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Abstract

We consider 3D compressible isentropic Euler equations describing the motion of a liquid in an unbounded initial domain
with a moving boundary and a fixed flat bottom at finite depth. The liquid is under the influence of gravity and surface tension
and it is not assumed to be irrotational. We prove local well-posedness by combining a carefully designed approximate system
and a hyperbolic approach which allows us to avoid using Nash-Moser iteration. The energy estimates yield no regularity loss
and are uniform in Mach number, and they are uniform in surface tension coefficient under the Rayleigh-Taylor sign condition.
We thus simultaneously obtain incompressible and zero surface tension limits. Moreover, we can drop the uniform boundedness
(with respect to Mach number) on high-order time derivatives by applying the paradifferential calculus to the analysis of the
free-surface evolution.
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1 Introduction

In this paper, we study the motion of water waves in R3 described by the compressible Euler equations:
ρ(∂t + u · ∇)u = −∇p − ρge3, inD
∂tρ + ∇ · (ρu) = 0 inD
p = p(ρ) inD

(1.1)

where D =
⋃

0≤t≤T
{t} × Dt with Dt := {(x1, x2, x3) ∈ R3 : −b < x3 < ψ(t, x1, x2)} with b > 10 a given constant representing the

unbounded domain with finite depth occupied by the fluid at each fixed time t, whose boundary ∂Dt is determined by a moving
surface represented via the graph Σt := {(x1, x2, x3) ∈ R3 : x3 = ψ(t, x1, x2)} and a flat bottom Σb := {(x1, x2, x3) ∈ R3 : x3 = −b}.
We will consider the case when Σt ∩ Σb = ∅. This is easy to achieve in a short interval by assuming ‖ψ(0, ·)‖L∞(R2) ≤ 1.

In the first two equations of (1.1), u, ρ, p represent the fluid’s velocity, density, and pressure, respectively. Also, we assume
that the fluid is under the influence of the gravity ρge3, with g > 0 and e3 = (0, 0, 1)>. The third equation of (1.1) is known to
be the equation of states which satisfies

p′(ρ) > 0, for ρ ≥ ρ̄0, (1.2)

where ρ̄0 is a positive constant (we set ρ̄0 = 1 for simplicity), which is in the case of an isentropic liquid1. The equation of
states is required to close the system of compressible Euler equations. We mention here that in the case of a gas ρ̄0 = 0, and we
shall not discuss this in the paper.

The initial and boundary conditions of the system (1.1) are

D0 = {x : (0, x) ∈ D}, and u = u0, ρ = ρ0 on {t = 0} × D0, (1.3)
Dt |∂D ∈ T (∂D), u3|Σb = 0, p|Σt = σH , (1.4)

where T (∂D) stands for the tangent bundle of ∂D. The first condition in (1.4) is the kinematic boundary condition, which
indicates that the free surface boundary moves with the normal component of the velocity (see (1.16) for an explicit illustration).
The second condition is the slip condition imposed on the flat bottom Σb. The last condition in (1.4) shows that the pressure
is balanced by surface tension on the moving surface Σt. Here, σ > 0 is called the surface tension constant, and H denotes
the mean curvature of the free boundary of the fluid domain. Note that H , T (∂D) and p are functions of the unknowns u, ρ
and D. So these quantities are not known a priori and hence have to be determined alongside a solution to the problem. Let
Dt := ∂t + u · ∇ be the material derivative. The equations modeling the motion of compressible gravity-capillary water waves
read 

ρDtu = −∇p − ρge3, inD,
∂tρ + ∇ · (ρu) = 0, inD,
p = p(ρ), inD,
(u, ρ,D)|t=0 = (u0, ρ0,D0),

(1.5)

equipped with the boundary conditions 
p = σH on

⋃
0≤t≤T {t} × Σt,

u3 = 0 on [0,T ] × Σb,

Dt |∂D ∈ T (∂D).
(1.6)

System (1.5) together with (1.6) admits a conserved quantity

E0(t) :=
1
2

∫
Dt

ρ|u|2 dx +

∫
Dt

ρQ(ρ) dx +

∫
Dt

(ρ − 1)gx3 dx +

∫
Σt

g|ψ|2 + σ

(√
1 + |∇ψ|2 − 1

)
dx′,

where Q(ρ) :=
∫ ρ

1 p(r)r−2 dr and dx′ := dx1 dx2. A direct calculation (cf. [70, Section 6.1]) shows E′0(t) = 0. Note that we
need a localized initial data such that E0(0) < +∞ which can be achieved similarly as in [47, Section 7].

1In general, the equation of state is p = p(ρ, S ) where S denotes the entropy of the fluid and satisfies (∂t + u · ∇)S = 0. It is required to have ∂p/∂ρ > 0.
When S is a constant, we say the fluid is isentropic. Also, the assumptions p′(ρ) > 0 and ρ ≥ ρ̄0 ensure the hyperbolicity of (1.1).
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1.1 Fixing the fluid domain
We shall convert (1.5)-(1.6) into a system of equations defined on the fixed domain

Ω = {(x1, x2, x3) : −b < x3 < 0}.

One way to achieve this would be to consider the Lagrangian coordinates. Nevertheless, here, we consider a family of diffeo-
morphism Φ(t, ·) : Ω→ Dt characterized by the moving surface boundary. In particular, let

Φ(t, x1, x2, x3) = (x1, x2, ϕ(t, x1, x2, x3)) , (1.7)

where

ϕ(t, x1, x2, x3) = x3 + χ(x3)ψ(t, x1, x2). (1.8)

Here, χ ∈ C∞c (−b, 0] is a smooth cut-off function satisfying the following bound for some small constant δ0 > 0:

‖χ′‖L∞(−b,0] ≤
1

‖ψ0‖∞ + 1
,

5∑
j=1

‖χ( j)‖L∞(−b,0] ≤ C, χ = 1 on (−δ0, 0], (1.9)

for some generic constant C > 0.
We will write x′ = (x1, x2) throughout the rest of this paper. It can be seen that

∂3ϕ(t, x′, x3) = 1 + χ′(x3)ψ(t, x′) > 0, t ∈ [0,T ],

for some small T > 0, which ensures that Φ(t) is a diffeomorphism.
Let x = (x′, x3) ∈ Ω. We denote respectively by

v(t, x) = u(t,Φ(t, x)), ρ(t, x) = ρ(t,Φ(t, x)), q(t, x) = p(t,Φ(t, x)) (1.10)

the velocity, density, and pressure defined on the fixed domain Ω. Also, we introduce the differential operators

∂
ϕ
t = ∂t −

∂tϕ

∂3ϕ
∂3, (1.11)

∇
ϕ
a = ∂

ϕ
a = ∂a −

∂aϕ

∂3ϕ
∂3, a = 1, 2, (1.12)

∇
ϕ
3 = ∂

ϕ
3 =

1
∂3ϕ

∂3, (1.13)

and thus the following identities hold:

∂αu ◦ Φ = ∂
ϕ
αv, ∂αρ ◦ Φ = ∂

ϕ
αρ, ∂αp ◦ Φ = ∂

ϕ
αq, α = t, 1, 2, 3. (1.14)

Moreover, setting
∇ = ∂ := (∂1, ∂2),

the boundary condition (1.6) is turned into

q = −σ∇ ·

 ∇ψ√
1 + |∇ψ|2

 , on [0,T ] × Σ, (1.15)

∂tψ = v · N, N = (−∂1ψ,−∂2ψ, 1)>, on [0,T ] × Σ, (1.16)
v3 = 0, on [0,T ] × Σb, (1.17)
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respectively, where Σ = {x3 = 0} and Σb = {x3 = −b}. Let Dϕ
t := ∂

ϕ
t + v · ∇ϕ. Then the system (1.5) and (1.6) are converted into

ρDϕ
t v + ∇ϕq = −ρge3 in [0,T ] ×Ω,

∂
ϕ
t ρ + ∇ϕ · (ρv) = 0 in [0,T ] ×Ω,

q = q(ρ) in [0,T ] ×Ω,

q = −σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
on [0,T ] × Σ,

∂tψ = v · N on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ, ψ)|t=0 = (v0, ρ0, ψ0).

(1.18)

The second equation of (1.18), i.e., the continuity equation, can be re-expressed as

Dϕ
t ρ + ρ∇ϕ · v = 0. (1.19)

Let F = F (q) := log ρ(q). Since q′(ρ) > 0 indicates F ′(q) > 0, then (1.19) is equivalent to

F ′(q)Dϕ
t q + ∇ϕ · v = 0. (1.20)

Also, by invoking (1.11)-(1.13), we can alternatively write the material derivative Dϕ
t as

Dϕ
t = ∂t + v · ∇ +

1
∂3ϕ

(v · N − ∂tϕ)∂3, (1.21)

where v · ∇ = v1∂1 + v2∂2, and N := (−∂1ϕ,−∂2ϕ, 1). This formulation provides a good motivation to define the smoothed
material derivative in Section 3 and the linearized material derivative in Section 5.

1.2 The new formulation with modified pressure

Since the gravity term ρge3 < L2(Ω), we then use ∂ϕi ϕ = δi3 to rewrite the momentum equation as

ρDϕ
t v + ∇ϕq̌ = −(ρ − 1)ge3,

where
q̌ := q + gϕ, (1.22)

is the “modified” pressure balanced by gravity. Under this setting, the fluid pressure gradient ∇ϕq̌ becomes an L2(Ω) function
and the source term becomes (ρ − 1)ge3 which is also in L2(Ω) if we assume the initial data ρ0 − 1 ∈ L2(Ω). We then directly
calculate that Dϕ

t ϕ = v3, so the continuity equation (1.20) now becomes

F ′(q)Dϕ
t q̌ + ∇ϕ · v = F ′(q)gDϕ

t ϕ = F ′(q)gv3, (1.23)

and thus the compressible gravity-capillary water wave system is now reformulated as follows:

ρDϕ
t v + ∇ϕq̌ = −(ρ − 1)ge3 in [0,T ] ×Ω,

F ′(q)Dϕ
t q̌ + ∇ϕ · v = F ′(q)gv3 in [0,T ] ×Ω,

q = q(ρ), q̌ = q + gϕ in [0,T ] ×Ω,

q̌ = gψ − σ∇ ·
(

∇ψ
√

1+|∇ψ|2

)
on [0,T ] × Σ,

∂tψ = v · N on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ, ψ)|t=0 = (v0, ρ0, ψ0).

(1.24)
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1.3 The equation of states and sound speed
Part of this paper is devoted to studying the behavior of the solution of (1.24) as either the sound speed goes to infinity or the
surface tension σ coefficient goes to 0. The former is known to be the incompressible limit, and the latter is known to be the
zero surface tension limit. Mathematically, it is convenient to view the sound speed cs :=

√
q′(ρ) as a family of parameters. As

in [17, 18, 19, 45, 47], we consider a family {qλ′ (ρ)} parametrized by λ′ ∈ (0,∞), where

(λ′)2 := q′λ′ (ρ)|ρ=1. (1.25)

Here and in the sequel, we slightly abuse the terminology and call λ′ the sound speed. A typical choice of the equation of states
qλ′ (ρ) would be the Tait type equation

qλ′ (ρ) = γ−1(λ′)2(ργ − 1), γ ≥ 1. (1.26)

When viewing the density as a function of the pressure, this indicates

ρλ′ (q) =

(
γ

(λ′)2 q + 1
) 1
γ

, and log (ρλ′ (q)) = γ−1 log
(
γ

(λ′)2 q + 1
)
. (1.27)

Hence, we can view F (q) as a parametrized family {Fλ(q)} as well, where λ = 1
λ′

. Indeed, we have

Fλ(q) = γ−1 log(λ2γq + 1). (1.28)

We again slightly abuse the terminology and call λ the Mach number2. Furthermore, there exists C > 0 such that

C−1λ2 ≤ F ′λ (q) ≤ Cλ2. (1.29)

Also, we assume

|F
(s)
λ (q)| ≤ C, |F

(s)
λ (q)| ≤ C|F ′λ (q)|s ≤ CF ′λ (q) (1.30)

holds for 0 ≤ s ≤ 4.

Remark 1.1 (Issue with the infinite depth case). Our proof in this paper also works for the case of infinite depth, that is,
Dt = {(x′, x3) : −∞ < x3 < ψ(t, x′)}. Nevertheless, the equation of state should be modified such that the pressure also depends
on the depth. An example of this is to assume p satisfies ∂p

∂x3
|ρ=1 = −g (cf. Jang-Tice-Wang [38]). Otherwise, the Mach number

λmay also be x3-dependent. It should also be noted that there is no such issue for the incompressible gravity water wave model,
in which q̌ is a Lagrangian multiplier not related to the density.

1.4 An overview of previous results
The study of free-surface inviscid fluids has blossomed over the past two decades or so. Most of the previous studies focused
on incompressible fluid models, i.e., the fluid velocity satisfies div u = 0 and thus the density ρ is equal to a constant. In
this case, the fluid pressure p is not determined by the equation of states but appears as a Lagrangian multiplier enforcing the
divergence-free constraint. For the local well-posedness (LWP) for the free-boundary incompressible Euler equations, the first
breakthrough came in Wu [71, 72] for the irrotational case3 and Christodoulou-Lindblad [11] and Lindblad [41, 44] for the
case of nonzero vorticity. We also refer to [55, 75, 30, 6, 39, 54] for the irrotational flows and [14, 78, 46, 58, 59, 60, 3, 2, 68]
for the case of nonzero vorticity. In addition to the LWP theory, the incompressible and irrotational water waves have attracted
great attention for their long-time existence. We refer to Wu [73, 74] for the first breakthrough and numerous related works
[20, 21, 4, 31, 16, 24, 23, 25, 26, 69, 79] See also [9] for the bounded domain case and [27, 62] for some special cases when
the vorticity is nonzero.

It is well-known that one can reduce the incompressible Euler equations to a system of equations on the moving boundary
when the velocity is irrotational. This method cannot be adapted to the study of compressible water waves. The development for
free-boundary compressible Euler equations is much less, especially for the case of a liquid as opposed to a gas in a physical
vacuum satisfying ρ|Σ = 0. For the gas model, we refer to [33, 13, 15, 49, 34, 28] and references therein. For the liquid

2The Mach number is defined to be M = u/cs. In the paper, the velocity is always of size O(1) (in L2(Ω)) and thus M = O(λ).
3The vorticity curl u0 = 0, a condition that is preserved by the evolution
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model, most previous works focus on the case of a bounded domain, and we refer to Lindblad [42, 43] and related works
[12, 45, 18, 22]. When the fluid domain is unbounded, that is, the compressible gravity water waves problem, the existing
literature neglects the effect of surface tension. Trakhinin [64] first proved the LWP for the non-isentropic case by using Nash-
Moser iteration which leads to a loss of regularity from initial data to solution. The a priori estimate without loss of regularity
is shown in Luo [47], but it is still difficult to use the energy constructed there to prove the local existence. Recently, in [48],
the authors proved the LWP for compressible gravity water waves without using Nash-Moser iteration.

About the incompressible limit of inviscid fluids, that is, the singular limit as Mach number goes to 0, there have been a lot
of studies for the Cauchy problem or the fixed-domain problems. We refer to [35, 36, 19, 57, 17] for “well-prepared initial data”
(div u0 = O(λ) and ∂tu|t=0 = O(1), wehre λ is the Mach number) and [67, 8, 32, 29, 53, 1] for “ill-prepared (general) initial data”
(div u0 = O(1) and ∂tu|t=0 = O(λ−1)). However, much less is known about the incompressible limit of free-surface inviscid
fluids: Lindblad and the first author [45], the first author [47] and Disconzi and the first author [18] established incompressible
limit results for free-surface Euler equations with zero or nonzero surface tension.

It should be noted that the uniform energy estimates are not consistent with the ones obtained by the local existence result.
Moreover, the uniform boundedness (with respect to Mach number λ) of top-order time derivatives of the velocity is necessary
in [45, 47, 18], which is more restrictive than the commonly-used definition of “well-prepared initial data”. Very recently,
the second author [76] established LWP and the incompressible limit simultaneously with the same energy functional for
compressible elastodynamics, which can be directly applied to Euler equations without surface tension. Also, only ∂2

t u|t=0 =

O(1) is required in [76] which is an essential improvement of [45, 47, 18] and is also an optimal requirement of well-prepared
data for free-surface inviscid fluids without surface tension, as the propagation of Rayleigh-Taylor sign condition already
requires the uniform boundedness of ∇∂tq ∼ ∂2

t u. However, the method and observations in [76] heavily rely on the vanishing
boundary condition for the pressure on the free surface, which cannot be generalized to the case of nonzero surface tension or
two-phase vortex-sheet problems.

In this paper, we study the system of compressible gravity-capillary water waves. Specifically, we are further interested
in developing a “unified framework” in order to simultaneously establish LWP and the incompressible limit for compressible
inviscid fluids (not just Euler equations) with or without surface tension. These two limit processes are expected to be mutually
independent, that is, no extra relation between the Mach number and the surface-tension coefficient is required. Besides, we
manage to drop the boundedness assumption on high-order time derivatives by combining the pressure decomposition, inspired
by Shatah-Zeng [59, 60], with the paradifferential approach used in Alazard-Burq-Zuily [2, 3].

1.5 The main theorems
The first theorem concerns the local well-posedness for the motion of compressible gravity-capillary water waves modeled by
(1.24), provided that the initial data satisfies certain compatibility conditions. Particularly, we say the data (ψ0, v0, q0), where
q0 = q(ρ0), satisfies the k-th (k = 0, 1, 2, 3, · · · ) compatibility conditions if

(Dϕ
t )kq|t=0 = (Dϕ

t )k(σH)|t=0, on Σ,

∂k
t v3|t=0 = 0, on Σb,

(1.31)

hold.

Theorem 1.1 (Local well-posedness). Let b > 10, and σ > 0 be fixed. Let (ψ0, v0, ρ0 − 1) ∈ H5(Σ) × H4(Ω) × H4(Ω) be
the initial data of (1.24) that verifies the compatibility conditions (1.31) up to the third order, and |ψ0|∞ ≤ 1. Then there exists
T > 0 depending only on the initial data, such that (1.24) admits a unique solution (ψ(t), v(t), ρ(t)) verifies the energy estimate:

sup
0≤t≤T

E(t) ≤ C(σ−1)P(E(0)), (1.32)

where
E(t) := E0(t) + E4(t),

E0(t) := ‖ρ(t) − 1‖20 + g|ψ|20 + ‖
√
F ′(q)q̌(t)‖20 +

3∑
k=1

‖
√
F ′(q)∂k

t q̌(t)‖20,

E4(t) :=
4∑

k=0

(
‖∂k

t v(t)‖24−k + |
√
σ∇∂k

tψ(t)|24−k

)
+ ‖∂q̌(t)‖23 +

3∑
k=1

‖∂k
t ∂q̌(t)‖23−k + ‖

√
F ′(q)∂4

t q̌(t)‖20.

(1.33)
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is the energy of (1.24) expressed in terms of (ψ, v, q̌), and P(·) is a generic non-negative continuous function in its arguments.
In addition to this, we have

sup
t∈[0,T ]

|ψ(t)|∞ ≤ 10. (1.34)

Lastly, there exists a constant C, depending on ψ0, v0 and q̌0, such that E(0) ≤ C.

In above and throughout, we use ‖ · ‖s and | · |s to represent respectively the interior Sobolev norm ‖ · ‖Hs(Ω) and the boundary
Sobolev norm ‖ · ‖Hs(Σ).

Remark 1.2. In Appendix B, we show that we can construct smooth initial data (ψ0, v0, q̌0) that satisfies the compatibility
conditions up to order 3. These compatibility conditions are required so that we can show E(0) ≤ C by adapting the arguments
in [18, Section 4.3].

Remark 1.3. The second line in (1.33) is the L2-part of the energy, where ‖q̌(t)‖20 is F ′(q)-weighted, which ties to the Mach
number. That is why we write ‖∂q̌‖3 instead of ‖q̌‖4 in the first line.

The next main theorem concerns the incompressible and zero surface tension limits. We consider the Euler equations
modeling the motion of incompressible gravity water waves satisfied by (ξ,w, qin) with localized initial data (w0, ξ0):

Dϕ
t w + ∇ϕp = 0 in [0,T ] ×Ω,

∇ϕ · w = 0 in [0,T ] ×Ω,

p = qin + gϕ in [0,T ] ×Ω,

p = gξ on [0,T ] × Σ,

∂tξ = w · N on [0,T ] × Σ,

w3 = 0 on [0,T ] × Σb,

(w, ξ)|t=0 = (w0, ξ0),

(1.35)

where we slightly abuse the notation by still setting ϕ(t, x) = x3 + χ(x3)ξ(t, x′) to be the extension of ξ in Ω. Denote by
(ψλ,σ, vλ,σ, ρλ,σ) the solution of (1.24) indexed by σ and λ, we prove that (ψλ,σ, vλ,σ, ρλ,σ) converges to (ξ,w, 1) as λ, σ → 0
provided the convergence of the initial data in a suitable sense. Note that the convergence of the compressible initial data
implies that it is also localized.

Theorem 1.2 (Incompressible and zero surface tension limits). Let (ψλ,σ0 , vλ,σ0 , ρλ,σ0 − 1) be the initial data of (1.24) for each
fixed (λ, σ) ∈ R+ × R+, verifying:

a. The sequence of initial data (ψλ,σ0 , vλ,σ0 , ρλ,σ0 − 1) ∈ H5(Σ)×H4(Ω)×H4(Ω) satisfies (1.31) for 0 ≤ k ≤ 3, and |ψλ,σ0 |∞ ≤ 1.
b. (ψλ,σ0 , vλ,σ0 , ρλ,σ0 − 1)→ (ξ0,w0, 0) in H4(Σ) × H4(Ω) × H3(Ω) as λ, σ→ 0.
c. Both incompressible and compressible pressures qλ,σ and qin satisfy the Rayleigh-Taylor sign condition

−∂3qλ,σ ≥ c0 > 0, on {t = 0} × Σ, (1.36)
−∂3qin ≥ c0 > 0, on {t = 0} × Σ, (1.37)

for some c0 > 0.

Then it holds that

(ψλ,σ, vλ,σ, ρλ,σ − 1)→ (ξ,w, 0),

weakly* in L∞([0,T ]; H4(Σ) × H4(Ω) × H3(Ω)), and strongly in C0([0,T ]; H4−δ
loc (Σ) × H4−δ

loc (Ω) × H3−δ
loc (Ω)) for any δ ∈ (0, 1].

Theorem 1.2 is a direct consequence of uniform-in-λ, σ estimates for the compressible gravity-capillary water wave system
(1.24) and the Aubin-Lions lemma. Indeed, the energy estimate (1.32) established in Theorem 1.1 is already uniform in Mach
number λ. In addition to this, one can show that (1.32) is uniform in the surface tension coefficient σ provided that the
Rayleigh-Taylor sign condition (1.36) holds initially.

Remark 1.4. Although our energy functional E(t) is expressed in terms of q̌, the incompressible limit is given in (ψλ,σ, vλ,σ, ρλ,σ)
which converges to (ζ,w, 1). We do not expect that the compressible pressure q converges to the incompressible pressure qin as
λ → 0, because the former is the solution to a quasilinear symmetric hyperbolic system but the latter appears as a Lagrangian
multiplier. Indeed, as was indicated by [45, 47, 76], it is the enthalpy h(ρ) :=

∫ ρ

1 q′(r)/r dr of the compressible equations that
converges to the incompressible pressure qin. On the other hand, the convergence of ‖ρλ,σ −1‖3 can be easily proved if we write
the continuity equation to be Dϕ

t (ρ − 1) = −ρ(∇ϕ · v) and use Grönwall’s inequality for its H3-estimate.
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It should be noted that the energy (1.33) requires that the time derivatives up to at least order 3 are bounded initially, i.e.,
∂k

t q̌(0) = O(1), 0 ≤ k ≤ 3, while ∂4
t q̌(0) = O(λ−1), or equivalently the uniform boundedness for the top-order time derivatives

of the velocity ∂4
t v = O(1). This condition can certainly be weakened. In fact, the propagation of the Rayleigh-Taylor sign

condition only requires the boundedness of ∂t∂3q, or equivalently ∂2
t v = O(1), not including higher-order time derivatives.

Motivated by this, we prove the following improved estimates.

Theorem 1.3 (Improved uniform estimates in λ, σ). Under the hypothesis of Theorem 1.1, if we further assume (ψ0, v0, ρ0 −

1) ∈ H6(Σ) × H5(Ω) × H5(Ω) satisfying the compatibility conditions up to 4-th order and assume the Rayleigh-Taylor sign
condition (1.36) holds for the initial data of (1.24), then

sup
0≤t≤T

E(t) ≤ P(E(0)), (1.38)

holds uniform in both λ and σ, where

E(t) := E0(t) + E4(t) + E5(t),

E4(t) := ‖v‖24 + ‖∂q̌‖23 + |
√
σψ|25 + |ψ|24 + ‖∂tv, ∂tq̌‖23 + |

√
σ∂tψ|

2
4 + |∂tψ|

2
3.5

+ ‖∂2
t v, λ∂2

t q̌‖22 + |
√
σ∂2

t ψ|
2
3 + |∂2

t ψ|
2
2.5 + |∂3

t ψ|
2
1.5

+

4∑
k=3

‖λ∂k
t (v, q̌)‖24−k + |

√
σλ∂k

tψ|
2
5−k + |λ∂4

t ψ|
2
0.5

E5(t) :=
5∑

k=0

∥∥∥∥λ2∂k
t (v, (F ′(q))

(k−4)+
2 q̌)

∥∥∥∥2

5−k
+

∣∣∣√σλ2∂k
tψ

∣∣∣2
6−k +

∣∣∣λ2∂k
tψ

∣∣∣2
5−k ,

(1.39)

and (k − 4)+ := max{0, k − 4}.

Remark 1.5. The above estimate only requires ∇∂tq(0) ∼ ∂2
t u(0) to be bounded (with respect to λ) because we need to control

the evolution of the Rayleigh-Taylor sign, namely ‖∂t∂3q‖L∞(Σ), when taking the incompressible and zero surface tension limits
simultaneously. However, we do not require ∂k

t v(0) to be uniformly bounded for k > 2. On the other hand, the propagation of
the Rayleigh-Taylor sign condition requires the boundedness of ∂tq, so we have reached the minimal requirement for the initial
data being “well-prepared”.

List of Notations

• (Fixed domain and its boundary) Ω := {x ∈ R3 : −b < x3 < 0}. x = (x1, x2, x3), and x′ = (x1, x2). Σ := {x ∈ R3 : x3 =

0}, Σb := {x ∈ R3 : x3 = −b}.
• (Tangential derivatives) T0 = ∂t, T1 = ∂1, T2 = ∂2, T3 = ω(x3)∂3, where ω(x3) ∈ C∞(−b, 0) is assumed to be bounded,

comparable to |x3| in [−2, 0] and vanishing on Σ ∪ Σb.
• (L∞-norm) ‖ · ‖∞ := ‖ · ‖L∞(Ω), | · |∞ := ‖ · ‖L∞(Σ).
• (Sobolev norms) ‖ · ‖s := ‖ · ‖Hs(Ω), and | · |s := ‖ · ‖Hs(Σ).
• (Continuous functions) P0 := P(E(0)), Pκ0 := P(Eκ(0)). P(· · · ) denotes a generic non-negative continuous function in its

arguments.
• (Commutators) [T, f ]g = T ( f g) − f (Tg), [T, f , g] := T ( f g) − T ( f )g − f T (g) where T is a differential operator and f , g

are functions.
• (Equality modulo lower order terms) A L

= B means A = B modulo lower order terms.

2 An overview of our methodology
Before going to the detailed proofs, we will briefly introduce our methodology for deriving energy estimates that are uniform
in both surface tension and Mach number, and the construction of solutions to the linearized and the nonlinear problem via a
carefully-designed approximation scheme.
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2.1 Uniform estimates in Mach number and surface tension
Let us temporarily focus on the a priori energy estimate of the original system (1.24) instead of the construction of solutions.
Indeed, the strategies on the a priori estimate will illustrate why we need the approximation scheme defined in the next subsec-
tion.

2.1.1 Div-Curl analysis and reduction of pressure

The first step is to reduce the normal derivatives for (1.24) and we start with the control of ‖v‖4. Using the div-curl decomposi-
tion, ‖v‖4 is bounded by ‖∇ϕ × v‖3, ‖∇ϕ · v‖3 and ‖∂4v‖0, where the curl part can be directly controlled by analyzing its evolution
equation. The continuity equation reduces the divergence to ‖F ′(q)Dϕ

t q‖3 which is a tangential derivative and includes a time
derivative. As for the pressure q̌, the momentum equation indicates that −∇q̌ ∼ Dϕ

t v, which again converts a normal derivative
to a tangential derivative. This reduction can also be applied to the time derivatives of v and q̌ up to the third order. As a
consequence, the control of the full Sobolev norms of v and q̌ (and their time derivatives) is reduced to the control of T αv and
T αq̌ (|α| = 4) in L2(Ω) with appropriate weights in Mach number where T represents any of the tangential derivatives ∂t, ∂ or
ω(x3)∂3 where ω(x3) ∈ C∞(−b, 0) is bounded, comparable to |x3| in x3 ∈ (−2, 0) and vanishing on Σ ∪ Σb.

2.1.2 Tangential estimates: Alinhac good unknowns

Define T α to be ∂α0
t ∂

α1
1 ∂

α2
2 (ω∂3)α3 with |α| := α0 + α1 + α2 + α3 = 4. In T α-tangential estimates, we need to commute T α

with ∇ϕi . When i = t, 1, 2, the commutator [T α,∇
ϕ
i ] f includes the term (∂3ϕ)−1T α∂iϕ∂3 f , where the L2(Ω)-norm of T α∂iϕ is

controlled by |T α∂iψ|0. However, the regularity of ψ obtained in T α-estimates is |
√
σT α∇ψ|0. Thus, the direct control of the

aforementioned commutator fails to be uniform in σ. To overcome this difficulty, we introduce the Alinhac’s method which
reveals that the “essential” leading order term in T α(∇ϕ f ) is not ∇ϕ(T α f ) but the covariant derivative of F (i.e., ∇ϕF), where
F := T α f − T αϕ∂

ϕ
3 f . Here, F is the so-called Alinhac good unknown associated with f , which satisfies

T α∇
ϕ
i f = ∇

ϕ
i F + Ci( f ), T αDϕ

t f = Dϕ
t F +D( f ), (2.1)

where ‖Ci( f )‖0 and ‖D( f )‖0 can be directly controlled. In other words, the reformulation in Alinhac good unknowns takes
into account the covariance under the change of coordinates such that we can proceed with the tangential estimates in the
same way as the L2-estimate and avoid the additional regularity on the nonlinear coefficients that cannot be controlled in a σ-
uniform fashion. Such remarkable observation was due to Alinhac [7] and was first applied (implicitly) to free-surface inviscid
fluids by Christodoulou-Lindblad [11]. See also [50, 70] for the explicit calculations for the inviscid limit of incompressible
free-boundary Navier-Stokes equations.

Let V,Q be the Alinhac good unknowns of v, q̌ associated with T α and then we obtain several major terms from the
tangential estimates

d
dt

1
2

(∫
Ω

ρ|V|2 + F ′(q)|Q|2dVt

)
= ST + RT +

∫
Σ

T αq̌[T α, v·,N] dx′ −
∫

Ω

T αq̌[T α, ∂3v·,N] dVt + controllable terms,
(2.2)

where dVt := ∂3ϕ dx and

ST := −
∫

Σ

T α(σH)∂tT
αψ dx′, RT := −

∫
Σ

(−∂3q)T αψ∂tT
αψ dx. (2.3)

Also note that T α only contains ∂t and ∂ on Σ ∪ Σb as the weight function ω(x3) vanishes on the boundary.
For the term ST, invoking the explicit formula for the mean curvature and integrating ∇· by parts, we obtain

ST = −
σ

2
d
dt

∫
Σ

|T α∇ψ|2√
1 + |∇ψ|2

−
|∇ψ · T α∇ψ|2√

1 + |∇ψ|2
3 dx′ + · · · , (2.4)

which together with the following inequality gives the boundary energy |
√
σ∂α∇ψ|20:

∀a ∈ R2,
|a|2√

1 + |∇ψ|2
−
|∇ψ · a|2√
1 + |∇ψ|2

3 ≥
|a|2√

1 + |∇ψ|2
3 . (2.5)
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For the term RT, it produces the boundary energy without σ-weight provided that the Rayleigh-Taylor sign condition4

−∂3q0|Σ ≥ c0 > 0 holds. However, the Rayleigh-Taylor sign condition is only assumed when taking zero surface tension limit
but not in the proof of local well-posedness for each given σ > 0. Therefore, we have to use the

√
σ-weighted energy to

control this term when proving local well-posedness. Indeed, it is the direct control of |T αψ|0 and |∂tT
αψ|0 that yields the only

possibility that the energy estimate depends on σ−1.
The remaining two terms contributes to a crucial structure for the incompressible limit. When T α = ∂4

t is a full time
derivative, we cannot control them individually due to a loss of Mach number weight. Instead, we shall combine them together
and use the divergence theorem to reduce a time derivative on q̌. The leading-order terms are

4
∫

Σ

∂4
t q̌∂3

t v · ∂tN dx′ − 4
∫

Ω

∂4
t q̌∂tN · ∂3∂

3
t v dx =

d
dt

∫
Ω

(
∂3

t ∂3q̌∂tN + ∂3
t q̌∂t∂3N

)
· ∂3

t v dx + · · · ,

which can be directly controlled under time integral.
Combining the steps above, we finish the control of Alinhac good unknowns V,Q. Then by using the definition of good

unknowns, we know ‖F−T α f ‖0 ≤ |T αψ|0‖∂ f ‖∞ which is already controlled by the boundary energy of ψ. Therefore, the a priori
estimate for the system (1.24) is closed, which is uniform in Mach number and also uniform in σ under the Rayleigh-Taylor
sign condition.

2.2 Improved incompressible limit
The uniform estimates obtained above require the uniform boundedness of top-order time derivatives of v, which is far more
restrictive than the usual definition of “well-prepared initial data” (∇ϕ · v|t=0 = O(λ), ∂tv|t=0 = O(1)). A natural question
is whether we can remove such boundedness assumption on high-order time derivatives, which is a necessary step to find a
possible way to study the case of “ill-prepared data” (∇ϕ · v|t=0 = O(1), ∂tv|t=0 = O(λ−1)).

2.2.1 Difficulties in free-boundary problems

There have been numerous results for fixed-domain problems or the Cauchy problem [35, 36, 19, 57], but this is rather nontrivial
under the free-surface setting due to the interaction between the free-surface motion and the interior pressure waves. Indeed,
when commuting T α with ∇ϕ when T α contains both spatial derivatives and time derivatives, the usage of ∇q ∼ ∂tv actually
produces an extra time derivative without λ-weight. When ∂k

t v is assigned with a different λ-weight from that of ∂k
t q̌ in the

energy functional, there exhibits a loss of λ-weight due to the substitution ∇q̌ ∼ ∂tv, which is actually caused by the free-
surface motion. The second author [76] dropped such assumption for the case of zero surface tension, but this result heavily
relies on the vanishing boundary value of q as stated at the end of Section 1.4.

The above analysis indicates us to avoid the interior tangential estimates. Instead, when treating the time derivatives, we
shall use another div-curl inequality

‖X‖2s . C(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X · N |2

s− 1
2

)
, ∀s ≥ 1, (2.6)

in order to directly analyze the evolution of the free surface. In view of the new energy E4(t) defined in (1.39), we shall apply
this inequality to X = ∂2

t v and the kinematic boundary condition indicates us to control |∂3
t ψ|1.5 without any weights of λ, σ.

2.2.2 The evolution equation of the free surface and its paralinearization

The evolution equation of the free surface is derived by time-differentiating the kinematic boundary condition and invoking the
momentum equation, which leads to ρDt

2
ψ = −∂3q̌ − (ρ − 1)g with Dt := Dϕ

t |Σ = ∂t + v · ∇. We shall further differentiate this
equation with ∂2

t and convert the Neumann boundary value of q̌ to a Dirichlet-type condition in order to utilize the boundary
condition q̌ = σH . We introduce the Alinhac good unknown Q := ∂2

t q̌ − ∂2
t ϕ∂

ϕ
3 q̌ to obtain

ρDt
2
∂2

t ψ = −N · ∇ϕQ + · · ·

The next step is to separate the contribution of q̌ on the boundary from that in the interior. We notice that Q satisfies a wave
equation

ρλ2(Dϕ
t )2Q − ∆ϕQ = · · · in Ω, Q|Σ = σ∂2

tH − ∂3q∂2
t ψ, ∂3Q|Σb = −∂2

t ρg.
4The Rayleigh-Taylor sign condition is just a constraint for the initial data. One can easily prove its short-time propagation by using the boundedness of

∂t∂3q. See [48, Section 3.7].
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Inspired by Shatah-Zeng [59, 60], we define Q = Qh + Qw where

−∆ϕQh = 0 in Ω, Qh = Q on Σ, ∂3Qh = 0 on Σb,

−∆ϕQw = −ρλ2(Dϕ
t )2Q + · · · in Ω, Qw = 0 on Σ, ∂3Qw = ∂3Q on Σb.

Under this setting, we obtain the following evolution equation

ρDt
2
∂2

t ψ + σNψ(∂2
tH) − Nψ(∂3q∂2

t ψ) = −N · ∇ϕQw + · · · on Σ (2.7)

where Nψ is the Dirichlet-to-Neumann (DtN) operator associated to (Ω, ψ) and we refer to Definition 7.1 for details. Since
DtN operator is a first-order operator with positive principal symbol and the mean curvature operator is a second-order elliptic
operator, we formally have

ρDt
2
(∂2

t ψ) + σC1(· · · )︸  ︷︷  ︸
>0

〈∂〉3(∂2
t ψ) + (−∂3q) C2(· · · )︸  ︷︷  ︸

>0

〈∂〉(∂2
t ψ) = −N · ∇ϕQw + · · · on Σ

Thus, we can adopt the paralinearization used in Alazard-Burq-Zuily [2, 3] to calculate the principal symbol of their composi-
tion in order for an explicit uniform-in-λ energy estimate of |∂3

t ψ|1.5 and |
√
σ∂2

t ψ|3 (and also |∂2
t ψ|2, uniformly in σ, under the

Rayleigh-Taylor sign condition). We refer to Section 7.3-7.5 for detailed computations.

