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Abstract

‘We consider the three-dimensional incompressible magnetohydrodynamics (MHD) equations in a bounded
domain with small volume and free moving surface boundary. We establish a priori estimate for solutions
with minimal regularity assumptions on the initial data in Lagrangian coordinates. In particular, due to the
lack of the Cauchy invariance for MHD equations, the smallness assumption on the fluid domain is required
to compensate a loss of control of the flow map. Moreover, we show that the magnetic field has certain
regularizing effect which allows us to control the vorticity of the fluid and that of the magnetic field. To the
best of our knowledge this is the first result that focuses on the low regularity solution for incompressible
free-boundary MHD equations.
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1 Introduction

The goal of this manuscript is to investigate the solutions in low regularity Sobolev spaces for the following
incompressible inviscid MHD equations in a moving domain:

du+u-Vu—B-VB+V(p+3|B*>) =0, inD;
0;B+u-VB—B-Vu =0, in D; (1.1)
divu =0, div B =0, inD,

describing the motion of conducting fluids in an electromagnetic field, where D = Ug<;<7{¢} x §2(¢) and
Q(t) C R3 is the domain occupied by the fluid with small volume whose boundary 92 (¢) moves with the ve-
locity of the fluid. Under this setting, the fluid velocity u = (u1, U2, u3), the magnetic field B = (B1, B2, B3),
the fluid pressure p and the domain D are to be determined; in other words, given a simply connected bounded
domain £2(0) C R? and the initial data 1o and By satisfying the constraints divuy = 0 and div By = 0, we
want to find a set D and the vector fields # and B solving (1.1) satisfying the initial conditions:

£22(0) ={x:(0,x) e D}, (u,B) = (uo,Bp), in {0} x 2. (1.2)
We also require the following boundary conditions on the free boundary 0D = Ug<;<7{t} X 982(¢):
@ +u-V)|sp € T(0D)
p=0 on 0D, (1.3)
|[Bl|=c¢, B-N =0 on 0D,

where T (3D) is the tangent bundle of 3D, N is the exterior unit normal to €2, and ¢ > 0 is a constant. The
first condition of (1.3) means that the boundary moves with the velocity of the fluid, the second condition of
(1.3) means that the region outside §2; is vacuum, where B - A/ = 0 on 3£2, implies that the fluid is a perfect
conductor; in other words, the induced electric field £ satisfies £ x A = 0 on 9£2,. Also, the condition |B| = ¢
on 052, yields that the physical energy is conserved, i.e., denoting D; = d; +u -V, and invoking the divergence
free condition for both ¥ and B, we have:

drl 1
S Lowees [ ise]
dt L2 ) 2 )
=/ u-D,u—{—/ B-D:B
20@) Q)

1
:—/ u.V(p+—|B|2)+/ u.(B.VB)Jr/ B-(B-Vu)
20 2 @) 2@)
1
=—/ (u-N)p—/ —(u-/\f)cz—i-/ u-(B-VB)—[ u-(B-VB)=0.
32(@) 302(@) 2 20 2@)
e

=0 by Gauss theorem

We will establish a priori bounds for the MHD equations (1.1)-(1.3) when ug, By € H2518(0Q(0)) for
8 € (0,0.5) under the physical sign condition

1
—Vun(p + 5|B|2) >¢o>0 on d2(t). (1.4)

We recall here that for the free-boundary problem of the motion of a incompressible fluid without magnetic field
(i.e., the incompressible free-boundary Euler equations), the physical sign condition reads

—Vaup >€>0 ond82(t).

Condition (1.4) was first discovered by Hao and Luo [16] when proving the a priori energy estimate for the free
boundary incompressible MHD equations with H* initial data. Very recently, they proved that (1.1)-(1.3) is
ill-posed when (1.4) is violated [17]. The quantity p + %|B|2 (i.e., the total pressure) plays an important role
here in our analysis. In fact, it determines the acceleration of the moving surface boundary.
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1.1 History and background

In the absence of the magnetic field B, the system (1.1) is reduced to the free-boundary Euler equations which
has attracted much attention in the past two decades. Important progress has been made for both incompressible
and compressible flows, with or without surface tension, and with or without vorticity. Without attempting to
be exhaustive, we refer [1, 5, 6, 9, 18, 22, 23, 24, 25, 26, 28, 29, 32, 33, 34, 40, 41, 42] for more details.

On the other hand, the MHD equations describe the behavior of an electrically conducting fluid (e.g., a
plasma) acted on by a magnetic field. In particular, the free-boundary MHD equations (also known as the
plasma-interface problem) describes the phenomenon when the plasma is separated from the outside wall by a
vacuum, whose motion can be formulated as the incompressible free-boundary MHD equations.

Although the MHD equations in a fixed domain have been the focus of a great deal of activities, e.g.,
[3, 4, 11, 12, 13, 19, 39], much less is known for the free-boundary case. The main difficulty is the strong
coupling between u and B (i.e., the appearance of B - VB and B - Vu terms in the first and second equations
of (1.1), respectively). In fact, the appearance of the Lorentzian force term B - VB destories the Cauchy
invariance, which provides good estimates for curl v when B is absent; indeed, one can see this by commuting
the curl operator through the first equation of (1.1), which implies'

(0; + Vy)curl u ~ V(curl B).

Nevertheless, it is remarkable that the magnetic field B yields certain regularizing effect (cf. [38]), which can
be derived from the transport equation of B (i.e., the second equation of (1.1)). Such regularizing effect plays
an important role to control the full Sobolev norms of curl B and curl  and hence the full Sobolev norm of B
and u via the div-curl estimate. We will provide more details on this in Section 1.3.

For the free-boundary MHD equations, the local (in time) well-posedness (LWP) of the linearized equations
was studied by Morando-Trakhinin-Trebeschi [27], Secchi-Trakhinin [30] and Trakhinin [37]. For the nonlinear
equations, Hao-Luo [16] proved the a priori energy estimate with H* initial data and the LWP was established
by Secchi-Trakhinin [31] and Gu-Wang [14]. Also, we mention here that in Hao [15] and Sun-Wang-Zhang [35],
the authors studied the a priori energy estimate and LWP, respectively, for the free-boundary MHD equations
with nontrivial vacuum magnetic field.

In this manuscript, we establish the local a priori energy estimate with u, B € H?3% with § > 0 is
arbitrary. This agrees with the minimal regularity assumption (i.e., H %+1+8, where d is the spatial dimension)
that one may expect for the velocity field in the theory of the free-boundary incompressible Euler equations
(see, e.g., [10, 21, 22]). In fact, Bourgain-Li [2] proved that the incompressible Euler equations with H g+1
initial data are ill-posed even in the free space R%.

1.2 MHD system in Lagrangian coordinates and Main result

We reformulate the MHD equations in Lagrangian coordinates, in which the free domain becomes fixed. Let §2
be a bounded domain in R3. Denoting coordinates on £2 by y = (y1, y2, y3), we define : [0, T] x 2 — D to
be the flow map of the velocity u, i.e.,

dn(t,y) =u(t.n(. y)), n0.y)=y. (1.5)
We introduce the Lagrangian velocity, magnetic field and fluid pressure, respectively, by
v(t,y) =ult,n(t.y)), b(t.y)=B@.n.y), q@ y)=pin@y). (1.6)

Let d be the spatial derivative with respect to y variable. We introduce the cofactor matrix a = [dn]~!, which is
well-defined since 7(¢, -) is almost the identity map when ¢ is sufficiently small. It’s worth noting that a verifies
the Piola’s identity, i.e.,

d,,a"% =0. 1.7

Here, the summation convention is used for repeated upper and lower indices, and in above and throughout, all
indices (e.g., Greek and Latin) range over 1,2, 3.

"'We refer (1.14)-(1.15) for the detailed computation.
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Denote the total pressure py = p + %|B|2 and let Q = pow(t, n(t, y)). Then (1.1)-(1.3) can be refor-
mulated as:

d¢ve —bgatPd, by +akd, 0 =0 in[0,T] x 2;
0:by — bﬁa“‘gauva =0 in[0,T] x £2;
ayd,v* =0, ald,b* =0 in [0, T] x £2;
(1.8)
v3 =0 on [p;
a*bub, =c?, Q =1c? ayb’N, =0 onl
3—1%=83Q§—60 on 7.

Remark. In above and throughout, the upper index of a represents the number of the rows whereas the lower

M M row
index represents the number of the columns, i.e., aloy .

