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Abstract

We consider the three-dimensional incompressible magnetohydrodynamics (MHD) equations in a bounded
domain with small volume and free moving surface boundary. We establish a priori estimate for solutions
with minimal regularity assumptions on the initial data in Lagrangian coordinates. In particular, due to the
lack of the Cauchy invariance for MHD equations, the smallness assumption on the fluid domain is required
to compensate a loss of control of the flow map. Moreover, we show that the magnetic field has certain
regularizing effect which allows us to control the vorticity of the fluid and that of the magnetic field. To the
best of our knowledge this is the first result that focuses on the low regularity solution for incompressible
free-boundary MHD equations.
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1 Introduction
The goal of this manuscript is to investigate the solutions in low regularity Sobolev spaces for the following
incompressible inviscid MHD equations in a moving domain:8̂<̂

:
@tuC u � ru � B � rB Cr.p C

1
2
jBj2/ D 0; in DI

@tB C u � rB � B � ru D 0; in DI
div u D 0; div B D 0; in D;

(1.1)

describing the motion of conducting fluids in an electromagnetic field, where D D [0�t�T ftg � ˝.t/ and
˝.t/ � R3 is the domain occupied by the fluid with small volume whose boundary @˝.t/ moves with the ve-
locity of the fluid. Under this setting, the fluid velocity u D .u1; u2; u3/, the magnetic field B D .B1; B2; B3/,
the fluid pressure p and the domain D are to be determined; in other words, given a simply connected bounded
domain ˝.0/ � R3 and the initial data u0 and B0 satisfying the constraints divu0 D 0 and divB0 D 0, we
want to find a set D and the vector fields u and B solving (1.1) satisfying the initial conditions:

˝.0/ D fx W .0; x/ 2 Dg; .u; B/ D .u0; B0/; in f0g �˝0: (1.2)

We also require the following boundary conditions on the free boundary @D D [0�t�T ftg � @˝.t/:8̂<̂
:
.@t C u � r/j@D 2 T .@D/
p D 0 on @D;
jBj D c; B �N D 0 on @D;

(1.3)

where T .@D/ is the tangent bundle of @D, N is the exterior unit normal to @˝t and c � 0 is a constant. The
first condition of (1.3) means that the boundary moves with the velocity of the fluid, the second condition of
(1.3) means that the region outside ˝t is vacuum, where B � N D 0 on @˝t implies that the fluid is a perfect
conductor; in other words, the induced electric field E satisfies E �N D 0 on @˝t . Also, the condition jBj D c
on @˝t yields that the physical energy is conserved, i.e., denotingDt D @tCu �r, and invoking the divergence
free condition for both u and B , we have:

d

dt

h1
2

Z
˝.t/

juj2 C
1

2

Z
˝.t/

jBj2
i

D

Z
˝.t/

u �DtuC

Z
˝.t/

B �DtB

D �

Z
˝.t/

u � r.p C
1

2
jBj2/C

Z
˝.t/

u � .B � rB/C

Z
˝.t/

B � .B � ru/

D �

Z
@˝.t/

.u �N /p �
Z
@˝.t/

1

2
.u �N /c2„ ƒ‚ …

D0 by Gauss theorem

C

Z
˝.t/

u � .B � rB/ �

Z
˝.t/

u � .B � rB/ D 0:

We will establish a priori bounds for the MHD equations (1.1)-(1.3) when u0; B0 2 H 2:5Cı.˝.0// for
ı 2 .0; 0:5/ under the physical sign condition

� rN .p C
1

2
jBj2/ � �0 > 0 on @˝.t/: (1.4)

We recall here that for the free-boundary problem of the motion of a incompressible fluid without magnetic field
(i.e., the incompressible free-boundary Euler equations), the physical sign condition reads

�rNp � �0 > 0 on @˝.t/:

Condition (1.4) was first discovered by Hao and Luo [16] when proving the a priori energy estimate for the free
boundary incompressible MHD equations with H 4 initial data. Very recently, they proved that (1.1)-(1.3) is
ill-posed when (1.4) is violated [17]. The quantity p C 1

2
jBj2 (i.e., the total pressure) plays an important role

here in our analysis. In fact, it determines the acceleration of the moving surface boundary.
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1.1 History and background
In the absence of the magnetic field B , the system (1.1) is reduced to the free-boundary Euler equations which
has attracted much attention in the past two decades. Important progress has been made for both incompressible
and compressible flows, with or without surface tension, and with or without vorticity. Without attempting to
be exhaustive, we refer [1, 5, 6, 9, 18, 22, 23, 24, 25, 26, 28, 29, 32, 33, 34, 40, 41, 42] for more details.

On the other hand, the MHD equations describe the behavior of an electrically conducting fluid (e.g., a
plasma) acted on by a magnetic field. In particular, the free-boundary MHD equations (also known as the
plasma-interface problem) describes the phenomenon when the plasma is separated from the outside wall by a
vacuum, whose motion can be formulated as the incompressible free-boundary MHD equations.

Although the MHD equations in a fixed domain have been the focus of a great deal of activities, e.g.,
[3, 4, 11, 12, 13, 19, 39], much less is known for the free-boundary case. The main difficulty is the strong
coupling between u and B (i.e., the appearance of B � rB and B � ru terms in the first and second equations
of (1.1), respectively). In fact, the appearance of the Lorentzian force term B � rB destories the Cauchy
invariance, which provides good estimates for curl v when B is absent; indeed, one can see this by commuting
the curl operator through the first equation of (1.1), which implies1

.@t Cru/curl u � r.curl B/:

Nevertheless, it is remarkable that the magnetic field B yields certain regularizing effect (cf. [38]), which can
be derived from the transport equation of B (i.e., the second equation of (1.1)). Such regularizing effect plays
an important role to control the full Sobolev norms of curl B and curl u and hence the full Sobolev norm of B
and u via the div-curl estimate. We will provide more details on this in Section 1.3.

For the free-boundary MHD equations, the local (in time) well-posedness (LWP) of the linearized equations
was studied by Morando-Trakhinin-Trebeschi [27], Secchi-Trakhinin [30] and Trakhinin [37]. For the nonlinear
equations, Hao-Luo [16] proved the a priori energy estimate with H 4 initial data and the LWP was established
by Secchi-Trakhinin [31] and Gu-Wang [14]. Also, we mention here that in Hao [15] and Sun-Wang-Zhang [35],
the authors studied the a priori energy estimate and LWP, respectively, for the free-boundary MHD equations
with nontrivial vacuum magnetic field.

In this manuscript, we establish the local a priori energy estimate with u;B 2 H 2:5Cı with ı > 0 is
arbitrary. This agrees with the minimal regularity assumption (i.e., H

d
2C1Cı , where d is the spatial dimension)

that one may expect for the velocity field in the theory of the free-boundary incompressible Euler equations
(see, e.g., [10, 21, 22]). In fact, Bourgain-Li [2] proved that the incompressible Euler equations with H

d
2C1

initial data are ill-posed even in the free space Rd .

1.2 MHD system in Lagrangian coordinates and Main result
We reformulate the MHD equations in Lagrangian coordinates, in which the free domain becomes fixed. Let˝
be a bounded domain in R3. Denoting coordinates on ˝ by y D .y1; y2; y3/, we define � W Œ0; T ��˝ ! D to
be the flow map of the velocity u, i.e.,

@t�.t; y/ D u.t; �.t; y//; �.0; y/ D y: (1.5)

We introduce the Lagrangian velocity, magnetic field and fluid pressure, respectively, by

v.t; y/ D u.t; �.t; y//; b.t; y/ D B.t; �.t; y//; q.t; y/ D p.t; �.t; y//: (1.6)

Let @ be the spatial derivative with respect to y variable. We introduce the cofactor matrix a D Œ@���1, which is
well-defined since �.t; �/ is almost the identity map when t is sufficiently small. It’s worth noting that a verifies
the Piola’s identity, i.e.,

@�a
�˛
D 0: (1.7)

Here, the summation convention is used for repeated upper and lower indices, and in above and throughout, all
indices (e.g., Greek and Latin) range over 1; 2; 3.

1We refer (1.14)-(1.15) for the detailed computation.
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Denote the total pressure ptotal D p C 1
2
jBj2 and let Q D ptotal.t; �.t; y//. Then (1.1)-(1.3) can be refor-

mulated as: 8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@tv˛ � bˇa
�ˇ@�b˛ C a

�
˛ @�Q D 0 in Œ0; T � �˝I

@tb˛ � bˇa
�ˇ@�v˛ D 0 in Œ0; T � �˝I

a
�
˛ @�v

˛ D 0; a
�
˛ @�b

˛ D 0 in Œ0; T � �˝I
v3 D 0 on �0I
a��b�b� D c

2; Q D 1
2
c2; a

�
� b

�N� D 0 on �I
@Q
@N
D @3Q � ��0 on �1:

(1.8)

Remark. In above and throughout, the upper index of a represents the number of the rows whereas the lower
index represents the number of the columns, i.e., arow

column.

For the sake of simplicity and clean notation, here we consider the model case when

˝ D T2 � .0; �/; (1.9)

where � � 1 and @˝ D �0 [ �1 and �1 D T2 � f�g is the top (moving) boundary, �0 D T2 � f0g is the fixed
bottom. We shall treat the general bounded domain with small volume in Section 6 by adapting what has been
done in [10]. However, choosing ˝ as above allows us to focus on the real issues of the problem without being
distracted by the cumbersomeness of the partition of unity. Let N stands for the outward unit normal of @˝. In
particular, we have N D .0; 0;�1/ on �0 and N D .0; 0; 1/ on �1.

In this paper, we prove:

Theorem 1.1. Let ˝ be defined as in (1.9). Let .�; v; b/ be the solution of (1.8) and ı 2 .0; 0:5/. Assume that
v.0; �/ D v0 2 H

2:5Cı.˝/ and b.0; �/ D b0 2 H
2:5Cı.˝/ be divergence free vector fields and b0 � N D 0 on

@˝. Let
N.t/ WD k�.t/k2

H3Cı
C kv.t/k2

H2:5Cı
C kb.t/k2

H2:5Cı
: (1.10)

Then for sufficiently small �, there exists a T > 0, depending only on N.0/ and � such that N.t/ � P.N.0//
for all t 2 Œ0; T �, provided the physical sign condition

�
@Q

@N

ˇ̌
tD0
D �@3Q

ˇ̌
tD0
� �0 > 0; on �1 (1.11)

holds. Here, P is a polynomial of its arguments.

