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Abstract

We consider 3D compressible isentropic Euler equations describing the motion of a liquid in an unbounded initial domain
with a moving boundary and a fixed flat bottom at finite depth. The liquid is under the influence of gravity and surface tension
and it is not assumed to be irrotational. We prove the local well-posedness by introducing carefully-designed approximate
equations which are asymptotically consistent with the a priori energy estimates. The energy estimates yield no regularity loss
and are uniform in Mach number. Also, they are uniform in surface tension coefficient if the Rayleigh-Taylor sign condition
holds initially. We can thus simultaneously obtain incompressible and vanishing-surface-tension limits. The method developed
in this paper is a unified and robust hyperbolic approach to free-boundary problems in compressible Euler equations. It can
be applied to some important complex fluid models as it relies on neither parabolic regularization nor irrotational assumption.
This paper joined with our previous works [45, 46] rigorously proves the local well-posedness and the incompressible limit for
a compressible gravity water wave with or without surface tension.
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1 Introduction

In this paper we study the motion of water waves in R* described by the compressible Euler equations:

p(0; +u-Vyu=-Vp - pges, inD
0p+V-(pu)=0 inD (1.1)
p=pp) inD

where D = | {t} x D, with D, := {(x1,x2,%3) € R® 1 =b < x3 < Y(t, x1, x2)} with b > 10 a given constant representing the
0<t<T
unbounded domain with finite depth occupied by the fluid at each fixed time ¢, whose boundary 09; is determined by a moving

surface represented via the graph Z, := {(x}, x, x3) € R3 : x3 = Y(t, x1, x2)} and a flat bottom X, := {(x1, x2, x3) € R? : x3 = —b}.
In the first two equations of (1.1), u, p, p represent respectively the fluid’s velocity, density, and pressure. Also, we assume that
the fluid is under influence of the gravity pges, with g > 0 and e3 = (0,0, 1)7. The third equation of (1.1) is known to be the
equation of states which satisfies

p'(p) >0, forp=>po, (1.2)

where p := plsp is a positive constant (we set po = 1 for simplicity), which is in the case of an isentropic liguid'. The equation
of states is required to close the system of compressible Euler equations. Another type of boundary condition is p|sp = 0 which
is in the case of a gas and is not discussed in this paper.

The initial and boundary conditions of the system (1.1) are

Do={x:0,x)e D}, and u =ug,p =py on{t=0}x Dy, (1.3)
Dilap € T(0D), w3ls, =0, pls, = oH, (1.4

where T(0D) stands for the tangent bundle of 9. The first condition in (1.4) is the kinematic boundary condition, which
indicates that the free surface boundary moves with the normal component of the velocity (see (1.16) for an explicit illustration).
The second condition is the slip condition imposed on the flat bottom X,. The last condition in (1.4) shows that the pressure
is balanced by surface tension on the moving surface X;. Here, o > 0 is called the surface tension constant, and H denotes
the mean curvature of the free boundary of the fluid domain. Note that H, T(dD) and p are functions of the unknowns u, p
and D. So these quantities are not known a priori, and hence have to be determined alongside a solution to the problem. Let
D, := 0, + u - V be the material derivative. The equations modeling the motion of compressible gravity-capillary water waves
read

pDu = —Vp — pges, inD,
op+V-(pu)=0, %nD, 15)
p = pp), inD,
(l/t, P, D)'t:() = (I/t(), Po, D0)9
equipped with the boundary conditions
p=ocH on Up<r<r{t} X Zr,
v3;=0 on [0,T] X Zp, (1.6)

D/lop € T(0D).

System (1.5) together with (1.6) admits a conserved quantity

Eo(?) ;:%f p|u|2dx+f pQ(p)dx+f(p—l)gx3dx+fg|w|2+0'(\/1+|€¢//|2—1) dx’,
D, Dy D, P

where Q(p) := flp p(Nr~2drand dx’ := dx, dx,. A direct calculation (cf. [65, Section 6.1]) shows E;() = 0. Note that we
need a localized initial data such that Ez(0) < +co which can be achieved similarly as in [45, Section 7] .

'In general, the equation of state is p = p(p,S) where S denotes the entropy of the fluid and satisfies (8; + u - V)S = 0. It is required to have dp/dp > 0.
When § is a constant, we say the fluid is isentropic. Also, the assumptions p’(p) > 0 and p > pp ensure the hyperbolicity of (1.1).



1.1 Fixing the fluid domain
We shall convert (1.5)-(1.6) into a system of equations defined on the fixed domain
Q ={(x1,x,x3): =b < x3 < 0}.

One way to achieve this would be to consider the Lagrangian coordinates. Nevertheless, here, we consider a family of diffeo-
morphism ®O(z,-) : Q — D, characterized by the moving surface boundary. In particular, let

D(t, x1, X2, x3) = (8, X1, X2, (2, X1, X2, X3)) , (L.7)
where
@(t, x1, X2, X3) = X3 + ) (X3 (2, x1, X2), (1.8)

and y € C°(=b, 0] is a smooth cut-off function satisfying the following bound for some small constant 5y > 0.

5

1
§ I ®llzs-poy € ———, x =1 on (=6,0], (1.9
FIIX b0 S T X (=bo )

We will write x” = (x, x,) throughout the rest of this paper. It can be seen that
Kot x',x3) = 1+ (ea)y(t, x') >0, 1e€[0,T],

for some small 7 > 0, which ensures that ®() is a diffeomorphism.
Let x = (¥, x3) € Q. We denote respectively by

v(t, x) = u(t, D, x)), pt x)=pE 0t x), qt x)=pt 0, x)) (1.10)

the velocity, density, and pressure defined on the fixed domain Q. Also, we introduce the differential operators

O
0 =0, — =05, 1.11
t t 3390 3 ( )
04
V=0 =0,- 2%8, a=1,2, (1.12)
03¢
1
Ve =0f = —0s, 1.13
3757 507 (1.13)
and thus there hold
Oquo @ =0%, O,po®=0%, Oupo®=0%, a=t1,273. (1.14)
Moreover, setting o
V =0:=(01,02),
the boundary condition (1.6) is turned into
— v
g=-0V | —Y | on[0.T]x%, (1.15)
1+ VP
Oy =v-N, N=(=0y,-0,1)", on[0,T]xZ, (1.16)
v; =0, on[0,T]xZX,, (1.17)
respectively, where £ = {x3 = 0} and £, = {x3 = —b}. Let DY := 87 + v - V¥. Then the system (1.5) and (1.6) are converted into
pDfv + V¥¢q = —pge; in[0,T] x Q,
Fp+V?-(ov)=0 in[0,T] X Q,
q=q) in [0, 7] x Q,
= V.| 0,T] X3, 1.18
q=-c ( W) on [0, 7] (1.18)
oy=v-N on [0, T]XZ,
v3 =0 on [0,T] X Xp,
(v, 0, Yli=0 = Vo, Po> o) = (o, Po, Yo)-




The second equation of (1.18), i.e., the continuity equation, can be re-expressed as
Dfp +pV¥-v=0. (1.19)
Let ¥ :=logp. Since ¢’(p) > 0 indicates ¥'(g) > 0, then (1.19) is equivalent to
F'(q)Dfq+ V¥ -v=0. (1.20)

Also, by invoking (1.11)-(1.13), we can alternatively write the material derivative DY as
= 1
DY =0,+v-V+ —(©v-N-0d,p)d;, (1.21)
03¢

where v+ V = V101 + v20,, and N := (=0 ¢, —02¢, 1). This formulation provides a good motivation to define the smoothed
material derivative in Section 3 and the linearized material derivative in Section 5.
1.2 The new formulation with modified pressure
Since the gravity term pge; ¢ L*(Q), we then use (')fcp = §;3 to rewrite the momentum equation as
pDfV + V¥4 = ~(p — )ges,

where
q:=q+ gy, (1.22)

is the “modified” pressure balanced by gravity. Under this setting, the fluid pressure gradient V¥§ becomes an L>(2) function
and the source term becomes (p — 1)ges which is also in L*(Q) if we assume the initial data po—1¢€ L*(Q). We then directly
calculate that Df¢ = v3, so the continuity equation (1.20) now becomes

F(@D{g+ V¢ -v=F"(@gD{e = F'(q)gvs. (1.23)

and thus the compressible gravity-capillary water wave system is now reformulated as follows

pD?v + V94 = —(p — 1)ges in[0,T] X Q,

F(@DIG+Ve-v=F"(@gvs in[0,T]xQ,

9=9),4=q+g in[0,T] x Q,

é=gw—ﬁ'( 2 on [0,T] X 2, (1.24)
1+[Vy?

oWy =v-N on[0,T] XX,

v3=0 on [0,T] X Xy,

(Vapa w)'t:() = (VOapOa WO)

1.3 The equation of states and sound speed

Part of this paper is devoted to studying the behavior of the solution of (1.24) as either the sound speed goes to infinity or the
surface tension o coefficient goes to 0. The former is known to be the incompressible limit, and the latter is known to be the
zero surface tension limit. Mathematically, it is convenient to view the sound speed c; := +/¢’(p) as a family of parameters. As
in [16, 17, 18, 43, 45], we consider a family {g (o)} parametrized by A’ € (0, o), where

) = @ (P)|p=1- (1.25)

Here and in the sequel, we slightly abuse the terminology and call A’ the sound speed. A typical choice of the equation of states
qv(p) would be the Tait type equation

e =y @)’ -1, y=1 (1.26)



When viewing the density as a function of the pressure, this indicates

pu(q) = (ﬁq + l)y . and log (or(q) = "' log( u

()?

q+1) (1.27)

Hence, we can view ¥ (q) as a parametrized family {F,(q)} as well, where A = /li Indeed, we have

Falq) =y~ log(Xyq + 1). (1.28)
We again slightly abuse the terminology and call A the Mach number?. Furthermore, there exists C > 0 such that
C A2 <Fj(q)<CA. (1.29)
Also, we assume
7@l s C 17,7 (@)l < CIF{(@) < CFi(9) (1.30)
holds for 0 < s < 4.

Remark (Issue with the infinite depth case). Our proof in this paper also works for the case of infinite depth provided that the
equation of state for compressible gravity water wave system is reasonable in physics when Q is the lower half space. Indeed,
if one assume g = (p — 1)A7* for instance, then ¥, = O(4*) and one can prove Ag € L*(Q) in the L? estimates. Plugging the
equation of state yields 17" (p — 1) + Agx3 € L*(Q) and thus one may have to let Agx3; € L*(Q), which requires some fast decay
for A near infinite depth, for example A = 0(|x|’%’6) for some ¢ > O (which also implies (o — 1){x)>>* e L2(Q)). However, it
is still unknown whether there is a physical equation of state such that the Mach number A is related to the depth and has such
fast decay toward infinite depth. Hence, the appearance of equation of state tells a crucial difference from the incompressible

gravity water wave model, for which ¢ is a Lagrangian multiplier not related to the density.

1.4 An overview of previous results

The study of free-surface inviscid fluids has blossomed over the past two decades or so. Most of the previous studies focused
on incompressible fluid models, i.e., the fluid velocity satisfies divu = 0 and thus the density p is equal to a constant. In
this case, the fluid pressure p is not determined by the equation of states but appears as a Lagrangian multiplier enforcing the
divergence-free constraint. For the local well-posedness (LWP) for the free-boundary incompressible Euler equations, the first
breakthrough came in Wu [66, 67] for the irrotational case and Christodoulou-Lindblad [10] and Lindblad [39, 42] for the
case of nonzero vorticity. See also [52, 70, 29, 5, 37, 51] for the irrotational case and [13, 72, 44, 55, 56, 57, 3, 2, 63] for
the case of nonzero vorticity. When the fluid velocity is irrotational (the vorticity curl ug = 0, a condition that is preserved
by the evolution), the problem is called the (incompressible and irrotational) water wave problem which has attracted great
attention for the long time existence. Previous works mostly focused on the case of an unbounded domain diffeomorphic
to lower half-space or R4 x (=b,0) and we refer to Wu [68, 69] for the first breakthrough and numerous related works
[19, 20, 4, 30, 15, 23, 22, 24, 25, 64, 73]°. See also [8] for the bounded domain case and [26, 58] for some special cases when
the vorticity is nonzero.

The development for the free-boundary compressible Euler equations is much less, especially for the case of a liquid as
opposed to a gas (plz = 0) in a physical vacuum. For the gas model, we refer to [32, 12, 14, 47, 33, 27] and references therein.
For the liquid model, most previous works focus on the case of a bounded domain. We refer to Lindblad [40, 41] for the first
result and related works [11, 43, 17, 21] for LWP or a priori estimates.

When the fluid domain is unbounded, that is, the compressible gravity water wave problem, the existing literature neglected
the effect of surface tension. Trakhinin [59] first proved the LWP for the non-isentropic case by using Nash-Moser iteration
which leads to a loss of regularity from initial data to solution. The first author proved the a priori estimates without loss of
regularity and the incompressible limit for the isentropic case in [45], but it is still difficult to use the energy constructed in [45]
to prove the local existence. Later, the authors [46] proved the LWP without using Nash-Moser, but the energy functional in [46]
is not uniform in Mach number, and thus we cannot derive the incompressible limit (see the next paragraph) while constructing
the solution. The second author refined and simplified the techniques in [59, 46] such that the LWP and the incompressible

2The Mach number is defined to be M = u/c;. In the paper, the velocity is always of size O(1) (in L?>(Q)) and thus M = O(A).
31t is well-known that one can reduce the incompressible Euler equations to a system of equations on the moving boundary when the velocity is irrotational.
This method cannot be adapted to the study of compressible water waves with vorticity.



limit can be simultaneously proved in the study of compressible elastodynamics [71] which can be directly applied to Euler
equations. However, the methods in these works do not apply to the case with nonzero surface tension.

Another topic in this paper concerns the incompressible limit of free-boundary compressible Euler equations. When the
free-surface motion is neglected (that is, Euler equations in a fixed domain), there have been a lot of studies in this direction
and we refer to [34, 35, 18, 54, 62, 7, 31, 28, 50, 1, 16]. However, much less is known about the incompressible limit of
free-surface inviscid fluids. The first result was due to Lindblad and the first author [43] for the case of a bounded domain and
zero surface tension. See also the first author’s work [45] for compressible gravity water wave, the second author’s work [71]
for a simpler proof that works for both bounded and unbounded domain, and Disconzi and the first author [17] for the case
o > 0 in a bounded fluid domain.

In a nutshell, we develop a new method to prove the local-in-time solution of the motion of compressible gravity-capillary
water waves with nonzero vorticity in this paper. The new method is expected to be:

e Unified: The LWP, the incompressible limit, and the zero surface tension limit can be simultaneously justified.

e Simple: A hyperbolic approach that does not lead to derivative loss or depends on the boundedness of the fluid domain.
That is, we want to avoid using Nash-Moser iteration as in [59] and parabolic regularization as in [11]. In particular, the
Galerkin method is needed when using parabolic regularization, but this is difficult to proceed in the case of an unbounded
domain, as the spectrum of Laplacian is no longer discrete.

e Robust: The proof should not rely on the so-called irrotational assumption®. This is necessary to apply our method
to free-boundary problems in complex fluids, such as magnetohydrodynamics (MHD), elastodynamics, and so on, for
which the irrotational assumption no longer holds due to the strong coupling between the fluid motion and other physical
quantities.

1.5 The main theorems

The first theorem concerns the local well-posedness for the motion of compressible gravity-capillary water waves modeled by
(1.24), provided that the initial data satisfies certain compatibility conditions. Particularly, we say the data (¥, vo, o), Where
qo0 = q(po), satisfies the zeroth compatibility condition if

g0 =0H, onX (1.31)
holds. Moreover, the initial data satisfies the k-th (k > 0) compatibility condition if
(D)) qli—o = (D)) (@H)li=0, on X (1.32)
holds.

Theorem 1.1 (Local well-posedness). Let o > 0 be fixed. Let (¥, vo, po — 1) € H>(Z) X H*(Q) x H*(Q) be the initial data of
(1.24) that verifies the compatibility conditions (1.32) up to 3-rd order and V(3)|zb = (. Then there exists T > 0 depending only
on the initial data, such that (1.24) admits a unique solution (¥(f), v(r), p(t)) verifies the energy estimate expressed in terms of
pressure

sup E(7) <, P(E(0)), (1.33)

0<t<T

where P(---) is a generic polynomial in its arguments, and the energy E(z) is defined to be

4 3
Et) = ) (I6vOIE + VTV wOR_,) + 103015 + D 16[aOI_ + INF (@07 a0l an
k=0 k=1 .
+ IVF @l + Nl = 115 + glyls.
Here, || - ||y and | - |; represents the interior Sobolev norm || - ||zs(q) and the boundary Sobolev norm | - |gs(s) on the fixed top X

respectively. Also there exists a constant C, depending on ¥, vp and go, such that E(0) < C.

Remark. In Appendix B, we show that we can construct smooth initial data (o, vo, o) that satisfies the compatibility condi-
tions up to order 3. These compatibility conditions are required so that we can show E(0) < C by adapting the arguments in
[17, Section 4.3].

“4For Euler equations, if the initial vorticity is zero, then the vorticity is always zero. Based on this property, one can enhance the regularity of the flow map

of fluid velocity to 1/2-order higher and thus the regularity of the vorticity is only 1/2-order lower than the velocity provided this holds for the initial vorticity.
One can refer to [36] for the proof.




Remark. The second line in (1.34) is the L? part of the energy. Note that we do not have the control for ||g(¢)||p without the
weight of the Mach number. That is why we write ||0g||s instead of ||g||4 in the first line.

The next main theorem concerns the incompressible and zero-surface-tension double limits. We consider the Euler equa-
tions modeling the motion of incompressible gravity water waves satisfied by (&, w, g;,) with localized initial data (wy, &) and
3
wilg, = 0:
(VR

Dfw+V¢p =0 in[0,T] X Q,

Ve ew=0 in[0,T] X Q,

P =qin+ 8¢ in[0,T] x Q,

p=gé on [0, 7] x %, (1.35)
0éE=w-N on[0,T] X Z,

w3 =0 on [0,T] X X,

W, Ole=0 = (wo, &o),

where we slightly abuse the notation by still setting ¢(f,x) = x3 + x(x3)&(t, x’) to be the extension of & in Q. Denote
(7, v, pt) to be the solution of (1.24) indexed by o~ and A, we prove that (7, v, p*7) converges to (£, w, 1) as 1,00 — 0
provided the convergence of initial datum. Note that the convergence of compressible initial datum already implies they are
also localized datum.

Theorem 1.2 (Incompressible and zero-surface-tension limits). Let (ng"r, vg"T, pg"r — 1) be the initial data of (1.24) for each
fixed (1, 0) € R* x R, verifying

a. The sequence of initial data (7, vj"", po” — 1) € H3(Z) x H*(Q) x H*(Q) satisfies (1.32) for 0 < k < 3.
b. W7 vy 057 = 1) = (&, wo,0) in CA(EZ) x CHQ) x C'(Q) as 2,0 — 0.

c. Both incompressible and compressible pressures g and g;, satisfy the Rayleigh-Taylor sign condition

-03g>co>0, on{r=0}xZ, (1.36)
—03Gin 2 ¢co >0, on {t=0}x2Z, (1.37)

for some ¢y > 0.

Then it holds that
WV = 1) = (Ew,0), in C°[0,T1,C3(X) x C2(Q) x C'(Y),
after possibly passing to a subsequence.

Theorem 1.2 is a direct consequence of uniform-in-A4, o~ estimates for the compressible gravity-capillary water wave system
(1.24) and the compactness argument. Indeed, the energy estimate (1.33) established in Theorem 1.1 is already uniform in
Mach number A. The energy estimate (1.33) for E(¢) is also independent of the surface tension coefficient o provided that the
Rayleigh-Taylor sign condition (1.36) holds initially.

Remark. Although our energy functional E(¢) is expressed in terms of ¢, the incompressible limit process is only for (47, 47, pt7)
that converges to (£, w, 1). The compressible pressure g never converges to the incompressible pressure g;,, because the former

one is the solution to a quasilinear symmetric hyperbolic system but the latter one appears as a Lagrangian multiplier. Indeed,

as was indicated by [43, 45, 71], it is the enthalpy h(p) := flp q'(r)/r dr of the compressible equations that converges to the
incompressible pressure g;,. On the other hand, the convergence of |[0*” — 1||; can be easily proved if we write the continuity
equation to be D¥(p — 1) = —p(V¥ - v) and use Grénwall’s inequality for its H> estimates.

Note that the energy estimate (1.33) requires E(0) < +oo and thus requires 6? ¢(0) = O(1) and 6?‘5(0) = 0(17"). However,
the propagation of the Rayleigh-Taylor sign condition only requires the boundedness of 9,;03¢g, not including higher-order time
derivatives. We can also achieve this by adjusting the weight of the Mach number in the energy functional.

Theorem 1.3 (Improved uniform estimates in A, o). Under the hypothesis of Theorem 1.1, if we further assume the Rayleigh-
Taylor sign condition (1.36) holds for the initial data of (1.24), then we can establish a local-in-time estimate that is uniform in



both Mach number A and the surface tension coefficient o for the following energy functional

1
EM () = Z 105V (OI5_, + 10" 65 (I;  (Non-weighted interior norms)
k=0

1
+ Z | ﬁ?ﬁfw”’”(t)li_k + |8f¢/l"7(t)|421_k (Non-weighted boundary norms)
k=0

HIFEDZFT O + g™ @R (L norms) (1.38)

s+1

2
+ Y IFDRRVE IR, + IFDT g I3, (weighted interior norms)
s=0
2 —_—
+ Z |VT(F IV YA () + (FIP g (2.,  (weighted boundary norms).
s=0

Here (v, g7, 1) is the solution to (1.24) with Mach number equal to A and the weight 7 = O(4?).