For the sake of simplicity and clean notation, here we consider the model case when
2 =T?x(0,%), (1.9)

where € < 1and 32 = I'y U I'; and I} = T? x {€} is the top (moving) boundary, Iy = T? x {0} is the fixed
bottom. We shall treat the general bounded domain with small volume in Section 6 by adapting what has been
done in [10]. However, choosing §2 as above allows us to focus on the real issues of the problem without being
distracted by the cumbersomeness of the partition of unity. Let N stands for the outward unit normal of d2. In
particular, we have N = (0,0,—1) on Iy and N = (0,0, 1) on I7.

In this paper, we prove:

Theorem 1.1. Let §2 be defined as in (1.9). Let (7, v, b) be the solution of (1.8) and 6 € (0, 0.5). Assume that
v(0,-) = vg € H25T(2) and b(0,-) = by € H?5T3(£2) be divergence free vector fields and by - N = 0 on
052. Let

N(@) == [nO) 3345 + 10O 132505 + DO 2545 (1.10)

Then for sufficiently small €, there exists a 7 > 0, depending only on N(0) and € such that N(¢) < P(N(0))
for all t € [0, T'], provided the physical sign condition

90
— iz =930l g =€ >0. onhy (L11)
holds. Here, P is a polynomial of its arguments.

Remark. We will show that the physical sign condition (1.12) propagates within [0, 7']. In other words, it holds

—030()>¢€ >0, only, tel0,T] (1.12)

1.3 Strategy, organisation of the paper, and discussion of the difficulties

Notations. All definitions and notations will be defined as they are introduced. In addition, a list of symbols
will be given at the end of this section for a quick reference.

Definition 1.1. The L2- based Sobolev spaces are denoted by H*(£2), where we abbreviate corresponding
norm | - ||gr (@) as || - ||z~ when no confusion can arise. We denote by H*(I") the Sobolev space of functions
defined on I", with norm || - || gs(r).

Notation 1.2. We use ¢ to denote a small positive constant which may vary from expression to expression.
Typically, € comes from choosing sufficiently small time, from Lemma 2.1 and from the Young’s inequality.

Notation 1.3. We use P = P(---) to denote a generic polynomial in its arguments.

Now we can state the strategies we used and discuss the discovery and the difficulty in MHD system.
Gronwall-Type argument and div-curl estimates
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The proof of Theorem 1.1 relies on div-curl type estimates of the velocity field v, the magnetic field b and
the Lagrangian flow map 7. In particular, let N(¢) be defined as in Theorem 1.1. Then if vol (§2) is sufficiently
small (i.e., € < 1), there exists a 7" > 0 such that the estimate

t
N(t) < Mo + €P(N(1)) + P(N(t)) / P(N(s))ds (1.13)
0

holds whenever ¢t € [0,T], where My = Mo(|lvoll g2.5+s, ||bollg2.5+s) . This implies N(t) < My by a
Gronwall-type argument that can be found in Chapter 1 of Tao [36].

Creation of vorticity by the magnetic field
The vorticity of the conducting fluid cannot be controlled analogously to that in the case of a non-conducting
fluid due to the lack of the Cauchy invariance, since its derivation involves the derivative of the Lorentzian force
(bo - d)b, which contributes to higher order terms. In particular, let €#¥T be the anti-symmetric tensor with
€!23 = 1. We have:
(€T, 0™ 0 nym) = €*VT0, V™ 0 v +€47T 0,07 0 tim
———

=0

1.14
— T, (@3 0) e €y (DG o™, (19
=0, same as the Euler’s equations
where the last term in the second line is equal to
€*VT0,(bg dsb™)8;, 4+ €MVT 0, (b3 055™) (3 im — B,)
= curl (b3 dgb) + €70, (bg 0sb™) (0 )m — 8;,), (1.15)

is nonzero in general. We remark here that it is the Lorentzian force that causes the strong coupling between
v and b. One can imagine that the Lorentzian force twists the trajectory of an electric particle in a magnetic
field and produces vorticity even if the initial data is curl-free. However, we can control curl v and curl  from
their evolution equation derived by taking the Eulerian curl operator to the first equation of (1.8). This will be
dicussed in the following paragraph.

Regularizing effect of b: Controlling curl v, curl » and pressure Q

The key to control ||v||g2.5+5 and ||b] g2.5+s is to control || Bav||g1.5+s and || Bgb| g1.5+s, where B, de-
notes the Eulerian curl operator, i.e., [Bo X[y = €1:4a"70,, X%, where €, is the anti-symmetric tensor with
€123 = 1. These quantities are treated straightforwardly for non-conducting fluids (i.e., Euler equations) thanks
to the remarkable Cauchy invariance. We, nevertheless, have to control them differently since the Cauchy invari-
ance fails for MHD equations due to the presence of the Lorentzian force term bg atfy «b. Inspired by Gu-Wang
[14], one can derive the evolution equation for B,v and B,b. With the help of the following identities?

bga'? = bl and b, = (bo- Iy (1.16)
mentioned in Gu-Wang [14], one can rewrite the first equation of (1.8) as
Ve +ald, 0 = (bo - 9)*n,. (1.17)
Now, one may apply the curl operator B, on both sides of (1.17) and get:
(Bad:v)3 = (Ba((bo - 8)*n)5. (1.18)
which yields an evolution equation after commuting d; and by - d on both sides of (1.18):
0;(Bgv)j — (bo - ) B, ((bg - 0)n), = error terms + commutators. (1.19)

This, in particular, yields an energy identity for B,v and B;b = B, (bg - 0)1, i.e.,

1
Ecun (1) := 5]9 10158 Bw|? + [0V B, (b - 0))>. (1.20)

2We refer Lemma 2.2 for the detailed derivation.
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and it can be shown that £(¢) verifies the following estimates by using Kato-Ponce inequalities (2.3)

t
Ecun (1) < |Iboll r25+5 +[ P(Inllgzs+s. vl gz.s+s. 1Dl g2.s+5). (1.21)
0

On the other hand, it is worth pointing out that the control of || Q| g3+s and ||030Q;||Lec(as) (and hence
| Q¢ gr2.5+5) are both required. These quantities are needed even for the incompressible free-boundary Euler
equations, whose a priori energy estimate can be closed by requiring 7 to be half derivatives more regular
than v (see, e.g., [1, 21, 22]). In the case of a conducting fluid, i.e., MHD equations, we have to use the
regularizing effect of the magnetic field (i.e., identities (1.16)) to show that ||| z3+s is still good enough to
control || Q|| g3+s and || Q¢ || z72.5+s. In particular, Q, satisfies an elliptic equation that involves b'd,,a"*d, d;by
as part of its source term, whose H%>%% norm requires n € H3>*% to control. However, this term can be
avoided by invoking the identities (1.16) when deriving the elliptic PDE of Q.

Remark. One may drop the requirement for ||7|| gs+0.5s when s > 3.5 using Alinhac’s good unknowns thanks
to the fact that da € L°°. We refer [14, 16] for details.

Smallness of the fluid’s volume is required: Nonlinear control of curl n

One needs to control ||curl 7| g2+s (and hence || B4 7| g2+5) to close the a priori estimate. This can be done
in the case of a non-conducting fluid using the Cauchy invariance if one assumes wo = curl vg € H2F% (cf.
[22]). This, again, fails for MHD equations. In order to control B,d7, one can only hope to use the multiplica-
tive Sobolev inequality and Young’s inequality with € to derive the nonlinear estimate, which produces a term
e 1 P(|n(0)|| g2.5+s). Therefore, we require the body of the conducting fluid to have small volume to fight the
growth of the vorticity brought by twisting effect of the Lorentzian force (in other words, the strong coupling
between b and v), otherwise the Gronwall-type argument no longer holds since it requires € to be sufficiently
small. The smallness of the fluid body can be propagated? if it holds initially since 7 is volume-preseving.

Organization of the paper:

The manuscript will be organized as follows. In Section 2 we record the preliminary estimates for the cofac-
tor matrix a and its time derivatives. Also, the well-known Kato-Ponce commutator estimates are summarized
as Lemma 2.3 for readers’ convenience. Section 3 is devoted to control | Q| g3+s and ||Q¢|| g2.5+5, which is
required for the tangential estimate of v. In Section 4 we prove the tangential estimates for both v and b. Finally,
in Section 5, we provide the control for the full Sobolev norms of v, b and 7 using a div-curl type estimate. Also,
we show that the physical sign condition (1.12) propagates within a short period by showing that the quantity
03 Q| is 1/4-Holder continuous in time, which allows us to close the a priori estimates.