2.2.3 Necessity of the weighted fifth-order energy

Note that the new energy E(t) defined in (1.39) also includes a λ2-weighted fifth-order energy. This is actually necessary to
control the contribution of pressure wave, namely the term |N · ∇ϕQw|1.5. Since Qw has zero boundary value on Σ and its
Neumann boundary value on Σb is easy to control, we can convert it to the control of ‖∆ϕQw‖1 which further requires the bound
for ‖λ2∂4

t q̌‖1, which is exactly a λ2-weighted fifth-order term.
Note that the control of E5(t) in (1.39) is completely parallel to that of E4(t) defined in (1.33), as the structure of these two

energy functionals are exactly same except that each term of E5 is assigned with a λ2-weight. One can check that the control of
all commutators arising from tangential estimates leads to no loss of λ weight and we refer to Section 7.5.2 for details.

Remark 2.1. The combination of the pressure decomposition and the paralinearization of the free-surface motion allows us to
“separate” the contribution of free-surface motion (in particular, the surface tension) and interior pressure waves, and these two
parts are related via the term N · ∇ϕQw which naturally leads to the fifth-order energy. This method essentially improves the
previous results [45, 47, 18] where the uniform boundedness of top-order time derivatives of v is necessary. Also, our method
no longer relies on the vanishing boundary value of pressure as in [76]. Thus, we believe that the approach developed in this
paper can be applied to other “coupled” fluid models or the vortex-sheet problems5. Furthermore, our method may open the
possibility to study the incompressible limit of free-surface fluids with ill-prepared initial data.

2.3 The approximation scheme to prove the existence

2.3.1 Motivation to design the approximation

For free-surface inviscid fluids, the local existence is not a direct consequence of the a priori estimate. For example, if we try
to do Picard iteration for the linearized system whose coefficient ϕ is replaced by a given function ϕ̊, then a crucial difference
from the nonlinear system is that we may no longer obtain the boundary regularity from the analogue of ST term as in (2.4).
Specifically, we consider (2.4) with full spatial tangential derivatives:

ST = σ

∫
Σ

∂α∇ ·

 ∇ψ

1 + |∇ψ̊|2

 ∂t∂
αψ dx′ = −

σ

2
d
dt

∫
Σ

|∂α∇ψ|2√
1 + |∇ψ̊|2

−
(∇ψ · ∂α∇ψ)(∇ψ̊ · ∂α∇ψ̊)√

1 + |∇ψ̊|2
3 dx′ + · · · , (2.8)

where the second term has no control because inequality (2.5) is not applicable here. Such a linearization yields the loss of a
tangential derivative. Besides, the unknowns with full time derivatives only have L2(Ω) integrability and thus have no boundary
regularity. Some crucial cancellations no longer hold after linearization. Therefore, it is natural to regularize the coefficient ϕ
in both t and x′ variables.

5The second author recently applied this method to the incompressible limit for current-vortex sheets in ideal compressible MHD. See [77]. This is, to our
knowledge, the first result about the incompressible limit of inviscid vortex sheets.
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2.3.2 The approximation system: important steps of its construction

For each κ > 0, we define Λκ to be the standard convolution mollifier on R2 with parameter κ > 0 and then define ψ̃ := Λ2
κψ

and ϕ̃(t, x) := x3 + χ(x3)ψ̃(t, x′) to be the smoothed coefficients. We introduce the following nonlinear system with artificial
viscosity whose coefficients are replaced by ϕ̃, ψ̃ that is asymptotically consistent with the original system (1.24) as κ → 0+.

ρDϕ̃
t v + ∇ϕ̃q̌ = −(ρ − 1)ge3, in [0,T ] ×Ω,

F ′(q)Dϕ̃
t q̌ + ∇ϕ̃ · v = F ′(q)gv3, in [0,T ] ×Ω,

q = q(ρ), q̌ = q + gϕ̃ in [0,T ] ×Ω,

q̌ = gψ̃ − σ∇ ·
(

∇ψ̃
√

1+|∇ψ̃|2

)
+ κ2(1 − ∆)(v · Ñ) on [0,T ] × Σ,

∂tψ = v · Ñ on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ, ψ)|t=0 = (vκ0, ρ
κ
0, ψ

κ
0).

(2.9)

Here,

∇
ϕ̃
i = ∂

ϕ̃
i = ∂i −

∂iϕ̃

∂3ϕ̃
∂3, i = 1, 2, ∇ϕ̃3 = ∂

ϕ̃
3 =

1
∂3ϕ̃

∂3, (2.10)

Dϕ̃
t = ∂t + v · ∇ +

1
∂3ϕ̃

(v · Ñ − ∂tϕ)∂3, (2.11)

and v := (v1, v2), ∇ := (∂1, ∂2) are the horizontal velocities and derivatives, ∆ := ∇ · ∇ = ∂2
1 + ∂2

2 is the flat tangential Laplacian,
Ñ := (−∂1ψ̃,−∂2ψ̃, 1)> is the smoothed Eulerian normal vector and Ñ := (−∂1ϕ̃,−∂2ϕ̃, 1)> is the extension of Ñ into Ω.

The tangential smoothing method was first introduced in [14] to study incompressible Euler and then was generalized to
study various free-surface inviscid fluids in Lagrangian coordinates. However, the free surface is now assumed to be a graph,
and the construction of a nonlinear approximate system is quite different from Lagrangian coordinates. The following issues
are crucial and very technical.

• Design the smoothed material derivative Dϕ̃
t . When restricted on Σ, the weight function in front of ∂3 in Dϕ̃

t should
agree with the kinematic boundary condition. Otherwise, there will be a boundary mismatched term that cannot be
controlled when studying d

dt E(t). Therefore, we cannot mollify ∂tϕ in Dϕ̃
t .

• Introduce the artificial viscosity to control the mismatched terms. The tangential mollification leads to some mis-
matched terms that should be controlled by the artificial viscosity term.

a. The commutator D( f ) in (2.1) now involves a new term e( f ) = ∂tT
α(ϕ̃ − ϕ)∂ϕ̃3 f which should be bounded by

κ|∇∂tT
αψ|0 after using the mollifier property (3.6).

b. The analysis of the ST term introduces two extra commutators, whose control requires the bound for κ|∇∂tT
αψ|.

To control the above two crucial mismatched terms, we introduce the artificial viscosity term −κ2(1 − ∆)∂tψ which gives
the energy |κ〈∂〉T α∂tψ|0 to enhance the regularity of ∂tψ. Due to technical reasons, it should be noted that the coefficient
must be κ2 instead of any other power of κ in the artificial viscosity. The details are explained in Section 4 below (4.85).

It should also be noted that the design of the linearized κ-regularized problem is also crucial and technically complicated,
as we must define the “new free surface” in each step of iteration and the boundary conditions must keep consistent with the
nonlinear problem. We refer to those rather technical constructions to the beginning of Section 5.

Now, once the coefficients involving ϕ are regularized in both t and x′ variables, the loss of derivatives can be compensated
by such regularization for each fixed κ > 0. That is, the existence of nonlinear approximate problem (2.9) is resolved for each
fixed κ > 0. Based on the strategies introduced in Section 2.1 and the above analysis of the mismatched terms, we can derive
the uniform-in-κ a priori estimates for the nonlinear approximate system (2.9). We can also prove the initial data (v0,κ, ρ0,κ, ψ0,κ)
of (2.9) converges to the initial data of (1.24) as κ → 0. This completes the proof of the existence of the original system (1.24).

3 Nonlinear approximate κ-problem
The first step to prove the local well-posedness is to introduce our approximation scheme. For each κ > 0, we construct a
suitable approximate problem indexed by κ which is asymptotically consistent with (1.24).
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3.1 The tangential mollification

Let ζ = ζ(x′) ∈ C∞c (R2), satisfying 0 ≤ ζ ≤ 1 and
∫
R2 ζ dx′ = 1, be a standard cut-off function supported in the closed unit ball

B1(0). For each κ > 0, we set
ζκ(x′) = κ−2ζ(κ−1x′),

and for each f : R2 → R, we define

Λκ f (x′) :=
∫
R2
ζκ(x′ − z′) f (z′) dz′. (3.1)

Also, for each g : R3 → R, we set

Λκg(x′, z) :=
∫
R2
ζκ(x − z′)g(z′, x3) dz′. (3.2)

In other words, when acting on a function of three independent variables, Λκ becomes the smoothing operator in the tangential
direction only. The next lemma records the properties that Λκ enjoys. This will be frequently used (sometimes silently) in the
rest of this paper.

Lemma 3.1 ([48, Lemma 2.6]). Let f : R2 → R be a smooth function. For each κ > 0, we have:

|Λκ f |s . | f |s, ∀s ≥ −0.5; (3.3)

|∂Λκ f |0 . κ−s| f |1−s, ∀s ∈ [0, 1]; (3.4)

| f − Λκ f |∞ .
√
κ|∂ f |0.5 (3.5)

| f − Λκ f |Lp . κ|∂ f |Lp . (3.6)

Also, for a smooth function g : R3 → R, then
‖Λκg‖s . ‖g‖s, ∀s ≥ 0. (3.7)

Moreover, let h : R2 → R, and [Λκ, f ]h := Λκ( f h) − f Λκ(h). Then we have:

|[Λκ, f ]g|0 . | f |L∞ |g|0, (3.8)

|[Λκ, f ]∂g|0 . | f |W1,∞ |g|0, (3.9)

|[Λκ, f ]∂g|0 . κ| f |W1,∞ |∂g|0. (3.10)

3.2 Construction of the κ-problem

Let ψ̃ := Λ2
κψ, ϕ(t, x) = x3 + χ(x3)ψ̃(t, x′) = Λ2

κϕ(t, x), and Ñ := (−∂1ψ̃,−∂2ψ̃, 1)>. Then we set the approximate κ-problem of
(1.24) to be 

ρDϕ̃
t v + ∇ϕ̃q̌ = −(ρ − 1)ge3 in [0,T ] ×Ω,

F ′(q)Dϕ̃
t q̌ + ∇ϕ̃ · v = F ′(q)gv3 in [0,T ] ×Ω,

q = q(ρ), q̌ = q + gϕ̃ in [0,T ] ×Ω,

q̌ = gψ̃ − σ∇ ·
(

∇ψ̃
√

1+|∇ψ̃|2

)
+ κ2(1 − ∆)(v · Ñ) on [0,T ] × Σ,

∂tψ = v · Ñ on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ, ψ)|t=0 = (vκ,0, ρκ,0, ψκ,0).

(3.11)

Here,

∂
ϕ̃
t = ∂t −

∂tϕ

∂3ϕ̃
∂3, (3.12)

∇
ϕ̃
a = ∂

ϕ̃
a = ∂a −

∂aϕ̃

∂3ϕ̃
∂3, a = 1, 2, (3.13)

∇
ϕ̃
3 = ∂

ϕ̃
3 =

1
∂3ϕ̃

∂3, (3.14)

Dϕ̃
t = ∂

ϕ̃
t + v · ∇ϕ̃, (3.15)
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and ∆ = ∂2
x + ∂2

y is the flat tangential Laplacian. Thanks to (3.12), the smoothed material derivative Dϕ̃
t is equivalent to

Dϕ̃
t = ∂t + v · ∇ +

1
∂3ϕ̃

(v · Ñ − ∂tϕ)∂3, (3.16)

where Ñ := (−∂1ϕ̃,−∂2ϕ̃, 1)>. Note that we do not replace v · Ñ − ∂tϕ by v · Ñ − ∂tϕ̃ in the last term, as this would generate a
severe structural mismatch in the boundary estimates.

The approximate κ-system (3.11) is asymptotically consistent with (1.24) as κ → 0. Furthermore, the artificial viscosity
κ(1 − ∆)(v · Ñ) in the modified boundary condition

q̌ = gψ̃ − σ∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 + κ2(1 − ∆)(v · Ñ) on Σ

is necessary to control the terms generated due to the loss of symmetry in (3.11).

4 Uniform energy estimates for the nonlinear κ-problem
For each fixed κ > 0, we denote by (vκ(t), ρκ(t), q̌κ(t), ψκ(t)) the solution of the nonlinear κ-system (3.11). Let σ > 0 be fixed.
We aim to show that {vκ(t), q̌κ(t), ρκ(t), ψκ(t)}κ>0 has a convergent subsequence that approximates the solution to the original
system (1.24) as κ → 0 in some time interval [0,T ] with T being independent of κ. From now on, we drop the superscript κ
when analyzing the nonlinear κ-approximate system for the sake of clean notations. Let

Eκ(t) =Eκ
0(t) + Eκ

4(t),

Eκ
0(t) =‖ρ(t) − 1‖20 + g|Λκψ|

2
0 + ‖

√
F ′(q)q̌(t)‖20 +

3∑
k=1

‖
√
F ′(q)∂k

t q̌(t)‖20,

Eκ
4(t) =

4∑
k=0

‖∂k
t v(t)‖24−k + σ|∇∂k

t Λκψ(t)|24−k +
∥∥∥∥√
F ′(q)q̌(t)

∥∥∥∥2

0
+ ‖∂q̌(t)‖23 +

3∑
k=1

‖∂k
t ∂q̌(t)‖23−k

+
∥∥∥∥√
F ′(q)∂4

t q̌(t)
∥∥∥∥2

0
+

4∑
k=0

∫ t

0

∣∣∣κ∂k+1
t ψ(τ)

∣∣∣2
5−k dτ.

(4.1)

Theorem 4.1. For each fixed σ > 0, there exists some Tσ > 0, independent of κ and
√
F ′(q), such that

Eκ(t) ≤ P(Eκ(0)) =: Pκ0, for every 0 ≤ t ≤ Tσ. (4.2)

Thanks to the Grönwall’s inequality, the key step of proving Theorem 4.1 is to show that

sup
0≤t≤T

Eκ(t) ≤ Pκ0 +

∫ T

0
P(Eκ(t)) dt, (4.3)

for some T > 0 chosen sufficiently small. The control of Eκ(t) will be divided into 3 steps, i.e., the basic L2 estimate, the
div-curl analysis, and the interior tangential estimates. We remark that the compatibility conditions on Σ have changed due to
the artificial viscosity. The new compatibility conditions, expressed in terms of q̌, are

(Dϕ̃
t )kq̌|t=0 = (Dϕ̃

t )k(−gψ̃ + σH)|t=0 + (Dϕ̃
t )k

(
κ2(1 − ∆)(v · Ñ)

)
|t=0, k = 0, 1, 2, 3, on Σ (4.4)

We however are still able to construct initial data satisfying (4.4) in terms of (ψκ,0, vκ,0, q̌κ,0), that is uniformly bounded and
converges to (ψ0, v0, q̌0) as κ → 0. The details can be located in Appendix C.
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4.1 L2-estimate

First, we establish L2-energy estimate for (3.11). Invoking Theorem (A.3), the identity ∇ϕ̃ϕ̃ = e3, and then integrating by parts,
we have:

1
2

d
dt

∫
Ω

ρ|v|2∂3ϕ̃ dx = −

∫
Ω

v · ∇ϕ̃q̌∂3ϕ̃ dx −
∫

Ω

(ρ − 1)gv3∂3ϕ̃ dx +
1
2

∫
Ω

ρ|v|2∂3∂t(ϕ̃ − ϕ) dx

=

∫
Ω

q̌(∇ϕ̃ · v)∂3ϕ̃ dx +

∫
Σb

v3q̌ dx′ −
∫

Σ

∂tψq dx′ −
∫

Σ

gψ̃∂tψ dx′

−

∫
Ω

(ρ − 1)gv3∂3ϕ̃ dx +
1
2

∫
Ω

ρ|v|2∂3∂t(ϕ̃ − ϕ) dx.

(4.5)

Plugging the continuity equation into the first integral, we get∫
Ω

q̌(∇ϕ̃ · v)∂3ϕ̃ dx = −
1
2

d
dt

∫
Ω

F ′(q)|q̌|2∂3ϕ̃ dx +
1
2

∫
Ω

ρDϕ̃
t (ρ−1F ′(q))|q̌|2 dx +

1
2

∫
Ω

F ′(q)|q̌|2∂3∂t(ϕ̃ − ϕ) dx

+

∫
Ω

q̌F ′(q)gv3∂3ϕ̃ dx

. −
1
2

d
dt

∥∥∥∥√
F ′(q)q

∥∥∥∥2

0
+

∥∥∥∥√
F ′(q)q

∥∥∥∥2

0

(
‖Dϕ̃

t ρ‖∞ + ‖∂3∂t(ϕ̃ − ϕ)‖∞ +
∥∥∥∥√
F ′(q)v3

∥∥∥∥
0

)
.

(4.6)

Here and in the sequel, we employ the notation A . B to mean that A ≤ CB for a universal constant C. The boundary integral

on Σb vanishes due to v3|Σb = 0. Then we plug q = −σ∇ ·

(
∇ψ̃

√
1+|∇ψ̃|2

)
+ κ2(1 − ∆)∂tψ into the first boundary term in (4.5) and

integrate by parts to get:

−

∫
Σ

∂tψq dx′ = −σ

∫
Σ

 ∇ψ̃√
1 + |∇ψ̃|2

 · ∇∂tψ dx′ +
∫

Σ

∣∣∣∣κ〈∂〉∂tψ
∣∣∣∣2
0

dx′, (4.7)

where 〈·〉 denotes the Japanese bracket. To treat the first term, we use the self-adjointness of Λκ in L2(Σ) to move one Λκ from
∇ψ̃ to ∂tψ:

− σ

∫
Σ

 ∇ψ̃√
1 + |∇ψ̃|2

 · ∇∂tψ dx′ = −σ

∫
Σ

∇Λκψ · ∂t∇Λκψ

|Ñ |
dx′ − σ

∫
Σ

∇Λκψ ·
(
[Λκ, |Ñ |−1]∇∂tψ

)
dx′

. −
1
2

d
dt

∣∣∣∣∣∣√σ 1

|Ñ |
1
2

∇Λκψ

∣∣∣∣∣∣2
0

+
1
2

∫
Σ

∂t(|Ñ|−1)
∣∣∣∣√σ∇Λκψ

∣∣∣∣2 + P(|∇ψ̃|W1,∞ )σ
∣∣∣∣√σ∇Λκψ

∣∣∣∣2
0

+ ε
∣∣∣∣κ∇∂tψ

∣∣∣∣2
0
.

(4.8)

Now, we get the non-weighted L2-boundary energy from the second boundary integral in (4.5):

−

∫
Σ

g∂tψψ̃ dx′ = −
1
2

d
dt

∫
Ω

g|Λκψ|
2 dx′. (4.9)

On the other hand, show the L2-estimate for ρ− 1 for the energy inequality. We use Dϕ̃
t ρ = Dϕ̃

t (ρ− 1) and Dϕ̃
t ϕ̃ = v3 + ∂t(ϕ̃− ϕ)

to rewrite the continuity equation in terms of ρ − 1:

Dϕ̃
t (ρ − 1) + ρ(∇ϕ̃ · v) = −∂t(ϕ̃ − ϕ).

Testing this with ρ − 1 in L2(Ω) and using the mollifier property (3.6), we get

1
2

d
dt
‖ρ − 1‖20 . ‖ρ − 1‖0(‖∂v‖0 + κ|∂∂tψ|0). (4.10)

Let

Eκ
0(t) = ‖v‖20 +

∥∥∥∥√
F ′(q)q̌

∥∥∥∥2

0
+ ‖ρ − 1‖20 + |

√
gΛκψ|

2
0 +

∣∣∣∣√σ∇Λκψ
∣∣∣∣2
0

+

∫ T

0

∫
Σ

∣∣∣∣κ〈∂〉∂tψ
∣∣∣∣2
0

dx′ dt. (4.11)
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Since 1 ≤ |Ñ | =
√

1 + (∂1ψ̃)2 + (∂2ψ̃)2, we combine (4.5)-(4.10) and obtain

Eκ
0(T ) − Eκ

0(0) .
∫ T

0
P(|∇ψ̃|W1,∞ , ‖∂v‖∞, |κ∂∂tψ|0.5)Eκ

0(t) dt, (4.12)

after choosing ε > 0 suitably small in (4.8). Here, we note that, using ∂3∂t(ϕ̃− ϕ) = χ′(x3)
(
∂tψ̃(t, x′) − ∂tψ(t, x′)

)
together with

(1.9) and (3.5) of Lemma 3.1, we have

‖∂3∂t(ϕ̃ − ϕ)‖∞ ≤ |∂tψ̃ − ∂tψ|∞ .
√
κ|∂∂tψ|0.5, (4.13)

where right side is directly controlled by invoking ∂tψ = v · Ñ = −(v · ∇)ψ̃ + v3 on Σ and the Sobolev trace lemma.

4.2 Reduction of pressure
We show how to reduce the control of the pressure to that of the velocity when there is at least one spatial derivative on q. This
follows from using the momentum equation ρDϕ̃

t v = −∇ϕ̃q̌− (ρ− 1)ge3. Particularly, by considering the third component of the
momentum equation, we get

−(∂3ϕ̃)−1∂3q̌ − (ρ − 1)ge3 = ρDϕ̃
t v3. (4.14)

Since ∂3ϕ̃ is bounded from below, i.e., there exists c0 > 0 such that ∂3ϕ̃ ≥ c0, then

‖∂3q̌‖0 .g,c0 ‖ρ − 1‖0 + ‖ρ‖∞‖D
ϕ̃
t v3‖0, (4.15)

where Dϕ̃
t v3 = ∂tv3 + v · ∇v3 + 1

∂3ϕ̃
(v · Ñ − ∂tϕ)∂3v3. This implies that the L2-norm of ∂3q̌ is reduced to the L2-norms of ρ − 1,

∂tv3, ∂v3 and ω(x3)∂3v3. Here ω(x3) ∈ C∞(−b, 0) is assumed to be bounded, comparable to |x3| in [−2, 0] and vanishing on Σ.
Let T = ∂t or ∂ or ω(x3)∂3 and D = ∂ or ∂t. The above estimate yields the control of ‖Dk∂3q̌‖0 after taking Dk, k ≥ 1 to

(4.14). Specifically, at the leading order, ‖Dk∂3q̌‖0 is controlled by

C(g, c0)
(
‖F ′(q)Dkq̌‖0 + ‖F ′(q)Dkϕ̃‖0 + ‖ρ‖L∞‖DkT v3‖0

)
. (4.16)

In addition, by considering the first two components of the momentum equation, we have:

− ∂iq̌ = −(∂3ϕ̃)−1∂iϕ̃∂3q̌ + ρDϕ̃
t vi, i = 1, 2. (4.17)

and thus the control of ∂q̌ is reduced to ∂3q̌ and Dϕ̃
t vi = ∂tvi + (v · ∇)vi + (∂3ϕ̃)−1(v · Ñ − ∂tϕ)∂3vi.

Lastly, using (4.14) and (4.17), we obtain

‖∂3q̌‖∞ .g,c0 ‖ρ − 1‖∞ + ‖ρ‖∞‖D
ϕ̃
t v3‖∞, (4.18)

‖∂q̌‖∞ .g,c−1
0
|∂ψ̃|∞‖∂3q̌‖∞ + ‖ρ‖∞‖D

ϕ̃
t v‖∞. (4.19)

Thus,
‖∂q‖∞ .g,c0,c−1

0
P(|∂ψ̃|∞, ‖ρ‖∞)

(
‖ρ − 1‖∞ + ‖Dϕ̃

t v‖∞
)
. (4.20)

Invoking the definition of Dϕ̃
t v, (4.20) implies that ‖∂q̌‖∞ is reduced to ∂tv, ∂v and ω(x)∂3v for some weight function ω(x)

vanishing on Γ.

4.3 Div-Curl analysis
To estimate the Sobolev norm of v, we can use the div-curl analysis to convert one normal derivative to the divergence and curl.
First, we record the well-known div-curl decomposition lemma and refer to [22, Lemma B.2] for the proof.

Lemma 4.2 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s ≥ 1, one has

‖X‖2s . C(|ψ̃|s, |∇ψ̃|W1,∞ )
(
‖X‖20 + ‖∇ϕ̃ · X‖2s−1 + ‖∇ϕ̃ × X‖2s−1 + ‖∂αX‖20

)
, (4.21)

for any multi-index α with |α| = s. The constant C(|ψ̃|s, |∇ψ̃|W1,∞ ) > 0 depends linearly on |ψ̃|2s .
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We will apply Lemma 4.2 to ‖∂k
t v‖4−k for 0 ≤ k ≤ 3. Starting from k = 0, we have:

‖v‖24 . C(|ψ̃|4, |∇ψ̃|W1,∞ )
(
‖v‖20 + ‖∇ϕ̃ · v‖23 + ‖∇ϕ̃ × v‖23 + ‖∂4v‖20

)
, (4.22)

‖∂k
t v‖24−k . C(|ψ̃|4−k, |∇ψ̃|W1,∞ )

(
‖∂k

t v‖20 + ‖∇ϕ̃ · ∂k
t v‖23−k + ‖∇ϕ̃ × ∂k

t v‖23 + ‖∂4−k∂k
t v‖20

)
, (4.23)

where the L2-norm has been controlled in (4.12) and the tangential derivatives will be studied in the next section by using
Alinhac good unknowns. The divergence part is reduced to the estimates of q by using the continuity equation

‖∇ϕ̃ · v‖23 =
∥∥∥∥F ′(q)Dϕ̃

t q̌
∥∥∥∥2

3
+

∥∥∥F ′(q)gv3
∥∥∥2

3 , (4.24)

which will be further reduced to the tangential estimates of v by using the argument in Section 4.2. Similarly, when k = 1, 2, 3,
we have

∇ϕ̃ · ∂k
t v = −∂k

t (F ′(q)Dϕ̃
t q̌) − ∂k

t (F ′(q)gv3) + [∇ϕ̃·, ∂k
t ]v L

= −F ′(q)∂k
t Dϕ̃

t q̌ − F ′(q)g∂k
t v3 + (∂3ϕ̃)−1∂∂k

t ϕ̃∂3v,

where L
= means equality modulo lower-order terms. This implies

‖∇ϕ̃ · ∂k
t v‖23−k ≤ C(c0, g, ‖v‖W1,∞ )

(∥∥∥F ′(q)∂k
t Dϕ

t q̌
∥∥∥2

3−k +
∣∣∣∣∂∂k

t ψ̃
∣∣∣∣2
3−k

+ Pκ0 +

∫ T

0
P(Eκ(t)) dt

)
, (4.25)

where the last two terms control all lower-order terms generated above. Since the material derivative Dϕ
t = ∂t + v · ∇ on Σ, the

term F ′(q)∂k
t Dϕ

t q̌ involves only tangential derivatives with appropriate F ′-weight. By combining this div-curl analysis and the
reduction of pressure in Section 4.2, we eventually only need to control the mixed space-time tangential derivatives of v, ψ, and
q̌. We refer to Propositions 4.3, 4.5, and 4.6 for the details.

Next, we analyze the vorticity term. We take ∇ϕ̃× in the momentum equation ρDϕ̃
t v = −∇ϕ̃q̌ + (ρ − 1)ge3 to get

ρDϕ̃
t (∇ϕ̃ × v) = −∇ϕ̃ × ((ρ − 1)ge3) − (∇ϕ̃ρ) × Dϕ̃

t v − ρ[∇ϕ̃×,Dϕ̃
t ]v,

where the first term on the right side is equal to (−g∂ϕ̃2ρ, g∂
ϕ̃
1ρ, 0)> and the second term, using Dϕ̃

t v = −ρ−1∇ϕ̃q− ge3, is equal to

−(∇ϕ̃ρ) × Dϕ̃
t v = ρ′(q)(∇ϕ̃q) × (∇ϕ̃q)︸                  ︷︷                  ︸

=~0

+∇ϕ̃ρ × ge3 = (g∂ϕ̃2ρ,−g∂ϕ̃1ρ, 0)>

which exactly cancels the first term. Using [∂ϕ̃i ,D
ϕ̃
t ](·) = ∂

ϕ̃
i vl∂

ϕ̃
l (·) + ∂

ϕ̃
i ∂t(ϕ̃ − ϕ)∂ϕ̃3(·), we get the evolution of the smoothed

vorticity to be
ρDϕ̃

t (∇ϕ̃ × v)i = −ρε i jk∂
ϕ̃
j v

l∂
ϕ̃
l vk − ρε

i jk∂
ϕ̃
j∂t(ϕ̃ − ϕ)∂ϕ̃3vk, (4.26)

where ε i jk denotes the sign of the permutation (i jk) ∈ S 3.
To control ‖∇ϕ̃ × v‖3, we take ∂3 in (4.26) to get

ρDϕ̃
t

(
∂3(∇ϕ̃ × v)i

)
= −ε i jk∂3(ρ∂ϕ̃j v

l∂
ϕ̃
l vk) − ε i jk∂3(ρ∂ϕ̃j∂t(ϕ̃ − ϕ)∂ϕ̃3vk) − [∂3, ρDϕ̃

t ](∇ϕ̃ × v)i. (4.27)

It is not necessary to write out the specific form of the right side of (4.27), but we just need to know the source terms in
(4.27) contain ≤ 4 derivatives of v and ϕ̃ except the mismatched term involving ϕ̃− ϕ. This is easy to see because the only term
containing 5 derivatives is the one on the left side of (4.27). Therefore, a straightforward L2 estimate for (4.27) gives us the
energy estimate

d
dt

1
2
‖∇ϕ̃ × v‖23 ≤ P(‖v‖4, |ψ̃|4, ‖F ′(q)∂q‖∞, ‖F ′(q)∂2q‖1, κ|∇∂tψ|4), (4.28)

where the mismatched term is controlled by using mollifier property (3.10) and ϕ(t, x) = x3 + χ(x3)ψ(t, x′).
Similarly, we replace ∂3 by ∂k

t ∂
3−k for 0 ≤ k ≤ 3 to get

ρDϕ̃
t

(
∂3−k∂k

t (∇ϕ̃ × v)i

)
= −ε i jk∂k

t ∂
3−k(ρ∂ϕ̃j v

l∂
ϕ̃
l vk) − ε i jk∂k

t ∂
3−k(ρ∂ϕ̃j∂t(ϕ̃ − ϕ)∂ϕ̃3vk) − [∂k

t ∂
3−k, ρDϕ̃

t ](∇ϕ̃ × v)i, (4.29)

and thus
d
dt

1
2
‖∂k

t (∇ϕ̃ × v)‖23−k ≤ P(Eκ(t)). (4.30)
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Then we need to estimate the commutator ‖[∂k
t ,∇

ϕ̃×]v‖3−k to get the control of ‖∇ϕ̃ × ∂k
t v‖3−k. Similarly, as in the control

of divergence, we know the highest order term in the commutator should be ‖(−∂3ϕ̃)−1∂∂k
t ϕ̃∂3v‖3−k . ‖∂v‖3−k‖∂〈∂〉

3−k∂k
t ϕ̃‖0 ≤

‖∂v‖3−k |∂∂
k
t ψ̃|3−k. So we have the following conclusion

‖∇ϕ̃ × ∂k
t v‖23−k ≤ |∂∂

k
t ψ̃|

2
3−k + Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.31)

Combining (4.22), (4.24), (4.25), (4.28), (4.31) and the argument in Section 4.2, it remains to control the tangential deriva-
tives of v and full time derivatives of q, namely ‖F ′(q)∂4

t q̌‖0.

4.4 The T α-differentiated equations
By the div-curl analysis, the crucial step is to study the higher order tangential energy estimate of (3.11). In particular, we
define the following tangential derivatives

T0 = ∂t, T1 = ∂1, T2 = ∂2, T3 = ω(x3)∂3, (4.32)

where ω ∈ C∞(−b, 0) is assumed to be bounded, comparable to |x3| when −2 ≤ x3 ≤ 0 and vanishing on Σ. This requires us to
commute T α with (3.11), where T α := T α0

0 T
α1
1 T

α2
2 T

α3
3 , and |α| ≤ 4.

Remark 4.1. We need the tangential derivative T3 = ω(x3)∂3 to control the (∂3ϕ)−1(v · Ñ − ∂tϕ)∂3 in the material derivative
Dϕ̃

t . We do not include it in Eκ(t) as ω is comparable to 1. However, we still need the estimates of T3 in the reduction of q̌.

We will not directly commute T α with ∇ϕ̃. Instead, for i = 1, 2, 3, we observe that

T α∂
ϕ̃
i f = ∂

ϕ̃
i T

α f − ∂ϕ̃3 f∂ϕ̃i T
αϕ̃ + C′i( f ), (4.33)

where for i = 1, 2,

C
′
i( f ) = −

[
T α,

∂iϕ̃

∂3ϕ̃
, ∂3 f

]
− ∂3 f

[
T α, ∂iϕ̃,

1
∂3ϕ̃

]
− ∂iϕ̃∂3 f

[
T α−γ,

1
(∂3ϕ̃)2

]
T γ∂3ϕ̃ −

∂iϕ̃

∂3ϕ̃
[T α, ∂3] f +

∂iϕ̃

(∂3ϕ̃)2 ∂3 f [T α, ∂3]ϕ̃,

(4.34)

with |γ| = 1, and

C
′
3( f ) =

[
T α,

1
∂3ϕ̃

, ∂3 f
]

+ ∂3 f
[
T α−γ,

1
(∂3ϕ̃)2

]
T γ∂3ϕ̃ +

1
∂3ϕ̃

[T α, ∂3] f −
1

(∂3ϕ̃)2 ∂3 f [T α, ∂3]ϕ̃. (4.35)

Since ∂ϕ̃i and ∂ϕ̃3 commute, the identity (4.33) implies

T α∂
ϕ̃
i f = ∂

ϕ̃
i (T α f − ∂ϕ̃3 fT αϕ̃) + ∂

ϕ̃
3∂

ϕ̃
i fT αϕ̃ + C′i( f )︸                  ︷︷                  ︸

:=Ci( f )

. (4.36)

The quantity T α f − ∂ϕ̃3 fT αϕ̃ is the so-called Alinhac good unknown associated with f . It was first observed by Alinhac [7]
that the top order term of ϕ̃ does not appear when we use the above good unknown. It is not hard to see that we can obtain the
control of ‖T α f ‖0 from that of ‖T α f − ∂ϕ̃3 fT αϕ̃‖0. In particular,

‖T α f ‖0 ≤ ‖T α f − ∂ϕ̃3 fT αϕ̃‖0 + ‖∂
ϕ̃
3 f ‖∞‖T αϕ̃‖0. (4.37)

In addition to this, we need to commute T α with

Dϕ̃
t = ∂t + v · ∇ +

1
∂3ϕ̃

(v · Ñ − ∂tϕ)∂3.

A direct computation yields:

T αDϕ̃
t f = T α∂t f + T α(v · ∂ f ) + T α

(
1
∂3ϕ̃

(v · Ñ − ∂tϕ)∂3 f
)

= Dϕ̃
t T

α f + (v · T αÑ − ∂tT
αϕ)∂ϕ̃3 f − ∂ϕ̃3T

αϕ̃(v · Ñ − ∂tϕ)∂ϕ̃3 f +D′( f ), (4.38)
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where

D
′( f ) = [T α, v] · ∂ f +

[
T α,

1
∂3ϕ̃

(v · Ñ − ∂tϕ), ∂3 f
]

+

[
T α, v · Ñ − ∂tϕ,

1
∂3ϕ̃

]
∂3 f +

1
∂3ϕ̃

[T α, v] · Ñ∂3 f

−(v · Ñ − ∂tϕ)∂3 f
[
∂α−γ,

1
(∂3ϕ̃)2

]
T γ∂3ϕ̃ +

1
∂3ϕ̃

(v · Ñ − ∂tϕ)[T α, ∂3] f + (v · Ñ − ∂tϕ)
∂3 f

(∂3ϕ̃)2 [T α, ∂3]ϕ̃, (4.39)

with |γ| = 1.
Since v · T αÑ = −v1∂1T

αϕ̃ − v2∂2T
αϕ̃, then we must have

(v · T αÑ − ∂tT
αϕ)∂ϕ̃3 f − ∂ϕ̃3T

αϕ̃(v · Ñ − ∂tϕ)∂ϕ̃3 f

=(v · T αÑ − ∂tT
αϕ̃)∂ϕ̃3 f − ∂ϕ̃3T

αϕ̃(v · Ñ − ∂tϕ)∂ϕ̃3 f + ∂tT
α(ϕ̃ − ϕ)∂ϕ̃3 f

= − ∂
ϕ̃
3 f

(
∂t + v · ∇ + (v · Ñ − ∂tϕ)∂ϕ̃3

)
T αϕ̃ + ∂tT

α(ϕ̃ − ϕ)∂ϕ̃3 f︸              ︷︷              ︸
:=E( f )

= − ∂
ϕ̃
3 f Dϕ̃

t T
αϕ̃ + E( f ).

(4.40)

Thus,

T αDϕ̃
t f = Dϕ̃

t T
α f − ∂ϕ̃3 f Dϕ̃

t T
αϕ̃ +D′( f ) + E( f )

=Dϕ̃
t

(
T α f − ∂ϕ̃3 fT αϕ̃

)
+D( f ) + E( f ), (4.41)

where D( f ) = (Dϕ̃
t ∂

ϕ̃
3 f )T αϕ̃ +D′( f ).

Let

Vi := T αvi − ∂
ϕ̃
3viT

αϕ̃, Q := T αq̌ − ∂ϕ̃3 q̌T αϕ̃ (4.42)

respectively be the Alinhac good unknowns of v and q̌. Motivated by (4.36) and (4.41), we take T α to the first two equations
of (1.5) to obtain

ρDϕ̃
t Vi + ∂

ϕ̃
i Q = R1

i , (4.43)

F ′(q)Dϕ̃
t Q + ∇ϕ̃ · V = R2 − Ci(vi), (4.44)

where

R1
i := − [T α, ρ]Dϕ̃

t vi − ρ (D(vi) + E(vi)) − Ci(q̌), (4.45)

R2 := − [T α,F ′(q)]Dϕ̃
t q̌ − F ′(q) (D(q̌) + E(q̌)) + T α(F ′(q)gv3). (4.46)

In addition, since T α reduces to ∂α on Σ and ∂αÑ = (−∂1∂
αψ̃,−∂2∂

αψ̃, 0)>, the ∂α-differentiated kinematic boundary condition
then reads

∂t∂
αψ + (v · ∇)∂αψ̃ − V · Ñ = S1 on Σ, and V3 = 0 on Σb, (4.47)

where

S1 := ∂3v · Ñ∂αψ̃ + [∂α, v·,N]. (4.48)

Also, since q̌ = q + gψ̃ and ∂3ϕ̃|Σ = 1, we have Q|Σ = (∂αq̌− ∂3q̌∂αψ̃)|Σ = ∂αq + g∂αψ̃− (∂3q + g)∂αψ̃ = ∂αq− ∂3q∂αψ̃, and thus
the boundary condition of Q on Σ reads:

Q = −σ∂α∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 + κ2(1 − ∆)∂α(v · Ñ) − ∂3q∂αψ̃. (4.49)
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4.5 Tangential energy estimate with full spatial derivatives
In this subsection, we study the spatially-differentiated equations, i.e., the equations obtained by commuting T α, α0 = 0, and
|α| = 4, with (3.11). We aim to prove the following estimate:

Proposition 4.3. For T α with multi-index α satisfying α0 = 0 and |α| = 4, we have

‖T αv(T )‖20 +
∥∥∥∥√
F ′(q)T αq̌(T )

∥∥∥∥2

0
+

∣∣∣∣√σ∇∂αΛκψ(T )
∣∣∣∣2
0

+

∫ T

0

∣∣∣∣κ∂α∂tψ(t)
∣∣∣∣2
1

dt . Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.50)

We will not directly consider the T α-differentiated variables but use Alinhac good unknowns to get rid of higher order terms
of ψ̃. Invoking Lemma A.2 and Theorem A.3, testing (4.43) with V and then integrating over Ω with respect to the measure
∂3ϕ̃ dx, we get

1
2

d
dt

∫
Ω

ρ|V|2∂3ϕ̃ dx =
1
2

∫
Ω

ρ|V|2∂3∂t(ϕ̃ − ϕ) dx +

∫
Ω

Q(∇ϕ̃ · V)∂3ϕ̃ dx −
∫

Σ

Q(V · Ñ) dx′ +
∫

Ω

V · R1∂3ϕ̃ dx, (4.51)

where the boundary integral on Σb vanishes thanks to V3|Σ = 0. From now on, we will no longer write any boundary integral
on Σb due to the same reason. Before estimating the integrals in (4.51), we record some important properties that Alinhac good
unknowns enjoy.