Remark. We will show that the physical sign condition (1.12) propagates within Œ0; T �. In other words, it holds

� @3Q.t/ � �0 > 0; on �1; t 2 Œ0; T �: (1.12)

1.3 Strategy, organisation of the paper, and discussion of the difficulties
Notations. All definitions and notations will be defined as they are introduced. In addition, a list of symbols
will be given at the end of this section for a quick reference.

Definition 1.1. The L2- based Sobolev spaces are denoted by H s.˝/, where we abbreviate corresponding
norm k � kHr .˝/ as k � kHr when no confusion can arise. We denote by H s.� / the Sobolev space of functions
defined on � , with norm k � kH s.� /.

Notation 1.2. We use � to denote a small positive constant which may vary from expression to expression.
Typically, � comes from choosing sufficiently small time, from Lemma 2.1 and from the Young’s inequality.

Notation 1.3. We use P D P.� � � / to denote a generic polynomial in its arguments.

Now we can state the strategies we used and discuss the discovery and the difficulty in MHD system.
Gronwall-Type argument and div-curl estimates
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The proof of Theorem 1.1 relies on div-curl type estimates of the velocity field v, the magnetic field b and
the Lagrangian flow map �. In particular, let N.t/ be defined as in Theorem 1.1. Then if vol .˝/ is sufficiently
small (i.e., � � 1), there exists a T > 0 such that the estimate

N.t/ .M0 C �P.N.t//C P.N.t//

Z t

0

P.N.s//ds (1.13)

holds whenever t 2 Œ0; T �, where M0 D M0.kv0kH2:5Cı ; kb0kH2:5Cı / . This implies N.t/ . M0 by a
Gronwall-type argument that can be found in Chapter 1 of Tao [36].

Creation of vorticity by the magnetic field
The vorticity of the conducting fluid cannot be controlled analogously to that in the case of a non-conducting

fluid due to the lack of the Cauchy invariance, since its derivation involves the derivative of the Lorentzian force
.b0 � @/b, which contributes to higher order terms. In particular, let ���� be the anti-symmetric tensor with
�123 D 1. We have:

@t .�
���@�v

m@��m/ D �
���@�v

m@�vm„ ƒ‚ …
D0

C����@�v
m
t @��m

D �����@�.a
`m@`Q/@��m„ ƒ‚ …

D0; same as the Euler’s equations

C����@�.b
�
0 @�b

m/@��m;
(1.14)

where the last term in the second line is equal to

����@�.b
�
0 @�b

m/ı�m C �
���@�.b

�
0 @�b

m/.@��m � ı
�
m/

D curl .b�0 @�b/C �
���@�.b

�
0 @�b

m/.@��m � ı
�
m/; (1.15)

is nonzero in general. We remark here that it is the Lorentzian force that causes the strong coupling between
v and b. One can imagine that the Lorentzian force twists the trajectory of an electric particle in a magnetic
field and produces vorticity even if the initial data is curl-free. However, we can control curl v and curl b from
their evolution equation derived by taking the Eulerian curl operator to the first equation of (1.8). This will be
dicussed in the following paragraph.

Regularizing effect of b: Controlling curl v; curl b and pressure Q
The key to control kvkH2:5Cı and kbkH2:5Cı is to control kBavkH1:5Cı and kBabkH1:5Cı , where Ba de-

notes the Eulerian curl operator, i.e., ŒBaX�� D ���˛a
��@�X

˛ , where ���˛ is the anti-symmetric tensor with
�123 D 1. These quantities are treated straightforwardly for non-conducting fluids (i.e., Euler equations) thanks
to the remarkable Cauchy invariance. We, nevertheless, have to control them differently since the Cauchy invari-
ance fails for MHD equations due to the presence of the Lorentzian force term bˇa

�ˇ@�b. Inspired by Gu-Wang
[14], one can derive the evolution equation for Bav and Bab. With the help of the following identities2

bˇa
�ˇ
D b

�
0 and b� D .b0 � @/�� (1.16)

mentioned in Gu-Wang [14], one can rewrite the first equation of (1.8) as

@tv˛ C a
�
˛ @�Q D .b0 � @/

2�˛: (1.17)

Now, one may apply the curl operator Ba on both sides of (1.17) and get:

.Ba@tv/� D .Ba..b0 � @/
2�//�; (1.18)

which yields an evolution equation after commuting @t and b0 � @ on both sides of (1.18):

@t .Bav/� � .b0 � @/Ba..b0 � @/�/� D error terms + commutators: (1.19)

This, in particular, yields an energy identity for Bav and Bab D Ba.b0 � @/�, i.e.,

Ecurl .t/ WD
1

2

Z
˝

j@1:5CıBavj
2
C j@1:5CıBa.b0 � @/�j

2; (1.20)

2We refer Lemma 2.2 for the detailed derivation.
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and it can be shown that E.t/ verifies the following estimates by using Kato-Ponce inequalities (2.3)

Ecurl .t/ � kb0kH2:5Cı C

Z t

0

P.k�kH2:5Cı ; kvkH2:5Cı ; kbkH2:5Cı /: (1.21)

On the other hand, it is worth pointing out that the control of kQkH3Cı and k@3QtkL1.@˝/ (and hence
kQtkH2:5Cı ) are both required. These quantities are needed even for the incompressible free-boundary Euler
equations, whose a priori energy estimate can be closed by requiring � to be half derivatives more regular
than v (see, e.g., [1, 21, 22]). In the case of a conducting fluid, i.e., MHD equations, we have to use the
regularizing effect of the magnetic field (i.e., identities (1.16)) to show that k�kH3Cı is still good enough to
control kQkH3Cı and kQtkH2:5Cı . In particular,Qt satisfies an elliptic equation that involves b�0 @�a

�˛@�@tb˛
as part of its source term, whose H 0:5Cı norm requires � 2 H 3:5Cı to control. However, this term can be
avoided by invoking the identities (1.16) when deriving the elliptic PDE of Qt .

Remark. One may drop the requirement for k�kH sC0:5 when s > 3:5 using Alinhac’s good unknowns thanks
to the fact that @a 2 L1. We refer [14, 16] for details.

Smallness of the fluid’s volume is required: Nonlinear control of curl �
One needs to control kcurl �kH2Cı (and hence kBa�kH2Cı ) to close the a priori estimate. This can be done

in the case of a non-conducting fluid using the Cauchy invariance if one assumes !0 D curl v0 2 H 2Cı (cf.
[22]). This, again, fails for MHD equations. In order to control Ba@�, one can only hope to use the multiplica-
tive Sobolev inequality and Young’s inequality with � to derive the nonlinear estimate, which produces a term
��1P.k�.0/kH2:5Cı /. Therefore, we require the body of the conducting fluid to have small volume to fight the
growth of the vorticity brought by twisting effect of the Lorentzian force (in other words, the strong coupling
between b and v), otherwise the Gronwall-type argument no longer holds since it requires � to be sufficiently
small. The smallness of the fluid body can be propagated3 if it holds initially since � is volume-preseving.

Organization of the paper:
The manuscript will be organized as follows. In Section 2 we record the preliminary estimates for the cofac-

tor matrix a and its time derivatives. Also, the well-known Kato-Ponce commutator estimates are summarized
as Lemma 2.3 for readers’ convenience. Section 3 is devoted to control kQkH3Cı and kQtkH2:5Cı , which is
required for the tangential estimate of v. In Section 4 we prove the tangential estimates for both v and b. Finally,
in Section 5, we provide the control for the full Sobolev norms of v, b and � using a div-curl type estimate. Also,
we show that the physical sign condition (1.12) propagates within a short period by showing that the quantity
@3Qj�1 is 1=4-Hölder continuous in time, which allows us to close the a priori estimates.

Acknowledgement: We would like to thank Marcelo Disconzi and Igor Kukavica for many insightful discus-
sions. Also, we thank Igor for sharing his idea on the proof of Lemma 5.5.

List of symbols:

� �: A small positive constant which may vary from expression to expression.

� �: The “height” of the fluid domain ˝, which is also chosen to be sufficiently small.

� a D Œ@���1: The cofactor matrix;

� k � kH s : We denote kf kH s WD kf .t; �/kH s.˝/ for any function f .t; y/ on Œ0; T � �˝.

� P : A generic polynomial in its arguments;

� P: P D P.kvkH2:5Cı ; kbkH2:5Cı / (and so P0 D P.kv0kH2:5Cı ; kb0kH2:5Cı /;

� N.t/: N.t/ D k�k2
H3Cı

C kvk2
H2:5Cı

C kbk2
H2:5Cı

;

3One may also choose to add an articifical smoothness conditions for � (e.g., � 2 H3Cı.˝/). But such conditions do not seem to be
the ones that can be propagated.
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� @ D .I ��/1=2 where � D @21 C @
2
2, and S D @2:5Cı : Tangential differential operators.

�

2 Preliminary Lemmas
The first lemma is about some basic estimate of the cofactor matrix a, which shall be used throughout the rest
of the manuscript.

Lemma 2.1. Suppose k@vkL1.Œ0;T �IH1:5Cı.˝// � M . If T � 1
CM

for a sufficiently large constant K, then the
following estimates hold:

(1) k@�kH1:5Cı.˝/ � C for t 2 Œ0; T �;
(2) det.@�.t; x// D 1 for .x; t/ 2 ˝ � Œ0; T �;
(3) ka.�; t /kH1:5Cı.˝/ � C for t 2 Œ0; T �;
(4) kat .�; t /kLp.˝/ � Ck@vkLp.˝/ for t 2 Œ0; T �, 1 � p � 1;
(5) kat .�; t /kHr .˝/ � Ck@vkHr .˝/ for t 2 Œ0; T �, 0 � r � 1:5C ı;
(6) kat t .�; t /kHr .˝/ � Ck@vkH1:5Cık@vkHr C Ck@vtkHr , for t 2 Œ0; T �, 0 < r � 0:5C ı;
(7) For every 0 < � � 1, there exists a constant C > 0 such that for all 0 � t � T 0 WD minf �

CM
; T g > 0,

we have
ka�� � ı

�
� kH1:5Cı.˝/ � �; ka

�
˛ a

�
˛ � ı

��
kH1:5Cı.˝/ � �:

(8) @ma
�
˛ D �a

�
� @ˇ@m�

�a
ˇ
˛ for m D 1; 2; 3:

Proof. See [21]: (1)-(7) is Lemma 3.1 and (8) is formula (6.6).

