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Abstract

We consider 3D compressible isentropic Euler equations describing the motion of a liquid in an unbounded initial domain
with a moving boundary and a fixed flat bottom at finite depth. The liquid is under the influence of gravity and surface tension
and it is not assumed to be irrotational. We prove local well-posedness by combining a carefully designed approximate system
and a hyperbolic approach which allows us to avoid using Nash-Moser iteration. The energy estimates yield no regularity loss
and are uniform in Mach number, and they are uniform in surface tension coefficient under the Rayleigh-Taylor sign condition.
We thus simultaneously obtain incompressible and zero surface tension limits. Moreover, we can drop the uniform boundedness
(with respect to Mach number) on high-order time derivatives by applying the paradifferential calculus to the analysis of the
free-surface evolution.
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1 Introduction

In this paper, we study the motion of water waves in R® described by the compressible Euler equations:

p(0; +u-Vyu=-Vp - pges, inD
0p+V-(pu)=0 inD (1.1)
p=pp) inD

where D = | {t} X D; with D, := {(x1, x2,x3) € R¥:-b<x3< W(t, x1,x2)} with b > 10 a given constant representing the
0<t<T
unbounded domain with finite depth occupied by the fluid at each fixed time ¢, whose boundary 09; is determined by a moving

surface represented via the graph %, := {(x1, x2, x3) € R3:x; = W(t, x1, x2)} and a flat bottom X, := {(x1, x2, x3) € R3: x5 = —b).
We will consider the case when X, N Z;, = 0. This is easy to achieve in a short interval by assuming [[¥(0, )|l ~®2) < 1.

In the first two equations of (1.1), u, p, p represent the fluid’s velocity, density, and pressure, respectively. Also, we assume
that the fluid is under the influence of the gravity pges, with g > 0 and e = (0,0, 1)". The third equation of (1.1) is known to
be the equation of states which satisfies

p'(p)>0, for p > po, (1.2)

where Py is a positive constant (we set 5y = 1 for simplicity), which is in the case of an isentropic liquid'. The equation of
states is required to close the system of compressible Euler equations. We mention here that in the case of a gas pp = 0, and we
shall not discuss this in the paper.

The initial and boundary conditions of the system (1.1) are

Do={x:0,x)e D}, and u =up,p =po on{t=0}x Dy, (1.3)
Dilop € T(0D), wsls, =0, pls, =0H, (1.4

where T(0D) stands for the tangent bundle of 9. The first condition in (1.4) is the kinematic boundary condition, which
indicates that the free surface boundary moves with the normal component of the velocity (see (1.16) for an explicit illustration).
The second condition is the slip condition imposed on the flat bottom X,. The last condition in (1.4) shows that the pressure
is balanced by surface tension on the moving surface X,. Here, o > 0 is called the surface tension constant, and H denotes
the mean curvature of the free boundary of the fluid domain. Note that H, T(0D) and p are functions of the unknowns u, p
and D. So these quantities are not known a priori and hence have to be determined alongside a solution to the problem. Let
D, := 0; + u - V be the material derivative. The equations modeling the motion of compressible gravity-capillary water waves
read

pDu = =Vp — pges, inD,
0ip+ V- (pu) =0, %nD, (15)
p = p(p), inD,
(l/l, p’ z))|t:0 = (I/l(), pOs DO),
equipped with the boundary conditions
p=ocH on Upgeritt XXy,
uz =0 on [0,T] X %, (1.6)

Dilsp € T(0D).

System (1.5) together with (1.6) admits a conserved quantity

Eo(?) ;=%f plulzdx+f pQ(p)dx+f(p—l)gX3dx+fg|¢/|2+0'(\/1+|§¢/|2—1) dx’,
D, Dy Dy %

where Q(p) := flp p(rr~2drand dx’ := dx; dx,. A direct calculation (cf. [70, Section 6.1]) shows Ej(H) = 0. Note that we
need a localized initial data such that E¢(0) < +co which can be achieved similarly as in [47, Section 7].

In general, the equation of state is p = p(p,S) where S denotes the entropy of the fluid and satisfies (0; + u - V)S = 0. It is required to have dp/dp > 0.
When S is a constant, we say the fluid is isentropic. Also, the assumptions p’(p) > 0 and p > po ensure the hyperbolicity of (1.1).



1.1 Fixing the fluid domain

We shall convert (1.5)-(1.6) into a system of equations defined on the fixed domain
Q = {(x1,x2,x3) : =b < x3 < 0}.