Acknowledgement: We would like to thank Marcelo Disconzi and Igor Kukavica for many insightful discus-
sions. Also, we thank Igor for sharing his idea on the proof of Lemma 5.5.

List of symbols:

e ¢: A small positive constant which may vary from expression to expression.

m|

e ¢: The “height” of the fluid domain £2, which is also chosen to be sufficiently small.

[ ]
N

= [0n]™!: The cofactor matrix;

o || |lgs: Wedenote || f|las := || f (2, )| s (s2) for any function f(z, y) on [0, T] x £2.
e P: A generic polynomial in its arguments;

o P: P = P(|vllg2s+s. Ibllg25+s) (and so Py = P(||voll g2.5+s. [|boll gr2.5+5);

e N(1): N(t) = ||77||%13+5 + ||U||§{2.5+6 + ||b||12qz.5+8§

30ne may also choose to add an articifical smoothness conditions for n (e.g., n € H 3"'5(.9)). But such conditions do not seem to be
the ones that can be propagated.
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e 0= (I —A)Y? where A = 93 + 92, and S = 3>79: Tangential differential operators.

2 Preliminary Lemmas

The first lemma is about some basic estimate of the cofactor matrix a, which shall be used throughout the rest
of the manuscript.

Lemma 2.1. Suppose [0v|| oo (0,751 5+8(2)) < M. I T < CLM for a sufficiently large constant K, then the
following estimates hold:

(D) 100l gg1.5+5¢y < C forz € [0, T];

(2) det(dn(t,x)) = 1 for (x,t) € 2 x[0,T];

) laC Dl grs+sey < C fort €[0,T];

@) llar (.0l @) < Cll8vl|Lr@) for 1 € 0.T], 1< p < oo;

) lla: . O)llar @) < Cllov|are) fort € [0,T],0<r < 1.5+ 4;

(6) llas G O)llHr @) < Cllov] gis+s||0v||ar + Cll0ve||ar, fort € [0,T],0 <r < 0.5+ §;

(7) For every 0 < ¢ < 1, there exists a constant C > 0 such that forall0 < ¢ < T’ := min{ﬁ, T} >0,
we have

latt — S\I;L”HLSH(Q) <e, |aka} —8“”||H1.5+5(9) <e.

(8) Opaly = —a,’faﬁamn"ag form =1,2,3.
Proof. See [21]: (1)-(7) is Lemma 3.1 and (8) is formula (6.6). O

The next lemma reveals the regularizing effect of the magnetic field b; in particular, the flow map 7 is more
regular in the direction of bg. It was also used in Wang [38] and Gu-Wang [14]

Lemma 2.2. Let (v, b, n) be a solution to (1.8) with initial data (vg, bg, 79). Then the following two identities
hold:
a"by = by, 2.1)

bP = (b - )P = byo,nP. (2.2)

Proof. For (2.1), we multiply a”® to the second equation of (1.8) to get

a"®0;by = a”“bﬂa“ﬂaﬂama = a”“blgat(a“ﬁauna) — bﬁa,a“ﬂ (0unea”®) = —bg0d:a"®,
—— ——
=58 85

so 0;(a"“by) = 0 and thus a"*b, = by. For (2.2), it can be easily derived by multiplying d,7g on the both
sides of (2.1) and using a : dnp = 1. O

The last lemma records the well-known Kato-Ponce commutator estimates, the proof of which can be found
in [20].

Lemma 2.3. Let J = (I — A)"/2, 5 > 0. Then the following estimates hold:
() Vs >0and 1 < p < oo, we have

17°(f&) = S Dl SNf el T gller + 175 f e llgles: (23)
(2) Vs > 0, we have

1722 S N lwseiliglers + 11f Lo liglws.az. (2.4)

with 1/2=1/p1 +1/p2 =1/q1 + 1/g2 and 2 < p1, g2 < o0;
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(3) Vs € (0, 1), we have

17°(f8) = f(I78) = (J* N)gler SIS lwsiriligllws=si.r. (2.5)

where 0 < sy <sand 1/p; +1/py =1/pwith1 < p < p1, p2 < 00;
(4) Vs > 1, we have

17°(f8) = f(I° DLz SN f lwseiliglers + 1/ Iwrai glws—1.a2 (2.6)
where 1/2 =1/p1 +1/q1 = 1/p2 + 1/g2 with 1 < p < py, p» < 00; and
17°(fe) = (J* g = FUD)Le S IwrmlIgllys—1.a + [Lf lws—rar 1 8lly1.az 2.7)

forallthe 1 < p < p1, p2,q1.92 <ocowith1/p; +1/p2 =1/q1 + 1/g2 = 1/p.

3 Pressure Estimates

In this section we derive the estimates for || Q| g3+s and || Q¢| g2.5+s. These quantities are both required in
Section 4.

Notation 3.1. We denote P = P(||v||g2.5+5, || g2.5+s) and so Py = P(||vol g2.5+s, [|1boll g2.5+5)-

Lemma 3.2. Assume Lemma 2.1 holds. Then the total pressure Q satisfies:

t
HQMHUW%+P+HMMHQO@ﬂmH+/H&MHO, G.1)
0

and its time derivative Q; satisfies:

t
|mmmas§%+P+wamﬁn0@ﬂmw+/Wmmmﬂ). (32)
0

Proof: Applying a”*d, to the first equation of (1.8), we have:
a’*9,(akd,0) = —a"*9,0;vq + a”“é)v(bﬁa“ﬂf)ﬂba) = —a"%0,0,vy + a"”a,,(bgauba), 3.3)

where we have used (2.1).
Invoking the Piola’s identity (1.7), Lemma 2.1 (8) and (2.2), we get:

—a"%0,0;vy = 0;a"%0, vy,

and
a"®d, (bl d,by) = a"*dybl 3 by + a¥*bl 3,9,.by
= a"®3,bYd,by + bY 8, (a"*dyby) — bl 3, by
=0
a"®d,bl d,by + bl d,dpn,a" aP*d, by
= a"d,b} by + dp((bo - )y)a*? aPd,by — dgbly 3,mya”Y aP®d, by
N e’

=5}

= a"d,b} d,by + dpbya” aPd,by — dgbl aP*d,by.

Thus, the total pressure Q satisfies

39,0 = 9:a"*pvg + 3, (8" —ala"®)d, Q) +ad,b} d,by +dgbya’ aPed by —dgblyaP?d, by, (3.4)
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with the boundary conditions
1
0= Ec2 on Iy, and atd,ON® =0 on I, (3.5)
where the second condition can be rewritten as
g ON* = (88 —ak)0, ON® on I. (3.6)
The standard elliptic estimate yields that
1Ol g3+s S 10:a¥ 0y vallgr+s
—_——
Qi
+ 16" —aga”) 9, Ollg2+s + (84 — ag)du ONllgs+s(r) 37
(@) .
+ [1a"3ubh dpball s + 10pbya*? aP®d,be || givs + 3pbh aP*d el g1+
Q3
Bounds for Q;: We have:
10:a"* 9y vall gr+s S 110:a™ | gi+s 190 vall g1+ (3.8)
S Inllgas+sllvllgz+sllvilgzsts < Cllvligases V7248, '
where we used |a| g15+s < || 77||§125 +s and the multiplicative Sobolev inequality
If&llgi+s S N mi+sliglles+s. (3.9
which is a direct consequence of (2.4) and the Sobolev embedding.
Bounds for Q,: Invoking Lemma 2.1 (7) and (2.4), we have:
18" — ala*®)8, Ollgavs S —a:a” Lol Qllgass + 1 —a: @ || g2+s ]9, Qllree
1/2 1/2
SellQllgass + L+ [l 1 Q1125 1011315
S €l Qllgs+s + PUnllga+a)l| Qllg+s (3-10)
t
< elQlwsss + Pl (190kss + [ 101 zssds )
0
and similarly
165 —ag)0uONlgrs+sry S W —allLol|Qllgs+s + I — allg2+s | Qll 2.5+
(3.11)

t
S €ll@llas+s + PlInlgs+s) (||Q0||H2+5 +/0 ||Qt||H2+5ds)'

Bounds for Q;: All the terms in Q can be controlled by C||b|| g2.5+5||bollg2.5+5 + C||b||§_12‘5+3 via the

multiplicative Sobolev inequality. We only write the first term and the others are treated similarly.

||a""‘8vbgauba lgi+s S lla | gis+s ||8vb{)‘auba||H1+s S Clbl gzs+sllboll g2.s+s.

