||div1§((b0 -0)n)|13. We

have
T ,t ona T pt °
| [ 1A oo omigar < [ [ 10:AR <ot a
0 0 0 0
T t
< / / Nolla((bo - D) de < TNoe(T).  (4.2.210)
0 0
Moreover, [dive. (b - 9)]v = AR ((3,bo) - D)vg — ((bo - D)AL®)D, vy yields
T t T t
/ / ||[div§(bo-a)]v||35 / f Nollov |5 dt < TNoe(T). (4.2.211)
0 0 0 0
Thus,

T
/0 Idivs ((bo - )m) 3 < TNoe(T). (42212)
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In addition, using||div (bg - )n||3 < ||divi(b0 -)nl3 + ||K — 8|12 10(bo - d)n|3 and @F2-16), we

conclude that
T
/ l|div (bo - 9)n||2 < ee(T) + TNoe(T). (4.2.213)
0
Thirdly, the evolution equation satisfied by curl v and curl R (bo - 0)n reads
Bt(curliv)a — (bo - 3)cur1§((b0 SN = [curli, (bo - 9)]((bg - 3)n)q + curl 5,2V (4.2.214)
t

and this yields the following L2 ([0, T']; L?(£2))-energy identity after testing with curl 2V and integrating

in space and time:

t t
llcurlev|[§ + [[curle (bo - )l < [ 1[(bo - 8), curle](bo - D)l + / leurl < v|3
A A 0 A 0 A

t t
T / 1bo - 9). curle](Bo - D)v]12 + / fleurl o (bo - ]2
0 A 0 B[A

Integrating in time one more time, we achieve

T T pt
o vl|? ° . 2) < . ° . 2 ovl?
| Qlewrtgol + leurtz @o-an13) < [ [ (1o - 0. curtglo- i + feurt <o) s

T t
. o . 2 o . 2
[ (1o 0. curtgdo- 0301 + e, <o 01l .

It suffices to control the first two terms on the RHS since the third and fourth term can then be controlled

by an analogous method with the same bound.

For the first term on the RHS, since one can express

ovp ovp
[(bo - 0), Curlg](bo <0)Na = €apy((bo - DA )0yn" —€upyA  (dvbo - I)n”

and 50 fy [y l1(bo - 9). curl=](bo - D)nallo dr S T-Noe(T). Similarly, [[[(bo - 9), curle](bo - vallo <

T Noe(T). In addition, for the second term, we obtain fOT f(; [|curl ) iv”o dt < TNpe(T). Summing
t
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these up, we obtain

T ot
/ / <||curlsv||(2) + |lcurle (bg - 8)n||§> dr < TNoe(T). (4.2.215)
o Jo A A

Control of the boundary terms First we remark here that (4.2.17), (4.2.18) remain true by replacing

S

i by

Control of [ [v3[25: Tt suffices to control f; v 71|25 since
T T, T .
[ 1w hs s [ il [ oG mBs, 42216)
0 0 0
whence
T o T o
/0 lv-(1—N)]3s < /O lvlgsln — N|i, S ee(T). (4.2.217)

T, 295 .
Moreover, the control of [, |v- 7|} 5 is a consequence of @2.193) as A — 0,

T T
o 1 o
/ lv-nlys < —f lv-nl? < Aﬁ. (4.2.218)
0 K Jo K

Control offoT |(bo-9)n?|3 52 Similar to the control fOT |v3|2 5, it suffices to bound fOT |(b0-3)(77-1%)|55

only. Since (bg - )| = by -0 and (7 - 1%)|,:0 = n°|;=0 = 0, we have

o T o
(bo - )(n - i) = /O (b - ) (- 1) dt. (4.2.219)

Hence,

T . T
/0 ((bo - )0 -2 s/o

by Jensen’s inequality. Here, the term on the second line is equal to

t ° 2 T t o
/a,(bo-a)m-ﬁ) dtsf /|a,<bo-a)(n-ﬁ>|3.sdt,
0 0.5 0 0

T [t . T [t .
/0/0|<bo-a>(v-ﬁ>|é5dr+/o /0|(bo-a>(n-a,ﬁ>|3.5=1+11.
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Since 8,11 = Q(gi%)glg) i1, we have I1 < T Noe(T).
Next, we have I < [|bol|o.s fOT f(; |v - hq|§ dr. By employing the boundary condition we obtain the

following elliptic equation of v - jionl

Aw-i) = %((v )+ \/EQ +o\/§A§ﬁ~%). (4.2.220)

By the virtual of the elliptic estimate, we have

T t ° T t ° 5 S o
/ /|v-ﬁ|§+dzgfc—1/ /(|v-ﬁ|§++|\/;Q|%++o|\/;A§n3|%+)dt. (4.2.221)
0 0 0 0

It is clear that the third term can be controlled by TN, and first term is bounded by T Npe(T') via the

trace lemma. Therefore,
T t ° 1 T t
/ / lv-nl5, < =(TNoe(T) + / / Nolq |3, dr). (4.2.222)
o Jo K o Jo
Here, in light of @2-204), we have [, |¢|2, < No. In summary, we have
e(T) <k "Ny + ee(T) + TNoe(T), (4.2.223)

and this implies (4.2.207) if T is chosen sufficiently small, say 7" = J\Lfo

The strong solution for the linearized equations Since v, (bg - 9)n € L?(0,T; H'(£2)) and so
vs, (b - 0)2n € L2(0, T; L?(£2)), we can now proceed as what has been done in Section 7 of [16] to
bound Q in L2(0, T; H'(£2)). Alternatively, one may also adapt Lemma to achieve the same
objective. Therefore, we have obtained a strong solution for the linearized «-problem (@.2.178). This
allows us to further boost the regularity of the linearized solution to H*->(£2) via classical methods in
the upcoming section. Then we achieve a solution for the nonlinear «-problem by approximating it by

a sequence of linearized solutions.

105



4.2.7 Existence for the nonlinear approximate x-problem

We construct a solution to the nonlinear k-problem for each fixed k > 0. Let (19, vg, Qo) =
(Id, 0,0). For each m > 0, Let (Ngm+1) Ym+1)> Qm+1)) be the solution for with ini-
tial data (Id, vo, Qo), where the (linearized) coefficients are determined by (9(m), V(m), O (m))- The
goal is to prove the sequence {(1m), Vom)) }m>0 strongly converges and the limit verifies the nonlinear
approximate «-problem. This can be done by Picard iteration. We will first establish the H*->-energy
estimate for (7(m), Y(m)), and then this estimate can be carried over to the difference between two

successive systems which yields the convergence of (1)(m). Vm)) as m — oo.

4.2.7.1 A priori estimate of the linearized approximate problem

Let m > 0 be fixed and assume the solutions (7, v(7y, (1)) are known for all / < m. For the sake of

o

clean notations, we will denote (9(n+1)s Vm+1), Qm+1)) by (1, v) and (Ngm)y, Vm)» Q my) by (1.0.9)

if no confusion is raised.

Proposition 4.2.16. For each fixed k > 0, there exists some 7, > 0 such that the solution (5, v) for

#2.178) satisfies

sup E(t) <C, (4.2.224)

0<t<Ty

where C is a constant depends on ||vo||4.5, [|Poll4.5, |vo|s, provided that
9 ° oT o
(1) = 35 + [1d=A@)]l5.5 + [ Id—A A(1)]l3.5 < & (4.2.225)
holds for all ¢ € [0, T,]. Here the energy functional E of @2.178) is defined to be

E@t)=EV@1) + E@(), (4.2.226)
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where

ED(@):

2
kv 0f o - pn|[, _ + o .07 o - o[

3
Inl3s+ |
k=0

T
ED () = Ef
0

o

o2 T T
sio-if) o+ [ 1stolRs+ [ 10t 0mids)

It can be seen that E (¢) is significantly simpler than E,(¢) given in (#.2.9). In particular, no
boundary terms appear in EW () since —o \/E (A ég?] . hq)hqa is a fixed term in the linearized equations.
In addition to this, we only need to perform the tangential energy estimate consists four time derivatives.
Since « is fixed, the boundary terms that involve at least two spatial derivatives can be controlled by
study the elliptic equation generated by the boundary condition (i.e., (4.2.236)). Also, the following

observation shall be used frequently throughout the rest of this section.;

Removing extra (tangential) spatial derivatives: By (3.4.4), we can absorb additional tangential
spatial derivatives when necessary. This allows us to greatly simplify most of the estimates on the
boundary. Thus, (@.2.224) is a direct consequence of

T
sup  E(t) St Cllvollas. [bolla.s, [vols) + C(e) sup E@)+( sup P) [ P, (42.227)

0<t<Ty 0<t<Ty 0<t<Ty 0
where P = P(E(l), 15]l4.5. | (Po - 3)7|l4.5). Also, we will drop the subscript « and denote T,, = T for
the sake of clean notations. Similar to (#.2.13)) we shall assume that sup, ., E(t) = E(T), and this

allows us to drop sup supy, <7, in (4.2.227)). In other words, we only need to show
~ - T
E(T) Se-1 Po+ C()E(T) + P / P, (4.2.228)
0

where Py = P(E(0). [|¢(0)]l4.5. [|g:(0)[13.5. llge¢ (0)]l2.5). We remark here that #@2228) does not
have to be uniform in «, and so the RHS may depend on % This fact allows us to greatly simplify some

of the boundary estimates (See Section[d.2.7.1)).
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Interior estimates We control
||alt€v||i,5_kv ||8]t€(b0 : 8)77”35_1(7 k = 07 17273a (42229)
by applying the div-curl estimate:

8% ]2 5, Sla%divo|2 s, + [18%curl v]2 5, + 05034, (4.2.230)

3% (bo - )12 s_i SI3*div (bo - NlIZ s g + 3Fcurl (bo - D)yl|Z s_p + 10% (bo - )1 sk
(4.2.231)

These are identical to those in Section [d.2.2.7ko we shall not repeat the proofs. We also need the
estimates for the interior Sobolev norms of the pressure Q, which is identical to Section {.2.2.1]

Furthermore, the top order interior term in E® that

T T T
o[ 1otolis+ [ 10tk omlis) < Po+ coBm+P [ @22

is identical to Section[4.2.4]

Boundary estimates This subsection is devoted to control the boundary terms |3’,c v3|4_x and |8]t€ (bo -

8)173|4_k fork = 0,1,2, 3. Our goal is to show

Lemma 4.2.17. Fork =0, 1,2, 3, we have

T
1050312 <-1 Po+ C(e)E(T) + P/O P, (4.2.233)

T
10%(bo - N312_ et Po+ C(E(T) + P / P. (4.2.234)
0

Note that we no longer require the energy bound to be x-independent. Hence, we can use (3.4.4)

to absorb extra tangential spatial derivatives on the smoothed variables. Recall that the boundary
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condition in the linearized equations reads

\/EQ = —o\/§A§ﬁ-% + k(1 =D)(v- 7). (4.2.235)

o
This can be converted to an elliptic equation satisfied by v - 7i, i.e.,

Aw-i)=v-n—k! (\/gq—ko\/gAgﬁ-;%). (4.2.236)

Now, invoking the standard elliptic estimate and (3.1.9), we get

o
|U‘ﬁ|4§|v n|2+K <

+0P(|3'7|Loo IaznlLoo)lnh) St Po +/ P, (42237)

where the used the trace lemma and (@.2.26)) in the second inequality.

Since (bg - d) = bésj on I" and hence (bg - 9)(7 - 1%)|t:0 = 0, we have

[{e}

T o T o T o
(bo - 3)n- ) = /0 ou(o-0)0-1)) = [ @o-0)0-R)+ [ @00y, @2.238)

O

okl_ o o

Since 9,71 = -g 8k19) no Q(817)8v i, and invoking (3.4.4) we have

310

2 T
‘ / (bo-n-0,8| <T / (o - D)(n- 3R Ser fo P (4.2.239)

4

Here, we need (3.4.4) to control the leading order term generated when 8% (b - ) fall on v (which is

part of 8,1%), ie.,

T o —0 o
/ Q (i1l [07]0)|(bo - )3V|3 S 1/0 1603 QI ee , [97|o0) B3

In addition,

2

T o T o
'/ (bo - ) (v - 11) §T/ (bo - D) (v - 11) 2, (4.2.240)
0 4 0

and the RHS can be controlled by studying the elliptic equation satisfied by (bg - 9)(v - %) Taking
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(bo - 9) on (@2.236) and we get

Abo-9)(v-1) = [A. (bo- D)) (v-11) + (bo-8)(v-11) — k! ((bo )(YE) + oo a)(ﬁAgﬁ-%)) ,

(4.2.241)
then the elliptic estimate implies
T o T
/ [(bo - 3)(v - 1)|5 <ot f P. (4.2.242)
0 0
Thus,
R T
ko0 DE S [P 42243
0

We can obtain the bounds for [v3|3 and |(bo - 3)1>|5 from (#.2:237) and [@.2.243), respectively. Indeed,

we have

W32 <v- 72+ v (N — )2 (4.2.244)

(b - D3 <|(bo - 3)(n- M3 + |(bo - D (- (N — )3 (4.2.245)

Since N — 11 = — fOT 9,1 = fOT Q(é%)é% i, invoking the proof for (#.2.18)) and (3.4.4), we have

R T
IN —7i]s St / P. (4.2.246)
0
Therefore,

o o T
- (N = R)E + (o - D) - (N =D et P /0 P, (4.2.247)

o
Now, we can take time derivative d; in (@.2.236) to get the elliptic equation of d;(v - 1) on the

boundary, i.e.,

Aoy (v-i1) =9, (v-71) — kL (a,(\/gq) + oa,(\/gAE?; : r'%)) . (4.2.248)
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Then standard elliptic estimate gives
o T
10: (v - 1)|3 Se-1 Po + / P. (4.2.249)
0

This estimate implies the estimate for [,v>|3 by writing |9,v>|5 < |9, (v - n)|2 +10:(v- (N — n))|2.

Moreover, in light of the estimate for |v3|2, we have
T
0 -0)1°la = (o - 000° = PUbola) o™ S Po+ P [ P (4.2.250)
0

Similarly, by taking two time derivatives to (#2.236)), we can control |9 (v - 1%)|2 by the standard

elliptic estimate |92 (v - n)|2 Se—=1 Po + foT P, and this yields
T
1020312 <1 Po +7>[ P. (4.2.251)
0

In addition to this, |3? (bo - 9)1>|3 reduces to |3,v3|3, whose bound is given above. Also |3 (bo - 9)n*|?
reduces to |0?v3|3, which is just @:2.251).

Finally, |d3v3|? can be controlled with the help E®. We can make use of the k-weighted higher
order terms to directly control the time integrated terms on the boundary. Specifically, by writing

0303], < Po + [ [8%*v3]1, we have
2
T T
1030312 <Py + (/ |a;‘u3|1) < Po + T/ 10332, (4.2.252)
0 0

where T fOT |0fv312 < T fOT |04V I%ﬁ +T fOT |0%v - (N — 1%)|%. Here, the second term on the RHS is
<1 TC(e) fo 3%v]12 5 whereas the first term is <1 Tfo |0 - n|2 Therefore, by choosing T

sufficiently small, we have
N T
107017 Se-1 Po + C(e)E(T) +79/ P. (4.2.253)
0

Tangential estimate with four time derivatives We still need to control [|3%v|[3, |07 (bo - 9)nl|3

to finish the control of E. In fact, we only need to control [|3%v||2 since |37 (bo - 9)n||3 reduces to
[83v]|2. Now we compute the L2-estimate of d7v and 87 (bo - d)7. Invoking and integrating
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(bo - ) by parts, we get

1 (Ta 4. 12 |q4 2 r 4, a4 8"
3 |4 [t + foteo-omf avar == [ [ atast & au0)avar
o atJg 0o Jo

T o po T o pe
—/ / ¥ va A a;‘aMQdydr—/ / 9% vg [a;‘,A ]BMQdydt
0 2 0 2

o
I

T o o
:/ /A 9%9,,v40%q dy dr — / /841)0,A 84Qdet+/ / 84vaA 84Qdet+11
0 2

IB

T T o pet o o
=f / 3% (divev) 37 Q dydt+/ / [A ,a;‘] dpva 30 dydt +1p + 1.
0o Je A 0o Je

—— ——
=0 o
I

Here, I 1 and I 2 can be controlled by fOT ‘P. We analyze the boundary integral /p.

[ [t = [ [ Viet-hato
:a/OT[F\/E(a;‘ Bt JE8 T agh- B
_K/OT[F \/g(a‘t‘ n)84( (1—A)(v n)) = 1031 +IOB2-

Invoking the identity (3.1.9), we have

o l 4__ o

IB1 —0/ /[(8% n)84 fg *8 U9;0;1 - 1)
o l . —_—— —_ o
—o/ /[(av 1)0%( fg 28U kD100 7, 0k7 - 1)

=Ip11 + IB12.
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Since Ig1; = o fOT S @ty )( 8870;0;070 -11), we integrate 9; by parts,

T
o L - 2 ocoji A o 2
Is11 =—0/ /(3i3?v-n)(\/;g”8j3?v~n)
0 r
T T R T
SK—w/ ||\/E8?v||%5+/ PSSE(T)—i—/ P,
0 0 0

o
and /p1> can be treated in the same fashion.

Next we study Io B>. We have

o L T o — [e] T o — o o o

Ip2 =K/ /(8?v-ﬁ)A(3?v 1) +:<f /(8;‘v-ﬁ)A(v-a‘,‘ﬁ) = Iy + Ipaa,  (4.2.257)
0 r 0 r

o o —_
where /51 contributes to the positive energy term fOT |0#v -n|? after integrating d by parts and moving

the resulting term to the LHS. In addition, since 8;‘191' = Q(5rg;)§8?195 . 191'+ lower-order terms,
o L T —_ o —0 —, o o
fim - [ [ @tv-iyw- o@heart i)
o Jr
T T —0 —_ o
58/0 ||3?v||%.5+/0 [v]Z 0 Q17| L00)[0%37 0[5

T R s R T
Se-16E(T) + / |02 60 Q(|07]1,00)[0030|3 < e E(T) + / P. (4.2.258)
0 0
This concludes the proof of Proposition #.2.16]

4.2.7.2 Picard iteration

Now we prove that the sequence {(7(m), Vim). O m)) imen+ has a strongly convergent subsequence.
We define [ f]on) := fon+1) — fm) for any function f and then ([1]n), [V](m). [Qlom)) satisfies the

following system

At [nlm) = [Vlom) in 2,

[Vl = (o - D [Mlemy + Vi, [Qlow = —Viay,,_,, Qem  in L2,

div Kom [V]gn) = —div (K] n_1, Vm) in £2, (4.2.259)
[Q]em) = (1 = 2) ([ m) - Figm)) + him) onT

([7lmy- W] m))le=0 = (0. 0).
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where
hmy =K(1 = D) (Vm) - [l m—1))
= ii A 33 - — - 2 _ B
—° ( v g(’”)gzn)n(m)aai 0 M)A Gmy = g(m_l)an—l)H(m—l)aaiaj n(m—l)/\”‘(xm—n)

We also define the energy functional of ([#]n), [V](m), [Q]m)) to be

[E)m == [E]) + [E]0). (4.2.260)
where
£V 2 S k k > 3 3 2
Bl (T) i= [tlem .5 + D [ 0l 9 o - Dl |+ 133 himy: 8B - Dllem o
k=0 :

- K T _ 5 T T
[Eloy(T) = — /0 |a?[v](m>~n<m>\1dt+x( /0 103 [l I 5 + /0 ||a?(bo«a)[n1<m)||%.s)-

(4.2.261)
The div-curl estimates Fork =0,1,2
195 [l 1.5 -5 S35 [0 omy llo + N1div 3 [0]my 2.5 (4.2.262)
+ fleurl 0F [v]gmy ll2.5-k + 1007 [V]gmy * N |2k
195 (Bo - )My l13.5-k S5 Bo - D))y llo + I1div 95 (Bo - D) 7]y 2.5k (4.2.263)

+ [leurl 8% (bo - ) [N myll2.5-1 + 138 (bo - D)) my - N |2
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Again, each part in the div-curl estimates should follow in the same way as in Section{4.2.2.2|so we

omit the proof. Similarly, to control the interior terms in [E\ ] Ezm)) we follow Section to get
T 2 T 2
o [ 12lenlis + [ 1530 lilon )

T
SPo + &[Elm)(T) + P([E]m)(T), E(m),(m—l)(T))/O P([E]my,en—1) ), E@n),m—1)(t)) dt.
(4.2.264)

Elliptic estimates of pressure Similarly as in Section[4.2.2.1] one can derive the elliptic equation
verified by [Q] () and its time derivatives with Neumann boundary conditions. The only difference
is that we need to control the contribution of (V[X](m_l) O(m)) and its time derivatives, but this is

straightforward. For example, we need to control ||div Rom (V[A](mfl) O@m)) 1.5 in the estimate of

1O l1ss-
ldiv .., (Vigon, Qen)lls < PUR - 25, 1Qm 135, 1A 12.5).

and the boundary contribution

AN - V[&](m_l)Q(m)b < P(||[A](m—1)||2.5, 1O mll3.s, 1A ll2.5)-

Boundary estimates The boundary estimates also follow in the same way as Section[#.2.7.1| because
the energy is not required to be indepedent of x. We can derive an elliptic equation on I", analogous

with (4.2.236)

kK A([W]my * figmy) = k(0] gm) * AAmy) + Bimy — [Q)m)- (4.2.265)

Then using the boundary elliptic estimates, we get

[0y - figmy |3 Se=1 10l em)y = Ayt + [y |1 + 11Q)omy 1.5
. (4.2.266)
SPo + P(E(m),(m—l)(T))/ P([El(m).m-1) ), E(my.(m—1y (1)) dt.
0
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As for the magnetic field, we use the fact that (bg - 9) = bé 5,- on I to get

T
(Bo - ) [Mlom - Figmy = 0 + / (o - vl - igmy + (o - D[limy - Befi -
0

Similarly as in Section4.2.7.1] one can directly control the H3(I")-norm of the second term. Then
the first term can be controlled by using elliptic estimates in (bg - d)-differentiated elliptic equation

([@.2:263). We omit the detailed proof because there is no essential difference from the argument in

Section[d.2.711

T
(Bo-)lrkom - omls St [ PUEliny 0. Eom@) . (42.267)

Taking one time derivative, we can similarly control the boundary norm of 9;[v](,) and 9;(bg -

0) [l gn)- We skip the details.
19¢ (V] m) - Fimy» D2 (bo - N[l | (4.2.268)
o~ T . —~
Se—1Po + P(E(m),(mfl)(T))/O P([E]m),an—1)(1)s En),(m—1)(2)) dt.

For the H'(I")-norm of 82[v] () and 87 (bo - 3)[n](m)» One can use the k-weighted interior terms in

[E] g,z) and Sobolev trace lemma to get the control

108y 02 (b D1l | S |02 01my- B0 - Dl | 5
(4.2.269)
T ~
SPo+ \/; [VE8 Wlom- /K97 (bo - ) lmom) [ 121115 Se-05 Po + VT PAEG) (T)-

Finally, we need to control the difference between X - N and X - 7i(,,), which should be done in

the same way as (d.2.244)-(@.2.246)), so we do not repeat the calculations. For k = 0, 1, we have for

X = [v](m), (bo - ) [N m)

T
0K X3 — 0K (X - figm)) |3k S /(; P([E]m)» E(m),(m—1) (1)) dt. (4.2.270)
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Combining (#.2.266)-([@.2.270), we get the boundary estimates as

2
D
k=0

O ([0 (Bo - D) | 42271

T
Se—1Po + P(E(m),(m—l)(T))/O P([E]m),an—1)(1)s E(m),(m—1)(2)) dt.

Estimates of full time derivatives Now it remains to control the L2-norm of full time derivatives.
By replacing 9% in Section by 33, we can do analogous computation to control |93 [v]mllo
and |03 (bo - 0)[n](m)llo- The k-weighted boundary terms in [E ]82) are produced in the analogues of
(@.2.255). The only difference is that we should control the extra contribution (under time integral)
of V[A](m_l) O (m) in the interior and the o-coefficient part in the term /) on the boundary. These

quantities can all be directly controlled

193351, Qomllo < P( Jimry. Beh ity 20T 2

192 Q- 192 Oy 3 Qo Q<m)||2).

107~ my.olo S P (lafv(m),(m—l)lz’ |5’7(m),(m—1)»5v(m),(m—1)»53tv(m),(m—1)|L°°) :

Therefore, one can get

T
K ~ 2
18501 3+ 133 Bo - ke + 5 [ (3 hm -}
(4.2.272)

T
P+ [ PAELm ). Eonynp (o)
0
4.2.7.3 Well-posedness of the nonlinear approximate problem

We conclude this section with the following proposition.

Proposition 4.2.18. For each fixed « > 0, 37, > 0 such that the nonlinear x-problem (.2.2) has a
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unique strong solution (n(k), v(x), ¢ (k)) in [0, 7] that satisfies

sup E'(1) <C (4.2.273)

0<t<T{

where E'(1) = EW' (1) + E@ (1)

3
EO@) = s+ |

k=0

2
k.0 (o[, + 0.0 o - )]

T
E@(r) = f/
0

o

4 2? T 4. 12 r 4 2
ot ot [ 1ot + [ 1ot ol ).

Proof. Summarizing (#.2.262)-(@.2.264), @.2.271)-(#.2.272)), we get

[Elny(T) S¢'Po + e[ENT) + TP(E]ny(T))

T
4 P(E)omy(T). By ety (1)) /0 PUE)om.tmets (1) By ity (1))-

By Proposition , there exists some 7, > 0, such that V¢ € [0, T/], [E](m)(t) < %[E\](m_l)(t),
which implies [E](m) (t) < 47™Py. Let m — oo, we know the sequence {(1(m). V(m). O m))} must

strongly converge. The strong limit is denoted by (1(k), v(x), g(k)) which exactly solves (@.2.2). By

taking m — oo in the energy of linearized equation (@.2.178)), one can also get the energy estimates. [

4.2.8 Local well-posedness

4.2.8.1 Uniqueness and continuous dependence on initial data

Combining the conclusions of Proposition#.2.4]and Propostion #.2.18|and letting k — 0., we actually
prove that there exists some time 7’ > 0 (only depends on the initial data), such that the original

system (2.2.1) has solution (77, v, g) satisfying the energy estimates

sup E(t) <C,

0<t<T
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where C = C(||vol4.5. |boll4.5, |vols), and the energy functional E is defined to be

3 2
E@) = lnlis + Y |oFv. 0k o - 0|+ 90,0t o - 00n];

k=0

(4.2.274)

+ 23: ‘5 (na’;é*’w))i + ‘5(1753(190 : 8)n)(z :
k=0

It remains to prove the uniqueness. Let {(1(mn). Von). O (m)) tm=1,2 be two solutions of (2.2.1)

satisfying (4.2.274). Then we define
] == 1@y —n@). vl :=va) —ve), [Q]:= Qu) — Q). [A]l ;= Aq) — A).

Then ([n], [v], [Q]) satisfies the following system

de[n] = [v] in [0, T] x £2;
at[v] - (bO : 3)2[77] + VA(])[Q] = _V[A]Q(Z) in [0’ T] X Q;
div Ay [v] = —div [A]V(2) in [0, T] x £2;
divby =0 in [0, T] x £2;
(4.2.275)
w3 =03 =0 on Ip;
[Qli) = —ogy T35 — 0 JE e on T
bg =0 onl,
(In]. [v]) = (0, 0) on {t = 0}x£2.
Define
2 - k k 2 3 3 2
EN) = 0135 + Y |05 To). o bo - )0m| | _ + [9310). 03 bo - )0
k=0 ’
(4.2.276)

2
2 2
3 k2—k 3 )
+3 (a (M2kd [v]) ‘0 ¥ ‘a(n(l)a (bo a)n)(o .
k=0
Then we can mimic the proof in Section[#.2.1]to get the energy estimates of [E]

T
[ENT) S P([E](T),E(T))/O P([E](®), E(1)) dr,
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which together with Gronwall-type inequality yields
3T €[0,T'], [E](t) =0 VYt €[0,T]

which establishes the local well-posedness of 2.2.1)) in [0, T]. The continuous dependence on the

initial data also follows from an identical argument.

4.2.8.2 Regularity of initial data and free surface

Finally, we need to prove the norms of time derivatives can be controlled by ||vo|l4.5, ||bol|4.5 and |ve]s.

This part is exactly the same as in [S3] Section 7.1]. The conclusion is
lv(@®ls < P(E@) in[0.T].

This concludes the proof of Theorem[2.2.1]

4.3 The Zero Surface Tension Limit

In the proof of Theorem the energy estimate for E(t) in depends on 0~'. When the
surface tension is sufficiently small, the energy bound itself will go to infinity. Therefore, it is natural
to ask if one can establish uniform-in-o estimates such that the solutions to (2.2.1)) converges to the
solution to as 0 — 0. The answer is yes if the Rayleigh-Taylor sign condition is also satisfied

for the initial data.

The key point is that, in Section[4.2.2.3] the boundary normal traces of v and (bg - 3)7n (and their
time derivatives) are controlled by the comparison with Eulerian normal projections, whose o -weighted
energy is contributed by the surface tension in the estimates of one more time derivative. The reason
for that is the failure of 9*5-estimates which requires ||77||s or | /o 1|5 regularity. Even if one uses the

BMO-coefficient elliptic estimates posteriori, the energy still depends on o1,

We can use the Alinhac good unknowns to avoid the interior higher-order terms. As for the boundary
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terms, we can alternatively define the energy functional to be the form of E; + o E, where E| is the
H™ energy functional for the “o = 0 problem" (Z.1.1) and E5 is the H™ 195 energy functional for
[@21) (i.e., replace the H*--setting of E(t) by H™9-%). In the proof, we may use 4 = 95 x 91 to
find an anti-symmetric structure in order to cancel the highest order term. This is a 3D generalization
of the 2D analogous structure discovered by Gu-Lei [27]] in the study of elastodynamics with surface
tension. Below we start to prove Theorem [2.2.2] For technical simplicity, we assume the energy
functional E° to be the H®> + o H> setting, i.e., we assume the mean curvature of the free surface
is Lipschitz. The div-curl estimates, elliptic estimates and the tangential estimates containing time
derivatives are identical to Section[4.2.1] So we only present the proof of those different aspects. We

will drop the script o in the weight energy functional (2.2.5).

