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Abstract

We consider the three-dimensional incompressible free-boundary magnetohydrodynamics (MHD) equations in a
bounded domain with surface tension on the boundary. We establish a priori estimate for solutions in the Lagrangian
coordinates with H3:5 regularity. To the best of our knowledge, this is the first result focusing on the incompressible
ideal free-boundary MHD equations with surface tension. It is worth pointing out that the 1=2-extra spatial regularity
for the flow map �, such as in [1, 18, 22], is no longer required in this manuscript thanks to the presence of the surface
tension on the boundary.
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1 Introduction
The goal of this manuscript is to investigate the solutions in Sobolev spaces for the following incompressible inviscid
MHD equations in a moving domain with surface tension on the boundary:8̂<̂

:
@tuC u � ru � B � rB Cr.p C

1
2
jBj2/ D 0 in DI

@tB C u � rB � B � ru D 0; in DI
div u D 0; div B D 0; in D;

(1.1)

describing the motion of conducting fluids in an electromagnetic field, where D D [0�t�T ftg�˝.t/ and˝.t/ � R3
is the domain occupied by the fluid whose boundary @˝.t/ moves with the velocity of the fluid. Under this setting,
the fluid velocity u D .u1; u2; u3/, the magnetic field B D .B1; B2; B3/, the fluid pressure p and the domain D are
to be determined; in other words, given a simply connected bounded domain ˝.0/ � R3 and the initial data u0 and
B0 satisfying the constraints divu0 D 0 and divB0 D 0, we want to find a set D and the vector fields u and B solving
(1.1) satisfying the initial conditions:

˝.0/ D fx W .0; x/ 2 Dg; .u; B/ D .u0; B0/; in f0g �˝0: (1.2)

The quantity P WD p C 1
2
jBj2 (i.e., the total pressure) plays an important role here in our analysis. It determines the

acceleration of the moving surface boundary.
We also require the following boundary conditions on the free boundary @D D [0�t�T ftg � @˝.t/:8̂<̂

:
.@t C u � r/j@D 2 T .@D/
P D �H on @D;
B �N D 0 on @D;

(1.3)

where N is the exterior unit normal to @˝.t/, � > 0 is the coefficient of surface tension, H is the mean curvature of
the moving boundary embedded in R3. The first condition of (1.3) means that the boundary moves with the velocity
of the fluid. The second condition in (1.3) suggests that the motion of the fluid is under the influence of the surface
tension, as opposed to the case without surface tension (� D 0). Also, we remark here that H is a function of the
unknowns and thus not known a priori. The third condition of (1.3), B � N D 0 on @˝.t/ implies that the fluid is a
perfect conductor; in other words, the induced electric field E satisfies E �N D 0 on @˝.t/.

The physical energy is conserved, i.e., denoting Dt WD @t C u � r, and invoking the divergence free condition for
both u and B , we have:
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d

dt
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2

Z
˝.t/

juj2 C
1

2

Z
˝.t/

jBj2 C �

Z
@˝.t/

dS.˝.t//

�
D

Z
˝.t/

u �DtuC

Z
˝.t/

B �DtB C
d

dt

�
�

Z
@˝.t/

dS.˝.t//

�
D �

Z
˝.t/

u � r.p C
1

2
jBj2/C

Z
˝.t/

u � .B � rB/C

Z
˝.t/

B � .B � ru/

C
d

dt

�
�

Z
@˝.t/

dS.˝.t//

�
D �

Z
@˝.t/

.u �N /P C
d

dt

�
�

Z
@˝.t/

dS.˝.t//

�
C

Z
˝.t/

u � .B � rB/ �

Z
˝.t/

u � .B � rB/ D 0;

where the first line in the last equality vanishes as shown in (2.1) in the paper [25].
This motivates the construction of the higher order energy for (1.1)-(1.3). We refer Section 6 for the details.

1.1 History and background
The MHD equations describe the behavior of an electrically conducting fluid (e.g., a plasma) acted on by a magnetic
field. In particular, the free-boundary MHD equations (also known as the plasma-interface problem) describe the
phenomenon when the conducting fluid is separated from the outside wall by a vacuum.

An overview of the previous results
In the absence of the magnetic field, i.e. B D 0 in (1.1), the problem reduces to the well-known incompressible

free-boundary Euler equations, whose local well-posedness in Sobolev spaces was obtained first by Wu [32, 33] for
the irrotational case with � D 0, assuming the physical sign condition �rNp � �0 > 0 holds on @Dt . This condition
plays a crucial role in establishing the above well-posedness results for Euler equations. It was found by Ebin [10]
that the incompressible Euler equations is ill-posed when physical sign condition fails. Extensions including the case
without the irrotationalility assumption have been studied extensively in the past two decades, without attempting to
be exhaustive, we refer [5, 6, 18, 20, 21, 34] for more details.

On the other hand, the free boundary Euler equations behaves differently when � > 0. The surface tension is
known to have regularizing effect on the moving surface. As a consequence, the physical sign condition is no longer
needed when establishing the local well-posedness. We refer [23, 25, 26, 27] for more details.

The free-boundary MHD equations, nevertheless, is far less well-understood than the free-boundary Euler equa-
tions. When � D 0, under the physical sign condition1

� rN .p C
1

2
jBj2/ � �0 > 0; (1.4)

Hao-Luo [14] proved the a priori energy estimate with H 4 initial data and the local-wellposedness was established
by Secchi-Trakhinin [24] and Gu-Wang [11]. Also, we remark here that in [15], the authors proved that this problem
is ill-posedness when (1.4) is violated in the case of dimension 2. We also mention here that in [22], we proved a
priori estimate with minimal regularity assumptions on the initial data (i.e., v0; B0 2 H 2:5Cı ) in a small fluid domain.
Unlike the Euler equations, this assumption on the smallness of the volume of the fluid is crucial here due to the
physical sign condition is unable to stabilize the MHD flow under low regularity assumptions. We will discuss more
about this in the following paragraphs.

In [12], the authors proved the global well-posedness and exponentially decaying rate of the viscous and resistive
free-boundary MHD equations when � > 0. In that paper, the kinematic viscosity and the magnetic diffusion allow

1In [13, 28], the authors studied the a priori energy estimate and local well-posedness, respectively, for the free-boundary MHD equations with
nontrivial vacuum magnetic field under different stabilising assumptions.
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them to control the enhanced regularity of the flow map, while this is impossible in the case of inviscid MHD without
magnetic diffusion. In [4], Chen-Ding studied the vanishing viscosity-resistivity limit and the convergence rate for the
viscous, resistive, free-boundary MHD system with surface tension in a half-space domain. Wang-Xin [31] studied the
global well-posedness of the incompressible resistive MHD system with surface tension near the equilibrium solution
(constant strength magnetic field). However, to the best of our knowledge, NO result that concerns the well-posedness
theory of inviscid and non-resistive free-boundary MHD equations when � > 0 is available.

Our results
The goal of this manuscript is to establish a priori energy estimates for (1.1)-(1.3) with fixed � > 0 when u0; B0 2

H 3:5.˝.0//. Our result is an important first step to prove the local well-posedness for free-boundary MHD equations
with surface tension, since the real conducting fluids have surface tension while the case without surface tension is just
an idealized model. Moreover, we will show that the surface tension, in fact, has a stronger regularizing effect compare
to that provided by the physical sign condition (1.4): We are able to get a better control of the normal component of the
velocity field on the moving boundary through the boundary elliptic estimate due to the appearance of surface tension.
As a result, our energy constructed in Chapter 6 contains at least two time derivatives, which removes the requirement
of the flow map has to be 1=2-derivatives more regular than v, b in the case of no surface tension. We will give more
illustration on this in Section 1.3.

1.2 MHD system in Lagrangian coordinates and the main result
We reformulate the MHD equations in Lagrangian coordinates, in which the free domain becomes fixed. Let ˝ be a
bounded domain in R3. Denoting coordinates on˝ by y D .y1; y2; y3/, we define � W Œ0; T ��˝ ! D to be the flow
map of the velocity u, i.e.,

@t�.t; y/ D u.t; �.t; y//; �.0; y/ D y: (1.5)

We introduce the Lagrangian velocity, magnetic field and fluid pressure, respectively, by

v.t; y/ D u.t; �.t; y//; b.t; y/ D B.t; �.t; y//; q.t; y/ D p.t; �.t; y//: (1.6)

Let @ be the spatial derivative with respect to y variable. We introduce the cofactor matrix a D Œ@���1, which is
well-defined since �.t; �/ is almost the identity map when t is sufficiently small. It’s worth noting that a verifies the
Piola’s identity, i.e.,

@�a
�˛
D 0: (1.7)

Here, the Einstein summation convention is used for repeated upper and lower indices. In above and throughout, all
Greek indices range over 1, 2, 3, and the Latin indices range over 1, 2.

Denote the total pressure P D p C 1
2
jBj2 and let Q D P.t; �.t; y//. Then (1.1)-(1.3) can be reformulated as:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@tv˛ � bˇa
�ˇ@�b˛ C a

�
˛ @�Q D 0 in Œ0; T � �˝I

@tb˛ � bˇa
�ˇ@�v˛ D 0 in Œ0; T � �˝I

a�˛@�v˛ D 0; a
�˛@�b˛ D 0 in Œ0; T � �˝I

v3 D 0; b3 D 0 on �0I
a�˛N�QC �.

p
g�g�

˛/ D 0 on � I
a��b�N� D 0 on �;

(1.8)

where N is the unit outer normal vector to @˝, aT is the transpose of a, j � j is the Euclidean norm and �g is the
Laplacian of the metric gij induced on @˝.t/ by the embedding �. Specifically, we have:

gij D @i�
�@j��; �g.�/ D

1
p
g
@i .
p
ggij @j .�//; where g WD det.gij /: (1.9)

For the details to derive the fifth equation of (1.8) (the surface tension equation), we refer to Lemma 2.5 in [7] for
readers.
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For the sake of simplicity and clean notation, here we consider the model case when

˝ D T2 � .0; 1/; (1.10)

where @˝ D �0 [ � and � D T2 � f1g is the top (moving) boundary, �0 D T2 � f0g is the fixed bottom. Using a
partition of unity, e.g., [8], a general domain can also be treated with the same tools we shall present. However, choos-
ing ˝ as above allows us to focus on the real issues of the problem without being distracted by the cumbersomeness
of the partition of unity. Let N stands for the outward unit normal of @˝. In particular, we have N D .0; 0;�1/ on
�0 and N D .0; 0; 1/ on � .

In this paper, we prove:

Theorem 1.1. Let ˝ be defined as in (1.10). Assume that v0 2 H 3:5.˝/\H 4.� / and b0 2 H 3:5.˝/ be divergence
free vector fields with b0 � N D 0 on @˝. Assume .�; v; b;Q/ to be any solution of (1.8) with initial data v0 and b0.
Define

N.t/ D k�k23:5 C kvk
2
3:5 C kvtk

2
2:5 C kvt tk

2
1:5 C kvt t tk

2
0 C kbk

2
3:5 C kbtk

2
2:5 C kbt tk

2
1:5 C kbt t tk

2
0

C kQk23:5 C kQtk
2
2:5 C kQt tk

2
1:

(1.11)

Then there exists a T > 0, chosen sufficiently small, such that N.t/ � C0 for all t 2 Œ0; T �, where C0 only depends
on kv0k3:5; kb0k3:5; kv0k4;� . Here we denote kf ks WD kf .t; �/kH s.˝/ for any function f .t; y/ on Œ0; T � � ˝, and
kf ks;� WD kf .t; �/kH s.� / for any f .t; y/ on Œ0; T � � � .

1.3 Strategy and organisation of the paper
Notations. All definitions and notations will be defined as they are introduced. In addition, a list of symbols will be
given at the end of this section for a quick reference.

Definition 1.1. The L2- based Sobolev spaces are denoted by H s.˝/, where we abbreviate corresponding norm
k � kHr .˝/ as k � kr when no confusion can arise. We denote by H s.� / the Sobolev space of functions defined on the
boundary � (� =�0 or � ), with norm k � ks;� .

Notation 1.2. We use � to denote a small positive constant which may vary from expression to expression. Typically,
� comes from choosing sufficiently small time, from Lemma 2.1 and from the Young’s inequality.

Notation 1.3. We use P D P.� � � / to denote a generic polynomial in its arguments.

Gronwall-Type argument and div-curl estimates
To derive the a priori estimates in Theorem 1.1, we need to do the div-curl-boundary decomposition for v, b and

their time derivatives and finally need a Gronwall-type control

N.t/ . P.N.0//C P.N.t//
Z t

0

P.N.s//ds

holds in some time interval Œ0; T �. This implies N.t/ . C.N.0// for some constant only depending on N.0/, i.e., the
initial data.