(3.12)

Summing up the bounds for Q;-Q3, then absorbing the e-term to LHS, we conclude the estimates of Q as:

t
101555 < Po+ P + P(Inllases) (nQonHm + [0 ||Qt||Hz+sds) .

(3.13)



Luo and Zhang 10

Now we start to prove the estimates of Q,. Taking time derivative of (3.4), we obtain:

8“3MQt = attavaavva + Btawavatva
- 3v(3taffa”“3u Q) - 3u(a53ta”°‘3u 0)+ 31}((8‘“} - af;a:;)ath)

14
+a’%,bl 8,uby + aV0,bY 9,:0,bg + 3;(dpby dybe)a’? aP® + dgby,d,(a"Y aP*)d, by ©-19)
— 0pb"aP?8,8,,by — 0gblal™d b,
with the boundary conditions
=0 on 7y,
Q: ont (3.15)

8aQtNa = —ataffauQNa + (Sg—ag)athN'x on F().
By the elliptic estimate, we have:

Q¢ g2.5+s
S 0¢ea”® 0pvg || gos+s + [10:a"* 0,0 va || gos+s + [ 0:aka’®0, Ol grs+s + lak0:a"*0,, Q|| g1.5+s
I — a0l g1 s + 100, ONl sy + (8 — @23, 00 N g1
+ lay®dubly d,bg || gos+s + [|a"*0ubl 0:0,bq || go.s+s + ||3t(3,3by3vba)avyaﬂa||Ho.5+a
+ 18by 3, (a”Y aP*)d, by || o.5+s
+ ||3ﬁbgaﬂ“3tauba||Ho4s+s + ||aﬁbgafaauba||Ho45+s.

(3.16)
First, since 0; vy = af)faM 0 — bﬂa“ﬁ 0,,be we have:
el gis+s S b5 ssllallgrses + 1Ol gas+sllal gs+s. (3.17)
Using this and the multiplicative Sobolev inequality
I fgllgos+s SN fIlgos+sllglars+s. (3.18)
the first two terms of (3.16) are treated as:
[0¢7a"*0yva || go.s+s + [|0:a"*0y0; Ve || gro.s+s
S lawelgos+tslvligzs+s + llacl grs+sllvell gis+s
S lzses vl gises + [0l gzs+s vl gzs+s | vel gis+s (3.19)
t
S+ Mol (10olmnsa + [ 10u1n0ds ).
0
Second, invoking (3.9) and Lemma 2.1 (7), the terms containing Q in (3.16) are treated as:
[0rata”® 0, Qllgis+s + llay0:a 9, Qll grs+s + 10:al 0, ON | gr+s(r)
+ | (" —akay)0u, Ol g1 s+s + || (Y —a(‘j)BMQ,N“IIHwa(p)
S ||a||Hl-5+8||al||Hl-5+5”Q||H2~5+8 (320)

+llaclgrs+sllQllgasts + I —a” :allgis+s| Qellgzs+s + 11 —allgrs+sll Qe llgas5+s

t
< olgzsss (nQonHm + [ ||Qt||Hz+sds) Qs lgrsss.
0

which can be controlled appropriately by the RHS of (3.2) by plugging in the estimate (3.1).
Now it remains to control the terms containing b in (3.16) (the last 6 terms). In fact, all the terms containing
b can be controlled with the help of the multiplicative Sobolev inequality (3.18). The terms not containing b;
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are easier to control:

||a;’“8vbf,*8uba||H<>,s+a + ||aﬂby8t(av)/aﬂa)aub(x||H0.5+8 + ||3ﬂbgafmauba||1{0.5+a

S ladlligos+sllbollg2.s+s D] g25+5 G21)

+ llacligos+sllall grses b1 32505 + el gos+sboll g2s+s bl gas+s [0l gr.s+s
< P.
~J

For the terms containing b;, we have to put H%>%% norm on db; when we use the multiplicative Sobolev
inequality (3.18), because we only have b, € H'-5*%_ This can be directly derived by taking time derivative of
0tby = bﬁa“ﬂauva = b} 0,,Va, Which implies

1bellgrs+s S Nvellgrs+sllbollgrs+ts S llbollgrs+sllvlgzs+s.
Therefore,

10" 3,528 8,ba [l o545 -+ 118: 85y Buba)a” aP¥ | osss + [95bLaP?8,0,ball gosss
S lallgrs+slboll s+ lbellgrs+s + lalizseslbllgzs+s el grs+s (3.22)
S Po+P.

Summing these bounds up, and absorbing the e-term to LHS, we obtain:

t
102515 < Po+ P + P([v]l2559) (||Qo||Hz+s + [ ||Q,||Hz+s) , (3.23)
0

which yields (3.2).

4 Tangential Estimates

In this section, we establish the tangential energy estimate for the incompressible MHD equations.
Notation 4.1. We define d = (I — A)'/2 where A = 32 + 92 to be the tangential differential operator.

Theorem 4.2. Let S = 8>3, Let E(1) = ||Sv||2, + [SbII2, + L a3 Su||
such that for each ¢ € [0, T'], the estimate

22(1"1)' Then there existsa 7 > 0

t t
E(t) < Po + / P+ / PO s +a. 10 larzs+a. [nllgs+s)ds @.1)
0 0

holds.

We prove this theorem by estimating v and b separately.

4.1 Tangential estimates of v

First, we derive the tangential estimates of v.

1d N B .
5dr /Q(Sv )(Sve)dy = /.;z(SU ) (3, Sva)dy

—_ / (Sv)(S(a23, 0))dy + / (Sv)(SbgaPdubady  HP
2 2

=:1+4+J.

To control /, we have:
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I=- f (Sv)(S(a 3, 0))dy
2
. / (Sv)(al)(S8, 0)dy — / (Sv%)(Sak)(3,, Q)dy
2 2

7 P 4.3)
- [ v, 0) - a(50,0) — (a0, O}y
I3
Control of 73: This is a direct consequence of the Kato-Ponce inequality (2.7), i.e.,
I3 < [ISvllL2(lag lw1e 19, Qllwrs+s.3 + llag lw1s5+53119, Qllw.e)
S lvllgzs+sllall gz+s | Qll gs+s 44

S ol seslnlFses1Qllgs+s.

Control of /;: We integrate d,, by parts to get:
I = —/ Sv®ak(9,80)dy
2

= [ atsaursoiay + [ so@Esiaswn - [ (S0 arsuN s
2 Iy I :’0"

=0
= [ st 01y - [ (San,nt($Q)dy ~ [ [S0,0) - (S0 - alSd,u 150y,
2 T 2 2
_(45)
where the boundary integrals in the second line vanish since a3 = a3 = 0 and v3 = 0 on Iy, and 0 =
9(c?/2) = 0 on I'. The last term in the third line is controlled using (2.7):

= [ 15,0 — (Sat® ~ alS,0°1(SQ)dy
2

4.6
S (lalwrs+s3 10,0 s + lalw1.6110,0% | g1.5+5) SOl 2 (4.6)

SIQlms+slalaz+s vl g2s+s S NQNma+s 0l ars [Vl g2s+s-

For the second term in the last line of (4.5), we need to integrate 1/2-tangential derivatives by parts and then
apply (2.4):

- / Sakd,v*SQdy = / 70 a18"% (509,0%)
2 2
S lallg2+s (1SQl gos10,v% lLee + SOl L3100 [wo.s.6)

2
S Inllzs+s 1 Qllas+sllvl s+

4.7

Summing these up, we have:
I S 1l 1 QN mavs vl goses. (4.8)
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Control of I5: Let Sy, := —(I — A)%2510:583  Then one may decompose S as:

S = ((I _ Z)1.25+0.58 _ (I _ Z)0.25+0,58) + (I _ Z)0'25+0‘58
—_—
=ZSO
(I _ Z)0.25+0.55 (_Z) + SO (49)

2
: > Smdm + So.
m=1

Plugging this decomposition and the identity (which is obtained by differentiating a : dn = I)
Imal = —aldpdmn’al (4.10)

into 15, we have:

2
I =—m2=1 /ﬂ (Sv*)(Smdmaly) (9, Q)dy — /Q (Sv™)Soag 3, Qdy

R,

2
= 3" [ (v (@t0ptn’af ), 0dy + R
m=17% 4.11)

2
= Z/Q(Sv“)(SmE)ﬁamn")(affag)auQdy+
m=1

I,

/Q (SV) (S (@l dmn"a?) — (Smdgdmn®) (@ab)]3, Oy + Ry

Here, R; is bounded by P(||n||g2.5+8)|| Ol g1.5]|v||g2.5+s via the multiplicative Sobolev inequality, while the
last term in the third line of (4.11) can be controlled by using Kato-Ponce inequality (2.6) as:

[ SV S g0l — (Smdgdmatial 10, Qdy

4.12
< (lakal llw1.61080mn” lwos+ss + 10g3mn” s lakal lly15+5.3)119, QllLoe | Sv* |2 “-12)
S lallgz+sllall grs+slinllgs+s | Qg2 s+s vl g2.s+s < PUnllgs+) 1 QI g2s+sllvllg2s+s.