The next lemma reveals the regularizing effect of the magnetic field b; in particular, the flow map � is more
regular in the direction of b0. It was also used in Wang [38] and Gu-Wang [14]

Lemma 2.2. Let .v; b; �/ be a solution to (1.8) with initial data .v0; b0; �0/. Then the following two identities
hold:

a�˛b˛ D b
�
0 ; (2.1)

bˇ D .b0 � @/�
ˇ
D b�0@��

ˇ : (2.2)

Proof. For (2.1), we multiply a�˛ to the second equation of (1.8) to get

a�˛@tb˛ D a
�˛bˇa

�ˇ@�@t�˛ D a
�˛bˇ@t .a

�ˇ@��˛„ ƒ‚ …
Dı

ˇ
˛

/ � bˇ@ta
�ˇ .@��˛a

�˛„ ƒ‚ …
ı��

/ D �b˛@ta
�˛;

so @t .a�˛b˛/ D 0 and thus a�˛b˛ D b�0 . For (2.2), it can be easily derived by multiplying @��ˇ on the both
sides of (2.1) and using a W @� D I .

The last lemma records the well-known Kato-Ponce commutator estimates, the proof of which can be found
in [20].

Lemma 2.3. Let J D .I ��/1=2, s � 0. Then the following estimates hold:
(1) 8s � 0 and 1 < p <1, we have

kJ s.fg/ � f .J sg/kLp . k@f kL1kJ
s�1gkLp C kJ

sf kLpkgkL1 I (2.3)

(2) 8s � 0, we have

kJ s.fg/kL2 . kf kW s;p1 kgkLp2 C kf kLq1 kgkW s;q2 ; (2.4)

with 1=2 D 1=p1 C 1=p2 D 1=q1 C 1=q2 and 2 � p1; q2 � 1;
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(3) 8s 2 .0; 1/, we have

kJ s.fg/ � f .J sg/ � .J sf /gkLp . kf kW s1;p1 kgkW s�s1;p2 ; (2.5)

where 0 < s1 < s and 1=p1 C 1=p2 D 1=p with 1 < p < p1; p2 <1;
(4) 8s � 1, we have

kJ s.fg/ � f .J sg/kL2 . kf kW s;p1 kgkLp2 C kf kW 1;q1 kgkW s�1;q2 ; (2.6)

where 1=2 D 1=p1 C 1=q1 D 1=p2 C 1=q2 with 1 < p < p1; p2 <1; and

kJ s.fg/ � .J sf /g � f .J sg/kLp . kf kW 1;p1 kgkW s�1;q2 C kf kW s�1;q1 kgkW 1;q2 (2.7)

for all the 1 < p < p1; p2; q1; q2 <1 with 1=p1 C 1=p2 D 1=q1 C 1=q2 D 1=p.

�

3 Pressure Estimates

In this section we derive the estimates for kQkH3Cı and kQtkH2:5Cı . These quantities are both required in
Section 4.

Notation 3.1. We denote P D P.kvkH2:5Cı ; kbkH2:5Cı / and so P0 D P.kv0kH2:5Cı ; kb0kH2:5Cı /.

Lemma 3.2. Assume Lemma 2.1 holds. Then the total pressure Q satisfies:

kQkH3Cı . P0 C P C P.k�kH3Cı /
�
kQ0kH2Cı C

Z t

0

kQtkH2Cı

�
; (3.1)

and its time derivative Qt satisfies:

kQtkH2:5Cı . P0 C P C P.kvkH2:5Cı /
�
kQ0kH2Cı C

Z t

0

kQtkH2Cı

�
: (3.2)

Proof: Applying a�˛@� to the first equation of (1.8), we have:

a�˛@�.a
�
˛ @�Q/ D �a

�˛@�@tv˛ C a
�˛@�.bˇa

�ˇ@�b˛/ D �a
�˛@�@tv˛ C a

�˛@�.b
�
0 @�b˛/; (3.3)

where we have used (2.1).
Invoking the Piola’s identity (1.7), Lemma 2.1 (8) and (2.2), we get:

�a�˛@�@tv˛ D @ta
�˛@�v˛;

and
a�˛@�.b

�
0 @�b˛/ D a

�˛@�b
�
0 @�b˛ C a

�˛b
�
0 @�@�b˛

D a�˛@�b
�
0 @�b˛ C b

�
0 @�.a

�˛@�b˛„ ƒ‚ …
D0

/ � b
�
0 @�a

�˛@�b˛

D a�˛@�b
�
0 @�b˛ C b

�
0 @�@ˇ�a

�aˇ˛@�b˛

D a�˛@�b
�
0 @�b˛ C @ˇ ..b0 � @/� /a

�aˇ˛@�b˛ � @ˇb
�
0 @��a

�„ ƒ‚ …
Dı��

aˇ˛@�b˛

D a�˛@�b
�
0 @�b˛ C @ˇba

�aˇ˛@�b˛ � @ˇb
�
0 a

ˇ˛@�b˛:

Thus, the total pressure Q satisfies

@�@�Q D @ta
�˛@�v˛C@�..ı

��
�a�˛ a

�˛/@�Q/Ca
�˛@�b

�
0 @�b˛C@ˇba

�aˇ˛@�b˛�@ˇb
�
0 a

ˇ˛@�b˛; (3.4)
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with the boundary conditions

Q D
1

2
c2 on �1; and a�˛ @�QN

˛
D 0 on �0; (3.5)

where the second condition can be rewritten as

@˛QN
˛
D .ı�˛ � a

�
˛ /@�QN

˛ on �0: (3.6)

The standard elliptic estimate yields that

kQkH3Cı . k@ta
�˛@�v˛kH1Cı„ ƒ‚ …

Q1

C k.ı�� � a�˛ a
�˛/@�QkH2Cı C k.ı

�
˛ � a

�
˛ /@�QN

˛
kH1:5Cı.� /„ ƒ‚ …

Q2

C ka�˛@�b
�
0 @�b˛kH1Cı C k@ˇba

�aˇ˛@�b˛kH1Cı C k@ˇb
�
0 a

ˇ˛@�b˛kH1Cı„ ƒ‚ …
Q3

(3.7)

Bounds for Q1: We have:

k@ta
�˛@�v˛kH1Cı . k@ta

�˛
kH1Cık@�v˛kH1:5Cı

. k�kH2:5CıkvkH2CıkvkH2:5Cı � Ckvk
2
H2:5Cı

kvk2
H2Cı

;
(3.8)

where we used kakH1:5Cı . k�k
2
H2:5Cı

and the multiplicative Sobolev inequality

kfgkH1Cı . kf kH1CıkgkH1:5Cı ; (3.9)

which is a direct consequence of (2.4) and the Sobolev embedding.

Bounds for Q2: Invoking Lemma 2.1 (7) and (2.4), we have:

k.ı�� � a�˛ a
�˛/@�QkH2Cı . kI � a W a

T
kL1k@�QkH2Cı C kI � a W a

T
kH2Cık@�QkL1

. �kQkH3Cı C .1C k�k
4
H3Cı

/kQk
1=2

H2Cı
kQk

1=2

H3Cı

. �kQkH3Cı C P.k�kH3Cı /kQkH2Cı

. �kQkH3Cı C P.k�kH3Cı /

�
kQ0kH2Cı C

Z t

0

kQtkH2Cıds

�
;

(3.10)

and similarly

k.ı�˛ � a
�
˛ /@�QN

˛
kH1:5Cı.� / . kI � akL1kQkH3Cı C kI � akH2CıkQkH2:5Cı

. �kQkH3Cı C P.k�kH3Cı /

�
kQ0kH2Cı C

Z t

0

kQtkH2Cıds

�
:

(3.11)

Bounds for Q3: All the terms in Q2 can be controlled by CkbkH2:5Cıkb0kH2:5Cı C Ckbk
2
H2:5Cı

via the
multiplicative Sobolev inequality. We only write the first term and the others are treated similarly.

ka�˛@�b
�
0 @�b˛kH1Cı . ka

�˛
kH1:5Cık@�b

�
0 @�b˛kH1Cı . CkbkH2:5Cıkb0kH2:5Cı : (3.12)

Summing up the bounds for Q1-Q3, then absorbing the �-term to LHS, we conclude the estimates of Q as:

kQkH3Cı . P0 C P C P.k�kH3Cı /
�
kQ0kH2Cı C

Z t

0

kQtkH2Cıds

�
: (3.13)
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Now we start to prove the estimates of Qt . Taking time derivative of (3.4), we obtain:

@�@�Qt D @t ta
�˛@�v˛ C @ta

�˛@�@tv˛

� @�.@ta
�
˛ a

�˛@�Q/ � @�.a
�
˛ @ta

�˛@�Q/C @�..ı
��
� a�˛ a

�
˛/@�Qt /

C a�˛t @�b
�
0 @�b˛ C a

�˛@�b
�
0 @t@�b˛ C @t .@ˇb@�b˛/a

�aˇ˛ C @ˇb@t .a
�aˇ˛/@�b˛

� @ˇb
�
0 a

ˇ˛@t@�b˛ � @ˇb
�
0 a

ˇ˛
t @�b˛:

(3.14)

with the boundary conditions

Qt D 0 on �1;
@˛QtN

˛
D �@ta

�
˛ @�QN

˛
C .ı�˛ � a

�
˛ /@�QtN

˛ on �0:
(3.15)

By the elliptic estimate, we have:

kQtkH2:5Cı

. k@t ta
�˛@�v˛kH0:5Cı C k@ta

�˛@�@tv˛kH0:5Cı C k@ta
�
˛ a

�˛@�QkH1:5Cı C ka
�
˛ @ta

�˛@�QkH1:5Cı

C k.ı�� � a�˛ a
�
˛/@�QtkH1:5Cı C k@ta

�
˛ @�QN

˛
kH1Cı.� / C k.ı

�
˛ � a

�
˛ /@�QtN

˛
kH1Cı.� /

C ka�˛t @�b
�
0 @�b˛kH0:5Cı C ka

�˛@�b
�
0 @t@�b˛kH0:5Cı C k@t .@ˇb@�b˛/a

�aˇ˛kH0:5Cı

C k@ˇb@t .a
�aˇ˛/@�b˛kH0:5Cı

C k@ˇb
�
0 a

ˇ˛@t@�b˛kH0:5Cı C k@ˇb
�
0 a

ˇ˛
t @�b˛kH0:5Cı :