The divergence control is easy thanks to the Eulerian divergence-free condition for v and b. The vorticity control
will be derived from the evolution equations of the Eulerian vorticity of v and b, as shown in [22]. Its computation
requires the repeated use of Kato-Ponce inequalities in Lemma 2.5.

The boundary terms of v and b are treated in different ways: We can control the normal component of v and
its time derivates on the boundary thanks to the boundary elliptic estimates and the comparison between the normal
component X3 and that of the tangential projection ˘X as shown in Section 5. For the boundary control of b, we
invoke the identity b D .b0 �@/� (see Lemma 2.4) and the condition b0 �N D 0 on the boundary to see that b D .b0 �@/�
on the boundary � . Then applying again the boundary elliptic estimates gives the control of @�. The time derivative
counterparts can be controlled in the same way.
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Boundary estimates of the velocity
From above, we need to control v3; v3t and v3tt . One can differentiate the surface tension equation in time variable

to derive an ellptic equation for v

�gv
3
D �

1

�
a�3N�Qt C � � � (1.12)

and then apply the elliptic estimates to control v. However this is not valid for higher order time derivative since we
do not have enough regularity for Qt t or Qt t t . To solve this problem, we use the method in [7]: Let X be a vector
field. Then one can compare the X � N D X3 with the normal projection ˘X as in Lemma 5.2. Specifically, this is
based on a simple fact that

X3 � .˘X/3 D gkl@k�
3@l��X

�;

where the error term on the RHS can be controlled in a routine fashion.
The interior estimates of @vt t and @2vt , together with that of vt t t and bt t t , are derived in the tangential energy

estimates. To see this for @vt t , one can first compute kvt t tk20 C kbt t tk
2
0, where all the terms containing b with highest

order actually vanish due to remarkable cancellation as shown in (6.4) and (6.32). The main term is a boundary integral
containing full derivative of Q (i.e. Qt t t ) after integration by parts

�

Z t

0

Z
�

a�˛Qt t t@
3
t v˛N� D �

Z t

0

Z
�

@3t . a
�˛QN�„ ƒ‚ …

D��
p
g�g�˛

/@3t v˛ C � � �

Invoking the identities

@t .
p
g�g�

�/ D @i

�
p
ggij .ı˛� � g

kl@k�
˛@l�

�/@j v
�/C

p
g.gijgkl � gljgik/@j�

˛@k�
�@lv

�
�

˘˛
� D ı

˛
� � g

kl@k�
˛@l��;

we can get a coercive term

�
1

2

Z
�

p
ggij @i .˘

˛
�@

2
t v˛/@j .˘

�

�
@2t v

�/

after integrating by parts. This term is almost equal to �1
2
k@vt tk

2
0;� since

p
ggij � ıij within short time interval.

Analogous computation also holds for @2vt . This concludes the boundary estimates for the velocity.

Surface tension stabilizes the flow
As stated in Section 1.1, the physical sign condition (1.4) is insufficient to regularize the motion of free-boundary

conducting liquid in low regularity Sobolev spaces (i.e., whenever @2� … L1) and extra regularity assumptions are
required (e.g., the smallness of the fluid volume). In this manuscript, we show that the presence of the surface tension
provides stronger regularizing effect for free-boundary MHD equations. This is due to that one can time-differentiate
the boundary condition to derive an elliptic equation for v (1.12), which allows us to control the normal component
of v on the moving boundary via elliptic estimates. As a consequence, this helps us avoid controlling the full spatial
derivatives of v and thus the extra regularity assumptions on � is no longer needed.

Illustration on the regularity requirement of the flow map
To understand how the requirement of the regularity of the flow map � appears, one first need to realize a crucial

difference between Euler’s equations and MHD equations: There is NO analogue of “irrotationality assumption” for a
conducting fluid due to the presence of the Lorentzian force term B � rB . Physically, this is due to that the Lorentzian
force twists the trajectory of an electric particle in a magnetic field and produces vorticity even if the initial data is
curl-free. Mathematically, as shown in our previous work [22], the well-known Cauchy invariance fails. The Cauchy
invariance, however, is required to control the flow map if it is 1=2-derivative more regular than the velocity, and so
one has to introduce the smallness assumption on the fluid domain to compensate the failure of the Cauchy invariance
in the case of no surface tension.
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We mention here that in [11], the authors adapted Alinhac’s good unknowns to remove the extra regularity on the
flow map � in the case of no surface tension. However, this requires the initial data to be in H 4.

Effects brought by the surface tension
As stated above, the surface tension helps us to avoid controlling the higher regularity of � owing to the boundary

elliptic estimates. It is natural to ask if the surface tension makes any negative effect on controlling other quantities.
We point out that the contribution of the surface tension here is the stronger boundary control of v, which requires
higher regularity of � in the case of no surface tension as shown in our previous work [22]. On the other hand, the side
effects on the control of the magnetic field caused by the surface tension are mainly technical difficulties, as shown
in Chapter 6. The strong coupling between the velocity and magnetic fields does not worsen those technical terms.
Therefore, one can see the surface tension contributes mainly in the kinetic part, while the impact on controlling other
quantities can be controlled.

Elliptic Estimates of Pressure
Our computation above produces some term like �kQt tk

2
1 after using Young’s inequality. Therefore we need

to do the pressure estimates, which can be derived from the elliptic equations of the pressure. Q and Qt can be
straightforward controlled by using the standard elliptic estimates kuks . kf ks�2 C kgks�1:5;@˝ C kuk0.8s � 2/.
However for the H 1-control of Qt t , we need a low regularity estimate as in Lemma 2.2 proved in [16], and the trace
lemma with negative Sobolev index in Lemma 2.7. Finally, one needs to re-write these estimates in terms of the sum
of initial data and time integral of the quantities in N.t/ to finish the Gronwall-type control of N.t/ as above.

List of symbols:

� �: A small positive constant which may vary from expression to expression.

� a D Œ@���1: The cofactor matrix;

� k � ks: We denote kf ks WD kf .t; �/kH s.˝/ for any function f .t; y/ on Œ0; T � �˝.

� k � ks;� : We denote kf ks;� WD kf .t; �/kH s.� / for any function f .t; y/ on Œ0; T � � � .

� P.� � � /: A generic polynomial in its arguments;

� P: P D P.kvk3:5; kvtk2:5; kvt tk1:5; kvt t tk0; kbk3:5; kbtk2:5; kbt tk1:5; kbt t tk0/;

� N.t/:

N.t/ D k�k23:5 C kvk
2
3:5 C kvtk

2
2:5 C kvt tk

2
1:5 C kvt t tk

2
0 C kbk

2
3:5 C kbtk

2
2:5 C kbt tk

2
1:5 C kbt t tk

2
0

C kQk23:5 C kQtk
2
2:5 C kQt tk

2
1I

� @ D @1; @2: Tangential differential operators.

2 Preliminary Lemmas
The first lemma records some basic estimates of the cofactor matrix a, which shall be used throughout the rest of the
manuscript.

Lemma 2.1. Suppose kvkL1.Œ0;T �IH3:5.˝// � M . If T � 1
CM

for a sufficiently large constant C , then the following
estimates hold:

(1) k�k3:5 � C for t 2 Œ0; T �;
(2) det.@�.t; x// D 1 for .x; t/ 2 ˝ � Œ0; T �;
(3) ka.�; t /kH2:5 � C for t 2 Œ0; T �;
(4) kat .�; t /kr � Ck@vkr for t 2 Œ0; T �, 0 � r � 2:5;
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(4)’ kat .�; t /kLp � Ck@vkLp for t 2 Œ0; T �, 1 � p � 1;
(5) kat t .�; t /kr � Ckvk2:5Cık@vkr C Ck@vtkr , for t 2 Œ0; T �, 0 < r � 1:5;
(6) kat t t .�; t /kr � Ck@vkrkvk22:5Cı C Ck@vtkrkvk2:5Cı C Ck@vt tkr , for t 2 Œ0; T �, 0 < r � 0:5;
(6)’ kat t t .�; t /kLp � Ck@vkLpkvk22:5Cı C Ck@vtkLpkvk2:5Cı C Ck@vt tkLp , for t 2 Œ0; T �, 1 � p � 1;
(7) For every 0 < � � 1, there exists a constant C > 0 such that for all 0 � t � T 0 WD minf �

CM
; T g > 0, we have

ka�� � ı
�
� k2:5 � �; ka

�˛a�˛ � ı
��
k2:5 � �:

In particular a�˛ a�˛ satisfies the ellpticity condition

a�˛a�˛���� �
1

C
j�j2 8� 2 R3I

(8) Da�˛ D �a
�
� @ˇD�

�a
ˇ
˛ , for D D @; @t :

Proof. (1)-(7) is Lemma 3.1 in that paper. (8) is derived from differentiating the identity a D a W @� W a. We refer [16]
for the details.

The next lemma is to introduce a low regularity elliptic estimates, and we refer Lemma 3.2 in [16] for the proof. It
will be used to control kQt tk1.

Lemma 2.2. Assume A�� satisfies kAkL1 � K and the ellipticity A��.x/���� � 1
K
j�j2 for all x 2 ˝ and � 2 R3.

Assume W to be an H 1 solution to (
@�.A

��@�W / D div � in ˝

A��@�WN� D h on @˝;
(2.1)

where �; div � 2 L2.˝/ and h 2 H�0:5.@˝/ with the compatibility conditionZ
@˝

.� �N � h/dS D 0:

If kA � IkL1 � �0 which is a sufficently small constant depending on K, then we have:

kW �W k1 . k�k0 C kh � � �N k�0:5;@˝ ; where W WD
1

j˝j

Z
˝

Wdy; (2.2)

and
kW k1 . k�k0 C kh � � �N k�0:5;@˝ C kW k0;� : (2.3)

Furthermore, we need the regularity estimate for the flow map � on the boundary. � verifies an elliptic equation on
� which yields a gain of regularity. It has been pointed out in [25] that, this regularity gain is geometric in nature and
has nothing to do with the interior regularity (see the counterexamples in [25]). We will need H 4.� / estimate of � in
this paper and we point out that this estimate can be upgraded to H 5.� /.

Proposition 2.3. We have the estimate
k�k4;� � P.kQk2;� /: (2.4)

Proof. The proof is based on the conclusion in Dong-Kim [9]: It suffices to verify the coefficient is bounded in BMO
semi-norm. The detailed computation is almost the same as in Proposition 3.4 in [7] so we omit it.

The next lemma is to introduce the identities about the magnetic field b. It was first discovered by Wang in [30]
and used on the free-boundary MHD equations by Gu-Wang in [11]. This lemma reveals the regularising effect of the
magnetic field b; in particular, the flow map � is more regular in the direction of b0.
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Lemma 2.4. Let .v; b; �/ be a solution to (1.8) with initial data .v0; b0; �0/. Then the following two identities hold:

a�˛b˛ D b
�
0 ; (2.5)

bˇ D .b0 � @/�
ˇ
D b�0@��

ˇ : (2.6)

Proof. For (2.5), we multiply a�˛ to the second equation of (1.8) to get

a�˛@tb˛ D a
�˛bˇa

�ˇ@�@t�˛ D a
�˛bˇ@t .a

�ˇ@��˛„ ƒ‚ …
Dı

ˇ
˛

/ � bˇ@ta
�ˇ .@��˛a

�˛„ ƒ‚ …
ı��

/ D �b˛@ta
�˛;

so @t .a�˛b˛/ D 0 and thus a�˛b˛ D b�0 . For (2.6), it can be easily derived by multiplying @��ˇ on the both sides of
(2.5) and using a W @� D I .

The last three lemmas record the results of basic PDE theory. The first one is the well-known Kato-Ponce commu-
tator estimates, the proof of which can be found in [17] and [19].