Remark 4.3.1 (Necessity of weight energy functional). In the tangential estimates, especially in the
boundary integrals, there are a lot of terms which have 5 derivatives weighted by the surface tension
coefficients. Therefore, it is reasonable to include the weighted H>=-energy o E>(t) to control these
boundary terms via the trace lemma. To control the weighted higher order energy o E»(¢), we again do
the div-curl decomposition, while the /o-weighted normal traces, i.e., the /o -weighted Lagrangian
normal projections, are no longer reduced by using Lemma|[3.2.3] Instead, we notice that the boundary
energies contributed by the surface tension in the non-weighted tangential estimates are exactly the
/o -weighted Eulerian normal projections with the same order as those /o -weighted normal traces.
Therefore, it remains to control the gap between the Eulerian normal 72 and the Lagrangian normal N,
which is expected to be small due to the short time and 7 = N att = 0. Hence, the energy estimates

for E°(t) = E1(t) + 0 E»(t) are closed.
4.3.1 Interior estimates for the full spatial derivatives: Alinhac good unknowns

The boundary normal traces |v3|4.5 and |(bg - 9)7°|4.5 are reduced to [|3° (v, (bo - 3)7)|lo. However,

we cannot directly commute 8 with the covariant derivative V4 because the commutator contains
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3°A = 9°9n x dn whose L2 norm cannot be controlled. The reason is that the essential highest
order term in 9° (V4 f), i.e., the standard derivatives of a covariant derivative, is actually the covariant
derivative of Alinhac good unknown f := 3% f — %7 - V4 f instead of the term produced by simply

commuting 9° with V. Specifically,
(V3 ) = V5@ f) + (A4, f +[0°, 4", 8, f]
= V5@ ) = 94" 0gn, AP)0,, [ + [9°, AP0, f]
= VY@ f) — APY350%n, ANV, f — (0%, AY AP*|905m,)0, f + (95, AR, f]

= Vj(ﬁSf —55nyA“V3uf)

=v4t

+ 070, Vi (Vi g) — (19, A*Y AP0, )0, f + [0°, A", 0, f1,
=:C(f)

We introduce the Alinhac good unknowns of v and ¢ with respect to 9° by
V:i=03v—0"n -Vav, Q:=3q—01n-Vaq. 4.3.1)

Then direct computation (e.g., see [30, Section 4.2.4]) shows that the good unknowns enjoy the

following properties

3 (Vq4-v) =V4-V4+C), 0°(Vaq) = V4Q + C(q) (4.3.2)
e

=0

and

ICCHIo < PSS Nls. (433)

Under this setting, we take 9° in the second equation of (2.1.1) and invoke (4.3.1) to get the
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evolution equation of the Alinhac good unknowns

9V = —V4Q + (bo - 9)(°(bo - 1) + 3,(3°n - Vav) — C(q) + [0°, (bo - )] ((ho - ). (4.3.4)

=fo

Taking L2(£2) inner product with V, we get

zd;/' Pdy = — fVAQ-de+/Q((bo-a)(55(b0-a)n))-de+/9f0-de, (4.3.5)

where the last term can be directly controlled
/gfo -Vdy < P(lnlls, [lvlls. [10:vlla. llglls. 1bolls. |(Bo - Dnlls) < P(E1(1)). (4.3.6)

Then we integrate (b - 9) by parts in the second integral of (4.3.5) to produce the tangential energy
of the magnetic field (bg - d)n. Note that by - N = 0 on 952 and div by = 0, no boundary term appears

in this step.
[ (Go-03@0-00) - Vay = [ @bo-0ym)- o0V ay
2 2

- /Q @ (b - D)) - (bo - ) (@0, dy + /g @ (bo - D)) - (bo - )@ n - Vav)dy

—_ li ‘35 (ho - 3)77)‘ 4.3.7)

4 /Q (3 (bo - ))([F. (bo - )]va + (bo - ) (31 - Vava)) dy

S__

25/ 3 (@bo - a)n)( + P(E1(1).

Next we analyze the first integral of (4.3.5). Integrate by parts, using Piola’s identity 9, A** = 0
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and invoking (4.3.2), we get

—/ V4Q-Vdy :/ Q(vA.V)dy—/ A3*QV, dS—/ A%*QV, dS
2 2 r o —™/m—

=:J

(4.3.8)
__ [9 Q Cw)dy + 7 < [QlolCwllo + J

< Pnlls: Iglls. [vlls) + 7.

where the boundary integral on Iy vanishes due to 7|, = Id and thus 43V, = 8°v3 = 0. Therefore,

it remains to analyze the boundary integral J.

4.3.2 Boundary estimates and cancellation structure

The boundary integral now reads

J =—/ A3*QV, dS
r

= /F A3¥°gV, dS + /F A3 (@°n - V4q)Vy dS

=:RT

=— / 9°(A%%q)Vy dS + / q(3° A3V, dS (4.3.9)
r r

=:ST

4
5\— _
+/ > (k)as k432 5% 4V, dS + RT

=

=:ST+ J; + J» + RT.
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4.3.2.1 Non-weighted boundary energy: Rayleigh-Taylor sign condition

The term RT together with the Rayleigh-Taylor sign condition yields the non-weighted boundary energy.

Recall that V = 9°v — 9° n - V4v, then we have
RT = / A3“55n5 AP 9349°v, dS
r

- / A3 G50 438 330, AMY 3,04 S
r
(4.3.10)

2
+ Z/ A3"‘55nﬁAiﬂ5iq(55va —3°n-V4ve)dS
r
i=1

=: RT] + RT2 + RT3
The term RT; gives the boundary energy term by writting vy = 0;74.

RT; = / A3 A3 338,97 14 dS
r

1d 3a95 2
= —EE/F(—%CI)‘A 9 7705‘ ds

43.11)
_ _ 1 .2
+/ (8,A3°‘)A3ﬂ85n583q85nadS+5[ 8t33q‘A3°‘85na‘ ds
r r

1d =
=55 [0 [T,

2
dS + RT RT;».
2 dr + 11+ 12

The term RT;; can be directly controlled by

— 2
RT1> S [dsqlee [ 4280 S P(E1(0)). (43.12)

The term RTy; is exactly canlled by RT, after plugging 9, 43* = —A379,, v, A**

RT;; = —[ A3 9,0, AR AR5 03¢° 114 AS = — RT,. (4.3.13)
r

Finally, invoking ¢ = —0/gAgn -1 = o Q(dn)9%n - A, we can control RT3 by the weighted
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energy and trace lemma

RT; = 0/ A3“§5nﬁAiﬂ5i(Q(5n)§2n 1) (0°vg — 071 - V4vy) dS
r

S P(191]220)[8° 0l oo | V58 110 (V0 v]o + |08 lo| Vav]Lec)

(4.3.14)

< PUmlIalinls IVonlss(IVovlss + [Vonlsslvls)

<VOE2(VoEx2+EVoE?)

S P(E1())(0Ex(1)).

Summarizing @.3.10)-(@3:14), we conclude the estimate of RT by
T co o T
/ RTdr < " ‘A3“35na‘0 + / P(E|(t))(0E (1)) dt. (4.3.15)
0 0

4.3.2.2 Control of the weighted boundary energy: surface tension

Now we analyze the term ST, where the surface tension gives the +/o-weighted top order boundary

energy. Invoking A3%g = —o ﬁgijﬁ“ﬁﬂgiai n8, we get

ST = 0/ ﬁgijﬁ“ﬁﬂ555i5jn3 (0°vy — 8°1 - Vqvg) dS

r

+ 50 / (g A%A8)549,3; 15 (F5va — 3°7 - Vava) dS
r
+a/ 3°(/gg" 1®iP)3;3;1(0°vg — 3°1 - Vavg) dS (4.3.16)
r

4 5\_ N e - _
+ ZG/F <k>ak(\/gg"’ﬁ“ﬁﬁ)as_kaiajnﬁ(sta —9°n-Vyve)dS

k=2

=:ST; + ST, + ST3 + ST4.

The term ST, can be directly controlled with the help of /o -weighted energy

ST4 < P(E1(1))(0Ex(1)). (4.3.17)
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In STy, we first integrate i by parts.

ST, & —0/ \/Egijﬁ“ﬁﬂ555jnﬁ5i(55va — 3% - Vv)dS
r

—o/ 5i(\/§gijﬁ“ﬁﬂ)55§jnﬂ(55va —9°n- Vyve)dS
r

=: ST11 + ST12.

In STy, we write v, = 9,74 to produce the energy term

STy = — o/ \/Egijﬁaﬁﬂgsgjnﬁgi(gsama —0°n- Vave)dS
r

od —e
—_ = ®an-h
2dt/p‘ e

o e mem e
—E/Fﬁatg’/(asain-n)(asajn-n)dS

+o / g7 3,(/g7*)3° 316 (3°3,; 7 - A1) dS
r SN——

=A3x
+ a/ @gijﬂ“ﬁﬂgsgj nﬁgigsnyAWE)Mva ds
r

+o / B AT T mp) (350 - T (Vava))
r

. od 6. A
_'_2dt/p‘an "

Invoking (@.2:19), the term ST;;; can be absorbed by the weighted energy term

— 2
STi11 < S‘\/Eaéﬂ'ﬁ‘o.

The terms ST, and ST;15 can be directly controlled

.. — 2
STirz S V08" |uoe [VoOn i S PEAO)@E ).

STits < V28" 8(Vav)lios [Vo0°n | Vanlss S P(EV()(@E ).
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?ds - %/F(@gif —§i) (55% : ﬁ) (555,~n-ﬁ) ds

2
dS 4+ STi11 + STi12 + STy13 + STi14 + STiss.

(4.3.18)

(4.3.19)

(4.3.20)

4.3.21)

(4.3.22)



In STy13, we use (3.T.4)-(3-13), i.e., \/gh* = A3 and 9,A4%* = —A39,v, A** to produce

cancellation with ST 14

STi13 = —0/ gijA3y8Mv},A’ua5555na(55§jn . ﬁ) dS = — STi14.
r

(4.3.23)

Summarizing @.3.19)-@3:23), we conclude the estimate of STy, by choosing & > 0 sufficiently

small
21T

T o e T
/ STy, dt 5——)85877-;% +/ P(E1(t))(cE,(2)) dt.
0 2 0

0o

Next we control ST;,. First we have

STz = —0/ 0; (/28" 1*)(3°3;1 - 71)(3°vy — 0°1 - Vavg) dS
r

—o/ ﬁgijﬁ“(giﬁﬂ)gsgjnﬂ(ﬁsva—5577-VAU“) ds
r

= ST121 + ST122.

The term ST5; can be directly controlled

STi21 S P(E1(1))(0E2(1)).

To control ST52, we first integrate §j by parts.

STy = — O/F @gijﬁa(giﬁﬁ)gsnggjgsva ds
+o /F V2 7% (3;7%)5°150;97 0, (A" 3 ,,04) dS
+ O‘/F @gijﬁ“(giﬁﬂ)gsnﬂgsnygj(A‘”’auva) ds
+o /F 5j(¢§gijﬂ“§iﬁﬁ)55ng(55va —9°n- Vyve)dS

=:ST1221 + STi1222 + STi223 + STi224.
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The term ST,53 can be directly controlled by the weighted energy

STi223 + STi224 S P(E1(2))(0E2(2)). (4.3.28)

To control ST1221, We write v, = 0,7 and then integrate d; by parts. When 9, falls on ,/gn* =

A3*, the structure analogous to (#.3.23) is again produced.

T T
/ STy df azfa/ / 3: (g7 3:;7P3°n)(9;0°nui®) dS
0 0 Ir

T
+o/0 A(—A3V8Mv},AW)g”a,-ﬁ’sasn,gajfisnadS (4.3.29)
0 (/8n%)

T
< /0 P(E10)(1V/5lls.s + IVonls.5)WGT0 - filo dr + (= STi225).

Therefore, STy, is controlled by

T T
/ STy dt < / P(EL(t))(0Ex (1)) dt, (4.3.30)
0 0

which together with (4.3.24)) and (4.3.26)) gives the control of ST,

T _ 2
/ ST, dr < —5/ ‘aﬁn-ﬁ) s
0 2Jr

It remains to control ST, and ST3 in @.3.16). From {@.3.18)), we find that ST, has the same form

T T
+ / P(E;(t))(0E2(t)) dt. 4.3.31)
0

0

as STj2, so we omit the analysis of ST, and only list the result

T T
/ ST dr < / P(E (t))(0E,(2)) dt. (4.3.32)
0 0
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As for ST3, we have

ST; = O'/ ﬁgijﬁ“(gsﬁﬂ)gigj ng(8°vg — > - Vave)dS
r
+ 0/ @g’j (55ﬁa)ﬁﬂ§i5j ng (0°vg — 0°n - V4vy) dS
r
+ a/ 3°(gg" )P 3;3;1p(vg — 3°1 - Vavg) dS (4.3.33)
r
4 —_— o — —_—— —_— —
+ Y0 [ BT @88 15 v ~ B0 Vava) dS
k=1 T

=:ST31 + STizz + ST33 + STay,

where ST34 can be directly controlled
STa < P(Inlwaco)|vonls(v/0°v]o + [V nlo|VavlLe) S P(E1(0))(0E2(1).  (4.3.34)
To control ST3; and ST3;, we need to invoke (3.1.11)) to get
P = =5* (¢4 @akn - ™) =~ @k - )orn® - [8*, g9 ) @0 - ),

and thus plug it into ST3; and ST3;:

STay =0 fr S S @50n - 1)InP 30 mpha (3 ve — 31 - Vave) dS
—o [ vEe (3@ ) 5 npia @ va - ave) S
< P(E1(0))|V/00%0 - ilo(|V/50%v]o + [V/50 1]0| Vav|Loo) (4.3.35)
+ P(E1(1))|vo9n]o(|v/Tv]o + [0 nlo|Vav|Lo0)

S P(E1(1))(0E2(1)).
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and similarly

STs2 S P(E1(0))|Vadn-iilo(1v/09v]o + [v/087nlo| Vavlree)
+ P(EL(0))|Vo 9 nlo(|V/a8v]o + [V/58°nlo|Vav|Lee) (4.3.36)

S P(E1(1)(0E2 (1)),

For ST33, we use the identity (3.1.12)) to get

_ N 1 R L
P (e = VB (5678~ g ) @B T + B Phin,)

_ 1 .. . . — _ 1 .. . . —
+ [8“, i (Eg”g"’ - g”‘g”)} e + [8“, e (Eg”g"’ —~ g”‘g”)} FEIT

RY;
and thus

1 .. . . — _ _ L
ST33 = 0/ N3 (Eg”g“ — g”‘g”) (9™ dmu + 0™ 9°9ym,0)
r

ﬁ“ﬁﬂgﬁj np(0°vy — 0°n - Vavy)dS

(4.3.37)
+o A RYi%i%8,8,15(@% v — 977 - Vavy) dS
=:ST331 + STz32.
The term ST33, can be directly controlled
STa32 S P(E1(1)|Vonls(IVad v]o + [v/08nlo| Vavlree). (43.38)
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In ST331, we integrate the derivative 9 in 070 n* (resp. 9; in 859, nu) by parts
1 .. R —— —
ST331 = — U/ Vg (Egugkl — glkgjl) 3577“31%1%“}%’381-8]- ngdk Ve dS
r

1 .. . . _ _ _ _
—Ofp J?(Eg”gk’ —g"‘g”) "9, %P 8;3np0; Vo dS

_ 1. N __ _

—0 /F O («/E (Eg”g“ - g”‘g”) 01 A*ii?3;3; riﬁ) Pn'Veds  (4339)
_ 1 .. N __ _

—0 /F 0 (JE (Eg”gk’ N g"‘g”) Oy i®i?9;9; 77/3) 00V dS

=:ST3311 + ST3312 + ST3313 + ST3314,

where ST3313 and ST3314 can be directly controlled

ST3313 + ST3314 S P(E1(2))(0E2(2)). (4.3.40)

For ST3311 and ST3312, we need to write v, = 09,7 and then integrate d; by parts. For simplicity
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we only show the control of ST3317.

T
/ ST3311 df
0

T L N o
= —0/0 L@(Egzjgkl _gzkg,/l) 8577M8177/Lﬁaﬁﬂaiajnﬂakasatﬁa ds (43.41)
T
| o = = L
+U[) /I:\/E(Egl]gkl _gzkgjl) 357}”31Uuﬁ“ﬁﬂ3i3j77ﬁ3k35nyA“1’8Mva ds (4.3.42)
T 1 N
‘|‘O/(; Lﬁ(igljgkl _gzkg_ll) 85nﬂalnunanﬁ3iajnﬂ35n 0k (V4ve)dS (4.3.43)
T
. o =2 — _ o
% 0/0 /F \/E(Egugkl _gzkgjl) 85vuamuﬁﬂai3jnﬁ(ak85naﬁa) ds (4.3.44)
T A o
+0/ / (Egugkl_gzkgjl) 8577Mal77uat(\/é_’ﬁa)flﬂaiajﬁﬂak({isnadS (4.3.45)
0 r
T
. o o\ = a—— _ o
+0[ L@at ((Egljgkl _gzkg]l) alnunﬂaiajnﬁ) 35nu(na8k85na) ds (4.3.46)
0
+ @342) + @343).

Note that 9, A(,/gh%) = 9,4 = —A39,v, A", we know @343) + @342) = 0. The

remaining quantities (#.3.43), #.3.44) and (#.3.46) are all directly controlled

T T

@333 < /0 IVan2P(E\(1) < /0 P(EL(0))(0E>(1)) dt. 4.3.47)
T T

@349 < /0 |/ - filo|v/ov|s P(E1(t)) < /0 P(E1(1))(0E (1)) dt, (4.3.48)
T T

@346) < /0 V5 - Alo| Vanls P(E1(1)) < /0 P(E1 (1) (0 (1)) dr. (4.3.49)

Combining (#.3.37)-@.3.49), we get the control of ST33

T T
/ STs3dt < / P(E1(t))(0E2(t)) dt, (4.3.50)
0 0
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whic together with (4.3.34)), (#.3:33)) and (#.3.36)) gives the control of ST

T T
/ STsdt < / P(E1(1))(0Ex (1)) dt. 4.3.51)
0 0

Finally, @3.16), @3.17), (#3.31), @.3:32)) and @.3.51) yields the /o-weighted boundary energy

T _ 2
/ Sszg—E/ ‘a%-;&‘ ds
0 2 Jr

4.3.2.3 Control of the error terms

T T
+ / P(E1(t))(cEx(1)) dt. (4.3.52)
0

0

It remains to control J; and J, in @#@39). Note that ¢ = —0,/gAgn /i = aQ(0n)d*n - A on the

boundary and 43% = ER n X 5217. The term J, can be directly controlled
Jr = 50/ 3*A349(0(01)0% ) (3°vy — 31 - V4vy) dS
r

+ 100/ 33 A3%92(Q (37)0%1)(0° vy — 3°7 - Vave) dS

r
+ 100/ 2 A3%93(Q (97)0°1)(0° vy — 3°7 - Vave) dS

r

(4.3.53)
+ 50/ A3 (Q(0n)(3%n - 1)) (3 vy — 071 - V4ve) dS
r

< P(nlze) [ nlzes (IVanls + Vo0 - nlo) (1858 vlo + Vo0 ol Vavlee)

< P([Fn|z00) 320|100 00|00 (\/E_1+ ,/aEz) JoE> < P(E1(1))(0Ea(1)).
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J1 needs more decliate computation. Recall that 43¢ = (51 n X 9, n)%, we have that

Ji :/ oH(D°317n x d2n) - 879, ndS + / oH(1n x 8°92n) - 9°9,ndS
r r
— / oH(3°91n x d2n) - (3%, AV ,v) dS
r
— / oH(911 x 8°d2n) - (070, A*d,v) dS
r
4 — — -_— -_— -— f—
+ Z/ oH (0% x 3**0,) - (°v — 3 - V4v)dS
k=1’T

=:Juu+ Jiz + Jiz + Jia + Jis.

Again, the term Jj5 is directly controlled by the weighted energy

Jis < P(E1(1))(0Ex(1)).

(4.3.54)

(4.3.55)

Below we only show the control of Jy; and Jy3, and the control of Jy, and Jy4 follows in the same

way. For Jq1, we integrate d; by parts to get

T T T
f Jipde = —/ / oH(9°01v x d,77) - °ndS —/ / oH(8°01n x 0,v) - 3°ndS
0 o Jr o Jr

T
—/ /08,H(8581nx82n)-85nd5+f oH(3%01n x d2n) - 3°ndS
o Jr r

=:Ji1 + Jiz2 + Jiz + Ji1a.
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Next we integrate d; by parts in J11; and use the vector identity (u X v) - w = —(u X w) - v to get

= T
Ji11 321/ / oH(D v x 97) - 910°ndS dr
o Jr

T T _ L
+ / / 001 H(3°v X dp1) - °ndS dr + / / oH (v x 0,0,7) - 3°ndS dt
o Jr o Jr

T
:_/ / o H@ 10 x Fan) - v dS dr
0 I

(4.3.57)
=—fOT J]]dt
T L _ _ T _ o _
+ / / 001 H(3°v x d,1) - °ndS dr + / / oH(0v x 31027) - 0°ndS dr
o Jr o Jr
T T
s— [ mars [ PE@EEW).
0 0
Therefore, we have
T 1 T
/ Jipdt $ 5(1112+J113+Ju4)+/ P(E((t))(0Ex(1))dr. (4.3.58)
0 0

Next we need to control Jy14 by Py + P(E1(T))(0E2(T)) fOT P(E1(t))(0E>(t)) dt. For that we

need the following identity §°¢ = A%A# + g19;7%9;n® which yields
Ji1a = / 07—[(555117 X gzﬂ)aﬁaﬁﬁgsnﬂ ds
r
+ / oH(9°9, n x 52n)agij5,- n“_j nﬂ55nﬁ ds (4.3.59)
r

=:J1141 + J1142.
In Jy14; we integrate 51 by parts
Ji141 i} —/ oH(°n ngn)aﬁ“ﬁﬁglgsnﬂ ds —/ 001 (HA%AP9,m)8°nd°ndsS
r r
< P(nlyaco) (1VFnlolv/G8% 0 - Alo + Vo003

(4.3.60)

T
<P(E(T)(0EA(T)) /0 W OIS
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where we used §5n|,:0 = 0. In Jy142, we notice that the integral vanishes if i = 2 due to (5551 n X

321) - 921 = 0. If i = 1, then

J1142 =/ 07'1(55517”(5277)'5177 gljgjﬂﬂgsﬂﬂ ds
r

= —/ oH (311 % 321)-0°011 gV 9;1P 9 ng dS
I N ——
:ﬁﬁ

4.3.61)

T
S W% 91n - iilo| /a8 o P(|9n|Lo0)|9*n|Loc dS S P(El)(UEz)/ P(Ey)dt
0

The term J113 can be controlled in the same way as J;14 so we omit the proof. Thus we already
get

T
s + J11s < P(E(TY) / PE()) dr. 4.3.62)
0

1
It remains to analyze EJ 112 which should be controlled together with J13. Again we have
s =2 [ [ 0@ x Bav)ei®if 5
§J112 =3, FUH( 11 X 020)qn1“1" 9°ng dS
LT 255 T G a3 3 4.3.63
+§/ /FUH(aSamxazv)aglfam“amﬂa%ﬁ ds (4.3.63)
0

=:Ji121 + J1122,

and the control of Jy1,; follows in the same way as by integrating d; by parts

T
Jiiat < [0 P(EL (1) (0 Ex(1)) dr, (4.3.64)
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For J1122 we need to do further decomposition

1 7T _ _ e A
J1122 =—§/ [ OH(B,-nx82v)ag”858117°‘8j17ﬁ85nﬂ ds dr
o Jr

1 7T _ _ o U
=-3 [ / oH ((81-77 X 32v)yﬁyﬁ°‘8581na) g’ ajnﬂasn,g ds dt
o r (4.3.65)

1 (7 - = S = =
- 5/ / oM ((a,-n x azv)ygk’aknyam“asama) g0 nP5°ng dS di
0 r

=: Ji1221 + J11222,

where J1122; is directly controlled by
T - _ T
I £ [ PEOWNGTTn-ilValilod < [ PEW) + 0B @366
0 0

In J11222, the integral vanishes if i = k, so we only need to investigate the cases (i, k) = (1,2)

and (i, k) = (2, 1), which contribute to
1 T _ _ 1= = gss o
Ji12020 = — 5/0 /FUH ((31'7 x 02v)y g2 azflyalﬂaasalﬂa) g9 nP8%np dS dt

1 rT _ _ o o
—5 / / oH ((8277 X 82v)yg”81r]y8177“8581na> g% 81-77’385773 ds dr
o Jr
(4.3.67)

=— % /(;T ./r oH ((5177 ) -5217> (gzlgm -55510) (gljgjn -5517> dsS dr
+3 o (@nx B -Ban) (&5n- Fn) (2 70) as

Next we analyze Jy3. First we do the following decomposition

1, A" 9,0y = gsnﬁﬁﬁﬁyA“yE)Mva + gsnﬁgijgm’g 91, AMY 9,04
——

_ou
8

= 55nﬂﬁﬁﬁyAMy8MUa + gsnﬂgugl nﬂg} Ve,
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and thus
Jiz = / oH (910 x 32n) - (@ ngiaPh, A" d,v) dS
r

+ [ aH @ x B @upg B iv) as (4.3.68)
r

=:Ji31 + Ji32.

The term J;3; can be controlled similarly as Jy14; in (4.3.60)

Ji31 S P(E1(1))(0E2(1)). (4.3.69)

In J132, we need do further decomposition

J132 :/ oH (337 x 5277)1/’3)”%0‘(5577/3gij5i77’85]'005) ds
r
4 [ aH@ D x Doy B B @ i3y as @:3.10)
r

=: J1321 + J1322-
The integral in J;355 vanishes if k = 2. When k = 1, we again use the vector identity (u X v)-w =

—(u x w) - v and invoke (3,7 x 3%n) = /& to get

S22 = / oH (@1 x dan)y g 810" i (@ npg” 9P 3;va) dS
r
= — / oH ((517] X 5277) 555171) gllglna(55nﬂgij5inﬂ5jva) s 43.71)
r

S IVo 801 - iilo| Vo8 nlolH %81 9 Jv|ree S P(E1(1))(0E(1))

We recall i1, = \/§_1(5117 X 02 1), and use the vector identities (u x v) - w = —(u x w) - v and
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ux (vxw)=(u-w)v— (u-v)wto get
(555177 X 52’7) : (5177 X 52’7) = —(555177 X (51?7 X 5277)) ‘52’7
=—(°019-92n) (d1n-02m) +(@°91n-01n) (92n- 02m)
—— S——

=g12=—(detg)g 2 =g22=(detg)g!!

Plugging this into Jy35; yields

J1321 :/Fg’}-[(555117 X 021) - (5177‘gzn)ﬁ_lﬁa(gsnﬂg”giUﬂgjva) s
=/FJH(g”gm-ﬁsgm)(gijgm'5577)(5jvaﬁa«/§)d5
N /r oH(g"n - 0°01m)(g"in - °n)(Brv - (917 x Dam)) dS
+ /F("H(g”% +0%91m) (g 0in - 9°n)(02v - (17 x D21)) dS

=: Jiz211 + J13212.

(4.3.72)

Integraing 51 by parts in J13211, the highest order term is exactly the same as Jy3»11 itself but with

a minus sign. Therefore,
1 _ . — _ _ _
S == 3 [ o BT B P0di (410 @iy x T ds
r

S Vo g P(13n]2e0) (1920 vLee) S P(E1 (1)) (0E2(1)).

Now J13212 reads
Jiz212 = —/ oH(g" 0 - 9°01n)(g* 0in - 9°n)((91n x 02v) - D2n) dS,
r
which together with (4.3.67) yields that

1 o o _ _
R / oH(g B 30 (g% 8- 3 )(@1n x D) - Do) dS
r

1 - o
=3 || o T F e BTy i x Bav) - B .
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and thus integrating ; by parts in the first integral yields the cancellation with the second integral due

to the symmetry

1 _ _ o _ _
D / oH@1 (") - 3 (g2 i - 350) (B x Dav) - ) dS
I

1 .
+ 5'/;¢7?i(g"81n-35n)(81(g2’8in)~35n)((81n X 320) - 327) dS
(4.3.76)

1 _ o
45 [ oM B Ty B F i (@n x B - Do s
r

SIVEPnlgP(EL(1) < P(EL(1))(0E(D)).
Summarizing (#.3.54)-(@.3.36)), (@.3.62)-({@.3.66), (@.3.68)-({@.3.76), we conclude the estimate of

J1 by

T T T
/0 Jide S P(El(T))((sz(T))/0 P(E (1)) dt —i—/o P(E1(t))(cEx(t))dt. (4.3.77)

Finally, combining #3.9), @3.13), @#3.52), @#3.53) and ([@.3.77), we conclude the 3°-boundary

estimate by

2

T 2
Co |5 ~ 0 |5, ~
J&<—-P5- ——W-
A ST | 5|0

0

(4.3.78)
T

T
+ PEMEED) [ PEO)@+ [ PEO)GEO).
0 0
4.3.2.4 Finalizing the tangential estimate of spatial derivatives

Summarizing (#.3.3)-(#3-8)) and @3.78)), we conclude the estimate of the Alinhac good unknowns by

A

co |= A2 O |—
||V||%+Z‘85n-n0+5‘3677-n

0

t=T
(4.3.79)
T

T
< P(llvolls) + P(El(T))(OEz(T))/O P(Ey (1)) dr +/0 P(E\(1))(0Ex (1)) dr.
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Finally, from the definition of the good unknowns (4.3.1)) and 55n|,:0 = 0, we know
f— -_— T f—
18°v(DII5 S VDG + 1 n(DIGIVav(T) 7o S VTG + P(Es (T))/O 18°v ()15 de,

and thus

A

2 o |—
b PLIN
0+2‘r]n

_ ~ o
135012 + 8% (bo - B)n]12 + f (asn A

0

t=T
(4.3.80)

T
< P(llvolls) + P(E1(T))(0Ez(T))/0 P(E1(1))(0E (1)) dr.
4.3.3 Tangential estimates of time derivatives

Following the same method as in Chapter[4.2.3] we may derive the following tangential estimates of
time derivatives. For the details one can refer to [29, Section 6].

5
— — O |=¢_ _ A2
D193 Faolg + 119° "a’;(bo-a)n||5+5)a6 “of v A

0
k=1
(4.3.81)

T
< (0 E(T)) + Po + P(E\(T))(0Es(T)) [0 P(E1(0)(0E (1)) dr.

4.3.4 Control of weighted Sobolev norms

4.3.4.1 Weighted div-curl estimates

The estimate for || /ov||Z 5 and ||\/a (bo - d)n]|Z 5 is done similarly as before so we again omit the

details. For the divergence, we directly get
olldiv v|} 5 + olldiv (bo - )il 5 < €0 (10125 + ll(bo - D7l2s) - (43.82)

and similarly

4
> olldiv 3 vlF s + olldiv 35 (bo - Dl 5
k=0
(4.3.83)
T
S 3 e (1015 i+ 1ol s i) + PEO) + [ PEO)ar
k=0
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For the curl we have

T
IVocurl v][3 5 + [|vVocurl (bo - Dnl3.s S eo (Ivl55 + [1(bo - Hnll55) + / P(E(1)), (43.84)
0

and similarly

4
> olleurl 3 vlF s + olleurl 3 (bo - )1lF 5
k=0
(4.3.85)
T

4
3o (1015 i+ 1ol ) + PEO) + [ PE@)a
k=0

4.3.4.2 Control of the weighted boundary norms

We still need to control v/&|0°*3%v - Ny and /5|0 *9%(by - d)n - N|o for 0 < k < 4. For the
boundary estimates of v, one can directly compare them with the energy terms contributed by surface

tension. (cf. (4.3.80)- (4.3.81))

T
Vo [ Fky . Ny =35 F oKy - k/ 19 (A — N) |2 oo dt (4.3.86)
0

o5 Voot

5.5—

As for (bg - )1, when k > 1, we can directly control them by the norms of v

Vo359 (b - ) - No = /a]d* %95 (b - 9)v - N1
(4.3.87)

<lbollze=|l ﬁaf—lav||5,5_k + lower order terms.