(3.16)
First, since @tv˛ D a

�
˛ @�Q � bˇa

�ˇ@�b˛ we have:

kvtkH1:5Cı . kbk
2
H1:5Cı

kakH1:5Cı C kQkH2:5CıkakH1:5Cı : (3.17)

Using this and the multiplicative Sobolev inequality

kfgkH0:5Cı . kf kH0:5CıkgkH1:5Cı ; (3.18)

the first two terms of (3.16) are treated as:

k@t ta
�˛@�v˛kH0:5Cı C k@ta

�˛@�@tv˛kH0:5Cı

. kat tkH0:5CıkvkH2:5Cı C katkH1:5CıkvtkH1:5Cı

. kvk2
H2:5Cı

kvkH1:5Cı C k�kH2:5CıkvkH2:5CıkvtkH1:5Cı

. P C kvkH2:5Cı
�
kQ0kH2Cı C

Z t

0

kQtkH2Cıds

�
:

(3.19)

Second, invoking (3.9) and Lemma 2.1 (7), the terms containing Q in (3.16) are treated as:

k@ta
�
˛ a

�˛@�QkH1:5Cı C ka
�
˛ @ta

�˛@�QkH1:5Cı C k@ta
�
˛ @�QN

˛
kH1Cı.� /

C k.ı�� � a�˛ a
�
˛/@�QtkH1:5Cı C k.ı

�
˛ � a

�
˛ /@�QtN

˛
kH1Cı.� /

. kakH1:5CıkatkH1:5CıkQkH2:5Cı

C katkH1:5CıkQkH2:5Cı C kI � a
T
W akH1:5CıkQtkH2:5Cı C kI � akH1:5CıkQtkH2:5Cı

. kvkH2:5Cı

�
kQ0kH2Cı C

Z t

0

kQtkH2Cıds

�
C �kQtkH2:5Cı ;

(3.20)

which can be controlled appropriately by the RHS of (3.2) by plugging in the estimate (3.1).
Now it remains to control the terms containing b in (3.16) (the last 6 terms). In fact, all the terms containing

b can be controlled with the help of the multiplicative Sobolev inequality (3.18). The terms not containing bt
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are easier to control:

ka�˛t @�b
�
0 @�b˛kH0:5Cı C k@ˇb@t .a

�aˇ˛/@�b˛kH0:5Cı C k@ˇb
�
0 a

ˇ˛
t @�b˛kH0:5Cı

. katkH0:5Cıkb0kH2:5CıkbkH2:5Cı

C katkH0:5CıkakH1:5Cıkbk
2
H2:5Cı

C katkH0:5Cıkb0kH2:5CıkbkH2:5Cık�kH2:5Cı

. P :

(3.21)

For the terms containing bt , we have to put H 0:5Cı norm on @bt when we use the multiplicative Sobolev
inequality (3.18), because we only have bt 2 H 1:5Cı . This can be directly derived by taking time derivative of
@tb˛ D bˇa

�ˇ@�v˛ D b
�
0 @�v˛ , which implies

kbtkH1:5Cı . kvtkH1:5Cıkb0kH1:5Cı . kb0kH1:5CıkvkH2:5Cı :

Therefore,

ka�˛@�b
�
0 @t@�b˛kH0:5Cı C k@t .@ˇb@�b˛/a

�aˇ˛kH0:5Cı C k@ˇb
�
0 a

ˇ˛@t@�b˛kH0:5Cı

. kakH1:5Cıkb0kH2:5CıkbtkH1:5Cı C kak
2
H1:5Cı

kbkH2:5CıkbtkH1:5Cı

. P0 C P :
(3.22)

Summing these bounds up, and absorbing the �-term to LHS, we obtain:

kQtkH2:5Cı . P0 C P C P.kvkH2:5Cı /
�
kQ0kH2Cı C

Z t

0

kQtkH2Cı

�
; (3.23)

which yields (3.2).

4 Tangential Estimates
In this section, we establish the tangential energy estimate for the incompressible MHD equations.

Notation 4.1. We define @ D .I ��/1=2 where � D @21 C @
2
2 to be the tangential differential operator.

Theorem 4.2. Let S D @2:5Cı . LetE.t/ D kSvk2
L2
CkSbk2

L2
C
�0
2
ka3˛S�

˛k2
L2.�1/

. Then there exists a T > 0
such that for each t 2 Œ0; T �, the estimate

E.t/ . P0 C
Z t

0

P C
Z t

0

P.kQkH3Cı ; kQtkH2:5Cı ; k�kH3Cı /ds (4.1)

holds.

We prove this theorem by estimating v and b separately.

4.1 Tangential estimates of v
First, we derive the tangential estimates of v.

1

2

d

dt

Z
˝

.Sv˛/.Sv˛/dy D

Z
˝

.Sv˛/.@tSv˛/dy

D �

Z
˝

.Sv˛/.S.a�˛ @�Q//dy C

Z
˝

.Sv˛/.S.bˇa
�ˇ@�b˛//dy

DW I C J:

(4.2)

To control I , we have:
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I D �

Z
˝

.Sv˛/.S.a�˛ @�Q//dy

D �

Z
˝

.Sv˛/.a�˛ /.S@�Q/dy„ ƒ‚ …
I1

�

Z
˝

.Sv˛/.Sa�˛ /.@�Q/dy„ ƒ‚ …
I2

�

Z
˝

.Sv˛/ŒS.a�˛ @�Q/ � a
�
˛ .S@�Q/ � .Sa

�
˛ /@�Q�dy„ ƒ‚ …

I3

:

(4.3)

Control of I3: This is a direct consequence of the Kato-Ponce inequality (2.7), i.e.,

I3 � kSvkL2.ka
�
˛ kW 1;6k@�QkW 1:5Cı;3 C ka�˛ kW 1:5Cı;3k@�QkW 1;6/

. kvkH2:5CıkakH2CıkQkH3Cı

. kvkH2:5Cık�k
2
H3Cı

kQkH3Cı :

(4.4)

Control of I1: We integrate @� by parts to get:

I1 D �

Z
˝

Sv˛a�˛ .@�SQ/dy

D

Z
˝

a�˛S@�v
˛.SQ/dy C

Z
�0

.SQ/.a3˛Sv
˛/dS.�0/„ ƒ‚ …

D0

�

Z
�1

. SQ„ƒ‚…
D0

/.a�˛Sv
˛N�/dS.�1/

D

Z
˝

S.a�˛ @�v
˛/„ ƒ‚ …

D0

.SQ/dy �

Z
˝

.Sa�˛ /@�v
˛.SQ/dy �

Z
˝

ŒS.a�˛ @�v
˛/ � .Sa�˛ /@�v

˛
� a�˛S@�v

˛�.SQ/dy;

(4.5)
where the boundary integrals in the second line vanish since a31 D a32 D 0 and v3 D 0 on �0, and @Q D
@.c2=2/ D 0 on �1. The last term in the third line is controlled using (2.7):

�

Z
˝

ŒS.a�˛ @�v
˛/ � .Sa�˛ /@�v

˛
� a�˛S@�v

˛�.SQ/dy

. .ka�˛ kW 1:5Cı;3k@�v
˛
kW 1;3 C ka�˛ kW 1;6k@�v

˛
kH1:5Cı /kSQkL3

. kQkH3CıkakH2CıkvkH2:5Cı . kQkH3Cık�k
2
H3Cı

kvkH2:5Cı :

(4.6)

For the second term in the last line of (4.5), we need to integrate 1=2-tangential derivatives by parts and then
apply (2.4):

�

Z
˝

Sa�˛ @�v
˛SQdy D

Z
˝

@
2Cı

a�˛ @
0:5
.SQ@�v

˛/

. kakH2Cı .kSQkH0:5k@�v
˛
kL1 C kSQkL3k@�v

˛
kW 0:5;6/

. k�k2
H3Cı

kQkH3CıkvkH2:5Cı :

(4.7)

Summing these up, we have:
I1 . k�k

2
H3Cı

kQkH3CıkvkH2:5Cı : (4.8)
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Control of I2: Let Sm WD �.I ��/0:25C0:5ı@m. Then one may decompose S as:

S D ..I ��/1:25C0:5ı � .I ��/0:25C0:5ı/C .I ��/0:25C0:5ı„ ƒ‚ …
DWS0

D .I ��/0:25C0:5ı.��/C S0

DW

2X
mD1

Sm@m C S0:

(4.9)

Plugging this decomposition and the identity (which is obtained by differentiating a W @� D I )

@ma
�
˛ D �a

�
� @ˇ@m�

�aˇ˛ (4.10)

into I2, we have:

I2 D �

2X
mD1

Z
˝

.Sv˛/.Sm@ma
�
˛ /.@�Q/dy �

Z
˝

.Sv˛/S0a
�
˛ @�Qdy„ ƒ‚ …

R1

D

2X
mD1

Z
˝

.Sv˛/Sm.a
�
� @ˇ@m�

�aˇ˛ /@�Qdy CR1

D

2X
mD1

Z
˝

.Sv˛/.Sm@ˇ@m�
�/.a�� a

ˇ
˛ /@�Qdy„ ƒ‚ …

I21

C

Z
˝

.Sv˛/ŒSm.a
�
� @ˇ@m�

�aˇ˛ / � .Sm@ˇ@m�
�/.a�� a

ˇ
˛ /�@�Qdy CR1

(4.11)

Here, R1 is bounded by P.k�kH2:5Cı /kQkH1:5kvkH2:5Cı via the multiplicative Sobolev inequality, while the
last term in the third line of (4.11) can be controlled by using Kato-Ponce inequality (2.6) as:Z

˝

.Sv˛/ŒSm.a
�
� @ˇ@m�

�aˇ˛ / � .Sm@ˇ@m�
�/.a�� a

ˇ
˛ /�@�Qdy

. .ka�� a
ˇ
˛kW 1;6k@ˇ@m�

�
kW 0:5Cı;3 C k@ˇ@m�

�
kL6ka

�
� a

ˇ
˛kW 1:5Cı;3/k@�QkL1kSv

˛
kL2

. kakH2CıkakH1:5Cık�kH3CıkQkH2:5CıkvkH2:5Cı . P.k�kH3Cı /kQkH2:5CıkvkH2:5Cı :