Lemma 2.5. Let J D .I ��/1=2, s � 0. Then the following estimates hold:
(1) 8s � 0, we have

kJ s.fg/kL2 . kf kW s;p1 kgkLp2 C kf kLq1 kgkW s;q2 ; (2.7)

with 1=2 D 1=p1 C 1=p2 D 1=q1 C 1=q2 and 2 � p1; q2 <1;
(2) 8s 2 .0; 1/, we have

kJ s.fg/ � f .J sg/ � .J sf /gkLp . kf kW s1;p1 kgkW s�s1;p2 ; (2.8)

where 0 < s1 < s and 1=p1 C 1=p2 D 1=p with 1 < p < p1; p2 <1;
(2’) 8s � 1, we have

kJ s.fg/ � .J sf /g � f .J sg/kLp . kf kW 1;p1 kgkW s�1;q2 C kf kW s�1;q1 kgkW 1;q2 (2.9)

for all the 1 < p < p1; p2; q1; q2 <1 with 1=p1 C 1=p2 D 1=q1 C 1=q2 D 1=p.
(3) 8s � 1, we have

kJ s.fg/ � f .J sg/kL2 . kf kW s;p1 kgkLp2 C kf kW 1;q1 kgkW s�1;q2 ; (2.10)

where 1=2 D 1=p1 C 1=q1 D 1=p2 C 1=q2 with 1 < p < p1; p2 <1;
(3’) 8s � 0 and 1 < p <1, we have

kJ s.fg/ � f .J sg/kLp . k@f kL1kJ
s�1gkLp C kJ

sf kLpkgkL1 I (2.11)

(3”) For 1 < p <1 and 1 < p1; q1; p2; q2 � 1 satisfying 1=p D 1=p1 C 1=p2 D 1=q1 C 1=q2, the following
hold:

� If 0 < s � 1, then
kJ s.fg/ � f .J sg/kLp . kJ

s�1@f kLp1 kgkLp2 I (2.12)

� If s > 1, then

kJ s.fg/ � f .J sg/kLp . kJ
s�1@f kLp1 kgkLp2 C k@f kLq1 kJ

s�2@gkLq2 : (2.13)

�

The second lemma is a refined version of the Sobolev interpolation proved in [3]. It will be used to estimate the
lower order error terms.
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Lemma 2.6. Suppose ˝ is a domain in Rd . Suppose also 0 � s1 � s � s2 and 1 � p; p1; p2 � 1. If the condition

1 � s2 2 Z and p2 D 1 and s2 � s1 � 1 �
1

p1

fails, then the following interpolation result holds for all � 2 .0; 1/:

kf kW s;p.˝/ .d;s1;s2;p1;p2;˝;� kf k
�
W s1;p1 .˝/kf k

1��
W s2;p2 .˝/;

provided s D �s1 C .1 � �/s2 and 1=p D �=p1 C .1 � �/=p2 hold.

�

The last basic lemma is a Sobolev trace-type lemma which allows us to use trace theorem for the Sobolev spaces with
negative order in some special cases. It can be found in Theorem A.2.4 in [2] on page 251.

Lemma 2.7. For 1 < p <1, we define the function space for vector fields X 2 Rd :

L
p
div .˝/ WD fX 2 L

p.˝/ W div X 2 Lp.˝/g

with the graph norm
kXkdiv WD .kXk

p

Lp.˝/
C kdiv Xkp

Lp.˝/
/1=p:

Then there is a unique continuous linear operator

T rN W L
p
div .˝/! W �1=p;p.@˝/

such that T rNX D .X �N/j@˝ for each X 2 C. N̋ / \ Lpdiv .˝/:

�

3 Pressure Estimates
In this section we prove the following bounds for Q, Qt and Qt t , which will be repeatedly used in the following
chapters. Our conclusion is the following proposition.

Proposition 3.1. Assume Lemma 2.1 holds. Then the total pressure Q satisfies:

kQk3:5 . kvk
2
2:5Cı C kbk

2
2:5Cı C kvtk2:5 C kb0k2:5kbk3:5 C 1C c . PI (3.1)

kQtk2:5 . kvk2:5Cı.kQk2:5 C kvtk1:5/C kvk2.kvk
2
2:5Cı C kvtk2:5/C kvt tk1:5

C kb0k3kbtk1:5 C kbk2:5Cıkbtk1:5 C kvk2:5Cıkb0k2:5kbk2 C kb0k2kbtk2:5

. PI
(3.2)

kQt tk1 . .kvtk1 C k@Qk1/.kvk1:5kvk2:5Cı C kvtk1:5/C kvk2:5Cı.kQtk1 C kvt tk0/C kvt t tk0

C kvk2:5Cı.kvk
2
2:5Cıkvk1 C kvk2:5Cıkvtk1 C kvt tk1/

C kvtk2:5 C kvk2kQtk1 C .kvtk1:5 C kvk
2
2/kQk2:5 C kvk2:5Cıkvk2:5

C kvtk1kb0k2kbk2:5Cı C kvk1:5kbtk1:5 C kb0k1kbt tk1:5

. P;

(3.3)

where ı > 0 is a constant to be determined later, and can be sufficiently small if needed. P denotesP.kvk3:5; kvtk2:5; kvt tk1:5; kvt t tk0; kbk3:5; kbtk2:5; kbt tk1:5; kbt t tk0/
throughout this paper as shown in the list of notations.

As for the basic idea of the proof, the control of Q and Qt will be derived from the standard elliptic estimates,
whereas the control of Qt t needs Lemma 2.2 and Lemma 2.7 due to the low regularity.
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3.1 Control of Q and Qt : Standard elliptic estimate
First the total pressure Q verifies an elliptic equation as computed in Section 3 of [22]: In ˝, we have

@�@�Q D @ta
�˛@�v˛ C @�..ı

��
� a�˛ a

�˛/@�Q/C a
�˛@�b

�
0 @�b˛ C @ˇb
a

�
aˇ˛@�b˛ � @ˇb
�
0 a

ˇ˛@�b˛: (3.4)

The boundary condition of Q can be derived by contracting the first equation of (1.8) with a�˛N� D a3˛ and then
restricting to the boundary:

@Q

@N
D .ı�3 � a�˛ a

3˛/@�Q � a
3˛@tv˛ C a

3˛b�0@�b˛: (3.5)

Denoting the RHS of (3.4) and (3.5) by f and g and invoking the standard elliptic estimate, we obtain

kQk3:5 . kf k1:5 C kgk2;� C kQk0;� ;

where the last term can be controlled by using the boundary condition. We apply the multiplicative Sobolev inequality
(as a corollary of Kato-Ponce product estimate (2.7)) to get the following control of f and g:

kf k1:5 � k@ta
�˛@�v˛k1:5 C k.ı

��
� a�˛ a

�˛/@�Qk2:5

C ka�˛@�b
�
0 @�b˛k1:5 C k@ˇb
a

�
aˇ˛@�b˛k1:5 C k@ˇb
�
0 a

ˇ˛@�b˛k1:5

. katk2kvk2:5Cı C �kQk3:5 C kbk2:5Cıkb0k2:5Cı

. kvk22:5Cı C kbk
2
2:5Cı C �kQk3:5I

(3.6)

kgk2;� . �kQk3:5 C kvtk2:5 C kb0k2:5kbk3:5; (3.7)

where we use trace lemma to control g. It remains to bound kQk0;� . Invoking the surface tension equation, i.e., the
fifth equation in (1.8) and Lemma 2.1, we have

kQk0;� . k
p
g�g�k0;� . 1

Therefore, after absorbing the �-term to LHS, one has

kQk3:5 . kvk
2
3 C kbk

2
3 C kvtk2:5 C kb0k2:5kbk3:5 C 1: (3.8)

We next estimate Qt in H 2:5. Taking time derivative in (3.4) and (3.5), we get the following elliptic equation for
Qt

@�@�Qt D @t ta
�˛@�v˛ C @ta

�˛@�@tv˛

� @�.@ta
�
˛ a

�˛@�Q/ � @�.a
�
˛ @ta

�˛@�Q/C @�..ı
��
� a�˛ a

�
˛/@�Qt /

C a�˛t @�b
�
0 @�b˛ C a

�˛@�b
�
0 @t@�b˛ C @t .@ˇb
@�b˛/a

�
aˇ˛ C @ˇb
@t .a
�
aˇ˛/@�b˛

� @ˇb
�
0 a

ˇ˛@t@�b˛ � @ˇb
�
0 a

ˇ˛
t @�b˛

DW f �

(3.9)

with the boundary condition

@Qt

@N
D .ı�3 � a�˛ a

3˛/@�Qt � @t .a
�
˛ a

3˛/@�Q � a
3˛@t tv˛ C a

3˛b�0@�@tb˛ � a
3˛
t .@tv˛ � b

�
0@�@tb˛/

DW g�; on �
(3.10)

The standard elliptic estimate gives

kQtk2:5 . kf
�
k0:5 C kg

�
k1;� C kQtk0;� ;
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and by the multiplicative Sobolev inequality and trace lemma, one has

kf �k0:5 . �kQtk2:5 C kvk2:5Cı.kQk2:5 C kvtk1:5/C kvk2.kvk
2
2:5Cı C kvtk2:5/

C kb0k3kbtk1:5 C kbk2:5Cıkbtk1:5 C kvk2:5Cıkb0k2:5kbk2 . �kQtk2:5 C PI
(3.11)

kg�k1;� . �kQtk2:5 C kvt tk1:5 C kb0k2kbtk2:5 . �kQtk2:5 C P : (3.12)

For the boundary control, we first derive the expression of Qt j� . Time differentiating the equation a33Q D
��@i .

p
ggij @j�

3) we get:

Qt D .1 � a
33/Qt � a

33
t Q � �@i .@t .

p
ggij /@j�

3/ � �@1.
p
ggij @j v

3/: (3.13)

By Hölder’s inequality, Sobolev embedding and trace lemma, one can mimic the proof of Proposition 3.2 in [7] to get

kQtk0;� . kvk2:5: (3.14)

Therefore, summing up (3.11). (3.12) and (3.13), then absorbing the �-term to LHS, one can get the bound for Qt

as shown in (3.2).

3.2 H 1 control of Qt t : Low regularity elliptic estimate

In this section we will derive the H 1 estimate of Qt t . Although Qt t satisfies an elliptic PDE as Q and Qt , the
standard elliptic, i.e. kuks . kf ks�2 C kgks�1:5;@ C kuk0 is valid only for s � 2. Therefore we need to invoke the
H 1 elliptic estimate in Lemma 2.2. Since the RHS of the first equation in (2.1) is required to be the divergence form,
we need to start with the first equation in (1.8) to derive the elliptic equation of Qt t instead of merely taking a time
derivative in (3.9)-(3.10).

Contracting the first equation of (1.8) with a�˛@� , invoking Piola’s identity @�a�˛ D 0, and then taking time
derivative twice, we get

@�.a
�˛a�˛ @�Qt t / D @�

�
�@t t .a

�˛a�˛ /@�Q � 2@t .a
�˛a�˛ /@�Qt C @t t .a

�˛
t v˛/

�
C @�

�
a�˛tt b

�
0 @�b˛ C 2a

�˛
t b

�
0 @�@tb˛ C a

�˛b
�
0 @�@t tb˛

�
;

(3.15)

with the boundary condition

a�˛a�˛ @�Qt tN� D
�
�@t t .a

�˛a�˛ /@�Q � 2@t .a
�˛a�˛ /@�Qt C @t t .a

�˛@tv˛/
�
N�

C
�
a�˛tt b

�
0 @�b˛ C 2a

�˛
t b

�
0 @�@tb˛ C a

�˛b
�
0 @�@t tb˛

�
N� :

(3.16)

Let A�� D a�˛a�˛ , W D Qt t , and

�� D �@t t .a
�˛a�˛ /@�Q � 2@t .a

�˛a�˛ /@�Qt C @t t .a
�˛
t v˛/

C a�˛tt b
�
0 @�b˛ C 2a

�˛
t b

�
0 @�@tb˛ C a

�˛b
�
0 @�@t tb˛;

and
h D .�@t t .a

�˛a�˛ /@�Q � 2@t .a
�˛a�˛ /@�Qt C @t t .a

�˛@tv˛/

C a�˛tt b
�
0 @�b˛ C 2a

�˛
t b

�
0 @�@tb˛ C a

�˛b
�
0 @�@t tb˛/N� :

Then (3.15)-(3.16) exactly has the form as in (2.1). Before adapting Lemma 2.2 to the equation of Qt t , we need to
verify that � and div � are L2-integrable. Repeatedly using Hölder’s inequality and Sobolev embedding and Lemma
2.1, we have

k�kL2 . .kat tkL3kakL1 C katk
2
L6
/k@QkL6 C kakL6katkL6k@QtkL6

C kat t tkL2kvkL1 C katkL3kvtkL6 C kakL3kvt tkL6

C kat tkL2kb0kL1k@bkL1 C katkL6kb0kL1k@btkL3 C kakL1kb0kL6k@bt tkL3

. .kvtk1 C k@Qk1/.kvk1:5kvk2:5Cı C kvtk1:5/C kvk2:5Cı.kQtk1 C kvt tk0/C kvt t tk0

C kvk2:5Cı.kvk
2
2:5Cıkvk1 C kvk2:5Cıkvtk1 C kvt tk1/

C kvtk1kb0k2kbk2:5Cı C kvk1:5kbtk1:5 C kb0k1kbt tk1:5

. P :