When k = 0, again we need to compare it with the Eulerian normal projections

T
Vo | ((bo - 0)n) - N) = 3 (bo - 01| < Hﬁ(bo-a)nns,sfo 10: (i = N)|7oo dr,  (4.3.88)

and thus it remains to control /& |3°(bg - 3)7 - /i|o. In fact, this term naturally appears as a boundary
energy term contributed by the surface tension in the 9 (bo - 0) tangential estimate, which can be
proceeded in the same way as 9*9;-estimate by just replacing d; by (bg - 9). The reason for that is

(bo - 9)n and n have the same spatial regularity, which is similar with the fact that d,n7 = v has the
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same spatial regularity as 7. In other words, the tangential derivative (bg - d) (note that by - N = 0 on
d82") plays the same role as a time derivative if it falls on the flow map 1. We just list the result of

3*(bg - 9)-estimate

— — o |— |2
3% (bo - 3)0I3 + 13* (bo - 02013 + 2 [#°(bo - o) -]

t=T
(4.3.89)

T
SPo + P(El(T))(UEz(T))/O P(E1(1))(0E2 (1)) dt.
4.3.5 The zero surface tension limit

Now we conclude the energy estimates. First, straightforward computation gives the div-curl control of
the non-weighted Sobolev norms. Then the boundary normal traces are reduced to the interior tangential
estimates which are established in (#.3.80) for spatial derivatives and (@.3.8T) for time derivatives. In
the control of the non-weighted Sobolev norms, the weighted energy o E5(¢) is needed to close the

energy estimates. The /o-weighted div-curl estimates are established in (#.3.83) and (4.3.33), while

the boundary normal traces are no longer reduced to the interior tangential estimates via Lemma[3.2.3]
Instead, we notice that, in the non-weighted tangential estimates, the surface tension contributes to
/o -weighted boundary energies which are exactly the Eulerian normal traces of the weighted variables.
Therefore, it suffices to estimate the difference between the /o-weighted Lagrangian normal traces

and the /o -weighted Eulerian normal traces, which is established in (#.3:86)-(@.3.88). Finally we get
T
E(T) = E\(T) + 0E»(T) < ¢E(t) + P(E(0)) + P(E(T))/ P(E(t))dt, (4.3.90)
0

which together with Gronwall inequality implies that there exists some 7’ > 0, independent of o, such
that

sup E(t) < P(E(0)) <C. 4.3.91)

0<t<T’

Finally, we recover the higher boundary regularity. This is done by the elliptic estimate in [21].
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Taking d; in the surface tension equation and letting & = 3 yields

0/g8" (04v® — Ikorv®) = 00,(y2g)aZn® — 00,:(Vgg" I})okn® — 8:(4 Q). onT.
(4.3.92)

‘We then have

T
lov*(T)ls.s < IRHS of @392)|35 S P(E((T)) + P(E((T)) /0 lo0%v(t)|35dt,  (4.3.93)

where we use 3%7|,=¢ = 0 and 31°|,=¢ = 0. Note that, when estimating |RHS of #3.92)|3 5, the

top order term | Q|35 < ||Q¢ll4 is controlled by considering the Neumann boundary condition of

~

Q¢, which then avoids circular arguments. Therefore, the standard Gronwall-type argument gives the
3 . . . .
control of |ov3|55. As for |02v3|6, one can multiply /o in (#3.92) and again invoke the elliptic

estimate to get
T
0203 (T)|s S P(EV(T)(0E(T)) + P(E\(T)(0E(T)) /0 0303 (0)ade (4394

which yields |0% v3(T)|¢ < P(E(T)). The bounds for b = (bg - )1 follow in the same way but just

differentiating (b - d) instead of 9, in the surface tension equation.

Now we prove the zero surface tension limit. Assume (w, (bo - 9)¢, r) to be the solution to Z.1.1)

and (v7, (bo - 9)n?, q7) to be the solution to (2.2.1) with ¢ > 0. Then Sobolev embedding implies

2 2 2
”vgllcl([o’T]X‘Q) + ”(bO : 8)770”6'1([0’7"])(9) + ||610||c1([0,T]X9) 5 C.

1
By Morrey’s embedding, we can prove v°, (by-9)n°, ¢° € C} H)‘,‘([O, TIxR) — C} Cyz’ 2([0, T1x £2),
which implies the equi-continuity of (v, (b - 9)n°,¢°) in C1([0, T] x §2). By Arzela-Ascoli lemma,
we prove the uniform convergence (up to subsequence) of (v, (bg - 9)n°,¢°) as 0 — 04, and the

limit is the solution (w, (bo - 9)¢, r) to @:1.1). Theorem is proven.
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4.4 Low-Regularity Estimates of Incompressible MHD with Sur-
face Tension

For the low-regularity solution, we can lower down the regularity to H 3> with the help of refined
Kato-Ponce inequalities (cf. Lemma[3.2.T)) applied to div-curl analysis and the BMO-coefficient elliptic

estimates applied to the boundary normal traces.

4.4.1 Div-Curl estimates for time derivatives via refined Kato-Ponce inequalities

Due to the low-regularity issue, the div-curl analysis requires the refined Kato-Ponce inequalities
recorded in Lemma [3.2.1] (3). First one gets

ldiv vell1.5 = [|divy, av]l1.5 + [[(divi—a)ve]l1s

, “4.4.1)
S Pvols) + [ Poellas)ds + elvrlas.
0
and similarly,
t
[div bell1.s < P(llboll2.5) +/ P(||be(s)l2.5)ds + el|be]|2.5- (4.4.2)
0
Now we start to control curl v, and curl b,. First, we have
lcurl ve 1.5 < [lcurlgve]l1s + [[(curl;—a)vell1s S llcurlgve]lis + ellvellzs
4.4.3)

llcurl by |15 < ||curlabs|l1.s + [|(curl;— )bt |15 S |lcurlabs|l1.5 + €llbs]l2.5-
The control of curl4v, and curlyb; is slightly different from that of curl4v and curlyb. We start with
the first equation of (2.2.1)). Taking the time derivative at first, and then apply curly on both sides, we
get

d: (curlqvy), — (curly(bo - 3)*v), = (curly, 4v)5 — €2za A*7 9, (A}, 0) .

G*

Commuting (bg - d) with curlg on LHS, we have

¢ (curlgv,)y — (bo - 9)(curly (bo - )v)y = G* + [curly, by - 3]b;.
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Taking 9! on both sides and commuting by - d with curly, we get the evolution equation of curl v;:

;0% (curlqv,)—(bo-0)0' > (curlyb;) = 015 (G* + [curly, by - ]b;) + [01°, by - d]curlyh, . (4.4.4)

F*

Next we again mimic [52, Prop. 5.2] and get

1d

— / |05 curlgv, | + [0"curlyb, |?dy = / F* . 9% curlyv,dy
2dt I?) 2

By

+/ 3% (curlyby) - [9"Scurly, bo - A]vedy
Q

(4.4.5)
55
+ /9 315 (curlgb, ) 815 (€110 ALT0,,b%)dy .
B3
B; can be controlled directly by the multiplicative Sobolev inequality:
By S 119" curlaby [lo]13" (€xza A7 ™ b llo
(4.4.6)

S NAl2lIbe 2510 All2llbell2.s < Nvllsllbe s

To control B3, it suffices to control ||[d'-curly, bg - d]v, || 2. First we simplify the commutator:

[0'curly, bo - 0]v; = €)1a (81'5(A“’8M(b(‘,’8,,v‘,")) — b(‘,’aval's(A“fauv?))

= €aa (017 (A"70, (by0yvY)) — 0,0" > (by A0, v%))

4.4.7
5, @47
+ €nva (350"° (bg A*T0,0Y) — by 0,0" (A*T0,0Y)) .
B3,
For B;,, we invoke the refined Kato-Ponce estimate (3.2.7)
1832012 < IbollwsalA*F0,vf L6 + 19bolloo AT 0,0 15 S bollsllvell2.s. (4.4.8)
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For B3, we have

B3, = €3:00" 2 (A*70,,(by0,v%)) — 0, (by A*T3,,0%))

Earad"S (APTD,bY 0, 0% + ARTDY 0, 0,08 — b0, ARTY 0% — by ART0,.9,v%)

(4.4.9)
= cnead"S (AWT0,uDYDVE + DBy AT APTD, 8 )
= €20a0"% (A"70,,b3 9,07 + D5 ((bo - D)11y) AMY APT8,0% — Dbl APT,,02),
Therefore, one can get:
1B311z2 < lbollsllvel2.s. (4.4.10)

It remains to control BY, specifically, || F*| 2. The two commutator terms can be controlled in the

same way as 35, and straightforward computation
102, bo - d]curlaby|lo + |0 ([curla, bo - 3]b:)]lo < l1boll3llve 2.5, (4.4.11)

and

llcurly, avlli.s + 1470, (470, Q)ll1s < llvlls(llvlizs + 1Qllss) + vlaslQlls. (44.12)

Combining (4.4.3)-(@.4.12), and absorbing the e-term to LHS we have:

t
lcurl ve 1.5 + [[curl b |15 < Po + / P. (4.4.13)
0
The boundary term |b3|> can be directly controlled

16 12,1 = llbo - 3denll2,r S 1Doll2,r 03], (4.4.14)
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Summing up (4.4.1), 4.4.2)), (4.4.13) and (4.4.14)), then absorbing the e-term to LHS, we have

t
loellas < Po +/ P+ 02
0

t
Ibellas < Po + / P.
0

Again, from Hodge’s decomposition inequality applied to v;; and b, we have:

veellis S Nlveello + llcurl vee flo.s + [|div vesllo.s + |Ut3t|1;

Ib2ell1.5 S beello + llcurl bygllo.s + [Idiv bysllo.s + |bt3t|1,

We have

Idiv veello.s S Plvliz.s+e)vllis + lvellis) + ellveells

and similarly,

Idiv beello.s S Pllvli2.s+s. [10ll2.5+8)([vll1s + llvellis + bz ll1s) + ellbrellas.

where § > 0 can be arbitratily small.

The boundary term |b2;|; is controlled in the same way as [{#-4.14)
16311 = lbo - 007 11,1 S [bola[v7 2.
It remains to control curl v;; and curl b;;,. We have:
9; (curlqvyy) — curly (bg - 9)%v; = G**,
where

G** = —curlB%Av, —curly, 4vs; + curla%A(bo - )b + 2curly, 4(bo - 9)b;.

(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

(4.4.21)

Commuting (b.9) with curly on LHS of {#@4.20), taking 9% derivative and then commuting it with
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bg - 0, we get the evolution equation:

9:(3%3curlgvse) — (bo - 3)(3%3curlabyr)

= 0%3(G** + [curly, bo - 9]bsr) + [0°°, bo - d](curlybyy) .

=i F

Analogous to {#.4.3)), we can derive the following energy identity:

1d

2d1 Jo 2

[0%°curlgvy | + |0%° curlyby|?dy = / F**. 3% curlqv, dy

skook
Bl

+ /Q 993 (curlyby;) - [0%3curly, by - d]v,dy + /g 80'5(curlAb,,)Aao's(e,haAf“raub;"t)dy .

B3* B3>
Then we have

B;* S beellislibollisllvell2.s v 2.

For B3*, it suffices to control ||[3%°curly, bg - d]vs||z2. Analogous to #4.7), we have

[0%curly, bo - ]vsr = €xrq (80'5(A‘”8M (byd,v%)) — 3,0°° (b AT, 0%,))

skook
821

+ €ara (000°7 (D A"70,07) — b0y 0°° (A" 9, 07))) -

ok
BZ2

For B35, we invoke the refind Kato-Ponce type commutator estimate as in (4.4.8)

B30 < lbollwrs.6 AT 8,07 s + 19bollLee | 4*70, v 115 S l1Bollsllvecll1.s.

For B3}, we have
B3 = €3100% (A*70,,b2,v% + dp((bo - D)1, ) AMY APT,v% — dgbl APT,,0%),

Therefore, we get

||B§1||L2 S bollallveellrs.
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(4.4.23)

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)

(4.4.28)



It remains to control B}*, specifically, || F**|; 2. The two commutator terms can be controlled by
bol|3]|b¢z]|1.5 in the same way as BB}. Therefore it remains to control |G **||¢.5, which is directl
y 1 y

controlled by using multiplicative Sobolev inequality

16" llo.s < 87 Al (lvell2 + Dol 10113) + 19: Al2(lvee 115 1Bollsl1bell2.s) S P (4.4.29)

Combining @.43), @43), @424), @426), (#.4.28), and@.4.29), and absorbing the e-term to LHS

we have:

t
[curl vy llo.s + [[curl beellos S Po + / P+ e(veellis + beellas)- (4.4.30)
0

Summing up @.4.17), (@.418), (#.4.19) and @#.4.30)), then absorbing the &-term to LHS, and finally

using Young’s inequality and Jensen’s inequality, we have

t
[viellis < Po + / P ds + v lh,r + P(lvll2s+8) (Ivllis + [[vells)
0

SPo+f§ P

t
< Po+ / Pds + (3 0r + P(Ivllasss):
0
4.431)

t
[1s¢l11.5 < Po + / Pds+ P([vlzs+s. [Dll25+8) (Ivlli.s + [[velli.s + 16el1.5)
0

SPo+/§ P

t
SPot [ Pdst PAlvlasss. blhseo).
0
where § > 0 can be arbitratily small.

The control of the boundary terms containing v and its time derivatives as well as the lower order

terms (i.e., |v]|2.54+¢ and ||b||2.5+s are still needed. This will be done in the next subsection.
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4.4.2 Boundary traces controlled by elliptic estimates

Taking 0, in the surface tension equation A**N,, Q + 0,/gAgn* = 0 and letting & = 3 yield the

following elliptic equation on 1.
o= = o PR 1
V88" (B0 = TEDe®) = 0,880 = (/g T)B = 0, (A Q)N,.. (44.32)

By the critical Sobolev embedding one can easily prove g € BM O(I") and thus

t
10313 S 1Q¢lh + P(Ivll2s+5,1Q115) + P(Ilvlla.s)/0 P(|[v]ls.5)

(4.4.33)
SPotP [ P Pllvlasio),
As for b = (bg - d)n, we replace d; by (bg - d) in the step above and similarly get
t
1675 = [bo - dnl3 < P(lboll3.5. 11 Q(0)l2.5) +[0 10:ll25. (4.4.34)

Finally, we need to reduce the lower order term ||v||, 544 by interpolation. Since ||v|2.54+5 <
% + %||v||§.5+8, we may assume P (||v]|2.545) is the combination of terms of the form ||v ||‘21.5+8 with
d > 2. By Lemma , we have ||v||‘2175+8 < ||v||§5d ||v||f)l_28)d. Then choose § sufficiently close to

0, for different d’s, such that p; := % > 1. One can use e-Young’s inequality with p; and its dual

index to derive

t
015 545 < ellvl3 + 001G S ellvlzs + Pllvoll.s) +/0 P([[ve(s)]|2.5)ds.

for some b > 0 and thus Theorem [2.2.4]is proven by Gronwall-type inequality.
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Chapter 5

Free-Boundary Compressible MHD

5.1 Loss of Normal Derivatives for Compressible Ideal MHD

The free-boundary compressible ideal MHD system in the case of a liquid is a strictly hyperbolic system
with characteristic boundary conditions. In the case of B - 71|3p, = 0, the uniform Kreiss-Lopatinskif
is violated and thus there is a potential of loss of normal derivatives. For incompressible ideal MHD
and compressible Euler, one can use the div-curl decomposition (cf. Lemma|3.3.1) and the normal
trace lemma (cf. Lemma [3.2.3) to control the normal derivatives. However this fails for compressible
ideal MHD due to the extra coupling between the magnetic field and the sound wave, or namely the

magnetoacoustic wave. We refer to [82 Sect 1.5] for detailed discussion.

Previously the local existence was proved by Trakhinin-Wang [[74} [75]] and see also Chen-Wang
[9l], Trakhinin [70,[71]] and Secchi-Trakhinin [64] for the study of the current-vortex sheets and the
plasma-vacuum model in compressible ideal MHD. It should be noted that, all the aforementioned
results rely on the Nash-Moser iteration to prove the local existence, and thus one may not find a

higher-order energy estimate without loss of regularity even for the linearized equations.

On the one hand, I was the first one that observed the magnetic diffusion could exactly compensate
the normal derivative loss: the diffusion together with the Christodoulou-Lindblad elliptic estimate

could give the common control of the heat equation of b and the wave equation of ¢ as well as
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the Lorentz force which is a higher order term. Based on this, the local well-posedness and the
incompressible limit are established [82) [83]. On the other hand, we proved the first result on the
nonlinear a priori estimate without loss of regularity of free-boundary compressible ideal MHD [50].
We use the anisotropic Sobolev space that was first introduced by Chen [[10], and the modified Alinhac

good unknown method and delicate analysis of the structure of MHD system.

5.2 Well-posedness and Incompressible Limit of the Free-Boundary
Problem in Compressible Resistive MHD

In this section we study the free-boundary problem in compressible resistive MHD. We will prove the
local well-posedness and justify the incompressible limit. To prove the local existence, we shall first

define the approximate system.
5.2.1 A priori estimates of the nonlinear approximate system

For k > 0, we introduce the nonlinear x-approximation system.

n=v+y in £2,

pod N =(b-Vb-V;0. 0 =q+ib? ing
%atq—i-divjv =0 in $2,

0:b + curl geurl ;b = (b - V z)v — bdiv ;v, in £2, (5.2.1)
divjb =0 in $2,

q=0,b=0 onl,

(1. v,b,9)|g=0y = (Id, vo, bo, qo).

The quantities with “tilde" are defined in the same way as in Chapter[#.2] The term ¢ = ¥ (n,v) is a

correction term which solves the Laplacian equation

Ay =0 in £2,

— S —_ e 5.2.2
v = APy (AnﬂA’ﬂaiA%v - AA,%nﬁA’ﬁaiv> onr (>2.2)

where P denotes the standard Littlewood-Paley projection in T? which removes the zero-frequency

part. A = 8% + 8% denotes the tangential Laplacian operator.
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Remark 5.2.1.

1. Taking div ; in the fourth equation yields d,(div z6) + (div zv)(div z0) = 0, which implies
div zb = 0if div by = 0 by the Gronwall-type argument. The identity curl zcurl ;b = —A 7b +
V ;zdiv zb and div ;6 = 0 shows that b satisfies the heat equation d;b — A ;b = (b - V3)v —

b(div zv) with b| = 0.

2. The corrector v — 0 as k — 0 which is used to eliminate higher order boundary terms which
appears in the tangential estimates of v. These terms are zero when k = 0 but cannot be
controlled when « > 0. This is necesssary, otherwise we need higher regularity of 1 than v

which is impossible for MHD.

3. The Littlewood-Paley projection is necessary because we will repeatedly use

AT Pro fls ~ P20 flas—= ~ | flgs—2

which can be proved by using Bernstein inequality.

4. The initial data is the same of origin system because the compatibility conditions stay unchanged
after mollification by A(0) = a(0) = Id. Such initial data has been constructed in [82] Section

9], so they are omitted here.
5. The precise form of the commutators can be found in [82 Section 4.4]. Details are omitted here.
Now, we define the energy functional of (5.2.1)

Ee(T) 1= ¢(T) + He(T) + We(T) + ‘ 3% ((b- V) b) HZ : (5.2.3)
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where

~n o — 2 4 2 2 2
ee(T) i= |l + ‘A3°‘84Akna Y (‘ a;‘—"ka n ‘ a;‘—"ka + a;‘—kqﬂk) L (524
r 5,12 41112
H(T) :=/0 /9 |07b|" dydr + || 97D . (5.2.5)
We(T) = |93q|s + |9%4]? (5.2.6)

denote the energy functional of fluid, higher order heat equation of b, and wave equation of ¢,

respectively. The context of this section is the uniform-in-« a priori estimates of (5.2.1)).

Proposition 5.2.2. There exists some 7" > 0 independent of «, such that the energy functional E,

satisfies

sup Ec(t) < P(llvolla, 1bolls, llgoll4, [leoll4). (5.2.7)

0<t<T

provided the following assumptions hold for all # € [0, T]

—(OnQ)(t) = co/2 onT, (5.2.8)

IJ () — 1|3 + |[Id— A()||s < & in £2. (5.2.9)

Remark 5.2.3. The a priori assumptions can be easily justified once the energy bounds are established

by using A(T) —Id = fOT 3, A= fOT A : 3,37 : Adr and the smallness of T'. See Lemma

In Section[5.2.2} we will prove the local well-posedness of (5.2.1) in an k-dependent time interval
[0, T ]. Therefore, the uniform-in-« a priori estimate guarantees that the solution (1(k), v(x), b(x), q(k))
to (5.2.1) converges to the solution to the original system as k — 0, i.e., the local existence of the
solution to free-boundary compressible resistive MHD system is established. For simplicity, we omit

the « and only write (1, v, b, ¢) in this manuscript.
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5.2.1.1 Estimates of the correction term

First we bound the flow map and the correction term together with their smoothed version by the

quantities in &. The following estimates will be repeatedly used.

Lemma 5.2.4 ([83] Lemma 3.2]). The following estimates for (v, ¥, 1) holds.

l7lla < llnlla,

1 lla < Pnllas v]3),

10: ¥l < Plnlla: lvlla. [10:v]13),

197113 < P(Inllas [vlla. 18:v]l5, 1870]l2),

197¥ 112 S PUnlla. [vlla [18:v]l5. 187012, 197 v]1).

19311 < Pdlnlla 1vllas 13evlls. 197 vll2. 197 v]1. 193 v]o)-

and

10:77lla < 19enlla S P(lInllas [[0]14),

19771113 S 19703 < P(Unllas [vlla. 19:v]3),

1977712 S 1870l < PClnlla. lvlla. 1B vll3, 197 v]l2).

192701 < N8gnll < PCnlla. lvlla 18:vlis. 197 vll2. 187 v]l11)

1977llo < 192 nllo < P(Unllas Ivllas 19:vl13, 137 0]l2, 1970111, 187 vlo)-
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5.2.1.2 Estimates of the magnetic field

For ideal MHD, the magnetic field can be written as b = J~!(bg - )5, which should be controlled
together with the same derivatives of v = 9,7, and higher order terms are expected to vanish due to
subtle cancellation. But for resistive MHD, invoking the well-known identity —A ;b = curl zcurl ;b —
V ;div zb = curl zcurl zb, the magnetic field actually satisfies a heat equation. Thus, the magnetic
diffusion, together with the boundary condition b = 0, allows us to control the higher order term A ;b
directly, and (b - V ;)b (Lorentz force) with the help of Christodoulou-Lindblad type elliptic estimates

Lemma[3.3.3]

Control of 8f b when k <2 First we estimate ||0%7%b||;. When k > 1, we have
107K = K1 (AL, 0% Fb) + FTL (8L — A)d,0¢F D),
which gives
1957*b17 S IV 05 7*bIz_y + ITd — Al 11957*bIF < IV 407 *blIz_, + 1197 DI}

Here the e-term can be absorbed into the LHS. When k = 1,2, ||[Id — A||x_; should be replaced by
|1d — A| oo . Therefore, we have that for I < k < 4, |0%%b||; < [V 1(3%7%b)| k-1, which motivates

us to use Lemma|(3.3.3|

Applying Lemma to b, we have

1blla ~ 1V 4013 < P(lills) (12 gbll2 + [13711315113) (5.2.21)

Invoking the heat equation A ;b = d,b — (b - V ;)v + bdiv zv, we have

Iblla SPUI713) (||3zb||2 +[[(b -V vl2 + ||bdiv zv]2 + |I5ﬁ||3||b||3)
(5.2.22)

SPAIN)P (19:bll2, 16112, Nulls) + Pl 1871515115
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The first term P (||7]|3) P (||9:b]|2, |b]|2, l|u]|3) can be directly controlled by Py + fOT Pec(t))dr.
For the second term, we notice that [|07i]|3 < [[07illo + [0>07illo. and 0; 7ja|i=0 = Sia» 3*9n|r=o = O,

SO

T
il 51+/ 13,371 dr.
0

Plugging this into the second term (||5n||0 + ||5aﬁ||2) P([7ill3)16]l3, we know

(Wanllo + 139712) P71

T

T
5P<||ﬁ||3)||b||3/0 ||3t37~7||3dl+P(||77||3)<||b0||3+/0 ||atb||3dz)

T
SPo+ P(ec(T) [ Plasto)
0
Therefore, (5.2.22)) becomes

T
1blls < Po + P(e(T)) /0 Pec(t)) di (5.2.23)

Since 9, is tangential on I, d;b also vanishes on the boundary. Applying elliptic estimates as in

(B2Z1). we get

[10:bll3 ~ IV z9:b1l2 < P(II71l2) (IIAgatblll + ||5ﬁ||z||3zb||z) (5.2.24)
1020112 ~ IV 492511 < Pliil2) (14 493010 + 197121925111 (52.25)
Taking time derivatives in the heat equation of b, we have
A z0%b = 5 F1h — 0k ((b- Vv — bdiv jv)

of which the RHS is of one less derivative than LHS. Therefore, we are able to control ||d,53, |92 ||2
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in the same way as (5.2.23):

T
mmm+m%h5%+Pma»/ Pec(t)) di (5.2.26)
0

Control of 97b: Heat equation Note that [|37b]|; = ||V ;03b|o is a part of the energy of 3-rd order

time-differentiated heat equation
Ith — A ;03b = 33 ((b- V 7)v) — bdiv jv) + [37, A 4]b,

of which the RHS only contain terms with < 4 derivatives.

Taking L2 inner product with J d?b, integrating in y € £2 and ¢ € [0, T, and then integrating by

parts, one has

T T
LHS:/ / f|8‘,‘b|2 dydt—/ / b - J A ;03b dy dt

0 2 0 2
T AL T 7 4 3

2[0 fg]|8,b| dydt—}—/(; [QJVgatthB,bdydt
T ~ 4 2 1 ~ 3 2

=/ J@m<wm+-/1wﬁ¢|@
0o Jo 2 Je

1 T 5 T 5
——/ /8,J|V58?b|2 dydt—i—/ / J[V4.0,]0;b-V;0]bdyd
2Jo Ja 0o Jo

T

0

T
RHS =/ / ab - (07 ((b- Vp)v) — bdiv zv) + [97, A 4]b) dy dt
0 2
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Therefore, one has
r 7194712 1 7 3 2
J|ofb|" dydi + = | T |Vz97b(T)|" dy
o Je 2 /e
1 = 2 1 (T ~ 2
=—/ J |V 30;6(0)| dy+—/ /a,J|vga§b| dy dr
2Ja 2Jo Jo
T ~
—/ / J[V4.0,]0;b-V;07bdyds (5.2.27)
0 2

T
+/ /a;‘b-(aﬁ ((b-V)v) — bdiv zv) + [07, A 4]b) dy dt
0 2

T
<Po + / Pec(t)) dr,
0

which gives the H! control of 83b.

Control of 9%5: Higher order estimates needed There are two ways to control [|04b]|o. One way is
to use Poincaré’s inequality

19¢bll0 S 197b11 ~ V5975110 (5.2.28)
due to 37h| = 0. Another way is direct computation

1 1 T
S1016lE =3 1010 + [ 8t -fbar

SPo + “afb||L%L§([O,T]xQ) I a?b”LgL;([o,T]xm

T T
<Po +e/ / 835> dy dr + if / |8%p| dy dr
0o Jo 4e Jo Jo

T T
ge/ / £k dydz+7>0+/ P(ec(t)) dr.
0 2 0

(5.2.29)

From (5.2.28) and (5.2:29), we find that either ||V ;0753 or ||8fb||L%L§ is required to control ||37b||3.

On the other hand, we notice that these two terms exactly come from the energy functional of 4-th
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time-differentiated heat equation of b:
b — A 707b = [9F, A z] b+ 07 (b V 1)v — bdivzv) .

The energy estimate cannot be controlled in the same way as in Section [5.2.T1.2] because the RHS of
this heat equation contains 5-th order derivatives. Instead, we will seek for a common control of b and

p via the heat equation and wave equation. This part will be postponed to Section[5.2.1.4]

Estimates of Lorentz force Later on we will see both the estimates of ¥ and common control of
higher order heat and wave equations require the control of 5-th derivatives of magnetic field, all of
which are actually 4-th space-time derivatives of Lorentz force (b - V ;)b. Notice that b = 0 on the

boundary implies (b - V ;)b also vanishes on I". Therefore, we can apply the elliptic estimate Lemma

B33t (b- V1)b.

We start with [|(b - V ;)b | 4. Similarly as in (5.2:21)), we have
[(6-V pblla =~ [IVz((-V D)z < P(lil3) <||A,q((b -V b) 2 + 1197151 (B - V,a)b||3) (5.2.30)

The second term P (|7j|3)|97]|3 | (b-V ;)b |3 can again be controlled by Po+ P (e, (T')) fOT P(e,(2))dt
by writting [|073 < 1 + fOT 119,073 as in (5.2.23). For the first term, we invoke the heat equation of

b to get
Az ((B-Vpb)=b-Vy) (L) +[Ag.b- Vb
=(b-Vy) (3:b—(b- Vv + bdivjv) + [A 1,5 -V 4]b,
of which the RHS only contains terms with < 2 derivatives. So we have

125 ((B-Vb) 2 < Ple(T)).
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and thus

T
16+ Vbl £ PacT) + Pot PacT) [ Plectt)an (5231)
When k = 1,2, |0¥((b - V 7)b)[l4—k can be controlled in the same way as (5.2:24), (5.2.23) and
(.2.26): ,

[0:((B- Vb5 + [97((b -V D)2
SPll2) (1A 48: (b - Vb)Y + 14 z97 (0 - V 1)b) o)

+ Pl 187ll2 (119: (B - ¥V )b) 2 + 107((b - V p)b)II1)
SP(||ﬁ||2)(||3t(b V(A D)l + I[A 4, 0:(D -V PIbl (5.2.32)

G- VD8 bl + 124,026V b

T
4Py + Plee(T)) /0 Pec(0)) dr

T
SPG(T) + Po+ PlecT) [ Placti) .
0
When k = 3, we have 3(3; (b - V 7)b) = (b -V 7)39;b + [00;.b - V ;]b, where the commutator

only contains the terms of < 4-th order derivative, so
1876 -V pblly S 1BI21IV 487611 + P(ee(T)) (5.2.33)
Then by elliptic estimates Lemma [3.3.3]and the heat equation,

IV 70361l SPIAl2) (1A 707bllo + 1971121197511)
SPlll2) (13¢b 1o + 137 (2 - V p)v — bdiv zv)llo + 1A 7, 9716 1l0) + P(ex(T))

SP(e(T))
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Similarly, for k = 4, we have 37 ((b -V 1)b) = (b -V ;)33b + [0}, b - V ;]b, where the commutator
only contains the terms of < 4-th order derivative, so

195 - V)bllo SIB -V )33bllo + 1137, 5 Vbllo
(5.2.34)
SIB120V 297 bllo + P(ee(T)).

where the term ||V ;97 ||3 is exactly part of the energy functional Hy(T) of 4-th time-differentiated

heat equation. Summing up (5.2.31), (5.2.32), (5.2.33) and (5.2.34), we get the estimates of Lorentz

force

4
Y|
k=0

T
k(b v /I)b)HZ SIBIE |V 484D |2+ P(ec(T)) +Po+ P(ec(T)) /0 P(ee(r))dr (5.2.35)

Therefore, we find that the estimates of Lorentz force are again reduced to the control of higher

order heat equation.

5.2.1.3 Estimates of the velocity and the pressure

In this part we control the space-time Sobolev norm of v and g. We first apply the Hodge-type div-curl
decomposition (Lemma to v (and its time derivatives). The curl part can be directly controlled
by the counterpart of Lorentz force. The boundary term can be reduced to interior tangential estimates
by using Sobolev trace Lemma. The divergence part together with the estimates of g can be reduced
to the control of full time derivatives, which is also part of tangential estimates. One should keep in
mind that, we no longer seek for subtle cancellation to eliminate higher order terms as what was done
for ideal MHD, no matter in curl or tangential estimates. Instead, those higher order terms (with 5
derivatives) can be controlled either by Lorentz force, or by the combination of heat equation and wave

equation, i.e., H,(T) and W, (T).