One way to achieve this would be to consider the Lagrangian coordinates. Nevertheless, here, we consider a family of diffeo-
morphism ®(z, -) : Q — D, characterized by the moving surface boundary. In particular, let

D(t, x1, X2, x3) = (X1, X2, (1, X1, X2, X3)) (L.7)
where
o(t, x1, X2, X3) = x3 + Y (x3)y(t, x1, x2). (1.8)

Here, y € C°(=b, 0] is a smooth cut-off function satisfying the following bound for some small constant §y > 0:

5
b llz=bor < D e Plcpo < C x =1 on (=,0], (1.9)
j=1

olleo +1°

for some generic constant C > 0.
We will write x” = (x1, xp) throughout the rest of this paper. It can be seen that

030, X', x3) = 1+ ¥ (xe3)w(t,x') >0, tel0,T],

for some small 7 > 0, which ensures that ®(¢) is a diffeomorphism.
Let x = (¥, x3) € Q. We denote respectively by

v(t, x) = u(t,d(t, x)), p,x)=pt 0 x)), q(t,x)=pt O, x) (1.10)

the velocity, density, and pressure defined on the fixed domain Q. Also, we introduce the differential operators

0
& =0,- 2%y, (1.11)
030
Vot =9, - . 4=l (1.12)
3¢
1
V¢ =0Y = —0s, 1.13
3 3 (93(10 3 ( )
and thus the following identities hold:
6{luoq)=a$‘}’ 6{Zpoq)=a$p’ a(lpoq):agq, a,:t’ 1’2’3' (114)
Moreover, setting o
V =0:=(0,,0,),
the boundary condition (1.6) is turned into
— v
g=-0V | —Y | on[0.T]x%, (1.15)
V1 + Wy
Op=v-N, N=(=01p,-0w,1)", on[0,T]xZ, (1.16)
v3=0, on[0,T]XZ,, (1.17)



respectively, where X = {x3 = 0} and £, = {x3 = —b}. Let Df = 8‘,” + v - V¥. Then the system (1.5) and (1.6) are converted into

pD?v + V¥¢q = —pge; in [0,T] x Q,

#p+ V¢ (pv) =0 in[0,T]x Q,

q=4q(p) in[0,T] X Q,

g=-0V- «/I?W) on[0,T] x %, (1.18)
oy =v-N on[0,T] xZX,

v3 =0 on [0,T] XXy,

v, 0, Wli=0 = (vo, Po> Yo)-

The second equation of (1.18), i.e., the continuity equation, can be re-expressed as
Dfp +pV?¥-v =0. (1.19)
Let ¥ = ¥ (g) := log p(q). Since ¢’ (p) > 0 indicates F'(g) > 0, then (1.19) is equivalent to
F'(q)Dfq+ V¢ -v=0. (1.20)

Also, by invoking (1.11)-(1.13), we can alternatively write the material derivative DY as
= 1
DY =0,+v-V+ —(©-N-08,p)ds, (1.21)
030

where v+ V = v10] + v20,, and N := (=0¢, —0,¢, 1). This formulation provides a good motivation to define the smoothed
material derivative in Section 3 and the linearized material derivative in Section 5.

1.2 The new formulation with modified pressure
Since the gravity term pges; ¢ L*(Q), we then use c’)fgo = 0;3 to rewrite the momentum equation as
pDfV + V¥4 = ~(p — D)ges,

where
q:=q+ gy, (1.22)

is the “modified” pressure balanced by gravity. Under this setting, the fluid pressure gradient V¥§ becomes an L?(Q) function
and the source term becomes (o — 1)ges which is also in L?(Q) if we assume the initial data py — 1 € L*(Q). We then directly
calculate that DY = v3, so the continuity equation (1.20) now becomes

F(@Dfq+V? v =F"(@gDf¢ = F'(q)gv3, (1.23)

and thus the compressible gravity-capillary water wave system is now reformulated as follows:

pD{v +V¥¢g = —(p — 1)ges in[0,T] x Q,

F (@D + V¢ -v=F"(@gv; in[0,T]XQ,

q=49p)Gg=q+g in[0, 7] xQ,

nglp—ﬁ-(\/li*”m on[0,T] X %, (1.24)
oy =v-N on [0, T] X Z,

v3=0 on [0, T] X Xy,

v, 0, P)l=0 = (v, o, Y0)-



1.3 The equation of states and sound speed

Part of this paper is devoted to studying the behavior of the solution of (1.24) as either the sound speed goes to infinity or the
surface tension o~ coefficient goes to 0. The former is known to be the incompressible limit, and the latter is known to be the
zero surface tension limit. Mathematically, it is convenient to view the sound speed c; := +/¢’(p) as a family of parameters. As
in [17, 18, 19, 45, 47], we consider a family {g (o)} parametrized by A’ € (0, c0), where