Remark. The above estimate only requires d,q(0) to be bounded but not for Btzq(O) = O(A™"). In this case, the continuity
equation implies the initial divergence V¥ - vy = O(4?), that is, the compressible data v, is a small perturbation of the incom-
pressible data wy, and this perturbation is completely contributed by the compressibility. Such compressible data are usually
called “well-prepared initial data”>. On the other hand, the propagation of the Rayleigh-Taylor sign condition requires the
boundedness of d,q, so we have reached the minimal requirement for the initial data being “well-prepared”.

Acknowledgment We would like to thank Tao Wang and Kai Zhou for reading and commenting on the first draft of this
paper.

List of Notations

e (Fixed domain and its boundary) Q := {x € R}| = b < x3 < 0}. x = (x|, X2, x3), and X’ = (x1,X%). £ := {x € R3|x3 =
0}, Zp := {x e R?|x3 = —b). B B

e (Tangential derivatives) 7o = d;, 71 = 01, T2 = 02, T3 = w(x3)d3, where w(x3) € C*(-b,0) is assumed to be bounded,
comparable to |x3| in [-2, 0] and vanishing on £ U X,,.

o (L¥-norm) || - lleo = I - llz=()-

* (Sobolev norms) || - [[s := || - [, and | - |s == [ - [las(z).-

e (Polynomials) Py := P(E(0)), P := P(E“(0)). P(---) denotes a generic polynomial in its arguments.

o (Commutators) [T, flg = T(fg) — f(Tg), T, f,gl :=T(fg) — T(f)g — fT(g) where T is a differential operator and f, g
are functions.

e (Equality modulo lower order terms) A L B means A = B modulo lower order terms.

2 An overview of our methodology

Before going to the detailed proofs, we will briefly introduce our methodology for deriving energy estimates that are uniform
in both surface tension and Mach number, and the construction of solutions to the linearized and the nonlinear problem via a
carefully-designed approximation scheme.

2.1 Uniform estimates in Mach number and surface tension

Let us temporarily focus on the energy estimates of the original system (1.24) instead of the construction of solutions. Indeed,
the strategies on the a priori estimates will illustrate why we need the approximation scheme defined in the next subsection.

50ne can find the definitions of “well-prepared” and “ill-prepared” in [50, 1] for rescaled Euler system, which is equivalent to the statement in our paper.



2.1.1 Div-Curl analysis and reduction of pressure

We start with the control of ||v||4. Using div-curl decomposition, ||v||4 is bounded by [|[V¥Xv||s, |[V¥-V||3 and ||54v||0, where the curl
part can be directly controlled by analyzing the evolution equation of V¥ x v. The continuity equation reduces the divergence to
IF”(q)D? qll5. By using the definition of DY, it remains to control ||F'(q)7 ¢ll; for a tangential derivative 7~ = 8;, d or w(x3)d;
where w(x3) € C*(-b,0) is assumed to be bounded, comparable to |x3| in [-2, 0] and vanishing on X U Z;. On the other hand,
the momentum equation indicates that —-Vgq ~ va. So the control of ||g|l4 is then reduced to ||D‘fv||3 and then to ||7V||3. At this
point, we have reduced one normal derivative to one tangential derivative 7.

We can similarly apply this reduction to the time derivatives of v and g. Finally, we need to control the L*(Q) norms of 7%
and 7 %g with |e| = 4, where the tangential derivative 7~ can be 0,, d and w(x3)05.

2.1.2 Tangential estimates: Alinhac good unknowns

Reformulation in terms of Alinhac good unknowns. Define 7¢ to be 6;’”551"5;’2(6063)”3 with |a| ;= g+ o1 + a2 + a3 = 4.
In 7 %-tangential estimates, we need to commute 7 ¢ with V;ﬁ. When i = ¢, 1,2, the commutator [7 ¢, Vf] f includes the term
(030) ' T 0,005 f, where the L*(Q) norm of 78;¢ is controlled by |7 %dp4lo. However, the regularity of  obtained in 7 -
estimates is | /o7 *Vio. Using this to control the aforementioned commutator will fail taking zero surface tension limit.

To overcome this difficulty, we introduce the Alinhac good unknown method which reveals that the “essential” leading
order term in 7 *(V? f) is not V¥(7* f) but the covariant derivative V¥ of the “Alinhac good unknown” F. Under our setting,
the good unknown F for f with respect to 7 ¢ is defined by F := 7 f — ‘7"’906? f and satisfies

TV = VEF + G(f), TODYf = DYF + D(f), @2.1)

where ||€;(/)llo and ||D(f)||y can be directly controlled. Then we reformulate the 7 *-differentiated system in terms of V, Q (the
Alinhac good unknowns of v, ¢) as follows

pDfV = -V*Q+R' inQ, (2.2)
F(@DQ+ V¥ -V =R>-E() inQ, (2.3)

where R', R? are commutators that can be directly controlled. The boundary conditions now become

_ v _
Q=07V-|— Y |97, V-N=0T+5-V7% -8, on, 2.4)
1+ [Vyp
V3 =T %3 =T %%d3v; =0 onX,. (2.5)
where S; = 03v-NT % + 3 TPv.-T5N. V3 vanishes on X, due to v3 = 0 and ¢ = —b on .
1B1+(B2|=4
1B111B21>0

In other words, the reformulation in Alinhac good unknowns takes into account the covariance under the change of coordi-
nates such that we can proceed with the tangential estimates in the same way as L? estimates and avoid the regularity loss or the
dependence on o~!. Such remarkable observation was due to Alinhac [6] and was first applied (implicitly) to the Q-tensor en-
ergy method to study free-surface inviscid fluids by Christodoulou-Lindblad [10]. See also [48, 65] for the explicit calculations
for the inviscid limit of incompressible free-boundary Navier-Stokes equations.

Energy estimates. Testing (2.2) by V, integrating by parts and invoking (2.3), we can easily obtain

d1

EE( f p|V|2+9f’(q)|Q|2dq/,)= QVidx — f Q(V-N)dx' - f QC,(v))dV, + controllable terms, (2.6)
Q z Q

Zp
where dV; := 03¢ dx. Note that the first boundary integral is zero due to V3|s, = 0 and the second boundary integral vanishes
when a3 > 0 because the weight function w(x3) vanishes on Z. Hence, it suffices to analyze the space-time derivatives. We take
T“ = 9” for an example to analyze the seond boundary integral.

- f Q(V-N)dx' =— f 8" (cH)D,0% dx’ + f 930" Wd,0%y dx’
x = x 2.7

- f 8 (cH) - V)3 dx’ + f 83g0° Y - V)oY dx’ + f QS dx'.
z z z



Invoking the explicit formula for the mean curvature and integrating V. by parts in the first integral in (2.7), we get
- = d VY Vg 8OV
ST := —f@"(a'(]{)ata"wdx' --Z VT _ VY-V
b

_ dx’ +---
2 dt — —3 ’ (2.8)
PV 1+ Ve

which together with the following inequality gives the boundary energy | \/Eé‘ﬁwl(z):

a? ___VyeaP P
— —3 = —3"
V1 +I[Vyl? \/ 1+ |VyP \/ 1 +|VyP?

For the second term in (2.7), it produces the boundary energy without o-weight provided that the Rayleigh-Taylor sign
condition® —83qols > co > 0 holds. However, the Rayleigh-Taylor sign condition is only assumed when taking zero surface
tension limit but not in the proof of local well-posedness for each given o > 0. Therefore, we have to use the +/o-weighted
energy to control this term when proving local well-posedness. Indeed, it is the control of |T “Yy that yields the only possibility
that the energy estimates depend on o~". The third and fourth terms in (2.7) can be directly controlled after integrating v - v by
parts and using the symmetry. The fifth term can be controlled by invoking (2.4) and integrating V by parts.

Ya € R?,

2.9)

Crucial cancellation structure for the incompressible limit. We still need to analyze the interior integral Iy := — fQ QC;(v)H)dV,.

We note that 7 g appears in this term, but the energy term obtained in tangential estimates is || /7 ’(q)QII%. Such a term in-
troduces a possibility of failure in taking an incompressible limit. When there is at least one spatial derivative in 7%, one can
reduce V¢ to D¥v to avoid losing the weight of sound speed. But in the estimates of full-time derivatives 47, we no longer have
a such reduction for ¢. Instead, we notice there is a cancellation structure when we combine I with part of the boundary term
L QS dx’. Specifically, the boundary integral includes the following term

Jo =4 fa;‘z]af’v -9,N dx’,
s
while /y contains the following terms involving 7¢

Iog :=—4 f 'GoN - 0;07v dx
Q

2
Ioy =- f 8;403(V¥ - )dFpdx + 4 f 0140 (V¥ - v)ddpdx — 4 ) f 8, 4030,0,0;v; dx.
Q Q i=1 V@

We first notice that /oy can be estimated together with Jy by using divergence theorem (the boundary integral on X, vanishes
due to ¢|z, = —b being a constant.)

d
Ioo+Jo = < f (670340N + 8]G0,0:N) - vdx + - -- (2.10)
Q

which can be controlled under time integral by using e-Young’s inequality. Next, we find that the first two terms in Iy; contain
V¢ - v ~ —=F'(q)D?q which contributes to a weight ¥’ (g) and thus avoids losing weight of sound speed on §?. Finally, the last
term in Iy; can be controlled under time integral if we integrate by parts in d; and then .

Combining the steps above, we finish the control of Alinhac good unknowns V, Q. Then by using the definition of good
unknowns, we know |[F — 7% fllo < |7 “Yloll0f |l Which is already controlled by the boundary energy of . Therefore, the a
priori estimates for system (1.24) are closed.

2.1.3 Incompressible limit and zero surface tension limit

The uniform estimates and the limit process. The limit process requires the energy estimates for (1.24) to be uniform in
both o and 77'(g). Indeed, the energy estimates obtained above are already uniform in 7’ (g) thanks to the cancellation structure

The Rayleigh-Taylor sign condition is just a constraint for the initial data. One can easily prove its short-time propagation by using the boundedness of
0:03q. See [46, Section 3.7].
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(2.10). The uniform-in-o estimates require the Rayleigh-Taylor sign condition —d3gg > ¢y > 0 which propagates to a finite
time interval. Once we have —d3g > cy/2 > 0 for the solution to (1.24), the aforementioned problematic boundary term then
becomes

1
RT := f@gé]’]’”lﬂﬁ,‘f"w dx’ = _dl f(—(93q)|7“1w|2 dx’ +--- (2.11)
s dr2 Js

which gives the non-weighted boundary regularity I‘T‘WI% thanks to the Rayleigh-Taylor sign condition. The fourth term in (2.7)
is also controlled by this non-weighted energy. Finally, the difference ||F — 7 flp that contributes to |7 “y]y is also controlled
by this non-weighted energy. Hence, we have excluded all the possibilities that make the energy estimates depend on 0!, It is
natural to simultaneously take the incompressible limit and the vanishing surface tension limit.

As indicated in the remark after Theorem 1.2, the limit process is only for (z//“r, o p**‘r) that converges to (£, w, 1) where
(¢, w) is the solution to incompressible Euler equations without surface tension (1.35). The convergence of p — 1 is easily
achieved by the H* estimates of the continuity equation DY(p — 1) = p(V¥ - v).

Ideas of choosing weights of sound speed. We parametrize the sound speed as in (1.29) such that ¥,(¢q) = 0(A%). Our
choices for the weights in Mach number depend on

e Reduction of pressure: —V§ ~ D¥v indicates that 6¥0g should have the same weight of Mach number as 6*1v.
o Tangential estimates: 7 “v is controlled together with /%7 “g. This indicates that 0%v should have the same weight of
Mach number as +/F,854.

Based on the above two factors, our energy functional should be designed as

EM@) = > 0B + TR + 101+ Y N0+ 10, + 1T,

0<k<m-1 1<k<m-1

the first weighted term
non-weighted part

N-m
s s+l .
+ > FEDIvE_ + (F)T ™54+ boundary energies.
A t N—-m—s A t q N—-m~—s y g
s=1

weighted part

Note that the cancellation structure (2.10) is just a consequence of the divergence theorem but does not depend on whether
77 contains 9, or not. If we follow the strategies above, it is not difficult to obtain the uniform estimates E*7(¢) < P(E*(0))
in some [0, 7] with T being independent of A, 0. Therefore, it remains to determine the minimum value of m € N* such that
E*?(0) < +0o. Indeed, we could loosen the requirement to m = 2, that is, 9,g(0) is bounded but 3?¢(0) = O(17") is not bounded.

Remark. If we only consider the incompressible limit, that is, either the “o- = 0 problem under Rayleigh-Taylor sign condition
or the“c- > 0” problem for any fixed o > 0, we believe the uniform-in-A estimates can still be established even if the requirement
for compressible initial data is further loosened to be “not well-prepared” in the sense that 9,q(0) may not be bounded. However,
the proof for that case is quite different from the strategies presented in this paper and there are also crucial differences between
the o = 0 case and o > 0 case. So we would postpone this further problem to future work.

2.2 Approximation scheme: Tangential smoothing and artificial viscosity
2.2.1 Necessity of tangential smoothing

For free-surface inviscid fluids, the local existence is not a direct consequence of the a priori estimates. For example, if we try
to do Picard iteration for the linearized system whose coefficient ¢ is replaced by a given function ¢, then a crucial difference
from the nonlinear system is that we may no longer obtain the boundary regularity from the analogue of ST term as in (2.8).
Specifically, (2.8) now becomes

e (W )5 od [ 10V (Vg V(T - 07V
STzafaav-(—_oJata“lJ/dx’z——— - dx' 4o 2.12
= L+ VP 20z V1 +[VyP ,/1+|W/|23 e

where the second term has no control because inequality (2.9) is not applicable here. Such a linearization yields the loss of a
tangential derivative. Therefore, it is natural to mollify the coefficient ¢ in tangential directions to enhance its regularity.
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2.2.2 Design of approximation system

For each x > 0, we define A, to be the standard convolution mollifier on R? with parameter « > 0 and then define  := A2y
and @(t, x) = x3 + y(x3)¥(t, x’) to be the smogthed coeflicients. We introduce the following nonlinear system with artificial
viscosity whose coefficients are replaced by ¢, ¥ to approximate the original system (1.24) as x — 0.

Here,

pD?v + Ve = —(p — 1)ges, in[0,7]x Q,

F' (@D + V% -v = F'(q)gvs, in [0, 7] x Q,

9=9p).4=q+8p in [0,T] x Q,
ngi—fﬁ-(\/ﬁ)ﬂ@(l ~A)(W-N) on[0,T]IXZ, (2.13)
oy =v-N on [0,T] X X,

v3=0 on [0,T] X X,

W, p, Wli=0 = (V5 0 ¥)-

07 1
=0 =0 — 22y, i=1,2, Vi = & = —0s (2.14)
030 0z

D?:6t+v'v+@~(v'N_at¢)aS, (2.15)

and v := (vi, ), V := (81, d,) are the horizontal velocities and derivatives, A := V-V = (9% + 8% is the flat tangential Laplacian,
N = (—8@, —82% 1)T is the smoothed Eulerian normal vector and N:= (=01, =029, 1)T is the extension of N into Q.

The tangential smoothing method was first introduced in [13] to study incompressible Euler and then was generalized to
study various free-surface inviscid fluids in Lagrangian coordinates. However, the free surface is assumed to be a graph, and
the construction of a nonlinear approximate system is quite different from Lagrangian coordinates. The following issues are
crucial and very technical.

Design the smoothed material derivative D?. We have to guarantee that the weight function in front of 93 in D? should
be the same as the kinematic boundary equation, otherwise there will be a boundary mismatched term that cannot be
controlled in the Reynold transport formula. This explains why we do not mollify d,¢ in DY.

Remark. One may alternatively set the kinematic boundary condition to be 0;1&’ = v- N and thus define D? =9,+v-V+

ﬁ(v ‘N- 0,0)03. Under this setting, the surface tension term should be —oV- (ﬁp/ IN]). But the analogue of ST term in
(2.8) becomes

v, oy 2 a o
sT=o [ 5@.(&] 8,30 dx’ = FINGE - EVDT- D),
z

e — +...
2 d ’ (2.16)
L+ IV TR W N

where the second term is not controllable because the inequality (2.9) is no longer applicable.

Introduce the artificial viscosity to control the mismatched terms. The tangential mollification leads to some mis-
matched terms that should be controlled by the artificial viscosity term.

a. The commutator D(f) in (2.1) now involves a new term C(f) = 9,7 (¢ — 4,0)6;‘7 f which should be bounded by
KIVO, Tyl after using the mollifier property (3.6).
b. The analysis of the ST term in (2.7) now introduces two extra commutators:

f 0°VAYP VY- 8°VA wl2

VI+IVUP 1+ |V¢//|2 2.17)
. f 5"§AK¢-([AK,L}%,5“¢) dx' + o f 5“6,-1\@-{[1\ M}v a,a“.p) dx’,
z IV z IN?

and the control of the commutators requires the bound for KV, Ty if we apply the inequality (3.10).
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To control the above two crucial mismatched terms, we introduce the artificial viscosity term —k2(1 — A)d which gives
the energy |k(0)T *0,4y to enhance the regularity of d,y. It should also be noted that the coefficient must be x” instead of
any other power of «, otherwise, the third term in (2.7) is not controllable.

Based on the strategies introduced in Section 2.1 and the above analysis of the mismatched terms, we can derive the
uniform-in-« a priori estimates for the nonlinear approximate system (2.13). We can also prove the initial data (vo, Pox. Y0.x)
of (2.13) converges to the initial data of (1.24) as « — 0. Hence, it remains to solve (2.13) for each fixed k > 0.

2.3 Hyperbolic approach to solve the linearized system

With tangential mollification, the tangential derivative loss in the Picard iteration can be compensated by using the mollifier
property |A, fls S «°|flo for s > 0. So, for each x > 0, the solvability of (2.13) is reduced to the solvability of its linearization.
2.3.1 Design of linearization

In the Picard iteration scheme, we start with (v©, p©@ y©) := (0,1,0) and ¢~V := ¢@. Inductively, for each n € N, given
0P, g, ) = (W, p g™ ™y and i = ¢, we construct (D, ptHD gDy 1+Dy (denoted by (v, p, §,¥)) via the
following linear system

pDPy + V85 = —(p — 1)ges, in[0,T]xQ,

F1 DG+ VP v = F/()ghs, in[0,7]x Q,

4=4q().4=q+8¢ in[0,71x Q,

ngj—ﬁ-(v—jn +&2(1 —Z)(V-f\/), on [0,T] X Z, (2.18)
V1w

o =v-N, on [0, T] X %,

v3=0 on [0, T] X Zp,

v, 0, Wi=0 = (v§, P ¥)-

Here ¥ := log . The linearized material derivative and covariant derivative are constructed as follows

- 1

DPi=0,+7-V+—=(N-8,p)d (2.19)
d3¢
i 0, 5 1
Vo =0 220 =12, Vi=of=—0s (2.20)
93¢ d3p

Remark. Note that the weight in front of d; in D? is v - N@=D — 9,0 instead of v@*D . N® — 3,0+ because we have
to make sure (2.18) is a linear system of (v"*1 y@+D)  Also, this weight function should be compatible with the linearized

kinematic boundary condition. That is why we design DY in this way.

Remark. In (2.18), the surface tension term is assumed to be a given term instead of involving . The boundary energy is no
longer produced from the surface tension term but from the artificial viscosity. Note that we no longer require the estimates for
(2.18) to be uniform in « as we are solving it for each fixed k. Furthermore, the boundary condition can be viewed as an elliptic
equation k*(1 = A)dpy = § + - - - and thus the regularity of i can be enhanced by using elliptic estimates.

2.3.2 Hyperbolic approach to solve the linearized system

Note that (2.18) is a first-order linear symmetric hyperbolic system with characteristic boundary conditions. Indeed, it can be
[} 3 [} o o
written as Ag(U)d,U + Y, Ai(U)3;U = f where U := (g, v1, v2,v3)" and’ the boundary matrix A3(U) is a 4 X 4 matrix of rank 2.
i=1 =
One can use the duality argument introduced by Lax-Phillips [38] to prove the local existence in L*(Q). However, the L*(Q)
estimates of the dual system of (2.18) cannot be closed. The reason is that the boundary condition for ¢* (the dual variable of

7We introduce q:= q — 1 in order to homogenize the boundary conditions. Here 1) is the harmonic extension of gJ— ov- (W/INI) into Q. This is necessary,
as the Lax-Phillips duality argument requires the boundary conditions to be homogeneous.
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¢) has an extra minus sign ¢* = —«*(1 — A)w* - N ) with w* being the dual variable of v. Our idea to overcome this difficulty is
to introduce another u-regularization term in the boundary condition of (2.18):

g =11 =D N)+u(1 -D)d(v-N) onE.

Then the L?(Q) estimate for the u-regularized linear system is still easy to prove and is also uniform in y. As for the dual system
of the dual variables W* := (¢*, wi, w3, wg)T, its boundary condition now reads

g = =20 = D)w* - N) + (1 = D)d,(w* - N) on’%,

where the sign of the u-term remains positive as we have to integrate by parts in ¢ once more when deriving the dual system.
The boundary integral arising from the L? estimates of the dual system now becomes

g : ’ d — . A a3 v A7
fW*T'A3(U)W* dx’ = —p Ko)(w - Ny = 2K - NG,
=

and thus can be closed for each fixed u > 0. Therefore, the existence of the (weak) solution of y-regularized (2.18) in L*(Q) is
proven for each fixed u > 0. Since the L2(Q) estimates for u-regularized (2.18) is uniform in g, we can take u — 0 to obtain
the L*(Q) weak solution to (2.18). This is actually a strong solution by the argument in [49, Section 2.2.3].