Lemma 4.4. Let F := T α f − ∂ϕ̃3 fT αϕ̃ with |α| = 4 and α0 = 0 be the Alinhac good unknowns associated with the smooth
function f . Suppose that ∂3ϕ̃ ≥ c0 > 0, then

‖T α f ‖0 ≤ ‖F‖0 + P
(
c−1

0 , |ψ̃|4
)
‖∂3 f ‖∞. (4.52)

Furthermore, let C( f ), D( f ), and E( f ) be the remainder terms defined respectively in (4.36), (4.40), and (4.41). Then

‖Ci( f )‖0 ≤ P
(
c−1

0 , |ψ̃|4
)
· ‖ f ‖4, i = 1, 2, 3, (4.53)

‖D( f )‖0 ≤ P
(
c−1

0 , |ψ̃|4, |∂tψ̃|3
)
· (‖ f ‖4 + ‖∂t f ‖3) , (4.54)

‖E( f )‖0 ≤ κ|∇T α∂tψ|0‖∂ f ‖∞. (4.55)

Proof. Since ∂ϕ̃3 = (∂3ϕ̃)−1∂3, we have

‖∂
ϕ̃
3 f ‖∞‖T αϕ̃‖0 ≤ P

(
c−1

0 , |ψ̃|4
)
‖∂3 f ‖∞, (4.56)

and so (4.52) follows from (4.37). Also, the estimates (4.53) and (4.54) follow from the definition of C( f ) andD( f ), (1.9), (3.7)
in Lemma 3.1, and the Sobolev inequalities. To establish (4.55), we notice that

‖E( f )‖0 ≤ ‖∂tT
α(ϕ̃ − ϕ)‖0‖∂

ϕ̃
3 f ‖∞ + ‖∂

ϕ̃
3T

αϕ̃‖0‖∂t(ϕ̃ − ϕ)‖∞‖∂
ϕ̃
3 f ‖∞.

Thus, it suffices to control the leading order terms ‖∂tT
α(ϕ̃ − ϕ)‖0 and ‖∂ϕ̃3T

αϕ̃‖0. We have

∂tT
α(ϕ̃ − ϕ) = ∂tT

α
(
χ(x3)ψ̃ − χ(x3)ψ

)
≤ χ(x3)∂t∂

α(ψ̃ − ψ) +
[
T α, χ(x3)

]
∂t(ψ̃ − ψ).

The L2-norm of the second term can be controlled by the RHS of (4.55) thanks to (1.9). By (3.6) in Lemma 3.1, we have

|∂t∂
α(ψ̃ − ψ)|0 ≤ κ|∂tψ|5.

Also,

∂
ϕ̃
3T

αϕ̃ = ∂
ϕ̃
3T

α
(
χ(x3)ψ̃

)
=

(
∂
ϕ̃
3χ(x3)

)
T αψ̃ +

(
∂
ϕ̃
3[T α, χ(x3)]

)
ψ̃,

and so ‖∂ϕ̃3T
αϕ̃‖0 can be controlled by the RHS of (4.55). �

Remark 4.2. The appearance of E( f ) is a consequence of the tangential smoothing. This estimate of ‖E( f )‖0 yields a top order
term κ|∂tψ|5, which can only be controlled by the energy contributed by the artificial viscosity. In other words, the artificial
viscosity compensates for the loss of symmetry in the κ-equations.
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4.5.1 Control of
∫

Ω
ρ|V|2∂3∂t(ϕ̃ − ϕ) dx: The integral contains the mismatched term.

We have ∫
Ω

ρ|V|2∂3∂t(ϕ̃ − ϕ) dx ≤ ‖ρ‖∞‖V‖20‖∂3∂t(ϕ̃ − ϕ)‖∞ .
√
κ‖V‖20|∂∂tψ|0.5. (4.57)

4.5.2 Control of
∫

Ω
V · R1∂3ϕ̃ dx: Error terms

We have ∫
Ω

V · R1∂3ϕ̃ dx ≤ ‖V‖0‖R1‖0‖∂3ϕ̃‖∞, (4.58)

where the L2-norm of R1 is directly controlled by using (4.45) and (4.53)–(4.55):

‖R1‖0 ≤ P(‖∂3ϕ̃‖∞, |ψ̃|4, |∂tψ̃|3)
(
κ|∇T α∂tψ|0‖v‖4 + ‖v‖4 + ‖∂tv‖3 + ‖q̌‖4

)
, (4.59)

where the term containing κ|∇T α∂tψ|0 should be controlled under time integral as we will get L2
t H1

x′ ([0,T ] × Σ) bound for
κ∂tT

αψ later.

4.5.3 Control of
∫

Ω
Q(∇ϕ̃ · V)∂3ϕ̃ dx: Tangential energy for Q

Equation (4.44) indicates that∫
Ω

Q(∇ϕ̃ · V)∂3ϕ̃ dx = −

∫
Ω

F ′(q)Q(Dϕ̃
t Q)∂3ϕ̃ dx +

∫
Ω

Q(R2 − Ci(vi))∂3ϕ̃ dx. (4.60)

For the second term on the RHS of (4.60), we invoke the second inequality in (1.30) and then apply it to the definition of R2 in
(4.46) to get: ∫

Ω

QR2∂3ϕ̃ dx ≤ ‖
√
F ′(q)Q‖0‖R2‖0‖∂3ϕ̃‖∞. (4.61)

In other words, we “borrow” one
√
F ′(q) from R2 and attach it to Q. Thanks to (4.53)-(4.55), we control the L2-norm of the

rest of terms in R2 directly by

P(‖∂3ϕ̃‖∞, |ψ̃|4, |∂tψ̃|3)
(
κ|∇T α∂tψ|0

∥∥∥∥√
F ′(q)q̌

∥∥∥∥
4

+
∥∥∥∥√
F ′(q)q̌

∥∥∥∥
4

+
∥∥∥∥√
F ′(q)∂tq̌

∥∥∥∥
3

+
∥∥∥∥√
F ′(q)gv3

∥∥∥∥
3

)
, (4.62)

where the term containing κ|∇T α∂tψ|0 should be controlled under time integral as we will get L2
t H1

x′ ([0,T ] × Σ) bound for
κ∂tT

αψ later. Then the contribution of Ci(vi) is controlled by

−

∫
Ω

Q(Ci(vi))∂3ϕ̃ dx ≤ P(|ψ̃|4, |∇ψ̃|W1,∞ )|T αψ̃|0‖v‖4‖Q‖0. (4.63)

Here, ‖Q‖0 contributes to ‖∂αq̌‖0 and ‖∂ϕ̃3 q̌∂αψ̃‖0. The first term ‖∂αq̌‖0 is not weighted by
√
F ′(q) and thus cannot be controlled

directly by (4.50). Fortunately, we can overcome this issue by invoking (4.17). Similarly, ‖∂ϕ̃3 q̌∂αψ̃‖0 ≤ ‖∂
ϕ̃
3 q̌‖∞‖∂αψ̃‖0, where

we use (4.20) to treat ‖∂ϕ̃3 q̌‖∞, and so this can be controlled uniformly as F ′(q)→ 0.
Furthermore, invoking the integration by parts formula (A.8), the first integral on the RHS of (4.60) becomes∫

Ω

F ′(q)Q(Dϕ̃
t Q)∂3ϕ̃ dx = −

1
2

d
dt

∫
Ω

F ′(q)|Q|2∂3ϕ̃ dx +
1
2

∫
Ω

(Dϕ̃
t F
′(q))|Q|2∂3ϕ̃ dx

+
1
2

∫
Ω

(∇ϕ̃ · v)F ′(q)|Q|2∂3ϕ̃ dx +
1
2

∫
Ω

F ′(q)|Q|2∂3∂t(ϕ̃ − ϕ)∂3ϕ̃ dx

. −
1
2

d
dt

∥∥∥∥√
F ′(q)Q

∥∥∥∥2

0
+ ‖∂3ϕ̃‖∞‖

√
F ′(q)Q‖20

(
‖∂v‖∞ + κ|∇∂tψ|0.5

)
.

(4.64)
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4.5.4 Control of −
∫

Σ
Q(V · Ñ) dx′: Boundary energy contributed by surface tension and artificial viscosity

Note that T3 = ~0 on Σ implies the corresponding good unknown Q = 0 on Σ, so it suffices to consider the case T α = ∂α when
analyzing the boundary integral. Using (4.47), we have

−

∫
Σ

Q(V · Ñ) dx′ = −

∫
Σ

Q
(
∂t∂

αψ + (v · ∇)∂αψ̃ − S1

)
dx′. (4.65)

The first term is expected to contribute to two coercive terms if we invoke the boundary condition (4.49) of Q:

I1 := −
∫

Σ

Q∂t∂
αψ dx′ = σ

∫
Σ

∂α∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 ∂t∂
αψ dx′ − κ2

∫
Σ

∂α(1 − ∆)∂tψ · ∂
α∂tψ dx′ +

∫
Σ

∂3q∂αψ̃∂t∂
αψ dx′

= : ST1 + ST2 + RT.

(4.66)

Since 1 − ∆ = 〈∂〉2, where 〈·〉 denotes the Japanese bracket, we find the term ST2 gives us
√
κ-weighted enhanced energy after

integration by parts :

ST2 = −κ2
∫

Σ

∣∣∣∣∂α〈∂〉∂tψ
∣∣∣∣2 dx′ = −

d
dt

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

. (4.67)

In the control of ST1, we will repeatedly use

∂

(
1

|Ñ |

)
=
∇ψ̃ · ∂∇ψ̃

|Ñ |3
, (4.68)

where |Ñ | =

√
1 + |∇ψ̃|2 denotes the length of the smoothed normal vector Ñ = (−∂1ψ̃,−∂2ψ̃, 1)>. Now we integrate ∇· by

parts in ST1 to get

ST1 = − σ

∫
Σ

∂α∇ψ̃

|Ñ |
· ∂t∂

α∇ψ dx′ + σ

∫
Σ

∇ψ̃ · ∂α∇ψ̃

|Ñ |3
∇ψ̃ · ∂t∂

α∇ψ dx′

− σ

∫
Σ

([
∂α−α

′

,
1

|Ñ|

]
∂α
′

∇ψ̃ + ∇ψ̃

[
∂α−α

′

,
1

|Ñ|3

]
(∇ψ̃ · ∂α

′

∇ψ̃) −
1

|Ñ |3

[
∂α−α

′

,∇ψ̃
]
∂α
′

∇ψ̃

)
· ∂t∇∂

αψ dx′

= : ST11 + ST12 + ST13,

(4.69)

where α′ is a multi-index with |α′| = 1.
The first two terms in (4.69) are expected to produce the energy contributed by the surface tension. Before that, we need to

move one mollifier from the top order term of ψ̃ = Λ2
κψ to the top order term of ψ by using the self-adjointness of Λκ in L2(Σ):

ST11 + ST12 = − σ

∫
Σ

∂α∇Λκψ · ∂t∂
α∇Λκψ

|Ñ|
−

(∇ψ̃ · ∂α∇Λκψ)(∇ψ̃ · ∂t∂
α∇Λκψ)

|Ñ |3
dx′

− σ

∫
Σ

∂α∇Λκψ ·

([
Λκ,

1

|Ñ |

]
∇∂t∂

αψ

)
dx′ + σ

∫
Σ

∂α∇iΛκψ ·

Λκ,
∇iψ̃∇ jψ̃

|Ñ |3

∇ j∂t∂
αψ

 dx′

=: ST10 + STR
11 + STR

12.

(4.70)

Then we find

ST10 = −
σ

2
d
dt

∫
Σ

|∂α∇Λκψ|
2√

1 + |∇ψ̃|2
−
|∇ψ̃ · ∂α∇Λκψ|

2√
1 + |∇ψ̃|2

3 dx′ (4.71)

+
σ

2

∫
Σ

∂t

 1√
1 + |∇ψ̃|2


∣∣∣∣∂α∇Λκψ

∣∣∣∣2 − ∂t

 1√
1 + |∇ψ̃|2

3


∣∣∣∣∇ψ̃ · ∂α∇Λκψ

∣∣∣∣2 dx′. (4.72)
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To deal with the first term in ST10, we plug a = ∂α∇Λκψ into the following inequality which can be proved by direct calculation:

|a|2√
1 + |∇ψ̃|2

−
|∇ψ̃ · a|2√
1 + |∇ψ̃|2

3 ≥
|a|2√

1 + |∇ψ̃|2
3 , (4.73)

in order to get ∫ T

0
ST10 dt +

σ

2

∫
Σ

|∂α∇Λκψ|
2√

1 + |∇ψ̃|2
3 dx′ ≤ P(|∇ψ̃0|L∞ )

∣∣∣∣√σ∂α∇Λκψ0

∣∣∣∣2
0

+

∫ T

0
(4.72) dt, (4.74)

where the terms in (4.72) can be controlled directly:

(4.72) ≤ P(|∇ψ̃|L∞ )|∂t∇ψ̃|L∞
∣∣∣∣√σ∂α∇Λκψ

∣∣∣∣2
0
. (4.75)

To finish the control of ST1, it remains to control ST13 and STR
11, STR

12. The last two terms can be controlled by using the
mollifier property (3.10) and the κ-weighted energy contributed by the artificial viscosity. For STR

11, we have∫ T

0
STR

11 .

∫ T

0

∣∣∣∣√σ∂αΛκψ
∣∣∣∣
0

P
(
|∇ψ̃|∞

)
|∇ψ̃|W1,∞

∣∣∣∣κ∂t∂
αψ

∣∣∣∣
Ḣ1

dt

. ε
∣∣∣∣κ∂t∂

αψ
∣∣∣∣2
L2

t H1
x′

+

∫ T

0
P

(
|∇ψ̃|∞

)
|∇ψ̃|2W1,∞

∣∣∣∣√σ∂αΛκψ
∣∣∣∣2
0

dt.
(4.76)

Also, STR
12 can be controlled similarly.

As for ST13 in (4.69), we find that all three commutators have similar structures and the same leading order terms, so we
only show the analysis of the first commutator. Note that the leading order term in [∂α−α

′

, |Ñ |−1]∂α
′

∇ψ̃ appears when ∂α−α
′

falls
on |Ñ |−1 or ∂α

′′

falls on |Ñ|−1 and ∂α−α
′−α′′ falls on ∂α

′

∇ψ̃ for some |α′′| = 1. In either of the two cases, the top-order term
contributes to the following integral:

− σ

∫
Σ

|Ñ|−3∇ψ̃ ∂α−α
′

∇ψ̃ ∂α
′

∇ψ̃ · ∂t∇∂
αψ dx′. (4.77)

We integrate one ∇ by parts to get

σ

∫
Σ

|Ñ |−3∇ψ̃ ∂α−α
′

∇
2
ψ̃ ∂α

′

∇ψ̃ ∂t∂
αψ dx′

modulo lower order terms, and then we move one Λκ from ∂α−α
′

∇
2
ψ̃ to ∂t∂

αψ such that the main term is directly controlled as:

σ

∫
Σ

|Ñ|−3∇ψ̃ ∂α−α
′

∇
2
Λκψ ∂

α′∇ψ̃ ∂t∂
αΛκψ dx′ . P(|∇ψ̃|∞)|∇ψ̃|W1,∞

∣∣∣∣√σ∂α∇Λκψ
∣∣∣∣
0

∣∣∣∣√σ∂t∂
αΛκψ

∣∣∣∣
0
, (4.78)

where the last term will be controlled in ∂t∂
3-estimates. Besides, we have to analyze the commutator involving Λκ:

σ

∫
Σ

∂α−α
′

∇
2
Λκψ

([
Λκ, P(∇ψ̃)∂α

′

∇ψ̃
]
∂t∂

αψ
)

dx′, (4.79)

which is controlled under the time integral:∫ T

0
(4.79) dt .

√
σ

∫ T

0
|
√
σ∇∂αΛκψ|0 · κ|∂∇ψ̃|W1,∞P(|∇ψ̃|W1,∞ )|∂t∂

αψ|0 dt

. ε
∣∣∣∣κ∂t∂

αψ
∣∣∣∣2
L2

t L2
x′

+

∫ T

0

∣∣∣∣√σ∇∂αΛκψ
∣∣∣∣2
0
|
√
σ∇ψ̃|23.5P(|∇ψ̃|2.5) dt.

(4.80)

Therefore, ∫ T

0
( ST1 + ST2) dt +

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

+
σ

2

∣∣∣∣∇∂αΛκψ(T )
∣∣∣∣2
0
. Pκ0 +

∫ T

0
P(Eκ(t)) dt, (4.81)
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where we have chosen ε > 0 that appears above to be suitably small such that all ε-terms are absorbed by the κ-weighted energy.
To finish the control of I1 defined in (4.66), it remains to control the term RT. Note that when we drop the mollifier and have

the Rayleigh-Taylor sign condition −∂3q ≥ c0
2 > 0 assumed on Σ, RT should directly give us the non-σ-weighted boundary

energy. But since we are now solving the gravity-capillary water wave system for fixed σ > 0 instead of taking vanishing
surface tension limit, we cannot assume −∂3q ≥ c0

2 > 0 on Σ. Thus this term is controlled by the surface tension energy after
moving one Λκ: ∫ T

0
RT dt = −

∫ T

0

∫
Σ

∂3q∂αΛκψ · ∂t∂
αΛκψ dx′ dt −

∫ T

0

∫
Σ

∂αΛκψ ·
([

Λκ, ∂3q
]
∂t∂

αψ
)

dx′ dt

.

∫ T

0
|∂q|L∞

∣∣∣∣∂αΛκψ
∣∣∣∣
0

∣∣∣∣∂t∂
αΛκψ

∣∣∣∣
0

dt + ε
∣∣∣∣κ∂t∂

αψ
∣∣∣∣2
L2

t L2
x′

+

∫ T

0
|∂q|2W1,∞

∣∣∣∣∂αΛκψ
∣∣∣∣2
0

dt

. ε
∣∣∣∣κ∂t∂

αψ
∣∣∣∣2
L2

t L2
x′

+

∫ T

0
P

(
‖q̌‖4,

∣∣∣∣∂αΛκψ
∣∣∣∣
0
,
∣∣∣∣∂t∂

αΛκψ
∣∣∣∣
0

)
dt,

(4.82)

where the term
∣∣∣∣∂t∂

αΛκψ
∣∣∣∣
0

is the energy term obtained in ∂α−α
′

∂t-estimates for |α′| = 1.

Remark 4.3. The RHS of (4.82) is not uniform in σ. However, as mentioned earlier, −
∫ T

0

∫
Σ
∂3q∂αΛκψ · ∂t∂

αΛκψ dx′ dt
contributes to a non-σ-weighted energy term

∫
Σ
(−∂3q)|∂αΛκψ|

2 dt provided the Rayleigh-Taylor sign condition holds. We shall
revisit the control of RT in Section 7, where the zero surface tension limit is considered.

Combining this with (4.81), we get the estimate for I1∫ T

0
I1 dt +

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

+
σ

2

∣∣∣∣∇∂αΛκψ(T )
∣∣∣∣2
0
. Pκ0 +

∫ T

0
P(Eκ(t)) dt, (4.83)

after choosing ε > 0 that appears above to be suitably small.
The second term in (4.65) gives

I2 := −
∫

Σ

Q(v · ∇)∂αψ̃ = σ

∫
Σ

∂α∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 (v · ∇)∂αψ̃ dx′ − κ2
∫

Σ

∂α(1 − ∆)∂tψ · (v · ∇)∂αψ̃ dx′

+

∫
Σ

∂3q∂αψ̃(v · ∇)∂αψ̃ dx′

= : I21 + I22 + I23,

(4.84)

where we find that I22, I23 can be directly controlled as follows:∫ T

0
I22 dt ∇= − κ2

∫ T

0

∫
Σ

∂α∇∂tψ · ∇
(
(v · ∇)∂αψ̃

)
dx′ dt − κ2

∫ T

0

∫
Σ

∂α∂tψ · (v · ∇)∂αψ̃ dx′ dt

.

∫ T

0

∣∣∣∣κ∂α∂tψ
∣∣∣∣
0
|∇v|∞

∣∣∣∣κ∇2
∂αψ̃

∣∣∣∣
0

dt + κ

∫ T

0

∣∣∣∣κ∂α∂tψ
∣∣∣∣
0
|v|∞

∣∣∣∣∇∂αψ̃∣∣∣∣
0

dt

. ε
∣∣∣∣κ∂α∂tψ

∣∣∣∣2
L2

t H1
x′

+

∫ T

0
|v|2W1,∞

∣∣∣∣∇∂αΛκψ
∣∣∣∣2
0

dt . ε
∣∣∣∣κ∂α∂tψ

∣∣∣∣2
L2

t H1
x′

+

∫ T

0
P(Eκ(t)) dt,

(4.85)

where we use the mollifier property (3.4) to control |κ∇
2
∂αψ̃|0 . κ · κ

−1|∇∂αΛκψ|0. This step also shows why the power of κ
must be 2 in the artificial viscosity, otherwise, the control of I22 is not uniform in κ. For I23 we integrate v · ∇ by parts to get

I23 =
1
2

∫
Σ

∇ · (v ∂3q)|∂αψ̃|2 dx′ . P(Eκ(t)). (4.86)

The control of I21 is analogous to ST1. Following (4.69), we have

I21 = − σ

∫
Σ

∂α∇ψ̃
|Ñ |

−
∇ψ̃ · ∂α∇ψ̃

|Ñ |3
∇ψ̃

 · (v · ∇)∂α∇ψ̃ dx′

− σ

∫
Σ

([
∂α−α

′

,
1

|Ñ |

]
∂α
′

∇ψ̃ +

[
∂α−α

′

,
1

|Ñ |3

]
(∇ψ · ∂α

′

∇ψ̃) −
1

|Ñ |3

[
∂α−α

′

,∇ψ̃
]
∂α
′

∇ψ̃

)
· (v · ∇)∇∂αψ̃ dx′

= : I211 + I212,

(4.87)
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where I212 can be directly controlled if we integrate v · ∇ by parts:

I212 . P(|ψ̃|4)|v|W1,∞

∣∣∣∣√σ∇∂αψ̃∣∣∣∣2
0
≤ P(Eκ(t)). (4.88)

For I211, we integrate v · ∇ by parts and use the symmetric structure to see

I211
L
= −

σ

2

∫
Σ

(∇ · v)
 |∂α∇ψ̃|2
|Ñ |

−
|∇ψ̃ · ∂α∇ψ̃|2

|Ñ |3

 dx′ . P(|∇ψ̃|∞)|v|W1,∞

∣∣∣∣√σ∇∂αψ̃∣∣∣∣2
0
. (4.89)

Therefore, plugging (4.85)-(4.89) into (4.84), we get the estimates for I2:∫ T

0
I2 dt . ε

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

+

∫ T

0
P(Eκ(t)). (4.90)

It remains to control the term involving S1 which reads

I3 :=
∫

Σ

QS1 dx′ =

∫
Σ

Q

∂3v · Ñ∂αψ̃ +
∑

|β1 |+|β2 |=4
|β1 |,|β2 |>0

∂β1 v · ∂β2 Ñ

 dx′

=

∫
Σ

(
σ∂αH + κ2(1 − ∆)∂α∂tψ − ∂3q∂αψ̃

) ∂3v · Ñ∂αψ̃ +
∑

|β1 |=1,|β2 |=3

∂β1 v · ∂β2 Ñ

 dx′

+
∑

|β1 |+|β2 |=4
|β1 |≥1,1≤|β2 |≤2

∫
Σ

(∂αq − ∂αψ̃∂3q)(∂β1 v · ∂β2 Ñ) dx′

= : I31 + I32,

(4.91)

where we use the definition of Q in I32 and invoke the Dirichlet boundary condition (4.49) for Q in I31 such that the L2(Σ)
bound of ∂αv and non-σ-weighted ∇∂αψ with |α| = 4 can be avoided on Σ.

The term I32 can be directly controlled as:

I32 .
∑

|β1 |+|β2 |=4
|β1 |≥1,1≤|β2 |≤2

|∂αq|− 1
2

∣∣∣∣∂β1 v · ∇
β2
∂ψ̃

∣∣∣∣ 1
2

+
∣∣∣∣∂αψ̃∂3q

∣∣∣∣
0

∣∣∣∣∂β1 v · ∇
β2
∂ψ̃

∣∣∣∣
0
. ‖q‖4‖v‖4|ψ̃|3.5 + |∂q|L∞‖v‖3.5|ψ̃|3|ψ̃|4. (4.92)

For I31, we invokeH = −∇ · (∇ψ̃/|Ñ |) and then integrate ∇· by parts in the mean curvature term and integrate one tangential
derivative by parts in the viscosity term to get:

I31 . P(|∇ψ̃|∞)|∂v|∞
(∣∣∣∣√σ∇∂αψ̃∣∣∣∣2

4
|∂v|∞ +

∣∣∣∣κ∂α∂tψ
∣∣∣∣
1

∣∣∣∣κ∇∂αψ̃∣∣∣∣
0

)
+ |∂q|L∞ |ψ̃|24|∂v|∞, (4.93)

and thus yields ∫ T

0
I31 dt . ε

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

+

∫ T

0
P(Eκ(t)) dt, (4.94)

which together with (4.92) gives the bound for I3:∫ T

0
I3 dt ≤ ε

∣∣∣∣κ∂α∂tψ
∣∣∣∣2
L2

t H1
x′

+

∫ T

0
P(Eκ(t)) dt. (4.95)

Combining (4.65), (4.66), (4.83), (4.84), (4.90), (4.91), (4.95), we get the estimates for the boundary integral after choosing
ε > 0 suitably small:

−

∫ T

0

∫
Σ

Q(V · Ñ) dx′ +
∣∣∣∣κ∂α∂tψ

∣∣∣∣2
L2

t H1
x′ ([0,T ]×Σ)

+
σ

2

∣∣∣∣∇∂αΛκψ(T )
∣∣∣∣2
0
. Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.96)
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Plugging the estimates (4.57)-(4.60), (4.64) and (4.96) into (4.51) and using ρ & 1, ∂3ϕ̃ & 1, we get the estimates for the
good unknowns:

‖V(T )‖20 +
∥∥∥∥√
F ′(q)Q(T )

∥∥∥∥2

0
+

∣∣∣∣√σ∇∂αΛκψ(T )
∣∣∣∣2
0

+
∣∣∣∣κ∂α∂tψ

∣∣∣∣2
L2

t H1
x′ ([0,T ]×Σ)

. Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.97)

Finally, using the definition V = T αv−T αϕ̃∂
ϕ̃
3v, we can replace ‖V‖0 by ‖T αv‖0 because their difference, namely T αϕ̃∂

ϕ̃
3v,

is bounded by Pκ0 +
∫ T

0 P(Eκ(t)) dt. Indeed, using ϕ̃(t, x) = x3 +χ(x3)ψ̃(t, x′) we only need to investigate the case T = ∂ because
the weighted derivative T = ω(x3)∂3 only falls on χ(x3) and x3 instead of ψ̃. So we have ‖∂αϕ̃‖0 . |∂αψ̃|0 which is already
bounded by the surface tension energy and thus by Pκ0 +

∫ T
0 P(Eκ(t)) dt according to (4.97). Since ‖∂ϕ̃3v‖∞ ≤ ‖v‖3‖∂3ϕ̃‖∞ ≤

Pκ0 +
∫ T

0 P(Eκ(t)) dt, we have

‖T αv(T )‖20 +
∥∥∥∥√
F ′(q)T αq̌(T )

∥∥∥∥2

0
+

∣∣∣∣√σ∇∂αΛκψ(T )
∣∣∣∣2
0

+

∫ T

0

∣∣∣∣κ∂α∂tψ(t)
∣∣∣∣2
1

dt . Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.98)

We remark here that we can employ the same analysis to prove the tangential estimates with mixed spatial-time derivatives.

Proposition 4.5. Let α be the multi-index satisfying 1 ≤ α0 ≤ 3 and |α| = 4, we have:

‖T αv(T )‖20 +
∥∥∥∥√
F ′(q)T αq̌(T )

∥∥∥∥2

0
+

∣∣∣∣√σ∇∂αΛκψ(T )
∣∣∣∣2
0

+

∫ T

0
|κT α∂tψ(t)|21 dt . Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.99)

4.6 Tangential energy estimate with time derivatives

In this subsection, we study the time-differentiated equations, i.e., the equations obtained by commuting ∂4
t with (3.11). We

aim to prove:

Proposition 4.6. We have

‖∂4
t v(T )‖20 +

∥∥∥∥√
F ′(q)∂4

t q̌(T )
∥∥∥∥2

0
+

∣∣∣∣√σ∇∂4
t Λκψ(T )

∣∣∣∣2
0

+

∫ T

0

∣∣∣κ∂5
t ψ(t)

∣∣∣2
1 dt . Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.100)

Although the proof appears to be similar to what has been done in the previous subsection, it should be mentioned that
we only have L2(Ω)-regularity for the full-time derivatives of v and q, and thus we do not have any information about their
boundary regularity. When the full-time derivatives of v and q appear on the boundary, we use either the artificial viscosity or
Euler equations to reduce a time derivative to a spatial derivative.

4.6.1 Alinhac good unknowns for full-time derivatives

To begin with, we still introduce the Alinhac good unknowns of v, q with respect to ∂4
t . Using the same notation as before, we

define

Vi := ∂4
t vi − ∂

ϕ̃
3vi∂

4
t ϕ̃, Q := ∂4

t q̌ − ∂ϕ̃3 q̌∂4
t ϕ̃. (4.101)

Parallel to (4.36) , we have
∂4

t (∇ϕ̃i f ) = ∇
ϕ̃
i F + Ci( f ), (4.102)

where Ci( f ) := ∂
ϕ̃
3∂

ϕ̃
i f∂4

t ϕ̃ + C′i( f ) and

C
′
i( f ) = −

[
∂4

t ,
∂iϕ̃

∂3ϕ̃
, ∂3 f

]
− ∂3 f

[
∂4

t , ∂iϕ̃,
1
∂3ϕ̃

]
+ ∂iϕ̃∂3 f

[
∂3

t ,
1

(∂3ϕ̃)2

]
∂t∂3ϕ̃, i = 1, 2 (4.103)

C
′
3( f ) =

[
∂4

t ,
1
∂3ϕ̃

, ∂3 f
]

+ ∂3 f
[
∂3

t ,
1

(∂3ϕ̃)2

]
∂t∂3ϕ̃. (4.104)

Then we take ∂4
t to the first two equations of (1.5) to obtain

ρDϕ̃
t Vi + ∇

ϕ̃
i Q = R1

i , (4.105)

F ′(q)Dϕ̃
t Q + ∇ϕ̃ · V = R2 − Ci(vi), (4.106)
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where

R1
i := − [∂4

t , ρ]Dϕ̃
t vi − ρ (D(vi) + E(vi)) − Ci(q̌), (4.107)

R2 := − [∂4
t ,F

′(q)]Dϕ̃
t q̌ − F ′(q) (D(q̌) + E(q̌)) + ∂4

t (F ′(q)gv3), (4.108)

and the commutators D( f ), e( f ) are defined in the same way as in (4.39) and (4.40) by replacing T α with ∂4
t and replacing

∂ with ∂t. The last two terms in (4.39) vanish because ∂4
t directly commutes with ∂3. Analogous to Lemma 4.4, we list the

estimates for commutators C,D, e.

Lemma 4.7. Let F := ∂4
t f − ∂ϕ̃3 f∂4

t ϕ̃ be the Alinhac good unknowns of f with respect to ∂4
t . Assuming that ∂3ϕ̃ ≥ c0 > 0, then

‖∂4
t f ‖0 ≤ ‖F‖0 + c−1

0 ‖∂3 f ‖∞|∂4
t ψ̃|0, (4.109)

‖Ci( f )‖0 ≤ P

c−1
0 , |∇ψ̃|∞,

3∑
k=1

|∇∂k
t ψ̃|3−k

 ·
‖∂ f ‖∞ +

3∑
k=1

‖∂k
t f ‖4−k

 , i = 1, 2, 3, (4.110)

‖D( f )‖0 ≤ P

c−1
0 , |∇ψ̃|∞,

3∑
k=1

|∇∂k
t ψ̃|3−k

 ·
‖∂ f ‖∞ +

3∑
k=1

‖∂k
t f ‖4−k

 , (4.111)

‖E( f )‖0 ≤ κ|∇∂5
t ψ|0‖∂ f ‖∞. (4.112)

The ∂4
t -differentiated kinematic boundary condition now reads

∂5
t ψ + (v · ∇)∂4ψ̃ − V · Ñ = S∗1, on Σ, (4.113)

where

S∗1 := ∂3v · Ñ∂4
t ψ̃ +

∑
1≤β≤3

(
4
β

)
∂
β
t v · ∂4−β

t Ñ. (4.114)

Also, since Q|Σ = ∂4
t q − ∂ϕ̃3q∂4

t ψ̃, the boundary condition of Q on Σ reads

Q = −σ∂4
t ∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 + κ2(1 − ∆)∂5
t ψ − ∂3q∂4

t ψ̃. (4.115)

4.6.2 Energy estimates for the full-time derivatives

Replacing T α by ∂4
t in (4.51), we have

d
dt

1
2

∫
Ω

ρ|V|2∂3ϕ̃ dx =
1
2

∫
Ω

ρ|V|2∂3∂t(ϕ̃ − ϕ) dx +

∫
Ω

Q(∇ϕ̃ · V)∂3ϕ̃ dx −
∫

Σ

Q(V · Ñ) dx′ +
∫

Ω

V · R1∂3ϕ̃ dx., (4.116)

where the first term and the last term are controlled in the same way as (4.57)-(4.59), so we omit the details. As for the second
term, we follow (4.60)-(4.64) to get∫

Ω

Q(∇ϕ̃ · V)∂3ϕ̃ dx

=−

∫
Ω

∂4
t q̌Ci(vi)∂3ϕ̃ dx︸                     ︷︷                     ︸

=:I∗0

+

∫
Ω

∂4
t ϕ̃∂

ϕ̃
3 q̌Ci(vi)∂3ϕ̃ dx −

1
2

d
dt

∥∥∥∥√
F ′(q)Q

∥∥∥∥2

0

+
∥∥∥∥√
F ′(q)Q

∥∥∥∥2

0
(‖∂v‖∞ + κ|∇∂tψ|0.5) +

∥∥∥∥√
F ′(q)Q

∥∥∥∥
0
‖R2‖0

. I∗0 −
1
2

d
dt

∥∥∥∥√
F ′(q)Q

∥∥∥∥2

0
+

∥∥∥∥√
F ′(q)∂4

t q̌
∥∥∥∥2

0

(
‖∂v‖∞ + κ|∇∂tψ|0.5 + |κ∇∂5

t ψ|0
)

+ P

c−1
0 , |∇ψ̃|∞,

3∑
k=1

|∇∂k
t ψ̃|3−k

 |∂4
t ψ̃|0|

∥∥∥∥√
F ′(q)∂4

t q̌
∥∥∥∥

0

‖∂v, ∂q‖∞ +

3∑
k=1

‖∂k
t q̌, ∂k

t v‖4−k + ‖F ′(q)∂4
t v3‖0

 .

(4.117)
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At this point, we are not able to control I∗0 := −
∫

Ω
∂4

t qCi(vi)∂3ϕ̃ dx as in (4.63) since this requires the bound for ‖∂4
t q‖0. We

can only obtain the control of ‖
√
F ′(q)∂4

t q‖0 from the energy estimate because we can no longer use the momentum equation to
reduce ∂4

t q due to lack of spatial derivatives. Although the method in (4.63) is still valid here when we prove the well-posedness
provided that F ′(q) is bounded from below, we would like to show that our estimate can be adjusted to be uniform in F ′(q).
To achieve this, we find that the problematic terms in Ci(vi) can be exactly canceled by the boundary error term S1 defined in
(4.114). Therefore, this term should be controlled together with the boundary integral if we want our energy estimates to be
uniform in the Mach number.

Next, we analyze the boundary integral. Most of the steps are parallel to Section 4.5.4 if we replace ∂α by ∂4
t , so we will

omit the details of those repeated steps but only list the different steps. Plugging the boundary conditions (4.113) and (4.115)
into −

∫
Σ

Q(V · Ñ) dx′, we get

−

∫
Σ

Q(V · Ñ) dx′ = −

∫
Σ

Q∂5
t ψ dx′ −

∫
Σ

Q(v · ∇)∂4
t ψ̃ dx′ +

∫
Σ

QS∗1 dx′ =: I∗1 + I∗2 + I∗3 , (4.118)

and I∗1 is further divided into three parts:

I∗1 := −
∫

Σ

Q∂5
t ψ dx′ = σ

∫
Σ

∂4
t ∇ ·

 ∇ψ̃√
1 + |∇ψ̃|2

 ∂5
t ψ dx′ − κ2

∫
Σ

∂4
t (1 − ∆)∂tψ · ∂

5
t ψ dx′ +

∫
Σ

∂3q∂4
t ψ̃∂

5
t ψ dx′

= : ST∗1 + ST∗2 + RT∗.

(4.119)

Mimicing the steps (4.67)-(4.81), we can get the bounds for ST∗1, ST∗2:∫ T

0
ST∗1 + ST∗2 dt +

∣∣∣κ∂5
t ψ

∣∣∣2
L2

t H1
x′

+
σ

2

∣∣∣∣∇∂4
t Λκψ(T )

∣∣∣∣2
0
. Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.120)

Remark 4.4. Parallel to the remark after (4.82), −
∫ T

0 RT∗ dt would contribute to the non-σ-weighted energy
∫

Σ
(−∂3q)|∂4

t Λκψ|
2 dt

if the Rayleigh-Taylor sign condition holds. This will be revisited in Section 7.