) = @ ()=t (1.25)

Here and in the sequel, we slightly abuse the terminology and call A’ the sound speed. A typical choice of the equation of states
q.x (p) would be the Tait type equation

qvE) =y 'Y -1, y>1 (1.26)

When viewing the density as a function of the pressure, this indicates

1

(;)zq + 1)y . and log (py(g)) =" log ((;)zq + 1). (1.27)

pr(q) = (
Hence, we can view ¥ (¢) as a parametrized family {F,(¢)} as well, where A = /ll Indeed, we have

Falq) =y log(?yq + 1). (1.28)
We again slightly abuse the terminology and call A the Mach number?. Furthermore, there exists C > 0 such that
C2 <T@ < CP. (1.29)
Also, we assume
7@ < C. 15,7 @) < CIF @) < CFi(q) (1.30)
holds for 0 < s < 4.

Remark 1.1 (Issue with the infinite depth case). Our proof in this paper also works for the case of infinite depth, that is,
D, ={(x', x3) : —00 < x3 < Y(t, x")}. Nevertheless, the equation of state should be modified such that the pressure also depends
on the depth. An example of this is to assume p satisfies %Ipzl = —g (cf. Jang-Tice-Wang [38]). Otherwise, the Mach number
A may also be x3-dependent. It should also be noted that there is no such issue for the incompressible gravity water wave model,
in which ¢ is a Lagrangian multiplier not related to the density.

1.4 An overview of previous results

The study of free-surface inviscid fluids has blossomed over the past two decades or so. Most of the previous studies focused
on incompressible fluid models, i.e., the fluid velocity satisfies divu = 0 and thus the density p is equal to a constant. In
this case, the fluid pressure p is not determined by the equation of states but appears as a Lagrangian multiplier enforcing the
divergence-free constraint. For the local well-posedness (LWP) for the free-boundary incompressible Euler equations, the first
breakthrough came in Wu [71, 72] for the irrotational case’® and Christodoulou-Lindblad [11] and Lindblad [41, 44] for the
case of nonzero vorticity. We also refer to [55, 75, 30, 6, 39, 54] for the irrotational flows and [14, 78, 46, 58, 59, 60, 3, 2, 68]
for the case of nonzero vorticity. In addition to the LWP theory, the incompressible and irrotational water waves have attracted
great attention for their long-time existence. We refer to Wu [73, 74] for the first breakthrough and numerous related works
[20, 21, 4, 31, 16, 24, 23, 25, 26, 69, 79] See also [9] for the bounded domain case and [27, 62] for some special cases when
the vorticity is nonzero.

It is well-known that one can reduce the incompressible Euler equations to a system of equations on the moving boundary
when the velocity is irrotational. This method cannot be adapted to the study of compressible water waves. The development for
free-boundary compressible Euler equations is much less, especially for the case of a liquid as opposed to a gas in a physical
vacuum satisfying p|ly = 0. For the gas model, we refer to [33, 13, 15, 49, 34, 28] and references therein. For the liquid

2The Mach number is defined to be M = u/cy. In the paper, the velocity is always of size O(1) (in L%(Q)) and thus M = O(1).
3The vorticity curl ug = 0, a condition that is preserved by the evolution



model, most previous works focus on the case of a bounded domain, and we refer to Lindblad [42, 43] and related works
[12, 45, 18, 22]. When the fluid domain is unbounded, that is, the compressible gravity water waves problem, the existing
literature neglects the effect of surface tension. Trakhinin [64] first proved the LWP for the non-isentropic case by using Nash-
Moser iteration which leads to a loss of regularity from initial data to solution. The a priori estimate without loss of regularity
is shown in Luo [47], but it is still difficult to use the energy constructed there to prove the local existence. Recently, in [48],
the authors proved the LWP for compressible gravity water waves without using Nash-Moser iteration.