Remark. One cannot do such u-regularization for the nonlinear x-approximation system (2.13), otherwise, the third term in
(2.7) cannot be controlled and thus the uniform-in-« estimates cannot be established.

2.4 Some remarks

This paper extends the results of Trakhinin [59] and our previous work [46] to the case with nonzero surface tension and also
avoids the regularity loss caused by Nash-Moser iteration in [59]. Moreover, we can simultaneously establish the local well-
posedness and the incompressible limit, and the zero surface tension limit is also established if we assume the Rayleigh-Taylor
sign condition holds initially. Thus, this paper gives a unified method to study the local well-posedness for the motion of water
waves, compressible or incompressible, with or without surface tension.

Our proof is a hyperbolic approach, in the sense that we avoid using the interior-boundary parabolic regularization intro-
duced in [11] to prove the local existence. Indeed, the parabolic regularization method relies on the enhanced regularity of the
flow map and the boundedness of the fluid domain for the Galerkin approximation to solve the linearized parabolic problem.

Our method is robust, in the sense that we can try to apply the framework in this paper to study some free-surface complex
fluid models, where the fluid motion is coupled with other physical quantities, such as MHD, elastodynamics, etc. One may
have to apply hyperbolic approaches to these models due to the failure of the irrotational assumption. What’s more, it is usually
more difficult® to design the approximation scheme to construct the solutions to these models. To overcome these difficulties,
our method provides an alternative idea: One can follow the method in this paper to prove the well-posedness for the o > 0 case,
and then consider the surface tension as a regularization of free surface to obtain the local-in-time solution for the o = 0 case.
Indeed, we believe this idea can be used to prove similar results in anisotropic Sobolev spaces for free-surface compressible
ideal MHD with or without surface tension, which is a forthcoming paper by the second author that will appear soon.

3 Nonlinear approximate x-problem

Now we come to the detailed proof. The first step is to introduce our approximation scheme. For each x > 0, we construct a
suitable approximate problem indexed by k which is asymptotically consistent with (1.24).

3.1 The tangential mollification

Let £ = {(x) € CX(R?), satisfying 0 < ¢ < 1 and fRZ {dx’ =1, be a standard cut-off function supported in the closed unit ball
B1(0). For each « > 0, we set

LX) = kKX,

8For example, the approximation scheme in [46, 71] works for Euler equations but may not work for compressible ideal MHD. An alternative way is to use
Nash-Moser iteration as in [59, 60, 61], but that will introduce a big loss of regularity from initial data to solution.
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and for each f : R? — R, we define
Acf(x) = J; G =2 f()dZ. (3.1
Also, for each g : R? — R, we set
Ag(x',2) == fR o= 2)g(@, x3) d2. (3.2

In other words, when acting on a function of three independent variables, A, becomes the smoothing operator in the tangential
direction only. The next lemma records the properties that A, enjoys. This will be frequently used (sometimes silently) in the
rest of this paper.

Lemma 3.1 ([46, Lemma 2.6]). Let f : R? — R be a smooth function. For each k > 0, there hold

Acfls S 1flss Vs 2 -0.55 (3.3)
0710 < K751 flizs, Vs € [0,11; (3:4)
If = Acfle < VKO flos (3.5)
If = Al < K0S 11 (3.6)
Also, for a smooth function g : R3 — R, then

IAglls < liglls, Vs> 0. (3.7

Moreover, let 1 : R? = R, and [Aq, f1h := A(fh) — fA(h). Then there hold
A f1glo < |f1z=18lo, (3.8)
A £10glo < |flwi=lglo. (3.9
I[Ass £10glo < KIflwr10glo- (3.10)

3.2 Construction of the «-problem

Let J = Aflp, o(t,x) = x3 + )((x3)J(t, x') = A,%gv(t, x), and N = (—6[/;, —02% 1)T. Then we set the approximate k-problem of
(1.24) to be

pDPy + V95 = —(p — 1)ges in [0, 7] x Q,
F' (@)D g+ V¢ -v = F'(q)gvs in[0,7]xQ,
9=9).q=q+gp in[0,7]xQ,
nga—ﬁ-( o _ )+K2(1—Z)(v-ﬁ) on [0,T] X X, (3.11)
_ L4V
oy =v-N on [0, T] XX,
v =0 on [0,T] X X,
(V9 p’ W)|r:0 = (vk,07 pk,09 d’K,O)'
Here,
> d
o =0, - Lo, (3.12)
03p
— —~ aa"
V=i =0,- 2%, a=1,2, (3.13)
0z
- = 1
V¢ =% = —0s, 3.14
3 3 63¢ 3 ( )
Df =8¢ +v- V¥, (3.15)

and A = >’ + 6}2, is the flat tangential Laplacian. Thanks to (3.12), the smoothed material derivative D? is equivalent to

_ _ 1 —
DP=8,+7-V+ @(V-N—a,@@, (3.16)
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where N := (=8,5, —0,@, 1)T. Note that we do not replace v - N -, by v- N — 4, in the last term, as this would generate a
severe structural mismatch in the boundary estimates.

The approximate x-system (3.11) is asymptotically consistent with (1.24) as k — 0. Furthermore, the artificial viscosity
x(1 - K)(v ‘N ) in the modified boundary condition

_ Vv
1+ Vg

é=g$—ﬁ- +K2(1-MNv-N) onX

is necessary to control the terms generated due to the loss of symmetry in (3.11). For each « > 0, we denote the solution to (3.11)
to be (V(1), G“(1), p“(2), ¥*(¥)). Our goal is to prove {V*(¢), g“(t), p“(t), ¥ () }«>0 has a convergent subsequence that approximates
the solution to the original system (1.24) as k — 0 in some time interval [0, T] with T being independent of x. From now on,
we drop the index « when analyzing the nonlinear x-approximate system for the sake of clean notations.

4 Uniform-in-« energy estimates for the nonlinear x-problem

We shall establish the a priori energy estimate of (3.11) that is uniform for all k > 0. For any solution (v, p, ¢, {) to the nonlinear
k-system (3.11), we define the nonlinear energy E*(¢) to be

4 ¢
E“(t) =llp(t) = 1IE + > 105, + oVl ApO, + glAl} + f k(o) dr
k=0 0

4.1)
2 3 2
+ |[NF@ao)|, + 10awii + Y 1650l + | NF@atiw)| -
k=1
Specifically, we show
Proposition 4.1. There exists some T > 0, independent of x and /¥ ’(g), such that
sup E“(f) < P(E*(0)) =: P 4.2)
0<t<T
The key step of proving Proposition 4.1 is to show
T
sup E*(1) < P, +f P(E“(1)) dt. (4.3)
0<t<T 0

thanks to the Gronwall’s inequality. The control of E() will be divided into 3 steps, i.e., the basic L? estimate, the div-curl
analysis, and the interior tangential estimates. We remark here that the compatibility conditions have changed due to the
artificial viscosity. The new compatibility conditions, expressed in terms of ¢, are

(D)) dli=0 = (D)) (~g + e H)l=o + (DD (*(1 = D)(v- N)), k=0,1,2,3, onX (4.4)

We however are still able to construct initial data satisfying (4.4) in terms of (Y0, V«.0, gx0), that is uniformly bounded and
converges to (Yo, vo, o) as kK — 0. The details can be located in Appendix C.

4.1 [*-estimate
First, we establish L?-energy estimate for (3.11). Invoking Theorem (A.3), the identity V¥@ = e3, and then integrating by parts,

we have:
1d

— — — 1 —
=— | phPospdx = - f v+ VG030 dx — f (o — Dgv303pdx + = f pIvI*030,(@ — p) dx

= f J(V? - v)dspdx + f v3gdx’ — f g dx’ — f o dx’ 4.5)
Q py z z

_ 1 _
- f (0~ DgrsdFac+ 3 f P08/ - ) d.
Q Q
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Plugging the continuity equation into the first integral, we get

fQ G(v? - v)awdx———— f F' (@)l 03¢ dx + < f pDL (0™ F (@)l dx + ! f F'(@))dI*0:0,(@ — ¢) dx
+ f gF "' (q)gv3dzp dx (4.6)
<5 S|, + | NF @] (1070l +1050.@ - ol + | NF ] ).

Here and in the sequel, we employ the notation A < B to mean that A < CB for a universal constant C. The boundary integral

on X, vanishes due to v3|z, = 0. Then we plug g = -0V - ( \/%) +&%(1 - K)B,w into the first boundary term in (4.5) and

integrate by parts to get:

dx’, 4.7)

o |- o
- f@,wq dx’ = —a‘f — |- Vo dx' + f KOO
b b /1 + [V 2' 0

where (-) denotes the Japanese bracket. To treat the first term, we use the self-adjointness of A, in L?(Z) to move one A, from
V(// to Ou:

e f YW | Sawdr = o f VAK‘”T‘?(VWM—U f VAW - ([Ae NI 1V0) d
z z

1+ Vi > (4.8)

1d 1
=55 Vo= i VAKw f (NI j VoA + P(TTl)or i VoV VAKw +& |KV6zw
Now, we get the non-weighted L? boundary energy from the second boundary integral in (4.5)
1d 24,
8(9:%0 dx’ = XA gAY dx’. 4.9)

On the other hand, show the L? estimate for p — 1 for the energy inequality. We use D?p = D?(p —1)and D?Z,E =v3+0,(¢ - )
to rewrite the continuity equation in terms of p — 1:

D¥(p— 1)+ p(V% -v) = 0@ — ).

Testing this with p — 1 in L2(Q) and using the mollifier property (3.6), we get

1d _
——Ilp — 115 < llo = Hlo(ldvllo + €188 plo). (4.10)

2 dr
T _ 2

[ [ Je@aw
0 Jz 0

Let

2 — 2
E§0 = I3+ || NF7 @l + 1o = 118 +1 VeAwE + | VoTAw| +

dv’ dr. @.11)

Since 1 < |N| = \/ 1+ (81%)% + (0,4)?, we combine (4.5)-(4.10) and obtain

T —_— —_—
ES(T)—ES(O)SfO P(IVlwr, 10Vlleo, [€0Bplo.5) E (1) dt, (4.12)

after choosing & > 0 suitably small in (4.8). Here, we note that, using d39,(¢ — ¢) = x’(x3) (O,J(t, x') = ot x’)) together with
(1.9) and (3.5) of Lemma 3.1, we have

1630:@ = @)lleo < 101 = dhleo < VKIBOWlo s, (4.13)

where right side is directly controlled by invoking 0,y = v - N= -(v- ﬁ)% + v3 on X and the Sobolev trace lemma.
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4.2 Reduction of pressure

We show how to reduce the control of the pressure to that of the velocity when there is at least one spatial derivative on g. This
follows from using the momentum equation pD{v = ~V%§ — (p — 1)ges. Particularly, by considering the third component of the
momentum equation, we get

~(3:9)"'03¢ — (p — 1)ge3 = pD¥v3. (4.14)

Since 93¢ is bounded from below, i.e., there exists ¢y > 0 such that d;¢ > ¢y, then
103dllo Sg.co lo = 1llo + llollol DY v3llo, (4.15)

where D?V3 =03 +7- Vs + ﬁ(v ‘N- 0,0)03v3. This implies that the L?>-norm of 93¢ is reduced to the L?>-norms of p — 1,

6,\}3,5\13 and w(x3)d3v3. Here w(x3) € C*(—b,0) is assumed to be bounded, comparable to |x3| in [-2, 0] and vanishing on X.
Let 7 = 0, or 0 or w(x3)d3 and D = 0 or d;. The above estimate yields the control of ||[D¥ds4l|y after taking D*, k > 1 to
(4.14). Specifically, at the leading order, ID*03llo is controlled by

C(g, o) (IF" (@D gllo + IF (@)D" @llo + llpll 1D T vllo) - (4.16)
In addition, by considering the first two components of the momentum equation, we have:
— 8 = —(959)"' 0903 + pDivi, i=1,2. 4.17)

and thus the control of 5(} is reduced to 93¢ and D‘?v,- =0+ -V + 030) " (v - N - ;)03 v;.
Lastly, using (4.14) and (4.17), we obtain

1033flleo Sg.co 110 = Llloo + llolleollDF V3 lco, (4.18)
110110 Sge! 100 l103l1c0 + N0l D Vllco- (4.19)

Thus, . N
104lle0 Sg.co.c5t PUOWlco, llolleo) (Ilp =1l + ||D‘fv||oo). (4.20)

Invoking the definition of D?v, (4.20) implies that [|0gll is reduced to d,v, dv and w(x)d;v for some weight function w(x)
vanishing on I'.

4.3 Div-Curl analysis

To estimate the Sobolev norm of v, we can use the div-curl analysis to convert the normal derivative to divergence and curl.
First, we record the well-known div-curl decomposition lemma and refer to [21, Lemma B.2] for the proof.

Lemma 4.2 (Hodge elliptic estimates). For any sufficiently smooth vector field X and s > 1, one has
IXIE < CQss (Vg (XI5 + IVZ - X1, + 1IVP x XIE_, + 16" X1[5) (4.21)
for any multi-index « with |a| = s. The constant C (|Z|X, ﬁaﬂwm) > 0 depends linearly on |a,;|§.
We will apply Lemma 4.2 to ||6*v||4— for O < k < 3. Starting from k = 0, we have

IV < CQlay V) (VG + 117 - VB + 197 x vIi3 + 15*VIR) (4.22)
I08VI S COPlai (V) (I95VIIG + 197 - BV + IV7 x 31 vI3 + 116 afvilg) (4.23)

where the L? norm has been controlled in (4.12) and the tangential derivatives will be studied in the next section by using
Alinhac good unknowns. The divergence part is reduced to the estimates of g by using the continuity equation

9% - vI = |7 @DFg

j + |7 @svs]z. (4.24)
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which will be further reduced to the tangential estimates of v by using the argument in Section 4.2. Similarly, when k > 1, we
have

Ve 0y = ~0NF (@D]§) — 5T (@)gvs) + [V9. 01y £ ~F (@0 DY G — F' (q)g05vs + (059) ' 901G 05 v,
where £ means the omitted terms are of lower order. Also, since D =(0;+V- V)q + (039)” (v — 04)034,
F(@0kDfq = F' (@055 +7 - Vokg + @:9) (v - N = i9)ds05G + (058) ' 6K (v - N - 9,0)03),

where 6"(1} N- o) = (1 — X(xg))(?"(v N) owing to d;¢ = X(x3)0:¢, and ||6k(v N)||3 « 1s of lower order. Thus the control of
IV¢ - 3*v||3_4 is then reduced to the control of [|F”(¢)0** Jlls—x, I (q)0*dlla—x and ||6(9t¢,0||g < Iaaklﬁlz « at the leading order.
Specifically,

i—k + ||T’(q)6fq ax T

197 951R.,, < Clos & Ml 100 I - N = Bl (177 @165 G0t

r (4.25)
+ P+ f P(E*(1)) dt,
0

where the last two terms control all lower order terms generated above. The bound for |[39*y|3_ will be obtained in 3%d* -
tangential estimates. As for g, combining the reduction argument in Section 4.2 and (4.24), (4.25), we find that finally, we need
to control the tangential derivatives of v (including time derivative) and || ’(q)@fqllo.

Next, we analyze the vorticity term. We take V¥ in the momentum equation pDYv = V%3 + (p — 1)ges to get

pD? (V¥ x v) = V% x ((p — 1)ge3) — (VPp) x DPv — p[V?x, D¥]v,
where the first term on the right side is equal to (— gé‘zp, | p, 0)" and the second term, using D“’v = —p~'V¥q — ges, is equal to

—~(V%p) X DYV = p'(g)(VPq) X (VPq) +V%p X ges = (¢95p, ~2d7p, 0)7

=0

which exactly cancels the first term. Using [6?, D?](-) = 0?\116?(-) + 3?8,@ - go)ﬁf(-), we get the evolution of the smoothed
vorticity to be B o B B
pD;(V# X v); = —pe &V 67 vy, — pe 870, = 9)Fvi, (4.26)

where €'/ denotes the sign of the permutation (i jk) € S 3.
To control ||V¥ X v||3, we take 07 in (4.26) to get

pDf (8 (V% x v)i) = €& (V' 5 vi) — €70 (pd0,@ - @)5wi) - 167, pDYI(VF X ). (4.27)

It is not necessary to write out the specific form of the right side of (4.27), but we just need to know the source terms in
(4.27) contain < 4 derivatives of v and ¢ except the mismatched term involving ¢ — ¢. This is easy to see because the only term
containing 5 derivatives is the one on the left side of (4.27). Therefore, a straightforward L? estimate for (4.27) gives us the
energy estimate

O ZIIV‘” XI5 < P(Wla, [as 177 (@4llos I ()0 qll1, VA1), (4.28)

where the mismatched term is controlled by using mollifier property (3.10) and ¢(t, x) = x3 + x(x3)¥(, x°).
Similarly, we replace 8 by 0*6>~* for 0 < k < 3 to get

pDf (3 *9K(VP x v);) = =€t (pd?V 5 ve) - €70} (pd% 0T - @)vi) — 1056, pDF1(VZ X v, (4.29)
and thus

k K
dt2”a (V¥ x W3-, < P(EXQ). (4.30)
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Then we need to estimate the commutator ||[6 VeXv|l3-k to get the control of IV® x (9kv||3 x Similarly, as in the control
of divergence, we know the highest order term in the commutator should be ||(—d3¢)~ 16()[ ©O3V|l3_k < |lOVll3- k||c')(6)2 kc’),(pllo
||(9v||3_k|66f1//|3_k. So we have the following conclusion

T
IV? x 35vI5_, < 100y, + Pl + f P(EX(t))dt. (4.31)
0

Combining (4.22), (4.24), (4.25), (4.28), (4.31) and the argument in Section 4.2, it remains to control the tangential deriva-
tives of v and full time derivatives of ¢, namely ||F”(¢)8?dllo.

4.4 The 7 “-differentiated equations

By the div-curl analysis, the crucial step is to study the higher order tangential energy estimate of (3.11). In particular, we
define the following tangential derivatives

To=0,, Ti=01, T2=0 T3=w(x3)03, (4.32)

where w € C*(-b,0) is assumed to be bounded, comparable to |x3] when —2 < x3 < 0 and vanishing on X. This requires us to
commute 7 with (3.11), where 7¢ := 77" 7,°73", and |a| < 4.

Remark. We need the tangential derivative 73 = w(x3)d3 to control the (3¢)! (v - N - 0:¢)03 in the material derivative D?.
We do not include it in £“(¢) as w is comparable to 1. However, we still need the estimates of 773 in the reduction of g.

We will not directly commute 7 ¢ with V?. Instead, for i = 1,2, 3, we observe that

T f = FTf - PTG+ C(f), (4.33)
where fori=1,2,
’ 6 (p (04 - 1 - a— 1 a SD (07 6
G = —[ G%f} af [T ’6i(’0’6_'<,5 + 01003 f [T 7, 0 32]775# [T alf + @5 ~)283f (7%, 851,
(4.34)
with |y| = 1, and
1 1 1
CNH) =T ==,0:f |+ f| T, =— |T 7039 — =—=<I[T“,0 —03f[T“, 0 4.35
3() [ 57 s3f 3f[ (63@2] 3¢ 63¢[ 31 + @ -32 3f1 sl (4.35)
Since (9? and Of commute, the identity (4.33) implies
T‘*H‘”f G‘O(T"f (9‘°f‘7'"~) + 8‘”0‘”f‘7’“'<,5+ (. (4.36)

=G(f)

The quantity 7% f — Bf ST *¢ is the so-called Alinhac good unknown associated with f. It was first observed by Alinhac [6]
that the top order term of ¢ does not appear when we use the above good unknown. It is not hard to see that we can obtain the

control of ||7% f||o from that of ||7*f — 6*3” ST *@llo. In particular,

17 fllo < 1T f = 0% FT @0 + 195 fleoI T Flo- (4.37)

In addition to this, we need to commute 7 ¢ with
_ _ 1 —
DY =0,+v-V+ —=(v-N-08,0)0;.
030
A direct computation yields
— _ 1 _
TDYf =T 0, f +T“(v-0f)+T* (a—~(v -N = 0;0)03f
3¢

= DITf +(v- TN = 8,700 f — TG - N = 8,00 f + V' (f), (4.38)
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where

- 1 = — 1 1 —
D(f) = [T5]-0f + |T% —=-N=08,0),85f| + |T%v-N =080, — |05 f + —I[T,v] - N5 f
039 03¢ 03¢
—(v-N = 8,005 f |0° L ez L(V-N—a NT,031f +(v-N-8 )ﬂ[fr@ 1. (4.39)
1$)03 * 030) 3¢ 930 1P »03 P (0,00 » 031, .
withfyl = 1.
Since v - TN = —v101T Y@ — v20,T “¢, then we must have
V- TN =8, T Q¥ f - FT G- N - 8,00 f
= TN =3, T°Qf — T (v N = 8,00 f + 0T (@ - 9 f
== 05f (0 +-V+(v-N=0,0)d%) TG+ 0,7 @ - )% f (4.40)
N——— —
=C€(f)
= - O fDITG + &)
Thus,
TDYf = DIT"f - & fDFT G+ ' (f) + &(f)
=Df (T f = & fT°F) + D) + €(f), (4.41)
where D(f) = (D)) TG + D'(f).
Let
V= T - 0T, Q=T -47°% (4.42)

respectively be the Alinhac good unknowns of v and g. Motivated by (4.36) and (4.41), we take 7 to the first two equations
of (1.5) to obtain

PV +97Q = R}, (4.43)
F'(@DfQ + V9 -V = R? — §;(v), (4.44)
where
R} = = [T, pIDfvi = p (D) + €()) - €(G), (4.45)
R =~ [T, F (@ID} G - F'(@) (D@ + @) + T*(F'(g)gv3). (4.46)

In addition, since 7 ¢ reduces to 0% on X and 0°N = (—615(@, —825‘@, 0)7, the §”-differentiated kinematic boundary condition
then reads

0Y+@-V)Y-V-N=8; on%, andVi=0 on3,, (4.47)
where
Si=0w-NoG+ Y PN (4.48)
1B11+(82|=4
1B1ll1B21>0

Also, since § = g + g and 31 = 1 on Z, we have Qs = 8°§ — 330"y = 8%q + g0™Y — 8:340°% = 8”q — 83qd* ¥, and thus the
boundary condition of Q on X reads:

_ Vv
1+ Vg

Q=-0d"V- +K2(1 = A3 (v - N) — 83q0°0. (4.49)
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4.5 Tangential energy estimate with full spatial derivatives

In this subsection we study the spatially-differentiated equations, i.e., the equations obtained by commuting 7%, oy = 0, and
|| = 4, with (3.11). We aim to prove the following estimate

Proposition 4.3. For 7% with multi-index « satisfying a¢ = 0 and |a| = 4, we have the energy inequality for 7 > 0 and « > 0:

17D + [ NF@T 4, + [NoVa A + fo ' @ o] arsPy+ fo " PE ) (4.50)

As mentioned in the last subsection, we will not directly consider the 7 *-differentiated variables but use Alinhac good
unknowns to get rid of higher order terms of . Invoking Lemma A.2 and Theorem A.3, testing (4.43) with V and then
integrating over Q with respect to the measure 93¢ dx, we get

1 - 1 _ 5 — ~ —

‘%5 f pIVI?ds0dx = 3 f pIVI?830,(@ — ) dx + f Q(V? - V)dzgdx — f Q(V-N)dx' + f V- R'63pdx, 4.51)
Q Q Q b Q

where the boundary integral on X, vanishes thanks to V3|y = 0. And from now on, we will no longer write any boundary

integral on X, due to the same reason. Before estimating the integrals in (4.51), we record some important properties that

Alinhac good unknowns enjoy.