It remains to control /7. Writing 2,2n=1Sm 0m = S — 8o, we have:
I = /Q(Sv“)(Saﬂn”)(ai‘ag)(auQ)dy—/Q(Sv“)(soaﬂn”)(a‘u‘ag)(auQ)d% (4.13)

It is easy to see the second term in (4.13) can be bounded by ||v|| g2.5+s || Q| gr1.5 P (|0l gr2.5+5). For the first
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term, we integrate dg by parts to obtain:

Iy =— fg (9gSv*)(Sn”)(alal) (8, 0)dy — /Q (Sv*)(Sn")(dgat)al (3, Q)dy

Iy

— [9 (Sv*)(Sn*)(atal) (040, Q)dy + [F (Sv*)(Sn")alal (3, Q)NgdS(Ip)

=0
(4.14)

+/F (Sv¥)(Sn)alab (3,,0)NgdS(I') + R,

I>1>
< D+ 19allsllSnlizslalize 180 e I1Svll2 + llallze ISl llalLec 0> QllLs IS vl L2
+ Lz + |lallzslinll gzs+sllallee [[0Q | Lee[[Sv] L2
S hir+ iz +P+ P(|Ollg3).

where the integral on I vanishes because N = (0,0, —1) and af = a% =0on [y.
Now, we bound 7,11 by the Kato-Ponce commutator estimate (2.7), because we want to move the derivatives
on v to a in order to control v.

o = = [ (S50 al)at'S") 0, Q)dy
= [ @po)sabasn)0,0)dy (4.15)
+ [ @sra, 0)1S(@op0) — (Sak)oge® — al Spv*ldy.
The term on the second line of (4.15) is controlled by (2.4) after integrating 0.5 derivatives by parts, i.e.,
/Q (0pv°)Sal (@l S7") (3, Q)dy = /ﬂ 32 (S alt 9, 005v")3  aldy

~1/2
S lallge+sllo (Sn"aly 0, Q0gv*)| 2 (4.16)
S lallgz+s(laSnllz310Q0v|wi/2.6 + [laSnllg1/210Q0v]| L)
S Pnllgs+o)llvllgzs+s | QN ga.s+s

In addition, we apply (2.7) to the term on the third line of (4.15) and get:

/ (@“Sn'9,0)[S(alagv®) — (Sab)dgv® —af S(d5v*))dy
2

4.17
S llallLee IS0l 23 110Q oo (llallw .6 10vig1s+s + llallpis+s30v[y1.3) 17
S Plnllgs+)llvllgzs+s | QN ga.s+s
Therefore,
L S P(Inllgs+s) vl g2.s+s 1Ol g2s+s- (4.18)

Now we come to control /51,. We shall compute its time integral, which then allows us to integrate 9,
by parts to eliminate 0.5 more derivatives falling on v. Since N = (0,0,1) and Q = %02 on I}, we have

ab Ny = a2 and a%9,,Q = a3950, and so:
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t t
| s = [ [ @usiysnataos0dsrids
0 0 JIn
—5 [ sisraaest)
2 [ ——— 0
i > (4.19)

t 1 t
—/ d,adalSn*Sn'd;0dS(I')ds — —/ / alalSn*Sn’0:0,dS(I)ds
0 JI7 2 0 JI

Invoking the physical sign condition d3 Q < —eg and Sobolev trace lemma, we have:

t € t
| s == [ suswiataiasa)|
0 2 I 0

t
2
+[ laclgis+sllallgrs+slnlgsrs | Qllpzs+sds
0

t
4 /0 Val s 1112505 Qi 2.5 (4.20)

€0
=< —5”025770[”%2(1«1)
t
+ P(Ilvolle-s+8»IIbolle»s+s)+/ Pl zs+s, 12 a2s+s. | Q1 ll gr2.s+5)ds.
0

Summing up (4.3), (4.8), (4.11), (4.14), (4.18), (4.20), we obtain:

t t t
€0
/0 16)ds + S 1azSn*I3ary) S Po+ /0 P+ /0 P(nllgs+s. 1Q1usss. 1Qc 2 sea)ds.  @21)

Control of J: Now we start to control J. We first plug the identity (2.1) into J, then write J to be the sum of
the highest order term and the commutator, which again can be controlled by Kato-Ponce inequality (2.3)

J = / (Sv*)(S(bgat®,ba))dy = / (SV*)(S(BL D b)) dy
2 2

=/(Sv“)bgsaubady+/ Sv¥[S (bl 0,,ba) — bl S, SD,be)dy
2 £ (4.22)

J1

—1.54+4
S 1+ Il g2s+s (105G || oo 1|19 dpuballr2 + 1Sbg | 12118be | L)
< J1 + [l gastsllbollgasts |6 goss.

The term J; cannot be controlled directly, but it actually cancels with the highest order term in the energy
of b. We will see that in the next step.

4.2 Tangential estimates of »

We derive the tangential estimates of b in this subsection and then conclude the tangential energy estimates.
Taking the time derivative of %HS b||i2 and invoking the identity (2.1) and Kato-Ponce inequality (2.6), we
have:

1d
33718013 = [ (ShS@pa 3,00y = [ (ShS @00y
_ / (Sba)bl(S9,v%)dy + / SbalS(b,0%) — b(S,v™)]dy 4.23)
2 2
K,

< Ky + vl gasts |boll gastsl|bll gasts.
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Now we are able to see that J; cancels K: Integrating d,, in J; + K; by parts, we have

J1+ K= / (Sv*)by S0,.bady +/ (Sba)bly S, v*dy
2 2

_ o 1
_/QaM(SU Shy)bldy 424)
= —/ Sv¥Shy d,blY dy +/ Sv*Shy bgat N, dS(y) = 0.
2 SN—— 082 N e’
div bp=0 B-N=0

Combining (4.2), (4.21), (4.22), (4.23), (4.24), we derive the tangential estimate as follows:
S 2 Sh 2 6_0 3S o2
15012, + ISBIZ + SazSn®122
t
S Plvoll gr2s+s. 1boll gr2.5+5) + / P(nllgs+s. vl g2s+s. 10l g2.s+s. | Qllgs+s. | Qellg25+5)ds (4.25)
0

t t
<P+ /0 P /0 PUIQ 3o Qe 255 [l gsss)ds

which implies in (4.1).

5 Closing the estimates

In this section we close our a priori estimate and prove the physical sign condition can be propagated to a
positive time if holds for the initial data.

5.1 The div-curl type estimates

H?25%3 estimate of v and b: In this subsection we do the div-curl type estimate of v and b to derive the
control of full H2-5*% norms. Although for Euler equations one can use the Cauchy invariance to give linear
estimates for curl v and div v, there is no such analogue for MHD equations. Instead, inspired by Gu-Wang
[14], we can derive the evolution equations of curl v to control the curl v and curl b simultaneously thanks to
the identity b = (bo - d)n. Then we apply the div-curl estimate to derive the control of full H2-5%% norms of v
and b.

The following notations will be adopted throughout:

Notation 5.1. Let X = (X!, X2, X3) be a vector field. We denote the “curl operator” and the “div operator”
in the Eulerian coordinate by

(BaX)y = €rzqa™®0, X%, and A, X =akd, X%,
respectively, where €, .4 is the sign of the permutation (Ata) € S;.