As for RT∗, if we still follow (4.82) to get:∫ T

0
RT∗ dt . ε

∣∣∣κ∂5
t ψ

∣∣∣2
L2

t L2
x′

+

∫ T

0
P

(
‖q̌‖4,

∣∣∣∂4
t Λκψ

∣∣∣
0 ,

∣∣∣∂5
t Λκψ

∣∣∣
0

)
dt,

then we find that the term |∂5
t Λκψ|0 is not included in Eκ(t) because there is no spatial derivative here. To overcome this, we

invoke the kinematic boundary condition ∂tψ = −v · ∇ψ̃ + v3 and take ∂4
t to get

∂5
t ψ = −(v · ∇)∂4

t ψ̃ + ∂4
t v3 − [∂4

t , v·]∇ψ̃ = −(v · ∇)∂4
t ψ̃ + ∂4

t v · Ñ − [∂4
t , v·,∇ψ̃], (4.121)

and thus

RT∗ = −

∫
Σ

∂3q∂4
t ψ̃(v · ∇)∂4

t ψ̃ dx′ +
∫

Σ

∂3q∂4
t ψ̃∂

4
t v · Ñ dx′ −

∫
Σ

∂3q∂4
t ψ̃[∂4

t , v·,∇ψ̃] dx′ (4.122)

= : RT∗1 + RT∗2 + RT∗3.

Note that we only need to analyze the contribution of RT∗2 because the contribution of the other two terms will be canceled
by part of I∗2 and I∗3 . To do this, we need to derive the equation for ∂4

t · Ñ on Σ. Recall that

Dϕ̃
t

∣∣∣
Σ

= ∂t + (v · ∇) + (∂3ψ̃)−1 (v · Ñ − ∂tϕ)︸         ︷︷         ︸
=0 on Σ

∂3 = ∂t + (v · ∇),

we have the following identity by projecting the momentum equation onto the direction of Ñ on Σ:

ρ∂tv · Ñ = −(ρ − 1)g − ρ(v · ∇)v · Ñ + ∇ψ̃ · ∇q̌ − (1 + |∇ψ̃|2)∂3q̌,

and thus
ρ∂4

t v · Ñ L
= −∂3

t ρg − ρ(v · ∇)∂3
t v · Ñ + ∇ψ̃ · ∇∂3

t q̌ − |Ñ |2∂3∂
3
t q̌. (4.123)
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The contribution of the first three terms in (4.123) can be directly controlled after integrating ∇ by parts and using the Sobolev
trace lemma: ∫

Σ

ρ−1∂3q∂4
t ψ̃

(
ρ(v · ∇)∂3

t v · Ñ + ∇ψ̃ · ∇∂3
t q̌ − ∂3

t ρg
)

dx′

L
= −

∫
Σ

ρ−1∇∂4
t ψ̃ ·

(
∂3q

(
ρv∂3

t v · Ñ + ∇ψ̃∂3
t q̌

))
dx′ −

∫
Σ

ρ−1∂3q∂4
t ψ̃∂

3
t ρg dx′

. ‖∂q‖2
(∣∣∣∣∇∂4

t ψ̃
∣∣∣∣
0

P
(
‖∂3

t v‖1, ‖∂3
t q̌‖1, |∇ψ̃|∞

)
+ |∂4

t ψ̃|0‖F
′(q)∂3

t q‖1|ρ|∞
)
.

(4.124)

Remark 4.5. Note that the right side of (4.124) involves |∇∂4
t ψ̃|0 whose control relies on σ−1. This is due to the lack of the

Rayleigh-Taylor sign condition. When taking the zero surface tension limit, the Rayleigh-Taylor sign condition is assumed and
thus the RT term can be directly controlled.

Then for the last term, we need to do the same reduction for ∂4
t ψ:

∂4
t ψ = −(v · ∇)∂3

t ψ̃ + ∂3
t v3 − [∂3

t , v·]∇ψ̃ = −(v · ∇)∂3
t ψ̃ + ∂3

t v · Ñ − [∂3
t , v·,∇ψ̃]. (4.125)

Using (4.125) and Sobolev trace lemma, it is controlled by

|∂4
t ψ̃|0 . P(|∇ψ̃|∞, |∇∂tψ̃|∞)

(
|∇∂3

t ψ̃|0 + ‖∂3
t v‖1 + ‖∂2

t v‖2 + |∇∂2
t ψ̃|0

)
. (4.126)

Now we plug the equality above into the boundary integral −
∫

Σ
ρ−1∂3q|Ñ |2∂4

t ψ̃∂3∂
3
t q̌ dx′. Note that the unit exterior normal

vector to Σ is (0, 0, 1)> (not the Eulerian normal vector Ñ !), we can use the divergence theorem to rewrite the boundary integral
into the interior, and integrate by parts in ∂t to get the following estimate:

−

∫ T

0

∫
Σ

ρ−1∂3q|Ñ |2∂4
t ψ̃∂3∂

3
t q̌ dx′ dt L

=

∫ T

0

∫
Σ

ρ−1∂3q|Ñ |2Λ2
κ

(
(v · ∇)∂3

t ψ̃ − ∂
3
t v · Ñ

)
∂3∂

3
t q̌ dx′ dt

=

∫ T

0

∫
Ω

∂3

(
ρ−1∂3q|Ñ|2Λ2

κ

(
(v · ∇)∂3

t ϕ̃ − ∂
3
t v · Ñ

)
∂3∂

3
t q̌

)
dx dt

L
=

∫ T

0

∫
Ω

ρ−1∂3q|Ñ|2Λ2
κ

(
(v · ∇)∂3

t ϕ̃ − ∂
3
t v · Ñ

)
· ∂2

3∂
3
t q̌ dx dt

∂t
= −

∫
Ω

ρ−1∂3q|Ñ|2Λ2
κ

(
(v · ∇)∂3

t ϕ̃ − ∂
3
t v · Ñ

)
· ∂2

3∂
2
t q̌ dx

+

∫ T

0

∫
Ω

ρ−1∂3q|Ñ|2∂tΛ
2
κ

(
(v · ∇)∂3

t ϕ̃ − ∂
3
t v · Ñ

)
· ∂2

3∂
2
t q̌ dx dt

. ε‖∂2
t ∂

2q̌‖20 + Pκ0 +

∫ T

0
P

(
‖∂4

t v‖0, ‖∂3
t v‖1, ‖∂tv‖∞, ‖∂2

t q̌‖2, |∇ψ̃|∞, |∇∂3
t ψ̃|0, |∇∂

4
t ψ̃|0

)
dt.

(4.127)

Combining this with (4.120), (4.122), (4.124) and (4.127), we get the estimate for I∗1:∫ T

0
I∗1 dt +

∣∣∣κ∂5
t ψ

∣∣∣2
L2

t H1
x′

+
σ

2

∣∣∣∣∇∂4
t Λκψ(T )

∣∣∣∣2
0
. ε‖∂2

t ∂
2q̌‖20 +

∫ T

0
RT∗1 + RT∗3 dt + Pκ0 +

∫ T

0
P(Eκ(t)) dt, (4.128)

after choosing ε > 0 that appears above to be suitably small.
Next we expand I∗2 , I

∗
3 defined in (4.118)

I∗2 + I∗3 = −

∫
Σ

∂4
t q̌(v · ∇)∂4

t ψ̃ dx′ +
∫

Σ

∂4
t ψ̃∂3q(v · ∇)∂4

t ψ̃ dx′

+

∫
Σ

∂4
t q̌S1 dx′ −

∫
Σ

∂4
t ψ̃∂3q∂3v · Ñ∂4

t ψ̃ dx′ −
∫

Σ

∂4
t ψ̃∂3q

 ∑
1≤β≤3

(
4
β

)
∂
β
t v · ∂4−β

t Ñ

 dx′
(4.129)

and we find that the second term exactly cancels RT∗1 and the fifth term exactly cancels RT∗3 defined in (4.122). The first term
can be controlled in the same way as I21, I22 defined in (4.84) after replacing ∂4 by ∂4

t . The fourth term is directly controlled by
P(Eκ(t)) by using the Sobolev trace lemma.
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Hence, it suffices to analyze the third term. Using the definition of S∗1, we have∫
Σ

∂4
t q̌S∗1 dx′ =

∫
Σ

∂4
t q̌

(
∂3v · Ñ∂4

t ψ̃
)

dx′ − 4
∫

Σ

∂4
t q̌∂3

t v · ∂tÑ dx′ +
∑

1≤β≤2

(
4
β

) ∫
Σ

∂4
t q̌∂βt v · ∇∂4−β

t ψ̃ dx′, (4.130)

where the first term can be controlled by the surface tension energy after invoking (4.115) and integrating ∇ by parts; and the
last term can be controlled after integrating by part in ∂t under time integral. But for the remaining term

I∗30 := 4
∫

Σ

∂4
t q̌∂3

t v · ∂tÑ dx′, (4.131)

we have neither the L2(Σ)-regularity of ∂4
t q nor the possibility of integrating 1

2 -time derivatives by parts as in the control of
(4.91).

Fortunately, we can still control I30 together with the interior term I∗0 := −
∫

Ω
∂4

t qCi(vi)∂3ϕ̃ dx defined in (4.117). In fact,
invoking (4.103) and (4.104), we know Ci(vi) includes the following terms involving ≥ 3 time derivatives of vi and ≥ 4
derivatives of ϕ̃:

∂
ϕ̃
3∂

ϕ̃
i vi∂4

t ϕ̃ = Ci(vi) − C′i(v
i), i = 1, 2, 3, (4.132)

−4∂t

 ∂iϕ̃

∂3ϕ̃

 ∂3
t ∂3vi = 4∂tÑi∂

ϕ̃
3∂

3
t vi + 4

∂3∂tϕ̃∂iϕ̃

∂3ϕ̃
∂
ϕ̃
3∂

3
t vi from the first commutator in C′i(v

i) i = 1, 2, (4.133)

4∂t

(
1
∂3ϕ̃

)
∂3

t ∂3v3 = −4
∂3∂tϕ̃

∂3ϕ̃
∂
ϕ̃
3∂

3
t v3 from the first commutator in C′3(v3), (4.134)

while the terms in C′i(v
i) containing only ≤ 2 time derivatives of vi and ≤ 3 time derivatives of ϕ̃ are controlled directly after

integrating ∂t by parts under time integral.
The contribution of the above four terms in I∗0 is divided into three parts:

I∗00 := −4
∫

Ω

∂4
t q̌∂tÑi∂3∂

3
t vi dx (4.135)

I∗01 := −
∫

Ω

∂4
t q̌∂3(∇ϕ̃ · v)∂4

t ϕ̃ dx (4.136)

I∗02 := −4
2∑

i=1

∫
Ω

∂4
t q̌

∂3∂tϕ̃∂iϕ̃

∂3ϕ̃

 ∂ϕ̃3∂3
t vi∂3ϕ̃ dx + 4

∫
Ω

∂4
t q̌

(
∂3∂tϕ̃

∂3ϕ̃

)
∂
ϕ̃
3∂

3
t v3∂3ϕ̃ dx. (4.137)

Integrating ∂3 by parts in I∗00 and using N3 = 1, we find the boundary term exactly cancels with I∗30, so we have:

I∗30 + I∗00 = 4
∫

Ω

(
∂4

t ∂3q̌∂tÑ + ∂4
t q̌∂t∂3Ñ

)
· ∂3

t v dx

=
d
dt

∫
Ω

(
∂3

t ∂3q̌∂tÑ + ∂3
t q̌∂t∂3Ñ

)
· ∂3

t v dx +

∫
Ω

∂3
t ∂3q̌∂t(∂tÑ · ∂3

t v) + ∂3
t q̌∂t(∂t∂3Ñ · ∂3

t v) dx.
(4.138)

Under the time integral, we have the following bounds after using ε-Young’s inequality:∫ T

0
I∗00 + I∗30 dt . ε‖∂3

t ∂q̌‖20 + Pκ0 +

∫ T

0
(‖∂3

t q̌(t)‖0 + 1)P(Eκ(t)) dt

. ε‖∂3
t ∂q̌‖20 + ε

∫ T

0
‖∂3

t q̌(t)‖20 dt + Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.139)

Here, we still need to study
∫ T

0 ‖∂
3
t q̌(t)‖20 dt, as the reduction scheme does not apply to ∂3

t q̌(t) due to lack of spatial derivatives.
We control this term through the fundamental theorem of calculus: For each x3 ∈ (−b, 0), we write

∂3
t q̌(t, x′, x3) = ∂3

t q̌(t, x′, 0) +

∫ x3

0
∂3∂

3
t q̌(t, x′, z) dz,
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and so (
∂3

t q̌(t, x′, x3)
)2
.b

(
∂3

t q̌(t, x′, 0)
)2

+

∫ x3

0

(
∂3∂

3
t q̌(t, x′, z)

)2
dz.

Integrating both sides with respect to the spatial variables, we obtain

‖∂3
t q̌(t)‖20 .b |∂

3
t q̌(t)|20 + ‖∂3∂

3
t q̌(t)‖20.

The second term on the RHS is bounded by Eκ(t). For the first term, note that

∂3
t q̌ = −σ∂3

t

 ∇ψ̃√
1 + |∇ψ̃|2

+ gψ̃

 + κ2(1 − ∆)∂4
t ψ, on Σ,

where

−σ∂3
t

 ∇ψ̃√
1 + |∇ψ̃|2

 L
= −σ∇ ·

 ∇∂3
t ψ̃√

(1 + |∇ψ̃|2)
−
∇ψ̃ · ∇∂3

t ψ̃√
(1 + |∇ψ̃|2)

3∇ψ̃

 ,
which indicates that ∂3

t q̌|Σ consists of non-κ-weighted terms with at most 5 derivatives on ψ̃ with at most 3 times derivatives,
and a κ-weighted term κ2(1 − ∆)∂4

t ψ. Therefore,∫ T

0
‖∂3

t q̌(t)‖20 dt .
∫ T

0
P

 3∑
k=0

|
√
σ∇∂k

t Λκψ(t)|4−k,

3∑
k=0

|∂k
t Λκψ(t)|4−k

 dt +

∫ T

0
|κ∂4

t ψ(t)|22 dt

By combining this with (4.139), we conclude:∫ T

0
I∗00 + I∗30 dt . ε‖∂3

t ∂q̌‖20 + ε

∫ T

0
‖κ∂4

t ψ(t)‖22 dt + Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.140)

Next, the term I∗01 can be directly controlled if we insert the continuity equation ∇ϕ̃ · v = −F ′(q)Dϕ̃
t q

I∗01 .
∥∥∥∥√
F ′(q)∂4

t q̌
∥∥∥∥

0

∥∥∥∥√
F ′(q)∂tq,

√
F ′(q)∂q

∥∥∥∥
W1,∞
|∂4

t ψ̃|0. (4.141)

As for I∗02, we note that −∂iϕ̃∂
ϕ̃
3∂

3
t vi = ∂

ϕ
i ∂

3
t vi − ∂i∂

3
t vi for i = 1, 2. So it becomes

I∗02 = 4
∫

Ω

∂4
t q̌∂3∂tϕ̃(∇ϕ̃ · ∂3

t v) dx − 4
2∑

i=1

∫
Ω

∂4
t q̌∂3∂tϕ̃∂i∂

3
t vi dx

L
= 4

∫
Ω

∂4
t q̌∂3

t (∇ϕ̃ · v)∂3∂tϕ̃ dx − 4
2∑

i=1

∫
Ω

∂4
t q̌∂3∂tϕ̃∂i∂

3
t vi dx,

(4.142)

where the first term is controlled by∥∥∥∥√
F ′(q)∂4

t q̌
∥∥∥∥

0

(∥∥∥∥√
F ′(q)∂4

t q̌
∥∥∥∥

0
+

∥∥∥∥√
F ′(q)∂3

t ∂q̌
∥∥∥∥

0
+

∥∥∥∥√
F ′(q)∂3

t v3

∥∥∥∥
0

)
|∂tψ̃|∞

after invoking the continuity equation, and the second term is controlled under time integral after integrating by parts first in ∂t

and then in ∂i. So we have: ∫ T

0
I∗02 dt . ε‖∂3

t ∂q̌‖20 + Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.143)

Summarizing (4.116), (4.117), (4.120), (4.122), (4.128)-(4.131), (4.140), (4.141) and (4.143), we finally get the control of
the Alinhac good unknowns V and Q with respect to ∂4

t :

‖V(T )‖20 +
∥∥∥∥√
F ′(q)Q(T )

∥∥∥∥2

0
+

∣∣∣∣√σ∇∂4
t Λκψ(T )

∣∣∣∣2
0

+

∫ T

0

∣∣∣κ∂5
t ψ

∣∣∣2
1 dt . ε

(
‖∂2

t ∂
2q̌‖20 + ‖∂3

t ∂q̌‖20
)

+ Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.144)
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To recover the energy for ‖∂4
t v‖20 and ‖

√
F ′(q)∂4

t q̌‖20, it suffices to invoke (4.109) and use the estimate of |∂4
t ψ̃|0 in (4.126).

Note that the right side of (4.126) has been controlled in ∂4−k∂k
t -estimates for k ≤ 3, so we already have |∂4

t ψ̃|0 ≤ P
κ
0 +∫ T

0 P(Eκ(t)) dt and thus

‖∂4
t v(T )‖20 +

∥∥∥∥√
F ′(q)∂4

t q̌(T )
∥∥∥∥2

0
+

∣∣∣∣√σ∇∂4
t Λκψ(T )

∣∣∣∣2
0

+

∫ T

0

∣∣∣κ∂5
t ψ

∣∣∣2
1 dt . ε

(
‖∂2

t ∂
2q̌‖20 + ‖∂3

t ∂q̌‖20
)
+Pκ0 +

∫ T

0
P(Eκ(t)) dt. (4.145)

4.7 A priori estimates for the nonlinear κ-approximate problem
Now we choose ε > 0 suitably small and then combine the tangential estimates (4.98) and (4.145) with div-curl analysis,
reduction of pressure and L2-estimates in Section 4.1–Section 4.3 to get the following energy inequality:

Eκ(T ) ≤ Eκ(0) +

∫ T

0
P(Eκ(t)) dt. (4.146)

Since the right-hand side of the energy inequality does not rely on κ−1, we can use Grönwall’s inequality to prove that there
exists some T0 > 0 independent of κ > 0 such that

sup
0≤t≤T0

Eκ(t) ≤ P(Eκ(0)). (4.147)

We also note that the above energy estimate does not rely on F ′(q)−1, as a special cancellation structure enjoyed by the
Alinhac good unknowns and delicate analysis (4.130)-(4.143) exclude the only possibility that might make the energy estimates
not uniform in Mach number. Therefore, our a priori bound is also uniform in Mach number.

5 Well-posedness of the nonlinear κ-approximate system
For the nonlinear κ-approximate problem (3.11), we have established the uniform-in-κ estimates. Once we prove the well-
posedness of (3.11) for each fixed κ > 0, we can take the limit κ → 0 to prove the local existence of the original system (1.24).
We would use Picard iteration to construct the solution to (3.11) for each fixed κ > 0. We start with (v(0), ρ(0), ψ(0)) := (0, 1, 0)
and also define ψ(−1) := ψ(0). Then we construct the solution by the following iteration scheme: For any n ≥ 0, given
{(v(k), ρ(k), ψ(k))}k≤n, we define (v(n+1), ρ(n+1), ψ(n+1)) to be the solution to the following linear system whose coefficients depend
on (v(n), ρ(n), ψ(n)) and ψ(n−1):

ρ(n)Dϕ̃(n)

t v(n+1) + ∇ϕ̃
(n)

q̌(n+1) = −(ρ(n) − 1)ge3 in [0,T ] ×Ω,

F (n)′ (q(n))Dϕ̃(n)

t q̌(n+1) + ∇ϕ̃
(n)
· v(n+1) = F (n)′ (q(n))gv(n)

3 in [0,T ] ×Ω,

q(n+1) = q(n+1)(ρ(n+1)), q̌(n+1) = q(n+1) + gϕ̃(n) in [0,T ] ×Ω,

q̌(n+1) = gψ̃(n) − σ∇ ·

(
∇ψ̃(n)

√
1+|∇ψ̃(n) |2

)
+ κ2(1 − ∆)(v(n+1) · Ñ(n)) on [0,T ] × Σ,

∂tψ
(n+1) = v(n+1) · Ñ(n) on [0,T ] × Σ,

v(n+1)
3 = 0 on [0,T ] × Σb,

(v(n+1), ρ(n+1), ψ(n+1))|t=0 = (v0,κ, ρ0,κ, ψ0,κ),

(5.1)

where for any k ≤ n + 1, ϕ(k)(t, x) is the extension of ψ(k) defined by ϕ(k)(t, x) := x3 + χ(x3)ψ(k) and ϕ̃(k) := x3 + χ(x3)ψ̃(k) is the
smoothed version of ϕ(k). The linearized material derivative is defined to be the following linear operator:

Dϕ̃(n)

t := ∂t + v(n)
· ∇ +

1
∂3ϕ̃(n) (v(n) · Ñ(n−1) − ∂tϕ

(n))∂3, (5.2)

and the covariant derivatives are defined to be

∂
ϕ̃(n)

t = ∂t −
∂tϕ

(n)

∂3ϕ̃(n) ∂3, (5.3)

∇
ϕ̃(n)

a = ∂
ϕ̃(n)

a = ∂a −
∂aϕ̃

(n)

∂3ϕ̃(n) ∂3, a = 1, 2, (5.4)

∇
ϕ̃(n)

3 = ∂
ϕ̃(n)

3 =
1

∂3ϕ̃(n) ∂3. (5.5)
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Remark 5.1. Note that the linearized material derivative is no longer equal to ∂ϕ̃
(n)

t +v(n) ·∇ϕ̃
(n)

. Indeed, one has to set the weight
of ∂3 to be v(n) · Ñ(n−1) − ∂tϕ

(n) to guarantee both the linearity of this operator and the consistency with the linearized kinematic
boundary condition ∂tψ

(n+1) = v(n+1) · Ñ(n).

Remark 5.2. Note that the surface tension term in (5.1) is now replaced by a given term instead of being −σ∇ · (∇ψ̃(n+1)/|Ñ(n)).
Under this setting, we can still do energy estimates for ψ(n+1) by using the kinematic boundary condition and the viscosity term.

For simplicity of notations, for any n ≥ 0, we denote (v(n+1), ρ(n+1), q(n+1), ψ(n+1)), (v(n), ρ(n), q(n), ψ(n)) and ψ(n−1) by (v, ρ, q, ψ),
(v̊, ρ̊, q̊, ψ̊) and ψ̇. Hence, we need to solve the following linearized version of system (3.11) for each fixed κ > 0 and then
establish an energy estimate to proceed with the iteration scheme.

ρ̊D
˚̃ϕ
t v + ∇

˚̃ϕq̌ = −(ρ̊ − 1)ge3, in [0,T ] ×Ω,

F̊ ′(q̊)D
˚̃ϕ
t q̌ + ∇

˚̃ϕ · v = F̊ ′(q̊)gv̊3, in [0,T ] ×Ω,

q = q(ρ), q̌ = q + g ˚̃ϕ in [0,T ] ×Ω,

q̌ = g ˚̃ψ − σ∇ ·
 ∇

˚̃ψ√
1+|∇

˚̃ψ|2

 + κ2(1 − ∆)(v · ˚̃N), on [0,T ] × Σ,

∂tψ = v · ˚̃N, on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ, ψ)|t=0 = (vκ0, ρ
κ
0, ψ

κ
0).

(5.6)

Here F̊ := log ρ̊. The linearized material derivative now becomes:

D
˚̃ϕ
t := ∂t + v̊ · ∇ +

1

∂3
˚̃ϕ

(v̊ · ˙̃N − ∂tϕ̊)∂3 (5.7)

and the covariant derivatives with respect to ˚̃ϕ are defined to be

∂
˚̃ϕ
t := ∂t −

∂tϕ̊

∂3
˚̃ϕ
∂3, (5.8)

∇
˚̃ϕ
a = ∂

˚̃ϕ
a = ∂a −

∂a
˚̃ϕ

∂3
˚̃ϕ
∂3, a = 1, 2, (5.9)

∇
˚̃ϕ
3 = ∂

˚̃ϕ
3 =

1

∂3
˚̃ϕ
∂3, (5.10)

where v̊ · ∇ := v̊1∂1 + v̊2∂2. Note that, by the kinematic boundary condition, the normal component in D
˚̃ϕ
t , namely (∂3

˚̃ϕ)−1(v̊ ·
˙̃N − ∂tϕ̊)∂3 vanishes on Σ.

From now on, we assume the following given quantities are bounded in some time interval t ∈ [0,T κ]. This also works as
the induction hypothesis for the uniform-in-n estimates for (5.6):

‖ρ̊ − 1‖20 +

4∑
k=0

‖∂k
t v̊‖24−k + ‖Ḟ ′(q̇)q̌‖20 + ‖∂ ˚̌q‖23 +

3∑
k=1

‖∂k
t
˚̌q‖24−k + ‖Ḟ ′(q̇)∂4

t
˚̌q‖20

+κ4|ψ̊|25.5 +

3∑
k=0

κ4|∂k+1
t ψ̊, ∂k+1

t ψ̇|25.5−k + κ2
∫ t

0
|∂5

t ψ̊|
2
1dτ < K̊0.

(5.11)

Here, the additional 1
2 -regularity for ∂ j

t ψ̊ and ∂ j
t ψ̇, j = 0, 1, 2, 3, 4 is contributed by the artificial viscosity whenever κ > 0 is

fixed.

5.1 Construction of solution to the linearized approximate system
We can prove that system (5.6) is a symmetric hyperbolic system with characteristic boundary conditions. Therefore, we want
to use the duality argument developed by Lax-Phillips [40] to prove the local existence. Before doing this, we have to make
sure the boundary conditions are homogeneous.
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5.1.1 The homogeneous linearized approximate system

We introduce the variable h̊ defined by the harmonic extension
−∆h̊ = 0 in Ω,

h̊ = g ˚̃ψ − σ∇ ·
 ∇

˚̃ψ√
1+|∇

˚̃ψ|2

 on Σ,

∂3h̊ = 0 on Σb,

(5.12)

and define q = q̌ − h̊. Then (5.6) becomes the following linear hyperbolic system with homogeneous boundary conditions:

ρ̊D
˚̃ϕ
t v + ∇

˚̃ϕq = −∇
˚̃ϕh̊ − (ρ̊ − 1)ge3, in [0,T ] ×Ω,

F̊ ′(q̊)D
˚̃ϕ
t q + ∇

˚̃ϕ · v = F̊ ′(q̊)(gv̊3 − D
˚̃ϕ
t h̊), in [0,T ] ×Ω,

q = q(ρ), q = q + g ˚̃ϕ − h̊ in [0,T ] ×Ω,

q = κ2(1 − ∆)(v · ˚̃N), on [0,T ] × Σ,

v3 = 0 on [0,T ] × Σb,

(v, ρ)|t=0 = (v0, ρ0).

(5.13)

Note that the coefficients in (5.13) rely on ψ̇, ψ̊, v̊, and ρ̊ only, all of which are already given. The kinematic boundary condition,

namely ∂tψ = v · ˚̃N = −(v · ∇) ˚̃ψ + v3 on Σ, is used to define ψ after solving (v, q) from (5.13).
We define U := (q, v1, v2, v3)>, then (5.13) can be expressed in terms of U by

A0(Ů)∂tU +

3∑
i=1

Ai(Ů)∂iU = f̊ , (5.14)

where f̊ :=
(
F̊ ′(q̊)(gv̊3 − D

˚̃ϕ
t h̊),−∂

˚̃ϕ
1 h̊,−∂

˚̃ϕ
2 h̊,−∂

˚̃ϕ
3 h̊ − (ρ̊ − 1)g

)>
, A0(Ů) = diag

[
F̊ ′(q̊), ρ̊, ρ̊, ρ̊

]
, and

Ai(Ů) =

[
F̊ ′(q̊)v̊i e>i

ei ρ̊v̊iI3

]
for i = 1, 2, A3(Ů) =

1

∂3
˚̃ϕ

F̊ ′(q̊)(v̊ · ˙̃N − ∂tϕ̊) ˚̃N
>

˚̃N ρ̊(v̊ · ˙̃N − ∂tϕ̊)I3

 .
Since (∂tϕ̊ − v̊ · ˙̃N, )|Σ = 0 and e3 = (0, 0, 1)> is the unit exterior normal vector to Σ, we know that the boundary matrix,

namely the normal projection of the coefficient matrices onto Σ, is

3∑
i=1

Ai(Ů)e3i = A3(Ů) =

0 ˚̃N
>

˚̃N 03

 on Σ

which is a 4×4 matrix of rank 2 (constant rank but not full rank) with one negative eigenvalue, one positive eigenvalue, and two
zero eigenvalues. This being said, the system (5.13) is a first-order symmetric hyperbolic system with characteristic boundary
conditions. The number of boundary conditions should be equal to the number of negative eigenvalues. Therefore, the correct
number of boundary conditions for (5.13) is indeed equal to 1 which means (5.13) is solvable. After solving (5.13), we use the
kinematic boundary condition to define ψ for the next step of the iteration.

5.1.2 Well-posedness in L2 via µ-regularization

From the duality argument by Lax-Phillips [40], we need to prove the following in order to get the well-posedness of (5.13) in
some function space X:

• We need to establish a priori estimate (without loss of regularity from the source term) for (5.13) in X.
• We need to establish a priori estimate (without loss of regularity from the source term) for the dual system of (5.13) in

X′.
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We choose X = L2([0,T ]; L2(Ω)) whose dual space X′ is just itself. We define W∗ = (q∗,w∗1,w
∗
2,w

∗
3)> to be the dual

variables of U = (q, v1, v2, v3)>. By testing (5.13) with W∗ in L2([0,T ]; L2(Ω)), one can derive the system of W∗ which reads

A0(Ů)∂tW∗ +

3∑
i=1

Ai(Ů)∂iW∗ + A4(Ů)W∗ = f̊ ∗

with boundary condition q∗|Σ = −κ2(1 − ∆)(w∗ · ˚̃N), where A4 := −∂tA>0 −
3∑

i=1
∂iA>i − (ρ̊ − 1)gE44 with E44 = diag[0, 0, 0, 1].

Note that we do not have the dual variable for ψ because ψ is completely determined by the original linearized system. That is
why we only have one boundary condition for the dual system.

We notice that there is an extra minus sign in the boundary condition for q∗. So, one cannot close the L2-type a priori
estimate for the dual system even if we can derive that L2-type a priori estimate for (5.13). To avoid this difficulty, we introduce
another viscosity term in the boundary for q in (5.13). That is, we alternatively consider the µ-regularized linear problem for
U = (q, v1, v2, v3)>, which reads

A0(Ů)∂tU +

3∑
i=1

Ai(Ů)∂iU = f̊ , (5.15)

with boundary condition

q = κ2(1 − ∆)(v · ˚̃N) + µ(1 − ∆)∂t(v ·
˚̃N) on Σ. (5.16)

Then the dual system of (5.15)-(5.16) reads

A0(Ů)∂tW∗ +

3∑
i=1

Ai(Ů)∂iW∗ + A4(Ů)W∗ = f̊ ∗ (5.17)

with boundary condition

q∗ = −κ2(1 − ∆)(w∗ · ˚̃N) + µ(1 − ∆)∂t(w∗ ·
˚̃N) on Σ, (5.18)

where A4 := −∂tA>0 −
3∑

i=1
∂iA>i − (ρ̊ − 1)gE44 with E44 = diag[0, 0, 0, 1]. Note that we have to integrate by parts once more

in t variable when deriving the boundary condition for q∗. This is the reason that an extra minus sign appears in front of

κ2(1 − ∆)(w∗ · ˚̃N).
Now we are going to derive the a priori estimates for both (5.15) and (5.17). For linear system (5.15), we test it with U in

L2(Ω) and use the symmetry of the coefficient matrices to get:∫
Ω

U> · A0(Ů)U dx =

∫
Ω

U> · f̊ −
3∑

i=1

∫
Ω

U> · ∂iAi(Ů)U dx −
∫

Σ

U> · A3(Ů)U dx, (5.19)

where the interior integrals are directly controlled by C(K̊0)‖U‖20 and the boundary integral reads:

−

∫
Σ

U> · A3(Ů)U dx′ = −2
∫

Σ

(v · ˚̃N)q dx′

= −2κ2
∫

Ω

(
(1 − ∆)(v · ˚̃N)

)
(v · ˚̃N) dx′ − 2µ

∫
Σ

∂t

(
(1 − ∆)(v · ˚̃N)

)
(v · ˚̃N) dx′

= − µ
d
dt

∫
Σ

∣∣∣∣∣〈∂〉(v · ˚̃N)
∣∣∣∣∣2
0

dx′ − 2κ2
∣∣∣∣∣〈∂〉(v · ˚̃N)

∣∣∣∣∣2
0
.

(5.20)

We define

E̊0(t) := ‖v(t)‖20 +

∥∥∥∥∥∥
√
F̊ ′(q̊)q(t)

∥∥∥∥∥∥2

0
+

∫ t

0
|κ(v · ˚̃N)(τ)|21dτ + |

√
µ(v · ˚̃N)(t)|21,
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then the above analysis shows that

E̊0(T ) − E̊0(0) ≤ C(K̊0)
∫ T

0
E̊0(t) +

√
E̊0(t)‖ f̊ (t)‖0 dt. (5.21)

and thus by Grönwall’s inequality we finish the L2-estimate for (5.15). Note that this a priori bound is also uniform in µ.
Next, we show the L2-estimate for the dual system (5.17). Note that the matrix A4(Ů) is still in L∞(Ω), so we test (5.17) by

W∗ and take L2-inner product to get∫
Ω

W∗> · A0(Ů)W∗ dx =

∫
Ω

W∗> · f̊ ∗ −W∗> ·

 3∑
i=1

∂iAi(Ů) + A4(Ů) + ρ̊gE44

 W∗ dx −
∫

Σ

(W∗)> · A3(Ů)W∗ dx′, (5.22)

where the interior integral is directly controlled by C(K̊0)‖W∗‖20, but now there is a sign change in the boundary integral, which
reads:

−

∫
Σ

(W∗)> · A3(Ů)W∗ dx′ = −2
∫

Σ

(w∗ · ˚̃N)q∗ dx′

= 2κ2
∫

Ω

(
(1 − ∆)(w∗ · ˚̃N)

)
(w∗ · ˚̃N) dx′ − 2µ

∫
Σ

∂t

(
(1 − ∆)(w∗ · ˚̃N)

)
(w∗ · ˚̃N) dx′

. − µ
d
dt

∫
Σ

∣∣∣∣∣〈∂〉(w∗ · ˚̃N)
∣∣∣∣∣2
0

dx′ + 2κ2
∣∣∣∣∣〈∂〉(w∗ · ˚̃N)

∣∣∣∣∣2
0
.

(5.23)

One can see that the new viscosity term involving µ controls the term 2κ2|〈∂〉(w∗ · ˚̃N)|20 due to the change of sign.
So, if we define

E̊∗0(t) = ‖w∗(t)‖20 +

∥∥∥∥∥∥
√
F̊ ′(q̊)q∗(t)

∥∥∥∥∥∥2

0
+ µ

∣∣∣∣∣(w∗ · ˚̃N)(t)
∣∣∣∣∣2
1
,

then we have

E̊∗0(T ) − E̊∗0(0) .µ−1 C(K̊0)
∫ T

0
E̊∗0(t) +

√
E̊∗0(t)‖ f̊ ∗(t)‖0 dt, (5.24)

and thus Grönwall’s inequality helps us close the L2-estimate.
Combining (5.21) and (5.24), we close the a priori bounds for both linear systems (5.15)-(5.16) and its dual system (5.17)-

(5.18). Such energy bounds have no regularity loss from their source terms to solutions. Therefore, by the argument in
Lax-Phillips [40](see also [56, Theorem 5,9]), for each fixed µ > 0, system (5.17)-(5.18) admits a unique solution U ∈

L2([0,T ]; L2(Ω)). Since the energy bound (5.21) for (5.15)-(5.16) is uniform in µ, we can take the limit µ → 0+ to obtain a
local-in-time solution of the homogeneous linearized problem (5.13). Finally, the modification h̊ is easily controlled by using
the property of the harmonic function

∀s > −
1
2
, ‖h̊‖s+ 1

2
. |h̊|s ≤ g| ˚̃ψ|s + P(|∇ ˚̃ψ|s)|∇

2 ˚̃ψ|s,

which implies the local existence for L2-(weak)-solution to the linearized κ-approximate system (5.6). By the argument in [51,
Section 2.2.3](see also [56, Theorem 4, 8]), the weak solution U is actually a strong solution.

5.2 Higher-order estimates for the linearized system
Now we prove higher-order energy estimates for the linearized system (5.6).

Proposition 5.1. Let

E̊κ(t) :=‖ρ(t) − 1‖20 +

4∑
k=0

‖∂k
t v(t)‖24−k + κ2

∫ t

0

∣∣∣∂k+1
t ψ(τ)

∣∣∣2
5−k dτ

+ ‖

√
F̊ ′(q̊)q̌(t)‖20 + ‖∂q̌(t)‖23 +

3∑
k=1

‖∂k
t q̌(t)‖24−k + ‖

√
F̊ ′(q̊)∂4

t q̌(t)‖20.

(5.25)
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Then there exists some T κ > 0 depending on κ and a constant C(κ−1, K̊0) > 0, such that

sup
0≤t≤T κ

E̊κ(t) ≤ C(κ−1, K̊0)E̊κ(0). (5.26)

Apart from that, we have

|ψ(t)|25.5 +

3∑
k=0

|∂k+1
t ψ(t)|25.5−k ≤ C(κ−1, K̊0)E̊κ(t), for all t ∈ [0,T κ]. (5.27)

5.2.1 L2-estimate

We define the L2-energy for the linearized system (5.6) to be

E̊κ
0(t) := ‖ρ(t) − 1‖20 + ‖v(t)‖20 + ‖

√
F̊ ′(q̊)q̌(t)‖20 + κ2

∫ t

0
|∂tψ(τ)|21dτ. (5.28)

The control of E̊0 is identical to the a priori estimate for (5.15) when µ = 0. Note that the control of ‖ρ − 1‖20 follows from

testing the linearized continuity equation F̊ ′(q̊)F ′(q)−1D
˚̃ϕ
t (ρ − 1) + ρ(∇ ˚̃ϕ · v) = 0 by ρ − 1 in L2(Ω). Also one can control the

L2(Σ) norm of ψ through ψ(t) = ψ0,κ +
∫ t

0 ∂tψ(τ)dτ.

5.2.2 Div-Curl analysis

To estimate the Sobolev norms of v, we invoke the following Hodge decomposition lemma which is exactly from [10, Theorem
1.1].