(3.17)
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Next we verify that div � 2 L2. From (3.4) and (3.15), we have

div � D @t t .a�˛t @�v˛ C a
�˛@�b

�
0 @�b˛ C @ˇb
a

�
aˇ˛@�b˛ � @ˇb
�
0 a

ˇ˛@�b˛/: (3.18)

One can expand all terms and repeatly using Hölder’s inequality, Sobolev embedding and Lemma 2.1 to get

kdiv �kL2 . kat t tkL2kvk2:5Cı C kat tkL6.k@vtkL3 C k@b0kL6k@bkL6/
C katkL6.k@vt tkL3 C k@bkL6k@btkL6/C kakL1.k@bkL1k@bt tkL2/

. P :
(3.19)

Now, Lemma 2.2 is valid for (3.15)-(3.16) and yields that

kQt tk1 . k�k0 C kh � � �N k�0:5;� C kQt tk0;� (3.20)

where we use Lemma 2.7 for T rN W L2div .˝/! H�1=2.@˝/ to get

kh � � �N k�0:5;� D k@
3
t .a

�˛v˛/N�k�0:5;� .
X
�

k@3t .a
�˛v˛/N�k0:

This is valid because @�.@3t .a
�˛v˛// D 0 2 L

2.
It remains to control kQt tk0;� . One can differentiate @t twice to the surface tension equation on the boundary, i.e.

the fifth equation in (1.8), to get

Qt t D .1 � a
33/Qt t � @

2
t a
33Q � 2a33t Qt

� �@i .
p
ggij @j�

3
tt / � �@i .@

2
t .
p
ggij /@j�

3/ � 2�@i .@t .
p
ggij /@j @t�

3/:
(3.21)

Therefore, it suffices to control the L2.� / norm of each term on RHS. The terms containing q are all easy to control
by Hölder’s inequality, Sobolev embedding and trace lemma:

k.1 � a33/Qt tk0;� C k@
2
t a
33Qk0;� C k2a

33
t Qtk0;� . �kQt tk1 C kvtk1:5kQk2:5 C kvk2kQtk1:

For the L2.� /-estimate of ��@i .
p
ggij @j�

3
tt /, we have:

k@i .
p
ggij @j�

3
tt /k0;� . kvtk2:5;

where we refer to Proposition 3.2 in [7] for detailed computation.
However, the L2.� /-estimates of @i .@2t .

p
ggij /@j�

3/ and @i .@t .
p
ggij /@j @t�

3/ need to be refined in order to
make us easier to write the pressure estimates in terms of the sum of initial data and time integral of P when we close
all the a priori estimates. First, we have

k@i .@
2
t .
p
ggij /@j�

3/k0;� � k@i .@
2
t .
p
ggij //@j�

3
k0;� C k@

2
t .
p
ggij /@i@j�

3
k0;�

. k@2t @.
p
gg�1/k0;� C k@

2
t .
p
ggij /k0;� k@

2�kL1.� /:

Then we write the derivatives of
p
ggij in terms of R.@�/, a rational function of @i� sstisfying kR.@�/k1:5;� .

k@�k1:5;� (For the detailed illustration, see Remark 2.4 in [7]):

@2t @.
p
gg�1/ D R.@�/.@v/2@2�CR.@�/@vt CR.@�/@v@

2v CR.@�/@2vt ;

and
@2t .
p
gg�1/ D R.@�/@vt CR.@�/.@v/

2:



Luo and Zhang 14

Invoking Lemma 2.3, we have

kR.@�/.@v/2@2�CR.@�/@vtk0;� . kR.@�/kL1.� /k@vk
2
L4.� /

k@2�kL4.� /

. kvk2

kR.@�/@vt CQ.@�/@v@
2vk0;� . k@vtkL2.� /k@

2�kL1.� /

. kvtk1:5kQk2

kR.@�/@v@2vk0;� . kvk2:5kvk2:5Cı

kR.@�/@2vtk0;� . kvtk2:5;

so
k@i .@

2
t .
p
ggij //@j�

3
k0;� . kvk2 C kvtk1:5kQk2 C kvk2:5kvk2:5Cı C kvtk2:5: (3.22)

Similarly, we can get
k@2t .
p
ggij /@i@j�

3
k0;� . kvtk1:5kQk2 C kvtk2 C kvk

2
2kQk2: (3.23)

Moreover, since @t .
p
gg�1/ D R.@�/.@v/2, we have

k@i .@t .
p
ggij /@j @t�

3/k . kvk2:5: (3.24)

Summing up all the boundary terms of Qt t , one gets

kQt tk0;� . kvtk2:5 C kvk2kQtk1 C .kvtk1:5 C kvk
2
2/kQk2:5 C kvk2:5Cıkvk2:5: (3.25)

Therefore, combining (3.20) and (3.25), and absorbing the �-terms to LHS, we get the H 1 estimate of Qt t as shown
in (3.3).

�

4 Div-Curl Estimates

In this section we derive the div-curl estimates of v and b and those of their time derivatives as the first step to derive
the desired a priori estimates. Specifically, we show:

Proposition 4.1. Assume the assumptions of Lemma 2.1 holds, we have the following estimates:

kvk3:5 . P0 C
Z t

0

P C kv3k3;� ;

kbk3:5 . P0 C
Z t

0

PI
(4.1)

and

kvtk2:5 . P0 C
Z t

0

P C kv3t k2;� ;

kbtk2:5 . P0 C
Z t

0

PI
(4.2)

and

kvt tk1:5 . P0 C
Z t

0

P ds C kv3ttk1;� C P.kvk2:5Cı/;

kbt tk1:5 . P0 C
Z t

0

P ds C P.kvk2:5Cı ; kbk2:5Cı/;

(4.3)

where ı > 0 is a constant to be determined, and can be arbitratily small.
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The basic tool is Hodge’s decomposition inequality, i.e. for any (smooth) vector field X , it holds

kXks . kXk0 C kcurl Xks�1 C kdiv Xks�1 C k.X �N/ks�1=2;� I

whereN is the outer unit normal vector to � . This inequality will be used to control v; vt ; vt t . In addition, we mention
here that since v3 D 0 on �0, v3; v3t ,v3tt also vanish on �0.

4.1 Div-Curl estimates of v and b
We adopt the following notations throughout the rest of this section.

Notation 4.2. Let X be any smooth vector field. We define

AaX D a
�˛@�X˛; AIX D divX D ı�˛@�X˛;

.BaX/


D �
˛ˇa�˛ @�Xˇ ; .BIX/



D curl X D �
˛ˇ@˛Xˇ :

Here, �
˛ˇ is the totally anti-symmetric symbol with �123 D 1. In other words, we use Aa and Ba to denote the
Eulerian divergence and curl operators, respectively.

From Hodge’s decomposition inequality applied to v and b, we have:

kvk3:5 . kvk0 C kcurl vk2:5 C kdiv vk2:5 C kv3k3;� ;

kbk3:5 . kbk0 C kcurl bk2:5 C kdiv bk2:5 C kb3k3;� :
(4.4)

First, the divergence control is easy. From Lemma 2.1 (7), we know it holds in a sufficiently short time Œ0; T � that

kdiv vk2:5 D k Aav„ƒ‚…
D0

C.AI � Aa/vk2:5 . kI � ak2:5kvk3:5 . �kvk3:5

kdiv bk2:5 D k Aab„ƒ‚…
D0

C.AI � Aa/bk2:5 . kI � ak2:5kbk3:5 . �kbk3:5:
(4.5)

The control of curl v and curl b follows exactly in the same way as Proposition 5.2 in [22], just replacing @1:5 in
that paper by @2:5. We have:

kcurl vk2:5 C kcurl bk2:5 . �.kvk3:5 C kbk3:5/C P0 C
Z t

0

P : (4.6)

Now we are going to control kb3k3;� . Recall that b D .b0 � @/� and b30 D 0 on the boundary � , we know
b D .b0 � @/� on the boundary � . Invoking Lemma 2.3 and trace lemma, we are able to get

kb3k3;� D kb0 � @�k3;� . kb0k3;� k�k4;� . kb0k3;� kQk2;� . P.kb0k3:5; kQ.0/k2:5/C
Z t

0

kQtk2:5: (4.7)

Combining (4.4), (4.5), (4.6), (4.7), and absorbing the �-term to LHS, we conclude that

kvk3:5 . P0 C
Z t

0

P C kv3k3;� I

kbk3:5 . P0 C
Z t

0

P :
(4.8)
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4.2 Div-Curl estimates of vt and bt
Again, from Hodge’s decomposition inequality applied to vt and bt , we have:

kvtk2:5 . kvtk0 C kcurl vtk1:5 C kdiv vtk1:5 C kv3t k2;� I

kbtk2:5 . kbtk0 C kcurl btk1:5 C kdiv btk1:5 C kb3t k2;� ;
(4.9)

where T is any unit tangential vector to � .
To control the divergence, we again invoke Aav D Aab D 0 to get:

div vt D Aavt C .AI � Aa/vt D @t . Aav„ƒ‚…
D0

/ � Aat v C .AI � Aa/vt D �Aat v C .AI � Aa/vt I

div bt D Aabt C .AI � Aa/bt D @t . Aab„ƒ‚…
D0

/ � Aat b C .AI � Aa/bt D �Aat b C .AI � Aa/bt :

Therefore, one can use the multiplicative Sobolev inequality and Lemma 2.1 to get

kdiv vtk1:5 D kAat vk1:5 C k.AI � Aa/vtk1:5
. katk1:5kvk2 C kI � ak1:5kvtk2:5

. k�k42:5kvk2:5kvk2 C �kvtk2:5

. P.kv0k2:5/C
Z t

0

P.kvt .s/k2:5/ds C �kvtk2:5;

(4.10)

and similarly,

kdiv btk1:5 . P.kb0k2:5/C
Z t

0

P.kbt .s/k2:5/ds C �kbtk2:5: (4.11)

Now we start to control curl vt and curl bt . First, we have

kcurl vtk1:5 � kBavtk1:5 C k.BI � Ba/vtk1:5 . kBavtk1:5 C �kvtk2:5
kcurl btk1:5 � kBabtk1:5 C k.BI � Ba/btk1:5 . kBabtk1:5 C �kbtk2:5:

(4.12)

The control of Bavt and Babt is slightly different from that of Bav and Bab. We start with the first equation of (1.8)

v˛t D .b0 � @/
2�˛ � a�˛@�Q:

Taking the time derivative at first, and then apply Ba on both sides, we get

@t .Bavt /� � .Ba.b0 � @/
2v/� D .Bat v/� � ���˛a

��@�.a
�˛
t @�Q/„ ƒ‚ …

G�

:

Commuting .b0 � @/ with Ba on LHS, we have

@t .Bavt /� � .b0 � @/.Ba.b0 � @/v/� D G
�
C ŒBa; b0 � @�bt :

Taking @1:5 on both sides and commuting b0 � @ with Ba, we get the evolution equation of curl vt :

@t@
1:5.Bavt / � .b0 � @/@

1:5.Babt / D @
1:5.G� C ŒBa; b0 � @�bt /C Œ@

1:5; b0 � @�Babt„ ƒ‚ …
F �

: (4.13)
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Here, we use the second equation of (1.8) and (2.6), i.e., bt D .b0 � @/v. Next we again mimic the proof of Proposition
5.2 in [22] and get

1

2

d

dt

Z
˝

j@1:5Bavt j
2
C j@1:5Babt j

2dy D

Z
˝

F � � @1:5Bavtdy„ ƒ‚ …
B�
1

C

Z
˝

@1:5.Babt / � Œ@
1:5Ba; b0 � @�vtdy„ ƒ‚ …

B�
2

C

Z
˝

@1:5.Babt /
�@1:5.���˛a

��
t @�b

˛
t /dy„ ƒ‚ …

B�
3

:

(4.14)

B�3 can be controlled directly by the multiplicative Sobolev inequality:

B�3 . k@1:5Babtk0k@1:5.���˛a
��
t @�b

˛
t /k0

. kak2kbtk2:5katk2kbtk2:5 . kvk3kbtk
2
2:5:

(4.15)

To control B�2 , it suffices to control kŒ@1:5Ba; b0 � @�vtkL2 . First we simplify the commutator:

Œ@1:5Ba; b0 � @�vt D ���˛
�
@1:5.a��@�.b

�
0@�v

˛
t // � b

�
0@�@

1:5.a��@�v
˛
t /
�

D ���˛
�
@1:5.a��@�.b

�
0@�v

˛
t // � @�@

1:5.b�0a
��@�v

˛
t /
�„ ƒ‚ …

B�
21

C ���˛
�
@�@

1:5.b�0a
��@�v

˛
t / � b

�
0@�@

1:5.a��@�v
˛
t /
�„ ƒ‚ …

B�
22

:

(4.16)

For B�22, we need to invoke the refind Kato-Ponce type commutator estimate (2.13) because H 1:5.˝/ › L1.˝/.

kB�22kL2 . kb0kW 1:5;3ka��@�v
˛
t kL6 C k@b0kL1ka

��@�v
˛
t k1:5 . kb0k3kvtk2:5: (4.17)

For B�21, we have

B�21 D ���˛@1:5.a��@�.b�0@�v˛t // � @�.b�0a��@�v˛t //
D ���˛@

1:5
�
a��@�b

�
0@�v

˛
t C a

��b�0@�@�v
˛
t � b

�
0@�a

��@�v
˛
t � b

�
0a
��@�@�v

˛
t

�
D ���˛@

1:5
�
a��@�b

�
0@�v

˛
t C b

�
0@ˇ@��
a

�
aˇ�@�v
˛
t

�
D ���˛@

1:5.a��@�b
�
0@�v

˛
t C @ˇ ..b0 � @/�
 /a

�
aˇ�@�v
˛
t � @ˇb

�
0 a

ˇ�@�v
˛
t /;

(4.18)

where we used Lemma 2.1 (8) to expand b�0@�a
��@�v

˛ in the second line and @��
a�
 D ı
�
� . Therefore, invoking

b D .b0 � @/� and the multiplicative Sobolev inequality again, one can get:

kB�21kL2 . kb0k3kvtk2:5: (4.19)

It remains to control B�1 , specifically, kF �kL2 . The two commutator terms can be controlled in the same way as B�21
and straightforward computation (we omit the computation details):

kŒ@1:5; b0 � @�Babtk0 C k@
1:5.ŒBa; b0 � @�bt /k0 . kb0k3kvtk2:5: (4.20)

For G� D .Bat v/� � ���˛a
��@t .a

�˛@�Q/, the multiplicative Sobolev inequality combined with Lemma (2.1) yields
that

kBat vk1:5 C ka
��@�.a

�˛
t @�Q/k1:5 . kvk3.kvk3:5 C kQk3:5/C kvk3:5kQk3: (4.21)
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Combining (4.12), (4.14), (4.15), (4.17), (4.19), (4.20) and (4.21), and absorbing the �-term to LHS we have:

kcurl vtk1:5 C kcurl btk1:5 . P0 C
Z t

0

P : (4.22)

The boundary term kb3t k2;� can be similarly controlled as kb3k3;� :

kb3t k2;� D kb0 � @@t�k2;� . kb0k2;� kvk3;� . P.kb0k2:5; kv0k3:5/C
Z t

0

kvtk2:5 (4.23)

Summing up (4.10), (4.11), (4.22) and (4.23), then absorbing the �-term to LHS, we have

kvtk2:5 . P0 C
Z t

0

P C kv3t k2;� I

kbtk2:5 . P0 C
Z t

0

P :
(4.24)

4.3 Div-Curl estimates of vt t and bt t
Again, from Hodge’s decomposition inequality applied to vt t and bt t , we have:

kvt tk1:5 . kvt tk0 C kcurl vt tk0:5 C kdiv vt tk0:5 C kv3ttk1;� I
kbt tk1:5 . kbt tk0 C kcurl bt tk0:5 C kdiv bt tk0:5 C kbt t � T k1;� ;

(4.25)

where T is any unit tangential vector to � . To control the divergence, we again invoke Aav D Aab D 0 to get:

div vt t D Aavt t C .AI � Aa/vt t D @t t . Aav„ƒ‚…
D0

/ � Aatt v � 2Aat vt C .AI � Aa/vt t I

div bt t D Aabt t C .AI � Aa/bt t D @t t . Aab„ƒ‚…
D0

/ � Aatt b � 2Aat bt C .AI � Aa/bt t :

Therefore, one can use the multiplicative Sobolev inequality and Lemma 2.1 to get

kdiv vt tk0:5 � kAatt vk0:5 C 2kAat vtk0:5 C kI � ak2kvt tk1:5
. kat tk0:5kvk2:5Cı C katkL1kvtk1:5 C �kvt tk1:5

. k@vk0:5kvk
2
2:5Cı C k@vtk0:5kvk2:5Cı C kvk2:5Cıkvtk1:5 C �kvt tk1:5

. P.kvk2:5Cı/.kvk1:5 C kvtk1:5/C �kvt tk1:5

(4.26)

and similarly,

kdiv bt tk0:5 . P.kvk2:5Cı ; kbk2:5Cı/.kvk1:5 C kvtk1:5 C kbtk1:5/C �kbt tk1:5; (4.27)

where ı > 0 can be arbitratily small.
The boundary term kb3ttk1;� is again controlled in the same way as (4.23)

kb3ttk1;� D kb0 � @vtk1;� . P.kb0k2:5; kvt .0/k1:5/C
Z t

0

kvt tk1:5: (4.28)

Apart from kv3ttk1;� , it remains to control curl vt t and curl bt t . We have:

kcurl vt tk0:5 D kBavt t C .BI � Ba/vt tk0:5 � kBavt tk0:5 C �kvt tk1:5
kcurl bt tk0:5 D kBabt t C .BI � Ba/bt tk0:5 � kBabt tk0:5 C �kbt tk1:5:

(4.29)
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Applying the Ba operator on both sides of the first equation in (1.8), we have

Bavt D Ba.b0 � @/
2�:

Then taking time derivative twice, we get

@t .Bavt t / � Ba.b0 � @/
2vt D G

��; (4.30)

where we used (2.6) to derive

G�� WD �Batt vt � Bat vt t C Batt .b0 � @/b C 2Bat .b0 � @/bt : (4.31)

Commuting .b�@/ with Ba on LHS of (4.30), taking @0:5 derivative and then commuting it with b0 � @, we get the
evolution equation of Bavt t and Babt t with the help of (2.6):

@t .@
0:5Bavt t / � .b0 � @/.@

0:5Babt t / D @
0:5.G�� C ŒBa; b0 � @�bt t /C Œ@

0:5; b0 � @�.Babt t /„ ƒ‚ …
DWF ��

: (4.32)

Analogous to (4.14), we can derive the following energy identity:

1

2

d

dt

Z
˝

j@0:5Bavt t j
2
C j@0:5Babt t j

2dy D

Z
˝

F �� � @0:5Bavt tdy„ ƒ‚ …
B��
1

C

Z
˝

@0:5.Babt t / � Œ@
0:5Ba; b0 � @�vtdy„ ƒ‚ …

B��
2

C

Z
˝

@0:5.Babt t /
�@0:5.���˛a

��
t @�b

˛
tt /dy„ ƒ‚ …

B��
3

:

(4.33)

The multiplicative Sobolev inequality together with Lemma 2.1 yields that

B��3 . kbt tk1:5kb0k1:5kvtk2:5kvk2: (4.34)

To control B��2 , it suffices to control kŒ@0:5Ba; b0 � @�vt tkL2 . Analogous to (4.16), we have

Œ@0:5Ba; b0 � @�vt t D ���˛
�
@0:5.a��@�.b

�
0@�v

˛
tt // � @�@

0:5.b�0a
��@�v

˛
tt /
�„ ƒ‚ …

B��
21

C ���˛
�
@�@

0:5.b�0a
��@�v

˛
tt / � b

�
0@�@

0:5.a��@�v
˛
tt /
�„ ƒ‚ …

B��
22

:
(4.35)

For B��22 , we need to invoke the refind Kato-Ponce type commutator estimate as in (4.17)

kB�22kL2 . kb0kW 1:5;6ka��@�v
˛
ttkL3 C k@b0kL1ka

��@�v
˛
ttk1:5 . kb0k3kvt tk1:5: (4.36)

For B��21 , we have

B��21 D ���˛@0:5.a��@�b�0@�v˛tt C @ˇ ..b0 � @/�
 /a�
aˇ�@�v˛tt � @ˇb
�
0 a

ˇ�@�v
˛
tt /; (4.37)

Therefore, invoking b D .b0 � @/� and the multiplicative Sobolev inequality again, one can get:

kB�21kL2 . kb0k3kvt tk1:5: (4.38)

It remains to control B��1 , specifically, kF ��kL2 . The two commutator terms can be controlled by kb0k3kbt tk1:5 in
the same way as B�1 . Therefore it remains to control kG��k0:5, which is directly controlled by using multiplicative
Sobolev inequality

kG��k0:5 . kat tk1.kvtk2 C kb0k3kbk3/C katk2.kvt tk1:5kb0k3kbtk2:5/ . P : (4.39)
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Combining (4.12), (4.14), (4.34), (4.36), (4.38), and(4.39), and absorbing the �-term to LHS we have:

kcurl vt tk0:5 C kcurl bt tk0:5 . P0 C
Z t

0

P C �.kvt tk1:5 C kbt tk1:5/: (4.40)

Summing up (4.26), (4.27), (4.28) and (4.40), then absorbing the �-term to LHS, and finally using Young’s in-
equality and Jensen’s inequality, we have

kvt tk1:5 . P0 C
Z t

0

P ds C kv3ttk1;� C P.kvk2:5Cı/ .kvk1:5 C kvtk1:5/„ ƒ‚ …
.P0C

R t
0 P

. P0 C
Z t

0

P ds C kv3ttk1;� C P.kvk2:5Cı/I

kbt tk1:5 . P0 C
Z t

0

P ds C P.kvk2:5Cı ; kbk2:5Cı/ .kvk1:5 C kvtk1:5 C kbtk1:5/„ ƒ‚ …
.P0C

R t
0 P

. P0 C
Z t

0

P ds C P.kvk2:5Cı ; kbk2:5Cı/;

(4.41)

where ı > 0 can be arbitratily small.
So far, we have derived all the div-curl estimates as shown in Proposition 4.1. However, the control of the boundary

terms containing v and its time derivatives as well as the lower order terms (i.e., kvk2:5Cı and kbk2:5Cı are still needed.
This will be done in Section 5 and Section 7, receptively.

5 Boundary Estimates of v

In this chapter we focus on the boundary estimates of v3; v3t ; v
3
tt with the help of boundary elliptic estimates and the

comparison with tangential projection. The conclusion is that

Proposition 5.1 (Boundary estimates of v; vt ; vt t ).

kv3k3;� . P0 C P
Z t

0

P C P.kvk2:5Cı/: (5.1)

kv3t k2;� . �.kvtk2:5 C k@
2vtk0;� /C k@

2.˘vt /k0;� C P0 C
Z t

0

PI (5.2)

kv3ttk1;� . �

 
3X
˛D1

k@v˛ttk0;� C

3X
˛D1

kv˛ttk1

!
C k@.˘vt t /k0;� : (5.3)

5.1 Control of v3: Boundary elliptic estimates

From (4.1), we still have to control kv3k3;� . Differentiating the surface tension equation a�˛N�QC �
p
g�g�

˛ D 0

in time and let ˛ D 3, we have:

p
ggij �

p
ggij� kij @kv

3
D @t .

p
ggij /@i@i�

3
� @t .

p
ggij� kij /@k�

3
�
1

�
@t .a

�3Q/N�; on �: (5.4)

Invoking Proposition 2.4, we have kgij k3;� � C and k� kij k2;� � C . Therefore, by the elliptic estimates with
coefficients in Sobolev spaces, one has:

kv3k3;� . k@t .
p
ggij /@i@i�

3
k1;� C k@t .

p
ggij� kij /@k�

3
k1;� C

1

�
k@t .a

�3Q/N�k1;�
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For the term k@t .
p
ggij /@i@i�

3k1;� , we have:

k@t .
p
ggij /@i@i�

3
k1;� . k@t .

p
gg�1/k1:5;� k@

2�3k1;� . kvk3

Z t

0

k@2v3k1;� . kvk3

Z t

0

kvk3:5; (5.5)

where we used @2�3 D
R t
0
@2v3 since @2�.0/ D 0. For the term k@t .

p
ggij� kij /@k�

3k1;� , one expands the Christoffel
symbol to get

@t .
p
ggij� kij / D�

1
p
g
gmn@m�

�@t@n��g
ijgkl@l�

�@i@j�� C
p
g@t .g

ijgkl@l�
�/@i@j��

C
p
ggijgkl@l�

�@i@j v� :

A direct computation yields:

k@t .
p
ggij� kij /@k�

3
k1;� .