Proposition 5.2. For sufficiently small 7 > 0, the following estimates hold:

t
lcurl v|| g1s+s + |lcurl bl grs+s S e(||vl|gas+s + bl g2s+s) + Po —I—/ P; 5.1)
0 .

|div v g1s+s + ||div b g1s+s S e(||v|g2.s+s + 1D gas+s).

whenever ¢t € [0, T].
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Proof. The divergence estimates are easy because A,v = 0 and A,b = 0, so:

Idivvlgis+s = | Aav +(Ar — Aa)vlgrs+s S €llvlgasts:
——
=0
|div b gis+s = || Aab +(Ar — Ag)bllgi5+s S €|b]l g25+s.
——
=0

The estimates for ||curl v||z1.5+s and |curl b||g1.5+s are more dedicate. Since

lcurl v|| 1545 + |curl b|| g1.5+s
< (Br = Ba)vligrs+s + (Br — Ba)blg1.5+5 + [ Bavllgrs+s + | Bab| 1.5+ (52
Se(lvliges+s + 16l g2.s+s) + || Bavl g5+ + | Bab|| g1.5+5,

and so it suffices to control || B4v||g1.5+s5 and || Bgb || g1.5+s. As mentioned in the beginning of this subsection,
we will derive the evolution equation for B,v and B,b: Plugging bﬁa”“ﬂ = b(’f and by = (bg - d)n in the first
equation of (1.8), and then applying the curl operator B, on both sides, we have:

(Bad:v)2 = (Ba((bo - 9)°n)). (5.3)
Commuting d; and by - d with B, on both sides of (5.3), we have:
97 (Bav)a — (bo - 0) Ba((bo - )n)x = €xra0:a" "0, 0% + [Ba, bo - 9]((bo - 9)1) 5. (5.4)

Taking 8'-5*% derivatives, and then commuting it with 9, and by - 9, respectively, we get the evolution

equation of B,v:
0:(8"5% Bgu)i — (bo - 9)(0" 7 Ba(bo - ) = Fi, (5.5)

where
Fj, =[0"% b - 0](Ba(bo - ))ma + 0"+ (€220 0:a"0,0* + [Ba.bo - 0]((bo - )Ma).  (5.6)
Taking the L? inner product of 3'>*% B,v and (5.5), we have:

1d

o /Q |al~5+53av|2dy — /9 LS5ty (bgav)(al~5+ﬁBa(bo - n)dy = /9 F. 81'5+8Bavdy.
Integrating 9, by parts in the second term on LHS, commuting (bo-9) with 3'-5+% B, and then invoking 9,7 = v,
we have: L d

2dt /Q 0159 Byu|? 4 10F By (bo - d)n|*dy = /Q F-9"5* B udy

B

+/ 1T (B (bo - d)n) - [0°F8 By, by - dlvdy
2 (5.7)

Ba

+ / al.S-‘t‘S(Ba (bO . a)n)AaIS"I‘S (6Ataataurau(b0 : 377a))dya
2

B3

where the boundary term vanishes since by - N = 0 on the boundary. The control of B3 is straightforward by
the multiplicative Sobolev inequality, say,

6
Bs S 1617 sesllalmrsesllaclarses S 1b132 54500 25+5 1132 545 (5.8)
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To control Bo, it suffices to control ||['F¥ B, by - d]v| ;2. We simplify the commutator term as follows:
(075 By, by - 8]0 = €xca (0157 (@70, (b30,0%)) — 50,010 (@79,,0%))

= eara (0152 @7 0, (b ,0%) — ,0"5H by, )

B (5.9)
+ €ia (3v81'5+5(b3a“’8Mv“) = b3,0" 5 (@ ,0%))
Bao
Invoking the Kato-Ponce commutator estimate (2.3), we can control 55, as
18,85+ (bga* 9, va) — by dy0" > (@78 ,0v0) 2
S boll g2 s+slla" 0uvallLee + 110bo oo la"* 9, v |l g1.s+s (5.10)
S llbollg2s+s vl g2s+sllnl 2 s4s-
For B51, we have
By = qmal'SH(awau(bga,,v"‘)) — 0y (bga*ta,v%))
= €100 (@D, bY 3, 0% 4 @By, 8, 0% — by d,atTd, v — byatTd,d,v%)
= cread" T (179,05 0,0 + b 0pdunyat? aP 9, 0% ) .11)
= €300 (aT9,,b 3,0 + g ((bo - D)ny)a™ aPd,,v* — dgbydynyat? aPtd,v®),
=dgbYy 8l aBTd v

where we used (4.10) to expand bgd,a**d,,v* in the second line. Therefore, invoking b = (bg - d)n again, the
L? norm of By; can be controlled by the multiplicative Sobolev inequality:

IBaillzz S la™* 9,08 0vvall g1s+s + 10pbya? aPTd,va |l g1 s+s + 11008 aPT0,va |l g1s+s 5.12)
S PInllg2s+8)Ulboll g2.s+s + 101 g2.s+s) [0l 2.5+

It remains to control B, specifically, we need to bound || F'||;2 given by (5.6). The first term is controlled
by using Kato-Ponce commutator estimate (2.3). Silimarly as in (5.9), we have

119"5*, bo - 1(Ba(bo - )m)ll> = 18"3+28, (b Bab) — bod"*** 3, Bab |2
S 10bollzoe (| Babllg1.5+5 + Iboll gr2.5+5 [ Bab || Lo (5.13)
< PlInllg2s+6)lboll g2s+s vl g2.s5+s.

For the commutator term in (5.6), we can proceed similarly as in (5.11) to get

I[Ba> bo - 3]((bo - M gr15+5 S P(lInllgr25+8)1boll gr.s+s [Vl gr2.s+5.- (5.14)

The remaining term in F can be easily bounded by P (||n||g2.5+s)||Poll 2.5+ || V]| g2.5+s via the multiplicative
Sobolev inequality.
Combining (5.9), (5.10), (5.12), (5.13) and (5.14), we have

t
|Bav|g1.5+s + [|Babllgrs+s < Po + ||b0||H245+5/ P. (5.15)
0

Therefore, invoking Lemma 2.1 (7), then absorbing the e-term to LHS, we ends the proof by:

lcurl v|| 1545 + |[curl b|g1.5+5

< I(Br = Ba)vlgg1.5+5 4+ [(Br = Ba)bllg1s+s + [ Bav| ri.s+s 4 | Bab| 15+ (5.16)

t
Se(lvllgzs+s + 16l g2.s5+s) + Po + / P.
0
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Now we can derive the estimate of full H2°1% derivative estimate of v and b. First applying Hodge’s

decomposition inequality, we get

vl g2s+s S vlize + lleurl vl gusts + [|div vligises + 10v) - Nl gi+s(r,)-

For the tangential term, we apply Sobolev trace lemma to get:

_ —1.5+8 =1.5+6
[0v - Nl gi+scryy S 119 v3llgoscryy S 19 dvs| 12,

where the last term in (5.18) can be expressed using the tangential derivative of v by:
331)3 =divv — 811)1 — 821)2 = (A] — Aa)v — 811)1 — 821)2.

Hence
’ —1.5+8 —2.548
[0 dusllg2 <9 Vg2 + [[vllgos + €llvll g2.5+s.

Combining (5.2) and (5.20), and then absorbing € ||v|| g2.5+s to the LHS, we have :

t
vl g2.5+8 §P0+/ Pds+ ||Svl2.
0

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

The estimate of ||b]| g2.5+s can be derived exactly in the same way as ||v] g2.5+s, SO we omit the details.

t
||b||H2.5+8 §P0+/ Pds+ ||Sb|2-
0

In conclusion, we have proved

Theorem 5.3. The following estimates hold in a sufficiently short time interval [0, T']:

t

lvllg25+s + 1Bl g25+s S Po —I—/ Pds+|Svlp2+11Sb| 2.
0

H3%3.estimate of n:  We derive the 3 estimate for 1 via the standard div-curl estimate:

nllzs+s < lInllz2 + lleurl llgats + Idiv gll g2+s +11@0) - Nl g15+5ag)-

(5.22)

(5.23)

(5.24)

The divergence part is easy to treat owing to the div-free condition A,v = 0, i.e., the Eulerian divergence

of v is identically zero.