(4.12)

It remains to control I21. Writing
P2
mD1Sm@m D S � S0, we have:

I21 D

Z
˝

.Sv˛/.S@ˇ�
�/.a�� a

ˇ
˛ /.@�Q/dy �

Z
˝

.Sv˛/.S0@ˇ�
�/.a�� a

ˇ
˛ /.@�Q/dy: (4.13)

It is easy to see the second term in (4.13) can be bounded by kvkH2:5CıkQkH1:5P.k�kH2:5Cı /. For the first



Luo and Zhang 14

term, we integrate @ˇ by parts to obtain:

I21 D �

Z
˝

.@ˇSv
˛/.S��/.a�� a

ˇ
˛ /.@�Q/dy„ ƒ‚ …

I211

�

Z
˝

.Sv˛/.S��/.@ˇa
�
� /a

ˇ
˛ .@�Q/dy

�

Z
˝

.Sv˛/.S��/.a�� a
ˇ
˛ /.@ˇ@�Q/dy C

Z
�0

.Sv˛/.S��/a�� a
ˇ
˛ .@�Q/NˇdS.�0/„ ƒ‚ …
D0

C

Z
�1

.Sv˛/.S��/a�� a
ˇ
˛ .@�Q/NˇdS.�1/„ ƒ‚ …

I212

CR2

. I211 C k@akL6kS�kL3kakL1k@QkL1kSvkL2 C kakL1kS�kL3kakL1k@
2QkL6kSvkL2

C I212 C kakL6k�kH2:5CıkakL1k@QkL1kSvkL2

. I211 C I212 C P C P.kQkH3/;

(4.14)

where the integral on �0 vanishes because N D .0; 0;�1/ and a31 D a
3
2 D 0 on �0.

Now, we bound I211 by the Kato-Ponce commutator estimate (2.7), because we want to move the derivatives
on v to a in order to control v.

I211 D �

Z
˝

.S@ˇv
˛aˇ˛ /.a

�
� S�

�/.@�Q/dy

D

Z
˝

.@ˇv
˛/Saˇ˛ .a

�
� S�

�/.@�Q/dy

C

Z
˝

.a�� S�
�@�Q/ŒS.a

ˇ
˛@ˇv

˛/ � .Saˇ˛ /@ˇv
˛
� aˇ˛S.@ˇv

˛/�dy:

(4.15)

The term on the second line of (4.15) is controlled by (2.4) after integrating 0:5 derivatives by parts, i.e.,Z
˝

.@ˇv
˛/Saˇ˛ .a

�
� S�

�/.@�Q/dy D

Z
˝

@
1=2
.S��a�� @�Q@ˇv

˛/@
2Cı

aˇ˛dy

. kakH2Cık@
1=2
.S��a�� @�Q@ˇv

˛/kL2

. kakH2Cı .kaS�kL3k@Q@vkW 1=2;6 C kaS�kH1=2k@Q@vkL1/

. P.k�kH3Cı /kvkH2:5CıkQkH2:5Cı

(4.16)

In addition, we apply (2.7) to the term on the third line of (4.15) and get:Z
˝

.a�� S�
�@�Q/ŒS.a

ˇ
˛@ˇv

˛/ � .Saˇ˛ /@ˇv
˛
� aˇ˛S.@ˇv

˛/�dy

. kakL1kS�kL3k@QkL1.kakW 1;6k@vkH1:5Cı C kakW 1:5Cı;3k@vkW 1;3/

. P.k�kH3Cı /kvkH2:5CıkQkH2:5Cı

(4.17)

Therefore,
I211 . P.k�kH3Cı /kvkH2:5CıkQkH2:5Cı : (4.18)

Now we come to control I212. We shall compute its time integral, which then allows us to integrate @t
by parts to eliminate 0:5 more derivatives falling on v. Since N D .0; 0; 1/ and Q D 1

2
c2 on �1, we have

a
ˇ
˛Nˇ D a

3
˛ and a�� @�Q D a3�@3Q, and so:
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Z t

0

I212ds D

Z t

0

Z
�1

.@tS�
˛/.S��/a3�a

3
˛.@3Q/dS.�1/ds

D
1

2

Z
�1

.S�˛/.S��/a3�a
3
˛„ ƒ‚ …

�0

.@3Q/dS.�1/
ˇ̌̌t
0

�

Z t

0

Z
�1

@ta
3
˛a
3
�S�

˛S��@3QdS.�1/ds �
1

2

Z t

0

Z
�1

a3�a
3
˛S�

˛S��@3QtdS.�1/ds

(4.19)

Invoking the physical sign condition @3Q � ��0 and Sobolev trace lemma, we have:Z t

0

I212ds � �
�0

2

Z
�1

.S�˛/.S��/a3�a
3
˛dS.�1/

ˇ̌̌t
0

C

Z t

0

katkH1:5CıkakH1:5Cık�k
2
H3Cı

kQkH2:5Cıds

C

Z t

0

kak2
H1:5Cı

k�k2
H3Cı

kQtkH2:5Cıds

� �
�0

2
ka3˛S�

˛
k
2
L2.�1/

C P.kv0kH2:5Cı ; kb0kH2:5Cı /C

Z t

0

P.k�kH3Cı ; kQkH2:5Cı ; kQtkH2:5Cı /ds:

(4.20)

Summing up (4.3), (4.8), (4.11), (4.14), (4.18), (4.20), we obtain:Z t

0

I.s/ds C
�0

2
ka3˛S�

˛
k
2
L2.�1/

. P0 C
Z t

0

P C
Z t

0

P.k�kH3Cı ; kQkH3Cı ; kQtkH2:5Cı /ds: (4.21)

Control of J : Now we start to control J . We first plug the identity (2.1) into J , then write J to be the sum of
the highest order term and the commutator, which again can be controlled by Kato-Ponce inequality (2.3)

J D

Z
˝

.Sv˛/.S.bˇa
�ˇ@�b˛//dy D

Z
˝

.Sv˛/.S.b
�
0 @�b˛//dy

D

Z
˝

.Sv˛/b
�
0 S@�b˛dy„ ƒ‚ …
J1

C

Z
˝

Sv˛ŒS.b
�
0 @�b˛/ � b

�
0 S@�b˛S@�b˛�dy

. J1 C kvkH2:5Cı .k@b
�
0 kL1k@

1:5Cı
@�b˛kL2 C kSb

�
0 kL2k@�b˛kL1/

. J1 C kvkH2:5Cıkb0kH2:5CıkbkH2:5Cı :

(4.22)

The term J1 cannot be controlled directly, but it actually cancels with the highest order term in the energy
of b. We will see that in the next step.

4.2 Tangential estimates of b
We derive the tangential estimates of b in this subsection and then conclude the tangential energy estimates.
Taking the time derivative of 1

2
kSbk2

L2
and invoking the identity (2.1) and Kato-Ponce inequality (2.6), we

have:
1

2

d

dt
kSbk2

L2
D

Z
˝

.Sb˛/S.bˇa
�ˇ@�v

˛/dy D

Z
˝

.Sb˛/S.b
�
0 @�v

˛/dy

D

Z
˝

.Sb˛/b
�
0 .S@�v

˛/dy„ ƒ‚ …
K1

C

Z
˝

Sb˛ŒS.b
�
0 @�v

˛/ � b
�
0 .S@�v

˛/�dy

. K1 C kvkH2:5Cıkb0kH2:5CıkbkH2:5Cı :

(4.23)



Luo and Zhang 16

Now we are able to see that J1 cancels K1: Integrating @� in J1 CK1 by parts, we have

J1 CK1 D

Z
˝

.Sv˛/b
�
0 S@�b˛dy C

Z
˝

.Sb˛/b
�
0 S@�v

˛dy

D

Z
˝

@�.Sv
˛Sb˛/b

�
0 dy

D �

Z
˝

Sv˛Sb˛ @�b
�
0„ƒ‚…

div b0D0

dy C

Z
@˝

Sv˛Sb˛ bˇa
�ˇN�„ ƒ‚ …

B �ND0

dS.y/ D 0:

(4.24)

Combining (4.2), (4.21), (4.22), (4.23), (4.24), we derive the tangential estimate as follows:

kSvk2
L2
C kSbk2

L2
C
�0

2
ka3˛S�

˛
k
2
L2.�1/

. P.kv0kH2:5Cı ; kb0kH2:5Cı /C
Z t

0

P.k�kH3Cı ; kvkH2:5Cı ; kbkH2:5Cı ; kQkH3Cı ; kQtkH2:5Cı /ds

. P0 C
Z t

0

P C
Z t

0

P.kQkH3Cı ; kQtkH2:5Cı ; k�kH3Cı /ds

(4.25)

which implies in (4.1).

�

5 Closing the estimates
In this section we close our a priori estimate and prove the physical sign condition can be propagated to a
positive time if holds for the initial data.

5.1 The div-curl type estimates

H 2:5Cı -estimate of v and b: In this subsection we do the div-curl type estimate of v and b to derive the
control of full H 2:5Cı norms. Although for Euler equations one can use the Cauchy invariance to give linear
estimates for curl v and div v, there is no such analogue for MHD equations. Instead, inspired by Gu-Wang
[14], we can derive the evolution equations of curl v to control the curl v and curl b simultaneously thanks to
the identity b D .b0 � @/�. Then we apply the div-curl estimate to derive the control of full H 2:5Cı norms of v
and b.

The following notations will be adopted throughout:

Notation 5.1. Let X D .X1; X2; X3/ be a vector field. We denote the “curl operator” and the “div operator”
in the Eulerian coordinate by

.BaX/� D ���˛a
��@�X

˛; and AaX D a�˛ @�X
˛;

respectively, where ���˛ is the sign of the permutation .��˛/ 2 S3.