2X
kD1

kvk3:5k@k�
3
k1:5;� . kvk3:5

0@@k�3.0/„ ƒ‚ …
D0

C

Z t

0

kvk3

1A
. kvk3:5

Z t

0

kvk3:

(5.6)

The term containing q can be easily estimated by Hölder’s inequality and Sobolev embedding. Summing up (5.5)
and (5.6) and using (7.7) and the trace lemma, we have the boundary control of v3:

kv3k3;� . kQtk1 C P.kvk2:5Cı ; kQk1:5;� /C P.kvk3:5/

Z t

0

P.kvk3:5/

. kQt .0/k1 C

Z t

0

kQt t .s/k1ds C P.kQ0k2/C

Z t

0

kQt .s/k2ds C P.kvk2:5Cı/C P
Z t

0

P

. P0 C P
Z t

0

P C P.kvk2:5Cı/;

(5.7)

5.2 Control of v3t and v3tt : Comparing ˘X with X3

To control kv3t k2;� and kv3ttk1;� , we need to use the bound for ˘vt and ˘vt t . In general, we need the following
argument, which was proved in Section 6.1 of [7]:

Lemma 5.2 (Compare ˘X with X �N ). For any (smooth) vector field X in ˝, we have

k@X3k0;� . �

 
3X
˛D1

k@X˛k0;� C

3X
˛D1

kX˛k1

!
C k@.˘X/k0;� : (5.8)

k@2X3k0;� .�kXk2:5 C �k@
2Xk0;� C P.kQk1:5;� ; k@tX.0/k0/

C k@2.˘X/k0;� C

Z t

0

P.k@tXk0/I
(5.9)

�

Let X D vt (vt t , resp.) in (5.9) ((5.8), resp.), we have:

kv3ttk1;� . �

 
3X
˛D1

k@v˛ttk0;� C

3X
˛D1

kv˛ttk1

!
C k@.˘vt t /k0;� ; (5.10)

kv3t k2;� . �kvtk2:5 C �k@
2vtk0;� C P.kvt t .0/k0/C k@

2.˘vt /k0;� C

Z t

0

P.kvt tk0/: (5.11)

Therefore we ends the proof of Proposition 5.1.

�
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6 Tangential Estimates

In this section we will derive the tangential estimates of vt t t ; bt t t and vt t ; bt t , as well as the tangential projection˘vt
and ˘vt t , which together with the div-curl estimates in Section 4 and the boundary estimates in Section 5, will close
all the a priori estimates. Our conclusion in this section is:

Proposition 6.1. Assume the assumptions of Lemma 2.1 holds, then we have:

kvt t tk
2
0 C kbt t tk

2
0 C k@.˘vt t /k

2
0;� . �.kQt tk

2
1 C kvtk

2
2:5/C P.kvk2:5Cı/C P0 C

Z t

0

P; (6.1)

and

k@vt tk
2
0 C k@bt tk

2
0 C k@

2.˘vt /k
2
0;� . �kvtk

2
2:5 C P.kvk2:5Cı/C P0 C

Z t

0

P : (6.2)

Here � > 0 is a positive small constant and is to be determined.

Remark: Before going to the proof, we point out thet all the boundary integrals on the fixed bottom �0 vanish
since we have

v3 D 0; @i�
3
D 0

and thus
@iv

3
D 0; @tv

3
D @2t v

3
D @3t v

3
D 0; a31 D a32 D 0:

6.1 Estimates of vt t t ; bt t t and boundary term @˘vt t

We start with kvt t tk20 C kbt t tk
2
0. From the first two equations in (1.8), we have

1

2
kvt t tk

2
0 C

1

2
kbt t tk

2
0 D

1

2
kvt t t .0/k

2
0�

Z t

0

Z
˝

@3t .a
�˛@�Q/@

3
t v˛ dyds„ ƒ‚ …

I

C

Z t

0

Z
˝

@3t .b
�
0 @�b

˛/@3t v˛ dyds„ ƒ‚ …
J

C
1

2
kbt t t .0/k

2
0 C

Z t

0

Z
˝

@3t .b
�
0 @�v

˛/@3t b˛ dyds„ ƒ‚ …
K

:

(6.3)

We observe that J CK actually vanishes. Indeed, one can integrate @� by parts in J CK to get

J CK D

Z t

0

Z
˝

b
�
0 @

3
t @�b

˛@3t v˛ C b
�
0 @

3
t @�v

˛@3t b˛ dyds

D

Z t

0

Z
˝

b
�
0 @�.@

3
t b
˛@3t v˛/dyds

D �

Z t

0

Z
˝

@�b
�
0„ƒ‚…

D0

@3t b
˛@3t v˛dyds C

Z t

0

Z
�

b
�
0N�„ƒ‚…
D0

.@3t b
˛@3t v˛/dSds D 0:

(6.4)

Therefore it suffices to control I . Here we remark that we have to integrate @� by parts once the term @�Qt t t appears
since there is no control of Qt t t . After this, we invoke the fifth equation of (1.8) to replace Qt t t j� by the surface
tension term and its time derivatives. To do this, we first expand I as follows.

I D �

Z t

0

Z
˝

a�˛@�Qt t t@
3
t v˛dyds � 3

Z t

0

Z
˝

a
�˛
t @�Qt t@

3
t v˛dyds � 3

Z t

0

Z
˝

a
�˛
tt @�Qt@

3
t v˛dyds

�

Z t

0

Z
˝

a
�˛
tt t @�Q@

3
t v˛dyds

DW I1 C I2 C I3 C I4:

(6.5)
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With the help of Lemma 2.1 and Theorem 3.1, I2 C I3 can be directly controlled by Hölder’s inequality and Sobolev
embedding:

I2 C I3 �

Z t

0

.katk2k@Qt tk0 C kat tk0:5k@Qtk1/kvt t tk0ds

.
Z t

0

P.kvk3; kvtk1:5; kvt t tk0; kQt tk1; kQtk2/ds

.
Z t

0

P.kvk3; kvtk2:5; kvt tk1:5; kvt t tk0; kbk3:5; kbtk2:5; kbt tk1/ds:

(6.6)

For I1, integrating @� by parts, then invoking the surface tension equation, one has:

I1 D �

Z t

0

Z
�

a�˛Qt t t@
3
t v˛N�dSds C

Z t

0

Z
˝

a�˛Qt t t@�@
3
t v˛dyds„ ƒ‚ …

I10

D �

Z t

0

Z
�

@3t

D��
p
g�g�

˛‚ …„ ƒ
.a�˛N�Q/ @

3
t v˛dSds„ ƒ‚ …

I11

CI10

C 3

Z t

0

Z
�

a
�˛
t N�Qt t@

3
t v˛dSds„ ƒ‚ …

I12

C 3

Z t

0

Z
�

a
�˛
tt N�Qt@

3
t v˛dSds„ ƒ‚ …

I13

C

Z t

0

Z
�

@3t a
�˛N�Q@

3
t v˛dSds„ ƒ‚ …

I14

:

(6.7)

Here we can see the most cumbersome term is I14 apart from I11 since at t t 2 L2.� / and vt t t cannot be controlled
on the boundary. However, we can integrate @� by parts to produce a term which cancels with I14. We have:

I4 D �

Z t

0

Z
˝

@3t a
�˛@�Q@

3
t v˛dyds

D �

Z t

0

Z
�

@3t a
�˛QN�@

3
t v˛dSds C

Z t

0

Z
˝

@3t a
�˛Q@3t @�v˛dyds„ ƒ‚ …
I41

D �I14 C I41:

(6.8)

Up to now, it remains to control I10; I11; I12; I13; I41. For I41, one first differentiates @t twice in Lemma 2.1 (8)
to get

@3t a
�˛
D �a��@ˇ@

2
t v�a

ˇ˛
C L:O:T:

Therefore the main term of I41 is

I41 D �

Z t

0

Z
˝

a��@ˇ@
2
t v�a

ˇ˛a�˛Q@3t @�v˛dyds C L:O:T:

Also we observe that

@t .a
��@ˇ@

2
t v�a

ˇ˛a�˛@2t @�v˛/ D 2a
��@ˇ@

2
t v�a

ˇ˛@3t @�v˛ C 2@ta
��@ˇ@

2
t v�a

ˇ˛@2t @�v˛;

which implies the main term of I41 becomes

I41 D �
1

2

Z
˝

a��@ˇ@
2
t v�a

ˇ˛a�˛@2t @�v˛Q

ˇ̌̌̌t
0

C
1

2

Z t

0

Z
˝

a��@ˇ@
2
t v�a

ˇ˛@�@
2
t v˛Qt

�

Z t

0

Z
˝

@ta
��@ˇ@

2
t v�a

ˇ˛@�@
2
t v˛QC L:O:T:

. P.kv0k3; kvt t .0/k1; kQ.0/k2; kb0k2/C kvt tk
2
1kQk2 C

Z t

0

P :

(6.9)
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To eliminate the term kvt tk21kQk2, we first use the interpolation inequality and �-Young’s inequality:

kvt tk
2
1kQk2 . kvt tk

4=3
1:5 kvt tk

2=3
0 kQk2 . �k@

2
t vk

2
1:5 C P.kQk2; kvt tk0/ . �k@

2
t vk

2
1:5 C P.kQk2; kbk2; kvt tk0/:

Then the last term can be written as the initial data plus the time integral:

P.kQk2; kbk2; kvt tk0/ D P.kQ.0/k2; kb0k2; kvt t .0/k0/C

Z t

0

P :

Therefore I41 has the following control:

I41 . P.kv0k3; kvt t .0/k1; kQ.0/k2; kb0k2/C
Z t

0

P : (6.10)

The control of I13 is also straightforward if we integrate @t by parts,:

I13 D 3

Z
�

@2t a
�˛N�Qt@

2
t v˛ds

ˇ̌̌̌t
0

� 3

Z t

0

Z
�

.@3t a
�˛Qt C @2t a

�˛Qt t /N�@
2
t v˛dSds:

. k@2t akL2.� /kQtkL4.� /kvt tkL4.� /

ˇ̌̌̌t
0

C

Z t

0

.k@3t akL2.� /kQtkL1.� / C k@
2
t akL4.� /kQt tkL4.� //kvt tkL2.� /ds

. kat tk0:5kQtk1kvt tk1:5 C

Z t

0

P

. .kvk22 C kvtk1:5/
4
C kQtk

4
1 C �kvt tk

2
1:5 C

Z t

0

P

. P0 C
Z t

0

P C �kvt tk21:5:

(6.11)

Here � > 0 need not be arbitrarily small, since we only require it can be small enough to be absorbed by N.t/.
The control of the remaining terms needs either to invoke the surface tension equation, or to use some tricky

simplification. First, we show that the desired term k@˘vt tk0;� comes from I11. Integrating @i by parts, one has:

1

�
I11 D

Z t

0

Z
�

@2t @i

�
p
ggij .ı˛� � g

kl@k�
˛@l�

�/@j v
�/C

p
g.gijgkl � gljgik/@j�

˛@k�
�@lv

�
�
@3t v˛

D �

Z t

0

p
ggij .ı˛� � g

kl@k�
˛@l�

�/@2t @j v
�@3t @iv˛„ ƒ‚ …

I111

�

Z t

0

Z
�

p
g.gijgkl � gljgik/@j�

˛@k�
�@l@

2
t v
�@3t @iv˛„ ƒ‚ …

I112

CL11;

(6.12)

where L11 consists of all the terms in @3t .
p
g�g�

˛/ with at least one @t falling on
p
g.gijgkl � gljgik/@j�

˛@k�
�

and
p
ggij .ı˛

�
� gkl@k�

˛@l�
�/. We only show how to control I111 and I112. For the control of L, one only needs to

integrate @t by parts. We refer readers to Section 4.1.1.3 in [7] for details. The result is

L11 . �kvt tk
2
1:5 C P.kv0k3; kvt .0/k1:5; kvt t .0/k1:5/C P.kvk2:5Cı/C

Z t

0

P : (6.13)
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To control I111, we recall ˘˛
�
D ı˛

�
� gkl@k�

˛@l�
� to get

I111 D �
1

2

Z t

0

Z
�

p
ggij˘˛

� @t .@
2
t @j v

�@2t @iv˛/:

Integrating @t by parts, using the symmetry of g�1 and ˘ , and also ˘@2t @iv D @i .˘@
2
t v/ � @i˘@

2
t v, we obtain
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p
ggij˘˛
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p
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2
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�
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2
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�/ �
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2
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�
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2
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I1112

�
1

2

Z
�

p
ggij˘˛

� @
2
t @j v

�@2t @iv˛

ˇ̌̌̌
tD0„ ƒ‚ …

I1110

C
1

2

Z t

0

Z
�

@t .
p
ggij˘˛

� /@
2
t @j v

�@2t @iv˛„ ƒ‚ …
L111

:

(6.14)

The main term is I1111. Plugging
p
ggij D ıij C .

p
ggij � ıij / and k

p
ggij � ıij k1:5;� � �, we get the desired

term k@˘vt tk20;� in the following way:

I1111 D �
1

2
k@˘vt tk

2
0;� �

1

2

Z
�

.
p
ggij � ıij /@i .˘

˛
�@

2
t v˛/@j .˘

�

�
@2t v

�/

� �
1

2
k@˘vt tk

2
0;� C �k@˘vt tk

2
0;� :

(6.15)

For the remaining terms, invoking k
p
gg�1k1:5;� . 1 and k@˘k1:5;� . k�k3:5;� , one has

L111 .
Z t

0

k@t .
p
gg�1˘/kL1.� /k@vt tk

2
0;� .