Lemma 44. LetF = 7°f — Of fT % with || = 4 and @y = 0 be the Alinhac good unknowns associated with the smooth
function f. Suppose that 93¢ > ¢ > 0, then

172 Fllo < 11l + P (c5™ [91a) 195 . (4.52)
Furthermore, let €(f), D(f), and E(f) be the remainder terms defined respectively in (4.36), (4.40), and (4.41). Then
IS(Pllo < P(cg" 10la) - 1fllar = 1.2.3, (4.53)
Il < P(c5"s Was 18:813) - (11l + 11, £11), (4.54)
IE(A)llo < KIVT 31010 f lleo- (4.55)
Proof. Since 6? = (939) '3, we have
165 FlITTllo < P (cg" 101a) 13 £ lcos (4.56)

and so (4.52) follows from (4.37). Also, the estimates (4.53) and (4.54) follow from the definition of €(f) and D(f), (1.9), (3.7)
in Lemma 3.1, and the Sobolev inequalities. To establish (4.55), we notice that

I€llo < 18:T*@ = Mol fllco + 15T ol I(@ — @)leoll flloo-
Thus, it suffices to control the leading order terms [|0,7 *(¢ — ¢)|lo and ||6f’7' ¢llo. We have
0T @ - @) = 0,7 (x(x3)b — x(x3))
<X (38,0 W — ) + [T, x(x3)] 6,0 — ).
The L?-norm of the second term can be controlled by the RHS of (4.55) thanks to (1.9). By (3.6) in Lemma 3.1, we have
10,:0° W = Wy < KOYs.
Also,
T = KT (x(e2)) = (95 (x)) T0 + (51T x(x)1) ¥,
and so ||6‘§7““Z,5|I0 can be controlled by the RHS of (4.55). m|

Remark. The appearance of €(f) is a consequence of the tangential smoothing. This estimate of ||€(f)||o yields a top order
term |05, which can only be controlled by the energy contributed by the artificial viscosity. In other words, the artificial
viscosity compensates for the loss of symmetry in the x-equations.
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4.5.1 Control of fg plV[?330,(¢ — ¢) dx: The integral contains the mismatched term.
We have

f PIVIP330,@ — @) dx < llplllIVIRI30/@ — @)lleo < VKIVIRIOWlo 5. (4.57)
Q

4.5.2 Control of fg V - R'05p dx: Error terms
We have

fV - R'03@ dx < [[VIolIR 101103, (4.58)
Q
where the L? norm of R is directly controlled by using (4.46) and (4.53)-(4.55)

IR0 < P(I03|co, Wla, 10:013) (KW'TQ@zlﬁlollVllsa + il + [10vll3 + ||61||s5), (4.59)

where the term containing K|€7~ 0o should be controlled under time integral as we will get L,ZH}C,([O, T] x %) bound for
k0, T Y later.

4.5.3 Control of fQ Q(V¥ - V)d3¢ dx: Tangential energy for Q
Equation (4.44) indicates

f Q(VF - V)aspdx = - f F (@ QUDT QI dx + f QR - €,V )3:p dx. (4.60)
Q Q Q

For the second term on the RHS of (4.60), we invoke the second inequality in (1.30) and then apply it to the definition of R? in
(4.46) to get:

LQRZ(?ade < IVF" (@ QIR l10/183Pllco- (4.61)

In other words, we “borrow” one /7'(g) from R? and attach it to Q. Thanks to (4.53)-(4.55), we control the L?>-norm of the
rest of terms in R? directly by
PO s, 0:015) (9T 00ls | VT @ + | VT @

H VF'(q) 6,6]

HNF@en],).  @e

where the term containing Kﬁ’l"'&ttmo should be controlled under time integral as we will get L2H ;,([O, T1 X %) bound for
k8;7 %y later. Then the contribution of €;(v') is controlled by

- fQ QE(v))F3@ dx < P4, IV lyre)IT *Glol VIl 1Qllo- (4.63)

Here, ||Q||o contributes to ||6"q||0 and ||c') Z]é"dx”o The first term ||6“Z]|I0 is not weighted by /7’ (q) and thus cannot be controlled
directly by (4.50). Fortunately, we can overcome this issue by invoking (4.17). Similarly, ||6 6”zp||0 < ||(9 q||oo||5alﬂ||o, where

we use (4.20) to treat ||6 dlls, and so this can be controlled uniformly as #'(g) — 0.
Furthermore, invoking the integration by parts formula (A.8), the first integral on the RHS of (4.60) becomes

fg F(@QUDPQdpdx = — 1 4 f 7 (@IQPIp dx + 1 f (DPF(g)IQP 957 dx
! f (V% - )T (@IQPIF dx + - f T (@IQP:9:(F - 9)3xp dx (4.64)

S NF@Q, + 16521l VT @QUE (1v1 + KF0003).

S___
2dt
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4.54 Control of — fz Q(V-N)dx': Boundary energy contributed by surface tension and artificial viscosity

Note that 73 = Oonx implies the corresponding good unknown Q = 0 on X, so it suffices to consider the case 7% = 8 when
analyzing the boundary integral. Using (4.47), we have

- f Q(V-N)dx' = - f Q(0:0y + (- V)3"y - S) dv’. (4.65)
z b

The first term is expected to give energy terms if we invoke the boundary condition (4.49) for Q

_ __ Vo _ _ _ _ -
=- f Q9,0%y dx = o f V.| Y 3,0%y dx’ — K? f (1 — Ao - 3“0 dx’ + f 93g0" 0,0y dx’
z z z z

A1+ Vg (4.66)
=: ST, + ST, + RT.
Since 1 — A = ()2, where (-) denotes the J apanese bracket, we find the term ST, gives us vk-weighted enhanced energy after
integration by parts :
¥ d 102
ST, = f (3, ¢| dx' = - @ aszZH] . (4.67)
In the control of ST, we will repeatedly use
(1) _ Vy-avy
a(f) - Y- oW (4.68)
INI INP?

where IZV | = 1+ WJP denotes the length of the smoothed normal vector N = (—51% —52@, 1)". Now we integrate V. by
parts in ST to get

Ve R
STy =- (Tf ~¢/ . (’),6"ngdx’ + aquw . ataaV(JldX’
z |N| = INP

— o f ([Etr—a” L~:| 50{’6@ +
p) |N|

= ST]] + ST]2 + ST13,

(4.69)

R [ I 1 — e\
" — | (V- 37V - — [0°7 . Vy| 0" Vi | - 6,V y dx’
INJ? INJ?

where @’ is a multi-index with |@’| = 1.
The first two terms in (4.69) are expected to produce the energy contributed by surface tension. Before that, we need to
move one mollifier from the top order term of ¢ = A2y to the top order term of by using the self-adjointness of A, in L3(X).

oy X _06 @ @
ST ST e-g [TTM TG T8 TN ATTAD)
z N INP

— 1=, = , — = VVi |- - ) (4.70)
—o-fﬁ"VAKw- Ay, = | V3,0% | dx +0'f6"ViAKz//~ Ay, — V;0,0% | dx
z IN| b INJ?
=: STy + STF, + ST,
Then we find
aﬁ . 2 V 14 . 2
STy = ___f [0 VAY” |V - 3"VA elrl @70
VI+IVeP? e |Vz,b|2
o 1 e 2 1 = == 2
+s f o ——— |a VAW -0 | — 'w-a VAW dx. 4.72)
> 1+ [Vy? 1+ Vgl
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To deal with the first term in ST, we plug a = "V A into the following inequality which can be proved by direct calculation

2 Yo - al 2
of __MGaf WP 473
1 +IVyP \/ 1+ Vg2 \/ 1+ |Vyl?
in order to get
d VAP = T
f STyodt + = > f—dx’ < P(IViolr) \/E'BGVAKwo'OJrf (4.72)dr, (4.74)
0 p) /1 Vo 0
where the term (4.72) is directly controlled by the energy term
— — _ 2
(4.72) < P(VI1)0 Vi | VT3 VAW (4.75)

To finish the control of STy, it remains to control ST;3 and ST”, ST’fz. The last two terms can be controlled by using the
mollifier property (3.10) and the x-weighted energy contributed by the artificial viscosity. We only list the detail of ST}f1 and
then STX, follows in the same way:

T T
f ST, < f '\/E@"Aszo
0 0
2 ro_
v [ P(T0) R
0

As for ST3 in (4.69), we find three commutators have similar structures and the same highest order terms, so we only show
the analy91s of the first commutator We notice that, the top order term in [6“ o |N |~ 1]6“ Vtﬁ appears when 8% falls on IN |-t
or 8 falls on |N |"! and 6*~*~*" falls on % Vz// for some |a”’| = 1. In either of the two cases, the top order term contributes to
the following integral in ST3

dr

P([V0l) Vs |60,

. (4.76)
VT Ay , dr

sg'l«% “

— f INI>Vyg 0V 8% Vi - 8,V y dx’. 4.77)
z

We integrate one v by parts to get
o [ WNVIE T E I a5 var
)

. S S2 = . . g
modulo lower order terms, and then we move one mollifier from 9 V i to 8,0y such that the main term is directly controlled

- f NV 57T A 5V 0.5 A 4’ s PAVIVly o [NGT VAW [Vo0,8 A, (4.78)
b
where the last term will be controlled in 8,0>-estimates. Besides, we have to analyze the commutator involving A,:
o f 3T A (A PV V| 0,57) dx', (4.79)
b
which is controlled by the following terms after using (3.10)
T T _ - _ _
f (4.79)dt s Vor f | VTVa* Aplo - kIOVY i PV w1)|0,0 o dr
0 0 4.80)
_ T, 2 _ “
seldy], | + f | VoV A INTVUE sP(Vilo) dr.
i Ly 0
Therefore, the terms ST, ST, have the following bound for any multi-index a with |a| =
T _ 2 o 2 T
f (ST, + ST,)dr + |Kaaa,¢,// - 'V&“Akw(T)'o <P+ f P(E*() dt, (4.81)
0 TR 0

where we have chosen € > 0 that appears above to be suitably small such that all e-terms are absorbed by the x-weighted energy.
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To finish the control of /; defined in (4.66), it remains to control the term RT. Note that when we drop the mollifier and
have the Rayleigh-Taylor sign condition —d3¢g > 3 > 0 on X, RT should directly give us the non-o-weighted boundary energy.
But we are now solving the gravity-capillary water wave system for fixed oo > 0 instead of taking vanishing surface tension
limit, so we cannot assume —d3g > 5 > 0 on X. Thus this term is controlled by the surface tension energy after moving one

mollifier

T T T
f RTdt = - f f 83g0° Ay - 8,0° A dx’ dt — f f "Nt - ([ A B3] 0,0°) d’ dt
0 0 z 0 z

T ) T
< o
< fo 10als 0 s fo 041,
] T —
selddy|, , + f (. 0.5 Ay )
L,LX, 0 0

o is the energy term obtained in it 0;-estimates for |a’| = 1.

_ _ — 2
"Ny (00" Ny "Ny 0 dr (4.82)

o dr+ ¢ ’Kﬂ,é“([/

0" A

0’

where the term 8,5“AK¢/

Remark. The RHS of (4.82) is not uniform in 0. However, as mentioned earlier, — fOT & 63q5"AK¢'6t5"AK¢ dx’ dt contributes

to a non-o-weighted energy term fz(—égq)@"Akwlz dr provided the Rayleigh-Taylor sign condition holds. We shall revisit the
control of RT in Section 7, where the zero surface tension limit is considered.

Combining this with (4.81), we get the estimate for /;

T _ ) o ) T
f I dz+‘,<a“a,¢ . +—|V6“AK¢/(T)| <SPE+ f P(E“() 1, (4.83)
0 L;H, 2 0 0

after choosing € > 0 that appears above to be suitably small.
The second term in (4.65) gives

== f Q- V)" = (’f 7| —L— |G- DTy - f (1 = Ny - (V- V)o"y d’
z z X

1 +|VyP? s
+ f 830" Y( - V)oY dx’
)
=Dy +1n+ D3,
where we find that I5,, I3 can be directly controlled as follows:
T = T _ o T o
f Lydt = — & f f Vo V(- V)o"y) dx’ dt - & f f 70 - (v - V)% dx’ dt
0 0 z 0 z
T T
< f [k 0|, ¥ 'szaﬁ dr + & f k5" 0| e [V de (4.85)
0 0 0 0 0 0

_ __ 2 _ 2 T
<e |Kc’)"6,nﬁ VoA o dt e |K6“6tzp L + f P(E“(1)) ds,
L 0

2 T
=12
+ VIt
- fo [T

—D— — —
where we use the mollifier property (3.4) to control KV %yly < k - k' |VA* Aalo. This step also shows that _why the power of
x must be 2 in the artificial viscosity, otherwise the control of I, is not uniform in «. For I3 we integrate v - V by parts to get

by =3 f V- 5 0593 B dx’ < PIES(1). (4.86)
D)

The control of I, is analogous to ST;. Following (4.69) we have

b= O_f(aavlp 3 Vi - 3"V¢§J) - §)5<y§$dx,
p)

IN| INP3
S T P U T ISR I W (4.87)
—o | [, =87V + [0, — | (Vy - 8° V) — — [0, Vy|d*V ).(V.V)vaa dx’
fz([ INI] v |N|3} v v |N|3[ w] v v
=: 1Dy + Do,
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where 151, can be directly controlled if we integrate v - v by parts

«/E%"Jz < P(E“(1)). (4.88)

b2 S P(l)Vlwis

For I, we integrate v - v by parts and use the symmetric structure to see

_ 506"2 ﬁ" . 50{6"2 L
Ly £ —% f(V 'V)(| ot _ vy id ) dx’ < P(V{/|wo) [Vl
s

— — (4.89)
IN] INP

Vovay) .

2
0

Therefore, plugging (4.85)-(4.89) into (4.84), we get the estimates for I,

T _ ) T
f Izdt$8|/<6“(9,z,// L f P(E“(t)). (4.90)
0 ;H,  Jo

It remains to control the term involving S; which reads

I3 ::fQSldx’zfQ Oy - NO“Y + Z Pv-PN|dy
z z 181 +[21=4
B11,1821>0
- f (0—5“7{+K2(1—Z)é“@,{p—agqéﬂa)[aw-NE"% Z &v-0PN|dx 4.91)
z 1Bi11=11821=3
v Y [@-TT00@y PR
z

B11+|B21=4
[81121,1<|B21<2

=: I3 + I3,

where we use the definition of Q ) in I, and invoke the Dirichlet boundary condition (4.49) for Q in I5; such that the L*()
bounds of §*v and non-weighted V9*y with |a| = 4 can be avoided on X.
The term I3, can be directly controlled by

s Y 18l |551vﬁﬂ25$|l+

1B1|+(B21=4
1811=1,1<(B2|<2

GGosd| [P'7- T30 < lallalvllldlss + 10l IV sTBge. 4.92)

For I3, we invoke H = -V - (V//|N|) and then integrate V- by parts in the mean curvature term and integrate one tangential
derivative by parts in the viscosity term to get

— 2 — — —_—
51 < POVg)I0v (| VOVO], vl + [<0°0,0), [«50], ) + 10alu- RV (4.93)
and thus yields
T _ 2 T
f Lydtse |K(9”c’)tgb + f P(E“(t))dt, (4.94)
0 LH,  Jo
which together with (4.92) gives the bound for I3
T _ ) T
fo L;dt < s|/<6“6,w L, +f0 P(E“(2))dt. (4.95)

Combining (4.65), (4.66), (4.83), (4.84), (4.90), (4.91), (4.95), we get the estimates for the boundary integral after choosing
£ > 0 suitably small

T
- f f Q(V'N)dx’+‘K5”6,zp
0 z

2

S 2 K 4 K
o 3 Vo )| <5+ fo P(E*(1)) dt. (4.96)

27



Plugging the estimates (4.57)-(4.60), (4.64) and (4.96) into (4.51) and using p = 1,059 = 1, we get the estimates for the
good unknowns

VIR + [NF @, + |Nova A + | o],

L7H!, ([0,T]XE)

T
< Py + f P(E“(1)) dt. 4.97)
0

Finally, using the definition V = 7% -7~ "1,‘58?1/, we can replace ||V||o by ||7 *v||p because their difference, namely T"Zéfv,
is bounded by #§ + fOT P(E*(1)) dt. Indeed, using ¢(t, x) = x3 + X()@)Z(t, x") we only need to investigate the case 7 = d because
the weighted derivative 7 = w(x3)d5 only falls on y(x3) and x; instead of . So we have |0%¢|ly S |0*¥]p which is already
bounded by the surface tension energy and thus by £ + fOT P(EX(?)) dt according to (4.97). Since ||8fv||‘x, < VIsNI03¢lle <

Py + foT P(EX(1)) dt, we have

IIT"V(T)H%-#H\/T’(q) ‘“(T)” |v_ VB"AKLJ/(T)‘ f ‘Ka“a,,p(z)' dr < P+ j; TP(E"(t))dt. (4.98)

We remark here that we can employ the same analysis to prove the tangential estimates with mixed spatial-time derivatives.

Proposition 4.5. Let « be the multi-index satisfying 1 < @p < 3 and || = 4, we have the energy inequality for 7 > 0 and
k> 0:

T
17D + [NF @D, + [NoVa Ao, + f KT di < P+ fo P(ES@) . (499)

4.6 Tangential energy estimate with time derivatives

In this subsection, we study the time-differentiated equations, i.e., the equations obtained by commuting % with (3.11). We
aim to prove the following estimates

Proposition 4.6. We have the energy inequality for 7 > O and « > 0

N T T
||a;‘v(T)||g+'| \/T’(q)afq(T)”z+|\/EV6?AKW(T)'Z+ fo kaSu)} de < P+ fo P(E“(1)) dr. (4.100)

Although the proof appears to be similar to what has been done in the previous subsection, it should be mentioned that
we only have L*(Q) regularity for the full-time derivatives of v and ¢, and thus we do not have any information about their
boundary regularity. When the full-time derivatives of v and g appear on the boundary, we use either the artificial viscosity or
Euler equations to reduce a time derivative to a spatial derivative.

4.6.1 Alinhac good unknowns for full-time derivatives

To begin with, we still introduce the Alinhac good unknowns of v, g with respect to d*. Using the same notation as before, we
define

V, = 0t - oty Q= 0'q - 840'%. (4.101)

Similarly, as Section 4.4, we have B B
FHVEf) = VEF + (), (4.102)

where 6,(f) := 8707 8/ + €/(f) and

C(f) = [6“ oig =, 0f| - 8,05, i=1,2 (4.103)

1
a3f[ 0 5= +3<,033f[

o

(N = [3 5 s f ] 0,030. (4.104)

+a3f|: t’(6-)2
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Then we take 8/ to the first two equations of (1.5) to obtain

pD?V; +V¥Q = R!, (4.105)
F'(@DIQ +V? -V = R? — Ci(vy), (4.106)
where
R} =— [0%, p1DYvi = p (D) + W) — €,(), (4.107)
R 1= — [0}, 7 (@1D{ G — (@) (D@) + ©@) + 3}(F " (@)gv), (4.108)

and the commutators D(f), €(f) are defined in the same way as in (4.39) and (4.40) by replacing 7* with 6;‘ and replacing
0 with 8,. The last two terms in (4.39) vanish because 9% directly commutes with d3. Analogous to Lemma 4.4, we list the
estimates for commutators €, D, €.