About the incompressible limit of inviscid fluids, that is, the singular limit as Mach number goes to 0, there have been a lot
of studies for the Cauchy problem or the fixed-domain problems. We refer to [35, 36, 19, 57, 17] for “well-prepared initial data”
(div up = O(Q) and 9;ul,—¢p = O(1), wehre A is the Mach number) and [67, 8, 32, 29, 53, 1] for “ill-prepared (general) initial data”
(div ug = O(1) and d,ul,—g = O(1~")). However, much less is known about the incompressible limit of free-surface inviscid
fluids: Lindblad and the first author [45], the first author [47] and Disconzi and the first author [18] established incompressible
limit results for free-surface Euler equations with zero or nonzero surface tension.

It should be noted that the uniform energy estimates are not consistent with the ones obtained by the local existence result.
Moreover, the uniform boundedness (with respect to Mach number 1) of top-order time derivatives of the velocity is necessary
in [45, 47, 18], which is more restrictive than the commonly-used definition of “well-prepared initial data”. Very recently,
the second author [76] established LWP and the incompressible limit simultaneously with the same energy functional for
compressible elastodynamics, which can be directly applied to Euler equations without surface tension. Also, only 6?ul.-o =
O(1) is required in [76] which is an essential improvement of [45, 47, 18] and is also an optimal requirement of well-prepared
data for free-surface inviscid fluids without surface tension, as the propagation of Rayleigh-Taylor sign condition already
requires the uniform boundedness of Vd,q ~ 6>u. However, the method and observations in [76] heavily rely on the vanishing
boundary condition for the pressure on the free surface, which cannot be generalized to the case of nonzero surface tension or
two-phase vortex-sheet problems.

In this paper, we study the system of compressible gravity-capillary water waves. Specifically, we are further interested
in developing a “unified framework” in order to simultaneously establish LWP and the incompressible limit for compressible
inviscid fluids (not just Euler equations) with or without surface tension. These two limit processes are expected to be mutually
independent, that is, no extra relation between the Mach number and the surface-tension coefficient is required. Besides, we
manage to drop the boundedness assumption on high-order time derivatives by combining the pressure decomposition, inspired
by Shatah-Zeng [59, 60], with the paradifferential approach used in Alazard-Burg-Zuily [2, 3].

1.5 The main theorems

The first theorem concerns the local well-posedness for the motion of compressible gravity-capillary water waves modeled by
(1.24), provided that the initial data satisfies certain compatibility conditions. Particularly, we say the data (¥, vo, o), Where
qo = q(po), satisfies the k-th (k =0, 1,2,3,---) compatibility conditions if

(D)) qli=o = (D)) (@H)lizo, o Z,

(1.31)
0v3li=o = 0, on X,
hold.

Theorem 1.1 (Local well-posedness). Let b > 10, and o > 0 be fixed. Let (o, vo,p0 — 1) € H>(Z) x HH(Q) x H*(Q) be
the initial data of (1.24) that verifies the compatibility conditions (1.31) up to the third order, and || < 1. Then there exists
T > 0 depending only on the initial data, such that (1.24) admits a unique solution (¥(t), v(¢), p(t)) verifies the energy estimate:

sup E(f) < C(oc™")P(E(0)), (1.32)

0<t<T

where
E(t) := Eo(t) + E4(0),

3
Eo(t) := llp(0) = 11 + glul + INF @a0IF + D INF @afall, 33)
k=1 .

4 3
Ea®) = ) (1051 + INTVOw®l_) + 104015 + > 18503015, + INF (@ a(ll;.
k=0 k=1



is the energy of (1.24) expressed in terms of (i, v, ¢), and P(-) is a generic non-negative continuous function in its arguments.
In addition to this, we have

sup |y (f)le < 10. (1.34)
1€[0.7]

Lastly, there exists a constant C, depending on ¥, v and ¢y, such that E(0) < C.

In above and throughout, we use || - ||; and | - |, to represent respectively the interior Sobolev norm || - ||75() and the boundary
Sobolev norm || - [|gs(s)-

Remark 1.2. In Appendix B, we show that we can construct smooth initial data (¢, vo, §o) that satisfies the compatibility
conditions up to order 3. These compatibility conditions are required so that we can show E(0) < C by adapting the arguments
in [18, Section 4.3].

Remark 1.3. The second line in (1.33) is the L?-part of the energy, where ||(§(t)||g is ¥'(q)-weighted, which ties to the Mach
number. That is why we write ||0gl|3 instead of ||||4 in the first line.