164



Let X = v,9,v,0?v,93v and s = 4,3,2, 1 in Lemma|3.3.1|respectively. We have

[vlla S llvllo + lldiv vlls + [eurl v]l3 + |v - Nls.s

[9:vll3 < [19:vllo + [Idiv d;vl2 + [lcurl 8;v[|2 + [d:v - Na.s
(5.2.36)
[0%v]l2 < [102v]lo + [|div 02v]|; + |lcurl 3?v||y + [0%v - Ni5

197l S 187 vllo + Idiv 37 vllo + lleurl 37 vllo + |37v - Nlo.s.
First, the L2-norms are of lower order. The L2-norm of v has been controlled in the energy dissapation.
While for [|d,v]o, [|d2v]lo and [|d3v]|o, we commute 3, through poJ ~'d;v = (b -V ;)b — V ;0 and

obtain

T
13 v(T)llo + 102v(T)lo + 133v(T) [lo < Po + fo P(ec(t))dt (5.2.37)

Boundary estimates: Reduced to tangential estimates The boundary part of div-curl decomposition
can be reduced to the interior tangential estimates by invoking the normal trace Lemma|3.2.3
100325 S [10%0]lo + [ldiv v]3. (5.2.38)
Similarly we have for 1 <k <3
190 5.5k S 18+ 07 vllo + ldiv 9F vl 3k (5.2.39)

Curl control: Reduced to Lorentz force By the a priori assumption (5.2.9), we can estimate the

Lagrangian vorticity via Eulerian vorticity plus a small error, for 1 <k < 4

leurl 3¢ Fv[2_, < [leurl ;97 % v]|2_, + 29¢ Fv? (5.2.40)

Taking curl ; in poJ ~19,v = (b V ;)b — V ; 0, we have

poj_latcurljv = curl ((b -V 1)b) + [,Oo-i_latv curlg] v, (5.241)
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where the commutator only contains first order derivative of v, p, 9,7.

Taking 94~%9k~! in (5.241), we get the evolution equation of curl ;v:
Po f_lat(ak_lcurlgaj‘_kv) = Bf_kak_lcurl ((b-V ;)b)
+ 8‘;_1‘81‘_1 ([poj—la,, curlff] v)
(5.2.42)

+ [a;‘._k ak_l s PO j_lat]CurlgU —+ p()j_latak_l ([Curl o a?—k]v)

=92 eurl (b~ V)b) + Fi

then taking L>2-inner product with 9%~ curl 18‘;_1‘ v, we have
1 = 2 1 - 2
—f pod ! ‘8k_lcur1/;8?_kv(T)‘ dy——/ pod 1 ‘ak_lcurlga‘,‘_kv(o) dy
2Ja 2Ja
LT 71y [ k-1 ak |?
25/ / 3 (poJ ~ )‘8 “leurl ;07 v) dy dr
0o J
T ~
+ f [ pOJ_lak_lcurlfIB?_kv . ak_lcurlgaf_k ((b-V;)b)dydt
0 2
T ~
+ / / pod T1o¥curl ;3¢ v - Fr dy dr (5.2.43)
0 2

5 T
¥y H dr + /
k 0

07| 1Pl do

<[ 1w |
o[

<eT sup ‘
0<t<T

il

07 ((b-V )|, o

9k (b V )b) Hi n /0 ' P(ec(t)) dr.

Here we used the fact that all terms in F are of < 4 derivatives, and thus can be controlled by P (e, (?)).

Divergence Control: Reduction to full time derivatives Before going into the proof, we briefly

describe the procedure of such reduction. The second and third equations of (5.2.1)) give the following
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if we omit the coefficients pg J~1'and %:
1
3K q ~ V ;0%q ~ —9F 1o + 9% ((b V)b — E|b|2) ,

and

div
30y — 9k div 4V + curl + boundary ~ 3**1g + curl 4 boundary.

Since the terms containing magnetic field b can be reduced to lower order with the help of magnetic
diffusion, the procedure above allows us to control div v by d,¢, and control dg by d,v. In other words,
we are able to trade one spatial derivative by one time derivative, and finally reduce the control to the
full time derivative estimates.

G20 div

oq EEB, 935,00 2524 EED, 453, &, 54
(5.2.44)
EZ1) 5Z1)

39,9 222 52020 L 993q 2= g4y,
Step 1: Reduce ¢ to 0;v
First we investigate [|03¢||1. We take 97 in the second equation in (3.21)) to get
- 1
307q = 9;(V3q) + V,;_z07q = =97 (poJ ~'0,v) + 97 ((b Vb — 5v/;|b|2) +V,_;0%q,

where we have Therefore, 8?6] is estimated as

lstall, < 3al, + 102000000, +

1
a? ((b-vlg)b — 5Vg|b|2)

0
(5.2.45)

T
<e 23], + o0 oo [820], + Po +/0 Pec(t) dr + L.O.T.

where ¢ > 0 can be chosen suitably small in order for being absorbed by LHS. The Py + fOT P(ec(t))de

comes from the magnetic field according to Section[5.2.1.2]
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Similarly as in the derivation of (5.2.43)), we get the following estimates

T
107¢ll2 < [|pod || ;oo 1870111 + Po +/ P(ec(t))dt + L.O.T. (5.2.46)
0
B T
10:qll3 < ||pod " | ;oo 187012 + Po + / P(ec(t))dt + L.O.T. (5.2.47)
0
B T
lgla < Jeod ™| oo 19:v13 + Po + / P(ec(t))d + L.O.T. (5.2.48)
0

Step 2: Divergence estimates of v

The Eulerian divergence is div ;1 X = div X + (Are — 8#%)d,, Xy, which together with (5.2.9)
implies
Vs >2.5: [[div X [ls—1 S IIdivg X [ls—1 + 1] = Alls=1 [ X lls S lIdiv g X [ls=1 + el X |15
VI<s<25: [div X |s—1 S IdivgX s—1 + 11 = Allzeo | X [ls S N1divz X [ls—1 + &l X |5
(5.2.49)

The &-terms can be absorbed by || X ||s on LHS by choosing ¢ > 0 sufficiently small. So it suffices to

R()J
140

estimate the Eulerian divergence which satisfies div ;v = — d;q. Taking time derivatives in this

equation, we get

R(q)J

. R(a)J .
div 70¥v = —9¥ ( a,q> — [0k, 419, vy ~ %a’;ﬂq — [0%, 419, v,
0

Therefore, we have ~
Idiv zvlls < IR (@) L 10:glls + L.O.T.

ldiv z9;vll2 S 1R ()T lzo<l107qll2 + L.O.T.
(5.2.50)
ldiv z07v[l1 < IR (@)l 103411 + L.O.T.

Idiv 537 vl S IR (@) 2= [1qllo + L.O.T.
Combining (5.2.49) and (5.2.50), by choosing ¢ > 0 in (5.2.49) to be suitably small, we know the
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divergence estimates are all reduced to one more time derivative of g:

Idiv vlls < ellvlla + 1R' () o< 13415 + L.O.T. (5.2.51)
Idiv 9;vll2 < ellvells + IR' () llLe< 187 gll2 + L.O.T. (5.2.52)
Idiv 37 vll1 S elldFvllz + IR ()T o= 187qll + L.O.T. (5.2.53)
Idiv 3 vllo < elld7vlls + IR () o< [13¢qllo + L.O.T. (5.2.54)

Combining (5.2.43)-(5.2.48). (5.2.51)-(5.2.54) with the previous analysis of curl and boundary

estimates, the control of ||9%~ k4l and [|aF~ kv]|o are reduced to 0¢v]lo and [|d¢q]|o together with the

tangential estimates of v.

Tangential space-time derivative estimates Denote ©® = 0 or 3,. First we consider the case

D* = 94,030,020%,0,0°, i.e., there are at least one time derivative in the four tangential derivatives.

Direct computation gives

T

1 - r s
-/ pod 1 [D*v|? dy :/ /334(p0J_18tv)-©4vdydl
2 /)0 0 0o Je

+%[ 3 (pod ~ )|@4v| dydt+/[ 4 pod "t 90 - D*vdydt
0

(5.2.55)

L,

T T
=—/ /@4(V5Q)-©4vdydt+/ /@4 ((b-Vpb)D*vdydr +Ly,
0 2 0 2

L,

where L can be directtly bounded by fOT P(e,(2))dt, and L, can be controlled by the Lorentz force

T e 4 T e 2 T oty I?
s [ 1ot @ -vonlyase [ ot @-vonlias [ o] a
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For the first term, we first commute ©* with V ;> then integrate V ; by parts to get

—/OT/Q@“(VAQ)-@“I)dydt

T T
—/ /vgg‘*Q-@‘*vdyder/ / [D*, 4"*] 93,0 - D*vy dy dt
0 2 0 2

L3

T T (5.2.56)
= —/ / A3* 940 D%, dS dt +/ / D*0D*(div jv) dy dt
0 r 0 2

N——
=0

K,

T T
+/ /©4Q-[©4,Aﬂa]auvadydz+[ / 3, A D* 0Dy,
0 2 0 2

Ly Ls

Notice that, ©* = ©39, now contains at least one time derivative, and A~ a7 - 91, so by the
estimates correction term v/, we know the L2-norm of ©*A ~ ©399,7-dij+ L.0.T. can be controlled
by P(er(?)), and thus L3, L4 can be controlled by fOT P(er(t))dt. The term Ls is also directly

bounded by fOT P(e.(2))dr.

Next we plug div ;v = —%B,q and Q =¢q + %|b|2 into K to get

om [ ot (T na) - [ o (7)o (Ttoa)

1 [ JR ror /R’
——5 [ Bl ywf o) - [ /©4Q-[©4,J—@}atqdydz
2 Po 0 0o J@ Po

2
Le

(5.2.57)

T r JR 1
—/ / @) 54 (-|b|2) D49,q dy dr .
o J2 po 2

K>

From the computation above, we find that the energy term ||07¢||3 automatically appears if D* = 97.
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The commutator term L¢ can be directly bounded by fOT P(e,(t))dt. The term K, satisfies

T 1
K < / o* (—|b|2)
0 2

therefore we need the energy of 4-th time differentiated wave equation of ¢ and elliptic estimates

T T
‘ - |D%:q|, de gs/ |D*0.q] di +/ P(ec(t))d,  (5.2.58)
0 0 0

Lemma [3.3.3]to bound K. This will be postponed to Section[5.2.1.4]

Tangential spatial derivative estimates: Alinhac good unknowns When ©* = 34, the above
analysis no longer works due to [9%, /f’“"]au f being uncontrollable. According to the discussion in
Section 1.4, we introduce the Alinhac good unknowns. In specific, we replace 9* by §2Z due to the
special structure of correction term . Then for any function f and its corresponding Alinhac good

unknown

the following equality holds

TRV S) = VE@ES) + @ BA, [+ [, 41,0, /]
= Ve@ D f) — 0A(A iy AP)0, f + [0 B, AP0, f]
= Ve BS) — AP*0p0 Biiy AU 0, f — (B, A AP180577,)0, f
+[0°R, AM 9, f]

= V@ DS~ By A", f)

—_vo
_V/If

+ 9 By VUV S) — (B8, A APY50577,)0,, f + [0 B, A1, 9, 1.

=:Co(f)
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where [52Z, g, h] = §2Z(gh) — 52Z(g)h — g52Z(h). Direct computation yields
J, S »
19" Any VEVE o S NillallVG(VE Lo
1[04, A* AP*150577,)0, f o S 0L, A AP*1904 7y o]l f lwr.co S PAUITNIf 113

1875, 44, 8,0 f1llo S PAlilla)]L/ N
Therefore, Alinhac good unknown enjoys the following important properties:
TR(VES) = VA + C(f) (5.2.59)
with

IC*HIS PATDNS Nla- (5.2.60)

For (5.2.1)), we define V = A 52Zﬁ -Vivand Q = 52ZQ - 52Z7) -V ;0 to be the Alinhac

good unknowns for v and Q = ¢ + 1|B|?. Taking 3°A in the second equation of (3.2.1), we get

pod 10,V+V;Q=F (5.2.61)
where
F:=02((b-Vb)+[pod .3 A)d,va + pod 10,3 A7V 1v) + C(Q)
subject to
— N5, 3B
Q=-0 AfgA*@ONQ) onT. (5.2.62)
and
ViV =0 Adiv) — C%ve) in Q. (5.2.63)
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Taking L? inner product with V and time integral, we have

T T
=_/ /VEQ-dedt
0 0 2

T
1 -
+/ /—poa,J—l V]2 + F-Vdydr.
0o Jo2

1 =
3 | pod V0P @
2

(5.2.64)

By (5.2.59)-(5.2.60) and direct computation, we know the last term on RHS can be directly controlled:
T 1 _ T T ., 5
/ / 500 VP +F-Vdydr £ / P(ec(t)) dr + s/ Ha A ((b-V pb) HO dr. (5.2.65)
0o J 0 0
We integrate V ; by parts to get

T T
—/ /VgQ-Vd)/dt:—/ /AWQ-Vadydt
0 2 0 2

Z_/OT/FQ(A“V‘,)dez+/OT/QQ(VJ-V)dydz+/OT/9(3M/I“°‘)QVadydt

J1

T . T L (5.2.66)
=/ /(aNQ)a Afg AP A3V, dS dt +/ / Qd A(div jv) dy dt
0 r 0 2

T
—/ / QC%(vy)dy dt + Jy
0o Je

=lo+ 1+ J+ J1.

The term J;, J> can be directly controlled by fOT P(ec(t))dt. Next we investigate /. Invoking

- _ _JR (@
div ;v = —Tqa,q,

T
I = / / Q0" A (div jv) dy dt
0 2

T o o (1 o 2 JR
=/ / (aqu +TA (-|b|2) Ny VEQ) 7r (- IRD,
0 J2 2 Po

(5.2.67)
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T T D’
= —/ / 52Zq -52Z (—JR @) 8,q) dy dt
0o Je Po

T Ay _h le
+/ /BZAﬁ.VanzA (- D) dy
0o J Po

(5.2.68)
L =2 JR(g)
—/ /a A(—|b|2)-8 Al - 9:q | dy dt
0 Je 2 Po
=11+ T2 + I13.
The term /1 and /3 can be similarly computed as in K; and K (5.2.58):
1 [ JR(q) |=2— 12 . |T T
1115—-/ ﬂ]aqu‘ dy +/ P(ec(t)) dr, (5.2.69)
2Ja  po 0 0
T 2 T
Iis 58/ Ha Aatq)O dr +/ P(ec(t)) dr. (5.2.70)
0 0

One can see that /1 has been controlled, while /3 requires the control of 5-th order wave equation
of ¢ to absorb that e-term. This will again be postponed in Section[5.2.1.4] For I;», we just need to

integrate d; by parts

T Ch Ch jR/
I =_/ / BzAﬁ.VanzA( @Dy.0) dyar
0o Je Po

t=T T T D/
TR(q)=2—
+/ [ DR 49,Qdy dr
t 0 2

JR(q)=2— 2
z/ (q)32Aﬁ-VAQ82Aqdy
2 Po

Po

(5.2.71)

~

JR(q) |=2— 2 1, .
S [ LR dy + g (RO + 1950D)]E)

T
+ Po + / P(ee(2))de.
0
Here in the last step we use &-Young’s inequality to deal with the first term in the second line. The

second term can be directly controlled by using the estimates of ||d;7|4. It remains to control the
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boundary integral /. Plugging V, = 52Zva _ §2Z,’ -V 1uq into Tp, we get
r "3 738 A2 A 22— —2— P, T
lo :/ /F@NQ)A“A”a Afig(@ Dona —9 Ay —0 Afj- Vyve)dSde.  (52.72)
0

The first term in (5.2.72)) produces the Taylor sign term contributing to the boundary term in E, (¢)

after commuting a Ay:

T
/0 L(aNQ)43“A3ﬂ32ZﬁﬂaZZ3tna ds dr
T o o
:/0 ﬁ(aNQ)A3aA3ﬁa AAKnﬂa AatAKn(dedt

# [ FFa) ([ ov )27 Ran) asw

2 T
ds

1 B T o ,
r 0 r

0o 2

T
- / / (In Q) AP T R Aenpd A3 D Ang dS di
0 r

1oy

e [ @ Fa) (1 0w0) )5 Farn) as

L7

L7 can be directly controlled after integrating 3'/2 by parts
T —, — _— ~, ~ —_——
L, =/ / (33/2AAM,3) g1/2 ([A (BNQ)A3°‘A3ﬂ] 8(8A8,na)) ds
o Jr

T
= RN ONY o S M 7 (5274)

1/2
T

T
< /0 Il QlaldAl oo [13enlla < /0 Pec(r)) dr.

In Io;, we have 9, A>* = —A379,,9,7j, A**. Note that 9,7 = v + V. The ¥ term can be directly
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bounded by using the mollifier property, which the contribution of v cannot be bounded directly.

Luckily, later on we will see that term can be cancelled together with another higher order term in

(5.2.72)) with the help of /. We have

T
B, = / / N QAP T B Acnp A 830,77y A9 B Aca dS
0 r

Lg

T
+ / / Iy Q) AP T A Aenp A% 3;0, A2y A9 B Ay dS
0 r

Lo

T
+ / / (05 Q) AT A Aeng A% 3 A2v, A5 A Acng dS dt .
0 r

loz

Lg can be directly bounded by the boundary energy

T 5 T
~yp—=2— ~ »
Lo [ [A¥T B Ay -0y 04000 o < [ Placto
0 0

Lo can be bounded by using |52ZA,<r)| < K_1/2|77|7/2 and sacrificing k~/2.

T e =2 ==
3y fia 38
L95f0 T g2 |0 QYA A% [ AT B Acg| [0,

(5.2.75)

(5.2.76)

This can be compensated by estimating |0y |zco and W 14(T?) < L°(T2). Since ¥ removes the

zero-frequency part (so the lowest frequency is +1 because the frequency on T? is discrete), we know
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|Ar| ;4 is comparable to |0 |y1.4. Therefore,

‘M)Lw slav|, = )P#, (ZnﬁAfﬂaiAﬁv —ZAinﬂAiﬂaiv))H

A

Ang APy A2y — ZAinﬂAiﬁgi V|,

=[A(np — Ainﬁ)/fiﬁgiA,%v — AAZng APy — Aiv)‘L4

S [Eng =g oo o]+ (3], 1o o= A0

1/2
N \/EP (ex (7).
Therefore we know Lg can be bounded uniformly in «

T
Lo < / Pec(t)) dr (5277
0

The estimate of Iy, will be postponed after computing the third term in (5.2.72)), for which we

repeat the steps above to get

T
- [ / (n Q) A AT Riipd Aff -V jvg dS
0 r

T
- / / (O 0) A% APT iy 7 B, A Dyv dS
0 I

r oy (5.2.78)
‘/ / (dn Q) A% AT Kiigd Bty A7 Grvg dS di
0 r

Io3

T
- / / (~(On Q) A dsv) (AFT By ) (477 By ) dS dt + Ios
0 r

The first term can be bounded by Taylor sign after commuting one A,:

ABT DA <A (APT DA + |[ A, A28 B Ap| < Plec(0)).
8, 8)l, 8
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Therefore, it remains to control
. r 3 38728, A2 A
o Jr
r O — ~3,= o m2—
Ios :=/ /(aNQ)A3ﬂa AAenp A ; A2v, A" A Agng dS dt
o Jr
- r T3¢ 3B A B2 A~ Fivy
Ipz == — (0N Q)A™* AP 9" Afjgd Aty A"V 0;ve dS dt.
o Jr
Plugging the expression of Ay into (5.2.79), we get
T ~ e p=De—  —p f— ~
Tog =—/ /(aNQ)A3“A3ﬂa Aiigd? (AnyA"aiAgva) ds d
o Jr
T ~ ~ap—=2— _ —, ~
+/ /(aNQ)A3“A3ﬂa Afigd*iiy A7V vy dS dt
o Jr

[ [owori 5 s (750 ) asa

(5.2.79)

(5.2.80)

(5.2.81)

(5.2.82)

(5.2.83)

(5.2.84)

T
+ / / Oy Q) A A5 Rijp2 Py (Znﬂfi"ﬂa-/xiv—ZAinﬂAfﬂéiv) ds dr. (5.2.85)
0 r

Clearly, (5.2.83) exactly cancels with (5.2.81)), (5.2.84) can be bounded by fOT P(ec(t))dt, and

(3.2:83) can be controlled by Bernstein’s inequality [P f |2 & | fo.

T
(3.96) 5/0 (O Q) A%, .. ‘z‘f3ﬂ82ZAK1’]lg)o ‘Znﬂfifﬂaiﬁ —Zﬁﬁf?ﬂaiv‘o dt

T
<
< /0 Pec(t)) dr.
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In (5.2.82)), we move one A, on 1 to 74 to cancel Joz:

T oy p—2—— = P, S
(3.93) =—/0 /F(aNQ)Awa AAeng (A“‘&,-Aiva) (A”’a AAKny) (5.2.87)
r =2 - 2
—/0 /F(aNQ)A3ﬁa A Aeng ([AK,A”A”’A”a,-AﬁvO,]a Any) (5.2.88)
T i o o
—/0 /F(BNQ)A3°‘A3‘38 Aig ([aZ,AWa,-Agva]Any) (5.2.89)
= Ioz + (3.99) + (3.100). (5.2.90)

Summarising (5.2.72)-(5.2.78), (5.2.82)-1045 and 10414, we are able to control the boundary

integral Iy by invoking Taylor sign condition (5.2.8): (0y Q) < —%

2T

T
I < —%" )A3°‘82ZAKna + / Pec(r))dt (5.29D)
0 0

0

Combining (5.2.91) with previous estimates (5.2.64)-(5.2.71)), we finish the estimates of full tangential

derivatives by

1 2

1 —, |2 jR/(Q)_ 2 Co | ~3y=2—
- 84‘ d —/—‘84‘ d —’A3°‘8 AA
2/9"‘ e A U e

0
(5.2.92)

2
‘dt
0

T T ., 2 g
<P + / P(ec(t)) dt + s/ |72 (@- V)| + [0 E0g
0 0
5.2.1.4 Control of the higher order heat and wave equations

Summarizing the previous energy estimates Before going to the next step, let us summarize what

energy estimates we have gotten. First, from div-curl restimates((5.2.36), (3.2.38)), (5.2.39), (5.2.42),
(B-2.45)-(3.2.48), (5.2.51)-(5.2.54))) and tangential estimates ((5.2.53)-(5.2.58) and (5.2.92))) in Section
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BZT3) we got

S ot + ot ko + [T B A
3 2 2 T
<e (Z oo +| a;*—kan) + Po + Pec(T)) /0 P(ee(t)) dt (5.2.93)
k=0

2
‘dt
0

4 T )
+sZ/0 Héka;‘—k ((b-V/;)b)HO+ Hé"a;‘—ka,q
k=0

The magnetic field b has the following estimates by combining (5.2.23), (5.2.26)), (5.2.27) and

6.2.29):

T
94k b(T) HZ < Py + P(ee(T)) /0 P(ec (1)) dr + eHe(T). (5.2.94)

4
Y|
k=0

Summing up (5.2.93)) and (5.2.94)), we get the estimates of E,(T) as

T
Ec(T) <Po + P(e(T)) /0 Pec(0)) dr

(5.2.95)

4 T _ —
L (HK(T) " kg/o Haka‘;—k (b -V pb) Hz + Haka;‘—ka,q (Z dt)

(5:2.93) shows that we need H,, W, together with Lorentz force to absorb the e-term in (3.2.95).
From (5.2.33)), we know Lorentz force can be controlled by E,(T') plus a term in H,(T')

>

T
(b V)|, S 1813 1V4088]5 + P + Po+ Pec(T) [ Pl
k=0

(5.2.96)

Also notice that d;q = 0 on I, which allows us to reduce the space-time control of d;¢q to
the full time derivative case by using Lemma [3.3.3] (See Section [5.2.1.4). Therefore, all the esti-
mates of the total energy & in (5.2.3) are reduced to seek for a common control of W, (T) and

H,(T), the energy functionals of 4-th time-differentiated heat and wave equations, by €& (T) + Py +

P(E(T)) [T P(Ec(t))dr.
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Elliptic estimates of d,q Let us recall the heat equation of b and wave equation of ¢

b — A gh = (b-V p)v — bdiv v, (5.2.97)

JR'(q)

o 79— A gq

=b- A zh + R A" 0,04 — Vb -V gbe + |V zb|?

(5.2.98)
R - R RJR"
+ 29D (w30 -6 vn) Vi) + (J @ _ (‘”) 00
Po Po
=:b- Agb + wo.

Here we note that all the terms in wq only contain first-order derivative!

In (5.2.95)), there are 4-th order space-time tangential derivatives of d;¢. It seems that we can
directly consider the energy functional of D*-differentiated wave equation of ¢ (5.2.98). However,
that also requires the control of commutator [D*, div ;]V ;¢, which is uncontrollable when D* = 94,

Therefore, we have to use Lemma[3.3.3]to reduce spatial derivatives to time derivatives.

We start with full spatial derivatives. Since ||d;¢|l4 ~ ||V ;0,¢/|3, we have
[9:glla < PRI A 4qll2 + P(e(T)) (5.2.99)

Invoking the 9,-differentiated wave equation, we find that

JR

Po
Then using the heat equation (5.2.97) to reduce A ;b to lower order terms, we get

JR
95 q = (@)

Bf’q —b-0; (8,b —(b-Vyv+ bdivjv) — d;wy.
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Plugging this back to (5.2.99), we trade two spatial derivatives by two time derivatives
19eqlla < PAIFN7g12 + Pex(T)). (5.2.100)
Repeating the same thing for [|3%¢/3, [|33¢ 2, we get the following reduction
197qls SPUll2)197g 11 + P(ec(T) ~ P72V 797¢llo + P(ee(T)), (5.2.101)
197q1l2 SPUITI)187gllo + P(ec(T)). (5.2.102)

From (5.2.100)-(52:102), we are able to reduce the energy estimates of ;¢ to ||V ;07¢|lo and
107¢lo, which motivates us to consider the 4-th time-differentiated wave equation (5.2.98) together

with 4-th time differentiated heat equation (3.2.97).

4-th time differentiated heat and wave equation Taking 97 in (5.2.97) and (5.2.98), we get

;b — A 707b =07 ((b- Vv — bdiv v) + [07, A 4]b

JR
(q) 9
Po

(b-V7)dtv+b 2q+ [0 a5]b+[07.b-V4]v

(5.2.103)

JR
+ [a;‘,b po(") ] diq

= l’l5
In hs, there are 5 derivatives of v. We can invoke the second equation of (3.2.T) to reduce to g and
B,e.g., |03v]lo S 110F((B -V b)llo + 110§V ;Qllo + -+ - . in which the leading order terms are V ;07

and Vja‘t‘q, the same as part of W, and H,.
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Taking L? L2-inner product with 35 and integrating by parts, we get

T
RHS:/O fghs-aﬁbdydz
T 2 T
LHS:/ /)aib’ dz—/ /afb-A/ia‘,‘bdydt
0 2 0 2
_[" lasb‘zdt—i— "l (V101b) - (V30b) dydr (5.2.104)
[t [t Gy :
+/0T /9 0 An (93) - (v 50¢) dydz—f—/(;T /9 (V5.0 8b) - (V z0¢b) dy de

T 13 a5 4
o
—/0 /FA a,b.(vga,b)a ds dr

Since » = 0 on the boundary, we know the boundary integral vanishes. The first and second
integrals give the energy functional H,(T") — H,(0). Therefore, we have
T 2 2 r
H(T) — H(0) = / / |07b]" dy dr + / |V ;076" dy
0 2 2 0

T T
:/ /hS'afbdydt—/ /aM/IW (93b) - (V ;0%b) dy dt
0 2 0 7]
T
[ [ (Vaa0at) - (7680) ay
0 2
T ) T T
58] /|3?b| dydt+f IIhsllédt+/ |V 04|, 1714 dt (5.2.105)
0 2 0 0
T ~
+ [ 10l ool 195080], o
T » T
58/ /|3fb(f)| dydf+[ P(ec(t)) + (He(t) + Wie(r)) dr
0 2 0

T
<eHW(T) + / Plec()) + (He(t) + We(0)) dt.
0

Here W, appears in the last term because ;v contains V 58‘;61 which is part of W, (¢).
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Next we 97 differentiate (5.2.98) to get

JR(q)

. 3%q — A z0%q

—b- A% + 0t beA 8+ 0% A TR@ |y
=b-Az07b+ tw0+[ FAYS t]"‘[szA]‘]"‘ o 19

Then plug the heat equation (3.2.103) A ;b = 97b — hs to get

JR'(q)
Po

07g — & ;07q

(5.2.106)

JR
it h) it o] 610+ | T80
0
Taking LZL2 inner product with 97¢, we have

T
RHS:/ / ws - 37 dy dr
0o Jo

T Tn/
LHS=/ /L(q)a?qafth / /qu Az 8tqdydl
o Jo Po
1 JR(q) .5 2
== d
2/9 Po 974l
T _ T
+ fo /Q 0, A" (97q) - (V 507q) dy dr + /0 fﬂ ([V4-9:]979) - (V197q) dy dt

/ /A3°‘ 85q (V 39%q),, dS di — f /—8,(“20@))]85 I dy dr,

(5.2.107)

T T
+ / /9 0; (Vgafq) . (Vga‘,‘q) dy dr
0
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and thus we have

1 [ JR(q) > T 2 |
We(T) - w0 =5 [ 030> @y + 5 [ [9i0tal” av
2J2  po o 2Je 0
T T l jR/
:/ /ws.afqdydz+/ /—a, @) |afq;|2 dy dt (5.2.108)
0o Je 0o Je2 Po

T T
[ [ o i) (Vaota) ava— [ [ (9aaiate)- (Vaata) ayar
0 0

The term ||ws |3 can be controlled by H,(T) + W, (T) + P(ec(T)), because all the terms in ws
are of < 5 derivatives, and can be controlled by either heat or wave energy. The detailed estimate is

referred to [82) (7.12)-(7.19)]. Therefore, we have
T
We(T) — W (0) S e (W (T) + He(T)) + / He(t) + We(t) + P(ee(2))de (5.2.109)
0

Summing up (5.2.703)) and (5.2.709), we get the common control of H, and W,

T
(Hi (1) + We(2)) |§ SeWe(T)+ He(T)) + / H(t) + We(t) + Pec(2))dt (5.2.110)
0

Closing the energy estimates Combining (5.2.93), (5.2.96)) and (5.2.110), we get the inequality

4 T
E(T) = £:(0) = (ex +He+ Wet Y [0 Vb Hi) ‘
— 0
k=0 (5.2.111)
T
Se (Ho(T) 4 WeT) + Plac(T) [ P(Ec(o)
0
By choosing ¢ > 0 sufficiently small, we get
T
E(T) — Ec(0) < P(ee(T)) / P(&c(t)) dt. (5.2.112)
0
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Finally, by the Gronwall-type inequality, we know there exists some 7" > 0 only depending on

lvolla. 1bolls. lIgoll4. llpoll4, such that

sup Ec(t) < P(Ec(0)). (5.2.113)

0=<r<T
This finalizes the proof of Proposition[5.2.2] i.e., the uniform-in-« a priori estimate for the nonlinear

approximation system (3.2.1).

5.2.2 Well-posedness pf the nonlinear approximate system

In this section we are going to prove the local existence of the nonlinear x-approximation system (5.2.1).
The method is standard Picard type iteration. We start with the trivial solution (@, v(©® p© 4©) =
(W, v® pM My = (1d, 0,0, 0). Suppose we have already constructed {(n®, v® &) g®H,_, .
for some given n € N*. Inductively we define (n**+1, @+ p@+D 41+ by linearzing (5.2.1)

near a™ := [9p™]~1.

9@+ = y@+D Ly in &2,
%atv(n+l) = (b™ -V 1,))b@ D — V1, QD in £2,
J(n)]f)/o(q(n)) 8tq("+1) + div j(n)v(n-H) =0 in .Q,
(0, + curl gopeurl g)b@HD = (B™ -V 10, )o@+ —p@div 4,y v@ D in @2, (5.2.114)
div /f(n)b(n-H) =0 in £2,
g®th =0, pnt) =9 on I,

(D et pt) Dy o0 = (1d, vo, bo, qo)-

Here A®™ := (37")~! and the correction term v ™ is determined by (5.2.2) with n = n™, v =

v® A = A™ in that equation. What we need to verify are

1. System (5.2.114) has a (unique) solution (n* 1D, p@+D p+1D) 41+ (i 3 suitable function

space).