Z t

0

kvt tk1:5kvk3;

I1112 . k@t .
p
gg�1˘/kL1.� /k@˘kL1.� /kvt tk0;� k@˘vt tk0;� C k@˘k

2
L1.� /kvt tk

2
0;�

. P.kQk1:5;� /.kvt tk0;� k@˘vt tk0;� C kvt tk
2
0;� /

. �k@˘vt tk
2
0;� C P.kQk1:5;� /kvt tk

2
0;� ;

I1110 . P.kvt t .0/k1;� /:

(6.16)

Hence, we have

I111 . �k@˘vt tk
2
0;� C �kvt tk

2
1:5 C P.kvt t .0/k1:5/C P.kQk1:5;� /C

Z t

0

P : (6.17)

To end the estimates of I11, it remains to control I112, which requires some remarkable structures introduced in
[6]. The detailed computation is exactly the same as Section 4.1.1.2 in [7]. The estimate for I112 is based on the
following observation: One can write

I112 D

Z t

0

Z
�

1
p
g
.@t detA1 C detA2 C detA3/; (6.18)

where A1ij D @i��@
2
t @j v

�; A2ij D @iv�@
2
t @j v

� and

A3 D

�
@1��@

2
t @1v� @1v�@

2
t @2v�

@2��@
2
t @1v� @2v�@

2
t @2v�

�
:
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Now we explain how this identity holds: Consider the integrand

.gijgkl � gljgik/@j�
˛@k�

�@t@lv
�@3t @iv˛:

Since this vanishes if l D i , we only need to consider the case when .l; i/ D .1; 2/ and .2; 1/, and then it becomes

1
p
g
.@1��@2�� � @1��@2��/.@

2
t @2v

�@3t @1v
�
C @3t v

�@2t @1v
�/:

One the other hand, one can find

1

g
@t detA1 �

1

g
.@1��@2�� � @1��@2��/.@

2
t @2v

�@3t @1v
�
C @3t v

�@2t @1v
�/;

while A2; A3 are present precisely to compensate the L.O.T omitted above. The result is

I112 . �k@vt tk
2
0;� C �kvt tk

2
1:5 C P.kvt t .0/k1:5/C P.kQk1:5;� /C

Z t

0

P : (6.19)

Thus, from (6.12), (6.17), (6.18), I11 can be controlled:

I11 . �k@vt tk
2
0;� C �kvt tk

2
1:5 C P.kQk1:5;� ; kvk2:5Cı/

C P.kv0k3; kvt .0/k1:5; kvt t .0/k1:5/C

Z t

0

P :
(6.20)

The remaining work is to control I10; I12 via the surface tension equation. For I10, invoking the divergence-free
condition for v, one has

I10 D �3

Z t

0

Z
˝

@2t a
�˛@�@tv˛@

3
tQ � 3

Z t

0

Z
˝

@ta
�˛@�@

2
t v˛@

3
tQ �

Z t

0

Z
˝

@3t a
�˛@�v˛@

3
tQ

DW I101 C I102 C I103

(6.21)

I101 can be directly controlled by Hölder’s inequality and Sobolev embedding after integrating @t by parts:

I101 . �.kQt tk
2
1 C kvtk

2
2:5/C P.kvk2:5Cı/C P.kv0k3; kvt .0/k1:5; kQt t .0/k1/C

Z t

0

P : (6.22)

The control of I103 is similarly as that of I41, i.e., plugging @3t a
�˛ D �a��@ˇ@

2
t v�a

ˇ˛ C L:O:T: into I103, then
integrating @ˇby parts for the main term and integrate @t by parts in the remainder terms. Detailed computation can
be found in (4.16)-(4.18) in [16]. The result is

I103 . �.kQt tk
2
1 C kvt tk

2
1:5/C P.kQt t .0/k1; kQt .0/k2; kvt t .0/k1:5; kvt .0/k2:5/C P.kvk2:5Cı/C

Z t

0

P : (6.23)

For I102, we first integrate @� by parts, then use Lemma 2.1 (8) and the surface tension equation to get

I102 D �3

Z t

0

Z
�

@ta
�˛@2t v˛
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0

Z
�

a��@ˇv�a
ˇ˛@2t v˛@

3
tQN�dSds„ ƒ‚ …

I1021

CL1021:

(6.24)
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The term L1021 can be controlled by integrating @t by parts. For details, we refer to (4.36) in [7]:

L1021 . �.kQt tk
2
1 C kvt tk

2
1:5/C P.kQt t .0/k1; kvt t .0/k1:5; kv0k3/C P.kvk2/C

Z t

0

P : (6.25)

To control I1021, we differentiate in time variable in the surface tension equation three times to get

a��N�@
3
tQ D ��@

3
t .
p
g�g�

�/ � 3@ta
��N�@

2
tQ � 3@

2
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��N�@tQ � @

3
t a
��N�Q

and thus

I1021 D ��
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Z
�
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ˇ˛@2t v˛@
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��N�Q
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Z
�

@ˇv�a
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Z
�
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ˇ˛@2t v˛@

2
t a
��N�@tQ

(6.26)

All the terms above can be bounded by
R t
0
P . The last 3 terms can be bounded directly by using Hölder’s inequality

and Sobolev embedding, whereas the control of I10211 needs us to invoke

@t .
p
g�g�

�/ D @i

�
p
ggij .ı˛� � g

kl@k�
˛@l�

�/@j v
�/C

p
g.gijgkl � gljgik/@j�

˛@k�
�@lv

�
�

again. For details, we refer to the control of I21211 in [7].
From (6.21), (6.22), (6.23), (6.24), (6.25) and (6.26), one has

I10 . �.kQt tk
2
1 C kvtk

2
2:5/C P.kvk2:5Cı/C P0 C

Z t

0

P (6.27)

The control of I12 can be proceeded in the same way as above. We only state the basic idea and list the result. For
detailed proof, we refer to Section 4.1.2.2 (control of I221) in [7].

To see this, invoking Lemma 2.1 (8) and the surface tension equation, one can re-write I12 to be

I12 D 3�

Z t

0

Z
�

@ˇv�a
ˇ˛@2t .

p
g�g�

�/@3t v˛dSds C � � � ;

and then one can mimic the proof of the control of I10211 after integrating a tangential derivative and @t by parts. The
result is

I12 . �kvt tk
2
1:5 C P.kv0k3; kvt .0/k1:5; kvt .0/k2:kvt t .0/k1:5/C P.kvk2:5Cı/C

Z t

0

P : (6.28)

Plugging (6.20), (6.27) and (6.28) into (6.7), we have the estimates for I1

I1 . �k@vt tk
2
0;� C �.kQt tk

2
1 C kvtk

2
2:5/C P.kvk2:5Cı/C P0 C

Z t

0

P : (6.29)

Then combining (6.7), (6.6), (6.8) and (6.10), we know I satisfies the similar estimates as I1. Plugging this and (6.4)
into (6.30), we finally ends the control of kvt t tk0 and kbt t tk0 as well as k@˘vt tk0;� :

kvt t tk
2
0 C kbt t tk

2
0 . �k@.˘vt t /k

2
0;� C �.kQt tk

2
1 C kvtk

2
2:5/C P.kvk2:5Cı/C P0 C

Z t

0

P : (6.30)
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6.2 Estimates of @vt t and boundary term @2˘vt

In this subsection, we will derive the bound (6.2). Similarly as in the previous subsection, we first compute:
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:

(6.31)

We observe that the highest order term in J � cancels with that inK�. Indeed, one can integrate @� by parts in J �CK�

to get
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(6.32)

Therefore, it suffices to control I �. In face, the only highest order term in I � is @@2t v˛a
�˛@@2t @�Q which can be

controlled by integrating @� by parts and then invoking the surface tension equation again, while the others can be
controlled by Hölder’s inequality and Sobolev embedding.

I � D �

Z t

0

Z
˝

@@2t v˛a
�˛@@2t @�Qdyds�

Z t

0

Z
˝

@@2t v˛r
˛dyds„ ƒ‚ …

I�
0

D �

Z t

0

Z
�

@@2t v
˛a�˛N�@@

2
tQdSds C

Z t

0

Z
˝

@@�@
2
t v˛a

�˛@@2tQdyds C I
�
0

DW I �1 C I
�
2 C I

�
0 ;

(6.33)

where in I �0 we have

�r˛ D @a�˛@�Qt t C a
�˛
t @@�Qt C @a

�˛
t @�Qt C a

�˛@�QC a
�˛
tt @@�QC @

2a
�˛
t @�Q;

and thus we have the control for I �0 :

I �0 .
Z t

0

P.kvk3; kvtk2; kvt tk1:5; kQk2; kQtk2; kQt tk1/ds .
Z t

0

P : (6.34)
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I �2 can also be directly controlled by Hölder’s inequality and Sobolev embedding. First the divergence-free condi-
tion for v implies @@2t .a

�˛@�v˛/ D 0. Expanding this and plugging it into I �2 , one can get

I �2 .
Z t

0

P.kvk3; kvtk2; kvt tk1:5; kQt tk1/ds .
Z t

0

P : (6.35)

Now it remains to control I �1 . invoking the surface tension equation again, we have

I �1 D �

Z t

0

Z
�

@@2t .a
�˛Q/C � � � D �

Z t

0

Z
�

@@2t .
p
g�g�

˛/@@2t v˛„ ƒ‚ …
I�
11

C � � � ; (6.36)

where the omitted terms can be directly bounded by
R t
0
P : For I �11, one can mimic the proof of controlling I11: taking

derivative @@t in the identity

@t .
p
g�g�

�/ D @i

�
p
ggij .ı˛� � g

kl@k�
˛@l�

�/@j v
�/C

p
g.gijgkl � gljgik/@j�

˛@k�
�@lv

�
�
;

and plugging that into I �11, one gets

I �11 D �

Z t

0

Z
�

p
ggij .ı˛ � gkl@k�

˛@l��/@t@@j v
�@2t @@iv˛

�

Z t

0

Z
�

p
g.gijgkl � gljgik/@j�

˛@k�
�@l@t@v

�@2t @@iv˛ C L
�
111

DW I �111 C I
�
112 C L

�
11;

(6.37)

where L�11 is the analogue of L11. The term I �112 is the analogue of I112 which requires using the tricky determinant
computation, and is estimated in the same way as I112.

I112 .
Z t

0

P; L�11 . �kvtk
2
2:5 C P.kvk2:5Cı/C P.kv0k3/C

Z t

0

P (6.38)

For I �111, we just need to replace all the @2t appearing when controlling I111 by @@t , and repeat all the steps, to get

I �111 . �k@
2˘vtk

2
0;� C �kvtk

2
2:5 C P.kvk2:5Cı/C P.kv0k3; kQ.0/k2/C

Z t

0

P : (6.39)

Combining and (6.36), (6.37), (6.39) and (6.38) , we have

I �1 . �k@
2˘vtk

2
0;� C �kvtk

2
2:5 C P.kvk2:5Cı/C P.kv0k3; kQ.0/k2/C

Z t

0

P : (6.40)

Plugging (6.34), (6.35) and (6.40) into (6.33), we can derive the desired estimates from (6.31) and (6.32):

k@vt tk
2
0 C k@bt tk

2
0 . �k@

2˘vtk
2
0;� C �kvtk

2
2:5 C P.kvk2:5Cı/C P0 C

Z t

0

P : (6.41)

7 Closing the estimates
In this section we are going to close all the a priori estimates.



Luo and Zhang 30

7.1 Estimates at t D 0
Before summarising all the estimates we have gotten, we point out that, so far, all the estimates contain the initial value
of several quantities. In this section we will control all these quantities in terms of the initial data, i.e. v0 and b0: It is
exactly here that we require the a priori estimates depend on kv0k4;� . Assume we have the a priori bound for v0 and
b0, then the control of kbt .0/k2:5 automatically holds

kbt .0/k2:5 D k.b0 � @/v0k2:5 . kb0k2:5kv0k3:5: (7.1)

While the control of kvt .0/k2:5 requires the a priori bound for Q0 WD Q.0/. Our basic idea to proceed the remaining
steps is:

v0; b0„ƒ‚…
)bt .0/

�
H) Q0

(1.8)
HH) vt .0/

@t (1.8)
HHH) bt t .0/

�
H) Qt .0/

9=; @t (1.8)
HHH) vt t .0/

8<:
@2t (1.8)
HHH) bt t t .0/
�
H) Qt t .0/

9=; @2t (1.8)
HHH) vt t t .0/; (7.2)

here ‘�’ means using elliptic estimates as in Chapter 3, ‘@t ’ means differentiating the MHD equation with respect to
time variable t .