Lemmad4.7. LetF := g} f — (9? f07¢ be the Alinhac good unknowns of f with respect to df. Assuming that 93¢ > ¢y > 0, then

182 fllo < 11Ello + ¢ 1183 flleold? o, (4.109)
3 3

I€:(Allo < P[cal, Vi, D Wam_k] : (uaﬂlw N f||4_k), i=1,2,3, (4.110)
k=1 k=1
_ 3 _ 3

1Dl < P[cal, Vi, D |Va,kw|3_k] : (uafum > ||aff||4_k], (4.111)
k=1 k=1

1€l < KV WlollOfleo- (4.112)

The 4}-differentiated kinematic boundary condition now reads

Fy+@-VIY-V-N=85;, onz, (4.113)
where
S} := ;v NoJy + Z (;)afv -0} PN. (4.114)
1<B<3

Also, since Qly = d}q — quaj"zﬁ, the boundary condition of Q on X reads

Vy
V1 + VP

4.6.2 Energy estimates for the full-time derivatives

Q=-0d'V- + K1 = AW — 8300 (4.115)

Replacing 7 by 4} in (4.51), we have

d1 _ 1 _ _ — _
—= f plVPo3@dx = = f pIVP?030,(@ — @) dx + f Q(V¢ - V)o@ dx — f Q(V-N)dx + f V-R'9;@dx.,  (4.116)
dr2 Jo 2 Ja Q b Q
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where the first term and the last term are controlled in the same way as (4.57)-(4.59), so we omit the details. As for the second
term, we follow (4.60)-(4.64) to get

f Q(V* - V)d3pdx
Q
M N ~nQy iNg —~ 1d 2
—- [ dtasiwrogacs [ agashogac- 5 L VF@Q
Q Q t 0

=

) . 4.117
+ | VF@Q|, (0¥l + Va0 + | NVF @R 1R2110 e
. 1d 2 I? v v
<l = 54 [N @Q||, + | VF @t a] (1wl + c¥awtos + 1kTaul)
3 3
+ p{c(;' il Y |vai‘$|3_k] 350001 | VT @0t {llav, Ol + ) 1088, OVt + 15" (@} vill |
k=1 k=1
At this point, we do not control I := ~ [, 3}q€;()d3¢ dx as in (4.63), because this requires the bound for [|9gllo. We

can obtain the estimate of || \/T’(q)c')fqno only as we can no longer use the momentum equation to reduce 6;‘q due to lack of
spatial derivatives. The method in (4.63) is still valid here when we prove the well-posedness while #”(g) is bounded from
below. However, we would like to show that our estimate can be adjusted to be uniform in 7”’(g). To achieve this, we find that
the problematic terms in €;(v') can be exactly canceled by the boundary error term S defined in (4.114). Therefore, this term
should be controlled together with the boundary integral if we want our energy estimates to be uniform in sound speed.

Next, we analyze the boundary integral. Most of the steps are parallel to Section 4.5.4 if we replace o by 4}, so we will
omit the details of those repeated steps but only list the different steps. Plugging the boundary conditions (4.113) and (4.115)
into — ﬂ; Q(V- ﬁ) dx’, we get

—fQ(V-N)dx’=—anfwdx'—fQ(vﬁ)a;‘de'+fQS’; d¥' = I + I + I3, (4.118)
z ) z z

and /] is further divided into three parts

_ Vo — —
I = —fQ@fa,bdx’ =afa;‘V~ W 6,5wdx’—f<2f6f(l —A)a,zp.af¢dx'+fagqa;‘waf;pdx'
z z z z

’1 + ﬁ@z 4.119)
=: ST! + ST, + RT".
Mimicing the steps (4.67)-(4.81), we can get the bounds for ST}, ST,
T - o= ) T
f ST} + STydr+ k30, + 5 [VoI AW < 25+ f P(E*(1)) dt. (4.120)
0 17w 0

Remark. Parallel to the remark after (4.82), — fOT RT" df would contribute to the non-o-weighted energy fx(—a3q)|a;‘AK¢|2 dr
if the Rayleigh-Taylor sign condition holds. This will be revisited in Section 7.

As for RT*, if we still follow (4.82) to get:

T T
fo RT*dtSle@flﬁ|i2Li/+j0‘ P (liglls, |07 Ay |07 Awr]) i,

then we find that the term |8,5AK¢/|0 is not included in E*(f) because there is no spatial derivative here. To overcome this, we
invoke the kinematic boundary condition 9,4y = —v - Vi + v3 and take &7 to get

Ry = - -V + vy — [0,V 1VY = = - V)3 + dtv - N - [8F,7-, V), (4.121)
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and thus

RT" = — f B3q0% (v - VY dx’ + f B3qdHpdty - Ndx' — f d3q0* 8}, v, V] dx’ (4.122)
z z z
=: RT; + RT} + RT;.

Note that we only need to analyze the contribution of RT? because the contribution of the other two terms will be canceled
by part of I3 and I3. To do this, we need to derive the equation for d% - N on X. Recall that

DYl =0+ G V) +@:0) " (v N=0i9) 33 = 8, + ¥ V),
———
=0onX
we have the following identity by projecting the momentum equation onto the direction of NonX
poy-N=~(p=1Dg=p@-V)v-N+ V- Vg - (1 +Vg)dsd,

and thus ., _ L _
pdtv-N = -82pg — p(v - V)&v - N + Vi - V32§ — INI*0:04, (4.123)

where £ means the omitted terms are of lower order. The contribution of the first three terms in (4.123) can be directly controlled
after integrating V by parts and using the Sobolev trace lemma

f ~103q0!y (p(v - V)37 - N + Vi - V6 g — 8} pg) d’
2

L_ fp_lg(');@~ (83q (p?()?v "N+ 6@6,321)) dx’ - f 19398t pg dx’ (4.124)
) )

<110alls (799, P (10310, 163311, 91) + 10l @0 ol ).

Remark. Note that the right side of (4.124) involves ﬁ&‘j@lo whose control relies on o=, This is due to the lacking of the
Rayleigh-Taylor sign condition. When taking the zero surface tension limit, the Rayleigh-Taylor sign condition is assumed and
thus the RT term can be directly controlled.

Then for the last term, we need to do the same reduction for 8?(,//
O == - V)R + 03 - [0, VIV = - - V)Y + v - N - [6;.7-, V). (4.125)
Using (4.125) and Sobolev trace lemma, it is controlled by

10700 < P(Vles, V1) (V8010 + 107V + 107VI12 + VO7) (4.126)

Now we plug the equality above into the boundary integral — L p~'83gINIP8y0:0%§ dx’. Note that the unit exterior normal

vector to X is (0,0, 1)T (not the Eulerian normal vector N !), we can use the divergence theorem to rewrite the boundary integral
into the interior, and integrate by parts in 9, to get the following estimate

T T
- f [ omaiatTosgar art [ [ o7 togWEA (9105 - oy B)oudigax o
0 z

f f 05 (0™ 03qINPAL (V- V)0]F — 0}v - N) 9307 ) dx dr

f f ' 93gINPAL (- )3} - 8v - N) - 830, g dx dr
(4.127)

153

- f p03qINPAL (- V)0% - 0}v - N) - 8367 ¢ dx
Q
T
+ f f p ' 93qINI*9,A? ((v V)G - v - N) - 0207 dxdt
0 Q
< &lld; o> qllg + P5 + f P (10710, 187 vll1, 10, vlee, 17112, [V, (VO 010, (VO o) .
0
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Combining this with (4.120), (4.122), (4.124) and (4.127), we get the estimate for [}

fldt+
0

after choosing € > 0 that appears above to be suitably small.
Next we expand I3, I5 defined in (4.118)

o ) T T
‘Vaj‘Akw(T)L)sg||6,26251||%+ fo RT; + RT;dt + P + fo P(E*(1)) dr, (4.128)

L+1=- fz Ay - Vot dy + fz Odrq( - V)M dx’

— -~ 4 .
+ f g8 dx’ — f Od3qdzv - NoHy dx’ — f a‘*wam(z )afv-a;‘ ﬁN} dx’
z z

1<8<3

(4.129)

and we find that the second term exactly cancels RT] and the fifth term exactly cancels RT} defined in (4.122). The first term

can be controlled in the same way as I, I, defined in (4.84) after replacing o by &}. The fourth term is directly controlled by
P(E“(t)) by using the Sobolev trace lemma.
Hence, it suffices to analyze the third term. Using the definition of S, we have

_ - 4 e
f 84S dx’ = f 974 (0sv - Nofw) dx' -4 f 8*qo’v - ,N dx’ + Z (ﬁ) f 8Py - Vo Py dx, (4.130)
z z z 1<B<2

z

where the first term can be controlled by the surface tension energy after invoking (4.115) and integrating V by parts; and the
last term can be controlled after integrating by part in d, under time integral. But for the remaining term

Iy :=4 f *qd’y - O,N dx’, (4.131)
b3
we neither have anything about the boundary regularity of d}g nor try to integrate (@y12 by parts as in the control of (4.91).

We can still control I3 together with the interior term I = — fgafq(i,-(vi)(%&'dx defined in (4.117). In fact, invoking
(4.103) and (4.104), we know G;(v') includes the following terms involving > 3 time derivatives of v/ and > 4 derivatives of @:

FOVIG = €0 - €0, i=1,2,3, (4.132)
0. : — o 030,000 5.5 . :
-4, (a—f) 8703 = 40,N;859,V' + 4%8‘;83\/’ from the first commutator in €/(v') i = 1,2, (4.133)
3¢ 3¢
3 _ a3at‘ﬁ G a3 3
40, —=|9; 3’ = 8 050;v’ from the first commutator in @ (v ), (4.134)
03¢ 3¢

while the terms in €] (V') containing only < 2 time derivatives of v and < 3 time derivatives of ¢ are controlled directly after
integrating 9, by parts under time integral.
The contribution of the above four terms in /; is divided into three parts

I = —4 f 9*GON0;03 V' dx (4.135)
I = f g03(V% - v)dtgdx (4.136)
2
Z f a‘“[636""’6"")6“’03v’0«pdx+4 f 3y (636’9")5%3 V93pdx. 4.137)
1 3¢

Integrating d3 by parts in [}, and using N3 = 1, we find the boundary term exactly cancels with I3,, so we have

30’
Ly + Iy = 4 fg (670:30N + 3/40,05N) - 8}v dx

(4.138)

d — — — —

=3 f (670330.N + }90,0:N) - 8] v dx + f 8?0330,(O:N - B2v) + 82§0,(0,03N - 3v) dx,
Q Q
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and thus under the time integral, we have the bounds after using e-Young’s inequality

T T
f Iy + I dt < €10; 04l + P + f P(EX(t)) dt. (4.139)
0 0

Next, the term I, can be directly controlled if we insert the continuity equation V¢ .v=—F ’(q)D?q

Iy < |[NF@dta| | VF@aa. NF@aa| 10700 (4.140)
As for I}, we note that —5,-9‘0'6?8,3\/" =870} - 8;0%v; for i = 1,2. So it becomes

2
Iy =4 f 3140:0,p(V* - 3v)dx =4 ) f 814030,90:0;v; dx
Q — Q
"2‘ (4.141)
Ly f FGoi (V7 V)Os0pdx—4 ) f 84 30:0,00,0°v; dx,
Q = Jo

where the first term is controlled by “ VF (90

o (“ VF (@)d}g ot H VF ' (9)0;04 ot ” \/T’(q)af’\g“()) |0, after invoking

the continuity equation; and the second term is controlled under time integral after integrating by parts d; and then 8. So we
have

T

T
f I, dt < lld}agll} + PE + f P(EX(1)) dt. (4.142)
0 0

Summarizing (4.116), (4.117), (4.120), (4.122), (4.128)-(4.131), (4.139), (4.140) and (4.142), we finally get the control of
the Alinhac good unknowns V and Q with respect to 6}

2 _ 2 T T
VIR + |[NF@Q(D|, +| Vavaaw)| + fo oSy} dr s e(1026°41% + 16;012) + P + fo P(EX(t)dt.  (4.143)

To recover the energy for ||6;‘v||% and ||/ ()8} |2, it suffices to invoke (4.109) and use the estimate of |(9f$|0 in (4.126).
Note that the right side of (4.126) has been controlled in 54‘k6f—estimates for k < 3, so we already have |(9jﬂlo < Ph+
I P(E“(%)) dr and thus

2 _ 2 T T
133D + | NF @3 +| Voot A + fo a2} dr < & (1620°G13 + 1630a13) + P + fo P(EX(t) dr. (4.144)

4.7 A priori estimates for the nonlinear x-approximate problem

Now we choose £ > 0 suitably small and then combine the tangential estimates (4.98) and (4.144) with div-curl analysis,
reduction of pressure and L? estimates in Section 4.1 ~ Section 4.3 to get the following energy inequality

T
EX(T) < E“(0) + f P(E*(?)) dt. (4.145)
0

Since the right side of the energy inequality does not rely on x~!, we can use Gronwall’s inequality to prove that there exists
some Ty > 0 independent of « > 0 such that
sup E“(f) < P(E*(0)). (4.146)
0<t<Ty
We also note that the above energy estimate does not rely on F’(¢)~", as a special cancellation structure enjoyed by the
Alinhac good unknowns and delicate analysis (4.130)-(4.142) exclude the only possibility that might make the energy estimates
not uniform in Mach number. Therefore, our a priori bound is also uniform in Mach number.
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S Well-posedness of the nonlinear xk-approximate system

For the nonlinear «x-approximate problem (3.11), we have established the uniform-in-« estimates. Once we prove the well-
posedness of (3.11) for each fixed k > 0, we can take the limit x — O to prove the local existence of the original system
(1.24). We would use Picard iteration to construct the solution to (3.11) for each fixed k > 0. Fix a k > 0, we start with
O, pO 4Oy := (0,1,0) and also define ¥~V := @ Then we construct the solution by the following iteration scheme: For
any n > 0, given {(v%, p®, @)}, we define (v"*D, p*D [+ to be the solution to the following linear system whose
coefficients depend on (v, p™, ™) and "~ D:

pMDP" D) GE D = (o) — ])ges in [0,T]x Q,

FO (g Df‘") gD 4 VB L k) = (qm))gvgﬂ in[0,T] x Q,

q(n+l) — q("”)(p(”“)), é(m—l) — q(n+1) + g’(;(n) in[0,T] X Q,

4D = g _ oV - (%) +K2(1 = A" Ny on [0, T] x I, (5.1
arw(ml) = Y+l .N(n) on[0,T] XX,

V(3”+1) =0 on [0,T] XX,

VD, D D)o = (V.0 P00 Y005

where for any k < n + 1, o®(z, x) is the extension of y® defined by ¢®(z, x) := x3 + x(x3)y® and P® := x5 + y(x3)p® is the
smoothed version of ¢®. The linearized material derivative is defined to be the following linear operator

S —n) = 1 n)  Nn- n
=0+ -V + W(V( " NOTD - 8,65, (5-2)

and the covariant derivatives are defined to be

S 0™

o = 0= G, (5.3)
2

7 _ " g O _

Ve =67 =9, 83@,@33, a=1,2, (5.4)

@(u) _ a(n) _ 1

Vi =0 = gt (5.5)

L . TR 20 " .
Remark. Note that the linearized material derivative is no longer equal to 87 + v - v#"”_ Indeed, one has to set the weight

of 85 to be v - N1 — 9,0 to guarantee both the linearity of this operator and the consistency with the linearized kinematic
boundary condition gy = D . N0,

Remark. Note that the surface tension term in (5.1) is completely a given term instead of being —'V - (V1) /IN®). Under
this setting, we can still do energy estimates for /"*!) by using the kinematic boundary condition and the viscosity term.

For simplicity of notations, for any n > 0, we denote (V"1 p@+D (1D ity (0 500 00 gy and =V by (v, p, g, ),
0, 0,4, J/) and . Hence, we need to solve the following linearized version of system (3.11) for each fixed x > 0 and then
establish an energy estimate to proceed with the iteration scheme.

SDPy + V9 = —(p — 1)ges, in [0,7] x Q,

FUGDIG+ VP v = F(G)ghs, in[0, 7] x Q,

q=qp).3=q+8¢ in[0,T]x Q,

§=gb-aV- (LD)+K2(1 “MW-N),  on[0.T]xE, (5.6)
N

o =v-N, on [0, T] X %,

v3=0 on [0, T] X X,

v, 0,0 = Vg, G ¥)-
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Here ¥ := log p. The linearized material derivative now becomes

o - 1 ~
D! :=0,+V-V+ —-N=00)0 (5.7)
03¢
and the covariant derivatives with respect to (,‘5 are defined to be
s o %
o =0,- 2Ly, (5.8)
d3¢
o o a =
V= 0f =0,- 2205, a=1,2, (5.9)
03¢
s o 1
vy =05 = —=0s, (5.10)
d3¢

where ¥ - V := V101 + v,0,. Note that, by the kinematic boundary condition, the normal component in Df, namely (839’2)"(\"} .

N- 0,9)03 vanishes on X.
From now on, we assume the following given quantities are bounded in some time interval ¢ € [0, T*]. This also works as
the induction hypothesis for the uniform-in-n estimates for (5.6):

4 3
1B = WG + D NG + 17 @y + 1915 + ) 195G + 17 ()37
k=0 k=1 (5 11)

3 t
4,912 4y ak+1§ ak+1 712 2 S5 912 o
+K |W|5_5 + § K |at+ lﬁ, 8;+ lMj_s_k + K f |al lmldT < K().
k=0 0

5.1 Construction of solution to the linearized approximate system

We can prove that system (5.6) is a symmetric hyperbolic system with characteristic boundary conditions. Therefore, we want
to use the duality argument developed by Lax-Phillips [38] to prove the local existence. Before doing this, we have to make
sure the boundary conditions are homogeneous.

5.1.1 The homogeneous linearized approximate system

We introduce the variable §) defined by the harmonic extension

—Ah=0 inQ,

b= gﬁ_o—ﬁ( Y ] on%, (5.12)
1+Vy 2

d3H =0 on Xy,

and define g = ¢ — h. Then (5.6) becomes the following linear hyperbolic system with homogeneous boundary condition

DY +Véq = —V¥h — (5 - )ges, in [0, T]xQ,

P QDY+ Ve v = F @) - DB, in[0.T]x Q,

q=q(p), g_=q+§'§7—5 in[0,7]x Q, 5.13)
g =21 = Nv-N), on [0,T] X %,

V=0 on [0, T] X 5,

v, 0, ¥)li=0 = (vo, po, o).

Note that the coefficients in (5.13) only rely on i, , ¥, and p which is already given. The kinematic boundary condition,
namely 0,y = v - N = -(v- 6)@ + v3 on Z, is used to define ¢ after solving (v, ¢) from (5.13).
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We define U := (51, v1,v2,v3)", then (5.13) can be expressed in terms of U by

3
AU + )" AU = §, (5.14)
i=1

Q o Lo o Lc 3_0 T o o
where 1= (7(4)(b3 — Dfb), =075, ~055,~055 — 6 — 1ig) , Ao(D) = ding [7(@), .. and

o T

R 1 oS T i 1 ° oy o .—'-_ . >
A,(U):[T @i e ]fori=1,2, As(O) = — |7 @O N=9¢) N .
e poils N b N - 9,6l

i 0z

Since (0, — v - N, )s = 0and e3 = (0,0,1)7 is the unit exterior normal vector to X, we know that the boundary matrix,
namely the normal projection of the coefficient matrices onto X, is

o T
0 N

3
D AdD)es; = A(0) = | <
i=1 03

] onXx

which is a 4 X 4, rank 2 (constant rank but not full rank) matrix having one negative eigenvalue, one positive eigenvalue, and
two zero eigenvalues. So we know system (5.13) is a first-order symmetric hyperbolic system with characteristic boundary
conditions. The number of boundary conditions should be equal to the number of negative eigenvalues. Therefore, the correct
number of boundary conditions for (5.13) is indeed equal to 1 which means (5.13) is solvable. After solving (5.13), we use the
kinematic boundary condition to define i for the next step of the iteration.

5.1.2 Well-posedness in L? via u-regularization

From the duality argument by Lax-Phillips [38], we need to prove the following two things for the well-posedness of (5.13) in
some function space X

o Establish a priori estimate (without loss of regularity from source term to solution) for (5.13) in X,

e Establish a priori estimate (without loss of regularity from source term to solution) for the dual system of (5.13) in X’.

We choose X = L2(Q) as we don’t know what exactly the dual space of H*(Q) (s > 0) is. We define W* = (¢*, w}, w3, wg)T
to be the dual variables of U = (g, v, v2, v3)". By testing (5.13) with W* in L*(Q), one can derive the system of W* which reads

3
AW + 3 AW + Ad(OIW* = f*
i=1

— o 3
with boundary condition ¢*|y = —k*(1 = A)(w - N), where A4 := —6,Ag - BiAiT — (0 — 1)gE44 with E44 = diag[0, 0, 0, 1]. Note
= i=1

that we do not have the dual variable for ¥ because ¢ is completely determined by the original linearized system. That is why
we only have one boundary condition for the dual system.

We notice that there is an extra minus sign in the boundary condition for ¢*. So, one cannot close the L>-type a priori
estimate for the dual system even if we can derive that L>-type a priori estimate for (5.13). To avoid this difficulty, we introduce
another viscosity term in the boundary for ¢ in (5.13). That is, we alternatively consider the y-regularized linear problem for
U =(qvi,v2,v3)"

3
Ao(D)d,U + ZA,((?)@U = f, (5.15)

i=1

with boundary conditions
q=(1 =D N)+u(1 -D)d,(v-N) onE. (5.16)
Then the dual system of (5.15)-(5.16) reads
3

Ao(D)d,W* + ZA,»((“J)&,-W* + AW = f* (5.17)

i=1
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with boundary condition

¢ == = D)W - N) + (1 = Da,w* - N) on, (5.18)

3
where A4 = —6,Ag - (9,-Al.T — (0 — 1)gE44 with E44 = diag[0, 0,0, 1]. Note that we have to integrate by parts once more in ¢
i=1

variable when deriving the boundary condition for g*. That is why there is a minus sign in front of u(1 — K)(w ‘N ).