2. The solution of (5.2.114) satifies an energy estimate uniformly in 7.
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3. The approximate solutions {(7™, v p®, q(”))}ffzo converge strongly.

o

We denote (™, v® p® g™y by (7, 8,b,G), and (n* D, p@+D p+D G@+Dy by (n v, b, q)

for the simplicity of notations. Then (5.2.114)) becomes

In=v+ Jf in £2,
pof—la,u=(b°-v§)b—vig, Q=g+ b2 ing,
TR N :
0 diq + dlvgv = Oo ) in £2,
3:b + curlocurleb = (b - Vo)v — bdiveu, in 2, (5.2.115)
A A A A
divib =0 in £2,
q = O, b = 0 on F,

(’7» v, b, q)'{t=0} = (Idv U(),b(), 610)

The divergence-free condition for b is still a constraint for initial data and b still satisfies a heat equation.

5.2.2.1 A priori estimates of the linearized approximation system

We first prove the a priori estimate of the linearized system (5.2.114) (or equivalently (5.2.115)) because
such a priori bound helps us to choose a suitable function space when proving the existence of the

linearized system by fixed-point argument.

Define the energy functional for (n*+1 p@+D pe+1) o041 by

4
2
EnFV(TY .= (@D (Ty £ O (T) L WD (T) 1 Z H g4k ((b(n) . Vg(m)b("ﬂ))Hk,
=0

(5.2.116)
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where

4 4 4
2 2 2 2

(n+1) :H (n+1)H H 4—k, (n+1) H H 4—k (n+1)H H 4—k (n+1)H
¢ (T) :=|n 4—1—]}_0 ;" v k+k2_0 d;,7“b k+k2_0 9, "q .

(5.2.117)
T 2 2
HO(T) :=/ / ‘8?19(”“)‘ dydt + Ha;‘b@“)Hl (5.2.118)
0 2
(n+1) : 4k(+1)2 5(+1)2
werD(ry =3 va)a,— g Hk + Hatq n HO (5.2.119)
k=0

The conclusion is

Proposition 5.2.5. Suppose (n'*+1D, v+ p0r+1) 401+ gatisfies (5.2.114), then there exists Ty >

0 sufficiently small, independent of . such that

sup EMTD(@) < Py. (5.2.120)

0<t<Ty
Remark 5.2.6. Compared with & in (5.2.3), we find that there are extra terms in W ®#+1(T'). We note
that these extra terms are not needed in the uniform-in-n a priori estimates bacause the elliptic estimates
of d,q helps us reduce ||3;‘_kq||k+1 to the L2-norm of 37¢ and Vzafq, and ||V§q||4 is not needed.
However, these terms are needed when we verify the fixed-point argument in the construction of
the solution to (5.2.1T3): The H*-norm of v has to be controlled by
T
oT) = o+ [ 1ol

and thus the H*-norm of V :IQ is definitely needed.

5.2.2.2 Estimates of the frozen coefficients

We prove Proposition [5.2.5|by induction on n. When n = —1, 0, it auotmatically holds for the trivial
solution. Suppose the energy bound (5.2.120) holds for all £® with 1 < k < n. Then we have the

following estimates for /i) , 73 .; .
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Lemma 5.2.7. Let T € (0, 7;). Then there exists some ¢ € (0, 1) sufficiently small and constant

C > 1 such that

e L(0. T HY(R2)), 94 € LE(0. T H*7/(2)), V1 <1 <4 (5.2.121)

17 =13 + 17 = Ul + I1d = Alls + [1d = Als < e: (52.122)

3,7 € L0, T): H*(2)), 8:t1H e L°(0.T): H/(2)), V1<l <4 (5.2.123)

J.0,J € ([0, T); H3(2)), 011 J e L®(0.T]; H*'(2)). V1< <4; (5.2.124)
1/C 5}1;(51),;)0}1 <c ¥ }Ijo(qo),po}l e L°(0. T): H5(2)), V1 <1 <5.

(5.2.125)

Proof. (5.2.121) follows in the same way as Lemma J = det[d%] and A = [35]"" prove

(5.2.123)) and (5.2.124)) because the elements are multilinear functions of 87. The smallness of J — 1

and Id— A follows from J = det[37] and
o T o T o o
Id—A4= —/ 0:A = / A @ +y@ ) Ade
0 0
and choosing ¢ (depending on 7} ) sufficiently small. (5.2.125)) is similarly proven. O
5.2.2.3 Control of £*+D

The control of £#*1 follows nearly in the same way as the nonlinear functional &, (T') except the

extra term ||V <4 |l4 and boundary integral in the tangential estimates.
Step 1: Estimates of magnetic field and Lorentz force

Since b = 0 on the boundary and div ;’Ib = 0in £2, we are able to directly mimic the proof in
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Section[5.2.1.2]to get the analogues of (5.2.23)-(5.2.29):
4
2|
and an analogue of (5.2.31)
4
Y|

T
*+kb(T) HZ <Py + P"I(T)) / PV (0))dt + eH™D(T) (5.2.126)
0

CRCRADIN

(5.2.127)
2 T
SIBIE [V5tb | + PEUHO@) + o+ P [ PE @) ar
0
Step 2: Div-Curl estimates of v

By (3.2.122), we know the div-curl estimates follow in the same way as Section[5.2.1.3}5.2.1.3]

For 1 < k < 4, we have

1 o1 2 o 2 T
5/ 0] ‘curlz@‘;_kv(l)‘ dy| <eT sup ‘8;‘((b-Va)b)H +/ PV (1)) dr.
2 A 0 0<t<T A k 0
(5.2.128)
v a4k <o |94k H ’ 5—k H
Hdlvga, ka_l Selat o + o7 e _ +LoT (5.2.129)
a;‘—kv3‘k_l/2 < Hé"a;‘—kaO + div 9% R o]y (5.2.130)
4 T
‘a;‘—kan 5Z‘af—kv(‘k 1+7>o+/ P () dr + L.O.T, (5.2.131)
k=1 - 0

Step 3: Space-Time tangential estimates

Let® = dord . When ©* contains at least one time derivative, we are able to directly ocmmute
°~ o o
A with ©* because 9,7 has the same regularity as 7, see Lemma Since the boundary condition
of (3.2.113) is the same as (5.2.1)), we are able to mimic the proof of the nonlinear functional. The

result is
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3 2 2
ak q4—k ak q4—k
S el ],

3 2
s (el

5 T
a;‘"‘qu) +Po + P(FV(T)) / PED@ydr (52132)
0

2
‘dt
0

4 T _ _
+ akg)/o Ha"a‘;—" (b -V ;)b) Hz + H 594 k.4

Step 4: Tangential spatial derivative estimates

This part contains a non-trivial boundary integral. In the nonlinear estimates, that boundary term
together with Taylor sign condition gives the boundary part of nonlinear functional E, (7). However,
here we no longer need Taylor sign condition. Instead, we can sacrifise 1/« to directly control the

boundary integral by using the mollifier property, because the derivative loss is only tangential.

Similarly as in Section[5.2.1.3] we rewrite the equation in terms of Alinhac good unknonws. Define

the Alinhac good unknowns of v, Q in (3.2.113) by

V=0 hAv—0 A% Veu, Q=9 20-0205- V.0
Then we take 52Z in the second equation of (5.2.115)
o1 o o o
pod 0:V+ V:IQ =F (5.2.133)

where

o—1 o—1

F=0Ah- Ve)b) + lpo] A + pod at(ﬁzz%vzv) +E(0).

The equation is subjected to

o 7o °~3ﬂ
Q=-9higAd (InQ) on T, (5.2.134)
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and

Ve - V= 52Z(divz~v) —C%uy) in Q. (5.2.135)

Multiplying JV and take space-time integral, we have
1 T T o o o T o o
—/ 00 =—/ fJVzQ-dedt—i—/ /F-dedt
2Je 0 0o Ja A4 0o Ja
T o —2—o 03B o3, T QLo—n—
=/ J(NQ)d Biigd A Vo,der+/ JQ? A(diviv) dy dr
0 0 (5.2.136)
T o
—/ / QC(v)dydt
0 2

= LI() + LI] + LJ1

o 2
a,V(z)( dy

Mimicing the estimates (5.2.68)-(5.2.71T), we are able to control L/; as

1 [ TRG) e 2 [T T o 2
LIlN——/ (‘I)‘aqu‘ dy +s/ HazAa,q‘ dt
2Ja  po 0 0 0
(5.2.137)
T
+7>o+/ P V(1)) dr.
0
For the boundary integral LI, we integral 3'/2 by parts to get
T o S 03B o3a
L10=[ JONQ)T Bigd A V,dSdt
0
T_ o 2o o~3/3 o3a\ _ °
:/ 81/2(J(8NQ)8 AijgA A )8_1/2Vadet
0
T o o 2 2o o o~3ﬂ o 3w 2o °
< IOl |JA| [T EG INO)JA A EWN; vl
<[ (lovo~ 73] [FET] | +|oxo) TR,

=2—2 o
By the mollifier property |3 A7jly/2 S k7 1|7l7/2 and H'/2(T?) < L*(T?), we are able to control
LI, by

LIy S =P (1Oll3. vl I7]l4) - (5.2.138)

R | =

This together with (5.2.138) gives the tangential spatial estimates
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1 = |2 1 [ JR(]) |=4 |2
s [ pofitoly a5 [ B
(5.2.139)
T T
57>o+/ P(e(”+1)(t))dt+8/ ‘
0 0

75 (6w« [PBnal] o

Step 5: Elliptic estimates of ¢

The control of |07 % ¢|| is the same as Section|5.2.1.4]so we omit the proof. However, we still

Ve . 3.
need to control || <4 ll+. By Lemma , we have

° =2 ° 1
IVedlla S PATIDAA sqlls + 197llallglla) < PARIDIA gl + ;P(e("ﬂ)(T)) (5.2.140)

Taking div 5 in the second equation of (5.2.113), we get the wave equation of ¢

JR'(§)
Po

7q — Asq

o o

p— . o —_ 1 o . o o
=b A~b+R8tA auva dive, (b V N) b+ |V ~b|

TR (§)
Po

° © R'(q)
((V;TQ —(b-V2)b)- V:Iq) + (J .

+

- }R"(Q)Po) (3:9)°

=b-Aob .
i +w00

So ||A:Iq||3 can be reduced to ||b - A;Ib”3 + ||lwoo||3. Then ”A:IbHS can again be reduced to the

terms with no more than 4 derivatives by the heat equation
0 b—_Abe = E' Vo U—l’jd'VONU. 5.2.142
! A ( A) ! A ( )

Therefore we are able to reduce ||V <4 |l4 to the finished estimates by sacrifising a 1/« with the help of

mollifier.
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Combining (5.2.140) with (5.2.100)-(5.2.102) (but replacing 4 by A), we get

|7:41,

_ qu s (1+ )(P(e(n+1)(T))+ Hv 29 qH + [%q], ) (5.2.143)

Step 6: Common control of higher order heat and wave equation

We differentiate 9% in (5.2.141) and (5.2.142) to get

5h Aot — 9% (5. Vo Vy — hdive 4 Ao
036 — Asdth = 0F (- Ve)v = bdivev) + [3, Aslb

TR o TR
=(b- Ve)itv +b=—L @) ys g+ [0t as]b+[o8b-Ve]v+ | 0t b @ 15,4 52144)
4 Po
= hss
and
TR@) ., .
35 — A od
Po 4 hell
TR
=b - Aedth + dfwo + [ A, o]+ [ot. AE] g+ @) g3 | o2q.
Then plug the heat equation (5.2.144) Aeh = 37b — hss to get
}R/(Q) 6 4
3% — Aed
Po 4 A 4
IR (5.2.145)
=b - (93b — hss) + dfwo + [b- As, o] + [0t A:I] g+ | ZR@D 5ol a2,

=:Ws5
Similarly as in Section[5.2.1.4] we are able to get a common control of the energy functional of
these 2 equations. Define

WO = o3q]o + | Vsota

’
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then we have the analogue of (5.2.110)

(H(n+l)(T) + W(n-l—l)(T)) _ (H(n+1)(0) + W(n-i—l)(o))
. (5.2.146)
<e (H("+1>(T) + VT/<"+1)(T)) + f H (@) + WD (1) + PV (1)) dr
0

Step 7: Finalizing the a priori estimates

Summing up (5.2.126), (5.2.127), (5.2.128), (5.2.129), (5.2.130), (5.2-131), (5.2.132), (5.2.139),
(5-2.143) and (5.2.146)), we get

T
£ _ g0t DO < ot DT) 4 p (o7 +/ PE™D (1)) dr.
0
By Gronwall inequality, we can find some 7, > 0 independent of 7, such that
sup £V (1) < P(ETTV(0) < Po.
0<t<Ty

This finalizes the proof of Proposition[5.2.3]

5.2.2.4 Well-posedness of the linearized approximation system

This part presents a fixed-point argument to solve the linearized system (5.2.113))

n=v+ 1; in £2,
o1 o
pod 8,v=(b-V;{)b—V§Q, Q=q+%|b|2 in £2,
IR@ . + divav =0 in 2,
d:b + curlocurleh = (1; -Vo)v — bodinv, in £2,
A A A A
diV;Ib =0 in .Q,
q = O, bhb=0 on F,
(1, v.b,9)|t=03 = (Id, vo, bo. q0).

Define the norm | - ||xr by

i

=Y Y |

m=0k+Il=m
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and a Banach space on [0, T'] x £2

(E,U),h,]’[) = (Id’ vabO»qO) s ”(S?wvh’n)”X = M

X(M,T) := {(";‘, w, h, )
t=0

where

16w, )l = | (50,6 w,h Vehom o, Vo) |+ 11050

t

2
L7L%

Next we define the solution map

Z:X(M,T) — X(M,T)

(E? w’ h? T[) = (77» U, b’ Q)
as follows:

1. Define n by 9,7 = w + 1; with n(0) =Id

o—1

2. Define v by poJ d,v := (l; . V;I)h — V:I(n + %|h|2). with v(0) = vg

3. Define b, g by the coupled system of heat equation and wave equation

d:b + curlocurloh = (bO -Vo)v — bodivzv
A A A A

diveb =0 (5.2.147)
blr =0
b(0) = by

and

(9 2 — o — o l 2 —_ Vo 0- o
R@0% = dga = 05 G1oP) [il,ié’(b Vg_)lb

~ ~ EL_I 2 o
+p0d A uve+A (0] )dive—J 3r(JR'(CI))3tq (5.2.148)

qlr =0,
(9(0),9:9(0)) = (g0.91).

We need to verify the following things to prove the existence and uniqueness of the system (5.2.113).

1. The image of X(M, T') under & still lies in X(M, T).
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2. & is a contraction on X(M, T).

We first prove & is a self-mapping of X(M, T'). The velocity is directly controlled by
o—1

7 e (F LIPS
0oJ 8,v._(b-V/I)h Vg(n+§|h| ).

T 2
13502 <[8E*u ()2 + /0

o 1
4—k Vo R vAR - 2
94 ((b Velh = Ve(r + S|h ))

k
(5.2.149)

|

2 2
<103 Fu(0)|2 |ver| , ar
st + [ |vs], +[var],

And thus the bound for ||0;7||xs and ||n||x4+ directly follows.

)Vzh
A

Next we control ||b||xa by elliptic estimates as in Section[5.2.1.2] For example
I1blls ~ 192515 < PAIls) (12 3512 + 13151815
Then invoking A;{b = 0;b— (b0 . V;{)v + bodiviv to get

15114 < Plll3) ((Ilbllz + 1bl2)0vlis + ||5ﬁ||3||b||3) :

Combining the estimates of v above, we are able to write

T
< )97 . o
1blla < PRI 0713115113 + [[v(0)]Ix3 +/0 vah‘ o va” Hx3 dr

Then one can repeat the same steps for ||b]3 to get

Iblla < Po + P(||?,||3)/OT [ven| , +|ver]| , ar (5.2.150)

Similar estimates hold for ||0¥ || for 1 < k < 4, while ||3%b||2 is again reduced to fOT 03512 dr as

before.

One can mimic the proof above to estimate the space-time derivative of V :Ib or d;b. One exception
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is |V ;ib |4, for which we have to use the mollifier property.

o 1 o
1V2blle S Pl (||A3b||3 - —||n||4||b||4) :
K
Again, invoking the heat equation and the X* estimates of v, we get

T
Ple s Po+ Pl | |93+ |73
1950 S Po+ P [ |93n], + V5], o

Similar estimates holds for the space-time derivatives except [|955]|;2,2 and ||V 7b|lo.
rhx A

Veor
A

é; HV;’;a?_kai <Py + P(|f]l4) /OT P (”V:{hHX‘t : X4) dr. (5.2.151)

Analogously, we can apply the elliptic estimates and wave equation to ¢ in order to reduce the

estimates to the full time derivatives. For example

lglls ~ 12qls < P(lils) (14 24ll2 + 1371 la1ls
Invoking the wave equation and heat equation
Azq=02qg—Az(1/2b]*) +--- = 02g — 0;b — (b-V:I)v +bdiv§v 4

we are able to reduce || A R |2 to |82 ||2 plus the terms with < 3 derivatives. Repeat the steps above,

we are able to reduce ||¢||xs to [|3%¢]lo and [|d3¢]|1. Similarly,

1Vsqle < Pl (14 sals + 6 Iillallale)

Therefore, the control of ||V;Iq||x4 and ||d,¢q||x+ are reduced to [|37¢||o and ||V38;‘q||0.

The final step is to seek for a common control of 4-th order time-differetiated heat and wave
equations. The proof is the same as in Section[5.2.1.4]and step 6 in Section[5.2.2.3] The only thing we
would like to remark here is that there are terms like 93 v and 907 v appearing in the time integral of the

source term. In this case, we can invoke the equation of v to eliminate one time derivative and reduce
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to the X* norm of V ;7 and (b - Ve)h.
A

T
//|8fb|2dydt+(HVo~8fb
0o Je A
T s, 2 T s
e[ [ ol avar+ [P (150l

(i

By choosing ¢ > 0 sufficiently small, we can absorb the e-term to LHS.

ol

(v,V%b,b,atq,q,V§q>HX4) dt (5:2.152)

2 2
|+ 1%alo+ [ vaota

25 ||atn||x4) dt

Summarizing these steps above, we find that, there exists some 7, > 0 sufficiently small and M

chosen suitably large, such that

H (n, d:n, b, V;Ib, q,0:9, V;Iq)

< 00. (5.2.153)

x4

Next we prove & is a contraction. Pick any (§;, w;, h;, ;) = (i, v;, b;,q;) and define [ f] :=
f1 — f2. Then by the linearity of the equations above, we know ([n], [v], [], [¢]) satisfies the same
equation with (§, w, i, ) replaced by ([€], [w], [1], [=]) and zero initial data. Thus ([n], [v], [b], [¢])

satisfies

T
Il [l (6], [gDlIx S /0 P (|I([]. [w]. [A], [=DlIx) dz.
Choosing a suitably small 7, > 0 such that

IC[n]. [vl. [B). [gDlIx = % I1[&], [w], [A], [xDx -

we know Z is indeed a contraction. By Contraction Mapping Theorem, & has a unique fixed point

(n,v, b, q), and thus the local existence and uniqueness of the solution to the linearized equation

(5.2.1T15) is established.
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5.2.2.5 Tteration to the nonlinear approximation system

For each 71, we have already established the local existence and uniqueness of solution (@ +1 y®+1D pr+D) ,@+1))

to the n-th linearized approximation system

atn(n+l) — v(n+1) + 1//(”) in £2,
%8”)(”“) = (b™. Va("))b(n+1) —Vim Q("H), in £2,
J(n)lz’o(q(n)) atq(n+1) + div /I(n)v(nJrl) =0 in 2,
(0 + curl gomeurl z4,)b@FY = (B .V )@Y — pMdiy 7, v@FD in @,
div o) bt =0 in £2,
q(n+1) =0, pn+) — o on
(n(n-&-l),v(n+l)7b(n+l),q(n+l))|{t=0} = (Id, vo, bo. q0).

This part shows the Picard-type iteration of the sequence {(7™,v®,h®™ ¢™)},cn which gives
a subsequential limit (n, v, b, q) converging in H3-norm. Such limit (5, v, b, ¢) exactly solves the
nonlinear k-approximation problem (5.2.1).

Define [7]™ = p@+D) — y  [p]0) = @D _ @) [p)) = D) _ p) [ =
gD — g™ and [a]® = o™ — gD [4]® = 4@ _ 40D [y]@) .= y ) _ =D Then
these quantities satisfy the following system consisting of:

The equation of momentum

pod:[v]™ = (b(") . VA(m) [b]™ — Vi [0]™
(5.2.154)
+ b Viggmb™ + [p] "7V Vim—nb(”) — Vim Q™.

Continuity equation:
r®,[g]™ + div g [V]™ = —div | g100 0™ + [r]™ 0™, (5.2.155)

o (n)
here r®™ :=J  R'(¢™)/po.
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Equation of magnetic field:

3101 — A oy [D]™ =(0™ - V 36)[v]™ = bW div 4, [V]™
+ b(n) . V[A’](n) U(n) — b(n)dIV [A](n)v(n)

+ [b](n_l) . Vg(n—l)v(n) - [b](n_l)diV c,N(n—l)'U(n)
A A

+ le /I(y,) (V[/I](n)b(n)> + le [/I](”) (vz(nl)b(’l)) .

Divergence-free condition for b:
div gon [6]™ = =div g0 b™.
The initial data of ([1], [v], [b], [¢]) = (0,0, 0, 0). The boundary conditions are
[£1™ = 0.1 = 0.
Define the energy functional

37V g0 [D]™

3
[£1°(T) := [™(T) + [H™(T) + [W]*U(T) + 3
k=0

where

3
a0 = (o

k=0

R Ca Gl W ER W

2
)’

T
[H]"™(T) := /0 |}a;‘[b]"||§ dr +

2
b
0

07V 1o 61|

2 2
W) = [otal ™|+ 979 g0l

The conclusion is
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(5.2.157)

(5.2.158)

(5.2.159)

(5.2.160)
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Proposition 5.2.8. For n sufficiently large and 7, > 0 suitably small, we have that VT € [0, T]
1
[T < 5 (IE1"0(@) + [E)72(D)).
O

By Proposition , we know [¢]™ < zln P (Py), and thus yields the limit for each fixed ¥ > 0:

nver: rongl
(n(”), v("),b(”),q(”)> w) (n(x),v(k),b(k),q(k)) asn — co.

Such limit exactly solves the nonlinear approximation system|[5.2.1]

Corollary 5.2.9. The limit (n(x), v(x), b(k), g(k)) gotten in Proposition is the unique strong

solution to the nonlinear approximation system (3.2.1)) and satisfies the energy estimates in [0, 7]

sup  Ec(T) <2 (Ivoll + 1ol + llgoll3) -
0<T<Ty

where

4
BT) :=F(T) + A1) + WD) + Y |87 (006) - V b)) (52.163)

k=0

and

4 4 4
(@) =2+ \ 9+ (i) Hi +3 ‘ 3+ b (k) Hi + 3 [t *q00 Hi (5.2.164)
k=0 k=0 k=0
T
H.(T) :=/ / 830> dy dr + |92b(0)|; (5.2.165)
0 2
7 : 4—k 2 5 2
W)=Y H V9% g () Hk + [03q00)]2 . (5.2.166)
k=0

]

The proof process is nearly the same as in the a priori estimates part, so we do not write all details

here but still state the main steps.
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Step 1: Correction Terms

First we estimate the coefficients and correction terms.

[¥]® satisfies —A[y]® = 0 with the boundary condition
W™ =A""P (Z[n]‘ﬂ"‘”fi(")"ﬂﬁmﬁw") + g VAW E; A2y ™
i gn;}n—l)g(n—l)iﬂgiA%[v](n—l) _ZAi[n];;n—l)A(n)iﬁgiv(n)
- B AT B A DA DT D)
By the standard elliptic estimates, we have the control for [y/])
1113 S 1125 S Po (N1 ~213 + 11"~ 213 + 1LA13) (5:2.167)

On the other hand, we have

T
[a] ™" (T) = / 9, (@™my _ q@=Diuvy gy
0

T
= _/(; [a](")“"aﬁamg’)a(”)ﬂ" +a(n—l)Myaﬂ8t[n]§/n—1)a(n)/3v +Cl("_l)””aﬁamg”_l)[a](")ﬂv,
which gives
T
||[Cl](n)(T)||2 5770/0 ”[a](")(t)H%(H[v](”_l)||3 + ||[1/f](n_1)||3)) dar. (52.168)
Therefore we get

sup Ial™3 < PoT? (Il[a]("), [al® Vg2 + 0], 0] "2, [W](n_2)||i?oH3) . (5.2.169)
0,

and the bound for [n] via 3, [7]® = [v]® + [y]®:

sup 113 S PoT? (1@ ™12 0w o + N1, 1D, 11020 15 (5.2.170)
0,
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Similar as in Lemma(5.2.4} we control the time derivatives of [5] and [{]

110113 SPo (Il 13 + 10,017 ~213 + 111~ 1"~ 13) (52.171)
118291 (12 <Po (||[a1‘"> 13 + 1120] =D )12 + [1[3,0] "V )3 + 1 [v] D, [n]‘"-“n%) (5.2.172)
110391113 <Po(Illal™ 113 + N[020v] =111} + 119701~V |13

+ 1180113 + ], [~ )13) (5.2.173)

18 ™13 SPoT? (Il[a](”), (801, (801D 7o 2 + 101 ™[]0, )@ Ili?oHs)

(5.2.174)
170115 SPoT2 (11970117 e 1 + 1l ™ 13,010V oo 2
IO TV e rs) (5.2.175)
17 I <Po(l87 1™ Z o0 1 + 1] ™. 190] ™D F e 2
+ 11D, 01V o 13)- (5.2.176)

13¢m 13 5730(||[3?v]("’"_1)||2?oL§ + 201D e 1+ @], 18:0] 7D e

(5.2.177)
IR0, s ) (5.2.178)
Step 2: Magnetic field and Lorentz force

The first step is still the elliptic estimates of [5]"). We show an example of ||[5]"||5:

o(n) —o
1B10 < PR 12) (12 2 11+ PABRIIBI]12)
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One can still use the heat equation to eliminate the Laplacian terms, but now we have two
o
more higher order terms when “[-]" falls on div s or A. Such terms can be controlled directly by

Er=1nn+1) and thus by Po. In specific, such terms are

Jaiv g (b )] +

diV [A'](n) (V:,N(n—l)b(n))
A 1

The leading order part in these two terms can be written as [A]® times the top order derivatives (4-th

order) of »™ which has been controlled uniformly in 7 in Proposition For example,

o o (5], 5 80

H p®
2

4X...§fp0 H[/I](n)

2

Therefore, the control of []™ can be controlled in the same manner as before. Similar estimates

hold for 9,[b]™. The control of || 92[b]|l1 and |83 [b]]lo is reduced to the estimates of heat equation
(5.2.156). The proof is the same as Section so we omit it here.

The Lorentz force is controlled in a silimar way. For example,

g(n) —o(n)
52 (13718 (8.0 01

Vg 1 ai

oo

-
2

y

We again use the heat equation (5.2.156) to eliminate the Laplacian term, and the extra terms can be

3

controlled in the same way as above. (Note that |V :Ib |l4 is controlled in Proposition . Therefore,

| V500 1

ST 1A

2

Similar estimates hold for the time derivatives of Lorentz force.
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Step 3: Div-Curl estimates

The control of [v]" and [¢]™ also follows the same way as Section [5.2.1.3] The equation of
curl g0 [v]™ is
podscurl A(n)[v](n) =curl ) ((b(n) : V&(n))[b](n)) + [poat,curl A(n)] [U](n)

+ curl g ([b](”_l) . V[i(n—l)b(n) + p=D. V[g]m)b(") — Vizm o™
(5.2.179)

The first two terms in the second line is controlled in the same way as before(just consider curl () as

the covariant derivative Vi ). Also

Jeur zr (V0 0) | S NP 21 Q@ 14P0 < Nl 12,

Therefore,

lcurl [v]™2 < e[|[P]™ )13 + Pe(Po)T? [su}o][S]("W—“(z).
0,

And similarly

leurl [3,0]™ |12 < &[[[9,v]™I3 + Pe(Po)T? [su;]m‘")’("—”(r),
0,

Jeurl 70113 5 el 1} + PePo)T? sup 1™ )
0,

Invoking (5.2.153)), we are still able to reduce that control to d3v and 33¢.

Step 4: Space-time tangential estimates
Let 3 = 929,, 002, 83. Follwing Section|[5.2.1.3 we derive the estimates

2 _ 2 T
o+ Ha3—ka’;[q]<"> s / PEI™- =D (1)) 4. (5.2.180)
0

23: AT
k=1
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Step 5: Spatial tangential estimates
We adopt the same method as in Section[5.2.1.3] For each n, we define the Alinhac good unknowns by
VD — Gyt Gy @D QD Z et _G3pm g o0 (52.181)
Their difference is denoted by
[V]®) .= yotD _y@ Q) .= QD _ .
Similarly as in Section[5.2.1.3] we can derive the analogue of (5.2.61) as
P09 VI + V 4 [QI™ = =V} 330n Q™ + F®, (5.2.182)
subject to the boundary condition

QI”Ir = - (@7 AP 5,01 + B[ily " AP (95 ) + 37 VAP (5 ).
(5.2.183)
and

Vi - V1% = =V o0 -V + G, (5.2.184)
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where

O = [po, 3210, [0] " + 3% (6 -V gun) 6™ + 6P - Vg1 6™ + (67D -V 1))
+ pody (B3l D ACHE g0t D 4 33D A1, 00D L BT ARy, [u] (Y )
+ [/;](n)uﬁaﬂ(g(n)yaayQ(n+1))53ﬁ/(gn) +/f(n—l)uﬁ3M(M](n)ya8yQ(n+1))53ﬁ/(gn)
+ g(n—l)uﬂau(g(n—l)yaay[Q](n))53ﬁgl) +/[(n—l)uﬁ3M([/[](n)ya3yh(n))53[ﬁ]‘gn—l)
- [52, MIQLE /[(n)yag] by 0, 00D — [527 A=DuB g](n)yag] dy 750, 0D
_ [52, A(n—l)uﬂg(n—l)yag] 3y[ﬁ]%”_l)3uQ(”+l) _ [52’/1(11—1)//4‘3/1("—1)}/&5] ayi;g"‘)au[Q](”)
_ [53’ [/I](n);wt’ aMQ(n-H)] _ [53%@—1)%, 3M[Q](n)]
and
G™ = 33(div A [v]™ — div m(,,)v(”))
_ :52’ [A](n)uﬂg(n)yag] ayﬁgt)auvén+l) _ [52,401—1)“/9 [g](n)yag] ayﬁl(gn)aﬂvén+l)

_ 52,14(11—1)“/3/{(11—1))/0!5] 8y[ﬁ]l(3"_1)auv§l”+l)

- :52’ A=Dup /;(n)yag] 0,700, [])

_ —53’ [A](n)ua’ auvén-i-l)] _ [53’ A(n—l)/wz’ 8u[v]((]tn):|
+ [A’](n)u,ﬂ aM(A'(n)yotayvo(ln+l))§3ﬁgl) + A’(n—l),uﬂ a'u([A'](n)yaayvén+l))53ﬁgl)

+ /[(nfl)uﬁau(ff(nfl)yaay[v]((xn))§3,~7}(6") + /[(n*l)uﬁau([g](n)yaayvén))?[ﬁ]l(gn—l)_
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Multiplying [V]® in (5.2.182)) and integrate by parts, we get

14 v

2dt

2

0 /_Q[Q](n) (V,i<n> V] — 9, A1 [V]f;”) dy

+ [ = 950,07 - 1 @y
- [l Ay as.