Proposition 5.2. For sufficiently small T > 0, the following estimates hold:

kcurl vkH1:5Cı C kcurl bkH1:5Cı . �.kvkH2:5Cı C kbkH2:5Cı /C P0 C
Z t

0

PI

kdiv vkH1:5Cı C kdiv bkH1:5Cı . �.kvkH2:5Cı C kbkH2:5Cı /;
(5.1)

whenever t 2 Œ0; T �.
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Proof. The divergence estimates are easy because Aav D 0 and Aab D 0, so:

kdiv vkH1:5Cı D k Aav„ƒ‚…
D0

C.AI � Aa/vkH1:5Cı . �kvkH2:5Cı I

kdiv bkH1:5Cı D k Aab„ƒ‚…
D0

C.AI � Aa/bkH1:5Cı . �kbkH2:5Cı :

The estimates for kcurl vkH1:5Cı and kcurl bkH1:5Cı are more dedicate. Since

kcurl vkH1:5Cı C kcurl bkH1:5Cı
� k.BI � Ba/vkH1:5Cı C k.BI � Ba/bkH1:5Cı C kBavkH1:5Cı C kBabkH1:5Cı

. �.kvkH2:5Cı C kbkH2:5Cı /C kBavkH1:5Cı C kBabkH1:5Cı ;

(5.2)

and so it suffices to control kBavkH1:5Cı and kBabkH1:5Cı . As mentioned in the beginning of this subsection,
we will derive the evolution equation for Bav and Bab: Plugging bˇa�ˇ D b

�
0 and b˛ D .b0 � @/� in the first

equation of (1.8), and then applying the curl operator Ba on both sides, we have:

.Ba@tv/� D .Ba..b0 � @/
2�//�: (5.3)

Commuting @t and b0 � @ with Ba on both sides of (5.3), we have:

@t .Bav/� � .b0 � @/Ba..b0 � @/�/� D ���˛@ta
��@�v

˛
C ŒBa; b0 � @�..b0 � @/�/�: (5.4)

Taking @1:5Cı derivatives, and then commuting it with @t and b0 � @, respectively, we get the evolution
equation of Bav:

@t .@
1:5CıBav/� � .b0 � @/.@

1:5CıBa.b0 � @/�/� D F�; (5.5)

where

F� D Œ@
1:5Cı ; b0 � @�.Ba.b0 � @/�/� C @

1:5Cı.���˛@ta
��@�v

˛
C ŒBa; b0 � @�..b0 � @/�/�/: (5.6)

Taking the L2 inner product of @1:5CıBav and (5.5), we have:

1

2

d

dt

Z
˝

j@1:5CıBavj
2dy �

Z
˝

@1:5CıBav � .b
�
0@�/.@

1:5CıBa.b0 � @/�/dy D

Z
˝

F � @1:5CıBavdy:

Integrating @� by parts in the second term on LHS, commuting .b0 �@/with @1:5CıBa and then invoking @t� D v,
we have:

1

2

d

dt

Z
˝

j@1:5CıBavj
2
C j@1:5CıBa.b0 � @/�j

2dy D

Z
˝

F � @1:5CıBavdy„ ƒ‚ …
B1

C

Z
˝

@1:5Cı.Ba.b0 � @/�/ � Œ@
1:5CıBa; b0 � @�vdy„ ƒ‚ …

B2

C

Z
˝

@1:5Cı.Ba.b0 � @/�/
�@1:5Cı.���˛@ta

��@�.b0 � @�
˛//dy„ ƒ‚ …

B3

;

(5.7)

where the boundary term vanishes since b0 � N D 0 on the boundary. The control of B3 is straightforward by
the multiplicative Sobolev inequality, say,

B3 . kbk2H2:5CıkakH1:5CıkatkH1:5Cı . kbk
2
H2:5Cı

kvkH2:5Cık�k
6
H2:5Cı

: (5.8)
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To control B2, it suffices to control kŒ@1:5CıBa; b0 � @�vkL2 . We simplify the commutator term as follows:

Œ@1:5CıBa; b0 � @�v D ���˛

�
@1:5Cı.a��@�.b

�
0@�v

˛// � b�0@�@
1:5Cı.a��@�v

˛/
�

D ���˛

�
@1:5Cı.a��@�.b

�
0@�v

˛// � @�@
1:5Cı.b�0a

��@�v
˛/
�

„ ƒ‚ …
B21

C ���˛

�
@�@

1:5Cı.b�0a
��@�v

˛/ � b�0@�@
1:5Cı.a��@�v

˛/
�

„ ƒ‚ …
B22

:

(5.9)

Invoking the Kato-Ponce commutator estimate (2.3), we can control B22 as

k@�@
1:5Cı.b�0a

��@�v˛/ � b
�
0@�@

1:5Cı.a��@�v˛/kL2

. kb0kH2:5Cıka
��@�v˛kL1 C k@b0kL1ka

��@�v˛kH1:5Cı

. kb0kH2:5CıkvkH2:5Cık�k
2
H2:5Cı

:

(5.10)

For B21, we have

B21 D ���˛@1:5Cı.a��@�.b�0@�v˛// � @�.b�0a��@�v˛//

D ���˛@
1:5Cı

�
a��@�b

�
0@�v

˛
C a��b�0@�@�v

˛
� b�0@�a

��@�v
˛
� b�0a

��@�@�v
˛
�

D ���˛@
1:5Cı

�
a��@�b

�
0@�v

˛
C b�0@ˇ@��a

�aˇ�@�v
˛
�

D ���˛@
1:5Cı.a��@�b

�
0@�v

˛
C @ˇ ..b0 � @/� /a

�aˇ�@�v
˛
� @ˇb

�
0@��a

�aˇ�@�v
˛„ ƒ‚ …

D@ˇb
�
0
ı
�
� a

ˇ�@�v˛

/;

(5.11)

where we used (4.10) to expand b�0@�a
��@�v

˛ in the second line. Therefore, invoking b D .b0 � @/� again, the
L2 norm of B21 can be controlled by the multiplicative Sobolev inequality:

kB21kL2 . ka��@�b�0@�v˛kH1:5Cı C k@ˇba�aˇ�@�v˛kH1:5Cı C k@ˇb
�
0 a

ˇ�@�v˛kH1:5Cı

. P.k�kH2:5Cı /.kb0kH2:5Cı C kbkH2:5Cı /kvkH2:5Cı :
(5.12)

It remains to control B1, specifically, we need to bound kF kL2 given by (5.6). The first term is controlled
by using Kato-Ponce commutator estimate (2.3). Silimarly as in (5.9), we have

kŒ@1:5Cı ; b0 � @�.Ba.b0 � @/�/kL2 D k@
1:5Cı@�.b

�
0Bab/ � b0@

1:5Cı@�BabkL2

. k@b0kL1kBabkH1:5Cı C kb0kH2:5CıkBabkL1

. P.k�kH2:5Cı /kb0kH2:5CıkvkH2:5Cı :

(5.13)

For the commutator term in (5.6), we can proceed similarly as in (5.11) to get

kŒBa; b0 � @�..b0 � @/�/kH1:5Cı . P.k�kH2:5Cı /kb0kH2:5CıkvkH2:5Cı : (5.14)

The remaining term in F can be easily bounded by P.k�kH2:5Cı /kb0kH2:5CıkvkH2:5Cı via the multiplicative
Sobolev inequality.

Combining (5.9), (5.10), (5.12), (5.13) and (5.14), we have

kBavkH1:5Cı C kBabkH1:5Cı . P0 C kb0kH2:5Cı
Z t

0

P : (5.15)

Therefore, invoking Lemma 2.1 (7), then absorbing the �-term to LHS, we ends the proof by:

kcurl vkH1:5Cı C kcurl bkH1:5Cı
� k.BI � Ba/vkH1:5Cı C k.BI � Ba/bkH1:5Cı C kBavkH1:5Cı C kBabkH1:5Cı

. �.kvkH2:5Cı C kbkH2:5Cı /C P0 C
Z t

0

P :
(5.16)
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Now we can derive the estimate of full H 2:5Cı derivative estimate of v and b. First applying Hodge’s
decomposition inequality, we get

kvkH2:5Cı . kvkL2 C kcurl vkH1:5Cı C kdiv vkH1:5Cı C k.@v/ �N kH1Cı.�1/; (5.17)

For the tangential term, we apply Sobolev trace lemma to get:

k@v �N kH1Cı.�1/ . k@
1:5Cı

v3kH0:5.�1/ . k@
1:5Cı

@v3kL2 ; (5.18)

where the last term in (5.18) can be expressed using the tangential derivative of v by:

@3v3 D div v � @1v1 � @2v2 D .AI � Aa/v � @1v1 � @2v2: (5.19)

Hence,
k@
1:5Cı

@v3kL2 � k@
2:5Cı

vkL2 C kvkH0:5 C �kvkH2:5Cı ; (5.20)

Combining (5.2) and (5.20), and then absorbing �kvkH2:5Cı to the LHS, we have :

kvkH2:5Cı . P0 C
Z t

0

P ds C kSvkL2 : (5.21)

The estimate of kbkH2:5Cı can be derived exactly in the same way as kvkH2:5Cı , so we omit the details.

kbkH2:5Cı . P0 C
Z t

0

P ds C kSbkL2 : (5.22)

In conclusion, we have proved

Theorem 5.3. The following estimates hold in a sufficiently short time interval Œ0; T �:

kvkH2:5Cı C kbkH2:5Cı . P0 C
Z t

0

P ds C kSvkL2 C kSbkL2 : (5.23)

�

H 3Cı -estimate of �: We derive the H 3Cı estimate for � via the standard div-curl estimate:

k�kH3Cı . k�kL2 C kcurl �kH2Cı C kdiv �kH2Cı C k.@�/ �N kH1:5Cı.@˝/: (5.24)

The divergence part is easy to treat owing to the div-free condition Aav D 0, i.e., the Eulerian divergence
of v is identically zero.

kdiv �kH2Cı . kdiv @�kH1Cı C kdiv �kH1Cı
. kAa@�kH1Cı C k.AI � Aa/@�kH1Cı C k�kH2Cı

. kAa@�kH1Cı C �k�kH3Cı C k�.0/kH2Cı C
Z t

0

kvkH2Cı :

(5.25)

Now it remains to control Aa@�. We have:

Aa@�.t/ D Aa@�.0/C

Z t

0

Aat @�C Aa@v D div @�.0/C
Z t

0

Aat @�C @.Aav/„ ƒ‚ …
AavD0

�A@av ds:

Therefore, it can be controlled as

kAa@�.t/kH1Cı � kdiv @�.0/kH1Cı C
Z t

0

kAat @�kH1Cı C kA@avkH1Cıds

. k�.0/kH3Cı C
Z t

0

katkH1:5Cık�kH3Cı C kakH2CıkvkH2:5Cıds

. k�.0/kH3Cı C
Z t

0

k�kH3CıkvkH2:5Cıds:

(5.26)
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Summing up (5.25) and (5.26), then absorbing the �-term to LHS, we get the control of div �:

kdiv �kH2Cı . k�.0/kH3Cı C
Z t

0

P.k�kH3Cı ; kvkH2:5Cı /ds: (5.27)

For the boundary estimate, we have:

k.@�/ �N kH1:5Cı.�1/ . kS� �N kL2.�1/ C k� �N kH1:5Cı.�1/

. ka3˛S�
˛
kL2.�1/ C k.ı

3
˛ � a

3
˛/S�

˛
kL2.�1/ C k�kH2Cı

.�0
�0

2
ka3˛S�

˛
kL2.�1/ C �k�kH3 C k�.0/kH2 C

Z t

0

kvkH2 :

(5.28)

Here we remark that the term �0
2
ka3˛S�

˛kL2.�1/ is exactly the boundary energy term derived from the physical
sign condition in the tangential estimate.