Idiv nllgos S Idiv anllgies + div nllgies
S NAadnllgivo + (A7 = Al g5 + Inllgass

t
S 1 4a0nllgi+s + €llnll gs+s + [1(0) || gr2+5 +/ o]l gr2+s-
0

Now it remains to control A,d7. We have:

t t
Ag0n(t) = Agdn(0) + / Aq,0n + Agdv = div dn(0) + / Ag,0n + 0(Agv) —Apqv ds.
0 0 R »-/0
aV=

Therefore, it can be controlled as

t
[Aadn(®) | r1+s =< [|div In(0)[ g1+ +/ [ Aa; 0l gri+s + [[Adavl pri+sds
0

t
S 1O grs+s +/ lacllzs+sllnllgs+s + llall ga+s vl g2s+sds
0

t
S 103+ +/ Inllgs+sllvlig2s+sds.
0

(5.25)

(5.26)
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Summing up (5.25) and (5.26), then absorbing the e-term to LHS, we get the control of div n:

t

div nll g2+s < [10) ] g3+s +/ Pl g3+s. vl g2s5+s)ds. (5.27)
0
For the boundary estimate, we have:
||(577) : N||H1-5+5(['1) SISy N||L2(F1) +n- N||H1-5+5(1"1)
N ||a2577a||L2(F1) + ”(82 - a;)s’?a”LZ(I‘]) + Inll gra+s (5.28)

t
€0
Seo 7lla25n"‘llem) + €lnllgs + [1n0)l| 2 +/0 vllz2-

Here we remark that the term 670 a3 Sne|| L2(ry) 1s exactly the boundary energy term derived from the physical
sign condition in the tangential estimate.
It remains to control ||curl 1| g2+, we start with

leurl nllgra+s < lleurl il gaes + leurl pll g1+

(5.29)
< |Baonllgi+s + [(Br — Ba)dnl gi+s + llcurl nl| gi+s.

Recall that the i -th component of B,dn (resp. (B; — B,)d1n) is of the form eijka“f Buank (resp. €;jk (W —
at*)o MBnk). So we apply the multiplicative Sobolev inequality (3.9) to get:
I(Br — Ba)onlgi+s = |11 —allgrs+slinllgs+s < elnllga+s. (5.30)
In addition, using multiplicative Sobolev inequality, Young’s inequality and Jensen’s inequality, we have:

1Badnllggi+s < llalmrs+slinllzss S € Hnllgases + €lnlzses
H H

-1 4 -1 ' 4 2 (3D
S € nO)z2s4s +€ [Vl 2545 + €llnliz s
0
holds for sufficiently small ¢. Also,
t
leuld n(Ollgi+s < IOl g2+s < 17O0) | g2+ +/ [Vl 772+ (532
0
and hence
t
leurl nll 245 S € PO [ gr2515) + €P(nllg3es) + € / P(lvllg2540). (533)
0

Now summing up (5.27), (5.28) and (5.33), we get the H?3t8 estimates of n.

Theorem 5.4. The following estimates hold in a sufficiently short time interval [0, T']:

t
€0 — _
71l zr3+5 Seo gllaSSn"‘lle(rl)Jre LP([In(0) | g2.5+5) + €PNl g3+s) + € 1/0 P(|[vlg2.s+s). (5.34)

O

5.2 Propagation of the physical sign condition

For the MHD system, we still need to show that the physical sign condition (1.12) can be propagated to a
positive time if it holds for the initial data, that is, —03Q|r, > €o > 0 holds in a short time interval [0, T'] for
some €g, provided —03Q|r, > €, > 0 holds at ¢ = 0 for some €. We start with the following lemma:

Lemma 5.5. Let T > 0 be fixed. Assume f : [0,T] x I} — R satisfies f € L*([0,T]; H'>(I'})) and
3 f € L=([0, T]); H*5(I")), then f € C%3([0,T] x I').
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Proof. Since f € L*([0,T]; H'3(I")), we have 9, f, 3, f € L*®([0, T]; H%>(I"})). By Sobolev embedding
and Holder’s inequality, we have

L%([0, T); HO3 (1)) < L*®°([0, T]; L*(I})) — L*([0, T]; L*(I'})) = L*([0, T] x I'),

which implies £ € W14([0, T]x I'}). Finally, we use Morrey’s embedding W 14([0, T]x I') < C%4 ([0, T]x
I'1) to conclude that f € CO’%([O, T]x I). O

Recall we have shown that Q € L°°([0, T]; H31%(£2)) and Q; € L°°([0, T]; H>>+%(£2)). This, together
with the trace lemma, gives d3Q |, € L°°([0, T]; H'>(I'1)) and 33 Q|r, € L*®([0, T]; H%>(I)). Therefore,
we are able to set f = d3Q in Lemma 5.2 to see that 93 Q is 1/4-Holder continuous in [0, 7] x I;. Now, suppose
—030|r, > €, holds at t = 0 for some €, > 0, then there exists a ¢g > 0 such that —d30|r, > ¢ for all

t € [0, T] if the time T is chosen sufficiently small. This verifies that the physical sign condition (1.12) can be
propagated to a positive time, provided it holds at t = 0.

5.3 Gronwall type argument

Now we recall that
N@) = 113345 + 10O 32505 + 16O 132545 (5.35)
From (4.1), (5.23) and (5.34), we have :

N@) S eP(In@)gs+s) + + PN () + P(N(t))/o P(N(s))ds
(5.36)

t
+ e P P([n(0) | 2.5+8) + € / [v($)|| g2.5+5 ds.
0

For fixed € < 1, recall that 2 = T? x (0,€) and 5(0) = Id, one may choose € sufficiently small so that
e L P(||n(0)|| g2.5+s) < 1. Then by a Gronwall-type argument in [36] we conclude that:

N(t) <1+ P(N(0)), when ¢ €[0,T]. (5.37)

for some T = T(N(0), €).

6 The case of a general domain

In this section we show how to adapt the ideas used in the proof on Theorem 1.1 to the case of a general bounded
domain with small volume. The physical situation we have in mind is that of a conducting liquid droplet with
sufficiently small volume. We shall adapt the idea used in Section 12 of [10] to our case. The goal of this section
is to prove:

Theorem 6.1. Let 2 C R3 be a bounded domain with smooth boundary I", and denote n by the unit outward
normal of I". Let (, v, b) be the solution of

drve —bgatPd, by +akd, 0 =0 in [0, T] x £2;
d¢by — bgattd,ve = 0 in [0, T] x £2; 6.1
ayd,v* =0, ald,b* =0 in [0, T] x £; '

a*b,b, = 2, 0= %62, a’fb"NM =0 on I’

and § € (0,0.5). Assume that v(0,-) = vo € H>55(2) and b(0,-) = by € H?15(£2) be divergence free
vector fields and by -n = Oon I". Let

N(r) == ||71(t)||,2v.13+s + ||v(t)||12v_12_5+5 + ||b(f)||§.1245+5- (6.2)
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Then if diam(§2) := € < 1, there exists a T > 0, depending only on N(0) and € such that N(z) < P(N(0))
for all ¢ € [0, T'], provided the physical sign condition

d
— % (=0 = €0 > 0, onlI (6.3)

holds.

Flatten the boundary: Let 2 C R? be a bounded domain with smooth boundary I" with diameter 8¢ < 1.
Given yg € I', there exists r > 0, r < 4¢€ and a smooth function ¢ such that (after a rigid motion and relabeling
the coordinates if necessary) we have

N0 Br(yo) =1y € Br(yo) : y3 = ¢(y1,y2) + 1}

Now, we take coordinates that flatten the boundary near yg. To be more specific, there exists R > 0 and a
diffeomorphism
@ : 20 By (yo) > Br(0,0,1) N{z3 > 1}

such that @(y1, y2, y3) = (1, ¥2, ¥3—@(y1, ¥2)). Note that det(D®) = 1, and so det(D@P~!) = 1. Denoting
=0 landy = ¢!, we have

WV(z1,22,23) = (21,22, 23 + ¥ (21, 22)).

Moreover, we must have R < 4¢ since both @ and ¥ are volume-preserving diffeomorphisms.

The local Lagrangian map and the cut-off functions: Consider the Lagrangian map 1 : 2 — £2(¢), and
set ) = noW¥. Then 9,7 = d;n o ¥ = u o 1), where u is the velocity of the moving domain £2(¢). In view of
this, if we introduce _
b=uof, b=Bof, a=[3" Q=007

then these new variables verify the incompressible MHD equations in the domain Bgr(0,0,1) N {z3 > 1}.
We thus use suitably chosen cut-off functions to produce local estimate, passing to the global estimate by the
standard gluing procedure. Let 6 be a smooth cut-off function such that 0 < 8 < 1 with & = 1 in B r/5(0,0,1)
and supp @ C Bpr/4(0,0,1). Therefore, extending all quantities to be identically 0 outside Bg/4(0,0, 1) and
since R < 4, we may consider the equations and variables defined on the reference domain £2 = T2 x (0, €).
This allows us to adapt the tangential energy estimates in Section 4, but all integrands should carry the cut-off
function 8. Also, unlike Section 4, no integral over the lower boundary Iy of Qs present since all variables
vanish there in view of the way they have been extended.