Similarly as in Section [5.2.1.3] we are able to control the first three terms by using [Q] =

[q] + 3[16/%]

_1d 311

2
S , T PoPE1™ V().

For the boundary term, we integrate 3'/2 by parts as in (5.2.138) to get
- [l i as
r
— / 83[Q](n)/1(n)3a[v]‘(¥n) (53;}/(;1)4@)3;3 +53[ﬁ]/(3n—1)1§(n)3ﬂ + 53;}[(;—1)[14]@)35)
r

1 -
<qvi®. (2 ‘ (n—l)‘ Y.
S IVl g-os (KPo [n] ,s T |1A1]
This finalizes the tangential estimates.

Step 6: Elliptic estimates of [0,4]"

Since [¢]® vanishes on the boundary, we can still use Lemma to reduce the spatial derivative

to time derivative by replacing the Laplacian term with 32 plus source terms. We only list the wave
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equation of [¢]™ and omit the computation.
S 421 1) )
=J R(g™)3al™ — A jonla]™

1

o (n)
= 3840 [P = div g0 (6 V311 + 0y (J R’<q<">)) AT

(5.2.185)
+div g (Vion 0™ = 0™ - Vigian)b® = (51" - Vg1))6™)
- (div o™ + [fR/(q)r")atq(")) :

Note that div () ((b(”) -V g(,,))[b](”)) only contains first order derivative of [b]" because of the

divergence-free condition on b,

Step 7: Common control of heat and wave equations

Differentiate 97 in (5.2.156) and (5.2.185), we are able to get similar estimates of [W]®*+1) and H ®*+1)

as in Section We omit the proof here.

Finally, we conclude that
10D S PoT? (€17 + [€]77),

where we pick T} suitably small such that the coefficient < 1/4. This ends the proof of Proposition

[5.2.8]and Corollary [5.2.9]

5.2.3 Local well-posedness of the original system

As stated in Corollary [5.2.9] the local well-posedness of the nonlinear approximation system (5.2.1)
is established in an k-dependent time interval [0, 7, ]. Combining the uniform-in-« nonlinear a priori
estimates Proposition@, we know that there exists a xk-independent time 77 > 0, such that the local

existence of the solution (7, v, b, ¢) to the original equation (2.3.1)) holds in [0, 7] by letting ¥ — 0. It

210



remains to prove the uniqueness of the solution. Let us recall the original equation first

Ihn=v in £2,
pod 1;v = (b-Va)b—V4Q, Q =q+3b* ing,
IRD g + div v =0 in 2,
d:b + curl gcurl 4b = (b - V4)v — bdiv 4, in £2,
div,b =0 in £2,
q=0,b=0, —(OnQ)|1=0=¢co>0 onl,
(1. v, b, @) r=0y = (1d, vo, Do, o).

Suppose (', vi.b", '), i = 1,2 solves (2.3.1) with the same initial data (Id, vg, bg, go). Then we

consider the system of ([n], [v], [0], [¢]) by setting [ f] := f! — f2. Then we have

The flow map:

d¢[n] = [v].

The momentum equation:
po(J )13, [v] = (b1 V)bl = Va1 [Q] = polJ ~113,v% + (b' - Vig)b® + [b] - Vy2b? — Vi 0.

The continuity equation:

JR'(q)

JlRl(ql)
0

at[Q] + div al [U] = [ :| 8,612 —div [a]v2 in 2.

The equation of magnetic field:

3[b] — A gi (D] =(b" - Va1)[v] = bdiv 4[]
+ div g1 (Vigh?) + div (4] (V,2%)
+ (b" - Vig)v? + ([b] - V,2)0?
— bldiv [a]v2 — [p]div 202,
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and

div 41 [p] = —div [4b%.
The boundary conditions:
[q] =0, [p] =0, —(InQ)1and — (In Q)2]r=0 = co > 0,

and zero initial data.

Define the energy functional

[E)CT) += [el(T) + [HI(T) + WIT) + |27 (- V) 1)

where

3 (Jal; + [+

[0 = 1013 + | 4Bl

37 *[q] ”Z) :

T
= [ [ el ava + ).
WIT) = ||83lal]5 + | 921a]];

The energy estimate of [£] is almost the same as &, except that [Q] no longer satisfies Taylor sign

condition. So what we need to do is to investigate the boundary integral

| i@ .,
r
where we define the Alinhac good unknowns
Vi — 52vi _52),’[ . Vaivi, Qi — 52Q[ _527]i . Vai Qi,
and

[VI:=V!'—-V2 [Q]:=Q'-Q~
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The boundary terms then becomes
[ Qi) Vi = - [ a:101 1 @)* (@) Vu o
r r

- / (On 0)' @[5 @) + P la*) (@) V] dS
r

<_1d

S—3 5 | v i@ Tl as

- /F @n 0)' @) 8]y (@ nplal*? 8,0 — 90 (@)*PBu[v]e) (@) dS

- / (On 0)' @[5 @) + Pipla*) @) V] dS
r

d _
< _CEOE /F [(a')**3*[n]e|g dS + P(initial data) P([E]()).

Here in the second step we use the precise formula of [V], and in the third step we use Taylor sign

condition for Q!. Thus similarly we get

To
sup [£](¢) < initial data + / P([E](2)) dt.
t€[0,T4] 0

Since the initial data of the system of ([n], [v], [b], [¢]) is O, we know [E](z) = O for all ¢ € [0, T1].
Conclusively, the local well-posedness of (2.3.T)) is established in Lagrangian coordinates with Sobolev

initial data.

5.2.4 The Incompressible limit

The incompressible limit requires the energy estimate for (1, v, b, ¢) that is uniform in the sound speed,

or equivalently, does not rely on 1/R’(q). The problem arises in the control of the wave equation

R'(q)0:q — Dag = -+,
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and its time differentiatied versions (cf. Section [5.2.1.4). Note that LHS only gives the energy
of \/R’_(q)atq but the RHS requires the control of d;q. To avoid the loss of weight function, we
can add R’(g) in the control of full time derivatives. Rigorously speaking, we first parametrize the
reciprocal of the sound speed to be & := R’(g)|gr=1. Under this setting, we denote the unknowns to be
(v®.b*,q°, R®) and lim, o, R*(p®) = 1. Then, for (2.3.1)) with the initial data (v, bo. p. gg) whose

1

sound speed is ¢, we define the weighted energy to be

I ((b® - Vae) b°) (5.2.186)

2
k ’

4
EX(T) 1= e(T) + HAT) + W (T) + Y |
k=0

where
(T) o= Il + [340 -]+ 24: oo |+ VR Hb | + ot
=AMl n 0 t k q-)o; X r 4 X
2
+ | VR @t |+ oit | + [ R @)t (5.2.187)
r 2 2
H*(T) :=/ /|8be| dydr + [[976°|7 . (5.2.188)
0 2

2
WET) = | R’(qs)aqunﬁ + H VR (q¢)dtq* 1 (5.2.189)

Following the same method as in Section[5.2.1| we can prove that: there exists some 7] > 0, such that

the (n°, v®, b°, ¢®) in [0, T]] satisfying the following estimates

sup E°(T) < P ([lvolla- 1bolls - lIgolla) - (5.2.190)
0<T<T|

Let (vo, bo) be the divergence-free vector fields with bo| = 0. Let q be the solution to
1
Ao + 5|b0|2) = —0,V3davh + 3,05 0ably, qolr =0

and satisfy the Rayleigh-Taylor sign condition —dx (q, + %|b0|2) > ¢o > 0. Let (v,b, q) be the
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solution to the incompressible resistive MHD equations with initial data (vg, bg)

0L =v in[0,T] x £2

d,v = (b-VA(;))b—VA(g)(q—i— %|b|2) in[0,T] x £2

div 4yv =10 in[0,T] x £

0:b 4 Acurl 4ycurl 4 o)b = (b - Vy) v in[0,T] x £2 (5.2.191)
div A(é-)b =0 in [0, T] x §2

b=0,q=0 —39>¢ >0 on[0,T]x I’

(é’v V7b9 q)|l=0 = (Id, VOvbOa qO)'

Therefore, by the compactness argument, we can pass the limit as ¢ — 0 to the incompressible

counterpart. This concludes the proof of Theorem[2.3.1]

1. There exists (v§, bo, p§, ¢¢), the initial data of (2.3.1)) with sound speed equal to ¢!, satisfying

C 1
the conditions mentioned in Theorem|2.3.1|and (vg, p§) —> (vo,1) ase — 0.

2. Let (v, b%, R®, ¢°) be the solution to (2.3.1) with initial data (v{, bo, pj,g§). Then we have

Cl
(vé, b®, R®) —> (v,b, 1) as e — 0.

5.3 Anisotropic Regularity of the Free-Boundary Problem in Com-
pressible Ideal MHD

Now we turn to prove the a priori estimates of the free-boundary compressible ideal MHD system in
the anisotropic Sobolev space, i.e., Theorem [2.4.1] We first impose the following a priori assumptions:

There exists some 77 > 0, such that the solution (1, v, Q) to the system (2.4.1) satisfies

1

7 — 17« =7 (5.3.1)
30 3

——= >Z¢p. 32

aN —a“° (5-3.2)

5.3.1 Control of purely non-weighted normal derivatives

We first consider the case of purely normal derivatives. We aim tio prove
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Proposition 5.3.1. The following energy inequality holds

193013 + 3 (7" Go - D)5 + 1381 + 7 |4 0knal |
t=

(5.3.3)

T
SPo+ P(ET)) / P(€&())dr.
0
5.3.1.1 Evolution equation of Alinhac good unknowns

We first compute the estimates of purely normal derivatives. When (/) = 8, the purely non-weighted
normal derivative should be 91 = 8‘3‘. First we introduce the following Alinhac good unknowns of v

and Q with respect to 93
Vo 1= 030q — 057y A™ 0,04, Q= 0330 — 31, A" 9,0. (5.3.4)

Then we have that for any function f

03(Vi f) = V503 f) + (0340, f + [03, A", 0, f]

= V(0% f) — 03(A™ 93051, AP®)3, f + [05, A", 9, f]

i v (5.3.5)
= V403 f — 83y A* 9, f)
good unknowns
+ 030y V(Y ) — ([03. A* AP*030m,)0, f + [05. 4™, 0, f],
=:Ci(f)
and thus
Va-V =03(div4v) — C'(va). VaQ = 03(V40) — C(Q). (5.3.6)
where the commutator satisfies the estimate
IC(HNa < Pl S 1|4 (5.3.7)
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Now taking 8‘3‘ yields the evolution equation of the Alinhac good unknowns
RO,V —J (b - 0)33 (J " (bo - 0)n) + V4Q

(5.3.8)
=[R.03]9:v + [03. " (bo-9)]b — C(Q) — R3; (3930 - Vqv).

=F

Taking L2($2)-inner product of (5.3.8)) and JV and using po = RJ yields

1d

sai [ IVE = [ @0 030 ko 0V [ (a@)- v+ [ V. 539)
2dt I?) 0 2 2

5.3.1.2 Interior estimates

The third integral on the RHS of (5.3.9) can be directly controlled

/Q JF-V S |IJF[olIVlio < Pllpolla 1bollas Inllas 17" (bo - D)nllas 1Q 14, vl 18, 0113) [V ]o-

(5.3.10)

The first integral on the RHS of (5.3.9) gives the energy of magnetic field b = J~1(bg - d)n after
integrating (b - ) by parts. Note that 3| = 0 and div by = 0, there will be no boundary integral. In

specific, we have

/(bo-a)ag(f_l(bo-a)n%de = —/ 93(J " (bo - 8)m) - (b - D)V dy
2 2

=— /Q 335 (bo - D)) - (bo - D)3 dy + /Q 95(J " (bo - D)) - (bo - 3)(33n - Vav) dy

=ZL1

= [ 70307 0o 00y 230, b - Dy (53.11)
2

- /Q T Bo - 0)n) - [J7 (o - 9). 820, ] ndy + L

K,

1d 1
=——= | J|34bo- 0| dy+—/ 8, |33(bo - 9)n|” dy + K1 + L.
2dt Q 2Je
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The term L can be directly controlled

L1 S P ([[(bo-)nlla, Inlla: 1Dolla: lvll4) . (5.3.12)

The term K produces a higher order term when 939, falls on J ~'. We invoke 9,J = Jdiv jvto

get
—[J7 (ko - 0). 830, ] 0
3
=030, (J 1) (bo - O+ D 9N 0,(J ) 85N bo - i
N=0
3
+ 3 00 (04 (I 71h) 9,037 n)
M=o (5.3.13)
= — J7195(div 7v) (bo - 0)n + ([03. J ~"1div gv) (bo - )
3 3
+ 2 50, TH@ VB @ + Y 0 (94 (/7 50)0, 85 )
N=0 M=0
=:— J'03(div jv) (bo - ) + KL,
and thus

Ky =- /Q JO3( ™" (bo - 3)) - (47 (bo - B)n) B3 (div ) dy

K

+ [ 8807 00 - (KL)
2

(5.3.14)
SKu A+ [ llzeellI ™ (bo - d)nllall K L1 llo
SKin+ P ([[(bo - 0)nlla Inll4. boll4) -
Summarizing (5.3.T1)-(5.3.14), we get the following estimates
| bo- 0037 - 000V ty
(5.3.15)
1d 2
S5 5 J183(bo - )| dy + Ki1 + P (l1(bo - )nlla. Inlla. 1bolla. 1v]l4)-
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We note that the term K1; cannot be directly controlled, but will be cancelled by another term produced
by — [(VaQ) - V. Next we analyze the second integral on the RHS of (5.3.9). Integraing by parts and

invoking Piola’s identity 9,,A" = 0, we get
_/_Q(VAQ) -Vdy = [9 JQ(V4-V)dy — L JQA**N, Vo, dS =:1 + IB. (5.3.16)
Plugging (5.3.4) and (5.3.6) as well as Q = g + %|b|2 into 7, we get
1_/“qua(myw)+/‘J%(%Lf*@mamf)ay&yw)
/ 9300 A3, 0 35 (div zv) — /ﬂ 910 C(v) (5.3.17)

2211 + 12 + 13 + 14.
The term 4 can be directly controlled by using (5.3.7))
L4 S QllallC@)llo S Pl Qllallvlla- (5.3.18)

, Lo 9 R JR'(q)
The term I gives the energy of ¢ by invoking div ;v = ——— = — d;

R Po
R’
2 Lo

1d J2R' J2R
[l (25

- [ st ([1. 2K2) )
2 3 3 Po

2
< 1d L(‘I)
~T2ar

(5.3.19)

|03 CI\ dy + P(llqlls,« llpoll4 lI7]l4)-
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The term I, will produce another higher order term to cancel with K

I = /9 J33 (J 7 (bo - 9)n) - (I~ (bo - D)) 93 (div zv)

exactly cancel with K1

/;2 (f]) Jaév (J_l(bo ~0)n) - 3431—N (J_l(bo . 3)71) 3g(divfiv)
N=1

J2R'(q) (5.3.20)
=—Ku—/92< )( ) (71 bo - 3)n) - 33 (7o - D)) 0201
_ N JR'(q)
/ ( JOY (I (bo - ) - 35N (I (bo - 3)n) ([a;‘, }a,q)
2 N2y Po
=:— K1+ 121 + 1.
We should control 7,; by integrating d; by parts under time integral
T T 3 2 pr
3 4 JR(@) \ N (-1 4-N (-1 4
I = dr | ———= 05 (J ™ "(bo-0 -0 J Y (bo-d)n)o
fo 21 /O/S?NX:%(N)t( p” >3( (o)n) 3 ( (o)n)sq
> J2R (q) N (-1 4=N (-1 4
/ / >y 0008 (17 bo-0)n) - 947N (7" o - 9)n) 03g
N=1 ro
> (4 (PR (q) N (-1 AN {11 4T (5.3.21)
- > (s (47" o) 047 (47 ko) oy
5/0 P(|77" (bo - O)nlla, 19:(J " (Bo - I3, llglla) + Po + 17" (bo - 9)nl1311934llo
5Po+/ PE() dr + 9413,
Then I, can be directly controlled since at most three d3’s fall on d;q.
Ia S 17 o - )3 llgll7,. (53.22)

220



The term /3 should also be controlled under time integral. We have

I N R e

Ly

R’ R’
D _ // (J @, A‘“’E)MQ)E)“ /ij(fq)a‘;nvA“”aMQagq

JR'(q)

T
+L>
0

(5.3.23)

T T
<Py + /0 P(@(t))dz+” AaQH 134410 /0 1830 o dr

T
SPo+ PE0) [ PE@) .
0
where we use 947|;=o = 0 in the last step. Summarizing (5.3.18)-(5.3:23) and choosing & > 0 suitably

small, we get the estimates of / under time integral

T 2 T T
/ I dt 5_1/ TR 3o ay| 4+ + P(e(x))/ P(€(1)) dt. (5.3.24)
0 2Ja  po 0 0

5.3.1.3 Boundary estimates

To finish the estimates of purely non-weighted normal derivative, it remains to control the boundary

integral /B in (5.3.16)) which reads
—/ JQAMN, V, dS = —/ A3*N3 950V, dS
r r
/ A3* N303n, 437030 030, dS
(5.3.25)

/ A N340, 437850 (93, APY dpuy)dS

IZIBO + IB] + IBz

First, I B; will produce the boundary energy with the help of Rayleigh-Taylor sign condition (5.3.2))
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and the error terms will be cancelled with I B,. In specific, we have

1B, = _/ (——) JA 34y, A% 049,74 dS
r

— 1d aQ 3a a4 2
= 2dt/p( JaN)|A 3| dS

(5.3.26)
1 a0 2 90
— E /1; 3, (Jw) |A3“3§na| ds + /1; (—Jw) 8t143a 8‘3‘771, A3v8§7]a ds
=IIBII + IB]Z + IB]3.
Invoking Rayleigh-Taylor sign condition, we get
T co 2 r
/ IBy dr < ——/ |A%*93nq|” dS| | (5.3.27)
0 4 Jr 0
and thus the term /B, can be directly controlled by the boundary energy
2
IB12 S 10:(J330)|Lee |A*¥830a], S P(E()). (5.3.28)
Then we plug 9, 43* = —A% dzv, AP into IBy3 to get
1B = [ (22) 42350, APy, 470t as 5.3.29
13 = N By 3y 37 AO, (5.3.29)
r

and this term exactly cancel with I B, if we replace the indices («, y) by (y, ).

It now remains to control /By. We have
IBy = _/ N3J 350 (A**93v,)dS +/ A3* N3350 031, A" 3,0y dS =: 1By + IBo,.
r r
(5.3.30)
To control I By, we shall differentiate the following relations

JR'(q)

A% 330, =div ;v — A9 v, — A% 00, = — 3:q — A9 vy — A%%00q. (5.3.31)
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In IBy1, we use the relation (5.3.31)) to get

A3°‘3§va =8§(A3°‘83va) — 8§A3°‘ 03Vq — 33§A3°‘ 3§va — 395,43 Bgva

2
JR' _
- ag( psq)atq) ~ 3 8343 va) (5.3.32)
L=1

- 83A3°‘ 03Vg — 38§A3°‘ Bgva — 30543 Bgva,
and thus /Bg; becomes

JR'(q)

2
1Bo1 =[ N3J 340 93 ( a,q) + Z/ N3J 340 33(AL*3Lv4)
r =T

+ / N3J3§Q (agA.’:a a3va + 38%1430[ a%va + 383A3a agva) (5333)
r

=:1Bo11 + 1Bo12 + 1Bo13.

In IBy12, the highest order term contains BgAL“ = 8‘3‘17 X 577 + -+ which cannot be directly

controlled. However, this term can produce cancellation with 7 By;.

0345 = — 93(A™ 03047, A7)

N (5.3.34)
=— AM9%n, A3 — Z AEY 9390, AME — (92, ALY AP*1030,1,,
M=1
and thus /B> can be written as
2 p—
IBois = — Z / A3 N3350 33, ALY 90, (5.3.35)
r
L=1

2 2
- Z/ N3J 320 (Z ALY 350m, AM 4 [8§,AL”A5“]338,377V). (5.3.36)
L=1’T M=1
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On the other hand, we write I By, as

IBy, = / A3*N3050 03, A% 9304 dS
r

2
+Y /F A3UN33%0 331, ALY 3L v, dS.
L=1

Therefore, (5.3.38) exactly cancels with the main term (5.3.33)) in /Bo12.

Now it remains to control /Bo11, I Bo13 and (5.3.36), (5.3:37). Invoking

2
A¥930 =— > AM3L0 — podiv’ + (bo - 9)(J " (bo - '),

L=1
we get
A030 =03(A>030) — 0347 930 — 303A°% 930 — 30:A°* 330
=03 (—podsv’ + (bo - 0)(J "' (bo - D)) — Y _ 03(AY 0L Q)
L=1
—03A% 030 —303A% 930 — 30;A%* 33 0.
Note that

(5.3.37)

(5.3.38)

(5.3.39)

(5.3.40)

e The term A3* is of the form 37 x 07, so the leading order term in 93 A3 should be (8%517) (@n).

e The highest order term in 33(AL79,, Q) is 33AL7 9,0 = 0 due to 91, Q| r=o.

e The highest order term in 33 ((bo - 3)(J ~* (bo - d)n)) is (bo-3)d3(J "1 (bo-d)n) because b3|r = 0

makes (bg - d) tangential on the boundary.

Therefore, we can rewrite 8‘3‘Q to be the terms of at most 3 normal derivatives and one tangential
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derivative: . ) . . .
a3Q =J" A3a8377a a3Q =J- aS’?a(A3aa3Q)
| —

=1

=1 (3 (= ot + 0 DI 00000
(5.3.41)

2 2
-3 3 (3 )arata o
L=1N=0

— 03A% 930 —303A%° 930 — 30;A% agg).

In (5:3:37), we need to rewrite A3”9%n, by using A>”3n, = 1in 2 (and thus 93(A%V03m,) = 0)

A3 05n, = —034%Y d3n, — 30543 031, — 30;4%" 33, (5.3.42)

In the light of (5.3:40)-(5.3.42), we are able to write /Bo11, I Bo13 and (5.3.36), (5.3.37) in the

form of

/ N3 (8%@f)(8§©g)h dS + lower order terms, (5.3.43)
r

where © = 9 or d; or by - 9, and £, g can be n,v,q, J " (bo - 3)n, and h contains at most first order

derivative of 7, v. Then (5.3.43) can be controlled as follows

/ N3(33D £)(83Dg)h dS
r

( [ @ n@zoon- [ @oneon- [ (3§©f)(3g@g)(33h))
2 2 2

[1S]

- [@n@oon- [ @n@ea@n (5.3.44)
2 Q
+ [ @2 nason+ [ @0neiomn - [ 60000

<93 f llo + 193D fllo)(I193gllo + 193D gllo)10hlILoe < ILf s lg sl
which gives the control of 1Bg11, IBo13 and (3.3:36), (3.3.37).

Remark 5.3.2. If we integrate © = 9, by parts in (5.3.44) (such term appears in 939,v from 93 0Q),
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then we should proceed the estimate under time integral:

1 1
/ (020)(3D)h < el 020 ]2 + — 3D g4 + — 1]} 4o
Q 8e 8e

1 T
Selldzvllg + 3% (IIg(O)II‘{* + 1k (0)[13 +/0 19393, £(1) g + ||8,h(t)||§) (5.3.45)

T
Selldzvlg + Po +/0 P(llglls.x. 12]ls.) dz.

According to (5.3:44)-(5.3.43)), we can finalize the estimates of the boundary integral /B as follows

d
IB < e||03v]3 — C—"—/ |A3°‘a‘3‘no,|2 dS + P(€(1)). (5.3.46)
4.dt Jr
5.3.1.4 Energy estimates of purely normal derivatives

Now, (5.3:46) together with (5.3.9), (5.3.10), (3.3.19), (5.3.24) gives the estimates of Alinhac good

unknowns of v, Q in the case of purely non-weighted normal derivatives

IVIG -+ 138 (7 @o- ) + 13815 + [ 4%0%alg |

(5.3.47)

T
< 6402 + Po + P(E(T)) /0 P(E(1)) dr.

Finally, by the definition of Alinhac good unknown (5.3.4) and 937|;=o = 0, d%v is controlled by
T T
103015 < IVIIG + lladvilZeo /0 103013 dr < [[Vllo + P(E(T)) /0 P(€@n)dr. (5348

and thus by choosing ¢ > 0 sufficiently small, we get

103015 + 102 (77 @o - n) | + N3q13 + 57 | 4°03mel

t=T

(5.3.49)
T
< Py + P(E(T)) /0 P(Er)) dr.
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5.3.2 The case of full tangential spatial derivatives

Now we consider the purely tangential derivatives. In this case, the top order derivative becomes
of = 8’;051.11 5;2 with iy + i1 + i = 8. We will prove the following estimates by a modified Alinhac

good unknown method.

Proposition 5.3.3. The following holds for any sufficiently small ¢ > 0

> kvl + |

i3=ig=0

Co‘

2 2
0% (47 o - ym) | + 102q113 + 5 [4>*0Lne

t=T
(5.3.50)

T
< e]l03050[12 + Po + P(E(T)) [0 P(E()) dr.

For simplicity, we mainly study the case iy = 0, i.e., 9L = 5?522 with i; + i, = 8. For sake
of clean notations, we denote 9% = 52' 5;2. In fact, most of the steps of the proof in this section are

completely applicable to the case of iy > 0.

5.3.2.1 Derivation of “modified Alinhac good unknowns'' in anisotropic Sobolev space

We still use Alinhac good unknowns to control the tangential derivatives. However, we cannot directly
replace 9% by 9% in because the commutator contains the terms like 377, 97 dv and 9’ dQ whose
L?-norm cannot be controlled in H2. In specific, we have
P(VAS) =VE@® )+ @AM, f + [0, A", 9, f]
=V (@ f) 074" Bdgn, AP)d,. f + [0, A", 0, f]
(5.3.51)

=V4 (0% f — 9%, A" 0, f) + 00y V4(VL S)

—([37, A" AP¥193 1) 3 f + (0%, 4™, D, f1.
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We notice that the L2(£2)-norm of the following quantities coming from the last two terms of (5.3.51)
cannot be controlled because 37 may fall on @ = 95 x 37 and df .

er = —0 (A" AP*) 9dgn, 8, f, ex:= —T0(A"Y AP*) 37050, 8, f
(5.3.52)
e3 1= 8(07A*) (30, f), eq 1= 8(0A"*) (37D, f).

Here 897 means there are 8 terms of the form 5? 5;2 with i; 4 i, = 7. We will repeatedly use similar

notations throughout the manuscript.

Our idea to overcome this difficulty is mainly based on the following three techniques:

1. Modify the definition of “Alinhac good unknowns": Rewrite these quantities in terms of
Ve + L?-bounded terms, and then merge the terms inside the covariant derivative V¢ into

the “Alinhac good unknowns".

2. Produce a weighted normal derivative to replace a non-weighted one: There are terms like
(07937)(00Q). Since Q| = 0, we know dQ|r = 0. Therefore, we can estimate the L>°-norm

of ﬁQ by fundamental theorem of calculus: (Suppose y3 > 0 without loss of generality)

_ y3_
[00(7, y3)|poo(r2) = '0‘1‘ 0030(t,83)d {3
1 Loo(T2)

< (1—y3)[093Q |l < 0(y3)[|993Q | oo

then we move the o(y3) to 37937 to get a weighted normal derivative (093)' 377 whose L2-norm

can be directly bounded in HS$.

3. Replace V4 O (contains a normal derivative) by —pod;v + (bg - 9)(J ~'(bo - 9)n) (only contains
tangential derivative) in order to make the order of the derivatives lower thanks to the anisotropy

of H".
Now we analyze these extra terms from the commutator. We start with 8(57A‘“")(58M f) and
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8(5A““)(578Mf) coming from [98, AX*, 0, f]1in (5.3.51). Since JAME = —AKV 58,3 ny APY, we
have

ATARY = —AM T 3gm, AP® — 36, AMY AP* 19,7,
where the highest order term in [3¢, A4 A#®]9 g1 is 9°9 7w whose L2-norm can be directly bounded

by ||7||s.«. Therefore, we have

8(37 A**)(39,, f) = —8(AP* 35071, A*V)3d,, f — 8([0°, A*¥ AP*1951,)30,, f
I B " B "

= —8V§(@"ny A0, ) +8VS (V3 ) 1, — 8([3°, 4™ 4P*1057,)00,. f (5.3.53)
=:C1(f)

=:—8V5(0"n- V43 f) + C1(f).

where C1(f) can be controlled by using H'Y2 < [3and H' < L in 3D domain

Ci(f) SIANZ 1920 f Nz 1070l + 1A f dAl L1071l 22 + P(IInlls,«)[00f || Lo
SIANZ o 1829 £ 111 1(3) 287 1llo + P(IInlls,«) |99 || oo
<Al 1823 £ 11 11370112/ 21387/ + P 99 <P
SHANZeo 1970 f 1110 nlle" “N19°nlly" ™ + P(Inlls,«) 100f Lo S P(lnlls,s)ll £ 117,

The term 8(§A“°‘)(373M f) should be treated differently in the case of f = vy and f = Q

respectively.

e When f = v, then this term becomes

8(0A")(070,,vq) = — 84 Jdgn, APYDD, vy = —8A** Jdgne APY 30,0,

=— 8Vg(§7vv APY 53ﬂ Ne) + 8V§ (53/3 Na Aﬂv)§7vv (5.3.54)

=:C2(v)

=:—8V5(0"v - V497nq) + C2(v).

and similarly we have ||C2(v)]lo S P(Inll7,)[v]8 -
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e When f = Q, we cannot mimic the simplification as above. Instead, we need to invoke the

MHD equation to replace V4 Q by tangential derivatives. We consider

8(JOA (070, 0) = —8(A"’ ddgn, AP*)378,,0
= — 897 (A9, 0) AP¥Bdgn, + 8(37AM)(3,,0) (g, APY)
6 (7
aN v\ (q7—N 5y Ba
+8NZ=1 (N)(a A" @0, 0)(@dgny AP
=80 (pod,v” — (bo - 9)(J ' (bo - 0)n")) AP*Ddgn, + 8(37A)(3,, Q) (D1, APY)
6 (7
aN v\ a7—N a Ba
+8NX::1<N)(8 A" (@™ 9, 0)(@dgm, AP)

=:Cy1 + Caz + Cas.
(5.3.55)

The L2-norm of C»3 can be directly controlled
1C23llo < IInlls,«ll Qlls,« P lInll7,%)- (5.3.56)

The L2-norm of C5; can be directly controlled when / = 3 because A3” consists of an x an.
When /! = 1, 2, we need to invoke the second technique above, i.e., using §Q| r = 0 to produce

a weight function o (y3).

2
ICazllo SID7A>lol193Q donaliLes + Y /(37 A%")(@L Q) (@dgns AP¥) ]l
L=1

2
SPUnlzol%nlloll Qlls + Y 107 AR)(0(y3)939L Q) (@dg 1, AP)llo
L=1 (5.3.57)

2
SPUnll7 0l nloll Q1 + Y lod” A" [o]l(3382 Q) (g 7y A7) |00
L=1

SP(nll7) @l (15 nllo + 1033370l )
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where we use the fact that ALY consists of (937)(97) in the last step.

Finally, C»; can also be directly bounded because the top order derivatives are 979, and 87 (b - 9).
Note that bg |r = 0 yields the following estimates by using the second technique mentioned

above.