The next main theorem concerns the incompressible and zero surface tension limits. We consider the Euler equations
modeling the motion of incompressible gravity water waves satisfied by (&£, w, g;,) with localized initial data (wy, &y):

Dfw+V¢p =0 in[0,T] x Q,

Ve ew=0 in [0,T] X Q,

P =Gin + 8¢ in [0, 7] xQ,

p=g¢ on [0, T] X Z, (1.35)
0E=w-N on[0,T] XX,

ws =0 on [0,T] X X,

(w, Oli=0 = (Wo, o),

where we slightly abuse the notation by still setting ¢(f, x) = x3 + y(x3)&(f, x') to be the extension of & in Q. Denote by
W7, v, pt) the solution of (1.24) indexed by o and A, we prove that (Y7, v, p7) converges to (¢, w, 1) as 1,0 — 0
provided the convergence of the initial data in a suitable sense. Note that the convergence of the compressible initial data
implies that it is also localized.

Theorem 1.2 (Incompressible and zero surface tension limits). Let (Lpg , vé 7, pO — 1) be the initial data of (1.24) for each
fixed (1, 0) € R* x R, verifying:

a. The sequence of initial data (l//g 7, vé ”,po —1) e H3(Z) x H*(Q) x H*(Q) satisfies (1.31) for 0 < k < 3, and |l//0 o <

b. W7 vy pp 7 = 1) = (&.wo,0) in HHZ) x HY(Q) x H>(Q) as 4,0 — 0.
c. Both incompressible and compressible pressures ¢ and g;, satisfy the Rayleigh-Taylor sign condition

03¢ > ¢y >0, on{r=0}xZ, (1.36)
—03¢in 2 co >0, on{r=0}xZ, (1.37)

for some ¢y > 0.

Then it holds that

(lﬁll’o—’ V/Lo-ap/l’o— - 1) - (E w, 0)
weakly* in L=([0, T']; H*(Z) x HY(Q) x H3(Q)), and strongly in C([0, T]; H4(2) x H*

loc loc

%(Q) x H~9(Q)) for any 6 € (0, 1].

loc

Theorem 1.2 is a direct consequence of uniform-in-A4, o estimates for the compressible gravity-capillary water wave system
(1.24) and the Aubin-Lions lemma. Indeed, the energy estimate (1.32) established in Theorem 1.1 is already uniform in Mach
number A. In addition to this, one can show that (1.32) is uniform in the surface tension coefficient o~ provided that the
Rayleigh-Taylor sign condition (1.36) holds initially.

Remark 1.4. Although our energy functional E(f) is expressed in terms of §, the incompressible limit is given in (7, v+, p*)
which converges to (£, w, 1). We do not expect that the compressible pressure g converges to the incompressible pressure ¢;,, as
A — 0, because the former is the solution to a quasilinear symmetric hyperbolic system but the latter appears as a Lagrangian
multiplier. Indeed, as was indicated by [45, 47, 76], it is the enthalpy h(p) := f v q'(r)/r dr of the compressible equations that
converges to the incompressible pressure g;,. On the other hand, the convergence of |jo*” — 1||3 can be easily proved if we write
the continuity equation to be Df(p — 1) = —p(V¥ - v) and use Gronwall’s inequality for its H>-estimate.



It should be noted that the energy (1.33) requires that the time derivatives up to at least order 3 are bounded initially, i.e.,
q(0) = O(1), 0 < k < 3, while 8/G(0) = O(17"), or equivalently the uniform boundedness for the top-order time derivatives
of the velocity d*v = O(1). This condition can certainly be weakened. In fact, the propagation of the Rayleigh-Taylor sign
condition only requires the boundedness of 4,0;¢, or equivalently 3>v = O(1), not including higher-order time derivatives.
Motivated by this, we prove the following improved estimates.

Theorem 1.3 (Improved uniform estimates in A, o). Under the hypothesis of Theorem 1.1, if we further assume (¢, vo, po —
1) € HZ) x H(Q) x H>(Q) satisfying the compatibility conditions up to 4-th order and assume the Rayleigh-Taylor sign
condition (1.36) holds for the initial data of (1.24), then

sup G(t) < P(€(0)), (1.38)

0<t<T
holds uniform in both A and o, where
C(1) := Eo(1) + €4(1) + E5(1),
C4(1) := VUG + 104115 + | Vorwls + Wl + 110, 0,413 + | Voo l; + 0415 5
+1107v, A8 4115 + | Nod7wl; + 187015 5 + 10,917 5

4
5 (1.39)
+ D N, DI + INTAGYR + A5yl s
k=3

*k=4+

7 q)

2
RS NG R v 7

5
Es) = ) [k, (F (@)
k=0

and (k — 4), := max{0,k — 4}.