Lemma 5.2 (Hodge elliptic estimates). For any sufficiently smooth vector field X and s ≥ 1, one has

‖X‖2s . C(| ˚̃ψ|s+ 1
2
, |∇ ˚̃ψ|W1,∞ )

(
‖X‖20 + ‖∇

˚̃ϕ · X‖2s−1 + ‖∇
˚̃ϕ × X‖2s−1 + |X · ˚̃N |2

s− 1
2

+ |X3|
2

Hs− 1
2 (Σb)

)
, (5.29)

where the constant C(| ˚̃ψ|s+ 1
2
, |∇ ˚̃ψ|W1,∞ ) > 0 depends linearly on | ˚̃ψ|2

s+ 1
2
.

Applying this lemma to v with s = 4, one has

‖v‖24 . C(| ˚̃ψ|4.5, |∇
˚̃ψ|W1,∞ )

(
‖v‖20 + ‖∇

˚̃ϕ · v‖23 + ‖∇
˚̃ϕ × v‖23 + |v · ˚̃N |23.5

)
. (5.30)

Now we control the curl term. Taking ∇ ˚̃ϕ× in the first equation of (5.6), we get the evolution equation satisfied by ∇ ˚̃ϕ × v:

ρ̊D
˚̃ϕ
t (∇

˚̃ϕ × v) = ρ̊[∇
˚̃ϕ×,D

˚̃ϕ
t ]v + ∇

˚̃ϕρ̊ × (ρ̊−1∇
˚̃ϕq̌), (5.31)

and taking three derivatives we get

ρ̊D
˚̃ϕ
t ∂

3(∇
˚̃ϕ × v) = ∂3

(
ρ̊[∇

˚̃ϕ×,D
˚̃ϕ
t ]v) + ∇

˚̃ϕρ̊ × (ρ̊−1∇
˚̃ϕq̌)

)
− [∂3, ρ̊D

˚̃ϕ
t ](∇

˚̃ϕ × v). (5.32)

We expect that the source terms in (5.32) only contain ≤ 4 derivatives of v, q̌ and quantities marked with a ring, but there
still exists a mismatched term in ([∇ ˚̃ϕ×,D

˚̃ϕ
t ]v)i = ε i jk∇

˚̃ϕ
j v̊

l∇
˚̃ϕ
l vk + ε i jk∇

˚̃ϕ
j∂t(ϕ− ˙̃ϕ)∂

˚̃ϕ
3vk. The contribution of ˙̃ψ is controlled by K̊0.

So, the standard L2-estimate for the ∂3-differentiated evolution equation of ∇ ˚̃ϕ × v and Reynold transport formula (A.9) gives

1
2

d
dt
‖∇

˚̃ϕ × v‖23 ≤ P(K̊0)(‖v‖24 + ‖q̌‖4‖v‖4 + |∂tψ|4‖∂v‖∞). (5.33)

Finally, using the linearized continuity equation, we can control the divergence

‖∇
˚̃ϕ · v‖23 ≤

∥∥∥∥∥F̊ ′(q̊)D
˚̃ϕ
t q̌

∥∥∥∥∥2

3
+

∥∥∥∥F̊ ′(q̊)gv̊3

∥∥∥∥2

3
. (5.34)

37



The div-curl analysis for the time derivatives is proceeded similarly. First, the div-curl analysis for ‖∂k
t v‖24−k, 1 ≤ k ≤ 3

yields

‖∂k
t v‖24−k . C(| ˚̃ψ|4.5−k, |∇

˚̃ψ|W1,∞ )
(
‖∂k

t v‖20 + ‖∇
˚̃ϕ · ∂k

t v‖23−k + ‖∇
˚̃ϕ × ∂k

t v‖23−k + |∂k
t v · ˚̃N|23.5−k

)
. (5.35)

We replace ∂3 by ∂k
t ∂

3−k for 0 ≤ k ≤ 3 in (5.32) to get the evolution equation:

ρ̊D
˚̃ϕ
t

(
∂3−k∂k

t (∇ϕ̃ × v)
)

= ∂k
t ∂

3−k
(
ρ̊[∇

˚̃ϕ×,D
˚̃ϕ
t ]v) + ∇

˚̃ϕρ̊ × (ρ̊−1∇
˚̃ϕq̌)

)
− [∂k

t ∂
3−k, ρ̊D

˚̃ϕ
t ](∇

˚̃ϕ × v), (5.36)

and thus
d
dt

1
2
‖∂k

t (∇
˚̃ϕ × v)‖23−k ≤ P(E̊κ(t)). (5.37)

Now, since the leading order term in the commutator [∂k
t ,∇

˚̃ϕ×]v should be ∂∂t
˚̃ϕ∂k−1

t ∂3v, we have

‖∇
˚̃ϕ × ∂k

t v‖23−k ≤ C(K̊0)
(
E̊κ(0) +

∫ T

0
E̊κ(t) dt

)
. (5.38)

As for divergence, by taking ∂k
t , 1 ≤ k ≤ 3 in the continuity equation, we get

∇
˚̃ϕ · ∂k

t v = −∂k
t (F̊ ′(q̊)D

˚̃ϕ
t q̌ + F̊ ′(q̊)gv̊3) + [∇

˚̃ϕ·, ∂k
t ]v L

= −F̊ ′(q̊)(∂k
t D

˚̃ϕ
t q̌ + g∂k

t v̊3) + (∂3
˚̃ϕ)−1∂∂k

t
˚̃ϕ∂3v.

Parallel to the analysis for (4.25), since ‖∂∂k
t
˚̃ϕ‖3−k ≤ K̊0 thanks to (5.11), we have ‖∇ ˚̃ϕ · ∂k

t v‖3−k is reduced to the control of
‖F̊ ′(q̊)∂k+1

t q̌‖3−k and ‖F̊ ′(q̊)∂k
t q̌‖4−k at the top order. Thus,

‖∇
˚̃ϕ · ∂k

t v‖23−k ≤ (C(K̊0) + 1)
(∥∥∥∥F̊ ′(q)∂k+1

t q̌
∥∥∥∥2

3−k
+

∥∥∥∥F̊ ′(q)∂k
t q̌

∥∥∥∥2

4−k

)
. (5.39)

5.2.3 Estimates for ψ and normal traces

The normal trace terms in (5.30) and (5.35) can be directly controlled by applying boundary elliptic estimates to the linearized

viscous surface tension equation κ2(1 − ∆)(v · ˚̃N) = q − σH(∇ ˚̃ψ,∇
2 ˚̃ψ). We start with controlling |v · ˚̃N |3.5:

|v · ˚̃N |23.5 ≤ κ
−2

(
|q|21.5 + σ|∇

2 ˚̃ψ|21.5P(|∇ ˚̃ψ|1.5)
)
≤ κ−2P(K̊0)‖q̌‖22. (5.40)

Taking time derivatives in the kinematic boundary condition, we obtain:

∂k
t v · ˚̃N = ∂k+1

t ψ −

k∑
j=1

(
k
j

)
∂

k− j
t v · ∂ j

t∇
˚̃ψ,

and thus

|∂tv ·
˚̃N|2.5 ≤ |∂2

t ψ|2.5 + |v · ∇∂t
˚̃ψ|2.5 ≤ |∂2

t ψ|2.5 + ‖vκ,0‖23 + P(K̊0)
∫ T

0
‖∂tv(t)‖3 dt. (5.41)

Then we take a time derivative in the linearized viscous surface tension equation to get

κ(1 − ∆)∂2
t ψ = ∂tq − σ∂tH(∇ ˚̃ψ,∇

2 ˚̃ψ),

which implies |∂2
t ψ|2.5 ≤ ‖∂tq‖1 + P(K̊0). Repeatedly, we can take more time derivatives to obtain

|∂k
t v · ˚̃N |23.5−k ≤ |∂

k+1
t ψ|23.5−k + Pκ0 + P(K̊0)

∫ T

0
E̊κ(t) dt, (5.42)

and then |∂k+1
t ψ|3.5−k is controlled via boundary elliptic estimates:

|∂3
t ψ|

2
1.5 ≈ |〈∂〉

− 1
2 ∂3

t ψ|
2
2 ≤ |〈∂〉

− 1
2 ∂2

t q̌|20 + P(K̊0) ≤ ‖∂2
t q̌‖21 + P(K̊0) ≤ ‖∂2

t q̌(0)‖21 + P(K̊0) +

∫ T

0
E̊κ(t) dt, (5.43)

|∂4
t ψ|0.5 ≈ |〈∂〉

− 3
2 ∂4

t ψ|2 ≤ |〈∂〉
− 3

2 ∂3
t q̌|0 + P(K̊0) ≤ ‖∂3

t q̌‖1 + P(K̊0), (5.44)

where the leading order term ‖∂∂3
t q̌‖0 on the RHS of (5.44) will be further reduced through the reduction scheme shown in the

upcoming subsection.
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5.2.4 Reduction of pressure

We start with ‖q̌‖4. From the linearized momentum equation, we know

−(∂3
˚̃ϕ)−1∂3q = (ρ̊ − 1)g + ρ̊D

˚̃ϕ
t v3,

−∂iq = (∂3
˚̃ϕ)−1∂i

˚̃ϕ∂3q + ρ̊D
˚̃ϕ
t vi, i = 1, 2,

and thus we have the following estimates after taking ∂3 and using D
˚̃ϕ
t = (∂t + v̊ · ∇) + (∂3

˚̃ϕ)−1(v̊ · ˚̃N − ∂tϕ̊)∂3 to get

‖q̌‖4 .K̊0
‖q̌‖0 + ‖T v‖3 + ‖ρ̊ − 1‖3, (5.45)

where T denotes a tangential derivative, including ∂t, ∂ and ω(x)∂3 for some weight function ω that vanishes on Σ and is
approximately equal to |x3| near Σ. Replacing ∂3 by ∂3−k∂k

t , we know the estimate of ‖∂k
t ∂

4−kq̌‖0 is reduced to the estimate of
‖∂k

tT v‖3−k. Combining this with the div-curl analysis in Subsection 5.2.2 we can reduce the top order mixed norms ‖∂k
t ∂

4−kv‖0

and ‖∂k
t ∂

4−kq̌‖0 to ‖T αv‖0, |α| = 4, and
∥∥∥∥∥√
F̊ ′(q̊)∂4

t q̌
∥∥∥∥∥

0
, all of which are part of the tangential energy.

5.2.5 Control of full time derivatives

From the reduction procedures for q̌ and the div-curl analysis for v, we know a spatial derivative of q̌ is reduced to a tangential

derivative of v, and the divergence of v is reduced to F̊ ′(q̊)∂tq̌. Repeatedly, it remains to control
√
F̊ ′(q̊)∂4

t q̌ and T αv with
|α| = 4 in L2(Ω). Here we only present the proof for the estimate with full-time derivatives which is parallel to Section 4.6, and
the mixed space-time tangential estimates are easier. We introduce the Alinhac good unknowns V̊, Q̊ for the ∂4

t -differentiated
linearized system (5.6):

V̊ := ∂4
t v − ∂4

t
˚̃ϕ∂

˚̃ϕ
3v, Q̊ := ∂4

t q̌ − ∂4
t

˚̃ϕ∂
˚̃ϕ
3 q̌ (5.46)

Similar to the arguments in Section 4.6, when f = vi and q̌, the following identity holds:

∂4
t (∇

˚̃ϕ
i f ) = ∇

˚̃ϕ
i F̊ + C̊i( f ), (5.47)

where C̊i( f ) := ∂
˚̃ϕ
3∂

˚̃ϕ
i f∂4

t
˚̃ϕ + C̊′i( f ). Also,

C̊
′
i( f ) = −

∂4
t ,
∂i

˚̃ϕ

∂3
˚̃ϕ
, ∂3 f

 − ∂3 f
∂4

t , ∂i
˚̃ϕ,

1

∂3
˚̃ϕ

 − ∂i
˚̃ϕ∂3 f

∂3
t ,

1

(∂3
˚̃ϕ)2

 ∂t∂3
˚̃ϕ, i = 1, 2 (5.48)

C̊
′
3( f ) =

∂4
t ,

1

∂3
˚̃ϕ
, ∂3 f

 + ∂3 f
∂3

t ,
1

(∂3
˚̃ϕ)2

 ∂t∂3
˚̃ϕ. (5.49)

Then we take ∂4
t to the first two equations of (5.6) to obtain:

ρ̊D
˚̃ϕ
t V̊i + ∇

˚̃ϕ
i Q̊ = R̊1

i , (5.50)

F̊ ′(q̊)D
˚̃ϕ
t Q̊ + ∇

˚̃ϕ · V̊ = R̊2 − C̊i(vi), (5.51)

where

R̊1
i := − [∂4

t , ρ̊]D
˚̃ϕ
t vi − ρ̊

(
D̊(vi) + e̊(vi)

)
− C̊i(q̌) − ∂4

t ρ̊gδ3i, (5.52)

R̊2 := − [∂4
t , F̊

′(q̊)]D
˚̃ϕ
t q̌ − F̊ ′(q̊)

(
D̊(q̌) + e̊(q̌)

)
+ ∂4

t (F̊ ′(q̊)gv̊3), (5.53)

and the commutators D̊( f ), e̊( f ) are defined in the same way as in (4.39) and (4.40) by replacing T α, ∂, ϕ̃ respectively with
∂4

t , ∂t, ˚̃ϕ. The last two terms in (4.39) vanish because ∂4
t commutes with ∂3. Specifically, we have:

∂4
t D

˚̃ϕ
t f = D

˚̃ϕ
t F̊ + D̊( f ) + e̊( f ), (5.54)
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where D̊( f ) := (D
˚̃ϕ
t ∂

˚̃ϕ
3 f )∂4

t
˚̃ϕ + D̊′( f ), and

D̊
′( f ) =[∂4

t , v̊] · ∂ f +

∂4
t ,

1

∂3
˚̃ϕ

(v̊ · ˙̃N − ∂tϕ̊), ∂3 f
 +

∂4
t , v̊ ·

˙̃N − ∂tϕ̊,
1

∂3
˚̃ϕ

 ∂3 f +
1

∂3
˚̃ϕ

[∂4
t , v̊] · ˙̃N∂3 f

− 4(v̊ · ˙̃N − ∂tϕ̊)∂3 f
∂3

t ,
1

(∂3
˚̃ϕ)2

 ∂t∂3
˚̃ϕ, (5.55)

e̊( f ) := ∂5
t ( ˙̃ϕ − ϕ̊)∂ϕ̃3 f . (5.56)

Analogous to Lemma 4.4, the following estimates hold.

Lemma 5.3. Let F̊ := ∂4
t f − ∂

˚̃ϕ
3 f∂4

t
˚̃ϕ be the Alinhac good unknowns associated with the smooth function f . Assume ∂3ϕ̃ ≥

c0 > 0, and let C̊( f ), D̊( f ), and e̊( f ) be the remainder terms defined as above. Then

‖∂4
t f ‖0 ≤ ‖F̊‖0 + c−1

0 ‖∂3 f ‖∞|∂4
t ψ̃|0, (5.57)

‖C̊i( f )‖0 ≤ P

c−1
0 , |∇ ˚̃ψ|∞,

3∑
k=1

|∇∂k
t

˚̃ψ|3−k

 ·
‖∂ f ‖∞ +

3∑
k=1

‖∂k
t f ‖4−k

 , i = 1, 2, 3, (5.58)

‖D̊( f )‖0 ≤ P

c−1
0 , |∇ ˚̃ψ|∞,

3∑
k=1

|∇∂k
t

˚̃ψ,∇∂k
t

˙̃ψ|3−k

 ·
‖∂ f ‖∞ +

3∑
k=1

‖∂k
t f ‖4−k

 , (5.59)

‖e̊( f )‖0 ≤ (|∂5
t ψ|0 + |∂5

t
˙̃ψ|0)‖∂ f ‖∞. (5.60)

Next, we introduce the boundary conditions for V̊, Q̊. The ∂4
t -differentiated linearized kinematic boundary condition now

reads:
∂5

t ψ + (v · ∇)∂4 ˚̃ψ − V̊ · ˚̃N = S̊1, on Σ, (5.61)

where

S̊1 := ∂3v · ˚̃N∂4
t

˚̃ψ +
∑

1≤ j≤3

(
4
j

)
∂

j
t v · ∂

4− j
t

˚̃N. (5.62)

Also, since Q̊|Σ = ∂4
t q̌ − ∂

˚̃ϕ
3 q̌∂4

t
˚̃ψ, the boundary condition of Q̊ on Σ reads:

Q̊ = −σ∂4
t ∇ ·

 ∇
˚̃ψ√

1 + |∇
˚̃ψ|2

 + κ2(1 − ∆)∂5
t ψ − ∂3q̌∂4

t
˚̃ψ + g∂4

t
˚̃ψ. (5.63)

Invoking (A.9), we have

d
dt

1
2

∫
Ω

ρ̊|V̊|2∂3
˚̃ϕ dx =

1
2

∫
Ω

|V̊|2
(
(D

˚̃ϕ
t ρ̊ + ρ̊∇

˚̃ϕ · v̊)∂3
˚̃ϕ + ρ̊M̊

)
dx

+

∫
Ω

Q̊(∇
˚̃ϕ · V̊)∂3

˚̃ϕ dx −
∫

Σ

Q̊(V̊ · ˚̃N) dx′ +
∫

Ω

V̊ · R̊1∂3ϕ̃ dx,
(5.64)

where M̊ := ∂t∂3( ˙̃ϕ − ϕ̊) + ∂3(∂t + v̊ · ∇)( ˚̃ϕ − ˙̃ϕ) represents the mismatched terms involving tangential smoothing in (A.9). The
first integral on the RHS can be directly controlled by P(K̊0) because all these quantities are already given. Moreover, the last

integral is directly controlled by P(K̊0)‖V̊‖0
√

E̊κ(t). For the second term in (5.64), we invoke (5.51) to get the estimates parallel
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to (4.117): ∫
Ω

Q̊(∇
˚̃ϕ · V̊)∂3

˚̃ϕ dx

=−

∫
Ω

∂4
t q̌C̊i(vi)∂3

˚̃ϕ dx︸                     ︷︷                     ︸
=:I̊0

+

∫
Ω

∂4
t

˚̃ϕ∂
˚̃ϕ
3 q̌C̊i(vi)∂3

˚̃ϕ dx −
∫

Ω

F̊ ′(q̊)D
˚̃ϕ
t Q̊ Q̊∂3

˚̃ϕ dx +

∫
Ω

R̊2Q̊∂3
˚̃ϕ dx

. I̊0 −
1
2

d
dt

∥∥∥∥∥∥
√
F̊ ′(q̊)Q

∥∥∥∥∥∥2

0
+

∥∥∥∥∥∥
√
F̊ ′(q̊)∂4

t q̌

∥∥∥∥∥∥2

0
(‖∇

˚̃ϕ · v̊‖∞ + ‖M̊‖∞)

+ ‖C̊i(vi)‖0‖∂q̌‖∞|∂4
t

˚̃ψ|0 +

∥∥∥∥∥∥
√
F̊ ′(q̊)Q

∥∥∥∥∥∥
0

∥∥∥∥∥∥
√
F̊ ′(q̊)−1R̊2

∥∥∥∥∥∥
0

. I̊0 −
1
2

d
dt

∥∥∥∥∥∥
√
F̊ ′(q̊)Q

∥∥∥∥∥∥2

0
+ P(K̊0)E̊κ(t),

(5.65)

where we note that all terms in R̊2 come with F̊ ′(q̊) and thus the control of
√
F̊ ′(q̊)−1R̊2 is still uniform in F̊ ′(q̊).

Now it remains to control the boundary integral. Compared with the nonlinear system, the estimate for the linearized system
is easier as the surface tension term now becomes a given term. Plugging (5.61) and (5.63) into the boundary integral, we get

−

∫
Σ

Q̊(V̊ · ˚̃N) dx′ = −

∫
Σ

∂4
t ∇ · (∇

˚̃ψ/| ˚̃N |)∂5
t ψ dx′ − κ2

∫
Σ

∂4
t (1 − ∆)∂tψ · ∂

5
t ψ dx′

−

∫
Σ

g∂4
t

˚̃ψ∂5
t ψ dx′ +

∫
Σ

∂3q̌∂4
t

˚̃ψ∂5
t ψ dx′

−

∫
Σ

Q(v̊ · ∇)∂4
t

˚̃ψ dx′ +
∫

Σ

Q̊S̊1 dx′,

(5.66)

where the second term gives us the boundary energy

− κ2
∫

Σ

∂4
t (1 − ∆)∂tψ · ∂

5
t ψ dx′ = κ2

∫
Σ

∣∣∣∣〈∂〉∂5
t ψ

∣∣∣∣2 dx′. (5.67)

We note that the first, the third, and the fourth terms in (5.66) can all be directly controlled under the time integral, i.e.,

−

∫ T

0

∫
Σ

∂4
t ∇ · (∇

˚̃ψ/| ˚̃N |)∂5
t ψ dx′ dt . ε|∂5

t ψ|
2
L2

t H1
x′

+ P(|∇ ˚̃ψ|∞)|∇∂4
t

˚̃ψ|20 ≤κ−1 εE̊κ(T ) + P(K̊0) (5.68)

−

∫ T

0

∫
Σ

(g − ∂3q̌)∂4
t

˚̃ψ∂5
t ψ dx′ dt ≤ ε|∂5

t ψ|
2
L2

t L2
x′

+ |∂4
t

˚̃ψ|20(1 + ‖∂q̌‖2L2
t L∞x

) ≤κ−1 εE̊κ(T ) + P(K̊0)
∫ T

0
E̊κ(t) dt. (5.69)

Further, the fifth term is controlled directly by invoking (3.5):

−

∫ T

0

∫
Σ

Q(v̊ · ∇)∂4
t

˚̃ψ dx′ dt = −

∫ T

0
σ

∫
Σ

∂4
t ∇ · (∇

˚̃ψ/| ˚̃N|)(v̊ · ∇)∂4
t

˚̃ψ dx′ dt + κ2
∫ T

0

∫
Σ

(1 − ∆)∂5
t ψ(v̊ · ∇)∂4

t
˚̃ψ dx′ dt

+

∫ T

0

∫
Σ

(g − ∂3q̌)∂4
t

˚̃ψ(v̊ · ∇)∂4
t

˚̃ψ dx′ dt

.κ−1 ε|∂5
t ψ|

2
L2

t H1
x′

+ P(K̊0)
∫ T

0
E̊κ(t) dt.

(5.70)

It remains to analyze the last integral in (5.66) which will be canceled with I̊0 defined in (5.65). Following the analysis in
(4.130)–(4.140), we have ∫

Σ

Q̊S̊1 dx′ = 4
∫

Σ

∂4
t q̌∂3

t v · ∂t
˚̃N dx′ + controllable terms, (5.71)

I̊0 = − 4
∫

Ω

∂4
t q̌∂t

˚̃Ni∂3∂
3
t vi dx + controllable terms, (5.72)
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and then we add them together and use the divergence theorem to get

4
∫

Σ

∂4
t q̌∂3

t v · ∂t
˚̃N dx′ − 4

∫
Ω

∂4
t q̌∂t

˚̃Ni∂3∂
3
t vi dx

=
d
dt

∫
Ω

(∂3
t ∂3q̌∂t

˚̃N + ∂3
t q̌∂t∂3

˚̃N) · ∂3
t v dx +

∫
Ω

∂3
t ∂3q̌∂t(∂t

˚̃N · ∂3
t v) + ∂3

t q̌∂t(∂t∂3
˚̃N · ∂3v) dx,

(5.73)

whose time integral can be easily bounded by ε‖∂3
t ∂3q̌‖20 + E̊κ(0) + P(K̊0)

∫ T
0 E̊κ(t) dt. Hence, we get the control of boundary

integral

−

∫ T

0

∫
Σ

Q̊(V̊ · ˚̃N) dx′ dt + κ2
∫ T

0

∫
Σ

∣∣∣∣〈∂〉∂5
t ψ̃

∣∣∣∣2
0

dt ≤ ε‖∂3
t ∂3q̌‖20 + E̊κ(0) + P(K̊0)

∫ T

0
E̊κ(t) dt. (5.74)

Combining this with (5.64), (5.65) and the definition of Alinhac good unknowns we get the estimates for the full-time
derivatives

‖∂4
t v(t)‖20 +

∥∥∥∥∥∥
√
F̊ ′(q̊)∂4

t q̌

∥∥∥∥∥∥2

0
+ κ2

∫ t

0

∫
Σ

∣∣∣∣〈∂〉∂5
t ψ̃

∣∣∣∣2
0

dτ ≤ ε‖∂3
t ∂3q̌‖20 + E̊κ(0) + P(K̊0)

∫ t

0
E̊κ(t)dτ. (5.75)

This, together with div-curl analysis gives us the energy inequality of E̊κ(t) after choosing ε > 0 suitably small:

E̊κ(t) ≤κ−1 E̊κ(0) + P(K̊0)
∫ t

0
E̊κ(τ)dτ, (5.76)

which implies that there exists some T κ > 0 such that

sup
0≤t≤T κ

E̊κ(t) ≤ C(κ−1, K̊0)E̊κ(0).

Therefore, the uniform-in-n estimates for (5.6) are proven by induction.

5.2.6 Regularity of ψ and its time derivatives

The regularity of ∂k+1
t ψ (0 ≤ k ≤ 3) can be enhanced to H5.5−k by the boundary elliptic estimates once we close the energy

estimates for E̊κ(t). Note that the boundary condition gives

κ2(1 − ∆)∂tψ = q̌ − g ˚̃ψ + σH(∇ ˚̃ψ,∇
2 ˚̃ψ),

thus, by (5.11) and the elliptic estimate, it holds that

|∂k+1
t ψ|5.5−k ≤ κ

−2
(
σP(|∇ ˚̃ψ|∞)|∂k

t∇
2 ˚̃ψ|3.5−k + |∂k

t q|3.5−k + P(K̊0)
)
≤ C(κ−1, K̊0)E̊κ. (5.77)

Moreover, |ψ|5.5 is controlled by

|ψ|5.5 ≤ |ψ0,κ|5.5 +

∫ T

0
|∂tψ(t)|5.5 dt. (5.78)

5.3 Picard iteration
So far, we have established the local existence and the uniform-in-n estimates for the linearized system (5.1) for each fixed
κ > 0, namely 

ρ(n)Dϕ̃(n)

t v(n+1) + ∇ϕ̃
(n)

q̌(n+1) = −(ρ(n) − 1)ge3 in [0,T ] ×Ω,

F (n)′ (q(n))Dϕ̃(n)

t q̌(n+1) + ∇ϕ̃
(n)
· v(n+1) = F (n)′ (q(n))gv(n)

3 in [0,T ] ×Ω,

q(n+1) = q(n+1)(ρ(n+1)), q̌(n+1) = q(n+1) + gϕ̃(n) in [0,T ] ×Ω,

q̌(n+1) = gψ̃(n) − σ∇ ·

(
∇ψ̃(n)

√
1+|∇ψ̃(n) |2

)
+ κ2(1 − ∆)(v(n+1) · Ñ(n)) on [0,T ] × Σ,

∂tψ
(n+1) = v(n+1) · Ñ(n) on [0,T ] × Σ,

v(n+1)
3 = 0 on [0,T ] × Σb,

(v(n+1), ρ(n+1), ψ(n+1))|t=0 = (vκ0, ρ
κ
0, ψ

κ
0),

(5.79)
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where ψ(n), ϕ(n),Dϕ̃(n)

t ,∇ϕ̃
(n)

are defined in (5.2)-(5.5). Now it suffices to prove that, for each fixed κ > 0, the sequence
{(v(n), q̌(n), ψ(n))}n∈N∗ has a strongly convergent subsequence. Once we prove this, the limit of that subsequence becomes the
solution to the nonlinear κ-approximate system (3.11) for this chosen κ.

For a function sequence { f (n)} we define [ f ](n) := f (n+1) − f (n) and then we find that {([v](n), [q̌](n), [ψ](n))} satisfies the
following linear system

ρ(n)Dϕ̃(n)

t [v](n) + ∇ϕ̃
(n)

[q̌](n) = − f̊ (n)
v in [0,T ] ×Ω,

F (n)′ (q(n))Dϕ̃(n)

t [q̌](n) + ∇ϕ̃
(n)
· [v](n) = − f̊ (n)

q in [0,T ] ×Ω,

[q̌](n) = [q](n) + g[ϕ̃](n−1) in [0,T ] ×Ω,

[q̌](n) = g[ψ̃](n−1) − σ[H](n−1) + κ2(1 − ∆)([v](n) · Ñ(n)) + κ2(1 − ∆)(v(n) · [Ñ](n−1)), on [0,T ] × Σ,

∂t[ψ](n) = [v](n) · Ñ(n) + (v(n) · [Ñ](n−1)), on [0,T ] × Σ,

[v(n)
3 ] = 0 on [0,T ] × Σb,

([v](n), [ρ](n), [ψ](n))|t=0 = (0, 0, 0),

(5.80)

where f̊ (n)
v and f̊ (n)

q are defined by

f̊ (n)
v := [ρ](n−1)∂tv(n) + [ρv](n−1) · ∇v(n) + [ρVN̊](n−1)∂3v(n) + [ρ](n−1)ge3 + ∂3q̌(n)[Ai3](n−1), (5.81)

f̊ (n)
q := [F ′(q)](n−1)(∂tq̌(n) − gv(n−1)

3 ) + [F ′(q)v](n−1) · ∇q̌(n) + [F ′(q)VN̊](n−1)∂3q̌(n) (5.82)

− F (n)′ (q(n))g[v3](n−1) + ∂3v(n)
i [Ai3](n−1),

and

V (n)
N̊

:=
1

∂3ϕ̃(n) (v(n) · Ñ(n−1) − ∂tϕ
(n)), A(n)

13 := −
∂1ϕ̃

(n)

∂3ϕ̃(n) , A(n)
23 := −

∂2ϕ̃
(n)

∂3ϕ̃(n) , A(n)
33 :=

1
∂3ϕ̃(n) ,

[H](n−1) := H(∇ψ̃(n)) −H(∇ψ̃(n−1)), H(∇ψ̃) := −∇ ·
 ∇ψ̃

1 + |∇ψ̃|2

 .
For n ≥ 1, we define the energy of (5.80) [E](n) to be the following quantity

[E](n)(t) :=
3∑

k=0

‖∂k
t [v](n)(t)‖23−k + ‖∂k

t [q̌](n)(t)‖23−k +

∫ t

0

∣∣∣∂k+1
t [ψ](n)(τ)

∣∣∣2
4−k dτ + |[ψ](n)(t)|24 (5.83)

It suffices to control [E](n)(t) and use ([v](n), [ρ](n), [ψ](n))|t=0 = (0, 0, 0) to show that [E](n)(t) ≤ 1
4 ([E](n−1)(t) + [E](n−2)(t)) in

some time interval [0,T κ
1]. The estimates for [E](n)(t) are parallel to Section 5.2, so we will not go into every detail but only list

the sketch of the proof.

5.3.1 Div-curl analysis for [v](n)

By Lemma 5.2, we have the following inequalities for k = 0, 1, 2:

‖∂k
t [v](n)‖23−k ≤ C(K̊0)

(
‖∂k

t [v](n)‖20 + ‖∇ϕ̃
(n)
× ∂k

t [v](n)‖22−k + ‖∇ϕ̃
(n)
· ∂k

t [v](n)‖22−k + |∂k
t [v](n) · Ñ(n)|22.5−k

)
. (5.84)

The estimates for L2(Ω) norms follow in the same way as Section 5.2.1 so we do not repeat here. For the curl part, we take
∇ϕ̃

(n)
× in the first equation of (5.80) to get

ρ(n)Dϕ̃(n)

t (∇ϕ̃
(n)
× [v](n)) = −∇ϕ̃

(n)
× f̊ (n)

v − ∇
ϕ̃(n)
ρ(n) × Dϕ̃(n)

t [v](n) + ρ(n)[∇ϕ̃
(n)
×,Dϕ̃(n)

t ][v](n), (5.85)

where ([∇ϕ̃
(n)
×,Dϕ̃(n)

t ][v](n))i = ε i jk∇
ϕ̃(n)

j v(n)
l ∇

ϕ̃(n)

l [v](n)
k + ε i jk∇

ϕ̃(n)

j ∂t(ϕ̃(n) − ϕ̃(n−1))∂3[v](n)
k and ∇ϕ̃

(n)
× f̊ (n)

v contains at most two deriva-
tives of v(n), ϕ(n), ϕ(n−1), ϕ(n−2). Taking ∂2, we have

ρ(n)Dϕ̃(n)

t (∂2∇ϕ̃
(n)
× [v](n)) = ∂2(RHS of (5.85)) − [∂2, ρ(n)Dϕ̃(n)

t ](∇ϕ̃
(n)
× [v](n)). (5.86)
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Based on the analysis above, we find that the leading-order terms of [v](n), [v](n−1) must be linear in [v](n), [v](n−1) respec-
tively. Using Reynold transport formula (A.9) for the linearized system, the curl part can be directly controlled as in (5.33):

‖∇ϕ̃
(n)
× [v](n)(T )‖22 ≤ C(K̊0)

‖ ∇ϕ̃(n)
× [v](n)(0)︸            ︷︷            ︸

=0

‖22 +

∫ T

0
P(E̊(n), E̊(n−1), E̊(n−2))[E](n)(t) dt

 (5.87)

≤ C(K̊0)
∫ T

0
[E](n)(t) + [E̊](n−1)(t) + [E̊](n−2)(t) dt.

Similarly, replacing ∂2 by ∂2−k∂k
t for k = 1, 2, we get

‖∇ϕ̃
(n)
× ∂k

t [v](n)(T )‖22−k ≤ C(K̊0)
∫ T

0
[E](n)(t) + [E̊](n−1)(t) + [E̊](n−2)(t) dt. (5.88)

As for the divergence, the second equation in (5.80) gives

‖∇ϕ̃
(n)
· [v](n)‖22 ≤ ‖F

(n)′ (q(n))Dϕ̃(n)

t [q̌](n)‖22 + ‖ f̊q‖22 ≤ P(K̊0)‖F (n)′ (q(n))T [q̌](n)‖22, (5.89)

where T = ∂t or ∂ or ω∂3 for a bounded weight function ω vanishing on Σ. Therefore, the divergence is then reduced to the
tangential derivatives of [q̌]. Similarly, the divergence of ∂k

t [v](n) is reduced to ∂k
tT q̌.

Next, the normal traces are still controlled by using boundary elliptic estimates. Note that the Dirichlet boundary condition
for [q̌](n) can be written as

− κ2(1 − ∆)([v](n) · Ñ(n)) = −[q](n) − σ
(
H(∇ψ̃(n)) −H(∇ψ̃(n−1))

)
+ κ2(1 − ∆)(v(n) · [Ñ](n−1)), (5.90)

and thus
|[v](n) · Ñ(n)|22.5 ≤κ−1 ‖[q](n)‖21 + P(K̊0) + |v(n)

· ∇ψ̃(n−1)|22.5 + |v(n)
3 |

2
2.5 ≤ ‖[q](n)‖21 + P(K̊0). (5.91)

Similarly, we have for k = 1, 2
|∂k

t [v](n) · Ñ(n)|22.5−k ≤κ−1 ‖∂k
t [q](n)‖21 + P(K̊0). (5.92)

5.3.2 Reduction of pressure [q̌](n)

This is similar to the arguments in Section 5.2.4. We first consider the third component of the first equation in (5.80):

(∂3ϕ̃
(n))−1∂3[q̌](n) = −ρ(n)Dϕ̃(n)

t [v](n) + f̊ (n)
v , (5.93)

which means the control of ∂3[q̌](n) is reduced to T [v](n). Then by considering the first and second components, we can further
reduce the control of ∂iq̌ (i = 1, 2) to ∂3q̌ and T v since ∇

˚̃ϕ
i = ∂i − ∂i

˚̃ϕ∂
˚̃ϕ
3 . Therefore, combining the div-curl analysis and

reduction procedures for [q̌](n), it suffices to control ∂2
t ∂[q̌](n) and ∂3

t [q̌](n).

5.3.3 Tangential estimates for full-time derivatives

Again we only show the control of ∂3
t [q̌](n) by introducing the Alinhac good unknowns:

[V](n) := V̊(n+1) − V̊(n) = ∂3
t [v](n) − ∂3

t ϕ̃
(n)∂

ϕ̃(n)

3 [v](n) − ∂3
t ϕ̃

(n)∂
[ϕ̃](n−1)

3 v(n) − ∂3
t [ϕ̃](n−1)∂

ϕ̃(n−1)

3 v(n), (5.94)

[Q](n) := Q̊(n+1) − Q̊(n) = ∂3
t [q̌](n) − ∂3

t ϕ̃
(n)∂

ϕ̃(n)

3 [q̌](n) − ∂3
t ϕ̃

(n)∂
[ϕ̃](n−1)

3 q̌(n) − ∂3
t [ϕ̃](n−1)∂

ϕ̃(n−1)

3 q̌(n). (5.95)

For a function f and its associated Alinhac good unknown F, we have

∂3
t (∂ϕ̃

(n)

i [ f ](n) + ∂
[ϕ̃](n−1)

i f (n)) = ∂
ϕ̃(n)

i [F](n) + [C](n)
i ( f ),

∂3
t (Dϕ̃(n)

t [ f ](n) + D[ϕ̃](n−1)

t f (n)) = Dϕ̃(n)

t [F](n) + [D](n)( f ) + [e](n)( f )

with

[C](n)
i ( f ) = C

(n)
i ( f (n+1)) − C(n−1)

i ( f (n)) + lower-order controllable terms,

[D](n)
i ( f ) = D(n)( f (n+1)) −D(n−1)( f (n)) + lower-order controllable terms,

[e](n)
i ( f ) = e(n)( f (n+1)) − e(n−1)( f (n)) + lower-order controllable terms,
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where C(n)
i ( f (m)),D(n)( f (m)) and e(n)( f (m)) are defined by replacing ∂4

t , ∂
5
t by ∂3

t , ∂
4
t , replacing the coefficient 4 in D̊ by 3 and

setting ϕ̊ = ϕ(n), ϕ̇ = ϕ(n−1), f (n+1) = f and f (n) = f̊ in (5.48)-(5.56).
The Alinhac good unknowns [V](n), [Q](n) satisfy the following linear system:

ρ(n)Dϕ̃(n)

t [V](n) + ∇ϕ̃
(n)

[Q](n) = −C(n)(q̌(n+1)) + C(n−1)(q̌(n)) + [R̊]v, (5.96)

F (n)′ (q(n))Dϕ̃(n)

t [Q](n) + ∇ϕ̃
(n)
· V(n) = −C

(n)
i (v(n+1)

i ) + C
(n−1)
i (v(n)

i ) + [R̊]q, (5.97)

where [R] terms consist of ∂3
t f̊ terms in (5.80) and the omitted commutator terms in the definition of Alinhac good unknowns

[V], [Q] and they are controllable in L2(Ω).