1639397 (J "1 (bo - D) llo < N19bol2]1(033)8” (S~ (bo - D)) o
and thus

Ca1 < PNz Ulpollz.x v« + 1boll7,4 | (bo - D)nlls,%)- (5.3.58)

Therefore, we have the estimates for C,(Q) := 894197 0,0
1C2(D)lo S PUInlls s [0lls55 B0l 7,5 11T (Bo - Dnlls s l0oll7,45 1 Qlls,+)- (5.3.59)

Next we analyze — (37 (A*” A#®) 3357,)d,, f coming from —([97, A** AP*]3d51,)d,, f. There

are two terms of top order derivatives:
—37(A"” AP*) 80, O f = — (37 AM")AP* D0, 3, f — AMY (07 AP) Gogn, 3, f

6
7\ = 6N Bans
-2 (N)<8NA““>(86 N AP)d0m, 9. f.
N=1

where the L2-norm of the last term can be directly controlled

S Pnlis ol f s
0

6
> (;)(WAM“)@“NAW)%MV Ouf
N=1

Similarly as (5.3.53)), the term —A“* (37 A$*)939 g1v 0, f can be written as the covariant derivatives
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plus L2-bounded terms

— A" (@7 AP0, 9, f
=AM APV (8,,070,) AK 3D, 9, f + ([0°, APV A¥100,n,) AMY 3dp1, 0,0 f
=V%(@"n, APY dgn, A" 3, 1) (5.3.60)

—37 1y VE(APY 33, AMY 3, f) + ([88, APY A¥1 100k n,) AMY dgny 0, f
=:C3(f)

=:V§(@"n-Va0n-Vaf) + Ca(f).

where C3( f') can be directly controlled similarly as C; (f)

1C3(Nllo S Plnlls) IS 2.
We then compute — (37 A*) AP 58/; M0y f.

e When f = v,: Similarly as in (5.3.60), we have

— (37 4") AP% 3081, 8,04
=AM (37 3 y) AR AP% 9351, 3,06 — ([0%, AR ART100,1,) AP D7y 0,4V
=AM (37 3k ny) AKTA™T 3 g1 3,0, — ([0°, AMY AFT190kn,) AP D1y 3,400
(5.3.61)

=V%(0"ny A"’ 3,0, A™" 30gna)

—VS (A" AMT§dgng 3,0,)0 0y — ([0%, AR ART1991,) AP 397, 0,0V

=:C4(v)

=:V5(@"n- Vv - V4dne) + Ca(v),
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where C4(v) can be directly controlled similarly as Cy( f)
ICa()llo < PlInlls.«)l10v]l2.

e When f = Q: If [ = 3, then this term can be directly controlled since A3’ = J '35 x 95 only
contains first-order tangential derivatives. If / = 1, 2, then we can mimic the treatment of C55,
i.e., using 3, Q| = 0 and fundamental theorem of calculus to produce a weight function o (y3)

and move that to 37 A"Y. Define C4(Q) := —(37 A**)AP* 3341, 3,,Q, then

2
IC4(Q)lo S 107 A>) AP Bdgn, 030110 + Y (107 AX*) AP* 9057, 3L Qo
L=1

2
_ _ . - - (5.3.62)
SIa®nloll @ls P(N10nll2. [090]2) + D ll0d” AL o]l AP* BD g1, 903 Q| oo

=1
S (||5877||0 + ||(033)57TI||0) P(Q15. 19013, nll7,%)-

Next we analyze —75(A“"Aﬂ°‘)578,g Ny 0y f coming from —[07, A‘“’Aﬁ“]gaﬁ nv 0y f . This term

cannot be directly controlled when m = 3. We should analyze it term by term. First we have
— 70(A™ AP d5n, 0, f = —TOAM AP 7 Dgm, 0, f — TAM 9AP* 37851, 0, f
=T7AME 3 dng AV AP 9gm, 8, f + TAMY APE 3, 0ne A 97 g1, 3,0 f.

The first term can be directly rewritten as follows

TAME 3, dne A AP 37 g1, 3, f

=7V4(@ 1y A 3 dng AP 3, f) —TVE(AY D dne AM 3, 1)1, (5.3.63)
Cs(f)

=7V§(0"n - Vadn - Vaf) + Cs(f).
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where Cs5( f) can be similarly controlled as Cy( f)
ICs(Hllo < Pl NI9f 5.

Then we analyze 7 A" AP¢ (aKgng)A"”‘ (@79 g1v) 0, f, which needs different treatment for f = v,

and f = Q respectively.

e When f = v,, we have the following simplification

7AMVAﬁ§3k§7’]§- Ak 5735 My OV = 7AW AP 3,45770‘ A*E 578,3771, 0, Vg

=7V (@ 0y A* 3,08 A 39ene) + TVE(AM 3,08 A 9900)d 0y (5.3.64)

Cs(v)

=:7V5(9"n - Vav - V4dna) + Cs(v),

and |Cs(v)|lo S P(|Inlls,«)|lv]l3 follows from direct computation.

e When f = (Q, this term becomes

Cs(Q) := —TA4" (04P*)(07057,)9,,. 0

6
— — 7\ - — = Ba
= =7 97" 0gny) (@A) Opm) = 3 (N><8NA““)<87 Nogm) | 947%0,0
P

_ N=1
=378L,=0

2
=7(07 4> )dgn, 04P* 930 + > (0" A%")pn, 4P 3,0
L=1

6
7\ - - _
+7> (N) @V A @ N agn, )42 5,0
N=1
=:C¢1 + Ce2 + Cé3.
(5.3.65)

Since 43" = J 191 x 95, we know the top order term is of the form 987 - 97 and thus Cg; can
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be directly controlled

[Cs1llo < P(lInlls,«)103Q |2

The term Cg; can be treated in the same way as C4(Q) in (5.3.62) by using 9, Q|r = 0 to

produce a weight function o

ICs2llo < ((e33)7nll + 3% nllo) P(Inll7,:)11903 Qll2 < P(lInlls, ) Q 17,

Finally, C¢3 can be directly controlled

[Cs3llo < Plnlls. )00 ]2,

and thus

ICs(Dllo < PInllg )l Qll7.x- (5.3.66)

Now we plug (3.3.33)-(5.3.54)), (53.3.539)-(5.3.66) into (5.3.51)) and define the “modified Alinhac

good unknowns" of v and Q with respect to 98 as

V= 380y — 037 Vg
— 857n . VAgva —897v - VAgna
+ 370 Vadn - Vavg + 31 Vav - Vadng
+ 75777 . VA577 - Vqvg + 75771 -Vyvu - VAgna
= 581),1 —5877 - Vv,
— 85777 - V40vy — 8970 - VAgna + 857r) . VAgn -Vavg + 85777 -Vyv - VAﬁna,

(5.3.67)

and
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Then the modified good unknowns satisfy the following relations

6

6
0¥ (divyv) = Va- V¥ + Y Cu(v). 9¥(VaQ) = VaQ* + > Cm(0). (5.3.69)
M=0 M=0

where Cy(f) comes from the directly controllable terms in the RHS of (5.3.51))

6

_ 7\~ _ _

Co(f) :=0%n, V(Vif) = 3 ( N)aN(AWAﬂ“>87—N(8aﬁ 1) f
N=2

(5.3.70)

6
8\ - —g_
2 (N)@NAW)(aS Vo).
N=2
satisfies

1Co(Nllo < PUInlls)ll S lls.x

and C; ~ Cg are constructed in (5.3.53)-(5.3.54), (5.3.59)-(5.3.66)).

Now we denote C*(f) := Co(f) + C1(f) + --- + Co(f) and the “extra modification terms"” in

the modified Alinhac good unknowns by
(AF); :=—83"1-Vadvy —837v - Vadng + 8371 V4dn - Vavg + 831 - Vav - V41,
Ny :=—80"1-V400 + 800 Va0n-V40.
Then the modified Alinhac good unknowns become
V¥ =0%—09% - Vav 4+ A}, Q* =030 -0 V40 + Ap.

Remark 5.3.4. There are more modification terms in V* than in Q*. The reason is that we can replace
V4 Q which contains a normal derivative with tangential derivative (9, v and (bg - 9)(J ~!(bg - 9)1)) by
invoking the MHD equation. However, similar relation only holds for div zv instead of V4v. Therefore,
for those terms in the commutators containing v, we have to rewrite them to be the covariant derivatives

of the modifition terms plus L?(£2)-bounded terms.
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v

It is straightforward to see that the L?(£2) norms of A¥, A*Q, d;(A}) and 9,(A o) can be controlled

by P(&(1))

19:(2)llo S8 v0(1V4dVl2 + IVadnll2 | Vavll2) + 11979, v]l0 | Vadnll2

+ 1077010 (1V400:v]|2 + [Vadnl2]| Vadsvll2 + [Vadv]2]|Vav]2) (5.3.71)
SPInlls vls,«),
18:(AH) o SN0 vll0(IV4Q 12 + V40021 V42 l2)
+ 197nll0(1V499: Qll2 + V40n21IV43: Qll2 + [Va0v2[V4Qll2)  (53.72)

SPUMlsx lll7.. [1Q1ls.%).

1A% 10 + 114710 < Pl [vll75. 1Qll7.%)- (5.3.73)

Now we take 0® and invoking (5.3.69) to get the evolution equation of V* and Q*
RO, V* — T (by - 0)0® (J 7' (bo - 9)n) + V4Q*
(5.3.74)
= [R3*or0 + [8.77 o 0] (7 bo - D)) = €*(Q) + RI(=T*n- Vav + 1)

We denote the RHS of (5.3.74) by F*. Similarly as in Section [5.3.1, we compute the L2-inner

product of (5.3.74) and J V* to get the energy identity

1d

-—/ po [V*> dy = / (bo.a)ég(rl(bo.a)n).V*—f (VAQ*)-V*+/ JF*.V*. (5.3.75)
2dt Jgo %} 2 2

5.3.2.2 Interior estimates

Using (5.3.71), the third integral on RHS of (5.3.73)) is controlled directly

fg JE*-V* SIF*o[V*]lo S P (Il (pos m. v, Q. o, (bo - ) lg ) [IV*[lo- (5.3.76)
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The first integral on RHS of (5.3.75) can be similarly treated as (5.3.11)-(5.3.13) by replacing 93

by 98 and | - 4-norm by || - ||s.«-norm. We omit the details
y y ,

wamﬁu”@wmmWﬂws—éﬁl;ﬂﬁwwmmf®+Kﬁ+P&mx63w>
where K7, is defined to be
K} = — /Q JOB(J ™ (bo - ) - (S (bo - )n) 3 (div zv) dy. (5.3.78)
Next we analyze the term — |, o JV4Q - V. Integrating by parts and using Piola’s identity, we get
—/ (VAQ") - V* = / JQ(V4 -V —/ JQA** N,V dS =:I* + IB*. (5.3.79)
2 2 r
Invoking (3:3:67), (53:3:69) and Q = g + 3|J ™" (bo - 9)n|*, we get
I :/9 J 98¢ 98 (div gv) + /ﬂ 798 (% 177" (bo - a)n}z) 8 (div 7v)

+ /Q (—9% 1y A*Y 9,0 + Af)9® (div v) — /Q 3#0 C*(v) (5.3.80)

=17+ 1+ 15+ 1,

where /" can be directly controlled by using the estimates of C*(v)

1F S103QlolC*)llo S PInlise) 195 Qllollv]ls - (5.3.81)
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Similarly, 7 produces another higher order term to cancel with K7,

I = /Q 9% (7" (bo - 0)) - (4" (bo - )) 5° (div 40)

exactly cancel with K|

7 (g ~ B -
+ Z (N) /g JaN (J*l(bo -9)n) - 58—N (J*I(bo -3)n) 38(d1ng)

N=1

(5.3.82)

. (8 J2R @)=y N -
=—K11—NZ=1(N)/QT(”8N (77 o - 3)n) - BN (47 o - 3)) B¥ug

T8\ [ o e . JR(q)
_NZﬂ(NNnJa (= (bo - Oyn) - T5N (S (bo - ) (|:8,Ti|8tq)

= — K + 1 + 1,
Similarly as in (5.3.21)-(5.3.22)), the term 7,); should be controlled by integrating d, by parts under

time integral and /3, can be directly controlled. We omit the details

T T
[ i sei@alg+ 2o+ [ pewna (5.3.83)
0 0

135 ST (Bo - )1ll3 4l lls.x- (5.3.84)

The term /] produces the energy term 98¢ 2 as in (5.3.19).

1d J?R —
L4 / TZR@ 58412 1 Plglsm. loolls.e. I17lls.0)- (5.3.85)
2dt Jo  po

I} can be controlled by integrating d; by parts under time integral after invoking div ;v =

239



—%a,q and (5.3.72)-(5.3.73).

T T R/ _ _
/ Iy =/ / TR (%0, A*Y 9,0 — AH)0%9,q
0 o J2 Po

T =5 JR'(q)
8 nv _AX 8
+/(; /9(8 AT 0,0 AQ) (|:8 " po }atq)

L;

d R'(q) = _ (5.3.86)
2_/ / & (J_(Q) 8%y A a/LQ—A*Q) 0%
0o Je Po

JR'(q) - — |7
+ / TR Gsp, A 5,0 — 2P| + L3
2 Po 0

T
<elql2 +Po + / P(E()) dr.
0

Summarizing (5.3.80)-(5.3.86) and choosing ¢ > 0 to be sufficiently small, we get the estimates of

I* under time integral

T 1 JZRI _ 2 T T
/ I*dt 5—-/ SR ’88q‘ dy +7>0+/ P(&(t))dr. (5.3.87)
0 2Je  po 0

0

5.3.2.3 Boundary estimates
Now it remains to deal with the boundary integral /B*. Since Q|r = 0, we know
Q*|F — _58771) A3v 83Q + A* ,

and

Aplr =—83"n, A% 9030 + 8370 Va0, A*” 350.
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Then the boundary integral I B* reads
IB* =/ A3*N39%n, A% 950 830, dS —/ A3 N5(387,437950) (8% - V4vy) dS
r r

—/FA3"‘N3A*Q§8UQ dS~|—/FA3"‘N3A*Q§8n-VAva ds
(5.3.88)

- [F AP N3AGH (A} dS + /F A3 N3(98n, A% 930)(AY); dS
=B} + 1By + IB; + IB; + IB; + IB;.
Before going to the proof, we would like to state our basic strategy to deal with the boundary

control

e B together with the Raylor-Taylor sign condition gives the boundary energy | 432387, |2 and
the extra terms can be cancelled by /B> This step also appears in the study of Euler equations
[[13L 117, 14911514 154] and incompressible MHD [331[30} 25, 26] and compressible resistive MHD

[83]. It actually gives the control of the second fundamental form of the free surface [13].

e [B}: We can write 98, = 089,14 and integrate d; by parts. When 9, falls on AZ, the boundary
integral can be directly controlled by using trace lemma. When 9, falls on A3%, such terms

exactly cancel with the top order term in /Bj.
e /BZ and I B{: Direct computation together with the trace lemma gives the control.

We first compute /B;. Similarly as (5.3.26)), we have
IB} = —/F (—g—]%) JA3 381, A3 989,14 dS

12 ()

- % /F P (Jg—]%) ‘Awgsna

2
ds

(5.3.89)

2 9 _ _
ds +/ _799) o, 4% 58, 4% T, s
T
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The term /B, together with the Rayleigh-Taylor sign condition gives the boundary energy

(5.3.90)

T LT
/ 1B}, < -2 ‘A“‘Bsna) ,
0 4 0 0

and /B7, can be directly controlled by the boundary energy

S P(E@)). (5.3.91)

187, 5 |0
LOO

2 3Q
1 (122)

Then we plug 9, 43% = —A3V9 v, AP* into I B to get the cancellation structure

0 - —
]Bik:,’ :/F J%A&J aﬂvaﬂot 887711 A3V88770¢ — —]B; (5.3.92)

Next we analyze I B}. We write v, = 0,7, and integrate this d; by parts

T T
/ 1B} = —/ / JAP* N3 Ay 030,14 dS dt
0 0 r

T
a:’/ / J 84> N3AY 3%, dS di
o (53.93)

T T
—/ / AP N3 9,(J A) 3N dex—/ JAP N3 A 9% dS
0 r r 0

—:IB}, + IB%, + B},
Again, plug 3, 43* = —A43" 950, AP* into 1B, to get the cancellation with 1B}

T
IB;I = _/ / JA% 851),,14150{ N3 AZ agna ds dr
0 r
(5.3.94)

T
= —/ [F JA* 3, AP* N3 A 959, dS dr = —IB].
0

For 1B}, we use the fact that 5777|,:0 = 0 (and thus A*é |r = 0 when ¢ = 0) together with
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Lemma [3.2.3]to get

/ JAP* N3 NGy 9%, dS
r

t=T

= —[ JAN3(837n, A3 9050 — 8371 - V401, A% 350)3%7, dS
r
(5.3.95)
T
5)A“‘Bgna(oIJlLoo(IA3”883Q|Loo + |(VA877v)A3v83Q|L°°)/0 197v(1)]o dt

< ‘A3a§8 T

T
Pl 191500 [ 1@

In /Bj,, we invoke the relation (5.3.39) to get
0:(JAH) | r =—83"v, A* 0030 + 83"v - V4dn, A 030
— 8370, 3:(A*"903Q) + 8971 3, (V4dn, A’ 930)
=—80"v, A% 3050 +83"v - V4, A¥ 330
— 8977,0,0(A%"930) + 8371, 3, (0A> 350) + 8970 - 3, (Vad, A 350)
B3 _ g57,, A® 5050 + 897v - Vadn, A¥ 950
+ 83710, (podev” = (bo - ) (J ™ (bo - )n)" ) + 837 ny 3, (FA™ 930)
+ 8371 9,(V40m, A% 330).
Then we use H 2 (T?) < L>(T?), Lemmaand standard Sobolev trace lemma to get

0:(JAY)r]y S PUInlis [vllsxs Qs 15l llooll3).
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and thus

T
s [ e,

. P(Inlls lvlls,« 1@ lls,« 11185 lpoll3) dz. (5.3.96)
From (3.3.88), we know it suffices to control the product of “error part" / BX
1B} < |AY|roo| AGIrlol(A3)alo,
and the RHS can be directly controlled by Lemma [3.2.3]and standard trace lemma

|A51r], <[

(147303020 + [VaBny 485012 ) S P(Inllso | Qll7.0).

18310 SI37nlo (IVaB0lz0e + Va7 - Vavlzoo + |Vav - Vadnlzeo ) + 070]o] Vadulzoo

SPnllgs vl

Therefore,

1B5 < P(Inlls,. lvlis,e. 1Q117,%), (5.3.97)

and similarly

IBg < 1A*05Q 1 |47 5 nulol (A7) lo- (53.98)
Summarizing (5.3.88)-(5.3.98) gives the control of the boundary integral

T T
/ IB* < —%0 ‘A3°‘58na z + P+ P(@(T))/ P(&()) dr. (5.3.99)
0 0

Combining (3.3.73), (3.3:76), (3.3.77), (5-3-87) and (5.3.99) and choosing ¢ > 0 in (3.3.83) to be

suitably small, we get the following energy inequality

. o 112 _ c _ 2 T
IV*)12 + HaSbHO +138q]2 + ZO |A3°‘88na‘0 <Py + P(QE(T))/O P(E())dr. (5.3.100)

t=T
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Finally, invoking (5.3.67)), we get the 3%-estimates of v by using 8" 7|;—¢ = 0 for any m > 2, m € N*

T
19%vllo < IV llo + P(llvll7,x, ||17||7,*)/ P([[vllg.x). (5.3.101)
0

and thus

— — _ 2 — C s 2
1303 + |3 (77" o - 00m) | + 19%013 + 5 [ 475

0li=r

(5.3.102)

T
< Py + P(E(T)) /0 P(E(r)) dr.

5.3.3 The case of one time derivative 979,

If we replace 91 = 98 by 979, then most of steps in the proof above are still applicable because we do
not integrate the derivative(s) in D% by parts. However, we still need to do the following modifications

due to the presence of time derivative.

5.3.3.1 Extra difficulty: non-vanishing initial data of 9.7

If 31 = 979, then we can no longer derive 379,7|;=¢ = 0 from 5|,=¢ = Id due to the presence of
time derivative and 9,7 = v. This property is used in the analysis of /B}; and the control of the
difference between V* and d1v. Before we analyze the analogues of 1 B3, and in the case
of 3L = 979,, we have to find out the precise form of the modified Alinhac good unknowns when

dL =979,.
5.3.3.2 The modified Alinhac good unknowns

Recall the “extra modification terms" A%, A} in come from the bad terms (5.3.52). Now we
replace 9% by 079,. In ey, e2, e3 in (5.3.52), if we replace 97 by 3°9; (i.e., the time derivative falls on
the higher order term), then their L? norms can be directly controlled since 9;a has the same spatial

regularity as a. Therefore, the remaining quantities whose L2-norms cannot be directly controlled in
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the case of 31 = 379, are

er = =37 (A" AP, 05m, 0, f, e i= —T0,(AMY AP*) §7dgn, D, f
(5.3.103)
e3 1= 8(37A")3,0, f, eq 1= (3, A"*) (@70, f) + T(DA"*)(3%0,0,. f).

Then the corresponding Alinhac good unknowns now becomes (with the abuse of terminology)

V*=070,v—070n-Vav+ A, Q*=0370,0—-03"9,1-VaQ + A}, (5.3.104)
where _ _ _
(A =— 88777 - V40;vq — 807V - Vavg + 1687r] - Vav - Vqug,
(5.3.105)
Ap:=—80"n-V40,0 +83"n-Vav-V40.
and
970,(div jv) = Va - V* + C*(v), 379,(V4Q) = V4Q* + C*(Q), (5.3.106)
with

IC*(H)llo < PE)IS N5,

Now, the analogue of /Bj; becomes the following quantity (recall such term comes from the

product of Ag and 979, v
/ JAN3(897n, A3 9,050 — 8071 V4d;n, A% 930)079;1¢ dS, (5.3.107)
r

and we can still use 877|,—¢ = 0.

The analogue of (5.3.101) is
1978, vllo SIV*llo + 1197 vllolVavliLes + 137 nllo (811 VadsvlLee + 16]Vav]|7 o)

r (5.3.108)
<IVFIZ + Po + P(&(T)) / P(E(1)) dr.
0

The remaining analysis should follow in the same way as before, so we omit those details. The
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result is

— — 2 _ _ 2
1870013 + |07, (47" bo - a)m) |+ 1370q 1 + < |47 30na

t=T
(5.3.109)

T
S Po + P(E(T)) / P(€(1)) dr.
0
5.3.4 The case of 2~7 time derivatives

If the number of time derivatives in 91 is between 2 and 7, i.e,. 9L contains at least one spatial and
two time derivatives, we can still mimic most steps in Section In this case we write 31 = D¢9?

where © = 9 or d; and D contains at least one 9.

The extra time derivatives allow us to eliminate most of the “extra modification terms" in the

modified Alinhac good unknowns as in (5.3.74), (5.3.104)-(5.3.105) and thus much simplify the

analysis of Alinhac good unknowns and tne boundary control. The reason is that the L2-norm of the
analogues of e; ~ e3 in (5.3.52) can be directly controlled in the case of D¥ = D¢92. In specific, we

have

DOF(Vif) =VEDS) + (D0 A", f + [D°07, A", 0, /]

=V (D92 ) — D%, (A™ 3,d5m, AP¥)d, f + [D°92, A*%, 9, f]

=Vy(D°07 f = D97y A0, f)

+ D07, VE(VAS) — ([D°0,, A AP*10,05m,)0, f +[D°07, A4, 9, f]
Co(f)

(5.3.110)

and

ICo(H o < PlInlls.. [Ivllg) 1S llgx-

Therefore, the analogous analysis of C;, C3 ~ Cg in Section are no longer needed here.

The only problematic term is —2(d,; A*%)(D%9,0,, f) — 6(DA*¥)(D>3?3,, f) which comes from
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[D%32, A** 9, f]. By mimicing the treatment of C»(Q) and C»(v) in (5.3.54)-(5.3.55), we can define

the modified Alinhac good unknowns in the case of 31 = 9V 98N (2 < N < 7) as the following

V* = D%0%0 —D%9%n- Vau + A¥, Q* =D%3?Q0 —D%0%n- V40, (5.3.111)
where
(A¥); = —6D°0%v - V4D — 20%0,v - Vavg (5.3.112)
and
D092(div ;v) = V4 - V* + C*(v), D°392(V40) = V4Q* + C*(0). (5.3.113)
with

IC*(Nllo < PE)IS s,

In this case, A*Q = 0, and thus the boundary integrals /B}, IBj, I B all vanish. The analogues
of IBY, IB}, 1B¢ in this case can still be controlled in the same way as before. In the control of the
difference between V* and D92, we have by (5.3.111)-(5.3.112) that

1987 vllo SIV*llo + 18, vllolIVavllzee + D97 vlol| VDl Lo

SIVFllo + 1D°9,v (15 + [IVavl3 + 1987015 + IVaDnl3 (5.3.114)

T
SSIVEe +Po+ / P(&(t))dt
0

The remaining analysis should follow in the same way as in Section[5.3.2]and [5.3.3] so we omit the

details. The result is

_ C
ID°2vl§ + D97 ( Hbownmnﬁ+n©6¥q%-%;§hf“©6¥nd§ .
t=

(5.3.115)

T
5%+P@U»AP@®NL

where ©° contains at least one spatial derivative d.
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5.3.5 The case of full time derivatives

In the case of full time derivatives, the modified Alinhac good unknown is still defined similarly as in

G3.101)-(.3.113):

V* =% — 3% Vyu + AX, Q* =380 —3%n- V40, (5.3.116)
where
(A¥); = —807v - Vg (5.3.117)
and
¥ (div jv) = Va4 - V¥ + C*(v), 93(V40) = V4Q* + C*(0). (5.3.118)
with

IC*(Nllo < PEE)IS s,

Extra difficulty: trace lemma is no longer applicable When 9. = 9%, there are terms of the form
d7v in the boundary integrals. In the case of full time derivative, one cannot apply Lemma to

control [37v]o. This difficulty appears in the estimates of the analogue of /B¢ Instead, we need to
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write /B¢ in terms of interior integrals by using a similar technique in (5.3.44).

IB} = — / A3* N3 331, A*930 37v, A" 3,0, dS
r

__ 8/ A% N; 970y A%050 870, AP 8,04 dS
r

= 8[ A3"‘8382vv A%950 BZUV A" 9,0 dy
2

(5.3.119)
— S/QA”aZvv A¥930 930]v, A" 9, v, dy
- 8/ 370, 87v, 03(A3¥ A3V 930 A*Y9,v4) dy
Q
=:1B¢, + IB¢, + IB¢g,.
The term /B¢, can be directly controlled
B35 < P([19]vllo. 190113, 190113, 14113) S P(lvlls . [1Qlls . lInlla)- (5.3.120)

The term B¢, I B¢, should be controlled by integrating d; by parts under time integral.
T T
/ IB}, = — 8/ [ A3*9307v, 43050 3]v, AMY 3,0, dy dt
0 0o J

b 8/ A%930%, 43930 07v, A"V, v, dy
2

T
+ 8/ /{2A3“833fvv A¥9530 33v, AM 9, v, dy dt (5.3.121)
0

T
+ 8/ / A3*930%, 8Zvy 0;(4%950 A" 9,0q) dy dt
0o Ja

T
<ell8:9%v ]2 + Py + f P(E(1)) dr,
0

1B, can be controlled in the same way, so we omit the details. Summarizing the estimates above,
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we get the energy inequality of the full time derivatives

92013 + [ (7" Bo - o) g + Wbl + 7 |40 naly|
t=

(5.3.122)
T
< e300 ]2 + Po + P(&(T)) / (&) dr.
0

which together with (5.3.702)), (5.3.109), (5.3.T13)) concludes the proof of Proposition[5.3.3]

5.3.6 Control of purely spatial derivatives

The case of mixed non-weighted derivatives correspond to 31 = 8" (o 83)"45[1‘ 5;2 8;3 with 1 < i3 <
3, iy = 0. In this case, the modified Alinhac good unknowns introduced in Section @] are still
needed when commuting 3! with V4. On the other hand, the highest order term L0 no longer
vanishes on the boundary due to the presence of normal derivatives, so we need to use the method in
Section[5.3.T]to deal with the boundary integral. Therefore, we should combine the methods in Section
[5.3.T]and Section[5.3.2]to get the control of mixed non-weighted derivatives. The result of this section

is

Proposition 5.3.5. The following energy inequality holds for sufficiently small ¢ > 0

> okl +

_ 2 C 2
0L (77 bo - 0|+ NoLal + 5 |40

1<iz<3, ig=0 t=T
(5.3.123)
T
Selatol + Po+ PET) [ PO
0
We still start with the control of purely spatial derivatives. Let N = 1,2,3 and we consider

ol = oY 982N,
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5.3.6.1 The modified Alinhac good unknowns

Similarly as in Section[5.3.2.1] we have

0 2N (Vi f) = VRPN f) + 0 5N AR, f + (0579572, 419, f )

=V @Y 52N ) — o 972N (4 Bogn, AP, f + [0 0PN A1 0, f]
(5.3.124)
=V@3 952N f = 932N, A 9, f) + 05 952N ) VA(VAS)

— (839772, AR AP0 g0 ) 3y f + [039°72N, A1 8, f],
where the last line still contains the terms whose L2(£2)-norms cannot be directly bounded under the
setting of anisotropic Sobolev space H2(£2). The reason is that Bév 972N may fall on A = dn x an
and d,, f. The following quantities are exactly these terms.
et = N2V (AR AP Bdgn,)d, S €f = —(T—2N)B(A* AP BN TN 351,00, f.

et = 8 —2N)@OY 2N 41 B0, f). el := (8 —2N)(@A4 ) (YN 9, 1).
(5.3.125)

One can mimic the derivation of (5.3.67) and (5.3.68) to define the “modified Alinhac good

unknowns" of v and Q with respect to 3% 332 to be

Vg[ :=8¥58_2N Vg — 89’58_21\/77 - V4vg

— (82NN 2Ny . V4dvy — (8 —2N)3Y 72N v - V4, (5.3.126)

+ (8 =2N)aY 2N - V401 - Vavg + (8 —2N)IY 72N - Vv - V4314,
and
Q=335 2N 9 — 3V 3¥ 2Ny . v, 0
(5.3.127)
—(8=2N)aN 2Ny V400 + (8 —2N)dY 372Ny Va0n- V4 0.
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Then V*# and Q* satisfy the following relations
I8N (div zu) = Va - VR + CHu), Y372V (V40) = V4Q* + CH(0), (5.3.128)
where the commutator C¥ satisfies
ICHllo < PEEDIf 5. (5.3.129)
Denote Aﬁ and AﬁQ to be

(A% = — (8 —=2N)Y "2V . Vydvg — (8 —2N)Y 72N v . V4014
+ (8 =2N)IN 2Ny Vadn - Vavg + (8 —2N)IY 2Ny Vv - V4314,

A% o= — (8 —2N)IY 072N - V400 + (8 —2N)3Y 372N - V0 - V4 0.

Then we can derive the evolution equation of V¥ and Q¥

R, VH — T (b - 3)3Y 932N (S (bo - )n) + V4QF
=[R, VT 2Ng,v + [J*l(b0 -9), agvﬁHN] (J 7 (bo - Y1) (5.3.130)

+ CHQ) + R, (Y 3¥ 2N . Vv + AF).

Denote the RHS of (5.3.130) to be F¥, then direct computation yields that
IF¥0 < P (Inlls,x. [0lls,5, 1Ql8.5) -

Now we take L2(£2) inner product of (5.3.130) and J V¥ to get the following energy identity

1d =g_ _
35 IV s = [ o 00 TN (7o o) - VA
(5.3.131)

—/Q(VAQ)-VM/QJF”-V“.
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5.3.6.2 Interior estimates

The last integral on RHS of (5.3.131]) is directly controlled
[ ¥ S [V, (53.132)
2 2

Then for the first term on RHS of (5.3.131)) we integrate (bg - d) by parts to produce the energy
of magnetic field. Again, there is one term which cannot be directly controlled but will cancel with
another term produced by — [, (VA Q) - V. The proof follows in the same way as (5.3.13) so we omit

the details.