The energy estimate: First, since (0, z) = (z1, z2, 23 + ¥ (21, z2)), a direct computation yields thatat # = 0
we have

1 0 —oy
a=10 1 —0dy
0 0 1
In the proof of Theorem 1.1, for which ¢ = 0, we used a(0) — I = O to produce some small parameters

(i.e., Lemma 2.1 (7)) in the energy estimates. We need dy to be small in order to apply the same argument
here. This can be achieved since we may assume, without loss of generality, that dy(0,0) = 0, and so the
smallness of |0V ||z ooy can be achieved by the mean value theorem possibly after reducing €, provided that
Ve H25+8 (F)

We now apply the energy estimates of Section 4 with

S-=9*>°t3(9.). (6.4)

The estimates in Section 3 and Section 5 follow from a similar (and easier) argument once this is done.
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In order to simplify the exposition, we will omit tildes from all quantities and continue to label 1, v, b, @ and
g, which are only locally defined Lagrangian flow map, velocity, magnetic field, cofactor matrix, and pressure,
respectively. We start by differentiating || Sv|| 12(§) 1€

d
! / (Sv)(Sva) = /N<Sv“)<a,5va)

2dt 2 2
_ @ w P © (6.5
=- Q(Sv )(S(ay0,0)) + ~(}(Sv )(S(by duba))
=1+J.
To control 7, we have:
] = — /~ 52.54—8(91}&)52.54-8 (eagauQ)
2
- _ /: 52.5—1—8 (Qva)gag (52.5+5 [au Q]) _ /~ 52.5—1—8 (91}‘1)52'5_‘_8 (905)(3;LQ)
7] 2
i P (6.6)
_ /ﬁ;} 52.5+8(9va)[52.5+8(9aé¢auQ) _ 9a5(52.5+3 [8MQ]) _ 52.5+8 (Qag)(auQ)] )
I3
Control of /;: We integrate d,, by parts to get
I, = / 0al (32°75[09,,v%]) (951 Q) — / (@5 0)(0al Sv¥N,,)dS(I') + R. (6.7)
$2 no——s

I

Here and throughout, R contains error terms when the derivatives fall on 6, which can be controlled by the RHS
of (6.16). Now,

I = [ 6@, @ 0)- [ 6San o @3H0)

1112

- f 0[S (ald,v%) — (Sal)d,v* — alSd, v (3> Q). (6.8)
2

1113

I113 can be controlled using the Kato-Ponce inequality. To do this, however, each separated term needs to be
properly cut-off since the fractional derivatives destroy the compact support. Let 6 be a smooth cut-off function
such that 0 < 6 < 1 with suppf C Bg3(0,0,1) and & = 1 on supp 0. The construction of 6 allows us to
introduce 6 without changing given expressions.

Notation 6.2. We shall use Cy to denote constants depend on ||0||g3+5 and ||6]|3+s throughout the rest of
this section. B
Now, commutating 6 through 32-5+% we get

Iz S 1973 [0(ak00,0%)] — 00T (ak09,,v%) )| L3/2[109*° 5 Q| 13

_ _ _ _ (6.9)
+ 115750 [0(aly 08,,0%)] = 55 (Bal)09 v — 0al 9>+ (09,0 3211057 Q| 3.

The first line is bounded by

196110 llak 09,0 wrs+s.3/2 + 10llwasts.32 lal 09,0 Lo < Collfallgrs+s]|0vl2545,  (6.10)
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and the second line is bounded by

(194 ly1.5+5.5109,0% w15 + [10al w16 108,0% | g1.5+5) 09>+ Q3

< CollOQ | gs+s110ally245 1100 gr2s+s. (6.11)

Moreover, we integrate 1/2-tangential derivatives by parts and then /11, becomes

/~ 7 10a18°° (6358 09,0%) + R (6.12)
2
where
/ 71903 (692548 09 ,0%) 6.13)
2
< N10allg2+5 (100 Q| o5 09,,0% [ oo + 0972 Q1113 [160,,0% [lwo.5.6) (6.14)
< Coll0allg2+s110Q || g3+5 10l g2 5+5. (6.15)
Summing these up, we have
I < Ce(llf)allym||9Q||Hs+s||9vllyzs+«s + ”éQ”H3+5||0a||§.12+8”9v”H2~5+5>‘ (6.16)

Control of 73: We have

I3 S 9215 (00) [ 211971 (0403, Q) — 0ak (%8103, 0]) — 0% (0a%)(03,,0) | 2
< Coll0v| g2s5+5]10al g2+5110 Q| gra+s. (6.17)

Control of /,: First it is easy to check that the decomposition (4.9) remains valid, i.e., for any smooth function
u, we have

2
Su= " Snm(Ou) + So(6u). (6.18)

m=1

where S- is defined as (6.4), and S;,,, So are defined in (4.9). Then the analysis of (4.11) suggests that it suffices
to consider the term associated to /51, i.€.,

2
=Y /Q P58 (00 (S (09 D) (aloab )3, 0.
m=1
Writing an=l Smm = 02518 — S we have
I, = /52525” (Bv*)>5T (051" ) (@ ab)d, 0 — /9 325 (0v*)So(8dp7n°) (atal)d, 0 + R, (6.19)

where the second term is controlled directly by Cg||0v|| 2.5+ ||fa ||§{1,5+a 10 Ol 151107l gr2.5+5. For the first
term, we integrate dg by parts to obtain

Iy =— /Q 0251595 (0v*) (0> 0n¥ ) (akab), 0 — /Q 228 (0v*) (3> 0n”)dg[(atkab)d,, O]

’
1211

(6.20)
+ /F 9258 (0v) (2T 0¥ )alab (3,,Q) Npd S(I) .
1

/
1212



Luo and Zhang 25

There is no problem to control the second term in the first line of (6.20) and I, is controlled analogous to 212
in Section 4. For I, we write

Iy, = _/~ abSagv*(atsn*)9,. 0 + R
2
= / (Saly(@gv*)(@"Sn")d, 0 + / [S(@Bdgv®) — (Sal)(dpvY) — al Sdpv*) (@l Sn")d,. 0. (6.21)
2 2

The first term can be treated similar to (6.12) by integrating 0.5-derivatives by parts. The second term is equal
to

/{2[52.5—#8(9615 8ﬁ voz) _ 52'5+8(9a5)(8,3 va) _ 9a552.5+88ﬂ va](aCJ,SWV)alLQ
- / ab (%5 (0gv*) — 05250950 (ak S1”)0,. 0. 6.22)
2
The first line can be controlled similar to (6.11), and since

||§2.5+5 (98/3 va) . 952.5+5 aﬂ vY ||L2

72.5+8 (6.23)
SN0 Lo lvll 2545 + 1977720l L2[|dv oo < Collvllgz2.5+5.

so the second line can be bounded by Cy ||éa||12,_11'5H 160 | gr2.5+s 100 gr2.5+5 6v | gas+s.

Control of J + % % |Sh ”i2: This follows from the what has been done in Section 4 except that the cancellation
(4.24) holds up to a term of type R, which can still be controlled appropriately.

After covering I" with finitely many balls, the procedure described above yields the tangential energy es-
timates near the I". We still need to cover the region of £2 not covered by these balls. However, we have no
problem to cover this region using finitely many balls with radius r < 4€ and again reducing the tangential
estimates to £2. In addition, there are no boundary integrals on either I'y and I.

Finally, we need to show that the estimates in Section 3 and Section 5 are still valid in each local coordi-
nate patch. This follows from adapting the estimates in Section 3 and Section 5 to the MHD equations after
commuting 6, i.e.,

3¢ (Ovg) — bpaPd, (0by) + ak8,(00) = —bgart(3,0)b + ak (3,6)Q  in [0, T] x 2

3¢ (0by) — bgatP 3, (Ovy) = —bgatP (3,,0)vy in[0, 7] x £2; 6.24)
ayd,v* =0, ald,b* =0 in[0,T] x £2; '
a*b,b, = c?, 0= %cz, affb“N,L =0 onI.

We can recover the equations for Q, Q;, B,v and B;b modulo error terms involving derivatives land on 6, but
these contribute only to lower order terms.
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