Now we are going to derive the [?a priori estimates for both (5.15) and (5.17). For linear system (5.15), we test it with U
in L?(Q) and use the symmetry of the coefficient matrices to get

3

f UT-Ay(U)U dx = f U'.f- Zf UT - 3;A(0)U dx — f UT - A5(U)U dx, (5.19)

Q Q = Ja )
where the interior integrals are directly controlled by C(IO(O)IIU II% and the boundary integral reads
- fUT AU d’ = =2 f(v N)gdy
z b =
=243 f ((1 —A(w* -ﬁ)) (W - N)dx' +2u f o, ((1 - A" '1’\7)) (w* - N)do’ (5.20)
Q b

—-u3, [|@0r-®
BT

2 . N
+ fot k(v - N)(@dt + | yja(v - N)(0)I?, then the above analysis shows that
0

2 _ o 2
dx’ = 2 (YW - N)| .
0 0

We define Ey(f) := ||v(t)||(2) + H 73"(6"1)@(0

T
Eo(T) - E(0) < C(Ko) fo Eo(t) + EoIf®llo dr. (5.21)

and thus by Grénwall’s inequality we finish the L? control for (5.15). Note that this a priori bound is also uniform in u.
Next, we show the L? estimates for the dual system (5.17). Note that the matrix A4(U) is still in L*(Q), so we test (5.17)
by W* and take L? inner product to get

3
f W' Ag(DYW* dx = f W W [Z AU + Ay(D) +,5gE44] W* dx — f WHT - As(D)W*dx',  (5.22)
o Q o b

where the interior integral is directly controlled by C (Io(o)||W*||(2), but now there is a sign change in the boundary integral, which
reads

- f (WHT - A3(OHW* dy’ = -2 f w* - N)g* dx’
z z -

=2 f (=D M) Max - 24 f 8, (1= Bow - W v - Ny v (523)
Q z

< df
N#dtz

One can see that the new viscosity term involving u is used to control the term +2K2|(5)(w* ‘N )|(2) due to the change of sign.

2 . 2
+u ‘(w* - N)(1)| , then we have
0 1

o |2 _ o
@ W - N)| dx’ + 262 (B)(w* - N)
0

2
0

So, if we define E(1) = [w* (I3 + H 7%'(5]@*(0

T
Ey(T) - Ej0) s, C(Ko) fo Eg(0) + AJE; I 0l dt, (5.24)

and thus Gronwall’s inequality helps us close the L2 estimates.
Combining (5.21) and (5.24), we close the Q) a priori bounds for both linear system (5.15)-(5.16) and its dual system
(5.17)-(5.18). And such energy bounds have no regularity loss from their source terms to solutions. Therefore, by the argument
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in Lax-Phillips [38](see also [53, Theorem 5,9]), for each fixed i > 0, system (5.17)-(5.18) admits a unique solution U € LX(Q).
Since the energy bound (5.21) for (5.15)-(5.16) is uniform in y, we can take the limit u — 0. to obtain a local-in-time solution
of the homogeneous linearized problem (5.13). Finally, the modification b is easily controlled by using the property of the
harmonic function

1 o o o _o  _Do
Vs > ~5 bllys 1 < bls < glls + PAVYIDIV ¥y,

which implies the local existence for L? (weak) solution to the linearized x-approximate system (5.6). By the argument in [49,
Section 2.2.3](see also [53, Theorem 4, 8]), the weak solution U is actually a strong solution.

5.2 Higher-order estimates for the linearized system

Now we prove higher-order energy estimates for the linearized system (5.6). We define the following energy functional

4 f
EX@t) :=llo() = LG + >~ 10l + f 0 w2 dr
k=0 0

3 (5.25)
+INF @O + 1030 + > 1060, + 13T @i a3,
k=1
Proposition 5.1. There exists some 7% > 0 depending on « and a constant C(k~, Ko) > 0, such that
sup EX(1) < C(x", Ko)EX(0), (5.26)
0<t<T*
and ¢ and its time derivatives have the following bounds in ¢ € [0, T*]
3
WORs + Y 10 w5, < Cw, R E D). (5.27)
k=0
5.2.1 [? estimates
We define the L? energy for the linearized system (5.6) to be
!
E§(0) := llp(r) = 1[5 + VUG + I F/(@a@)lig + f 0D dr. (5.28)
0

The control of Ey follows in the same way as the L? a priori estimates for (5.15) when u = 0. Note that the control of
llo — 1||(2) follows from testing the linearized continuity equation %’(Z])T’(q)‘lD‘f(p — 1) +p(V¥-v) =0by p— 1 in L2(Q). Also
one can control the L2(Z) norm of  via y/(f) = o, + fot o(T)dr.

5.2.2 Div-Curl analysis

To estimate the Sobolev norms of v, we invoke the following Hodge decomposition lemma which is exactly from [9, Theorem
1.1].

Lemma 5.2 (Hodge elliptic estimates). For any sufficiently smooth vector field X and s > 1, one has

IXIE < CO0l . Ty (IXIG + 197 - XIZ 4 197 5 XIE, + XN, #1668, ), (5.29)
b

where the constant C(IJIS e W@IWLM) > ( depends linearly on |$|2+] .
St3
Applying this lemma to v with s = 4, one has

IVIZ < C(las, IVlwi) (||v||3 + V2 B+ IV X V3 + v I‘V‘|§,5). (5.30)
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Now we control the curl term. Taking V¢x in the first equation of (5.6), we get the evolution equation of V¢ x v
PDP (VP x v) = V%, DV v + Vop x (57 Vo), (5.31)
and taking three derivatives we get
PDFF(VE x v) = & (ﬁ[Véx, D'v) + Vop x (ﬁ—lv%)) 8%, pDP1(VE x 1), (5.32)
We expect that the source terms in (5. 32) only contaln <4 derlvatlves of v, q and quantities marked W1th a ring, but there

still exists a mismatched term in ([V¥x, Dw]v)’ = e’f"V"’ ’V“’v + e’f"V"’B (go af)a%k The contribution of zp is controlled by K.

So, standard L? estimates for the 3°-differentiated evolution equation of V¢ x v and Reynold transport formula (A.9) gives

d = o .
Egllw X VI3 < PKo)AWIE + lgllalivila + 1841allovilco)- (5.33)
Finally, using the linearized continuity equation, we can control the divergence
2 o 2
+|F @), (5.34)

V9 vii3 < |F"(@Dfq

The div-curl analysis for the time derivatives proceeded similarly. We first do the div-curl decomposition for 1 < k <3
vy < C(It//|45 s |V'l/|W1w)(||(9kV||0 +Iv¥ - VB, + IVZ X BRI, + 105y - N|§,5_k). (5.35)

We replace ° by 93>~ for 0 < k < 3 in (5.32) to get the evolution equation for curl

pDF (37947 x 1) = ot (;)[vfﬁx, DPv) + V%5 x (;‘s*‘v?zl)) (8P pDPY(VF x v), (5.36)
and thus 41
33190V X0, < PE@). (5.37)

Then we find the highest order term in the commutator [Bf R Véx]v should be 56,’:56’;‘1631/, so we have

o T
V¥ x 0fvI3_, < C(Ko) (E“(O) + f E“(p) dt). (5.38)
0
As for divergence, taking time derivatives in the continuity equation, we get
Ve oy = —6k(7—"(q)D + F(@)ghs) + [V, 0y & —T’(q)(@"D + g0'%3) + (050) ' 00" 003V

Parallel to the analysis for (4.25), since ||56§<72’||3_k < Io(o thanks to (5.11), we have ||V‘—; . afv||3_k is reduced to the control of
||T’(¢})6f”é||3_k and ||?"(c°])6fé||4_k at the top order. Thus,

V% - R, < (CRo) + 1|7 @015

+ |7 @atg

4_k) . (5.39)

5.2.3 Estimates for ¢y and normal traces

The normal trace terms in (5.30) and (5.35) can be directly controlled by applying boundary elliptic estimates to the linearized
viscous surface tension equation «x*(1 — A - N )=¢q-— 0'7-((Vd/ V 1//) We start with |v - N|s.s

2 _ —2.° —2 _ ° .
v N5 <« 2(|q|%,5 + 0|V m%_sP(wlml.s)) < kK 2P(Ko)lIgll3- (5.40)

Taking time derivatives in the kinematic boundary condition, we know
o k k ; —-
dv-N=oy-> ( ,)af‘-’v XA
=AY
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and thus ,
0v - Nlos < 10%0ls + v - Vblas < 10205 + veoll2 + P(Ko) f 18:%(0)lI3 d. (5.41)
0

Then we take a time derivative in the linearized viscous surface tension equation to get
— RS -3
k(1 = D)3y = 8, = cdH(VY, V),

which implies |07¢/]>5 < [10:qll, + P(Ky). Repeatedly, we can take more time derivatives to see
2 . T,
0Fv - N s, <105 yl3 s+ PS + P(Ko) f EX(1)dt, (5.42)
0

and then Iﬁf“zﬁlg_s_k is controlled via boundary elliptic estimates

T
020 5 ~ [O) 2 3 < KBY 207413 + P(Ko) < 11074117 + P(Ko) < 1024(0)I1} + P(Ko) + f E<()dt, (5.43)
0
16205 ~ [0) 2 8wl < KBY 22 dlo + P(Ko) < 11824111 + P(Ko), (5.44)

where the term ||6,3§||1 will be further reduced to ||(')?‘Tv||0.

5.2.4 Reduction of pressure to tangential derivatives of v

Now we show the reduction of pressure. We start with ||§||4. From the linearized momentum equation, we know

—(339)"'03q = (p — 1)g + pDYvs,
~8iq = (339) ' 8ip03q + pDYv, i=1,2,

and thus we have the following estimates after taking 0% and using D? = (0, + En ﬁ) + (63(,%)‘1 W- N- 0;9)05 to get
Glls <g, llgllo + N7 VI3 + 116 = 1ll, (5.45)

where 7 denotes a tangential derivative, including 6,,5 and w(x)d; for some weight function w that vanishes on X and is
approximately equal to |x3| near X. Replacing 8> by 83 *d%, we know the estimates of 8*§ is reduced to the estimates of §*+1v
and T v.

5.2.5 Control of full time derivatives

From the reduction procedures for ¢ and the div-curl analysis for v, we know a spatial derivative of ¢ is reduced to a tangential
derivative of v, and the divergence of v is reduced to F "(§)8,q. Repeatedly, it remains to control d¢g and 7*v with |a| = 4. Here
we only present the proof for the estimates of full-time derivatives which is parallel to Section 4.6, and the other 7 *-estimates
are easier. We introduce the Alinhac good unknowns \07, Q for the 6f-differentiated linearized system (5.6)

V=gl - 3edly, Q= d'q-8'60% (5.46)
Similarly as Section 4.6, we have the following identity for f = v; and g

FVEf) = VE + (), (5.47)

i

where €;(f) := 6f0¢f6fg%+ &f(f) and

, 7 o 1 N 1 o
& =- [0?, ‘9—,"”, Osf |- osf [8;‘,6,-90, — | + i f {6?, —n}a,aw, i=1,2 (5.48)
03¢ 03p (63@2
o, 1 1 o
() = [a;‘, —. 03 f} +0sf [63, —] 3,030. (5.49)
03¢ (939)?
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Then we take 8} to the first two equations of (5.6) to obtain

SDPV, + V?Q = 7'?1, (5.50)
F@DIQ+ V7 -V =R - &0, (5.51)
where
R} := — [0}, pIDv; — p (D) + &) - 6(&) - 3pgo (552)
R =~ [0, F@IDFG ~ '@ (D@ + &@) + 3 F @), (5.53)

and the commutators B ), &( f) are defined in the same way as in (4.39) and (4.40) by replacing 7@ with 8}, replacing d with
0y, replacing ¢ by . go The last two terms in (4.39) vanish because d¢ commutes with d3. Specifically, we have

a*DFf = DR+ D(f) + &) (5.54)

where D(f) := (DFo% 1% + D'(f) and

o - —_ 1 —~ -~
D(f) =04, 5]- 0f + |0, —= (- N—0,@), 05| + |6%,5- N = 0, — | 05 + —[0%, ] - Nos f
3 03¢ 3390
—4(%-N = 3,005 f [6?, —} 8,03, (5.55)
(03p)?
and . . _
&(f) := 87(¢ — §)0% 1. (5.56)

Analogous to Lemma 4.4, we list the estimates for commutators CDS, ”5, .

Lemma 5.3. Let I := atf - Bf f(');‘Z,OE be the Alinhac good unknowns associated with the smooth function f. Assume 03¢ >
co > 0 and let &( ), f}( f), and &( f) be the remainder terms defined as mentioned above. Then

167 £llo < 1Ello + ¢5 1183 1l o, (5.57)
3 . 3
I€i(f)llo < P[ca‘, Vi Z Wai%_k] : (uafuw > ||aff||4_k], i=1,2,3, (5.58)
k=1
3
Dl < P[co ,|vw|w,z Vot Vol k] {uafum +> ||aff||4_k], (5.59)
k=1
BNl < 170l + 18 H1)I0f - (5.60)

We introduce the boundary conditions for V,Q. The ?-differentiated linearized kinematic boundary condition now reads

Fu+@ VIU-V-N=8, onz, (5.61)
where
o 2 o 4\ . .o
Si:= 03 N} + Z (.)6{V~6f 'N. (5.62)
1<j<3

Also, since Qs = 8% — afqa;@, the boundary condition of Q on X reads

Vy

V1 + [V

O =-0d'v + 131 = MY — 833040 + g0, (5.63)
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Using Reynold transport formula (A.9), we have the following equality

dl1

72 f BIVIospdx = = f |V|2 (D! p+pw v)(93go+pM dx+ f QY7 - V)35 dx — f Qv - N)dx + f V- R'95pdx,

o)

. L (5.64)

where M := 0,03(p — @) + 03(0;, + V- V)(p — @) represents the mismatched terms involving tangential smoothing in the linearized
Reynold transport formula. The contribution of the first integral can be directly controlled by ||M||.. < P(Kj) because all these

quantities are already given. The last integral is also directly controlled by P(Ko)IVllo \/E"(t). Then for the second term in
(5.64), we invoke (5.51) to get the estimates parallel to (4.117)

f Q(V7 - V)d5¢ dx

f 8*4€,(")03¢ dx + f a;‘aa 4€,0"H05p dx — f 73"(51)0?6 Qospdx + f R*Qd5p dx
Q Q

2

1d s .
(IV# Voo + M0
0

<-4 (5.65)

F1(§) F (I

+ 1€ BN + || F (@) F1(§) 'R

2

0

+ P(Ko)EX(1),

sh-=-— H F7(g) Q

where we note that all terms in R? contains at least linear weight ¥ (¢) and thus the control of 73"(51)_17‘?2 is still uniform in
F'(@).

Now it remains to control the boundary integral. Compared with the nonlinear system, the estimate for the linearized system
is easier as the surface tension term now becomes a given term. Plugging (5.61) and (5.63) into the boundary integral, we get

- f QV - Nydy = - f 9V - (T INDGw dx’ — & f (1 = M -y dx’
z z z
- fz g ooy dx’ + fz 8330 by dx’ (5.66)
- f QG- V) dx' + f QS dv,
p p

where the second term gives us the boundary energy

_ _ 2
K f N =Ny - Bydx =« f |<a>a,5w' dx’ (5.67)
b b
We note that the first, the third, and the fourth terms in (5.66) can all be directly controlled under the time integral
T - —2 — 2 o o
- f f 5 - (Vg /IOy A’ di 5 2., + PAVil)VOIR < eEXT) + P(Ko) (5.68)
0o Jx 1
T o 2 o o T o

- [ (- onatiste ar ar < soiut,, +0RO 41001, <o BT+ PR [ E0@ 6569

0o Jx " o 0

The fifth term is also controlled directly by using the mollifier property (3.5):
T - — 2~ T —_ —_2 2 - 2 T —_ - — 2
-~ f f QG- V)t dx' dr = - f o f OV - (Vg /INDG - V)dHy dx’ dt + &2 f f (1 =Ny - V)dhy dx’ dt
0 Jsz 0 b 0o Jx
T o e
+ f f (g — )W (- V)3 w dx’ dt (5.70)
0 Jz
[} T <}
Skt 8|afl//|i2Hl + P(KO)f EK(t) dr.
e 0
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It remains to analyze the last integral which will be canceled with iy defined in (5.65). Following the analysis in (4.130)-
(4.139), we have

f QS dx =4 f 9*gdv - 8,N dx’ + controllable terms, (5.71)
z z
lh=-4 f 8* g0, N;0;0>V' dx + controllable terms, (5.72)
Q

and then we add them together and use the divergence theorem to get

4 f 40Py - O,N dx’ — 4 f OGNV dx

a < N . . (5.73)

:a‘ f(a?a?)qatN + 336?6,63N) . a?v dx + f 6?63qaz(61N . a?v) + a?qa[(al(‘a?,N . 63‘}) dx,
Q Q

whose time integral can be easily bounded by £||8,363(§||% + EX0) + P(Kp) fOT EX(f) dt. Hence, we get the control of boundary
integral

T o~ e T r_ o . . (T
- f f QW - Ny dx dr + & f f |<a>a,5¢|0 dr < ell@30s31R + E(0) + P(Ko) f E4(r)dr. (5.74)
0 z 0 b 0

Combining this with (5.64), (5.65) and the definition of Alinhac good unknowns we get the estimates for the full-time

derivatives
VT (@dtq

This together with div-curl analysis gives us the energy inequality of EX(t) after choosing & > 0 suitably small

: T o . . (T
1042 + + i f f (@079 ar < 21605313 + £(0) + PKo) f E4(r)dr. (5.75)
0 0 JI 0

EX(t) <1 EX(0) + P(Kp) f EX(7)dr, (5.76)
0

which together with Gronwall’s inequality implies that there exists some 7% > 0 such that

sup E*(r) < C(x™", Ko)EX(0).

0<t<T*

5.2.6 Regularity of ¢ and its time derivatives

The regularity of 3!y (0 < k < 3) can be enhanced to H>>7% by the boundary elliptic estimates once we close the energy
estimates for £%(¢). Since the boundary condition gives

— o _° _pe°
K1 =Ny =G - gy + cH VY,V §).
Hence, by virtue of (5.11) and the elltipic estimate, it holds that
B o D o 1 o o
05 lss-i < k2 (o PAVHIOFY Wt +108alsss + P(R)) < O Ko)E, (5.77)

Moreover, [i/|s 5 is controlled by
T
mmswwm+jﬁnwmmm. (5.78)
0

Therefore, the uniform-in-n estimates for (5.6) are proven by induction.
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5.3 Picard iteration

So far, we have established the local existence and the uniform-in-n estimates for the linearized system (5.1) for each fixed
k > 0, namely

p<n)Ds0 D) + VE" gD = — (o™ — 1)ges in[0,7T] x Q,

FOY (g™) Dj" "yl 4 g L kD) = oy (g™)gvy” in[0,7T]x Q,

gD = gD (D) gt = gD 4 gz in [0,7T] X Q,

Gt = gg®™ _ o . (%) + K21 =AY N®)Y  on[0,T] X Z, (5.79)
arlp(nﬂ) = D) .N(n) on[0,T] XX,

V(3n+1) -0 on [0,T] XX,
(D, p Dy D)y = (v, o ),

where zp(”),(p(”),D?m,Vz’E(") are defined in (5.2)-(5.5). Now it suffices to prove that, for each fixed x > 0, the sequence
(W™, 4 ™)}, has a strongly convergent subsequence. Once we prove this, the limit of that subsequence becomes the
solution to the nonlinear k-approximate system (3.11) for this chosen «.

For a function sequence {f™} we define [f]™ := f**D — £ and then we find that {([v]™, [§]", [¥]™)} satisfies the
following linear system

0™ D" [y + Ve g = — f in[0,T] % Q,

FO (D7 g1 + T - [y = - f in [0, 7] x Q,

(41" = [q]™ + gl@] " in[0,7]xQ,

[G1 = g[y]™D = o [H]D + k21 = A)([v]™ - N®) + £2(1 = A)™@ - [N]® D), on[0,T] X Z, (5.80)
Ay = ] - N + (v - [N]"=D), on [0,T] X =,

v1=0 on [0, T] X =5,

(1, [p1™, [¥1)=o = (0,0,0),

where £ and f" are defined by

f"(n) = [p](n—l)a v(n) + [pg](n—l) _§v(n) + [pV°]("_1)(9 v(n) + [p]("_l)ge3 + 335](")[A[3]('1_1), (5.81)
S = [F (@1 @4 - o) + [F (@v]" " - Vg™ + [F(g) V1" V03™ (5.82)
=7 (q")glvs]"V + asv [ An] ",
and
V= —— (™ NOD — g,0m), AT = 61%‘"), o .= —62%("), .= ;
N 3390( n) By’ B Bzp™” T3 T gy

[H]"D = HVE™) = HV" D), H(Vg) = -V - (V—_’ﬁ)
1+ |Vy?