‖[R̊]‖20 ≤ C(K̊0)([E](n)(t) + [E](n−1)(t) + [E](n−2)(t)). (5.98)

The boundary conditions now become:

[Q](n) = g∂3
t [ψ̃](n−1) + σ∂3

t (H(∇ψ̃(n)) −H (∇ψ̃(n−1))) − κ2(1 − ∆)∂4
t [ψ](n)

+ ∂3
t ψ̃

(n)∂3[q̌](n) + ∂3
t [ψ̃](n−1)∂3q̌(n) (5.99)

[V](n) · Ñ(n) = ∂4
t [ψ](n) + [v](n) · ∇∂3

t ψ̃
(n) + (v · ∇)∂3

t [ψ̃](n−1) + ∂3
t v(n)

· ∇[ψ̃](n−1)

− (∂3[v](n) · Ñ(n))∂3
t ψ̃

(n) + (∂3v(n) · Ñ(n))∂3
t [ψ̃](n−1) + [∂3

t , Ñ
(n)·, v(n+1)] − [∂3

t , Ñ
(n−1)·, v(n)]. (5.100)

Following the analysis in Section 5.2.5, we have

1
2

d
dt

(∫
Ω

ρ(n)|[V](n)|2∂3ϕ̃
(n) dx +

∫
Ω

F (n)′ (q(n))|[Q](n)|2∂3ϕ̃
(n) dx

)
+ κ2

∫ T

0

∣∣∣∂4
t [ψ](n)

∣∣∣2
1 dt

≤ C(K̊0)
(
[E̊](n)(0) +

∫ T

0
[E̊](n)(t) + [E̊](n−1)(t) + [E̊](n−2)(t) dt

)
−

∫
Σ

[Q̊](n)[∂3
t , Ñ

·, v(n−1)] dx′ +
∫

Ω

[Q̊](n)
C

(n−1)
i (v(n)

i )dV(n)
t

(5.101)

where the last line is analyzed in the same way as in (5.72) (by using divergence theorem and integration by parts in time
variable). Here we only list the highest-order terms. We have

−

∫
Σ

[Q̊](n)[∂3
t , Ñ

·, v(n−1)] dx′ +
∫

Ω

[Q̊](n)
C

(n−1)
i (v(n)

i )dV(n)
t

=

∫
Ω

∂
ϕ̃(n)

3 [Q̊](n)[∂3
t , Ñ

·, v(n−1)]dV(n)
t + controllable terms,

(5.102)

and thus it can be controlled under time integral:∫ T

0

∫
Ω

∂
ϕ̃(n)

3 [Q̊](n)[∂3
t , Ñ

·, v(n−1)]dV(n)
t dt . ε‖∂2

t [q̌](n)‖21 + C(K̊0)
(
[E̊](n)(0) +

∫ T

0
[E̊](n)(t) + [E̊](n−1)(t) dt

)
. (5.103)

Combining the above analysis and using the definition of Alinhac good unknowns, we get

‖∂3
t [v](n)(t)‖20 + ‖

√
F (n)′ (q(n))∂3

t [q̌](n)(t)‖20 + κ2
∫ t

0
|∂4

t ψ(τ)|21dτ

≤ ε‖∂2
t [q̌](n)‖21 + C(K̊0, κ

−1)
(
[E̊](n)(0) +

∫ T

0
[E̊](n)(t) + [E̊](n−1)(t) + [E̊](n−2)(t) dt

)
.

(5.104)

5.4 Well-posedness of the nonlinear κ-approximate problem
Combining the div-curl analysis, the control of the normal traces, the reduction of [q̌] and the analysis of full-time derivatives
for the linear system (5.80) for [v](n), [q̌](n), [ψ](n), we arrive at the energy estimate:

[E̊](n)(t) ≤ C(K̊0, κ
−1)

(
[E̊](n)(0) +

∫ T

0
[E̊](n)(t) + [E̊](n−1)(t) + [E̊](n−2)(t) dt

)
. (5.105)
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Since [v](n), [q̌](n), [ψ](n) have zero initial data, one can repeatedly use (5.80) to show that their time derivatives also vanish
on {t = 0}, as one can observe that every term in the first two equations of (5.80) contains exactly one term involving [ f ](n) or
[ f ](n−1) whose initial value is zero. This implies [E̊](n)(0) = 0, and thus there exists some T κ

1 > 0 independent of n, such that

sup
0≤t≤T κ

1

[E̊](n)(t) ≤
1
4

 sup
0≤t≤T κ

1

[E̊](n−1)(t) + sup
0≤t≤T κ

1

[E̊](n−2)(t)

 , (5.106)

and thus we know by induction that

sup
0≤t≤T κ

1

[E̊](n)(t) ≤ C(K̊0, κ
−1)/2n−1 → 0 as n→ +∞. (5.107)

Hence, for any fixed κ > 0, the sequence of approximate solutions {(v(n), q̌(n), ρ(n), ψ(n))}n∈N∗ has a strongly convergent subse-
quence, whose limit (vκ, q̌κ, ρκ, ψκ) is exactly the solution to the nonlinear κ-problem (3.11). The uniqueness follows from a
parallel argument.

6 Well-posedness and incompressible limit of the gravity(-capillary) water wave
system

We are ready to prove the local existence of the original water wave system (1.24) for each fixed σ > 0. In Section 5, we prove
the local well-posedness and higher-order energy estimates of the linearized system (5.6) for each fixed κ > 0 and use Picard
iteration to construct the unique strong solution to the nonlinear κ-approximate problem (3.11) defined in Section 3.2. To pass
the limit κ → 0+ to the original system (1.24), we prove the uniform-in-κ estimates for (3.11) in Section 4. Therefore, we
prove the local-in-time existence for the stronger solution to the compressible gravity-capillary water wave system (1.24), that
is, given initial data (v0, ρ0, ψ0), there exists T ′ > 0 only depending on the initial data, such that the original system (1.24) has
a solution (v, ρ, ψ) satisfying the energy estimates

sup
0≤t≤T ′

E(t) ≤ P(E(0)). (6.1)

6.1 Uniqueness
To prove the well-posedness, it suffices to prove the uniqueness of the solution to (1.24). We assume

{(v(n), q̌(n), ρ(n), ψ(n))}n=1,2

to be two solutions to (1.24) and define [ f ] = f (1) − f (2) for any function f . Then it suffices to prove ([v], [q̌], [ρ], [ψ]) =

(0, 0, 0, 0). We find that ([v], [q̌], [ρ], [ψ]) = (0, 0, 0, 0) satisfies the following system:

ρ(1)Dϕ(1)

t [v] + ∇ϕ
(1)

[q̌] = − fv in [0,T ] ×Ω,

F ′(q(1))Dϕ(1)

t [q̌] + ∇ϕ
(1)
· [v] = − fq in [0,T ] ×Ω,

[q̌] = [q] + g[ϕ] in [0,T ] ×Ω,

[q̌] = g[ψ] − σ
(
H(∇ψ(1)) −H(∇ψ(2))

)
on [0,T ] × Σ,

∂t[ψ] = [v] · N(1) + v(2) · [N] on [0,T ] × Σ,

[v3] = 0 on [0,T ] × Σb,

([v], [q̌], [ψ])|t=0 = (0, 0, 0)

(6.2)

where the functions fv, fq are defined by

fv := [ρ]∂tv(2) + [ρv] · ∇v(2) + [ρVN]∂3v(2) + ρ(2)ge3 + ∂3q̌(2)[Ai3] (6.3)

fq := [F ′(q)](∂tq̌(2) − gv(2)
3 ) + [F ′(q)v] · ∇q̌(2) + [F ′(q)VN]∂3q(2) (6.4)

− F ′(q(2))g[v3] + ∂3v(2)
i [Ai3],
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and

VN :=
1
∂3ϕ

(v · N − ∂tϕ), A13 := −
∂1ϕ

∂3ϕ
, A23 := −

∂2ϕ

∂3ϕ
, A33 :=

1
∂3ϕ

,

H(∇ψ) := ∇ ·
∇ψ
|N |

 , H(∇ψ(1)) −H(∇ψ(2)) = ∇ ·

∇[ψ]
|N(1)|

−

(
1
|N(1)|

−
1
|N(2)|

)
∇ψ(2)

 .
Let

[E](t) :=
3∑

k=0

‖∂k
t [v]‖23−k + σ|∇∂k

t [ψ]|23−k + g|[ψ]|20 +

2∑
k=0

‖∂k
t [q̌]‖23−k + ‖

√
F ′(q(1))∂3

t [q̌]‖20. (6.5)

We can then mimic the proof for the uniform-in-κ estimates (setting κ = 0) in Section 4 to show that [E](0) = 0 and [E](t)
satisfies the following energy inequality

[E](T ) ≤
∫ T

0
P(E(t))[E](t) dt. (6.6)

Here, compared with the process of Picard iteration, the only difference is that the boundary integral produces some extra terms
that are controlled using mollification before, and we must use the surface tension instead of the artificial viscosity term to
produce the boundary regularity. Following the analysis in Section 5.3.3, the main contribution of the boundary integral arising
from ∂3-tangential estimates is

−

∫
Σ

[Q][V] · N(1) dx′ L
= −

∫
Σ

∂3[q]∂t∂
3[ψ] dx′ +

∫
Σ

∂3[q]∂3(v(2) · [N]) dx′, (6.7)

where [Q], [V] are the Alinhac good unknowns of [q̌], [v] with respect to ∂3 and ϕ(1), that is, [F] := F(1) − F(2). For the first
integral, we have

−

∫
Σ

∂3[q]∂t∂
3[ψ] dx′ L

= −
σ

2
d
dt

∫
Σ

|N(1)|−1
∣∣∣∣∂3∇[ψ]

∣∣∣∣2
0

dx′ − σ
∫

Σ

∂3∇[ψ] · ∇(ψ(1) + ψ(2))
|N(1)||N(2)|(|N(1)| + |N(2)|)

∇ψ(2) · ∂t∇∂
3[ψ] dx′, (6.8)

where the first term gives the boundary energy in [E](t), and the second term appears when ∂3 falls on

|N(1)|−1 − |N(2)|−1 =
|N(2)|2 − |N(1)|2

|N(1)||N(2)|(|N(1) + |N(2)|)
.

This term is controlled by

− σ

∫
Σ

∂3∇[ψ] · ∇(ψ(1) + ψ(2))
|N(1)||N(2)|(|N(1)| + |N(2)|)

∇ψ(2) · ∂t∇∂
3[ψ] dx′

≤ P(|∇ψ(1),∇ψ(2)|∞)|
√
σ∇∂3[ψ]|0(|

√
σ∂tψ

(1)|4 + |
√
σ∂tψ

(2)|4)

≤ ε|
√
σ∇∂3[ψ]|20 + P(|∇ψ(1),∇ψ(2)|∞)E(t) ≤ ε[E](t) + P(E(t)).

The energy inequality for [E](t) together with Grönwall’s inequality and the energy bounds for E(t) implies that there exists
some T ∈ [0,T ′] only depending on the initial data of (1.24), such that sup

0≤t≤T
[E](t) ≤ 2[E](0) = 0. Therefore, the solution to

(6.2) must be zero. The uniqueness is proven, and the continuous dependence on initial data in H3(Ω) for v, q̌ and in H4(Σ) for
ψ is similarly proven.

6.2 Incompressible and zero-surface-tension limits
This section is devoted to showing that we can pass the solution of (1.24) to the incompressible and zero surface tension double
limits. In other words, we study the behavior of the solution of (1.24) as both the Mach number λ and surface tension coefficient
σ tend to 0. Recall that the Mach number λ is defined in Section 1.3.
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We study the incompressible Euler equations modeling the motion of incompressible gravity water waves without surface
tension satisfied by (ξ,w, qin) with initial data (w0, ξ0) and w3

0|Σb = 0:

Dϕ
t w + ∇ϕp = 0 in [0,T ] ×Ω,

∇ϕ · w = 0 in [0,T ] ×Ω,

p = qin + gϕ in [0,T ] ×Ω,

p = gξ on [0,T ] × Σ,

∂tξ = w · N on [0,T ] × Σ,

w3 = 0 on [0,T ] × Σb,

(w, ξ)|t=0 = (w0, ξ0),

(6.9)

where we define ϕ(t, x) = x3 + χ(x3)ξ(t, x′) to be the extension of ξ in Ω after slightly abuse of notations. Denote by
(ψλ,σ, vλ,σ, ρλ,σ) the solution of (1.24) indexed by λ and σ, our goal is to show:

(ψλ,σ, vλ,σ, ρλ,σ)→ (ξ,w, 1) in C0([0,T ]; H4−δ
loc (Σ) × H4−δ

loc (Ω) × H3−δ
loc (Ω)), for any δ ∈ (0, 1], (6.10)

provided that:

1. The sequence of initial data (ψλ,σ0 , vλ,σ0 , ρλ,σ0 − 1) ∈ H5(Σ) × H4(Ω) × H4(Ω) satisfies the compatibility conditions up to
order 3, |ψλ,σ0 |∞ ≤ 1, and v3;λ,σ

0 |Σb = 0. The compatibility condition of order k (k ≥ 0), expressed in terms of the modified
pressure, reads

(Dϕ
t )kq̌λ,σ|{t=0}×Σ = σ(Dϕ

t )k
(
Hλ,σ + gψλ,σ

)
|{t=0}×Σ. (6.11)

Since Dϕ
t = ∂t + vλ,σ · ∂ on Σ, we can rewrite (6.11) as:

(∂t + vλ,σ · ∂)kq̌λ,σ|t=0 = σ(∂t + vλ,σ · ∂)k
(
Hλ,σ + gψλ,σ

)
|t=0 on Σ. (6.12)

Apart from this, we require
∂k

t v3;λ,σ|{t=0}×Σb = 0, k = 0, 1, 2, 3, (6.13)

The existence of such data is discussed in Appendix B.
2. (ψλ,σ0 , vλ,σ0 , ρλ,σ0 )→ (ξ,w, 1) in H4(Σ) × H4(Ω) × H3(Ω) as λ, σ→ 0.
3. The compressible pressure qλ,σ and the incompressible pressure qin satisfy the Rayleigh-Taylor sign condition:

−∂3qλ,σ ≥ c0 > 0, on {t = 0} × Σ, (6.14)
−∂3qin ≥ c0 > 0, on {t = 0} × Σ. (6.15)

The key step of showing the λ, σ-double limits is to prove an energy estimate of (1.24) that is uniform in both λ and σ. The
analysis in Section 4 indicates that the energy estimate for (4.1) is already uniform in λ. In particular, one can see that the
tangential energy estimates in Sections 4.5-4.6 are uniform in F ′λ , which is of size O(λ2) by (1.29).

The energy bound that we obtained from the local existence implies the boundedness of ‖∂k
t vλ,σ(t)‖24−k + |∂k

tψ
λ,σ(t)|24−k (k ≤ 4)

uniformly in both λ and σ within the time interval [0,T ]. Thus,

(vλ,σ, ψλ,σ)→ (w, ξ), as λ, σ→ 0, (6.16)

weakly-* in L∞([0,T ]; H4(Ω) ×H4(Σ)), and strongly in C0([0,T ]; H4−δ
loc (Ω) ×H4−δ

loc (Σ)) for any 0 < δ ≤ 1. Here, the strong con-
vergence is a direct consequence of the Aubin-Lions lemma, and the uniqueness of the limit function implies the convergence
without squeezing a subsequence.

Moreover, as Dϕ
t = ∂t + (v · ∇) + (∂3ϕ)−1(v · N − ∂tϕ)∂3, invoking the continuity equation

F ′λ (q)Dϕ
t q̌λ,σ + ∇ϕ · vλ,σ = gF ′λ (q)Dϕ

t vλ,σ3 ,

and because ‖Dϕ
t q̌λ,σ(t)‖3, ‖D

ϕ
t vλ,σ(t)‖3 are uniformly bounded in [0,T ], we have

∇ϕ · vλ,σ → ∇ϕ · w = 0, (6.17)
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weakly-* in L∞([0,T ]; H3(Ω)), and strongly in C0([0,T ]; H3−δ
loc (Ω)). Once again, the strong convergence is obtained thanks to

the Aubin-Lions lemma.
Finally, since the continuity equation can be expressed as

Dϕ
t (ρλ,σ − 1) + ρλ,σ(∇ϕ · vλ,σ) = 0,

we can derive the energy estimate for ρλ,σ − 1 in H3(Ω) as:

d
dt

1
2
‖ρλ,σ − 1‖23 ≤ ‖ρ

λ,σ − 1‖0
(
‖vλ,σ‖4 + |∂ψλ,σ|3

)
, (6.18)

where ‖vλ,σ‖4, |∂ψλ,σ|3 are bounded by Eλ,σ. Similarly, we can prove the uniform bound also for ‖∂t(ρλ,σ − 1)‖22. Therefore,
ρλ,σ → 1 weakly* in L∞([0,T ]; H3(Ω), and strongly in C0([0,T ]; H3−δ

loc (Ω)).

7 Improved incompressible limit for well-prepared initial data
Recall that the uniform boundedness (with respect to Mach number) of top-order time derivatives is required to establish the
uniform-in-(λ, σ) estimates in Theorem 1.2. However, only the boundedness of first-order time derivatives is required, namely
div v = O(λ) and ∂tv = O(1) if the initial data is well-prepared. In this section, we aim to drop the boundedness assumption
for high-order time derivatives. Since we also need to guarantee the propagation of the Rayleigh-Taylor sign condition, the
uniform boundedness of ∂t∂3q ∼ ∂2

t v is still required.
It should be noted that there is a new difficulty in the control of the “weaker” energy E(t): There exhibits a loss of weight

of Mach number in ∂2∂2
t -tangential estimates when analyzing E4(t). In particular, we have to control the following quantity in

the cancellation structure used at the end of Section 4.6:∫
Ω

(∂∂3∂
2
t vi)(∂Ni)(∂∂3∂

2
t q) dx,

in which ∂2
t q has to be uniformly bounded with respect to Mach number. However, now we only have ∂2

t q = O(1/λ), which
leads to a loss of λ-weight. Besides, similar difficulty also appears in the control of −

∫
Ω

V± · C(q±)dVt. Indeed, such loss of
λ-weight necessarily happens in ∂2∂2

t -tangential estimates because of the following two reasons

1. ∂2∂2
t q needs one more λ-weight than ∂2∂2

t v, and
2. The (extension of) normal vector N, which arises from the commutator [∂2∂2

t ,Ni/∂3ϕ, ∂3 f ] in Ci( f ), may NOT absorb a
time derivative.

Such loss of weights of Mach number is completely caused by the free-surface motion because the commutator C( f ) is not
needed in the fixed-domain setting. In the second author’s previous work [76] considering compressible inviscid fluids without
surface tension, such essential difficulty can be avoided thanks to the vanishing Dirichlet boundary condition q|Σ = 0, but that
framework is no longer applicable here. To get rid of the loss of Mach number, we have to find a new way to control ∂2

t v. We
also need to introduce a new energy functional:

E(t) := E4(t) + E5(t), (7.1)

E4(t) := ‖v‖24 + ‖q̌‖24 + |
√
σψ|25 + |ψ|24 + ‖∂tv, ∂tq̌‖23 + |

√
σ∂tψ|

2
4 + |∂tψ|

2
3.5

+ ‖∂2
t v, λ∂2

t q̌‖22 + |
√
σ∂2

t ψ|
2
3 + |∂2

t ψ|
2
2.5 + |∂3

t ψ|
2
1.5 (7.2)

+

4∑
k=3

‖λ∂k
t (v, q̌)‖24−k + |

√
σλ∂k

tψ|
2
5−k + |λ∂4

t ψ|
2
0.5

E5(t) :=
5∑

k=0

∥∥∥λ2∂k
t (v, λ(k−4)+ q̌)

∥∥∥2
5−k +

∣∣∣√σλ2∂k
tψ

∣∣∣2
6−k +

∣∣∣λ2∂k
tψ

∣∣∣2
5−k (7.3)

We now introduce the following div-curl inequality

Lemma 7.1 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s ≥ 1, one has

‖X‖2s . C(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X · N |2

s− 1
2

)
, (7.4)

where the constant C(|ψ|s+ 1
2
, |∇ψ|W1,∞ ) > 0 depends linearly on |ψ|2

s+ 1
2
.
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Applying this inequality to X = ∂2
t v and s = 2, we obtain that

‖∂2
t v‖22 . C(|ψ|2.5, |∇ψ|W1,∞ )

(
‖∂2

t v‖20 + ‖∇ϕ · ∂2
t v‖21 + ‖∇ϕ × ∂2

t v‖21 + |∂2
t v · N |2

s− 1
2

)
. (7.5)

The divergence and vorticity are controlled in the same way as in Section 4.3. As for the boundary term, we have

∂2
t v · N = ∂3

t ψ + v j∂ j∂
2
t ψ,

so we shall turn to control |∂3
t ψ|1.5 and |∂2

t ψ|2.5 without any weights of λ, σ.

7.1 Time-differentiated evolution equation of the free surface
We derive the evolution equation of the free surface by further differentiating the kinematic boundary condition in time variable.

7.1.1 Time-differentiated kinematic boundary condition

Let Dt := Dϕ
t |Σ = ∂t + v · ∇. The kinematic boundary condition then implies

Dtψ = v3, on Σ. (7.6)

Taking one more Dt to (7.6), we infer from the momentum equation that

ρDt
2
ψ = −∂3q̌ − (ρ − 1)g, on Σ. (7.7)

Since [∂t,Dt] f = ∂tv j∂ j f , we obtain

[∂2
t ,Dt] f = ∂2

t v j∂ j f + 2∂tv j ∂t∂ j f .

From this and [∂ j,Dt] = ∂iv j ∂ j f , we see that

[∂2
t ,Dt

2
] f = Dt

(
∂2

t v j∂ j f + 2∂tv j∂t∂ j f
)

+ ∂2
t v j ∂ jDt f + 2∂tv j ∂ j∂tDt f

= ∂2
t Dtv j ∂ j f − 2∂2

t v j ∂ jvk ∂k f − 2∂tv j ∂t∂ jvk ∂k f

+ 2∂2
t v j ∂ jDt f + 2∂tDtv j ∂ j∂t f − 4∂tv j ∂ jvk ∂k∂t f

+ 4∂tv j ∂ j∂tDt f − 2∂tv j ∂ j(∂tvk ∂k f ).

Therefore, we have
∂2

t Dt
2
ψ =Dt

2
∂2

t ψ + ∂2
t Dtv j ∂ jψ − 2∂2

t v j ∂ jvk ∂kψ − 2∂tv j ∂t∂ jvk ∂kψ

+ 2∂2
t v j ∂ jDtψ + 2∂tDtv j ∂ j∂tψ − 4∂tv j ∂ jvk ∂k∂tψ

+ 4∂tv j ∂ j∂tDtψ − 2∂tv j ∂ j(∂tvk ∂kψ).

(7.8)

Combining this with (7.7) yields

Dt
2
∂2

t ψ = −
1
ρ
∂2

t ∂3q̌ − ∂2
t Dtv · ∇ψ + Rψ + Rρ, on Σ, (7.9)

where

−Rψ = − 2∂2
t v j ∂ jvk ∂kψ − 2∂tv j ∂t∂ jvk ∂kψ + 2∂2

t v j ∂ jDtψ + 2∂tDtv j ∂ j∂tψ

− 4∂tv j ∂ jvk ∂k∂tψ + 4∂tv j ∂ j∂tDtψ − 2∂tv j ∂ j(∂tvk ∂kψ)
(7.10)

and

Rρ = −∂2
t

(
(ρ − 1)g

ρ

)
−

[
∂2

t ,
1
ρ

]
∂3q̌. (7.11)
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For i = 1, 2, since ρDtvi = −∂
ϕ

i q̌ with ∂
ϕ

i := ∂
ϕ
i |Σ = ∂i − ∂iψ∂3, we have

−∂2
t Dtv · ∇ψ =

1
ρ
∂2

t ∂
ϕ
q̌ · ∇ψ +

[
∂2

t ,
1
ρ

]
∂
ϕ
q̌ · ∇ψ︸              ︷︷              ︸

=Rψ,ρ

on Σ. (7.12)

Also, since ∂
ϕ

3 := ∂
ϕ
3 |Σ = ∂3, then

−
1
ρ
∂2

t ∂3q̌ +
1
ρ
∂2

t ∂
ϕ
q̌ · ∇ψ = −

1
ρ

N · ∂2
t ∂

ϕ
q̌ on Σ.

This leads to the following evolution equation of the moving interface:

Dt
2
∂2

t ψ = −
1
ρ

N · ∂2
t ∂

ϕ
q̌ + Rψ + Rρ + Rψ,ρ, on Σ, (7.13)

where Rψ,Rρ, and Rψ,ρ are given respectively in (7.10), (7.11) and (7.12).

7.1.2 The reformulation in Alinhac good unknowns

In the next, we introduce Q to be the Alinhac’s good unknown of q̌ associated with ∂2
t :

Q := ∂2
t q̌ − ∂2

t ϕ∂
ϕ
3 q̌, in Ω. (7.14)

For j = 1, 2, 3, similar to (4.36), we have
∂2

t ∇
ϕ
j q̌ = ∇

ϕ
jQ + C j(q̌), in Ω. (7.15)

Here, for a generic function f , we define

Ci( f ) = ∂
ϕ
i ∂

ϕ
3 f∂2

t ϕ + C′i ( f ), i = 1, 2, and C3(q̌) = (∂ϕ3)2 f∂2
t ϕ + C′3( f ), (7.16)

where

C′i ( f ) = −

[
∂2

t ,
∂iϕ

∂3ϕ
, ∂3 f

]
− ∂3 f

[
∂2

t , ∂iϕ,
1
∂3ϕ

]
− ∂iϕ∂3 f∂t

(
1

(∂3ϕ)2

)
∂t∂3ϕ,

and

C′3( f ) =

[
∂2

t ,
1
∂3ϕ

, ∂3 f
]

+ ∂3 f∂t

(
1

(∂3ϕ)2

)
∂t∂3ϕ.

Note that ∂3ϕ|Σ = 1, (7.15) then yields

∂2
t ∂

ϕ

j q̌ = ∂
ϕ

jQ + C j(q̌), on Σ, (7.17)

where Ci(q̌) = ∂
ϕ

i ∂3q̌∂2
t ψ − [∂2

t , ∂iψ, ∂3q̌] when i = 1, 2, and C3(q̌) = ∂2
3q̌∂2

t ψ. Therefore, the equation (7.13) turns into

Dt
2
∂2

t ψ = −
1
ρ

N · ∇ϕQ −
1
ρ

N · C(q̌) + Rψ + Rρ + Rψ,ρ, on Σ. (7.18)

Parallel to Q, we defineV to be the Alinhac’s good unknown of v associated with ∂2
t :

V := ∂2
t v − ∂2

t ϕ∂
ϕ
3v, in Ω. (7.19)

Then, similar to (4.43)–(4.44), (V,Q) verifies

ρDϕ
tV + ∇ϕQ = G1, in Ω,

λ2Dϕ
t Q + ∇ϕ · V = G2 −Ci(vi), in Ω,

(7.20)
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where we write F ′(q) = λ2 for simplicity of notations (which is reasonable when discussing the incompressible limit according
to the discussion in Section 1.3)

G1
i = −[∂2

t , ρ]Dϕ
t vi − ρD(vi) −Ci(q̌) − (∂2

t ρ)gδi3, i = 1, 2, 3

G2 = −λ2D(q̌) + λ2g∂2
t v3.

Here, for a generic function f , we define
D( f ) = (Dϕ

t ∂
ϕ
3 f )(∂2

t ϕ) + D′( f ),

with

D′( f ) = [∂2
t , v] · ∂ f +

[
∂2

t ,
1
∂3ϕ

(v · N − ∂tϕ), ∂3 f
]

+

[
∂2

t , v · N − ∂tϕ,
1
∂3ϕ

]
∂3 f

+
1
∂3ϕ

[∂2
t , v] · N∂3 f − (v · N − ∂tϕ)∂3 f∂t

(
1

(∂3ϕ)2

)
∂t∂3ϕ.

In the next, we commute the divergence operator ∇ϕ· to the first equation of (7.20) to obtain:

ρλ2(Dϕ
t )2Q − ∆ϕQ = ρ∂

ϕ
i vk∂

ϕ
kV

i + ∇ϕρ · Dϕ
tV + ρDϕ

t

(
G2 −Ci(vi)

)
− ∇ϕ ·G1. (7.21)

7.1.3 Decomposition of the pressure: Dirichlet-to-Neumann operator

Since
Q = ∂2

t q̌ − ∂2
t ψ∂3q̌ = σ∂2

tH − ∂3q∂2
t ψ, on Σ,

we define Q = Qh + Qw, where Qh solves the elliptic equation

−∆ϕQh = 0, in Ω,

Qh = σ∂2
tH − ∂3q∂2

t ψ, on Σ,

∂3Qh = 0, on Σb,

(7.22)

and Qw satisfies

−∆ϕQw = −ρλ2(Dϕ
t )2Q + ρ∂

ϕ
i vk∂

ϕ
kV

i + ∇ϕρ · Dϕ
tV + ρDϕ

t

(
G2 −Ci(vi)

)
− ∇ϕ ·G1, in Ω,

Qw = 0, on Σ,

∂3Qw = ∂3Q = −∂2
t ρg, on Σb,

(7.23)

where ∂3Q|Σ is computed by restricting the third component of the first equation in (7.20) on Σb.
With this decomposition, we can further reduce the evolution equation of the free surface (7.18) by introducing the Dirichlet-

to-Neumann (DtN) operator.

Definition 7.1 (Dirichlet-to-Neumann (DtN) operator). For a function f : Σ → R, we define the Dirichlet-to-Neumann (DtN)
operator associated with (Ω, ψ) by

Nψ f := N · ∇ϕ(Eψ f ), (7.24)

where Eψ f is defined to be the harmonic extension of f into Ω, namely

−∆ϕ(Eψ f ) = 0 in Ω, Eψ f = f on Σ, ∂3(Eψ f ) = 0 on Σb. (7.25)

With this definition, we can rewrite

N · ∇ϕQ = N · ∇ϕQh + N · ∇ϕQw = Nψ(σ∂2
tH − ∂3q∂2

t ψ) + N · ∇ϕQw

= σNψ(∂2
tH) − Nψ(∂3q∂2

t ψ) + N · ∇ϕQw,

and thus the evolution equation (7.18) becomes

ρDt
2
∂2

t ψ + σNψ(∂2
tH) − Nψ(∂3q∂2

t ψ) = −N · ∇ϕQw − N · C(q̌) + ρ(Rψ + Rρ + Rψ,ρ) on Σ (7.26)
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7.2 Preliminaries on pardifferential calculus
In the equation (7.26), the term involving DtN operators are fully nonlinear, so we shall find out their concrete forms in
order for an explicit energy estimate. In the remaining part of this paper, we will introduce several preliminary lemmas about
paradifferential calculus that have been proven in Alazard-Burq-Zuily [2]. Following the notations in Métivier [52], we first
introduce the basic definition of a paradifferential operator. Note that the dimension d in this section is actually the Hausdorff
dimension of the free surface.

Definition 7.2 (Symbols). Given r ≥ 0, m ∈ R, we denote Γm
r (Rd) to be the space of locally bounded functions a(x′, ξ) on

Rd × (Rd\{0}), which are C∞ with respect to ξ(ξ , 0), such that for any α ∈ Nd, ξ , 0, the function x′ 7→ ∂αξ a(x′, ξ) belongs to
Wr,∞(Rd) and there exists a constant Cα such that∣∣∣∂αξ a(·, ξ)

∣∣∣
Wr,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|, ∀|ξ| ≥ 1/2.

Definition 7.3 (Paradifferential operator). Given a symbol a, we shall define the paradifferential operator Ta by

T̂au(ξ) := (2π)−d
∫
Rd
χ̃(ξ − η, η)â(ξ − η, η)φ(η)û(η) dη (7.27)

where â(θ, ξ) =
∫
Rd exp(−ix′ · θ)a(x′, ξ) dx′ is the Fourier transform of a in variable x′ ∈ Rd. Here χ̃ and φ are two given cut-off

functions such that
φ(η) = 0 for |η| ≤ 1, φ(η) = 1 for |η| ≥ 2,

and χ̃(θ, η) is homogeneous of degree 0 and satisfies that for 0 < ε1 < ε2 � 1, χ̃(θ, η) = 1 if |θ| ≤ ε1|η| and χ̃(θ, η) = 0 if
|θ| ≥ ε2|η|. We also introduce the semi-norm

Ma
r (a) := sup

|α|≤ d
2 +1+r

sup
|ξ|≥1/2

∣∣∣(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∣∣∣
Wr,∞(Rd)

. (7.28)

For m ∈ R, we say T is of order m if for all s ∈ R, T is bounded from Hs to Hs−m.

Proposition 7.2. Let m ∈ R. If a ∈ Γm
0 (Rd), then Ta is of order m. Moreover, for any s ∈ R, there exists a constant K such that

‖Ta‖Hs→Hs−m ≤ KMm
0 (a).

Proposition 7.3 (Composition, [2, Theorem 3.7]). Let m ∈ R and r > 0. If a ∈ Γm
r (Rd), b ∈ Γm′

r (Rd), then TaTb − Ta#b is of
order m + m′ − r where

a#b :=
∑
|α|<r

1
i|α|α!

∂αξ a∂αx′b

and ∂x′ = (∂x1 , ∂x2 ). Moreover, for all s ∈ R, there exists a constant K such that

‖TaTb − Ta#b‖Hs→Hs−m−m′+r ≤ KMm
r (a)Mm′

r (b). (7.29)

Proposition 7.4 (Adjoint, [2, Theorem 3.10]). Let m ∈ R, r > 0 and a ∈ Γm
r (Rd). We denote by (Ta)∗ the adjoint operator of

Ta. Then (Ta)∗ − Ta∗ is of order m − r where

a∗ :=
∑
|α|<r

1
iαα!

∂αξ ∂
α
x′ ā.

Moreover, for any s ∈ R, there exists a constant K such that ‖(Ta)∗ − Ta∗‖Hs→Hs−m+r ≤ KMm
r (a).

Here and thereafter in this section, ψ ∈ C([0,T ]; Hs+ 1
2 (Rd)) is a given function with s > 2 + d

2 . The symbolic calculus is not
defined for C∞ symbols, so we need to introduce the following symbols.

Definition 7.4. Given m ∈ R, we denote Σm to be the class of symbols a of the form a = a(m) + a(m−1) with

a(m)(t, x′, ξ) = F(∂x′ψ(t, x′), ξ), a(m−1)(t, x′, ξ) =
∑
|α|2

Gα(∂x′ψ(t, x′), ξ)∂αx′ψ(t, x′)

such that
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i. Ta maps real-valued functions to real-valued functions;
ii. F is a C∞ real-valued functions of (ζ, ξ) ∈ Rd × (Rd\{0}), homogeneous of degree m in ξ, such that there exists a

continuous function K = K(ζ) > 0 such that F(ζ, ξ) ≥ K(ζ)|ξ|m for all (ζ, ξ) ∈ Rd × (Rd\{0});
iii. Gα is a C∞ complex-valued function of (ζ, ξ) ∈ Rd × (Rd\{0}), homogeneous of degree m − 1 in ξ.

Definition 7.5 (Equivalence of paradifferential operators). Given m ∈ R and consider two families of operators of order m:
{A(t) : t ∈ [0,T ]} and {B(t) : t ∈ [0,T ]}, we say A ∼ B if A − B has order m − 1.5 and satisfies the estimate: for all r ∈ R there
exists a continuous function C(·) such that

∀t ∈ [0,T ], ‖A(t) − B(t)‖Hr→Hr−(m−1.5) ≤ C(|ψ(t)|s+ 1
2
).

From now on, we use the notation | · |s1→s2 to represent the operator norm ‖ · ‖Hs1→Hs2 , and use the notation | · |s to represent
‖ · ‖Hs(Rd). We have the following theorem for the composition

Proposition 7.5 ([2, Prop. 4.3]). Let m,m′ ∈ R. Then

1. If a ∈ Σm, b ∈ Σm′ , then TaTb ∼ Ta#b where a#b is given by

a#b = a(m)b(m′) + a(m−1)b(m′) + a(m)b(m′−1) +
1
i
∂ξa(m) · ∂x′b(m′).

2. If a ∈ Σm, then (Ta)∗ ∼ Tb where b ∈ Σm is given by

b = a(m) + a(m−1) +
1
i

(∂x′ · ∂ξ)a(m).

We denote <z and =z to be the real part and the imaginary part of a complex number z, respectively. As a corollary, we
have

Corollary 7.6 ([2, Prop. 4.3(2)]). If a ∈ Σm satisfies =a(m−1) = − 1
2 (∂ξ · ∂x′ )a(m), then (Ta)∗ ∼ Ta.

The next proposition is significant for estimates in Sobolev norms via paradifferential calculus.

Proposition 7.7 ([2, Prop. 4.4 and 4.6]). Let m ∈ R, r ∈ R. Then for all symbol a ∈ Σm and t ∈ [0,T ], the following estimate
holds.

|Ta(t)u|r−m ≤ C(|ψ(t)|s−1)|u|r, (7.30)
|u|r+m ≤ C(|ψ(t)|s−1)

(
|Ta(t)u|r + |u|0

)
. (7.31)

7.3 Paralinearization of evolution equation of the free surface
Now we can start to paralinearize the term involving Nψ andH in (7.26).

Lemma 7.8 (Paralinearization of the DtN operator, [5, Sect. 4.4]). For f , ψ ∈ Hs+ 1
2 (Rd), we have

Nψ f = TΛ f + Rψ
Λ

( f ), (7.32)

with the symbols Λ = Λ(1) + Λ(0) give by

Λ(1) =

√
(1 + |∇x′ψ|2)|ξ|2 − (∇x′ψ · ξ)2, (7.33)

Λ(0) =
1 + |∇x′ψ|

2|

2Λ(1)

(
∇x′ · (α(1)∇x′ψ) + i∂ξΛ(1) · ∂x′α

(1)
)
, (7.34)

and α(1) := (Λ(1) + i∇x′ψ · ξ)/(1 + |∇x′ψ|
2). The remainder terms satisfy the following estimates

|Rψ
Λ

( f )|r ≤ C(|ψ|s+ 1
2
)| f |r ∀

1
2
≤ r ≤ s −

1
2
, s > 2 +

d
2
. (7.35)

Next, we paralinearize the mean curvature term. LetH(ψ) = −∇ ·

(
∇ψ

√
1+|∇ψ|2

)
. We have
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Lemma 7.9 (Paralinearization of the mean curvature, [2, Lemma 3.25]). There holdsH(ψ) = THψ + RH where H = H(2) + H(1)

is defined by

H
(2) =

1√
1 + |∇x′ψ|2

|ξ|2 − (∇x′ψ · ξ)2

1 + |∇x′ψ|2

 , (7.36)

H
(1) = −

i
2

(∂x′ · ∂ξ)H(2), (7.37)

and the remainder term RH satisfies

|RH|2s−3 ≤ C(|ψ|s+ 1
2
). (7.38)

Now, we can treat the nonlinear terms on the left side of (7.26). The term involving surface tension is treated as follows

σNψ(∂2
tH(ψ)) = σNψ(∂2

t THψ) + σNψ(∂2
t RH)

= σTΛTH(∂2
t ψ) + σNψ([∂2

t ,TH]ψ + ∂2
t RH) + σRψ

Λ
(TH∂2

t (ψ)) (7.39)

=: σTΛTH(∂2
t ψ) + RS T

ψ

The term involving the Rayleigh-Taylor sign is treated as follows

Nψ(∂3q∂2
t ψ) = (∂3q)N

1
2
ψN

1
2
ψ (∂2

t ψ) + [Nψ, ∂3q]∂2
t ψ. (7.40)

=: (∂3q)N
1
2
ψN

1
2
ψ (∂2

t ψ) + RRT
ψ

Now, the evolution equation (7.26) becomes

ρDt
2
∂2

t ψ + σTΛTH(∂2
t ψ) + (−∂3q)N

1
2
ψN

1
2
ψ (∂2

t ψ) = − N · ∇ϕQw + Rσ
ψ + RRT

ψ (7.41)

− N · C(q̌) + ρ(Rψ + Rρ + Rψ,ρ) on Σ.