It remains to control kcurl �kH2Cı , we start with

kcurl �kH2Cı . kcurl @�kH1Cı C kcurl �kH1Cı
� kBa@�kH1Cı C k.BI � Ba/@�kH1Cı C kcurl �kH1Cı :

(5.29)

Recall that the i -th component of Ba@� (resp. .BI �Ba/@�) is of the form �ijka
�j @�@�

k (resp. �ijk.ı�j �
a�j /@�@�

k). So we apply the multiplicative Sobolev inequality (3.9) to get:

k.BI � Ba/@�kH1Cı � kI � akH1:5Cık�kH3Cı � �k�kH3Cı : (5.30)

In addition, using multiplicative Sobolev inequality, Young’s inequality and Jensen’s inequality, we have:

kBa@�kH1Cı . kakH1:5Cık�kH3Cı . �
�1
k�k4

H2:5Cı
C �k�k2

H3Cı

. ��1k�.0/k4
H2:5Cı

C ��1
Z t

0

kvk4
H2:5Cı

C �k�k23Cı

(5.31)

holds for sufficiently small t . Also,

kcurl �.t/kH1Cı . k�.t/kH2Cı � k�.0/kH2Cı C
Z t

0

kvkH2Cı ; (5.32)

and hence

kcurl �kH2Cı . �
�1P.k�.0/kH2:5Cı /C �P.k�kH3Cı /C �

�1

Z t

0

P.kvkH2:5Cı /: (5.33)

Now summing up (5.27), (5.28) and (5.33), we get the H 3Cı estimates of �.

Theorem 5.4. The following estimates hold in a sufficiently short time interval Œ0; T �:

k�kH3Cı .�0
�0

2
ka3˛S�

˛
kL2.�1/ C �

�1P.k�.0/kH2:5Cı /C �P.k�kH3Cı /C �
�1

Z t

0

P.kvkH2:5Cı /: (5.34)

�

5.2 Propagation of the physical sign condition
For the MHD system, we still need to show that the physical sign condition (1.12) can be propagated to a
positive time if it holds for the initial data, that is, �@3Qj�1 � �0 > 0 holds in a short time interval Œ0; T � for
some �0, provided �@3Qj�1 � �

0
0 > 0 holds at t D 0 for some �00. We start with the following lemma:

Lemma 5.5. Let T > 0 be fixed. Assume f W Œ0; T � � �1 ! R satisfies f 2 L1.Œ0; T �IH 1:5.�1// and
@tf 2 L

1.Œ0; T �IH 0:5.�1//, then f 2 C 0;
1
4 .Œ0; T � � �1/.
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Proof. Since f 2 L1.Œ0; T �IH 1:5.�1//, we have @1f; @2f 2 L1.Œ0; T �IH 0:5.�1//. By Sobolev embedding
and Hölder’s inequality, we have

L1.Œ0; T �IH 0:5.�1// ,! L1.Œ0; T �IL4.�1// ,! L4.Œ0; T �IL4.�1// D L
4.Œ0; T � � �1/;

which implies f 2 W 1;4.Œ0; T ���1/: Finally, we use Morrey’s embeddingW 1;4.Œ0; T ���1/ ,! C 0;
1
4 .Œ0; T ��

�1/ to conclude that f 2 C 0;
1
4 .Œ0; T � � �1/.

Recall we have shown that Q 2 L1.Œ0; T �IH 3Cı.˝// and Qt 2 L
1.Œ0; T �IH 2:5Cı.˝//. This, together

with the trace lemma, gives @3Qj�1 2 L
1.Œ0; T �IH 1:5.�1// and @3Qt j�1 2 L

1.Œ0; T �IH 0:5.�1//. Therefore,
we are able to set f D @3Q in Lemma 5.2 to see that @3Q is 1/4-Hölder continuous in Œ0; T ���1. Now, suppose
�@3Qj�1 � �00 holds at t D 0 for some �00 > 0, then there exists a �0 > 0 such that �@3Qj�1 > �0 for all
t 2 Œ0; T � if the time T is chosen sufficiently small. This verifies that the physical sign condition (1.12) can be
propagated to a positive time, provided it holds at t D 0.

5.3 Gronwall type argument
Now we recall that

N.t/ WD k�.t/k2
H3Cı

C kv.t/k2
H2:5Cı

C kb.t/k2
H2:5Cı

: (5.35)

From (4.1), (5.23) and (5.34), we have :

N.t/ . �P.k�.t/kH3Cı /CCP.N.0//C P.N.t//
Z t

0

P.N.s//ds

C ��1P.k�.0/kH2:5Cı /C �
�1

Z t

0

kv.s/kH2:5Cı ds:

(5.36)

For fixed � � 1, recall that ˝ D T2 � .0; �/ and �.0/ D Id , one may choose � sufficiently small so that
��1P.k�.0/kH2:5Cı / � 1. Then by a Gronwall-type argument in [36] we conclude that:

N.t/ . 1C P.N.0//; when t 2 Œ0; T �; (5.37)

for some T D T .N.0/; �/.

�

6 The case of a general domain
In this section we show how to adapt the ideas used in the proof on Theorem 1.1 to the case of a general bounded
domain with small volume. The physical situation we have in mind is that of a conducting liquid droplet with
sufficiently small volume. We shall adapt the idea used in Section 12 of [10] to our case. The goal of this section
is to prove:

Theorem 6.1. Let ˝ � R3 be a bounded domain with smooth boundary � , and denote n by the unit outward
normal of � . Let .�; v; b/ be the solution of8̂̂̂<̂

ˆ̂:
@tv˛ � bˇa

�ˇ@�b˛ C a
�
˛ @�Q D 0 in Œ0; T � �˝I

@tb˛ � bˇa
�ˇ@�v˛ D 0 in Œ0; T � �˝I

a
�
˛ @�v

˛ D 0; a
�
˛ @�b

˛ D 0 in Œ0; T � �˝I
a��b�b� D c

2; Q D 1
2
c2; a

�
� b

�N� D 0 on �I

(6.1)

and ı 2 .0; 0:5/. Assume that v.0; �/ D v0 2 H
2:5Cı.˝/ and b.0; �/ D b0 2 H

2:5Cı.˝/ be divergence free
vector fields and b0 � n D 0 on � . Let

N.t/ WD k�.t/k2
H3Cı

C kv.t/k2
H2:5Cı

C kb.t/k2
H2:5Cı

: (6.2)
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Then if diam.˝/ WD N� � 1, there exists a T > 0, depending only on N.0/ and � such that N.t/ � P.N.0//
for all t 2 Œ0; T �, provided the physical sign condition

�
@Q

@N

ˇ̌
tD0
� �0 > 0; on � (6.3)

holds.

Flatten the boundary: Let ˝ � R3 be a bounded domain with smooth boundary � with diameter 8N� � 1.
Given y0 2 � , there exists r > 0; r . 4N� and a smooth function � such that (after a rigid motion and relabeling
the coordinates if necessary) we have

˝ \ Br .y0/ D fy 2 Br .y0/ W y3 � �.y1; y2/C 1g:

Now, we take coordinates that flatten the boundary near y0. To be more specific, there exists R > 0 and a
diffeomorphism

˚ W ˝ \ Br .y0/! BR.0; 0; 1/ \ fz3 � 1g

such that ˚.y1; y2; y3/ D .y1; y2; y3��.y1; y2//. Note that det.D˚/ D 1, and so det.D˚�1/ D 1. Denoting
	 D ˚�1 and  D ��1, we have

	.z1; z2; z3/ D .z1; z2; z3 C  .z1; z2//:

Moreover, we must have R . 4N� since both ˚ and 	 are volume-preserving diffeomorphisms.

The local Lagrangian map and the cut-off functions: Consider the Lagrangian map � W ˝ ! ˝.t/, and
set Q� D � ı 	 . Then @t Q� D @t� ı 	 D u ı Q�, where u is the velocity of the moving domain ˝.t/. In view of
this, if we introduce

Qv D u ı Q�; Qb D B ı Q�; Qa D Œ@ Q���1; QQ D Q ı Q�;

then these new variables verify the incompressible MHD equations in the domain BR.0; 0; 1/ \ fz3 � 1g.
We thus use suitably chosen cut-off functions to produce local estimate, passing to the global estimate by the
standard gluing procedure. Let � be a smooth cut-off function such that 0 � � � 1 with � D 1 in NBR=5.0; 0; 1/
and supp � � BR=4.0; 0; 1/. Therefore, extending all quantities to be identically 0 outside BR=4.0; 0; 1/ and
since R . 4N�, we may consider the equations and variables defined on the reference domain Q̋ D T2 � .0; N�/.
This allows us to adapt the tangential energy estimates in Section 4, but all integrands should carry the cut-off
function � . Also, unlike Section 4, no integral over the lower boundary �0 of Q̋ is present since all variables
vanish there in view of the way they have been extended.

The energy estimate: First, since Q�.0; z/ D .z1; z2; z3C .z1; z2//, a direct computation yields that at t D 0
we have

Qa.0/ D

0@1 0 �@1 

0 1 �@2 

0 0 1

1A :
In the proof of Theorem 1.1, for which  D 0, we used a.0/ � I D O to produce some small parameters
(i.e., Lemma 2.1 (7)) in the energy estimates. We need @ to be small in order to apply the same argument
here. This can be achieved since we may assume, without loss of generality, that @ .0; 0/ D 0, and so the
smallness of k@ kL1.� / can be achieved by the mean value theorem possibly after reducing N�, provided that
 2 H 2:5Cı.� /.