For n > 1, we define the energy of (5.80) [E]™ to be the following quantity
3 !
n n vi(n n 2 n
[E17@) 1= D 1 1P @I + 10191 @I, + f |05 1™ @), d + 11 @0l (5.83)
k=0 0

It suffices to control [E]™(¢) and use ([v]™, [p]", [¥]")|=0 = (0,0,0) to show that [E]"™(¢) < }T([E](”‘l)(t) + [E172()) in
some time interval [0, T{]. The estimates for [E]™(¢) are parallel to Section 5.2, so we will not go into every detail but only list
the sketch of the proof.

5.3.1 Div-curl analysis for [v]"

By Lemma 5.2, we have the following inequalities for k = 0, 1,2

13K IR < C(Ko) (1051 ™I + 1IV9" X V™3 + V2" - VI ™IB_, + 1001 - N 5, ). (5.84)
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The estimates for L>(Q) norms follow in the same way as Section 5.2.1 so we do not repeat here. For the curl part, we take
V#"”x in the first equation of (5.80) to get

70 7 S0

D7 (V" x (1)) = <P s i = 97" p 5 DY ] + o, DF v, (5:85)

n ) . .. ~(n) —(n) .. ~(n) -
where ([V¥"x, D" [v]®) = ey’ WOV ] + €*VE 8@ — " )d; [v]!” and V¥"
tives of v, ™, "D 4*=2) Taking 9%, we have

X fv(") contains at most two deriva-

¢n) a(n)

™ DP" 32V x [v]™) = GA(RHS of (5.85)) — [0%, p™ DP"1(VZ" x [v]™). (5.86)
Based on the analysis above, we find that the leading-order terms of [v]®, [v]”~! must be linear in [v]®, [v]"~D respec-
tively. Using Reynold transport formula (A.9) for the linearized system, the curl part can be directly controlled as in (5.33)

T
||V’¢""’x[v]“”(T)H%scu%w{uv@f"’”x[v]("><0>||§+ f PE™, E=D | E0=D)[E10) () dy (5.87)
_/_/ O
=0

T
< C(ky) f [EI™ (@) + [E1" V@) + [E1"2 () dr.
0

Similarly, replacing 6> by 8*~*6* for k = 1,2, we get similar results

)

T
IVZ" x 1T, < C(Ko) fo [E1™@) + [E1" V() + [E]"2(0) dr. (5.88)

As for the divergence, the second equation in (5.80) gives

Gl

. 0 o o , .
IV#" - ™I < 17 (@™)DF 11 ™15 + 11fgll; < PR)IF™ (@™ T 1311, (5.89)
where 7~ = 8, or d or wd; for a bounded weight function w vanishing on X. Therefore, the divergence is then reduced to the
tangential derivatives of [§]. Similarly, the divergence of 8*[v]™ is reduced to 8*7 g so we omit this reduce step.
Next, the normal traces are still controlled by using boundary elliptic estimates. Note that the Dirichlet boundary condition
for [§]™ can be written as

— (=A™ - N™) = =[] = o (H(TY™) = HTP" ™)) + (1 = D™ - [N]"D), (5.90)
and thus _ . . .
I - NOE 5 <1 llg™IE + P(Ko) + 5™ - Vg™ DR o+ pR 5 < g1 ™1} + P(Ko). (5.91)

Similarly, we have for k = 1,2 _
¥V - NP3 s, <t 10511 ™11 + P(Ko). (5.92)

5.3.2 Reduction of pressure [¢]™
This step is also quite similar to Section 5.2.4. We first consider the third component of the first equation in (5.80)
o 9
@38") 0391 = =" Df ] + £, (5.93)

which means the control of 95[§]™ is reduced to 7 [v]™. Then considering the first and second components, we can further
reduce the control of 5,~Z] (i = 1,2) to 93¢ and T v due to Vf = 5,- - 5,-7;56‘3". Therefore, combining the div-curl analysis and
reduction procedures for [¢]®, it suffices to control 8?8[J]™ and 8>[§]™.
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5.3.3 Tangential estimates for full-time derivatives

Again we only show the control of 3°[§]™ and introduce the Alinhac good unknowns

—(n)

VI = 01" - 97870 1, QI = 3141 - 67655 141"
The Alinhac good unknowns [V]®, [Q]®™ satisfy the following linear system
o™ D;’p‘” [V.]™ + V@‘") [Q]"™ = 1(n)
FO (gD QI + V7" . V™ = Rz(m &([v1™y,
where

Rl(n) a3f(n) ; ’p(n)]D‘/’ [Vi](n) _ p(n) (f}([vi](fl)) + &([vi](n))) _ &l([c"]])

R = =0} /i = [B?f“” ("] @™ = F ™) (@™ + &™),

(5.94)

(5.95)
(5.96)

(5.97)
(5.98)

where €, D, € are defined in a parallel way to (5.48)-(5.56), after replacing 8* by &7 and replacing v, §, ¢, @ by v, g™, o™, =1

respectively. The boundary conditions now become

[QI” = 81" ~ 00} (HVY™) = HTVG"™D) + (1 = )3y [] "

3

AT 3\ 3o n N Tn AT —(n Ar(n—
[V](n) CN® = 8?[¢](n) _ Z (k)a? k[v]( ) _alrcNU) _ 3z3¢( )83[\/](”) CN®™ 3,3(1/( ). [N](n 1))

k=1
Following (5.64)-(5.65), we have

ld

S [ pmvinpagn ace [ 71N oG dx
2dr\ Jq o

T
scu%o)( f [E]<"><t)+[E]<”‘1><r>+[E]<"-2>(r)dr)— f [QI™([VI™ - N™)dx' — f SNV 1™)d3™ dx.
0 x Q

Again, following (5.66)-(5.71), the artificial viscosity term gives the boundary energy

T
- [roravin-imar s [ ot
z 0

T
<3 f a1 a1 - §,N™ dx'+C(1°<o>([E]<"><0)+ f [E1™@) + [E1" (@) + [E1"P(0) de
z 0

(5.99)

(5.100)

(5.101)

(5.102)

where we note that the contribution of 63(1/(") [N ](” ) is controlled in a similar way as (4.127), that is, one can use divergence

theorem to rewrite this term to be an interior integral.
Following (5.72), we have

- f RV ™)038™ dx = -3 f B3 ™IN"330?[V]dx + controllable terms,
Q Q

(5.103)

and thus it can be controlled together with the remaining boundary integral by using divergence theorem and integration by

parts in ¢

3 f ARG ™ - §,N™ dx’ -3 f G MIN"302 V] dx = 3 f 05 (311N - 9711 dx
z Q Q

9 d 21 >7(n) 4 g™ 2r.,1(n)
= - & f(; 63 (61 [fZ] alNi ) . a, [V] d.X
+ f Q05[] 8,(0,N™ - 92 [v]™) + 82[§10,(8,0;N™ - & [v]™) dx
Q

T
< ellof g1 ™1 +c<f(o>([él<"><0)+ f [E1™() + [E]1"D(r) dr).
0
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Combining the above analysis and using the definition of Alinhac good unknowns, we get the control of full-time derivatives

182D IR + | VF@ (MG ™ DI + 12 f |0}y (r);dr

T ’ (5.105)

< &l [G1™ 7 + C(Ko, k7! ([E°](">(0)+ f [E°]<">(r>+[E]<"—”(r)+[E]<”'2><t)dr).
0

5.4 Well-posedness of the nonlinear x-approximate problem
Combining the div-curl analysis, the control of the normal traces, the reduction of [¢] and the analysis of full-time derivatives
for the linear system (5.80) for [v]™, [¢]™, [¥]™, we finally get the following energy estimates

T
[E1™(f) < C(Ko, k™ ([E]<">(0)+ f [E"]<">(z)+[E]<"—‘>(z)+[E]<"—2>(z)dt). (5.106)
0

Since [v]™, [§]™, [¥]™ have zero initial data, one can repeatedly use (5.80) to show that their time derivatives also vanish
on {t = 0}, as one can observe that every term in the first two equations of (5.80) contains exactly one term involving [ £]® or
[£1~" whose initial value is zero. This implies [E£]™(0) = 0, and thus there exists some T¥ > 0 independent of n, such that

, 1 , ,
sup [E1™(r) < -[ sup [E1" V(@) + sup [E]("_z)(t)), (5.107)
0<I<T¥ 0<<T} 0<<T}
and thus we know by induction that
sup [E]"(r) < C(Ko,k™1)/2"" = 0as n — +oo. (5.108)

0<I<T¥

Hence, for any fixed x > 0, the sequence of approximate solutions {(vV?, g™, p™, ™)}, has a strongly convergent subse-
quence, whose limit (v, §*, o, ¥*) is exactly the solution to the nonlinear x-problem (3.11). The uniqueness follows from a
parallel argument.

6 Well-posedness of the gravity-capillary water wave system

For any fixed o > 0, we can prove the local existence of the original system by the following steps. In Section 5, we prove
the local well-posedness and higher-order energy estimates of the linearized system (5.6) for each fixed x > 0 and use Picard
iteration to construct the unique strong solution to the nonlinear k-approximate problem (3.11) defined in Section 3.2. To pass
the limit k — 0. to the original system (1.24), we prove the uniform-in-« estimates for (3.11) in Section 4. Therefore, we
prove the local-in-time existence for the stronger solution to the compressible gravity-capillary water wave system (1.24), that
is, given initial data (v, pg, ¥o), there exists 7’ > 0 only depending on the initial data, such that the original system (1.24) has
a solution (v, p, ¥) satisfying the energy estimates

sup E(t) < P(E(0)). 6.1)

0<t<T’

To prove the well-posedness, it suffices to prove the uniqueness of the solution to (1.24). We assume (™, Z]("), P, l//(”))}nzl,z
to be two solutions to (1.24) and define [f] = f — f® for any function f. Then it suffices to prove ([v],[], [p], [¥]) =
(0,0,0,0). We find that ([v], [¢], [o], [¥]) = (0,0, 0, 0) satisfies the following system

oD ) + Ve [g] = — f, in [0,T] x Q,

F(qDf g1+ 94" - vl = — in [0, 7] % Q,

(4] = [q] + gle] in[0,T] X Q,

(9] = gly] — o (HVy™) - H@Y?))  on[0,T] X%, (6.2)
oy = [v] N 4@ [N] on[0,T]XZ,

[vs]1=0 on [0, T] X X,

(v, [4), [¥Dli=o = (0,0, 0)
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where the functions f,, f, are defined by

£ = 1010V + [pv] - Vv + [pVn103v? + pPges + 8:6P[An] (6.3)
o = IF @102 - gv?) + [F (@] - V@ + [F'(9) V193¢ (6.4)
~ F(gP)glvs] + 33vP[As],

and

1 Oip drp 1
VN = — N—@ N A = ——, A = —— A\ =
N 83¢(V ), A3 oo’ G’ A7 T
V) =V- @ T D\ _ o ON _ . Viy] (1 15,0
H(Vy) =V (lNl)’ HVY'D) = HVy') =V N ] Ve V|

Define the energy functional [E](¢) for (6.2) to be

3 2
[E1@) := > 10 VIR, + oIV IR, + gyl + > I9HGIR_, + Il (@) 1411, (6.5)
k=0 k=0

and then we can mimic the proof for the uniform-in-« estimates (setting « = 0) in Section 4 to show that [E](0) = 0 and [E](?)
satisfies the following energy inequality

T
[EXT) < fo PE)EN) dr. 6.6)

The only difference is that the boundary integral produces some extra terms that are controlled using mollification before.
The main contribution of the boundary integral arising from 3°-tangential estimates is

- f [QIIV]- NV dx £ - f PlqloF W dx + f Pl - [N dx, ©6.7)
> M) >

where [Q], [V] are the Alinhac good unknowns of &, v with respect to 3%, namely [F] := *f — 8>3 f.
For the first integral, we use the boundary condition for [¢] and [¢] = g + g¢ to see

P[] VD +y?®)

6 (2) . V_3 ’ 6.8
S INOINO[IND| + IN®)) Y- 0,V [yl dx, (6.8)

_ | 3 =3 ,L_od -1 [l v
[Flapdwer -5 [ WO FTw o -

where the first term gives the boundary energy in [E](f), and the second term appears when & falls on

@12 _ M2
NP NP = INVI” = INT| .
INDINOIND + |N@)

This part is controlled by rewriting 8,V8°[¢/] = 8,V8> (W + y?@)

PV T +u®) < o
-7 s INOIN®|(IND| + |N(2>|)V¢ -0,V [y] dx
< PV, Ty 1) VoVB [l VT, la + | Vorawls)

< el VoV [13 + P(VyV, V@ | )E®) < elEN() + P(E()).

The energy inequality for [E](f) together with Gronwall’s inequality and the energy bounds for E(¢) implies that there exists

some T € [0,T’] only depending on the initial data of (1.24), such that sup [E](f) < [E](0) = 0. Therefore, the solution to
0<i<T
(6.2) must be zero. The uniqueness is proven.
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7 Incompressible limit and zero surface tension limit

This section is devoted to showing that we can pass the solution of (1.24) to the incompressible and zero surface tension double
limits. In other words, we study the behavior of the solution of (1.24) as both the Mach number A and surface tension coefficient
o tend to 0. Recall that the Mach number A is defined in Section 1.3.

We study the incompressible Euler equations modeling the motion of incompressible gravity water waves without surface
tension satisfied by (&, w, g;,) with initial data (wy, &) and ngz,, =0:

Dfw + V¥p =0 in[0,T] x Q,

Ve -w=0 in [0,T] X Q,

P=gint 8y in[0,T] x Q,

p=gé on[0,T] XX, (7.1
0éE=w-N on[0,T] XX,

w3 =0 on [0, T] X Xy,

(w, Oli=0 = (o, o),

where we define ¢(f, x) = x3 + y(x3)&(¢, x’) to be the extension of & in Q after slightly abuse of notations. Denote by
(W7, v, pto) the solution of (1.24) indexed by A and o, our goal is to show

W VY ) = (€ w, 1) in CO[0, T, C3(Z) x C*(Q) x C'(Q)), as 4,0 — 0, (7.2)
provided that:

1. The sequence of initial data (y"" vé‘“,pg’” - 1) € H(X) x HY(Q) x H*(Q) satisfies the compatibility conditions up to

0 9
34,00

order 3 and vy s, = 0. The compatibility condition of order k (k > 0), expressed in terms of the modified pressure,

reads
(D)) Glu=opxz = (DY (H + g¥) li=0pcz- (7.3)
Since DY =8, + V- d on T, we can rewrite (7.3) as:
0+ - Glio = (0, +V - (H + g) =0 on . (7.4)

The existence of such data is discussed in Appendix B.

2. W7y 007) = Ew, 1) in CHE) x CHQ) x C1(Q) as 2,0 — 0.

3. The compressible pressure g and the incompressible pressure g;, satisfy the Rayleigh-Taylor sign condition:
-03q>cy)>0, on{r=0}xZ, (7.5)
—03qin 2 ¢co >0, on{r=0}xZ. (7.6)

The key step of showing the A, o double limit is to prove an energy estimate of (1.24) that is uniform in both A and o-. In fact,
the analysis in Section 4 indicates that the energy estimate for (4.1) is already uniform in A. In particular, one can see that the
tangential energy estimates in Sections 4.5-4.6 are uniform in ¥, which is ~ A2 by (1.29).

Nevertheless, in this section, we want to use a weaker energy functional that does not require IIBf qlla—k, k > 2 to be uniformly
bounded in A. This being said, denoting ¥, = F(g), we study

1
EM(f) = Z 105V (OIF_, + 10" %05 (DI} (Non-weighted interior norms)
k=0

1
+ Z | VoVt O, + 105 2,  (Non-weighted boundary norms)
k=0

HIFLE O + g O (1 norms) (.7

2
s ' sl . . . .
+ Z IFD207 VYOI, + IF)) T 07 ¢ @I5_,  (weighted interior norms)
s=0

2
+ Z | VT (F VY (O + ((F2 7y (03,  (weighted boundary norms).
5=0
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Note that we need the data to verify compatibility conditions (7.4) up to order 3 to guarantee E4(0) < co. The ¥ |-weights
attached to v*7, §* and their time derivatives are determined as follows: First, the momentum equation in (1.24) implies that
the control of |G+, requires that of [|3,»*“]|5. Similarly, the control of [|3;4*”||; requires that of [|§?v*“||,, and this procedure
continuous until controlling ||F ’(’),3 7)1 by lF; (94 47||o. Second, our energy estimate indicates that we need to control ||62 A7),

and || \/TT’ >4 |1 together Analogously, || \/TT’ 63 47|, and ||9’-~ ’82§7|; have to be controlled simultaneously, the same holds

for ||F;0}v*7||o and ||(F)2 29%4||o. One can summary the a welght determination procedure (starting from 8,§%”) as:

1079412 IF 2y ;7 llo
qu lenergyEqV \Lener SW lenergy (78)
10, 113 I(F 225112 17784 28 lo

On the other hand, we point out that the energy estimate in Proposition 4.1 is almost uniform in o except for the control of
|7 o (|7 *ylo for the nonlinear k-approximate problem). Indeed, as mentioned in the paragraph above (4.82), we cannot control

T . . . . o
fo RT dr uniformly in o unless the Rayleigh-Taylor sign condition holds

—dyq > % >0, onZX. (7.9)

7.1 Discussion on the estimate of E* ()

As mentioned above, the energy estimate of E*(¢) is almost identical to what has been done in Section 4, and thus we shall
only point out the key differences. First, the estimate of E47(¢) concerns the original system (1.24) and so x = 0. This means
W, @ agree with , ¢, respectively. Hence, all the mismatched terms introduced by tangential smoothing and artificial viscosity
vanish, such as the mismatch €(f) in good unknowns (4.40) and the boundary terms in (4.70), (4.84) involving mismatches,
artificial viscosity. Second, we take the F-weighted tangential derivatives D to (1.24) to produce the tangential estimates. Let
a = (ag, a1, @2, @3) with |a| = 4 and we define

[ B when ap =0, 1,2,
D=4 F007 05T 50, (7.10)
F 107
Note that the ¥ -weight is chosen based on the energy (7.7).

The energy estimate for E47(¢) is uniform-in-A by adapting the proof of Proposition 4.1. On the other hand, to obtain a
uniform-in-o- estimate, we need to control

= f (~03)D Y, D Y dv, 7.11)
b
where D° = D with |a| = 4 and a3 = 0. Owing to (7.9), we have
RT =33 f( 63q)|2} ¢r|2 dx’ + f((%ﬁ;q)lb Y dx'. (7.12)

The first term is positive and thus contributes to the energy, while the second term < ||830,q|lo E*”. Therefore, the terms
involving |Daw|0, such as (4.82), (4.98) and RT* in (4.121)-(4.127), can be controlled without any quantities depending on !,

7.2 The incompressible and zero surface tension double limits

The energy bound on (7.7) implies the boundedness of [V (#)[|5 + [ (¢)[; uniformly in both A and o~ within the time interval
[0, T]. Thus, for each fixed #, the Morrey-type embeddings H*(Q) — C*2(Q) and H*(Z) — C>*(Z) (YO < @ < 1) imply that
v (1) is equicontinuous and uniformly bounded in C*(Q) and 7 (¢) is equicontinuous and uniformly bounded in C*(Z). So
we have (V*7,y1) — (w, &) in CO([0, T]; C*(Q) X C*(2)) as 4,0~ — 0. Moreover, as DY = 3, + (- V) + (83¢) " (v- N — 8,¢)03,
invoking the continuity equation
FU@DLG + V¢ v = gF1(@)DEvy,
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and because [|8, . (1|13, |8, (¢)|5 are uniformly bounded in [0, T'], we have
V¢ v 5 V9w =0, in LY(Q).

Similarly one can prove (¥4, 5yt7) — (0w, 6%¢) in C([0, T]; C*7*(Q) x C27*(Z)) for 0 < k < 2.
Lastly, since the continuity can be written as

Df(p"7 = 1)+ p*7(V¢ - v1) = 0,
we can derive the energy estimate for p** — 1 in H3(Q) as:

d1 o o o .7, 4,0
351" = 1B < o™ = oI lls + 18w ).

(7.13)

(7.14)

where [Vt |l4, |0y |3 are bounded by E*“. Therefore, the Sobolev embedding suggests that p*(¢) — 1 is equicontinuous and

uniformly bounded in C'(Q). This implies p** — 1 — 0 in ([0, 71, C1(Q)).

A The Reynold transport theorems

Below, the formulas involving @, J are used for the nonlinear x-problem (3.11) and the formulas involving (,“:5, ‘lﬁ are used for the

linearized x-problem (5.6).

Lemma A.1. Let f, g be smooth functions defined on [0, T'] X Q. Then there hold

o f fedspdx = f (F 15055 dx + f FFpospdx+ [ fedwdy + f F4030,@ - ) dx,
Q Q Q Q

X3 =0

a, f fgdypdx = f (07 f)gdsp dx + f f(679)dsp dx + feddx + f f50:0,(¢ — ¢) dx.
Q Q Q Q

X3 =0

Proof. In view of (3.12),

LHS of (A.l):f((?tf)g635dx+ff(@,g)agadx+ffg(%c’)@dx
Q Q Q

i ii

0003 f)g dx + L 0,0(038)f dx .