7.4 Uniform estimates for the free surface
In order for an explicit energy estimate via (7.41), we shall symmetrize the 3-rd order paradifferential operator TΛTH. That is,
find suitable symbols m ∈ Σ1.5 and n ∈ Σ0 such that TnTΛTH ∼ TmTmTn and Tm ∼ (Tm)∗.

Proposition 7.10 (Symmetrization, [2, Prop. 4.8]). Let n ∈ Σ0 and m ∈ Σ1.5 be defined by

n :=
1

4
√

1 + |∇ψ|2
= |N |−

1
2 , (7.42)

m :=
√
H(2)Λ(1)︸      ︷︷      ︸
=:m(1.5)

+
1
2i

(∂ξ · ∂x′ )
√
H(2)Λ(1)︸                     ︷︷                     ︸

=:m(0.5)

. (7.43)

Then TnTλTH ∼ TmTmTn and Tm ∼ (Tm)∗ are both fulfilled.

Recall that we need the uniform bounds for |∂3
t ψ|

2
1.5, so we shall take 1.5-th order derivative in (7.41). Since the symbol m

also belongs to Σ1.5, we alternatively consider the Tm-differentiated evolution equation thanks to the symmetrization result. We
introduce the following energy functional

M(t) :=
1
2

∫
Σ

ρ
∣∣∣TmTnDt∂

2
t ψ

∣∣∣2 + σ
∣∣∣TmTmTn∂2

t ψ
∣∣∣2 +

c0

2

∣∣∣∣∣N 1
2
ψTmTn∂2

t ψ

∣∣∣∣∣2 dx′. (7.44)

In view of Proposition 7.7 and Lemma D.2, we have the comparison betweenM(t) and standard Sobolev norms

M(t) .
∣∣∣Dt∂

2
t ψ

∣∣∣2
1.5 + σ|∂2

t ψ|
2
3 +

c0

4
|∂2

t ψ|
2
2; (7.45)∣∣∣Dt∂

2
t ψ

∣∣∣2
1.5 .

∣∣∣TmTnDt∂
2
t ψ

∣∣∣2
0 +

∣∣∣Dt∂
2
t ψ

∣∣∣2
0 , (7.46)

σ|∂2
t ψ|

2
3 . σ

∣∣∣TmTmTn∂2
t ψ

∣∣∣2 + σ|∂2
t ψ|

2
0, |∂2

t ψ|
2
2 .

∣∣∣∣∣N 1
2
ψTmTn∂2

t ψ

∣∣∣∣∣2
0

+ |∂2
t ψ|

2
0. (7.47)
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For those L2(Σ) norms, we invoke the kinematic boundary condition, trace lemma and Young’s inequality to get

|∂2
t ψ|

2
0 . ‖vt‖

2
1|∇ψ|

2
L∞ + ‖v‖21|∇∂tψ|

2
L∞

and

|∂3
t ψ|

2
0 . ε‖∂

2
t v‖22 + ‖∂2

t v‖20|∇ψ|
4
L∞ + ‖vt‖

2
1|∇∂tψ|

2
L∞ + ‖v‖22|∇∂

2
t ψ|

2
0.

The ε-term contributes to εE4(t). The term ‖∂2
t v‖20 can be controlled via ∂2

t -estimates of (1.18) in which there is no loss of
λ-weight in the corresponding commutators of Alinhac good unknowns, as we take a full-time derivative ∂2

t . The other terms
contain at most one time derivatives and thus can be controlled directly. Thus, we have

M(t) . E4(t) and
∣∣∣∂3

t ψ
∣∣∣2
1.5 + σ|∂2

t ψ|
2
3 + |∂2

t ψ|
2
2 . M(t) + εE4(t) + controllable terms. (7.48)

So, it suffices to controlM(t) in order to establish the bound for
∣∣∣∂3

t ψ
∣∣∣2
1.5 + σ|∂2

t ψ|
2
3 + |∂2

t ψ|
2
2 in E4(t).

Now we start to controlM(t). Taking the partial derivative in the first term, we obtain

d
dt

1
2

∫
Σ

ρ
∣∣∣TmTnDt∂

2
t ψ

∣∣∣2 dx′

=

∫
Σ

TmTn(ρDt
2
∂2

t ψ)(TmTnDt∂
2
t ψ) dx′ +

∫
Σ

[ρ − 1,TmTn]Dt
2
∂2

t ψ (TmTnDt∂
2
t ψ) dx′

+
1
2

∫
Σ

(∂tρ + ∇ · (ρv))
∣∣∣TmTnDt∂

2
t ψ

∣∣∣2 dx′ +
∫

Σ

ρ[Dt,TmTn](Dt∂
2
t ψ) (TmTnDt∂

2
t ψ) dx′

=:
∫

Σ

TmTn(ρDt
2
∂2

t ψ)(TmTnDt∂
2
t ψ) dx′ + RM

1

(7.49)

Next, plugging the paralinearized equation (7.41) into the above equality, we obtain∫
Σ

TmTn(ρDt
2
∂2

t ψ)(TmDt∂
2
t ψ) dx′

= − σ

∫
Σ

TmTnTΛTH(∂2
t ψ)(TmTnDt∂

2
t ψ) dx′ −

∫
Σ

(−∂3q)TmTnN
1
2
ψN

1
2
ψ (∂2

t ψ)(TmTnDt∂
2
t ψ) dx′

+

∫
Ω

[TmTn, ∂3q]Nψ(∂2
t ψ) (TmTnDt∂

2
t ψ) dx′

L
= − σ

∫
Σ

TmTmTn(∂2
t ψ) Tm(TmTnDt∂

2
t ψ) dx′ −

∫
Σ

(−∂3q)N
1
2
ψ (TmTn∂2

t ψ)N
1
2
ψ (TmTnDt∂

2
t ψ) dx′

−

∫
Σ

TmTn(N · ∇ϕQw) (TmTnDt∂
2
t ψ) dx′ +

∫
Ω

[TmTn, ∂3q]Nψ(∂2
t ψ) (TmTnDt∂

2
t ψ) dx′

+

∫
Ω

[TmTn, ∂3q]Nψ(∂2
t ψ) (TmTnDt∂

2
t ψ) dx′ −

∫
Ω

(−∂3q)[TmTn,Nψ]∂2
t ψ (TmTnDt∂

2
t ψ) dx′

−

∫
Σ

N
1
2
ψ (TmTn∂2

t ψ) [N
1
2
ψ , ∂3q](TmTnDt∂

2
t ψ) dx′

+

∫
Σ

(RS T
ψ + RRT

ψ − N · C(q̌) + ρ(Rψ + Rρ + Rψ,ρ)) (TmTnDt∂
2
t ψ) dx′

=: MS T + MRT + MW + RM
2 + RM

3 + RM
4 + RM

5 + RM
6 .

(7.50)

Here we use TmTmTn ∼ TnTΛTH and Tm ∼ T ∗m to derive MS T and omit the low-order error terms in this equivalence. We
also use the self-adjointness of DtN operator in L2(Σ) to derive MRT . Note that we may not use TΛ to replace Nψ in the term
involving the Rayleigh-Taylor sign, as we do not have TΛ ∼ T ∗

Λ
. The major terms are MS T ,MRT and MW , among which the

first two terms contribute to the boundary regularity with or without σ-weight, while the term MW contributes to a fifth-order
term that motivates us to involve E5(t) in the energy functional E(t). The control of RM

2 ∼ RM
6 and other commutators generated

by MS T ,MRT and MW will be postponed at the end of this section.
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The term MS T contributes to
√
σ-weighted boundary regularity. We have

MS T = − σ

∫
Σ

TmTmTn(∂2
t ψ) Tm(TmTnDt∂

2
t ψ) dx′

= −
σ

2
d
dt

∫
Ω

∣∣∣TmTmTn∂2
t ψ

∣∣∣2 dx′ − σ
∫

Σ

TmTmTn(∂2
t ψ) [TmTmTn,Dt]∂2

t ψ dx′ −
σ

2
(∇ · v)

∣∣∣TmTmTn∂2
t ψ

∣∣∣2 dx′

=: −
σ

2
d
dt

∫
Ω

∣∣∣TmTmTn∂2
t ψ

∣∣∣2 dx′ + RM
7 .

(7.51)

The term MRT contributes to non-weighted boundary regularity with the help of Rayleigh-Taylor sign condition −∂3q ≥
c0/2 > 0. We have

MRT = −

∫
Σ

(−∂3q)N
1
2
ψ (TmTn∂2

t ψ)N
1
2
ψ (TmTnDt∂

2
t ψ) dx′

= −
1
2

d
dt

∫
Ω

(−∂3q)
∣∣∣∣∣N 1

2
ψ (TmTn∂2

t ψ)
∣∣∣∣∣2 dx′

+

∫
Σ

∂3qN
1
2
ψ (TmTn∂2

t ψ) [N
1
2
ψTmTn,Dt]∂2

t ψ dx′ −
1
2

∫
Ω

∂t∂3q + ∇ · (∂3qv)
∣∣∣∣∣N 1

2
ψ (TmTn∂2

t ψ)
∣∣∣∣∣2 dx′

=: −
1
2

d
dt

∫
Ω

(−∂3q)
∣∣∣∣∣N 1

2
ψ (TmTn∂2

t ψ)
∣∣∣∣∣2 dx′ + RM

8 .

(7.52)

Currently, we have arrived at the following energy inequality

M(t) ≤ M(0) +

∫ t

0
MW (τ) dτ +

8∑
j=1

∫ t

0
RM

j (τ) dτ. (7.53)

7.5 Weighted fifth-order energy

7.5.1 Necessity of fifth-order energy

Recall that MW = −
∫

Σ
TmTn(N · ∇ϕQw) (TmTnDt∂

2
t ψ) dx′ and TmTn is a 1.5-th order paradifferential operator, so it remains to

control |N · ∇ϕQw|1.5 in order for the control of MW . Using trace theorem, we have |N · ∇ϕQw|1.5 ≤ |∇ψ|1.5‖∇
ϕQw‖2. Then, we

use the following div-curl inequality

‖∇ϕQw‖
2
2 ≤ C(|∇ψ|W1,∞ , |ψ|2.5)

(
‖∇ϕQw‖

2
0 + ‖∆ϕQw‖

2
1 + ‖∇ϕ × ∇ϕQw‖

2
1 + |N × ∇ϕQw|

2
1.5 + |∂3Qw|

2
H1.5(Σb)

)
, (7.54)

where the third and the fourth terms are all zero because ∇ϕ × ∇ϕ f = 0 and Qw has zero boundary value on Σ. The fifth term is
easy to control, we have

|∂3Qw|
2
H1.5(Σb) = |∂2

t ρg|2H1.5(Σb) . λ
2‖∂2

t q‖22. (7.55)

The first term is of lower-order and we omit the treatment. For the second term, invoking (7.23), we have

‖∆ϕQw‖1 . C

 4∑
k=2

|λ(k−2)+∂k
tψ|4−k


 4∑

k=2

‖λ2∂k
t q̌‖5−k + ‖∂2

t v‖2‖∂v‖2 + λ2‖∂q‖2‖∂3
t v‖1 + P(E4(t))

 , (7.56)

where the first term requires the control of E5(t). It should be noted that the λ2 in the third term is generated from ∇ϕρ such
that the term Dϕ

tV can be controlled without loss of λ-weight. The last two term on the right side of (7.23) can be directly
controlled by P(E4(t)), as the number of derivatives does not exceed 4 and the number of time derivatives does not exceed 2.
Therefore, the energy inequality (7.57) becomes

M(t) ≤ M(0) +

∫ t

0
P(E4(τ))E5(τ) dτ +

8∑
j=1

∫ t

0
RM

j (τ) dτ, (7.57)

and it remains to control

E5(t) :=
5∑

k=0

∥∥∥λ2∂k
t (v, λ(k−4)+ q̌)

∥∥∥2
5−k +

∣∣∣√σλ2∂k
tψ

∣∣∣2
6−k +

∣∣∣λ2∂k
tψ

∣∣∣2
5−k

uniformly in λ, σ.
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7.5.2 Control of E5(t) and the remaining terms in E4(t)

Notice that E5(t) has exactly the same structure as the energy E(t) used to prove the local existence in Theorem 1.1 if we remove
the weight λ2: all quantities except the top-order time derivative of q̌ share the same weight of Mach number. This indicates us
to use the div-curl inequality in Lemma 4.2 and follow the same strategies as in Section 4 instead of using the one in Lemma
7.1 to establish the following energy inequality

E5(t) ≤ P(E(0)) + P(E(t))
∫ t

0
P(E(τ)) dτ. (7.58)

Also, notice that ∂3
t v, ∂3

t q̌ and ∂4
t v, ∂4

t q̌ in E4(t) also share the same weight of Mach number, so we can still control them by
following the same strategies as in Section 4. What’s different is that the high-order time derivatives in both E4(t) and E5(t) may
need more weights in order for the uniform boundedness. Thus, it remains to carefully check if there is any loss of λ-weight in
the control of commutators C′(q̌),C′i(vi) and D′(q̌),D′(vi) in the tangential estimates. Let us recall the concrete forms of these
commutators when T α has the form ∂k∂l

t.

C
′
i( f ) =

[
T α,

Ni

∂3ϕ
, ∂3 f

]
+ ∂3 f

[
T α,Ni,

1
∂3ϕ

]
+ Ni∂3 f

[
T α−γ,

1
(∂3ϕ)2

]
T γ∂3ϕ (7.59)

with |γ| = 1, and

D
′( f ) = [T α, v] · ∂ f +

[
T α,

1
∂3ϕ

(v · N − ∂tϕ), ∂3 f
]

+

[
T α, v · N − ∂tϕ,

1
∂3ϕ

]
∂3 f +

1
∂3ϕ

[T α, v] · N∂3 f

− (v · N − ∂tϕ)∂3 f
[
T α−γ,

1
(∂3ϕ)2

]
T γ∂3ϕ. (7.60)

Here, we only check the most difficult cases and omit the other easier ones: C(q̌) and D(q̌) in λ∂3
t ∂-estimates, λ∂4

t -estimates
(for E4(t)), λ2∂4

t ∂-estimates and λ2∂5
t -estimates (for E5(t)). Note that there is no need to check the same commutators for vi

because the power of λ weight that ∂k
t vi needs never exceeds that for ∂k

t q̌.

λ∂3
t ∂-estimates for E4(t). We shall control ‖λCi(q̌)‖0 uniformly in λ when T α = ∂3

t ∂ and f = q̌. The worst case is that all
time derivatives fall on q̌ and such terms have the following forms

λ∂(Ni/∂3ϕ)∂3
t ∂3q̌, λ∂

(
1
∂3ϕ

(v · N − ∂tϕ)
)
∂3

t ∂3q̌

whose L2 norms are bounded by P(|∇ψ, ∂tψ|W1,∞ , ‖∂v‖L∞ )‖λ∂3
t q̌‖1.

λ∂4
t -estimates for E4(t). We shall control ‖λCi(q̌)‖0 uniformly in λ when T α = ∂4

t and f = q̌. The worst case is that three out
of the four time derivatives fall on q̌ and such terms have the following forms

λ∂t(Ni/∂3ϕ)∂3
t ∂3q̌, λ∂t

(
1
∂3ϕ

(v · N − ∂tϕ)
)
∂3

t ∂3q̌

whose L2 norms are bounded by P(|∇ψ, ∂tψ|W1,∞ , ‖∂v‖L∞ , |∂2
t ψ|L∞ )‖λ∂3

t q̌‖1.

λ2∂4
t ∂-estimates for E5(t). We shall control ‖λ2Ci(q̌)‖0 uniformly in λ when T α = ∂4

t ∂ and f = q̌. Although every quantity in
E5(t) needs λ2-weight, the terms involving q̌ becomes a lower order term and contains at most one time derivative if there are 5
derivatives falling on N or v · N. Since ∂t∇q̌ is uniformly bounded in L∞(Ω), there is no need to out extra effort on such terms.
The worst case is still that all time derivatives fall on q̌ and such terms have the following forms

λ2∂(Ni/∂3ϕ)∂4
t ∂3q̌, λ2∂

(
1
∂3ϕ

(v · N − ∂tϕ)
)
∂4

t ∂3q̌

whose L2 norms are bounded by P(|∇ψ, ∂tψ|W1,∞ , ‖∂v‖L∞ )‖λ2∂4
t q̌‖1. As for the intermediate terms, we check the case that ∂3

t falls
on ∂3q̌ and ∂∂t falls on (v · N − ∂tϕ) because neither of these two terms can be uniformly bounded in L∞. We have that∥∥∥∥λ2∂t∂((∂3ϕ)−1(v · N − ∂tϕ))∂3

t ∂3q̌
∥∥∥∥

0
. ‖λ2∂3

t ∂3q̌‖L6‖∂t∂((∂3ϕ)−1(v · N − ∂tϕ))‖L3

. ‖λ2∂3
t q̌‖2(|ψt |2.5 + |ψtt |1.5)‖vt‖3P(|∇ψ, ∂tψ|W1,∞ ) ≤

√
E5(t)P(E4(t)).
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λ2∂5
t -estimates for E5(t). We shall control ‖λ2Ci(q̌)‖0 uniformly in λ when T α = ∂5

t and f = q̌. Again, the worst case is still
that all time derivatives fall on q̌ and such terms have the following forms

λ2∂t(Ni/∂3ϕ)∂4
t ∂3q̌, λ2∂t

(
1
∂3ϕ

(v · N − ∂tϕ)
)
∂4

t ∂3q̌

whose L2 norms are bounded by P(|∇ψ, ∂tψ|W1,∞ , ‖∂v‖L∞ , |∂2
t ψ|L∞ )‖λ2∂4

t q̌‖1. As for the intermediate terms, we check the case
that ∂3

t falls on ∂3q̌ and ∂2
t falls on (v · N − ∂tϕ). We have that∥∥∥λ2∂2

t ((∂3ϕ)−1(v · N − ∂tϕ))∂3
t ∂3q̌

∥∥∥
0 . ‖λ∂

3
t q̌‖0(|ψt |2.5 + |ψtt |2.5 + |λψttt |1.5)‖vt‖3P(|∇ψ, ∂tψ|W1,∞ ) ≤ P(E4(t)).

The omitted terms can be controlled in a similar or easier manner. Thus, we conclude that inequality (7.58) holds true.

7.5.3 Uniform estimates for E(t) and the incompressible limit

So far, we already obtain the following energy inequalities.

1. The terms involving less than 2 time derivatives in E4(t):

1∑
k=0

‖∂k
t v‖24−k + σ|∂k

tψ|
2
5−k + |ψ|24 + |∂tψ|

2
3.5 + ‖q̌‖24 . P(E4(0)) +

∫ t

0
P(E4(τ)) dτ, (7.61)

‖∂tq̌‖23 . ‖∂
2
t v‖22 + P(E4(0)) +

∫ t

0
P(E4(τ)) dτ. (7.62)

These two inequalities are proved in the same way as in Section 4.
2. The terms involving 3 and 4 time derivatives in E4(t):

4∑
k=3

‖λ∂k
t v, λ1+(k−3)+∂k

t q̌‖24−k + σ|λ∂k
tψ|

2
5−k + |λ∂3

t ψ|
2
1.5 + |λ∂4

t ψ|
2
0.5 . P(E4(0)) +

∫ t

0
P(E4(τ)) dτ, (7.63)

which is obtained by following the same strategy as in Section 4 and the analysis of commutator in Section 7.5.2.
3. Control of E5(t):

E5(t) ≤ P(E(0)) + P(E(t))
∫ t

0
P(E(τ)) dτ. (7.64)

4. Control of ‖vtt‖
2
2 in E4(t) via paradifferential calculus:

‖vtt‖
2
2 . εE4(t) +

8∑
j=1

∫ t

0
RM

j (τ) dτ + P(E4(0)) +

∫ t

0
P(E4(τ)) dτ, (7.65)

‖λ∂2
t q̌‖22 . ‖λ∂

3
t v‖21 + P(E4(0)) +

∫ t

0
P(E4(τ)) dτ. (7.66)

Summing up the above estimates, we can prove the Grönwall-type inequality for the energy functional E(t)

E(t) ≤ P(E(0)) + P(E(t))
∫ t

0
P(E(τ)) dτ uniformly in λ, σ, (7.67)

provided that we have the bounds for the remainders |RM
j (t)|L2 ≤ P(E(t)) for 1 ≤ j ≤ 8. Since the first-order time derivatives in

E4(t) still remain uniformly bounded, we can obtain the same convergence result as in Section 6.2, and we no longer repeat the
statement here.
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7.6 Control of commutators involving paradifferential operators

At the end of this paper, it remains to prove that |RM
j (t)|L2 ≤ P(E(t)) for 1 ≤ j ≤ 8. It should be noted that there are many time

derivatives involved in these remainders, so the commutator estimates shown in [2] may not be directly applied. In particular,
we only show the control of most difficult ones:

• Two commutators in RM
1 : [TmTn, ρ − 1]Dt

2
∂2

t ψ and [TmTn,Dt]Dt∂
2
t ψ.

• The commutator in RM
5 : [N

1
2
ψ , ∂3q]TmTn∂2

t ψ.
• The concrete forms of RS T

ψ and RRT
ψ .

The control of the other terms in these remainders will be omitted. In fact RM
2 ,R

M
3 ,R

M
7 ,R

M
8 and can be controlled in the same

way as RM
1 . The control of RM

4 is easier than that of RM
3 as the function contains less time derivatives. The other terms in RM

6
can be controlled in L2(Σ) uniformly in λ, σ by directly counting the number of derivatives.

We start with the first one. Writing f = Dt
2
∂2

t ψ and a = ρ − 1 for convenience, we have

[TmTn, a] f = Tm([Tn, a] f ) + [Tm, a](Tn f ),

where the two terms share similar structures and we only show the control of the first one. Using Bony’s paraproduct decom-
position in Appendix D.1, we rewrite this commutator as

[Tn, a] f = TnTa f + TnT f a + Tn(R(a, f )) − TaTn f − TTn f a − R(a,Tn f )
= [Tn,Ta] f + TnT f a − TTn f a + Tn(R(a, f )) − R(a,Tn f ) (7.68)

Here we must a := ρ− 1 instead of ρ because ρ & 1 does not belong to L2. This also avoids the loss of λ-weight in f = Dt
2
∂2

t ψ,
as ρ − 1 = O(λ2). The last two terms on the right side of (7.68) are controlled by using Lemma D.1

|Tn(R(a, f ))|1.5 . |R(a, f )|1.5 . |ρ − 1|2.5| f |0 . |λ2Dt
2
∂2

t ψ|0, (7.69)

|R(a,Tn f )|1.5 . |a|1.5|Tn f |0.5 . |λ2Dt
2
∂2

t ψ|0.5. (7.70)

Next, we control the commutator [Tn,Ta] f . Since n, a are both function depending on x′ ∈ R2, not a symbol depending on
both x′ and the frequency variable ξ ∈ R2, we have a#n = n#a = an and thus

‖TaTn − TnTa‖0.5→1.5 ≤ ‖TaTn − Tna‖0.5→1.5 + ‖TnTa − Tna‖0.5→1.5 . M0
1(n)M0

1(a) . C(|ψ|C2 )|a|W1,∞ ,

which leads to

|[Tn,Ta] f |1.5 . C(|ψ|C2 )|a|W1,∞ | f |0.5 . C(|ψ|C2 )|λ2Dt
2
∂2

t ψ|0.5. (7.71)

The other two terms in (7.68) are controlled in the same way and we only show the control of TnT f a. Since n ∈ Σ0, it suffices
to control |T f a|1.5. Using Plancherel’s identity and the definition (7.27) of paradifferential operators, we have

|T f a|1.5 = |〈ξ〉1.5T̂ f a(ξ)|L2
ξ (R2) = (2π)−2

∣∣∣∣∣∫
R2
〈ξ〉1.5χ̃(ξ − η, η) f̂ (ξ − η)φ(η)â(η) dη

∣∣∣∣∣
L2
ξ

. (7.72)

By definition of χ̃ and φ (see Appendix D.1), we know that the integrand is nonzero only if |η| > 1 and |ξ − η| < ε2|η| for some
0 < ε2 � 1, which means 〈ξ〉 and 〈η〉 are comparable: (1 − ε2)|η| ≤ |ξ| ≤ (1 + ε2)|η|. Then, using this, |χ̃| ≤ 1, |φ| ≤ 1 and
Minkowski’s inequality for integrals, we have

|T f a|1.5 .
∣∣∣∣∣∫
R2
χ̃(ξ − η, η) f̂ (ξ − η)〈η〉1.5φ(η)â(η) dη

∣∣∣∣∣
L2
ξ

(∀0 < δ < 1) . | f̂ |L2(R2)

∣∣∣〈η〉−1−δ〈η〉2.5+δâ(η)
∣∣∣
L1
η

. | f̂ |L2(R2)|〈η〉
−1−δ|L2

η(R2)|〈η〉
2.5+δâ(η)|L2

η(R2) . | f |0|a|3 ≤ |λ
2Dt

2
∂2

t ψ|0|q|3. (7.73)

Next, we analyze the commutator [TmTn,Dt] f for f = Dt∂
2
t ψ. Since Dt = ∂t + v · ∇ and ∂t is a time derivative, we only

show the details for the control of [TmTn, ∂t] f . Expanding this commutator, we have

[TmTn, ∂t] f = Tm([Tn, ∂t] f ) + [Tm, ∂t]Tn f .
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Again, these two terms have similar structures, so we only focus on the first one, that is, the control of |[Tn, ∂t] f |1.5. We have
that [Tn, ∂t] f = −T∂tn f , so using Lemma D.1, we have

|T∂tn f |1.5 . |∂tn|L∞ | f |1.5 . C(|∇ψ|L∞ )|∇ψt |L∞ |Dt∂
2
t ψ|1.5 ≤ P(E4(t)). (7.74)

Next, we analyze the commutator [N
1
2
ψ , a] f with a := ∂3q and f := TmTn∂2

t ψ. Using Lemma D.5, we have

∀s > 3, |[N
1
2
ψ , a] f |0 . C(|ψ|s)|a|1.5| f |0.5 . C(|ψ|s)‖q‖3|∂2

t ψ|2 ≤ P(E4(t)). (7.75)

Also, the term RRT
ψ := [Nψ, ∂3q]∂2

t ψ is controlled in the same way

∀s > 3, |[Nψ, ∂3q]∂2
t ψ|0 . C(|ψ|s)|∂3q|1.5|∂2

t ψ|1 ≤ P(E4(t)). (7.76)

Finally, we need to establish the L2(Σ) of RS T
ψ := σNψ([∂2

t ,TH]ψ + ∂2
t RH) + σRψ

Λ
(TH∂2

t (ψ)). The difficulty is that this term
simultaneously contains the commutators between a paradifferential operator and ∂2

t , the time derivatives of RH which is not
explicitly calculated in previous works about incompressible fluids [3, 2, 63], and the control of remainders for the DtN operator.
Among the three terms in RS T

ψ , the last one is directly controlled by using Lemma D.3 and Proposition 7.7

|σRψ
Λ

(TH∂2
t (ψ))|0 . σ|TH∂2

t (ψ)|0 . C(|ψ|W1,∞ )|ψtt |2 ≤ P(E4(t)). (7.77)

Next, we control the first term in RS T
ψ . In view of Lemma D.2, it remains to control |σ[∂2

t ,TH]ψ|1. Expanding the commutators,
we have

[∂2
t ,TH]ψ = T∂2

t H
ψ + 2T∂tH∂tψ.

We only analyze the first one as the symbol contains second-order time derivative and ∂2
t H < C2(Σ) and the second one is

directly controlled with the help of Proposition 7.7. Again, using the definition (7.27), Plancherel’s identity and Minkowski’s
inequality, we have

|T∂2
t H
ψ|1 =

∣∣∣∣∣〈ξ〉∫
R2
χ(ξ − η)∂̂2

t H(ξ − η)φ(η)ψ̂(η) dη
∣∣∣∣∣
L2
ξ (R2)

(∀0 < δ < 1) . |∂̂2
t H|L2 |〈η〉−1−δ|L2

η(R2)|〈η〉
2+δψ̂(η)|L2

η(R2)

. C(|∇ψ,∇ψt |L∞ )|∇ψtt |0|ψ|2+δ . P(E4(t)). (7.78)

The last step is to control Nψ(∂2
t RH) and it suffices to control |∂2

t RH|1. This step is actually a refinement of [2, Lemma 3.25].
Recall that the mean curvature is given by H = −∇ · F(∇ψ) with F(x) := x

√
1+x2

and F(0) = 0. We expand F into 2nd-order
term to get

F(a) = 0 + F′(a)a +
F′′(ζ)

2
a2 = TF′(a)a + Ta(F′(a)) + R(a, F′(a)) +

F′′(ζ)
2

a2.

Let a = ∇η and then TF′(a)a is exactly the term THψ defined in Lemma 7.9 and

RH =T
∇ψ

 Id√
1 + |∇ψ|2

−
∇ψ ⊗ ∇ψ

(
√

1 + |∇ψ|2)3

 + R(∇ψ, F′(∇ψ)) + (∇ψ)> ·M(∇ψ) · (∇ψ)

where M(∇ψ) is a 2× 2 matrix depending on ∇ψ. Thus, the leading-order part in the last two terms of ∂2
t RH must have the form

(∇ψtt + ∇ψt · ∇ψt)C′(∇ψ) for some continuous function C′(·), while the first term is controlled by either using Lemma D.1 or
following the same way as in the control of [∂2

t ,TH]ψ. We conclude the result as follows

σ|∂2
t RH|0 . C(|∇ψ,∇ψt |L∞ )(|σ∇ψtt |L2 + |

√
σ∇ψt |L∞ |

√
σ∇ψt |0) ≤ P(E4(t)). (7.79)

Now, we have finished all estimates and the proof of improved incompressible limit ends here.
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A The Reynold transport theorems

Below, the formulas involving ϕ̃, ψ̃ are used for the nonlinear κ-problem (3.11) and the formulas involving ˚̃ϕ, ˚̃ψ are used for the
linearized κ-problem (5.6).

Lemma A.1. Let f , g be smooth functions defined on [0,T ] ×Ω. Then:

d
dt

∫
Ω

f g∂3ϕ̃ dx =

∫
Ω

(∂ϕ̃t f )g∂3ϕ̃ dx +

∫
Ω

f (∂ϕ̃t g)∂3ϕ̃ dx +

∫
x3=0

f g∂tψ dx′ +
∫

Ω

f g∂3∂t(ϕ̃ − ϕ) dx, (A.1)

d
dt

∫
Ω

f g∂3
˚̃ϕ dx =

∫
Ω

(∂
˚̃ϕ
t f )g∂3

˚̃ϕ dx +

∫
Ω

f (∂
˚̃ϕ
t g)∂3

˚̃ϕ dx +

∫
x3=0

f g∂tψ̊ dx′ +
∫

Ω

f g∂3∂t( ˚̃ϕ − ϕ̊) dx. (A.2)

Proof. In view of (3.12),

LHS of (A.1) =

∫
Ω

(∂t f )g∂3ϕ̃ dx +

∫
Ω

f (∂tg)∂3ϕ̃ dx +

∫
Ω

f g∂3∂tϕ̃ dx

=

∫
Ω

f g∂3∂tϕ̃ dx +

∫
Ω

(∂ϕ̃t f )g∂3ϕ̃ dx +

∫
Ω

f (∂ϕ̃t g)∂3ϕ̃ dx +

i︷              ︸︸              ︷∫
Ω

∂tϕ(∂3 f )g dx +

ii︷              ︸︸              ︷∫
Ω

∂tϕ(∂3g) f dx .

Integrating ∂3 in ii by parts, we have

ii =

∫
x3=0

f g∂tψ dx′ −
∫

x3=−b
f g ∂tϕ︸︷︷︸

=∂t(−b)=0

dx′ −
∫

Ω

f g∂3∂tϕ dx − i.

This concludes the proof of (A.1). Moreover, in light of (5.8),

LHS of (A.2) =

∫
Ω

(∂t f )g∂3
˚̃ϕ dx +

∫
Ω

f (∂tg)∂3
˚̃ϕ dx +

∫
Ω

f g∂3∂t
˚̃ϕ dx

=

∫
Ω

f g∂3∂t
˚̃ϕ dx +

∫
Ω

(∂
˚̃ϕ
t f )g∂3

˚̃ϕ dx +

∫
Ω

f (∂
˚̃ϕ
t g)∂3

˚̃ϕ dx +

i̊︷              ︸︸              ︷∫
Ω

∂tϕ̊(∂3 f )g dx +

i̊i︷              ︸︸              ︷∫
Ω

∂tϕ̊(∂3g) f dx .

Integrating ∂3 in i̊i by parts, we have

i̊i =

∫
x3=0

f g∂tψ̊ dx′ −
∫

Ω

f g∂3∂tϕ̊ dx − i̊,

and thus (A.2) follows. �

Lemma A.2 (Integration by parts for covariant derivatives). Let f , g be defined as in Lemma A.1. Then:∫
Ω

(∂ϕ̃i f )g∂3ϕ̃ dx = −

∫
Ω

f (∂ϕ̃i g)∂3ϕ̃ dx +

∫
x3=0

f gÑi dx′, (A.3)∫
Ω

(∂
˚̃ϕ
i f )g∂3

˚̃ϕ dx = −

∫
Ω

f (∂
˚̃ϕ
i g)∂3

˚̃ϕ dx +

∫
x3=0

f g ˚̃N i dx′. (A.4)

Proof. (A.3) follows from the fact that ∂ϕ̃i is the covariant spatial derivative and ∂3ψ̃ dx is the associated volume element. (A.4)
follows from a parallel argument. �
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Let Dϕ̃
t be the smoothed material derivative defined in (3.15). Then the following theorem holds.

Theorem A.3 (Reynold transport theorem for nonlinear κ-problem). Let f be a smooth function defined on [0,T ] × Ω.
Then:

1
2

d
dt

∫
Ω

ρ| f |2∂3ϕ̃ dx =

∫
Ω

ρ(Dϕ̃
t f ) f∂3ϕ̃ dx +

1
2

∫
Ω

ρ| f |2∂3∂t(ϕ̃ − ϕ) dx. (A.5)

Proof. First, we express ∫
Ω

ρ(Dϕ̃
t f ) f∂3ϕ̃ dx =

∫
Ω

ρ(∂ϕ̃t f ) f∂3ϕ̃ dx +

∫
Ω

ρ(v · ∇ϕ̃ f ) f∂3ϕ̃ dx.

Invoking (A.1), we have∫
Ω

ρ(∂ϕ̃t f ) f∂3ϕ̃ dx = ∂t

∫
Ω

ρ| f |2∂3ϕ̃ dx −
∫

Ω

∂
ϕ̃
t (ρ f ) f∂3ϕ̃ dx −

∫
x3=0

ρ| f |2∂tψ dx′ −
∫

Ω

ρ| f |2∂3∂t(ϕ̃ − ϕ) dx,

and this indicates that

∫
Ω

ρ(∂ϕ̃t f ) f∂3ϕ̃ dx =
1
2

d
dt

∫
Ω

ρ| f |2∂3ϕ̃ dx

A︷                      ︸︸                      ︷
−

1
2

∫
Ω

(∂ϕ̃t ρ)| f |2∂3ϕ̃ dx

C︷                     ︸︸                     ︷
−

1
2

∫
x3=0

ρ| f |2∂tψ dx′ −
1
2

∫
Ω

ρ| f |2∂3∂t(ϕ̃ − ϕ) dx. (A.6)

Furthermore, invoking (A.3), we have∫
Ω

ρ(v · ∇ϕ̃ f ) f∂3ϕ̃ dx =

∫
Ω

∇ϕ̃ · (ρv f ) f∂3ϕ̃ dx −
∫

Ω

∇ϕ̃ · (ρv)| f |2∂3ϕ̃ dx

= −

∫
Ω

ρ f (v · ∇ϕ̃ f )∂3ϕ̃ dx +

∫
x3=0

ρ| f |2v · Ñ dx′ −
∫

Ω

∇ϕ̃ · (ρv)| f |2∂3ϕ̃ dx,

and thus

∫
Ω

ρ(v · ∇ϕ̃ f ) f∂3ϕ̃ dx =

D︷                     ︸︸                     ︷
1
2

∫
x3=0

ρ| f |2v · Ñ dx′

B︷                            ︸︸                            ︷
−

1
2

∫
Ω

∇ϕ̃ · (ρv)| f |2∂3ϕ̃ dx . (A.7)

We have A + B = C + D = 0 thanks to the second and fifth equations of (3.11), respectively. Hence, (A.5) follows after adding
(A.6) and (A.7) up. �

Theorem A.3 leads to the following two corollaries. The first one records the integration by parts formula for Dϕ̃
t .

Corollary A.4 (Reynold transport theorem for nonlinear κ-problem). It holds that

d
dt

∫
Ω

f g∂3ϕ̃ dx =

∫
Ω

(Dϕ̃
t f )g∂3ϕ̃ dx +

∫
Ω

f (Dϕ̃
t g)∂3ϕ̃ dx +

∫
Ω

(∇ϕ̃ · v) f g∂3ϕ̃ dx +

∫
Ω

f g∂3∂t(ϕ̃ − ϕ) dx. (A.8)

Proof. Given (A.1), we have∫
Ω

(∂ϕ̃t f )g∂3ϕ̃ dx =
d
dt

∫
Ω

f g∂3ϕ̃ dx −
∫

Ω

f (∂ϕ̃t g)∂3ϕ̃ dx −
∫

x3=0
f g∂tψ dx′ −

∫
Ω

f g∂3∂t(ϕ̃ − ϕ) dx,

Also, (A.3) yields ∫
Ω

(v · ∇ϕ̃ f )g∂3ϕ̃ dx =

∫
Ω

∇ϕ̃ · (v f )g∂3ϕ̃ dx −
∫

Ω

(∇ϕ̃ · v) f g∂3ϕ̃ dx

= −

∫
Ω

f (v · ∇ϕ̃g)∂3ϕ̃ dx +

∫
x3=0

f g(v · Ñ) dx′ −
∫

Ω

(∇ϕ̃ · v) f g∂3ϕ̃ dx.