Remark 1.5. The above estimate only requires Vd,g(0) ~ aﬁu(O) to be bounded (with respect to 1) because we need to control
the evolution of the Rayleigh-Taylor sign, namely ||0;034llr~(x), When taking the incompressible and zero surface tension limits
simultaneously. However, we do not require 3*v(0) to be uniformly bounded for k > 2. On the other hand, the propagation of
the Rayleigh-Taylor sign condition requires the boundedness of d,q, so we have reached the minimal requirement for the initial
data being “well-prepared”.

List of Notations

e (Fixed domain and its boundary) Q := {x € R® : =b < x3 < 0}. x = (x,x2,x3), and ¥’ = (x;,x2). Z:={x e R® : x3 =
0}, 3y ;= {xeR3: x3 = —b). B B

o (Tangential derivatives) 7o = 0;, 71 = 01, T2 = 02, T3 = w(x3)03, where w(x3) € C*(=b,0) is assumed to be bounded,
comparable to |x3| in [-2, 0] and vanishing on £ U %,

o (L¥-norm) || - lleo := Il llz=(@)s |+ oo := 11+ llzeo(z)-

e (Sobolev norms) || - |Is := I - lar(), and | - |5 := I - |-

e (Continuous functions) Py := P(E(0)), Pf := P(E“(0)). P(---) denotes a generic non-negative continuous function in its
arguments.

o (Commutators) [T, flg = T(fg) — f(Tg), IT, f,g] :=T(fg) — T(f)g — fT(g) where T is a differential operator and f, g
are functions. .
o (Equality modulo lower order terms) A = B means A = B modulo lower order terms.

2 An overview of our methodology

Before going to the detailed proofs, we will briefly introduce our methodology for deriving energy estimates that are uniform
in both surface tension and Mach number, and the construction of solutions to the linearized and the nonlinear problem via a
carefully-designed approximation scheme.



2.1 Uniform estimates in Mach number and surface tension

Let us temporarily focus on the a priori energy estimate of the original system (1.24) instead of the construction of solutions.
Indeed, the strategies on the a priori estimate will illustrate why we need the approximation scheme defined in the next subsec-
tion.

2.1.1 Div-Curl analysis and reduction of pressure

The first step is to reduce the normal derivatives for (1.24) and we start with the control of ||[v|l4. Using the div-curl decomposi-
tion, ||v||4 is bounded by [|V¥ x |3, |[V¥ - v||s and [l8*vllo, where the curl part can be directly controlled by analyzing its evolution
equation. The continuity equation reduces the divergence to || ’(q)D qlls which is a tangential derivative and includes a time
derivative. As for the pressure ¢, the momentum equation indicates that —V§ ~ DYv, which again converts a normal derivative
to a tangential derivative. This reduction can also be applied to the time derivatives of v and ¢ up to the third order. As a
consequence, the control of the full Sobolev norms of v and ¢ (and their time derivatives) is reduced to the control of 7 “v and
T (la| = 4) in L2(Q) with appropriate weights in Mach number where 7 represents any of the tangential derivatives d;,d or
w(x3)03 where w(x3) € C*(=b,0) is bounded, comparable to |x3| in x3 € (-2, 0) and vanishing on X U %;.

2.1.2 Tangential estimates: Alinhac good unknowns

Define 7¢ to be 6;”“5‘1"5‘2’2((1)63)”3 with |a| := g + a1 + @ + @3 = 4. In 7 “*-tangential estimates, we need to commute 7 ¢
with Vf. When i = 1, 1,2, the commutator [7 ¢, Vf] £ includes the term (83¢) "' 770,005 f, where the L*(Q)-norm of 78;¢ is
controlled by |7 *9;o. However, the regularity of ¢ obtained in 7 “-estimates is | \/57“"61/40. Thus, the direct control of the
aforementioned commutator fails to be uniform in 0. To overcome this difficulty, we introduce the Alinhac’s method which
reveals that the “essential” leading order term in 7 *(V¥f) is not V(7 “f) but the covariant derivative of F (i.e., V¥F), where
F=7°f- ‘7"%,06‘@7 f. Here, F is the so-called Alinhac good unknown associated with f, which satisfies

TOVEf = VEF + G(f), TDff = DYF + D(f), 2D

where ||€;(f)llo and ||D(f)|lo can be directly controlled. In other words, the reformulation in Alinhac good unknowns takes
into account the covariance under the change of coordinates such that we can proceed with the tangential estimates in the
same way as the L?-estimate and avoid the additional regularity on the nonlinear coefficients that cannot be controlled in a o--
uniform fashion. Such remarkable observation was due to Alinhac [7] and was first applied (implicitly) to free-surface inviscid
fluids by Christodoulou-Lindblad [11]. See also [50, 70] for the explicit calculations for the inviscid limit of incompressible
free-boundary Navier-Stokes equations.