= f f2d30,gdx + f (07 f)05% dx + f f(@%2)dpdx + f
Q Q Q

Q

Integrating 0s in ii by parts, we have

ii = fgddx' — fg 0 dxX' — f fg0:0,pdx —i.
=0 Ry “

This concludes the proof of (A.1). Moreover, in light of (5.8),

LHS of (A2) = f (0.1)gd5p dx + f 1(6:2)05¢ dx + f f0:0,5dx
Q Q Q

i i

= [ semogaxs [(@negaxs [ refpogacs [ apengacs [ agwras.
Q Q Q Q Q
Integrating 3 in /i by parts, we have
i = f feduydx — ffg636,<,°p dx —1,
x3=0 Q

and thus (A.2) follows.
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Lemma A.2 (Integration by parts for covariant derivatives). Let f, g be defined as in Lemma A.1. Then there hold

[@neogac=- [ rafpogaxs [ fomiax. (A3)
Q Q x3=0
[ @neogax=- [ r@foopars [ foNar. (A4)
Q Q x3=0

Proof. (A.3) follows from the fact that 6? is the covariant spatial derivative and dgﬁdx is the associated volume element. (A.4)
follows from a parallel argument. O

Let D? be the smoothed material derivative defined in (3.15). Then the following theorem holds.

Theorem A.3 (Reynold transport theorem for nonlinear x-problem). Let f be a smooth function defined on [0, T] X Q.
Then there holds

1 _ - 1 _
70 f plfPospdx = f p(Df ) fdspdx + 3 f plf2030,(@ — ¢) dx. (A.5)
Q Q Q

Proof. First, we express
[ pwipsagac= [ pafnsogacs [ pw-vinsoma
Q Q Q

Invoking (A.1), we have

[ paFnsogac=a | prfogas— [ Fonsoga— [ pitowar - [ pirfaoe- e

and this indicates that

A C

> _ 1 _ 1 = _ 1 , 1
f PO Nfd5¢dx = 50; f PIfPOspdx—3 f @ p)fP3pdx—3 f PIFPO dx' —5 f PIfFO:0@ = prdx.  (A6)
Q Q Q X Q

3=0

Furthermore, invoking (A.3), we have

fg p(v- V7 f) 055 dx = fg VP - (puf) fsFdx - f VP (/957 dx
Q
D

=- f pfv - Ve f)dsgdx + f plfPv- Ndx - f Ve - (ov)| fPo5p dx,
Q x3=0 Q

and thus

B

= — 1 — 1 = —
LP(V V) fozpdx = 3 f_ plfI*v-Ndx -3 f Ve (pv)| fIds@dx. (A7)

ng Q

We have A + B = C + D = 0 thanks to the second and fifth equations of (3.11), respectively. Hence, (A.5) follows after adding
(A.6) and (A.7) up. O

Theorem A.3 leads to the following two corollaries. The first one records the integration by parts formula for D?.

Corollary A.4 (Reynold transport theorem for nonlinear «-problem). It holds that

o fQ Fods7dx = f (DF )gdspdx + f F(DPQaspdx + f (V% - 1) fgdspdx + f feh0G - (AB)
Q Q Q Q
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Proof. Given (A.1), we have

f @ Prgdspdx = o, f Fedspdx f f@Fagde— [ feowdx - f F4030,@ - ) dx,
Q Q Q Q

X3 =0

Also, (A.3) yields
[0 Fneoac= [ VF-ongagax- [((Ffeopa
Q Q Q
—- [ s Fongacs [ few-Mar - [(Ffeagax
Q X320 Q

Then we obtain (A.8) by adding these up. O

The second corollary concerns the transport theorem as well as the integration by parts formula for the linearized material
derivative DY, defined in (5.7).

Corollary A.5 (Reynold transport theorem for linearized x-problem). Let Dfﬁ =0, + (5 . ﬁ) + ﬁ_(f) . ﬁ — 0,$)03 be the
3
linearized material derivative defined in (5.7). Then there holds

1 . 2 o G 2 1 So o o 2
30, f Bl P06 dx = f PO} Pfospdx+ 5 f (D;"p + pV¢-v)|f|263<pdx (A9)
Q Q Q

1 - ° =g >
+5 fﬁlflz (336‘,«0 — @)+ 050, +V-V)(p — 25)) dx.
Q

1 2 5 o 1 < o
—5,f |f|263<,0 dx = f(fo)f(%(p dx+ = f Ve f1|f|263cp dx (A.10)
2 Q Q 2 Q
1 ~ o r—- U
v [ 006G 0+00,47- G - ) a
Q

Proof. 1t suffices to show (A.9) only since the proof of (A.10) follows by setting 6 = 1. We write the first term on the RHS of
(A.9) as

f DY f)fosg dx = f PO fos5dx + f B(G-0f) fosdx + f p(-N=-0g10ss) fax, (A1)
Q Q Q Q
and then integrate 9;, V and 8; by parts respectively in these terms to get:

o E s a1 (, ES 1 I~ U PP ovq o ES
[ pwinsagan=53 [ reoga-5 | [azp 4T Tpr (N - (9:90)33;0) P dx
Q Q Q

dr2 03
1 = = 53 1 A S
"2 f PV - DIfPospdx — 5 f PIFR@, + - V)dsgdx (A.12)
2 Q 2 Q
1 o T =~ ° °
- f o= V) + B3 — BN FP dx,
Q

where we used # - N = —(5 . €)$+ v3 in the last line. We find that the second integral in the first line is fg D?ﬁ)l f |263<,%dx. Also,
the term in the last line can be written as

L[, S v, o .
——fﬂas(—(V~V)90+V3—3t¢)|f|2dx
Q

2
1 (. 1 e, . 0. . ).~
=3 f p|f|2[ _03v; — 2209, — zﬁa3v2]63¢dx (A.13)
Q 03¢ 03¢ 03¢

1 (0. s s« = 1 (. . T Tg
*3 f PlfIP03% - V(g — @) dx + 5 f BIfF(0:05¢ + (- V)ds5p) dx.
Q Q
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The first term on the RHS together with the third term in (A.12) contributes to

1 0 s o o
5 f (V2 - DIfI*0sip dx
Q

in (A.9). Meanwhile, the terms in the last line of (A.13) together with the fourth term in (A.12) give the terms in (A.9) with
mismatches. o

B Construction of initial data for the original system
This section aims to construct the initial data for Theorem 1.2 and Theorem 1.3 satisfying the compatibility conditions

(DY qly=ops = (DY (0H)ly=opxs,  j=0,1,2,3.

Since Df|s =, + V- dand H = -V - ( A2 ), we rewrite the compatibility conditions in terms of g as

Vi+[VyP
— — = v
@+ 7 D illmopes =~ @, +7 31| T - ——L— + gy . j=0,1,23. (B.1)
1+ [V 2 {1=0}xx

Here, we use the modified pressure § since we want 0o € L*(Q) for the sake of convenience. Such compatibility conditions are
required to show that E(¢) (defined as (1.34)), and E*“(f) (defined as (1.38)) are bounded at ¢ = 0 by adapting the arguments in
[17, Section 4.3].

B.1 Formal construction

We shall adapt the method developed in [17] to construct smooth data (i, vo, go) that satisfies (B.1). We first describe the
method formally which serves as a good guideline. The key difference, however, is that in [17] we constructed the initial data
in Lagrangian coordinates, where (B.1) has a different formulation.

By identifying ¥(q) = A2 without loss of generality, and since d1¢ls = 01, O2¢ls = 02y, 03¢ls = 1, the momentum and
continuity equations reduce respectively to

p(0, +7-0)v +V¥G = —g(p— es, on T (B.2)
20, +7-0)g + divy = 81ydsv' + d3* + 12gv°, on 3, (B.3)

where V¢q = (01q — 014039, 029 — 0203q,039) " and divv = § - v. By ignoring the terms contributed by the denominator, we
have H ~ —Ay. Invoking the kinematic boundary condition 9,4 = v - N, we have

O, +7v-9)W =V, onZ,
we obtain from the zeroth compatibility condition § ~ —o-Ay that

O, +7v-9)§ ~-0cAV, on %, (B.4)

which is the first compatibility condition. Since the continuity equation (B.3) implies 2%(d; + v - 8)§ ~ —divv, we can deduce
from (B.4) that:

divy ~ cA?AV?, on Z. (B.5)

Furthermore, the momentum equation (B.2) implies (0; + v - M ~ —03¢, and thus the second compatibility condition
becomes: B e _

O +7-0)*§ ~ —0(d; + V- d)AV} ~ cAd3§, on X (B.6)

Taking d; + v - 0 to the continuity equation to obtain A%(d, + v - é)zé ~ —div(8, +V - O ~ Ag, and this gives

g~ cA*Adzg— A, on Z. (B.7)
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Finally, we derive from the third compatibility condition
(O, +7-0)G ~ cAO3(, + V- 0)§ ~ oA 2 Adsdivy, on X, (B.8)

together with the relation A28, + v - 8)°G ~ A(9; + v - )§ ~ A-2Adiv v obtained by taking (9, + v - )2 to the continuity equation
that

Adivy ~ 0 A*Adsdivy, on . (B.9)
In other words,
O ~ o *Ad3divy — Adv — Adyv — Adzv, on X (B.10)

Therefore, the first order compatibility condition yields an “identity in terms of v (B.5), the second order compatibility condi-
tion yields an “identity in terms of ¢” (B.7), and lastly, the third order compatibility condition yields an “identity in terms of v”
again (B.10).

We construct our data by the following iterative procedure. To begin with, let (&9, wo, po) be the generic smooth localized

Vo

VI1+V&P
we fixed a smooth function ¢y which represents the moving interface, and construct the data satisfying the first compatibility
condition. Given (B.5), we shall need to construct the appropriate velocity vector field denoted by uy = (u(l), u(z), ug). We achieve

this by setting u(l) = w(l), ué = w(z), and construct ug by solving a poly-harmonic equation of order 2:

incompressible data that verifies the zeroth order compatibility condition py = oV - + g& on X. In the first step,

Al = APw), in Q,

w=w, a5 ~ —9,w! — 9w + cA2AW? by (B.11)
0= Wy O Wy — 0Wh + cA2Aw,,  on X, .

u =w, Gy =0;w, on .

In particular, the boundary condition 83u8 ~ —c’)lw(l) - Bzwé + mﬁwg is derived from (B.5).
In the second step, we construct the data verifying the second compatibility condition. We shall construct g, here because
of (B.7). This is achieved by solving a poly-harmonic equation of order 3:

Ny = A p, in Q,
do = Po»  93qo = 93Po, on X,
2 vV (B.12)
0340 ~ o AZAd3 Py — Apo, on X,
dgo=0 (0<j<2), on 3.

It can be seen that the boundary condition 0%510 ~ 02N, Do is a consequence of (B.7).
In the third (and final) step, we construct the data verifying the compatibility conditions up to order 3 with a fixed smooth
function representing the moving interface still denoted by . Since g has been constructed, we need only to construct

Vo = (v(l), vg, v(3)) by setting w(l) = v(l), W% = vé, and solving the following order 4 poly-harmonic equation for v(3):

A4v3 = A4u(3), in Q,

vg = ug, (931/8 ~ —(91u(1) - 62ugj a'/lzxug on X,

(9%\/8 ~ —636111(1) - (93(9211(2) + 0'/12A63ll(3), on X, (B.13)
333 = —Ad1u) — Ao 2 + o A2Adsdivug — Adsul,  on I,

Avi=dju) (0<j<3) on .

The second and third boundary conditions arise from (B.5), whereas the fourth boundary condition is derived from (B.10).

B.2 The full construction procedure

We shall repeat the method introduced in Subsection B.1 with detailed boundary conditions generated by the compatibility
conditions. We will use P, Q to denote generic polynomials. Apart from this, we will set

0<k'<l1l, 0<k<2 0<I<3,
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throughout.
By invoking the commutator

[6°,0, + v - 3] = [6*,V] - ,

and since it holds on X that

_ A o - OV —
@ 479 =V, cy=—a(ﬁ—%]+gw, NI = 1+ VP,

the first compatibility condition reads

—_ 1 —, = -
O, +Vv-0)j = a@(m,a’w, ¥v,0%, onZ.

In addition, the continuity equation (B.3) gives
20, +7-0)g = —divv + dy - 837 + 1>°gv>,  on X.
Hence, we combine (B.15) and (B.16) to get
divv = cA>P(IN|™!, 8y, 8,053, 05v), on X

and the equation used to determine ug is

Aug = A’w;, in Q,

ug — WS’ on X UZX,,
3_ 1 _ 2 2 -1 ok . w3 A

d3uy = —01W, — 02w + T A P(INol ™, 0o, W, 3 W, 03Wo), on X,

dyuy = 03w, on X,.

whose rough version is given by (B.11). Let 59 > 8. The poly-harmonic estimate yields

3_ 3 2003 _ 3 3_ 3 3_ W3 2
llag — wills, < IIA%(ag — Wo)llsy-a + [y — Wolsy—0.5 +103(ug — Wols,-1.5 < A°C(lghols, [IWolls),

=0 =0

for some s > s¢, and hence ||u8 - w(3)|ls0 —0asd—0.

We construct ¢y using the second-order compatibility condition in the next stage. Owing to (B.2), the identities

p0, +7 -0 + g = Odsg, and p(d;, +7V - O)vs + 03§ = —g(p — 1),
hold on X, and we view p = p(g) here and throughout. Taking d; + v - 4 to (B.15) and invoking (B.14), we have
O, +7-072g = oP "IN, 8w, 8,9, 8'G,0°059), on X.
Moreover, by taking 0, + v - d to the continuity equation (B.3), we get
B0, +7-0)2g = —div(d, +v-0) + [div, (8, + V- D)y + (8, +V - O)AY - 93V + L),
where [div, (8, + V- O)]v = ;v - V',

~div (@, +7-0) = 9 (p'9:) ~ 0 (0™ 0cwdsd) + 030”05 +g05(p7 (0= D). T=1.2.
N————
=p~103q+03p71 039
and
(O, +7-0) O - B3 + A2gv®) = OV - 3 + Ay - D3(—p~' 0 + p~ ' BWds)
—0V - O - 837 — Oy - B3V - B3V + Ag(—p ™' 034 — gp~' (p - 1)).
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Since the third term on the RHS of (B.24) contributes to p~'|y>324, it holds that
(0, +7-0Yq = p (1 +10yHDG + Q"L INIT, 8w, 8 93v, 0 33), on I
Therefore, we combine (B.21) and (B.25) to get
o7 (A +10yHBg = c 2P INIL, 8y, 89,8V, 8'q, 8 039) + Q" INI™!, 8w, 8 93v, 8" d3q), on 2,

and we set ¢y by solving

Ago = APy, in Q,

do = Po, 03go = 03 Po, onZ,

o = o1 + 18Py 2P0y INol™! B, BT, w3, 3o, 30 50)

+Q(p, ", INOI*I,E%,Ek’aguo,ék’a3ﬁo)), on X,

dgo=0 (0<j<2) on 3.

whose rough version is (B.12). Also, the poly-harmonic estimate implies

. 3y y y 2 2 y y
IGolls, < IIA° Pollsy=6 + 1Dolse-0.5 + 103 Polsy—-1.5 + 105G0l5-2.5 < A“C1(IWols, llaolls, l1Polls) + C2(lols, Iaolls, llPolls),

for some s > sg.
Finally, we construct vg using the third-order compatibility condition in the last stage. We obtain

@ +7-0)°q = P IN[T, 8w, 07,0V, 0') (1720% + 1720% + 177003y + 1204 d3v),  on I,
by taking (9, + v - ) to (B.21). Further, taking (9, + v - d) to (B.25) to get
(0, +7-8Y°q = =277 (1 +10yHFdivy + Qo ' IN[L, 8w, ', 8 d3v, 8 83v,8'q), on I
Therefore, we combine (B.29) and (B.30) to obtain
P (L + By P)divy = 2P~ INI, 8w, 3,8, 8'g) (6*y + 6*v + 8'03v + 5" 03v)
+ Q" INITL, 8y, 8y, 3', 8By, & 83v,8G), on I,

and we set v(3) by solving

A4v(3J = A4u(3), in Q,
v(3) = ug, on X,
63\/(3) = —61u(1) - 62u(2) + O'/IZSD(IN0|‘1,5kw0,5kuo,5ku3, ozuy), 0<k<2, on X,
6§v3 = —(91(9311(1) - (92(9311(2] + 0'/126379(|No|"1, 6k¢0, akllo, 6ku3, a3ﬁo), on X,
&g = po(L +18yol) ™! ((rﬁ?(pal N0l 80, 880, 6w, 9'G0) (600 + Gy + 8'B3ug + 660

+22Q(oy", INo[™", 80, 8, 8o, 8 330, & Fuo, E’cyo)) = pp" (1 + 18yolH33(0rug + dru), on X,
vy =0 (0<j<3) on Zp.

whose rough version is (B.13). By the poly-harmonic estimate, we have
V5 = w5llsy < A5 = uillsg-s + Vg = Wglsp-05 + 16° (Vg = wilsy-1.5 + 10505 = Wplsp-2.5 + 18 (VG — u)ly-3.5.
The first two terms on the RHS are 0. Invoking (B.19), (B.28), we have, for some s, s” satisfying s > s > s, that
Vg = Wglsy-0.5 +18° (g = ulsp-1.5 < A2CWoly, Iuolly) < A2Cllols. lIwoll,),
and

103(vy = uls-25 < A*CWoly, Ilolly, IGolly ) < A2C(wols, IIWolls, 11 Bolly)-
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Thus,

V5 = w3lls, < A*Colss lIwollss Nl polly)- (B.34)
In particular, since we have set wy = uf = vj, 7 = 1,2, we deduce from (B.19) and (B.34) that
lIvo = Wolls, < lIvg — wglly, + llug = wills, = O(A%). (B.35)
In addition, we deduce from V¥ - wy = 0 and (B.35) that
V¥ - woller = O(A%). (B.36)

Apart from these, it can be seen from (B.27) and (B.32) that |vg||5, and ||§olls, are uniform in both o~ and A. This ensures us take
the zero surface tension and incompressible limits at the same time.

C Construction of initial data for the nonlinear x-approximate system
The construction of smooth initial data for the k-problem (3.11) is parallel to what has been done in the previous section and
thus we shall only sketch the details. We will set

0<k <1, 0<k<2, 0<I<3, 0<m<4, 0<n<S5

in the sequel.
Let (0, vo, o) be the smooth initial data constructed in the previous section. Our goal is to construct (0, V«.0, gx0) that
satisfies the k-compatibility conditions up to the third order:

(@ +7-0)qli=0 = (3, + V- 8Y Hlizg + K0, + ¥ - 0) (1 = AY=01v' = 0x9v” +v))limo,  j=0,1,2,3.  (C.1)
Setting ¥, o = Yo, we need only to compute the last term on the RHS to formulate the poly-harmonic equations for g, ¢ and v,.
Since _ _ _ —
[(1=A),0,+Vv-9] =—-[AV]-0,
we have, when j = 1:
@, +7-0)((1 = A)(=0Y - v + 1)) = R@'p, 8'v, 8", 07, 8'3,003), on . (C.2)

This implies that the equation used to determine ui o 18

Az“i,o — szg’ in Q,
“i,o = V5 on X,
03w ) = —01v} — 3 + TAP(No| ™, 8o, 8 vo, vy, B370) (C.3)
+KEL2RO Yo, 8'vo, D', 5*\7(3), 80, 00340), on X,
Bgvi,o =0 0<j<D on X,.

which is parallel to (B.18).
Then, when j = 2, we have

@ +7-07((1 = A)(=0y - v+ 7)) = (8, + V- OYR@'w, 8'v, 8%, 37,34, 8 63)

= R@'Y, 8y, 8,0, 8"G, 003, 1728, 1728 03v, 1720 %y, A728%),  on I, (C.4)
where the power of 1! does not exceed 2. Thus, we determine g, by solving
Ao = NG, in Q,
4o = 4o, 03Gi0 = 9390, onZ,

330 = po(l + |5¢’0|2)_1((T/127>(ﬂ61, INol ™", 89, 8T, 40 , 80, 6 D40

+Q(og' N1, 80, 3 D3u, 0, 0 930)

+ELR o, 3o, 5Ill;fvo, 5153:«0’ 3"Go, 8 D30, P, 9'03u,0, 5"8§uk,o, 54!,00)), on X,
gy =0 (0<j<2) on p.

(C.5)
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Finally, when j = 3, we have

@ +7-0)((1 = A)(=0Y -V + 1)) = R@"y, 8", 0"V, 0", 84, 0" 031, A20°v, 120" 03v, 1200w, 726°y),  on X,

(C.6)
where the power of 1! does not exceed 4. Therefore, we construct Vi,o by solving
4.3 _ A4l :
A Vo = A W, in Q,
vio = “io’ on X,
B3v; o = —0uy ) — dhur ) + T APP(Nol ™, 3o, 3 uyo, W ), D3t,0)
+HE LR W0, 3y, 8o, I . 3 G0, 0" D30, on X,
(9%1/,?0 = —('9_1530,20 - 32_33:12,0_+ 0'/135350(|1_V0|_1, o, 8u,p, 3"11;10, d3u,0)
HEL R Yo, 00, 30, AT, 80, 3 03G1c0), on X, 7)

avio=po(l + |5!//0|2)_1(0'/12P(P51, INol ™, 8o, 080, 8'u3 , 9'ho) (8*00 + ' uro + 3 Duo + PHu)
+22Q(p5" INol™!, 8o, 0'ug, 8 d3ug, 8 620, 3G 0)

+R(5ml//07 5’”@0’ émuior gmﬁgk,07 5an,O’ 5m63qk,0’ 55“)(,0’ 5’”03[11(’0, 516%“/{,0’ 55!//0))

05" (1 + 190Dy, + 0rul ), on %,
agvz,o =0 (0<;<3) on .

Let A4 > O be fixed. Invoking the poly-harmonic estimate subsequently to (C.3), (C.5), and (C.7), we obtain that ||v, |5, and
lG«0lls, are bounded for some sy > 8. Thus, the energy E*(f) (defined as (4.1)) is bounded at ¢ = 0. In addition,

[veo = vollse» and [Igco — glls, = 0, as x — 0.
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