Then we obtain (A.8) by adding these up. �

63



The second corollary concerns the transport theorem as well as the integration by parts formula for the linearized material
derivative D

˚̃ϕ
t , defined in (5.7).

Corollary A.5 (Reynold transport theorem for linearized κ-problem). Let D
˚̃ϕ
t := ∂t + (v̊ · ∇) + 1

∂3 ˚̃ϕ
(v̊ · ˙̃N − ∂tϕ̊)∂3 be the

linearized material derivative defined in (5.7). Then:

1
2

d
dt

∫
Ω

ρ̊| f |2∂3
˚̃ϕ dx =

∫
Ω

ρ̊(D
˚̃ϕ
t f ) f∂3

˚̃ϕ dx +
1
2

∫
Ω

(
D

˚̃ϕ
t ρ̊ + ρ̊∇

˚̃ϕ · v̊
)
| f |2∂3

˚̃ϕ dx (A.9)

+
1
2

∫
Ω

ρ̊| f |2
(
∂3∂t( ˙̃ϕ − ϕ̊) + ∂3(∂t + v̊ · ∇)( ˚̃ϕ − ˙̃ϕ)

)
dx.

1
2

d
dt

∫
Ω

| f |2∂3
˚̃ϕ dx =

∫
Ω

(D
˚̃ϕ
t f ) f∂3

˚̃ϕ dx +
1
2

∫
Ω

∇
˚̃ϕ · v̊| f |2∂3

˚̃ϕ dx (A.10)

+
1
2

∫
Ω

| f |2
(
∂3∂t( ˙̃ϕ − ϕ̊) + ∂3(∂t + v̊ · ∇)( ˚̃ϕ − ˙̃ϕ)

)
dx.

Proof. It suffices to show (A.9) only since the proof of (A.10) follows by setting ρ̊ = 1. We write the first term on the RHS of
(A.9) as ∫

Ω

ρ̊(D
˚̃ϕ
t f ) f∂3

˚̃ϕ dx =

∫
Ω

ρ̊(∂t f ) f∂3
˚̃ϕ dx +

∫
Ω

ρ̊
(
(v̊ · ∇) f

)
f∂3

˚̃ϕ dx +

∫
Ω

ρ̊
(
(v̊ · ˙̃N − ∂tϕ̊)∂3 f

)
f dx, (A.11)

and then integrate ∂t, ∇ and ∂3 by parts respectively in these terms to get:∫
Ω

ρ̊(D
˚̃ϕ
t f ) f∂3

˚̃ϕ dx =
d
dt

1
2

∫
Ω

ρ̊| f |2∂3
˚̃ϕ dx −

1
2

∫
Ω

∂tρ̊ + v̊ · ∇ρ̊ +
1

∂3
˚̃ϕ

(v̊ · ˙̃N − ∂tϕ̊)∂3ρ̊

 | f |2∂3
˚̃ϕ dx

−
1
2

∫
Ω

ρ̊(∇ · v̊)| f |2∂3
˚̃ϕ dx −

1
2

∫
Ω

ρ̊| f |2(∂t + v̊ · ∇)∂3
˚̃ϕ dx

−
1
2

∫
Ω

ρ̊∂3(−(v̊ · ∇) ˙̃ϕ + v̊3 − ∂tϕ̊)| f |2 dx,

(A.12)

where we used v̊ · ˙̃N = −(v̊ · ∇) ˙̃ϕ + v̊3 in the last line. We find that the second integral in the first line is
∫

Ω
D

˚̃ϕ
t ρ̊| f |

2∂3
˚̃ϕ dx. Also,

the term in the last line can be written as

−
1
2

∫
Ω

ρ̊∂3(−(v̊ · ∇) ˙̃ϕ + v̊3 − ∂tϕ̊)| f |2 dx

= −
1
2

∫
Ω

ρ̊| f |2
 1

∂3
˚̃ϕ
∂3v3 −

∂1
˚̃ϕ

∂3
˚̃ϕ
∂3v̊1 −

∂2
˚̃ϕ

∂3
˚̃ϕ
∂3v̊2

 ∂3
˚̃ϕ dx

+
1
2

∫
Ω

ρ̊| f |2∂3v̊ · ∇( ˙̃ϕ − ˚̃ϕ) dx +
1
2

∫
Ω

ρ̊| f |2(∂t∂3ϕ̊ + (v̊ · ∇)∂3
˙̃ϕ) dx.

(A.13)

The first term on the RHS together with the third term in (A.12) contributes to

1
2

∫
Ω

ρ̊(∇
˚̃ϕ · v̊)| f |2∂3

˚̃ϕ dx

in (A.9). Meanwhile, the terms in the last line of (A.13) together with the fourth term in (A.12) give the terms in (A.9) with
mismatches. �

B Construction of initial data for the original system
This section aims to construct the initial data for Theorem 1.2 and Theorem 1.3 satisfying the compatibility conditions

(Dϕ
t ) jq|{t=0}×Σ = (Dϕ

t ) j(σH)|{t=0}×Σ, ∂
j
t v

3|{t=0}×Σb = 0, j = 0, 1, 2, 3.
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Since Dϕ
t |Σ = ∂t + v · ∂ andH = −∇ ·

(
∇ψ

√
1+|∇ψ|2

)
, we rewrite the compatibility conditions in terms of q̌ as

(∂t + v · ∂) jq̌|{t=0}×Σ = (∂t + v · ∂) j

−σ∇ · ∇ψ√
1 + |∇ψ|2

+ gψ


∣∣∣∣∣∣
{t=0}×Σ

, j = 0, 1, 2, 3. (B.1)

Here, we use the modified pressure q̌ since we want ∂q̌0 ∈ L2(Ω) for the sake of convenience. Such compatibility conditions are
required to show that E(t) (defined as (1.33)), and Eλ,σ(t) (defined as (1.39)) are bounded at t = 0 by adapting the arguments in
[18, Section 4.3].

B.1 Formal construction
We shall adapt the method developed in [18] to construct smooth data (ψ0, v0, q̌0) that satisfies (B.1). We first describe the
method formally which serves as a good guideline. The key difference, however, is that in [18] we constructed the initial data
in Lagrangian coordinates, where (B.1) has a different formulation.

By identifying F ′λ (q) = λ2 without loss of generality, and since ∂1ϕ|Σ = ∂1ψ, ∂2ϕ|Σ = ∂2ψ, ∂3ϕ|Σ = 1, the momentum and
continuity equations reduce respectively to

ρ(∂t + v · ∂)v + ∇ϕq̌ = −g(ρ − 1)e3, on Σ (B.2)

λ2(∂t + v · ∂)q̌ + div v = ∂1ψ∂3v1 + ∂2ψ∂3v2 + λ2gv3, on Σ, (B.3)

where ∇ϕq = (∂1q − ∂1ψ∂3q, ∂2q − ∂2ψ∂3q, ∂3q)> and div v = ∂ · v. By ignoring the terms contributed by the denominator, we
haveH ∼ −∆ψ. Invoking the kinematic boundary condition ∂tψ = v · N, we have

(∂t + v · ∂)ψ = v3, on Σ,

we obtain from the zeroth compatibility condition q̌ ∼ −σ∆ψ that

(∂t + v · ∂)q̌ ∼ −σ∆v3, on Σ, (B.4)

which is the first compatibility condition. Since the continuity equation (B.3) implies λ2(∂t + v · ∂)q̌ ∼ −div v, we can deduce
from (B.4) that:

div v ∼ σλ2∆v3, on Σ. (B.5)

Furthermore, the momentum equation (B.2) implies (∂t + v · ∂)v3 ∼ −∂3q̌, and thus the second compatibility condition on q̌
becomes:

(∂t + v · ∂)2q̌ ∼ −σ(∂t + v · ∂)∆v3 ∼ σ∆∂3q̌, on Σ. (B.6)

Taking ∂t + v · ∂ to the continuity equation to obtain λ2(∂t + v · ∂)2q̌ ∼ −div (∂t + v · ∂)v ∼ ∆q̌, and this gives

∂2
3q̌ ∼ σλ2∆∂3q̌ − ∆q̌, on Σ. (B.7)

Finally, we derive from the third compatibility condition on q̌ that

(∂t + v · ∂)3q̌ ∼ σ∆∂3(∂t + v · ∂)q̌ ∼ σλ−2∆∂3div v, on Σ, (B.8)

together with the relation λ2(∂t + v · ∂)3q̌ ∼ ∆(∂t + v · ∂)q̌ ∼ λ−2∆div v obtained by taking (∂t + v · ∂)2 to the continuity equation
that

∆div v ∼ σλ2∆∂3div v, on Σ. (B.9)

In other words,

∂3
3v ∼ σλ2∆∂3div v − ∆∂1v − ∆∂2v − ∆∂3v, on Σ. (B.10)

Therefore, the first order compatibility condition on q̌ yields an “identity in terms of v” (B.5), the second order compatibility
condition on q̌ yields an “identity in terms of q” (B.7), and lastly, the third order compatibility condition on q̌ yields an “identity
in terms of v” again (B.10).
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We construct our data by the following iterative procedure. To begin with, let (ξ0,w0, p0) be the generic smooth localized
incompressible data that verifies the zeroth order compatibility condition p̌0 = −σ∇ · ∇ξ0√

1+|∇ξ0 |
2

+ gξ0 on Σ. In the first step, we

fixed a smooth function ψ0 which represents the moving interface, and constructed the data satisfying the first compatibility
condition. Given (B.5), we shall need to construct the appropriate velocity vector field denoted by u0 = (u1

0,u
2
0,u

3
0). We achieve

this by setting u1
0 = w1

0, u2
0 = w2

0, and construct u3
0 by solving a poly-harmonic equation of order 2:

∆2u3
0 = ∆2w3

0, in Ω,

u3
0 = w3

0, ∂3u3
0 ∼ −∂1w1

0 − ∂2w2
0 + σλ2∆w3

0, on Σ,

u3
0 = w3

0, ∂3u3
0 = ∂3w3

0 on Σb.

(B.11)

In particular, the boundary condition ∂3u3
0 ∼ −∂1w1

0 − ∂2w2
0 + σλ2∆w3

0 is derived from (B.5).
In the second step, we construct the data verifying the second compatibility condition. We shall construct q̌0 here because

of (B.7). This is achieved by solving a poly-harmonic equation of order 3:
∆3q̌0 = ∆3 p̌0, in Ω,

q̌0 = p̌0, ∂3q̌0 = ∂3 p̌0, on Σ,

∂2
3q̌0 ∼ σλ

2∆∂3 p̌0 − ∆p̌0, on Σ,

∂
j
3q̌0 = 0 (0 ≤ j ≤ 2), on Σb.

(B.12)

It can be seen that the boundary condition ∂2
3q̌0 ∼ σλ

2∆∂3 p̌0 is a consequence of (B.7).
In the third (and final) step, we construct the data verifying the compatibility conditions up to order 3 with a fixed smooth

function representing the moving interface still denoted by ψ0. Since q0 has been constructed, we need only to construct
v0 = (v1

0, v
2
0, v

3
0) by setting w1

0 = v1
0,w

2
0 = v2

0, and solving the following order 4 poly-harmonic equation for v3
0:

∆4v3
0 = ∆4u3

0, in Ω,

v3
0 = u3

0, ∂3v3
0 ∼ −∂1u1

0 − ∂2u2
0 + σλ2∆u3

0 on Σ,

∂2
3v3

0 ∼ −∂3∂1u1
0 − ∂3∂2u2

0 + σλ2∆∂3u3
0, on Σ,

∂3
3v3

0 = −∆∂1u1
0 − ∆∂2u2

0 + σλ2∆∂3div u0 − ∆∂3u3
0, on Σ,

∂
j
3v3

0 = ∂
j
3u3

0 (0 ≤ j ≤ 3) on Σb.

(B.13)

The second and third boundary conditions arise from (B.5), whereas the fourth boundary condition is derived from (B.10).

B.2 The full construction procedure
We shall repeat the method introduced in Subsection B.1 with detailed boundary conditions generated by the compatibility
conditions. We will use P,Q to denote generic non-negative continuous functions. Apart from this, we will set

0 ≤ k′ ≤ 1, 0 ≤ k ≤ 2, 0 ≤ l ≤ 3,

throughout.
By invoking the commutator

[∂s, ∂t + v · ∂] = [∂s, v] · ∂, (B.14)

and since it holds on Σ that

(∂t + v · ∂)ψ = v3, q̌ = −σ

∆ψ

|N|
−
∂ψ · ∂∇ψ

|N |3

 + gψ, |N | =
√

1 + |∇ψ|2,

the first compatibility condition on q̌ reads:

(∂t + v · ∂)q̌ = σP(
1
|N |

, ∂kψ, ∂kv, ∂kv3), on Σ. (B.15)
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In addition, the continuity equation (B.3) gives

λ2(∂t + v · ∂)q̌ = −div v + ∂ψ · ∂3v + λ2gv3, on Σ. (B.16)

Hence, we combine (B.15) and (B.16) to get

div v = σλ2P(|N |−1, ∂kψ, ∂kv, ∂kv3, ∂3v), on Σ. (B.17)

and the equation used to determine u3
0 is

∆2u3
0 = ∆2w3

0, in Ω,

u3
0 = w3

0, on Σ ∪ Σb,

∂3u3
0 = −∂1w1

0 − ∂2w2
0 + σλ2P(|N0|

−1, ∂kψ0, ∂
kw0, ∂

kw3
0, ∂3w0), on Σ,

∂3u3
0 = ∂3w3

0 on Σb.

(B.18)

whose rough version is given by (B.11). Let s0 ≥ 8. The poly-harmonic estimate yields

‖u3
0 − w3

0‖s0 . ‖∆
2(u3

0 − w3
0)‖s0−4︸                ︷︷                ︸

=0

+ |u3
0 − w3

0|s0−0.5︸           ︷︷           ︸
=0

+|∂3(u3
0 − w3

0)|s0−1.5 ≤ λ
2C(|ψ0|s, ‖w0‖s), (B.19)

for some s > s0, and hence ‖u3
0 − w3

0‖s0 → 0 as λ→ 0.
We construct q̌0 using the second-order compatibility condition in the next stage. Owing to (B.2), the identities

ρ(∂t + v · ∂)v + ∂q̌ = ∂ψ∂3q̌, and ρ(∂t + v · ∂)v3 + ∂3q̌ = −g(ρ − 1), (B.20)

hold on Σ, and we view ρ = ρ(q̌) here and throughout. Taking ∂t + v · ∂ to (B.15) and invoking (B.14), we have

(∂t + v · ∂)2q̌ = σP(ρ−1, |N |−1, ∂lψ, ∂kv, ∂kv3, ∂lq̌, ∂k∂3q̌), on Σ. (B.21)

Moreover, by taking ∂t + v · ∂ to the continuity equation (B.3), we get

λ2(∂t + v · ∂)2q̌ = −div (∂t + v · ∂)v + [div , (∂t + v · ∂)]v + (∂t + v · ∂)(∂ψ · ∂3v + λ2gv3), (B.22)

where [div , (∂t + v · ∂)]v = ∂iv · ∂vi,

−div (∂t + v · ∂)v = ∂τ(ρ−1∂τq̌) − ∂τ(ρ−1∂τψ∂3q̌) + ∂3(ρ−1∂3q̌)︸       ︷︷       ︸
=ρ−1∂2

3q̌+∂3ρ−1∂3q̌

+g∂3

(
ρ−1(ρ − 1)

)
, τ = 1, 2, (B.23)

and

(∂t + v · ∂)(∂ψ · ∂3v + λ2gv3) = ∂v3 · ∂3v + ∂ψ · ∂3(−ρ−1∂q̌ + ρ−1∂ψ∂3q̌)

−∂v · ∂ψ · ∂3v − ∂ψ · ∂3v · ∂3v + λ2g(−ρ−1∂3q̌ − gρ−1(ρ − 1)). (B.24)

Since the third term on the RHS of (B.24) contributes to ρ−1|∂ψ|2∂2
3q̌, it holds that

λ2(∂t + v · ∂)2q̌ = ρ−1(1 + |∂ψ|2)∂2
3q̌ + Q(ρ−1, |N |−1, ∂kψ, ∂k′∂3v, ∂k′∂3q̌), on Σ. (B.25)

Therefore, we combine (B.21) and (B.25) to get

ρ−1(1 + |∂ψ|2)∂2
3q = σλ2P(ρ−1, |N |−1, ∂lψ, ∂kv, ∂kv3, ∂lq, ∂k∂3q) + Q(ρ−1, |N |−1, ∂kψ, ∂k′∂3v, ∂k′∂3q), on Σ, (B.26)

and we set q̌0 by solving

∆3q̌0 = ∆3 p̌0, in Ω,

q̌0 = p̌0, ∂3q̌0 = ∂3 p̌0, on Σ,

∂2
3q̌0 = ρ0(1 + |∂ψ0|

2)−1
(
σλ2P(ρ−1

0 , |N0|
−1, ∂lψ0, ∂

ku0, ∂
ku3

0, ∂
l p̌0, ∂

k∂3 p̌0)

+Q(ρ−1
0 , |N0|

−1, ∂kψ0, ∂
k′∂3u0, ∂

k′∂3 p̌0)
)
, on Σ,

∂
j
3q̌0 = 0 (0 ≤ j ≤ 2) on Σb.

(B.27)
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whose rough version is (B.12). Also, the poly-harmonic estimate implies

‖q̌0‖s0 . ‖∆
3 p̌0‖s0−6 + |p̌0|s0−0.5 + |∂3 p̌0|s0−1.5 + |∂2

3q̌0|s−2.5 ≤ λ
2C1(|ψ0|s, ‖u0‖s, ‖p̌0‖s) + C2(|ψ0|s, ‖u0‖s, ‖ p̌0‖s), (B.28)

for some s > s0.
Finally, we construct v3

0 using the third-order compatibility condition in the last stage. We obtain

(∂t + v · ∂)3q̌ = σP(ρ−1, |N |−1, ∂lψ, ∂lv, ∂lv3, ∂lq̌)
(
λ−2∂4ψ + λ−2∂4v + λ−2∂l∂3v + λ−2∂k∂2

3v
)
, on Σ, (B.29)

by taking (∂t + v · ∂) to (B.21). Further, taking (∂t + v · ∂) to (B.25) to get

λ2(∂t + v · ∂)3q̌ = −λ−2ρ−1(1 + |∂ψ|2)∂2
3div v + Q(ρ−1, |N |−1, ∂lψ, ∂lv, ∂k∂3v, ∂k′∂2

3v, ∂lq̌), on Σ. (B.30)

Therefore, we combine (B.29) and (B.30) to obtain

ρ−1(1 + |∂ψ|2)∂2
3div v = σλ2P(ρ−1, |N |−1, ∂lψ, ∂lv, ∂lv3, ∂lq̌)

(
∂4ψ + ∂4v + ∂l∂3v + ∂k∂2

3v
)

+λ2Q(ρ−1, |N |−1, ∂lψ, ∂lψ, ∂lv, ∂k∂3v, ∂k′∂2
3v, ∂lq̌), on Σ,

(B.31)

and we set v3
0 by solving

∆4v3
0 = ∆4u3

0, in Ω,

v3
0 = u3

0, on Σ,

∂3v3
0 = −∂1u1

0 − ∂2u2
0 + σλ2P(|N0|

−1, ∂kψ0, ∂
ku0, ∂

ku3
0, ∂3u0), 0 ≤ k ≤ 2, on Σ,

∂2
3v3

0 = −∂1∂3u1
0 − ∂2∂3u2

0 + σλ2∂3P(|N0|
−1, ∂kψ0, ∂

ku0, ∂
ku3

0, ∂3u0), on Σ,

∂3
3v3

0 = ρ0(1 + |∂ψ0|
2)−1

(
σλ2P(ρ−1

0 , |N0|
−1, ∂lψ0, ∂

lu0, ∂
lu3

0, ∂
lq̌0)

(
∂4ψ0 + ∂4u0 + ∂l∂3u0 + ∂k∂2

3u0

)
+λ2Q(ρ−1

0 , |N0|
−1, ∂lψ0, ∂

lψ, ∂lu0, ∂
k∂3u0, ∂

k′∂2
3u0, ∂

lq̌0)
)
− ρ−1

0 (1 + |∂ψ0|
2)∂2

3(∂1u1
0 + ∂2u2

0), on Σ,

∂
j
3v3

0 = ∂
j
3u3

0 (0 ≤ j ≤ 3) on Σb.

(B.32)

whose rough version is (B.13). By the poly-harmonic estimate, we have

‖v3
0 − u3

0‖s0 . ‖∆
4(v3

0 − u3
0)‖s0−8 + |v3

0 − u3
0|s0−0.5 + |∂3(v3

0 − u3
0)|s0−1.5 + |∂2

3(v3
0 − u3

0)|s0−2.5 + |∂3(v3
0 − u3

0)|s0−3.5. (B.33)

The first two terms on the RHS are 0. Invoking (B.19), (B.28), we have, for some s, s′ satisfying s > s′ > s0, that

|v3
0 − u3

0|s0−0.5 + |∂3(v3
0 − u3

0)|s0−1.5 ≤ λ
2C(|ψ0|s′ , ‖u0‖s′ ) ≤ λ2C(|ψ0|s, ‖w0‖s),

and
|∂2

3(v3
0 − u3

0)|s0−2.5 ≤ λ
2C(|ψ0|s′ , ‖u0‖s′ , ‖q̌0‖s′ ) ≤ λ2C(|ψ0|s, ‖w0‖s, ‖p̌0‖s).

Thus,

‖v3
0 − u3

0‖s0 ≤ λ
2C(|ψ0|s, ‖w0‖s, ‖p̌0‖s). (B.34)

In particular, since we have set wτ
0 = uτ0 = vτ0, τ = 1, 2, we deduce from (B.19) and (B.34) that

‖v0 − w0‖s0 ≤ ‖v
3
0 − u3

0‖s0 + ‖u3
0 − w3

0‖s0 = O(λ2). (B.35)

In addition, we deduce from ∇ϕ · w0 = 0 and (B.35) that

‖∇ϕ · v0‖C1 = O(λ2). (B.36)

Apart from these, it can be seen from (B.27) and (B.32) that ‖v0‖s0 and ‖q̌0‖s0 are uniform in both σ and λ. This allows us to
take the zero surface tension and incompressible limits at the same time.
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C Construction of initial data for the nonlinear κ-approximate system
The construction of smooth initial data for the κ-problem (3.11) is parallel to what has been done in the previous section and
thus we shall only sketch the details. We will set

0 ≤ k′ ≤ 1, 0 ≤ k ≤ 2, 0 ≤ l ≤ 3, 0 ≤ m ≤ 4, 0 ≤ n ≤ 5

in the sequel.
Let (ψ0, v0, q0) be the smooth initial data constructed in the previous section. Our goal is to construct (ψκ,0, vκ,0, qκ,0) that

satisfies the κ-compatibility conditions up to the third order:

(∂t + v · ∂) jq|{t=0}×Σ = σ(∂t + v · ∂) jH|{t=0}×Σ + κ2(∂t + v · ∂) j
(
(1 − ∆)(−∂1ψ̃v1 − ∂2ψ̃v2 + v3)

)
|{t=0}×Ω, j = 0, 1, 2, 3, (C.1)

∂
j
t v

3|{t=0}×Σb = 0, j = 0, 1, 2, 3. (C.2)

Setting ψκ,0 = ψ0, we need only to compute the last term on the RHS to formulate the poly-harmonic equations for qκ,0 and vκ,0.
Since

[(1 − ∆), ∂t + v · ∂] = −[∆, v] · ∂,

we have, when j = 1:

(∂t + v · ∂)
(
(1 − ∆)(−∂ψ̃ · v + v3)

)
= R(∂lψ, ∂lv, ∂lψ̃, ∂l̃v3, ∂lq̌, ∂k∂3q̌), on Σ. (C.3)

This implies that the equation used to determine u3
κ,0 is

∆2u3
κ,0 = ∆2v3

0, in Ω,

u3
κ,0 = v3

0, on Σ,

∂3u3
κ,0 = −∂1v1

0 − ∂2v2
0 + σλ2P(|N0|

−1, ∂kψ0, ∂
kv0, ∂

kv3
0, ∂3v0)

+κ2λ2R(∂lψ0, ∂
lv0, ∂

lψ̃0, ∂
l̃v3

0, ∂
lq̌0, ∂

k∂3q̌0), on Σ,

∂
j
3v3
κ,0 = ∂

j
3u3

0 (0 ≤ j ≤ 1) on Σb.

(C.4)

which is parallel to (B.18).
Then, when j = 2, we have

(∂t + v · ∂)2
(
(1 − ∆)(−∂ψ̃ · v + v3)

)
= (∂t + v · ∂)R(∂lψ, ∂lv, ∂lψ̃, ∂l̃v3, ∂lq̌, ∂k∂3q̌)

= R(∂lψ, ∂lψ̃, ∂lv3, ∂l̃v3, ∂mq̌, ∂l∂3q̌, λ−2∂4v, λ−2∂l∂3v, λ−2∂k∂2
3v, λ−2∂4ψ), on Σ, (C.5)

where the power of λ−1 does not exceed 2. Thus, we determine qκ,0 by solving

∆3q̌κ,0 = ∆3q̌0, in Ω,

q̌κ,0 = q̌0, ∂3q̌κ,0 = ∂3q̌0, on Σ,

∂2
3q̌κ,0 = ρ0(1 + |∂ψ0|

2)−1
(
σλ2P(ρ−1

0 , |N0|
−1, ∂lψ0, ∂

kuκ,0, ∂ku3
κ,0, ∂

lq̌0, ∂
k∂3q̌0)

+Q(ρ−1
0 , |N0|

−1, ∂kψ0, ∂
k′∂3uκ,0, ∂k′∂3q̌0)

+κ2λ2R(∂lψ0, ∂
lψ̃0, ∂

lu3
κ,0, ∂

lũ3
κ,0, ∂

mq̌0, ∂
l∂3q̌0, ∂

4uκ,0, ∂l∂3uκ,0, ∂k∂2
3uκ,0, ∂4ψ0)

)
, on Σ,

∂
j
3q̌3

0 = 0 (0 ≤ j ≤ 2) on Σb.

(C.6)

Finally, when j = 3, we have

(∂t + v · ∂)3
(
(1 − ∆)(−∂ψ̃ · v + v3)

)
= R(∂mψ, ∂mψ̃, ∂mv3, ∂mṽ3, ∂nq̌, ∂m∂3q̌, λ−2∂5v, λ−2∂m∂3v, λ−2∂l∂2

3v, λ−2∂5ψ), on Σ,

(C.7)
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where the power of λ−1 does not exceed 4. Therefore, we construct v3
κ,0 by solving

∆4v3
κ,0 = ∆4u3

κ,0, in Ω,

v3
κ,0 = u3

κ,0, on Σ,

∂3v3
κ,0 = −∂1u1

κ,0 − ∂2u2
κ,0 + σλ2P(|N0|

−1, ∂kψ0, ∂
kuκ,0, ∂ku3

κ,0, ∂3uκ,0)
+κ2λ2R(∂lψ0, ∂

luκ,0, ∂lψ̃0, ∂
lũ3
κ,0, ∂

lq̌κ,0, ∂k∂3q̌κ,0), on Σ,

∂2
3v3

κ,0 = −∂1∂3u1
κ,0 − ∂2∂3u2

κ,0 + σλ2∂3P(|N0|
−1, ∂kψ0, ∂

kuκ,0, ∂ku3
κ,0, ∂3uκ,0)

+κ2λ2∂3R(∂lψ0, ∂
luκ,0, ∂lψ̃0, ∂

lũ3
κ,0, ∂

lq̌κ,0, ∂k∂3q̌κ,0), on Σ,

∂3
3v3

κ,0 = ρ0(1 + |∂ψ0|
2)−1

(
σλ2P(ρ−1

0 , |N0|
−1, ∂lψ0, ∂

luκ,0, ∂lu3
κ,0, ∂

lq̌0)
(
∂4ψ0 + ∂4uκ,0 + ∂3∂3uκ,0 + ∂2∂2

3uκ,0
)

+λ2Q(ρ−1
0 , |N0|

−1, ∂lψ0, ∂
lu0, ∂

k∂3u0, ∂
k′∂2

3u0, ∂
lq̌κ,0)

+R(∂mψ0, ∂
mψ̃0, ∂

mu3
κ,0, ∂

mũ3
κ,0, ∂

nq̌κ,0, ∂m∂3q̌κ,0, ∂5uκ,0, ∂m∂3uκ,0, ∂l∂2
3uκ,0, ∂5ψ0)

)
−ρ−1

0 (1 + |∂ψ0|
2)∂2

3(∂1u1
κ,0 + ∂2u2

κ,0), on Σ,

∂
j
3v3

κ,0 = ∂
j
3u3

0 (0 ≤ j ≤ 3) on Σb.

(C.8)

Let λ > 0 be fixed. Invoking the poly-harmonic estimate subsequently to (C.4), (C.6), and (C.8), we obtain that ‖vκ,0‖s0 and
‖q̌κ,0‖s0 are bounded for some s0 ≥ 8. Thus, the energy Eκ(t) (defined as (4.1)) is bounded at t = 0. In addition,

‖vκ,0 − v0‖s0 , and ‖q̌κ,0 − q̌‖s0 → 0, as κ → 0.

D Paraproducts and the Dirichlet-to-Neumann operator

D.1 Bony’s paraproduct decomposition
We already introduce the paradifferential operator in Section 7.2. Here we present the relations between paradifferential opera-
tors and paraproducts. The cutoff function χ̃(ξ, η) in the definition of Tau is

χ̃(ξ, η) =

∞∑
k=0

Θk−3(ξ)ϑ(η),

where Θ(ξ) = 1 when |ξ| ≤ 1 and Θ(ξ) = 0 when |ξ| ≥ 2 and

Θk(ξ) := Θ(
ξ

2
), k ∈ Z, ϑ0 = Θ, ϑk := Θk − Θk−1, k ≥ 1.

Based on this, we can introduce the Littlewood-Paley projections Pk and P≤k as follows

P̂ku(ξ) := ϑk(ξ)û(ξ), ∀k ≥ 0, Pku := 0 ∀k < 0, P≤ku :=
∑
l≤k

Plu.

When the symbol a(x, ξ) (in the paradifferential operator Ta) does not depend on ξ, we can take ψ(η) ≡ 1 and then we have

Tau =
∑

k

P≤k−3a(Pku)

which is the usual Bony’s paraproduct. In general, the well-known Bony’s paraproduct decomposition is

au = Tau + Tua + R(u, a), R(u, a) =
∑
|k−l|≤2

(Pka)(Plu).

We have the following estimates for the remainder R(u, a)

Lemma D.1 ([2, Section 2.3]). For s ∈ R, r < d/2, δ > 0, we have

|Tau|Hs . min{|a|L∞ |u|Hs , |a|Hr |u|
Hs+ d

2 −r , |a|H d
2
|u|Hs+δ }

and for any s > 0, s1, s2 ∈ R satisfying s1 + s2 = s + d
2 , we have

|R(u, a)|Hs . |a|Hs1 |u|Hs2 .
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D.2 Basic properties of the Dirichlet-to-Neumann operator

Let the space dimension d = 3 for simplicity. Given a function f : Σ = T2 → R, we define the Dirichlet-to-Neumann (DtN)
operator (with respect to ψ and region Ω±) by

Nψ f := ∓N · ∇ϕ(E±ψ f )|Σ, −∆ϕ(E±ψ f ) = 0 in Ω±, E±ψ f |Σ = f , ∂3(E±ψ f )|Σ± = 0.

Here the Laplacian operator is defined by ∆ϕ := ∇ϕ · ∇ϕ = ∂i(Ei j∂ j) with

E =
1
∂3ϕ


∂3ϕ 0 −∂1ϕ

0 ∂3ϕ −∂2ϕ

−∂1ϕ −∂2ϕ
1+|∇ϕ|2

∂3ϕ

 =
1
∂3ϕ

PP >, P :=


∂3ϕ 0 0
0 ∂3ϕ 0
−∂1ϕ −∂2ϕ 1

 ,
and ϕ(t, x) := x3 + χ(x3)ψ(t, x′) is defined as the extension of ψ into Ω±. The choice of χ(x3) is slightly different from [2, 3, 5],
but it does not introduce any substantial difference because the expression of ∆ϕ is still written to be ∆ϕ := ∇ϕ · ∇ϕ = ∂i(Ei j∂ j)
and we have ∆ϕϕ = 0 in Ω±. The DtN operators satisfy the following estimates and we refer to [63, Appendix A.4] for the
proof.

Lemma D.2 (Sobolev estimates for DtN operators). For s > 2 + d
2 , −

1
2 ≤ r ≤ s − 1 and ψ ∈ Hs(Rd), we have

|Nψ f |r ≤ C(|ψ|s)| f |r+1.

Lemma D.3 (Remainder estimates for DtN operators). For s > 2 + d
2 and ψ ∈ Hs(Rd), we have

Nψ f = TΛ f + Rψ
Λ

( f )

with Λ defined in Proposition 7.8. The remainder Rψ
Λ

( f ) satisfies

|Rψ
Λ

( f )|r ≤ C(|ψ|s+ 1
2
)| f |r.

Lemma D.4 (Sobolev estimates for the inverse of the DtN operator). For s > 2 + d
2 , −

1
2 ≤ r ≤ s − 1 and ψ ∈ Hs(Rd), we have

|(Nψ)−1 f |r+1 ≤ C(|ψ|s)| f |r.

Lemma D.5 (Commutator estimate for the DtN operator and its square root). For s > 2 + d+1
2 and ψ ∈ Hs(Rd), we have

|[Nψ, a] f |r−1 ≤ C(|ψ|s)|a|r+1| f |r ∀0 < r ≤ s −
1
2
,

and
|[(Nψ)

1
2 , a] f |r− 1

2
≤ C(|ψ|s)|a|r+1| f |r ∀ −

1
2
< r ≤ s − 1.
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mathématique de France, 144(2):366–394, 2016.
[26] M. Ifrim, D. Tataru. The lifespan of small data solutions in two-dimensional capillary water waves. Arch. Rational Mech.

Anal., 225(3):1279–1346, 2017.
[27] M. Ifrim, D. Tataru. Two-dimensional gravity water waves with constant vorticity: I. cubic lifespan. Anal. & PDE,

12(4):903–967, 2018.
[28] M. Ifrim, D.Tataru. The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach. arXiv

preprint arXiv:2007.05668, 2020.
[29] T. Iguchi. The incompressible limit and the initial layer of the compressible Euler equation in Rn

+. Math. Methods Appl.
Sci., 20(11):945–958, 1997.

[30] T. Iguchi. Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac., 44(2):219–242,
2001.

[31] A. Ionescu, F. Pusateri. Global solutions for the gravity water waves system in 2D. Invent. Math., 199(3):653–804, 2015.
[32] H. Isozaki. Singular limits for the compressible Euler equations in an exterior domain J. Reine Angew. Math., 381:1-36,

1987.
[33] J. Jang, N.Masmoudi. Well-posedness for compressible Euler equations with physical vacuum singularity. Commun.

Pure. Appl. Math., 62(10):1327–1385, 2009.
[34] J. Jang, N. Masmoudi. Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure. Appl.

Math., 68(1):61–111, 2015.
[35] S. Klainerman, A. Majda. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible

limit of compressible fluids. Commun. Pure. Appl. Math., 34(4):481–524, 1981.

72



[36] S. Klainerman, A. Majda. Compressible and incompressible fluids. Commun. Pure. Appl. Math., 35(5):629–651, 1982.
[37] I. Kukavica, A. Tuffaha, V. Vicol. On the local existence and uniqueness for the 3D Euler equation with a free interface.

Appl. Math. & Optim., 76(3):535–563, 2017.
[38] J. Jang, I. Tice, Y. Wang. The Compressible Viscous Surface-Internal Wave Problem: Stability and Vanishing Surface

Tension Limit. Commun. Math. Phys., 343(3): 1039-1113, 2016.
[39] D. Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654, 2005.
[40] P. D. Lax, R. S. Phillips. Local boundary conditions for dissipative symmetric linear differential operators. Commun.

Pure. Appl. Math., 13(3):427–455, 1960.
[41] H. Lindblad. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun.

Pure. Appl. Math., 56(02):153–197, 2002.
[42] H. Lindblad. Well-posedness for the linearized motion of a compressible liquid with free surface boundary. Commun.

Math. Phys., 236(2):281–310, 2003.
[43] H. Lindblad. Well-posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys.,

260(2):319–392, 2005.
[44] H. Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math., 162(1),

109–194, 2005.
[45] H. Lindblad, C. Luo. A priori estimates for the compressible Euler equations for a liquid with free surface boundary and

the incompressible limit. Commun. Pure. Appl. Math., 2018.
[46] H. Lindblad, K.H. Nordgren. A priori estimates for the motion of a self-gravitating incompressible liquid with free surface

boundary. J. Hyperbolic Differ. Equ., 6(02):407–432, 2009.
[47] C. Luo. On the motion of a compressible gravity water wave with vorticity. Ann. PDE, 4(2):1–71, 2018.
[48] C. Luo, J. Zhang. Local well-posedness for the motion of a compressible gravity water wave with vorticity. J. Differ.

Equ., 332:333–403, 2022.
[49] T. Luo, Z. Xin, H. Zeng. Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler

equations with or without self-gravitation. Arch. Rational Mech. Anal., 213(3):763–831, 2014.
[50] N. Masmoud, F. Roussét. Uniform regularity and vanishing viscosity limit for the free surface Navier-Sstokes equations.

Arch. Rational Mech. Anal, 223(1):301–417, 2017.
[51] G. Métivier. Small viscosity and boundary layer methods: Theory, stability analysis, and applications. Springer Science

& Business Media, 2004.
[52] G. Métivier Para-differential calculus and applications to the Cauchy problem for nonlinear systems. Edizioni della

Normale, Pisa, (5) (2008).
[53] G. Métivier, S. Schochet. The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal.,

158(1):61–90, 2001.
[54] M. Ming, Z. Zhang. Well-posedness of the water-wave problem with surface tension. J. Math. Pures Appl., 92(5),

429-455, 2009.
[55] V. Nalimov. The Cauchy-Poisson problem. Dinamika Splošn. Sredy,(Vyp. 18 Dinamika Zidkost. so Svobod. Granicami),
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