Let V,Q be the Alinhac good unknowns of v, g associated with 7% and then we obtain several major terms from the
tangential estimates

d1 ,
e ( f pIVE +F (q)|Q|2dfv,)
(2.2)
=ST+ RT+ fT"Z][T”,v',N] dx’ - f‘i’“f][‘T”,(%v',N] dV, + controllable terms,
b Q
where dV; := 93¢ dx and
ST := - f‘i’"(o‘ﬂ)a,’i"’zpdx’, RT := - f(—&q)’]"’zﬁo”’,‘i““w dx. 2.3)
b p)

Also note that 7% only contains d; and donTuU %, as the weight function w(x3) vanishes on the boundary.
For the term ST, invoking the explicit formula for the mean curvature and integrating V- by parts, we obtain

TVl V- T“VW

- —— +...
2 d ’ 2.4
! EVLEVeR s |V¢/|2

which together with the following inequality gives the boundary energy | \/Eﬁ"ngl%:

la? __IVy-a? P

V1 +[VyP \/1 +|W|23 ) \/1 +|W|23‘

Ya € R?,

(2.5)




For the term RT, it produces the boundary energy without o-weight provided that the Rayleigh-Taylor sign condition*
—03qolz = co > 0 holds. However, the Rayleigh-Taylor sign condition is only assumed when taking zero surface tension limit
but not in the proof of local well-posedness for each given o > 0. Therefore, we have to use the +/o-weighted energy to
control this term when proving local well-posedness. Indeed, it is the direct control of |T “lo and |0,T *Yo that yields the only
possibility that the energy estimate depends on 0.

The remaining two terms contributes to a crucial structure for the incompressible limit. When 7 = 67 is a full time
derivative, we cannot control them individually due to a loss of Mach number weight. Instead, we shall combine them together

and use the divergence theorem to reduce a time derivative on ¢. The leading-order terms are
d
4 fz 8*qo’v - o,N dx — 4 fg 8*GoN - 930y dx = 5 fﬂ (670:40N + 3}G0,0:N) - O vdx + - - - ,

which can be directly controlled under time integral.

Combining the steps above, we finish the control of Alinhac good unknowns V, Q. Then by using the definition of good
unknowns, we know ||[F—7" fllo < |7 *¢¥|oll0fll- Which is already controlled by the boundary energy of . Therefore, the a priori
estimate for the system (1.24) is closed, which is uniform in Mach number and also uniform in o under the Rayleigh-Taylor
sign condition.

2.2 Improved incompressible limit

The uniform estimates obtained above require the uniform boundedness of top-order time derivatives of v, which is far more
restrictive than the usual definition of “well-prepared initial data” (V¥ - v|=g = O(1), d,v|;=9 = O(1)). A natural question
is whether we can remove such boundedness assumption on high-order time derivatives, which is a necessary step to find a
possible way to study the case of “ill-prepared data” (V¥ - v|,—g = O(1), 8;v|;=o = O(A7")).

2.2.1 Difficulties in free-boundary problems

There have been numerous results for fixed-domain problems or the Cauchy problem [35, 36, 19, 57], but this is rather nontrivial
under the free-surface setting due to the interaction between the free-surface motion and the interior pressure waves. Indeed,
when commuting 7 ¢ with V¥ when 7 contains both spatial derivatives and time derivatives, the usage of Vg ~ 9,v actually
produces an extra time derivative without A-weight. When 6*v is assigned with a different A-weight from that of % in the
energy functional, there exhibits a loss of A-weight due to the substitution Vg ~ d,v, which is actually caused by the free-
surface motion. The second author [76] dropped such assumption for the case of zero surface tension, but this result heavily
relies on the vanishing boundary value of g as stated at the end of Section 1.4.