We now apply the energy estimates of Section 4 with

S � D @2:5Cı.� �/: (6.4)

The estimates in Section 3 and Section 5 follow from a similar (and easier) argument once this is done.
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In order to simplify the exposition, we will omit tildes from all quantities and continue to label �; v; b; a and
q, which are only locally defined Lagrangian flow map, velocity, magnetic field, cofactor matrix, and pressure,
respectively. We start by differentiating kSvkL2. Q̋ /, i.e.,

1

2

d

dt

Z
Q̋

.Sv˛/.Sv˛/ D

Z
Q̋

.Sv˛/.@tSv˛/

D �

Z
Q̋

.Sv˛/.S.a�˛ @�Q//C

Z
Q̋

.Sv˛/.S.b
�
0 @�b˛//

DW I C J:

(6.5)

To control I , we have:

I D �

Z
Q̋

@2:5Cı.�v˛/@2:5Cı.�a�˛ @�Q/

D �

Z
Q̋

@2:5Cı.�v˛/�a�˛ .@
2:5Cı Œ@�Q�/„ ƒ‚ …

I1

�

Z
Q̋

@2:5Cı.�v˛/@2:5Cı.�a�˛ /.@�Q/„ ƒ‚ …
I2

�

Z
Q̋

@2:5Cı.�v˛/Œ@2:5Cı.�a�˛ @�Q/ � �a
�
˛ .@

2:5Cı Œ@�Q�/ � @
2:5Cı.�a�˛ /.@�Q/�„ ƒ‚ …

I3

:

(6.6)

Control of I1: We integrate @� by parts to get

I1 D

Z
Q̋

�a�˛ .@
2:5Cı Œ�@�v

˛�/.@2:5CıQ/„ ƒ‚ …
I11

�

Z
�1

.@2:5CıQ„ ƒ‚ …
D0

/.�a�˛Sv
˛N�/dS.�1/CR: (6.7)

Here and throughout, R contains error terms when the derivatives fall on � , which can be controlled by the RHS
of (6.16). Now,

I11 D

Z
Q̋

� S.a�˛ @�v
˛/„ ƒ‚ …

D0

.@2:5CıQ/�

Z
Q̋

�.Sa�˛ /@�v
˛.@2:5CıQ/„ ƒ‚ …

I112

�

Z
Q̋

�ŒS.a�˛ @�v
˛/ � .Sa�˛ /@�v

˛
� a�˛S@�v

˛�.@2:5CıQ/„ ƒ‚ …
I113

: (6.8)

I113 can be controlled using the Kato-Ponce inequality. To do this, however, each separated term needs to be
properly cut-off since the fractional derivatives destroy the compact support. Let N� be a smooth cut-off function
such that 0 � N� � 1 with supp N� � BR=3.0; 0; 1/ and N� D 1 on supp � . The construction of N� allows us to
introduce N� without changing given expressions.

Notation 6.2. We shall use C� to denote constants depend on jj� jjH3Cı and jj N� jjH3Cı throughout the rest of
this section.

Now, commutating � through @2:5Cı we get

I113 . k@
2:5Cı Œ�.a�˛ �@�v

˛/� � �@2:5Cı.a�˛ �@�v
˛/kL3=2k

N�@2:5CıQkL3

C k@2:5Cı Œ�.a�˛ �@�v
˛/� � @2:5Cı.�a�˛ /�@�v

˛
� �a�˛ @

2:5Cı Œ�@�v
˛�kL3=2k

N�@2:5CıQkL3 :
(6.9)

The first line is bounded by

k@�kL1ka
�
˛ �@�v

˛
kW 1:5Cı;3=2 C k�kW 2:5Cı;3=2ka�˛ �@�v

˛
kL1 � C� jj�ajjH1:5Cı jj

N�vjj2:5Cı ; (6.10)
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and the second line is bounded by

.k�a�˛ kW 1:5Cı;3k�@�v
˛
kW 1;3 C k�a�˛ kW 1;6k�@�v

˛
kH1:5Cı /k

N�@2:5CıQkL3

� C�k N�QkH3Cık�ak
2
H2Cı

k�vkH2:5Cı : (6.11)

Moreover, we integrate 1=2-tangential derivatives by parts and then I112 becomesZ
Q̋

@
2Cı

Œ�a�˛ �@
0:5
.�@2:5CıQ@�v

˛/CR (6.12)

where Z
Q̋

@
2Cı

Œ�a�˛ �@
0:5
.�@2:5CıQ@�v

˛/ (6.13)

. k�akH2Cı .k�@
2:5CıQkH0:5k

N�@�v
˛
kL1 C k�@

2:5CıQkL3k
N�@�v

˛
kW 0:5;6/ (6.14)

� C�k�akH2Cık�QkH3Cık
N�vkH2:5Cı : (6.15)

Summing these up, we have

I1 � C�

�
k�akH2Cık�QkH3Cık

N�vkH2:5Cı C k
N�QkH3Cık�ak

2
H2Cı

k�vkH2:5Cı
�
: (6.16)

Control of I3: We have

I3 . k@
2:5Cı.�v/kL2k@

2:5Cı.�a�˛
N�@�Q/ � �a

�
˛ .@

2:5Cı Œ N�@�Q�/ � @
2:5Cı.�a�˛ /.

N�@�Q/kL2

� C�k�vkH2:5Cık�akH2Cık
N�QkH3Cı : (6.17)

Control of I2: First it is easy to check that the decomposition (4.9) remains valid, i.e., for any smooth function
u, we have

Su D

2X
mD1

Sm@m.�u/C S0.�u/; (6.18)

where S � is defined as (6.4), and Sm; S0 are defined in (4.9). Then the analysis of (4.11) suggests that it suffices
to consider the term associated to I21, i.e.,

I 021 D

2X
mD1

Z
Q̋

@2:5Cı.�v˛/ŒSm.�@ˇ@m�
�/�.a�� a

ˇ
˛ /@�Q:

Writing
P2
mD1 Sm@m D @

2:5Cı � S0, we have

I 021 D

Z
Q̋

@2:5Cı.�v˛/@2:5Cı.�@ˇ�
�/.a�� a

ˇ
˛ /@�Q �

Z
Q̋

@2:5Cı.�v˛/S0.�@ˇ�
�/.a�� a

ˇ
˛ /@�QCR; (6.19)

where the second term is controlled directly by C�k�vkH2:5Cık N�ak
2
H1:5Cı

k N�QkH1:5k��kH2:5Cı . For the first
term, we integrate @ˇ by parts to obtain

I 021 D �

Z
Q̋

@2:5Cı@ˇ .�v
˛/.@2:5Cı���/.a�� a

ˇ
˛ /@�Q„ ƒ‚ …

I 0
211

�

Z
Q̋

@2:5Cı.�v˛/.@2:5Cı���/@ˇ Œ.a
�
� a

ˇ
˛ /@�Q�

C

Z
�1

@2:5Cı.�v˛/.@2:5Cı���/a�� a
ˇ
˛ .@�Q/NˇdS.�1/„ ƒ‚ …

I 0
212

:

(6.20)
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There is no problem to control the second term in the first line of (6.20) and I 0212 is controlled analogous to I212
in Section 4. For I 0211, we write

I 0211 D �

Z
Q̋

aˇ˛S@ˇv
˛.a�� S�

�/@�QCR

D

Z
Q̋

.Saˇ˛ /.@ˇv
˛/.a�� S�

�/@�QC

Z
Q̋

ŒS.aˇ˛@ˇv
˛/ � .Saˇ˛ /.@ˇv

˛/ � aˇ˛S@ˇv
˛�.a�� S�

�/@�Q: (6.21)

The first term can be treated similar to (6.12) by integrating 0:5-derivatives by parts. The second term is equal
to Z

Q̋

Œ@2:5Cı.�aˇ˛@ˇv
˛/ � @2:5Cı.�aˇ˛ /.@ˇv

˛/ � �aˇ˛@
2:5Cı@ˇv

˛�.a�� S�
�/@�Q

�

Z
Q̋

aˇ˛ Œ@
2:5Cı.�@ˇv

˛/ � �@2:5Cı@ˇv
˛�.a�� S�

�/@�Q: (6.22)

The first line can be controlled similar to (6.11), and since

k@2:5Cı.�@ˇv
˛/ � �@2:5Cı@ˇv

˛
kL2

. k@�kL1kvkH2:5Cı C k@
2:5Cı�kL2k@vkL1 � C�kvkH2:5Cı :

(6.23)

so the second line can be bounded by C�k N�ak2H1:5Cık
N�QkH2:5Cık��kH2:5Cık

N�vkH2:5Cı :

Control of J C d
dt
1
2
kSbk2

L2
: This follows from the what has been done in Section 4 except that the cancellation

(4.24) holds up to a term of type R, which can still be controlled appropriately.

After covering � with finitely many balls, the procedure described above yields the tangential energy es-
timates near the � . We still need to cover the region of ˝ not covered by these balls. However, we have no
problem to cover this region using finitely many balls with radius r � 4N� and again reducing the tangential
estimates to Q̋ . In addition, there are no boundary integrals on either �1 and �0.

Finally, we need to show that the estimates in Section 3 and Section 5 are still valid in each local coordi-
nate patch. This follows from adapting the estimates in Section 3 and Section 5 to the MHD equations after
commuting � , i.e.,8̂̂̂<̂

ˆ̂:
@t .�v˛/ � bˇa

�ˇ@�.�b˛/C a
�
˛ @�.�Q/ D �bˇa

�ˇ .@��/b˛ C a
�
˛ .@��/Q in Œ0; T � � Q̋ I

@t .�b˛/ � bˇa
�ˇ@�.�v˛/ D �bˇa

�ˇ .@��/v˛ in Œ0; T � � Q̋ I
a
�
˛ @�v

˛ D 0; a
�
˛ @�b

˛ D 0 in Œ0; T � � Q̋ I
a��b�b� D c

2; Q D 1
2
c2; a

�
� b

�N� D 0 on �I

(6.24)

We can recover the equations for Q, Qt , Bav and Bab modulo error terms involving derivatives land on � , but
these contribute only to lower order terms.
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