[ (bo - )Y 352N (J 7 (bo - D)7y) - VF
2

(5.3.133)
1d = _ 2
S=gar [T PPN G0 o[+ Ky P (1.0, (o9 s.).
where
Kh = _/9 JOY 2N (T~ (Do - d)m) - (S (bo - )n) 95 982N (div 4v) dy. (5.3.134)

Next we analyze the term — [, (VA Q) - V#. Integrating by parts and using Piola’s identity 9 MAI e

0, we get
—/ (VAQ) - V# =/ JQ”(VA-V”)—/ JQAM N, VE dS =: I* + IB*. (5.3.135)
2 2 r

Plugging (5.3.128) into I¥, we get

It = / JY 932N gl 382N (div ;v)
2

—_ 1, _ 2 =3 .
+/QJ3§V<98 2N (§|J (ko - )| )ag"as 2N (div ;v)
(5.3.136)

+ /Q (~@YT* 2N n)A 5,0 + Ah) 9T (div gv) - /Q @Y3* 2N 9)CHv)

VRN I EN I E )
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where [ f can be directly controlled by using the estimates of C#(v)

1 < 19Y 32N 0llolCF)llo < PUInlls, ) l19Y 352N Qllollv]ls, - (5.3.137)

The term [ f produces the energy of fluid pressure

1d

< _
L~ o ds

J2R(9) | N=s_an |2
[ |52 Pllgl ool ) (53,138

Similarly as in (5.3.82)), the term 15 produces the cancellation with K f 1

1§ = [Q Ty 82N (J—l(b0 : a)n) . (J_l(bo . a)n) 9y 352N (div ;v)

exactly cancel with K?l
+CNy Ny /Q VEARLE (J—l(bo . a)n) N TNIG82N =N, (J_l(bo ) a)n) 9y 382N (div ;v)
#
=Ky,

J2R = _ Ny z8—2N— _ =g
s [ R D NG (510 - ayg) -0 TNV N (5710 - 0)n) ) TN arg)
2 00

= _ —N{=8—2N— _ — JR'
= Cwa [ YT (57 by 0n) 05 VTN (5 ) ([ g

=K, + 1§, + 1,
(5.3.139)
and by direct computation we have
T B T
/ 13, <ellaY 352N g2 + Py + [ P(€(r))dt (5.3.140)
0 0
15, S197 bo - )nl12 1l q s, (5.3.141)

Then 1 f can be controlled by integrating d, by parts under time integral after invoking divqv =
—% d¢q. The proof is similar to (5.3.86) so we do not repeat the proof.

T T
/ I < el @2V oY qlI2 + Po + / P(€&(t))dr. (5.3.142)
0 0
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Summarizing (5.3.136)-(5.3.142)) and choosing ¢ > 0 sufficiently small, we get the interior esti-

mates

T 2 p/ T
1 J*R - 2
0 2Je  po

Therefore, it suffices to analyze the boundary integral 7 B¥.

T
+ P +[ P(€(1)) dr. (5.3.143)
0 0

5.3.6.3 Boundary estimates

Invoking (5.3:126)-(5.3.127), the boundary integral now reads

1B* =—/FQﬁJA3“N3V§[ ds
- [F JA N3 (0N 332N 0)VE ds
+ /F A3N3 (Y 382N 1) 437930 Y 352N v, dS
_/FA30¢N3(8§V§872N77V A3“83Q)(3§5872NU-VAva)dS (5.3.144)
_ [F AP N3 (05) (0Y 552V v,) dS + [F A N3 (05)0Y T2V - Vv dS
—/FA3°‘N3A”Q(A§))I- dS+/FA3°‘N3(a§’58—2Nnv A% 9;0)(AY); dS

=B + IBY + 1B} + 1B% + IB! + 1Bf + IBE.
To control 1B*, we only need to combine the techniques used in Section|5.3.1.3|and Section|5.3.2.3

o/ Bf v Bg together with the Rayleigh-Taylor sign condition produces the boundary energy

| A3 9N 332N |2, similarly as By + IB, in Section|5.3.1.3|and 1B} + 1B} Section|5.3.2.3

e The term / Bg is the analogue of /By in Section|5.3.1.3|and can be controlled with similar method

as in Section[3.3.1.3]
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o/ B§ ~1 Bg are the analogues of /B} ~ IB¢ in Section|5.3.2.3| These terms can be controlled

exactly in the same way as /B ~ IB¢.

First, 1 BI’i and / Bg give the boundary energy with the help of Rayleigh-Taylor sign condition. The

proof is exactly the same as in Section [5.3.1.3|and Section|5.3.2.3|by merely replacing 8‘3‘ or 98 with

aé" 9872V 50 we do not repeat the computations here.

T # €0 | j3aq9NF8—2N 2|
/1B1+IB =—Z‘A“a3a* e
0

T
+ / P(€&())dr. (5.3.145)
0

0

We then analyze B Invoking (5.3.126), we have
1B} = - / N3(J Y 952N 0) (4% 9552V v,) dS
r

+ / JAR N3 (DY 352N 0) (9N 932V - Vavy) dS
r
(5.3.146)

_ /F JAR NSOV TN 0)(Al), dS
—:IB!, + IBL, + 1B,

‘We note that IB§1 and IBg2 are the analogues of /By and I By, in Section|5.3.1.3} so we do not repeat

all the details here. The extra term 1B, can be directly controlled (cf. (53.153) below).

We differentiate the continuity equation (5.3.31) by 35 382" to simplify the top order term

containing v in Bgl:

_ _ R’ 2 _ _
A3"‘8§'88_2Nva - _ 813V—188—2N (J (@) 3;q) _ Z 813V—188—2N(ALaaLva)
Po =1

SRR (o [ [ Tl
1 2

N{+N>>1,Nj<N-1
(5.3.147)

where the term contains 3% —198—2N glLlo — oy 982Ny % 9y + L.O.T. which cannot be controlled on
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the boundary. Invoking (3.1.3) with D = 3, we expand this problematic term to be

(8:15V—158—2NAL0¢)5LU‘1 - _ (aé\’—157—2N (ALV 5813 M Alga)) 5Lva

— ALU 8:1;\]58_2]\/771) A3a5Lv01

(5.3.148)
2

_ Z ALV(&%V*IéS*ZNgM nv)AMagL Va
M=1

— ([BY 172N ALY AP)5041,) 0L Vs

On the other hand, in / Bgz we have
2
AN BNy Vv = A3 Y " 0¥ 552N, ARV vy + A0 9572V 0, A3V 030, (5.3.149)
L=1
where the first term exactly cancels with the first term in the RHS of (5.3.148). In fact, this is the

analogue of (5.3.35)-(5.3-38) by merely replacing 3% with Y 3%~2¥ . Thus we get the cancellation of

the top order terms in / Bgl and / Bgz.
The second term in (5.3.149) could be treated similarly as in (5.3.42) by invoking 43" 937, = 1

oY 2N, 4% £ 9571552 (03, A7) —(0Y 71 TRV A3, — (AP @Y T2y,

=0

(5.3.150)

To control 1 Bg, we still need to analyze 33 932V Q. Following the aruments in (5.3.39)-(5.3.41)
and replacing 93 with 89’ 9872V we can reduce one normal derivative of Q to one tangential derivative
of v and (bg - d)7 via

OV T2V Q =7 3na (podd TN 0,07 + (bo - D)2V TN (7 (o - )™ )

2
— ZALi(agV—@S—ZNgLQ) (5.3.151)
L=1

— (N = 1)(3Y 1382V A3*)(33Q) + lower order terms.

Plugging the expression of A% and (53.147)-(53.151) into (5.3.146)), we find that every highest order
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term in / Bg must be one of the following forms

K} = / N3 182N D ) (0 157N ) (9h)r dS,
r

K} = f N3 (@Y 1832V D 1) (0¥ 872N g)(3dh)r dS,
r

K= /F N3@Y 132N 1) (9N 72N g)(9h)r dS,

where © = 9 or 9, or (bg - 9), the functions £, g,k can be n,v, Q, J 1 (by - ), and r contains at
most one derivative of 17, v or Q. We note that the term Kg comes from [/ B§3 where Ag contributes to
R L )

Since 1 < N < 3, we know 7 — 2N > 1 and thus we can directly apply lemmamto control
K~ KE.

K <1070 £ ls—an[9) " glo-an [0k Flroe S (105 71D £l go-an 105 " gl ro—an |0 7 12

§||f||2(N—1)+1+(9—2N),*||g||2(N—1)+(10—2N),*||h||3||r||2 = | flls«llglls«7llzllr(--

(5.3.152)
and
K <10V 1D £ lg-an 10 gl7-an |(00R)r oo < 10 71D £ ls—an |0Y gl7-an [(30R)r |15
(5.3.153)
SN0V 71D fll go-2n 108 gll gs—2n @)1z S 11 f s, gl 2]l 7517 2
and
K& <10V 71D £ ls—an [0 glr—an [(9h)r|roe S 107D £ ls—an [0 glr—an [(01)F 1.5
(5.3.154)

N-1 N
SI03 ™ D [l go-2n 195 gl gs—2n (O rl2 S (1S s« llg s« 1372
One can use either trace lemma or similar techniques as in (3.3.43)-(5.3.43) to analyze the remaining

terms which are all of lower order than K f ~ K g This completes the control of Bg.

The analysis of 1 B§ ~1 Bg can be proceeded exactly in the same way as /B} ~ IB¢. Since these
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quantities involving the modification terms A , Aﬁ are of lower order, we do not repeat the details

again. We can finally prove that

T T
/ 1B + 1B} dr < / |A3“ag" 952N,
0 0

o U0 0. D)5, Q15,5 llpolls) dr, (5.3.155)

T
+ |40 TN | Pl 1QTe) [ 1)

1B! <Aoo A% ol(A5)il0 S Pl [Vls.s [Q170). (5.3.156)

B} S|A%0501100| A% 0 3572V 1, o l(AR )il < P(nllgxs 011800 1 Q17.0)-
(5.3.157)

Summarizing the estimates above, we get the control of the boundary integral

T _ > T
f IB* < —%" AN 82Ny, , +Po+ P(ET) f P(&(t))dr. (5.3.158)
0 0

Combining (3.3.131)-(5.3:133)), (3.3.143), (3.3:138) and choosing & > 0 in (5.3.140) to be suitably

small, we get the following inequality

— _ 2 — C — 2
IVAIG + | 95702 (47" (bo - ) | + 10302V g3 + 5 | 40502 o |

t=T
(5.3.159)

T
SPo+ P(QE(T))/ P(€&(1))dr.
0
Finally, invoking (5.3.126), we get the ) 9872 (N = 1,2, 3)-estimates of v by using 3" |;=o = 0
forany m > 2,m € N*,

T
195 95N vllo < IV¥llo + P(l[vll7,x, ||77||7,»<)/0 P([[vllgx), (5.3.160)

and thus

— _ 2 I —a_ 2
Haé\’as N (U’J l(bo'a)n’q)no : ‘A3°‘a§738 2N77a‘0
t=T

(5.3.161)
T
SPo+ P(E(T)) /0 P(&(1))dt.
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5.3.7 Control of time derivatives

In the case of 9 = 89’ 982Nk 8’,‘ for 1 <k <8 —2N, most of steps in the proof are still applicable.
However, the presence of time derivative(s) could simplify the “modified Alinhac good unknowns".
We note that most of the modifications are essentially similar to Section (5.3.3) ~ Section[5.3.5] so we

omit the proof.

5.3.7.1 One time derivative

When k = 1, the modified Alinhac good unknowns can be defined by replacing 897 by (8 —

2N)3Y 9772V in Section|5.3.3.2} i.e.,

VE = 3N 72N g0 — 0 072V 9, Vau + AF, QF = 8Y 972N 8,0 — 0¥ T2V o,n- V40 + A

(5.3.162)
where
(AF); == (8 =2N)Y "2V . Vyd,vy — (8 —2N)OY 8772V v - Vyu,
+ (16 — 4N)IY 372N . V40 - Vyvg, (5.3.163)
A“Q = — (82NN 2Ny V49,0 + (8 —2N)dY 32N y. Vv - V40,
and

Y872V 9, (div jv) = V4 - VE 4+ CFv), Y72V 8,(V40) = VuQF + CH(Q),  (53.164)

with

ICE(F)llo S PED)IS llg.x-

The difference between 95 97>V v and V¥ should be controlled in the same way as (5.3.108) by
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replacing 37 with ay 972N
_ T
057N 00l S IV + Po + P [ P&y ar, (5.3.165)
0
and thus

— _ 2 I o — 2
HagW 2, (v.J 1(b0-8)n,q)H0+ZO‘A3 a7 2Natno,)0

t=T
(5.3.166)
T
<Py + P(&(T)) /0 P(&(t))dt.

5.3.7.2 2~(7-2N) time derivatives

When 2 < k <7 — 2N, we can mimic the analysis in Section We just need to replace D692 by
AN DO=2N 32 where D denotes 3 or 9, and D=2V contains at least one . The analogous problematic
term becomes —2(8;A““)(8§©6_2N8, 0uf)—(6— 2N)(®A”“)(8§©5_2N 929, f) which comes

from [0Y D672V 92, A#* 3, f]. Following (3.3.1T1)-(5.3.113), we can similarly define

VE= 0V 202N g2y — Y D62V 92 . vyu + AF, QF = Y D02V 920 — 0¥ DN 92y - V4 0,
(5.3.167)

where
(AF); = —(6—2N)IY D 2N 2y . V4 Dy — 20Y D2V 9,0 - Vv, (5.3.168)
and
D2V G2 (div jv) = V4 - VE 4 CHv), YD 2V 32(V40) = V4Q* + CHQ),  (5.3.169)

with

IC*()llo S PEEN S N5

Again we have AZ in this case, and thus the analogues of / B§ ~ 1 B§ all vanish. The boundary

integrals Bﬂ, IB f v Bg, 1 Bg and the interior terms can be controlled in the same way as Section m
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Finally, one has

[0 00252 (.77 b - m.g) | + 2 | 4%<0N 00N o,

t=T
(5.3.170)

T
<Py + P(&(T)) /0 P(E() dr,

where D62V contains at least one spatial derivative .

5.3.7.3 Full time derivatives

When 9L = 89’ 8§_2N for N = 1,2, 3, there is not tangential spatial derivative on the boundary and

thus Lemma [3.2.3]is no longer applicable. In this case, the modified Alinhac good unknowns become

V= V982N y — 9N 32N . Vv + AF, QP =0V 3 2N 0 — 9N 982Ny . v,40, (5.3.171)

where
(AF); = =8 — 2NV 952Ny . Vyvg (5.3.172)
and
Y 932N (div zu) = Va4 - VR4 CHv), Y352V (V40) = V4Q* + CH(Q), (5.3.173)
with

IC*(H)llo S PED)f s,

The proof follows in the same way as Section after replacing 87 by 872" and the coefficient

8 by (8 —2N). So we no longer repeat the details. Finally, we get

_ _ _ 2 _ C _ 2
103 352N wF + o2 052N (47 o - ) | + 108 052N g + T [ 4705 052 |

t=T

T
el 1552V p[12 4 Py + P(E(T)) / P(E()) dr,
0
(5.3.174)

which together with (3.3.161)), (5.3:166), (5.3-170) concludes the proof of Proposition [5.3.3]
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5.3.8 Control of weighted normal derivatives

Now we consider the most general case 91 = 8’;" (083)i4521 5;2 8;3 with i; + i, + 2i3 +is = 8 and
is > 0. The presence of the weighted normal derivatives (0°93)™ makes the following difference from

the non-weighted case.

1. Extra terms are produced when we commute 91 with 3 because o is a function of y3. Once 03
falls on the weight function, we will lose a weight and (0 d3) becomes d3, which causes a loss of
derivative. This appears when we commute . with V{ that falls on Q or v, and commute L

with (b - 9).
2. There is no boundary integral because the weight function o vanishes on I".

To overcome the difficulty mentioned above, we can again use the techniques, similar with those in

the previous sections.

e Invoke the MHD equation and the continuity equation to replace V4 Q and div ;v by tangential

derivatives.
e Produce a weight funtion by using 53| = 0 and 3Q|r = 0.

e In particular, if 8£ does not contain time derivative, we need to add an extra modification term in

the good unknown of v.

First we analyze [(bg - 9), 0" (o 83)"4511 5;2 823] f. Compared with the non-weighted case, we need

to control the extra term

bR03(0™) QT TZ 5 £) = iab 030) (01 (00) 1B TR AET) .
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Using b3| r = 0, one can produce a weight function o as in (5.3.58)). Therefore

Hbg(ag,a) (a’}’ (003)4 13 520+ f) HO

SN193b0 | oo 1(093)30 (033) 47189205 £ lo < 1Boll3ll £ s,

Next we analyze the commutator between 9 = 9% (083)i4§§1 5;2 8;3 and V4 f. Compared with the

non-weighted case, we shall analyze an extra term C, below. In specific, one has

00 (0d3) D) 97T (A9, f) = o091 795 (A", f)

=o't (419, (90 05T 1) + o 000, DR 05T, 4ra,

& (5.3.175)

= ard, (oM TTZOS T £ ) — (iad30) A% ((002) T 90T DRAET! 1) +C.

Co

o
The term C consists of the commutators produced in the same way as the non-weighted case. It can
be analyzed in the same way as in previous sections by just considering (0 d3) as a tangential derivative

on the boundary. As for the extra term, we do the following computation

A3 ((033)1'4_181;05’.115;23?—’—1f)
=(083)"4_18’;°5"1‘5;2 8’; (A3a83f) _ [(033)1'4—181;055115;2 8?, A3a] 3 f (5.3.176)

=:C7 () + CT ().

Note that ig+i1 +iz+is = 8—2i3. We know the leading order terms in Cy are ((083)i4_1 8’;0521 5122 323A3“) f

and (DA3%) (D623 8;3+1f), where ® represents any one of (00d3), 9;,01,0,. Recall that A3
cosists of 95 - 7. This shows that the highest order term in ((083)"4_182"52‘ 5;2 3;3A3“) 93 f is

(D820 823 1n)(0n) f whose L2(£2) norm can be directly controlled by ||r]||g,*||5n||Loo 103 f|lLoo. As
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for the second term, we have

@A) (@°2305F f)llo < 1@ @mzes | f s,

Therefore, C5 can be directly controlled.

The control of C{ is more complicated. We should use the structure of MHD system (2.4.1)) to

replace one normal derivative by one tangential derivative.

2
A¥030 = - AM0,.0 — RO, v* + T (bo - 0)(J " (bo - D)m)* (5.3.177)
L=1
_ _ JR'(q) 2 _
AP 304 =div zv — 410 vy — A2 Dpv, = — ; Doig — > AL, (5.3.178)
0 L=1

When f = Q, we plug (5.3.177) into C{ (Q) to get

CT(Q) =(0d3)'*™"819 8705 (4°*9; 0)

2
=~ ) (001900, 9505 (479, 0)

L=1

— (093)+ 719109 9203 (R3,v%) (5.3.179)
+ (093) 471909 8795 (7 (bo - 3)(J (ko - D)1)))

=:C1(Q) + €1 (Q) + C15(Q).
When f = vy, we plug (5.3.178) into C{ (v) to get

CT (v) =(093)"* 190, 0795 (A**03va)

e somh T ais L ot oz ais (IR @)
=Y (00 T 20 (AR Dy ) — (05) 00T TR0 ( q a,q)
I—1 Po
=:Cy,(v) + C5,(v).
(5.3.180)
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The terms C7, (Q) and C7, (v) can be directly controlled. Note that ig +i; +i, + ({4 —1) = 7—2i3,

SO

1C (D)o SIRI7lVllgx S Mgz 1V ]85, (5.3.181)
ICH@)llo Slleoll7,xlIg s, «- (5.3.182)

Using b3|r = 0, one can produce a weight function o as in (5.3.38) when all the derivatives fall
on J 1 (bg - ).

1CE (D)o SIT ™ (bo - 9)(093)+ 1808, 8207 (J ™ (bo - D))o

+ | [ a3 5.0 (bo - 0)] (U Bo- D))
(5.3.183)

<N193(J " Do)l oo || (0d3) 408} 8795 (J =1 (bo - D)) lo

Slbollz,« 17~ (bo - )nlls -
As for C7;, the highest order term can be merged into the modified Alinhac good unknowns. One

has

2
Ch(f) == Y (005) 7 000} 5505 (A5, f)
L=1

==Y (oo az ol ake) o, f

= (5.3.184)

—_

(o) 1o T 20, At |5

M~

L

Il
—-

(N
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which again is equal to

2
= 3 AR ((000) T 90 DR 05 9, ) APDL S
L=1
(5.3.185)
=Y ([ota)y ol Bz o AR AP | g ) B f +CT ().

L=1

C12(f)
Since ig + i1 + iz +is = 8 — 2i3, one can directly control the L2(£2)-norms of C?},(f), C2,(f) by

P(|Inlls,%)|I.f |8, For the first term in the RHS of (5.3.184)), one can proceed in the following ways

e f = Q: Since 3 Q|r = 0, one can produce a weight function as in (5.3.62) and thus

|42 ((waay 1T 5202 05m.) 4795, 0|

S XZ: HALv ((083)i4—135051'115;231'3351”77”) AMagLQHO
o (5.3.186)

+ | ALY 43303 0 || oo [ (093) 90911 9282 0, 1o

SPADIQ N7 lnll8,-

e f = vy: When 0! contains time derivative (io > 0), then it can be directly controlled due to

9=

|45 ((03) 005 5205 95m, ) 47D v,

o < PAnli)vlls«l[vlls,x- (5.3.187)
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If ip = 0, then it can be written in the form of covariant derivative plus a controllable term.

— AL ((00:) 710 Tz 05 0, ) AP“TL v,

= — APy, ((083)i4‘15§‘3;28§3nVAL”5Lva>
+ A%%(950) ((i4 — 1)(033)"4*25";5;2333“nv) AL v, (5.3.188)
+ V(AL T vg) ((033)"4—15"; 5;23"33nv)

=i = V4 ((00) 10505, A2 G100 ) + Cff5 (va).
We note that the first term in C{,;(f) appears when d (k = 3) falls on the weight function and

is > 2 and can also be directly controlled by P(||n]s,«) || f|s,x-

Next we merge the covariant derivative terms in C, into the modified Alinhac good unknowns, i.e.,

for 81 = 91°(093)149" 8295 we define VI to be

3iva—3iﬂ'VAva +(Ag)a’ ip > 1
2 . _
0Lva = 0L Vave + (89 + 3 ((4030)(002) 7 5 37950, ) AL DLve, o = 0.
L=1
(5.3.189)
and
Q= 8iQ—ai’7'VAQ+A[é' (5.3.190)

Then one has

A(Vy-v) =V, V7 +Co), (5.3.191)

0L(V40) = V4Q% + C7(Q), (5.3.192)

with ||C?(f)llo S P(€(2))] f |s,«- Here the “extra modification terms" AJ and A‘é comes from the

o
analysis of C in whose precise expressions can be derived in the same way as before. The
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term ((i4830)(083)i4_18';°5"1‘ 5;2 8;3 nv) ALY3; £ comes from (5.3.173) and (5.3.188). Finally, the
commutator C?(f') consists of the commutator part in CO‘, Co(f) ~ CP5(f), CL(f) and CL(Q).
Recall that 0| = 0 and dQ|r = 0 imply Q°|;r = 0. Therefore the boundary integral

[ N3A3*Q°VY dS vanishes. Hence, we can get the following estimates for 31 := 3o (o 83)i45§1 5;2 8?

2 T
ool + [of (7 Go- o)) +l0kalE] <SP0+ Py [ pEo)arn G3193)
0

t=T

5.3.9 A priori estimates of the compressible MHD system

5.3.9.1 Finalizing the energy estimates

Combining the L2-energy conservation with (5.3.3)), (5.3.50), (5.3.123) and (5.3.193)), and then choos-

ing & > 0 to be suitably small, we finally get the following energy inequality
T
E(T)—€0) SPo+ P((‘E(T))/ P(&@))de (5.3.194)
0

under the a priori assumptions (5.3.1)-(5.3.2). By the Gronwall-type inequality, one can find some

T, > 0 depending only on the initial data, such that

sup €(t) < C(€(0)), (5.3.195)

0<t<T»
where C(&(0)) denotes a positive constant depending on &(0). This completes the a priori estimates of

(2.4.1).

5.3.9.2 Justification of the a priori assumptions

It suffices to justify the a priori assumptions (5.3.1)-(3.3.2). First, invoking 9,/ = Jdiv v and
J|i=0 = 1, we get

T T
IV =17« S/ I/ div gvl|7,« df 5/ P([[onllLeo)[10:q 7.+ dz
0 0
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Therefore choosing 7' > 0 to be sufficiently small yields (5.3.1). The Rayleigh-Taylor sign condition
in [0, T1] can be justified by proving dQ /dN is a Holder-continuous function in ¢ and y variables. In

specific, from the energy estimates we know that

10 3 90 o0 3
o € L. T HA(I)). 8,(8N)6L ([0, T]; H3(I')).

By using the 2D Sobolev embedding H%(F) < L*(I') and Morrey’s embedding W14 — C%% in

3D domain, we get its Holder continuity

g—f] e WIo([0, T]; H3(I') < W40, T] x I') < ct‘f;ﬁ([o, T]x I').

]
Therefore, (5.3.2) holds in a positive time interval provided that —% > ¢o > 0 holds initially.

Theorem [2.4.1]is proved.

5.3.10 Initial data satisfying the compatibility conditions

Define f;y := 8{ f |s=0 to be the initial data of 8{ f for j € N. Finally, we need to prove the existence

of initial data satisfying the following properties:

e The compatibility conditions (I.0.9) up to 7-th order.

e The constraints V - By = 0, By - n|oyxsp, = 0 and the Rayleigh-Taylor sign condition (I.0.5)

on {0} x 0Dy.

e The norms of the initial datum of the time derivatives of (v, b, Q) can be controlled by the norms

of initial data (vg, bo, Qo)-

We note that the compatibility conditions up to order m can be expressed in Lagrangian coordinates

by using the formal power series solution to (Z.4.1)) in ¢:

J oo Jj . J
B(z.y) = va(y)%, b(t.y) = me(y)%, 0t.y)=Y Q(j)(y)%,
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satisfying Q(;)|r = 0for j =0, 1,---, m. Since the solutions are in H3, the compatibility conditions

have to be expressed in a weak form

0(H(») € HJ (), 0<j <m. (5.3.196)

From (vg, by, Qo) € HE(£2) and the system (2:4.1), one can only get (v(;),b(jy. Q(j)) €
HE_Zj(SZ) for 0 < j < 4. To guarantee (v, by, O(j)) € HE (£2) and Q(;) € Hg(£2), the
initial data should be constructed in H®(£2) with

8
Z vy, biiys Qi lis—; < P(llvolls, 1bolls, 1Qolls)s
j=1
instead of in H8(£2). See [74, Lemma 4.1] for the proof.

On the one hand, by Lemmawe know (v(;), b(j), Q(j)) € H¥ 7/ (2) — HE ™/ (£2) which
satisfies our requirement and implies €(0) < P(||lvolls, l1bolls, | Qolls). On the other hand, if we
directly construct the initial data (vo, bo, go) € HE(£2) such that (v(;), b(j), O(;)) € HE/ (), then
it is not clear in which sense the boundary conditions and the compatibility conditions are satisfied. For
example, Q(7) € H(£2), but the trace of such function in that space has no meaning in general. This
also explains why we require Q(7) € H{ (£2) in (5.3:196). Therefore, the initial data (vo, b, Q) has

to be constructed in the standard Sobolev space H¥(£2).
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Chapter 6

Open Problems

The last chapter records some open problems in the study of free-interface problems in MHD. Recall
in Chapter [I.1] that such free-boundary problems arise from the current-vortex sheets and the plasma-
vacuum models. In the case of compressible ideal MHD, all the previous results about the local
existence [9, (74} 75, [70} [71}, 164]] rely on the Nash-Moser iteration method which yields a big loss of
regularity from the initial data to the solution. It is natural to ask if one can prove the local existence such
that there is no loss of regularity for the higher order energy. Our paper [S0] is the first breakthrough in

this direction. Specifically, the following problems are unsolved
Problem 6.0.1. 1. Use the energy functional in [50]] to prove the local existence.

2. Extend to current-vortex sheets and plasma-vacuum model with Syrovatskij condition and prove

the incompressible limit. (Magnetic shear suppresses the Kelvin-Helmbholtz instability.)

3. Extend to current-vortex sheets and plasma-vacuum model with surface tension but drop the
Syrovatskij condition and prove the incompressible limit. (Surface tension eliminates the Kelvin-

Helmholtz instability.)

Problem[6.0.1]is never a simple generalization of [50]. For problem 1, one may need to find a new

way to define the approximate system other than the tangential smoothing method. From the proof
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of Theorem [2.3.1]in Chapter[5.2] we find the “corrector” ¥ in the approximate system is necessary in
order for the uniform-in-k estimates. In fact, this cannot be avoided because it is not likely to have
higher regularity of 5 than v and thus the analogous proofs for Euler equation (cf. [[16} 17} [15]) are no
longer valid. Due to the structure of ¥ in (5.2.2)), it is not likely to close the uniform-in-« estimate in

the control of less than 2 tangential derivatives (the contribution of ¥ on the boundary is A ).

For problem 2~3, an extra difficulty arises from the nonvanishing boundary condition for the total
pressure Q. Recall in (53.3.62) that we use Q|r = 0 to produce a weight function in the derivation of
“modified" Alinhac good unknown, which seems unavoidable if one use Lagrangian coordinates. To
overcome this difficulty, one might alternatively assume the free interface as a graph of function .
Under this setting, the extension of ¥ to the interior, namely ¢, still has full Sobolev regularity even
if all the unknowns only have anisotropic Sobolev regularity. However, it is still unknown if one can
derive the a prori estimates due to the extremely complicated computation on the free interface. Even
so, it is still highly non-trivial to prove the local existence with this energy. Indeed, in the iteration
scheme, the boundary energy of ¥ (or its smoothed version) cannot be derived for the frozen-coefficient
linearized system. One may alternatively apply the idea of Wu [79]] to control the evolution of the free
interface. So far, all the aforementioned results only proved the tame estimates for the linearized system,
which is far from what we desire. Further, the study of the incompressible limit of compressible vortex
sheets is completely open, while the incompressible counterpart is related to the “suppression effects”

(contributed by magnetic fields, elasticity, surface tension, etc) on the Kelvin-Helmholtz instability.

Next, concerning the plasma-vacuum model, we raise the following question

Problem 6.0.2. What should be the necessary and sufficient “stablization condition" on the interface

for the local existence?

The Syrovatskij condition |B* x B~| > ¢¢ > 0 which comes from the study of current-vortex

sheets is shown to be sufficient (cf. [64}|67]]), but it is still unknown if it is necessary. On the other
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hand, Gu [25! [26] proved the local existence for the axi-symmetric case under the Rayleigh-Taylor sign
condition. Mathematically, if we assume the free interface as a graph of function ¥ and the initial data
is in H”, then the Rayleigh-Taylor sign condition gives H" (I") regularity for ¥ but the Syrovatskij
condition gives H”" +3 (I') regularity because the latter one allows us the rewrite Vi in terms of the
linear combination of BE. But so far, there is no result that shows the latter one implies the former one.

See also Trakhinin [73]] for detailed discussion.

Yet there are more interesting and deep problems. Recall in Chapter[I.1.T|we exclude the case of
MHD shocks, for which one of the jump condition becomes [u/,] # 0. Blokhin-Trakhinin [5]] studies
the stability of MHD shocks. However, it is still widely unknown about the formation mechanisms.
The only related result is due to An-Chen-Yin [3] for the instantaneous fast MHD shock driven by
low-regularity data, whereas the general case is completely unknown and extremely difficult due to
the multiple speeds (fast and slow magnetosonic waves, entropy wave and sound wave). The study of
MHD transonic shocks is also completely open. However, this phenomenon happens when the solar

winds pass across the termination shock [24, Chap. 20].
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