The first step is to control kQ0k3:5. Since �.0/ D Id, we can derive the estimate for kQ0k3:5 from the original
MHD system (1.1). Taking divergence in the first equation Dtu � .B � r/B D �rP and set t D 0, one has

��Q0 D Œr;Dt �vjtD0 � Œr; b0 � r�b0 D @�v
�
0@�v

�
0 � @�b

�
0@�b

�
0 in ˝

@Q0

@N
D 0 on �0

Q0 D 0 on �

Then the standard elliptic estimate yields that

kQ0k3:5 . kv0k2:5kv0k3 C kb0k2:5kb0k3; (7.3)

and thus one can derive the bound for kvt .0/k2:5 as well as kbt tk1:5:

kvt .0/k2:5 � kb0 � @b0k2:5 C k@Q0k2:5 . kb0k2:5kb0k3:5 C kQ0k3:5I

kbt t .0/k1:5 D kb0 � @vtk1:5 . kb0k2kvtk2:5 . kb0k2.kb0k2:5kb0k3:5 C kQ0k3:5/:
(7.4)

To derive the bound for kQt .0/k2:5, one needs to invoke (3.9) and restrict it at t D 0, with the following boundary
condition

@Qt .0/

@N
D g�jtD0 on �0 as in (3.10)

Qt .0/ D qt .0/ D �@ta
�˛N�qjtD0 � ��v

3
0 on �;

and the standard elliptic estimate yields that

kQt .0/k2:5 . P.kv0k3:5; kb0k3:5; kv0k4;� /; (7.5)

and thus one can derive the bound for kvt t .0/k2:5 as well as kbt t tk0 by time differentiating (1.8) again:

kvt t .0/k1:5 � kb0 � @bt .0/k1:5 C k@t .a
�˛@�Q/jtD0k1:5 . P.kv0k3:5kb0k3:5; kv0k4;� /I

kbt t t .0/k0 D kb0 � @vt tk0 . kb0k2kvt tk0 . P.kv0k3:5kb0k3:5; kv0k4;� /:
(7.6)

We remark that the last estimate illustrates that the term kv0k4;� is necessary in the a priori estimates due to �v30
on the boundary. Besides, one can continue the steps by following the idea in (7.2) to get the bound for kvt t t .0/k0 and
kQt tk1 so we omit the details. We conclude that

kvt .0/k2:5 C kvt t .0/k1:5 C kvt t t .0/k0

C kbt .0/k2:5 C kbt t .0/k1:5 C kbt t t .0/k0

C kQ.0/k3:5 C kQt .0/k2:5 C kQt t .0/k1

9>=>; . P.kv0k3:5kb0k3:5; kv0k4;� /: (7.7)
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7.2 Rewrite and summarise the estimates
Now we summarise all the estimates that we have gotten. In order to apply Gronwall-type inequality, we have to
ensure all of the a priori quantities are controlled by the sum of the initial data and the time integral of these quantities.
Therefore we also need to rewrite the estimates of pressure shown in Proposition 3.1.

Estimates of �:

k�k3:5 � kv0k3:5 C

Z t

0

kv.s/k3:5ds; (7.8)

obviously holds.

Estimate of v: From (3.3), (7.7), (4.8) and (5.1) in Proposition 5.1, we have:

kvk23:5 . P.kv0k3:5; kb0k3:5/C P
Z t

0

P C kQtk
2
1 C P.kvk2:5Cı/

. P.kv0k3:5; kb0k3:5/C P
Z t

0

P C kQt .0/k
2
1 C

Z t

0

kQt t .s/k
2
1ds C P.kvk2:5Cı/

. P.kv0k3:5; kb0k3:5/C P
Z t

0

P C P.kvk2:5Cı/

(7.9)

Estimate of vt : For vt , we notice that the �-term on the RHS of (5.11) can be absorbed by kvtk2:5. Therefore,
combining this with (4.24), (6.2), we get

kvtk
2
2:5 . P0 C

Z t

0

P C kvtk22;� C k@vt tk
2
0 C k@bt tk

2
0

. P0 C
Z t

0

P C P.kvk2:5Cı/C k@2˘vtk20;� C k@vt tk
2
0 C k@bt tk

2
0„ ƒ‚ …

using (6.2)

. P.kv0k3:5; kb0k3:5; kv0k4;� /C
Z t

0

P C P.kvk2:5Cı/:

(7.10)

Estimates of vt t ; vt t t ; bt t t : Similarly, one can get the estimates of vt t , vt t t and bt t t simultaneously just by mimicing
the derivation of (7.10). Using (4.41), (6.1) and absorbing all the �-terms to LHS, we have

kvt tk
2
1:5 C kvt t tk

2
0 C kbt t tk

2
0 . P0 C

Z t

0

P C kv3ttk21;� C k@vt t tk
2
0 C k@bt t tk

2
0

. P0 C
Z t

0

P C k@.˘vt t /k20;� C k@vt t tk
2
0 C k@bt t tk

2
0„ ƒ‚ …

using (6.1)

. P.kv0k3:5; kb0k3:5; kv0k4;� /C
Z t

0

P

C P.kvk2:5Cı/C �kQt tk
2
1:

(7.11)

Estimates of b; bt ; bt t : These estimates have been derived in Proposition 4.1:

kbk23:5 C kbtk
2
2:5 C kbt tk

2
1:5 . P.kvk2:5Cı ; kbk2:5Cı/C P.kv0k3:5; kb0k3:5; kv0k4;� /C

Z t

0

P : (7.12)

Since our a priori quantities contain Q;Qt ;Qt t , we still need to rewrite the pressure estimates into the sum of
initial data and time integral of these a priori quantites instead of only a polynomial of these quantities as shown in
Proposition 3.
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Estimates of Q, Qt , Qt t : For the estimates of Q, we invoke (7.10) and (7.12) to rewrite the pressure estimates in
Proposition 3.1 as follows

kQk23:5 . P.kvk2:5Cı ; kbk2:5Cı/C P.kv0k3:5; kb0k3:5; kv0k4;� /C
Z t

0

P C kb0k22:5.P0 C
Z t

0

P/

. P.kvk2:5Cı ; kbk2:5Cı/C P.kv0k3:5; kb0k3:5; kv0k4;� /C
Z t

0

P :
(7.13)

Similary as above, we rewrite kvtk1:5; kvk2:5; kvk2; kQk2:5; kQtk1; kbtk1:5; kbk2 as the sum of initial data and time
integral of the a priori quantities, then use Young’s inequality and Jensen’s inequality and invoke (7.10), (7.11) and
(7.12) to get

kQtk
2
2:5 . P.kvk2:5Cı/C P.kbk2:5Cı/C P.kv0k3:5; kb0k3:5; kv0k4;� /C

Z t

0

P (7.14)

and

kQt tk
2
1 . P.kvk2:5Cı/C P.kbk2:5Cı/C P.kv0k3:5; kb0k3:5; kv0k4;� /C

Z t

0

P : (7.15)

7.3 Eliminate lower order terms
So far, it remains to deal with the lower order terms containing neither in the time integral, nor in the initial data,
specifically, P.kvk2:5Cı/ and P.kbk2:5Cı/ for arbitrarily small ı 2 .0; 0:5/. Therefore, it suffices to choose a suitable
ı 2 .0; 0:5/ and control P.kvk2:5Cı/.

Control of P.kvk2:5Cı/: Since kvk2:5Cı � 1
2
C

1
2
kvk2

2:5Cı
, we may assume P.kvk2:5Cı/ is the combination of

terms of the form kvkd
2:5Cı

with d � 2. Then by the interpolation inequality in Lemma 2.6, we have

kvkd2:5Cı . kvk
2ıd
3 kvk

.1�2ı/d
0 :

Then choose ı sufficiently close to 0, for different d ’s, such that

pd WD
1

dı
> 1:

One can use �-Young’s inequality with pd and its dual index to derive

kvkk2:5Cı . �kvk
2
3 C kvk

b
0 . �kvk

2
3:5 C P.kv0k2:5/C

Z t

0

P.kvt .s/k2:5/ds for some b > 0;

and thus

P.kvk2:5Cı/ . �kvk
2
3:5 C P.kv0k2:5/C

Z t

0

P : (7.16)

Similarly we have

P.kbk2:5Cı/ . �kbk
2
3:5 C P.kb0k2:5/C

Z t

0

P : (7.17)

7.4 Gronwall-type argument
Recall in (1.11) we have

N.t/ D k�k23:5 C kvk
2
3:5 C kvtk

2
2:5 C kvt tk

2
1:5 C kvt t tk

2
0 C kbk

2
3:5 C kbtk

2
2:5 C kbt tk

2
1:5 C kbt t tk

2
0

C kQk23:5 C kQtk
2
2:5 C kQt tk

2
1:
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Combining this with (7.7)-(7.17), and absorbing all the �-terms, we have proved:

N.t/ . P.kv0k3:5; kb0k3:5; kv0k4;� /C P.N.t//
Z t

0

P.N.s//ds:

By the Gronwall-type argument in [29], we have:

N.t/ � C.kv0k3:5; kb0k3:5; kv0k4;� /;

as desired. This ends the proof of our result.

�
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[24] Secchi, P. and Trakhinin, Y. (2013). Well-posedness of the plasma–vacuum interface problem. Nonlinearity,
27(1): 105-169.

[25] Shatah, J. and Zeng, C. (2008a). Geometry and a priori estimates for free boundary problems of the euler’s
equation. Communications on Pure and Applied Mathematics, 61(5): 698–744.

[26] Shatah, J. and Zeng, C. (2008b). A priori estimates for fluid interface problems. Communications on Pure and
Applied Mathematics, 61(6): 848–876.

[27] Shatah, J. and Zeng, C. (2011). Local well-posedness for fluid interface problems. Archive for Rational Mechan-
ics and Analysis, 199(2): 653–705.

[28] Sun, Y., Wang, W., and Zhang, Z. (2019). Well-posedness of the plasma-vacuum interface problem for ideal
incompressible MHD. Archive for Rational Mechanics and Analysis, Vol. 234, 81-113.

[29] Tao, T. (2006). Nonlinear dispersive equations: Local and global analysis. Number 106. American Mathematical
Soc.

[30] Wang, Y. (2012). Critical magnetic number in the magnetohydrodynamic Rayleigh-Taylor instability. Journal of
Mathematical Physics, 53(7).

[31] Wang, Y. and Xin, Z. (2020). Global Well-posedness of Free Interface Problems for the incompressible Inviscid
Resistive MHD. arXiv 2009.11636, preprint.

[32] Wu, S. (1997). Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Inventiones mathemat-
icae, 130(1): 39–72.

[33] Wu, S. (1999). Well-posedness in Sobolev spaces of the full water wave problem in 3-D. Journal of the American
Mathematical Society, 12(2): 445–495.

[34] Zhang, P. and Zhang, Z. (2008). On the free boundary problem of three-dimensional incompressible Euler
equations. Communications on Pure and Applied Mathematics, 61(7): 877–940.


	Introduction
	History and background
	MHD system in Lagrangian coordinates and the main result
	Strategy and organisation of the paper

	Preliminary Lemmas
	Pressure Estimates
	Control of Q and Q_t: Standard elliptic estimate
	H1 control of Q_tt: Low regularity elliptic estimate

	Div-Curl Estimates
	Div-Curl estimates of v and b
	Div-Curl estimates of v_t and b_t
	Div-Curl estimates of v_tt and b_tt

	Boundary Estimates of v
	Control of v3: Boundary elliptic estimates
	Control of v_t3 and v_tt3: Comparing X with X3

	Tangential Estimates
	Estimates of v_ttt,b_ttt and boundary term v_tt
	Estimates of v_tt and boundary term 2v_t

	Closing the estimates
	Estimates at t=0
	Rewrite and summarise the estimates
	Eliminate lower order terms
	Gronwall-type argument