The above analysis indicates us to avoid the interior tangential estimates. Instead, when treating the time derivatives, we
shall use another div-curl inequality

IXIE < CW g o) (IXI + 199 - XIE, + 9% x XIE, +1X-NE, ), Vs> 1, (2.6)

in order to directly analyze the evolution of the free surface. In view of the new energy €4(¢) defined in (1.39), we shall apply
this inequality to X = 6,2v and the kinematic boundary condition indicates us to control |af¢/|1_5 without any weights of A, 0.

2.2.2 The evolution equation of the free surface and its paralinearization

The evolution equation of the free surface is derived by time-differentiating the kinematic boundary condition and invoking the
— — —

momentum equation, which leads to pD, ¢ = =034 — (p — 1)g with D, := Df|s = 8, + v - V. We shall further differentiate this

equation with 6 and convert the Neumann boundary value of § to a Dirichlet-type condition in order to utilize the boundary

condition § = o“H. We introduce the Alinhac good unknown Q := 87§ — 87¢d%¢ to obtain

pﬁzaf(//: N -V*Q+---

The next step is to separate the contribution of ¢ on the boundary from that in the interior. We notice that Q satisfies a wave
equation
P (DEYQ-AQ=---inQ, Qlsz=00*H - g0y, 0:Qls, = -0pg.

4The Rayleigh-Taylor sign condition is just a constraint for the initial data. One can easily prove its short-time propagation by using the boundedness of
0:03q. See [48, Section 3.7].
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Inspired by Shatah-Zeng [59, 60], we define Q = Q; + Q,, where

—A"DQ;, =0in Q, Qh =Qon Z, (93@11 =0on Eb,
-A*Q,, = —pA(D*Q+---inQ, Q,=00nX, 8:Q, =0d:QonY,.

Under this setting, we obtain the following evolution equation
pﬁf@fw + Ny (OPH) — Ny (03q0%) = —N - V¥Q,, + -+ onX 2.7)

where 9, is the Dirichlet-to-Neumann (DtN) operator associated to (Q,y) and we refer to Definition 7.1 for details. Since
DtN operator is a first-order operator with positive principal symbol and the mean curvature operator is a second-order elliptic
operator, we formally have

pD; (P) + 0 Cr (- WO () + (—3q) Ca- - KONPY) = =N - V¥Q + -+ onX
>0 >0

Thus, we can adopt the paralinearization used in Alazard-Burq-Zuily [2, 3] to calculate the principal symbol of their composi-
tion in order for an explicit uniform-in-A energy estimate of |37y, 5 and | Vod?yl; (and also [6%4],, uniformly in o, under the
Rayleigh-Taylor sign condition). We refer to Section 7.3-7.5 for detailed computations.

2.2.3 Necessity of the weighted fifth-order energy

Note that the new energy €(7) defined in (1.39) also includes a A>-weighted fifth-order energy. This is actually necessary to
control the contribution of pressure wave, namely the term [N - V¥Q,|; 5. Since Q, has zero boundary value on X and its
Neumann boundary value on X is easy to control, we can convert it to the control of ||A¥Q,,||; which further requires the bound
for ||/126f5||1 , which is exactly a /IZ-Weighted fifth-order term.

Note that the control of E5(¢) in (1.39) is completely parallel to that of E4(f) defined in (1.33), as the structure of these two
energy functionals are exactly same except that each term of Es is assigned with a A2-weight. One can check that the control of
all commutators arising from tangential estimates leads to no loss of A4 weight and we refer to Section 7.5.2 for details.

Remark 2.1. The combination of the pressure decomposition and the paralinearization of the free-surface motion allows us to
“separate” the contribution of free-surface motion (in particular, the surface tension) and interior pressure waves, and these two
parts are related via the term N - V¥Q,, which naturally leads to the fifth-order energy. This method essentially improves the
previous results [45, 47, 18] where the uniform boundedness of top-order time derivatives of v is necessary. Also, our method
no longer relies on the vanishing boundary value of pressure as in [76]. Thus, we believe that the approach developed in this
paper can be applied to other “coupled” fluid models or the vortex-sheet problems’. Furthermore, our method may open the
possibility to study the incompressible limit of free-surface fluids with ill-prepared initial data.

2.3 The approximation scheme to prove the existence

2.3.1 Motivation to design the approximation

For free-surface inviscid fluids, the local existence is not a direct consequence of the a priori estimate. For example, if we try
to do Picard iteration for the linearized system whose coefficient ¢ is replaced by a given function ¢, then a crucial difference
from the nonlinear system is that we may no longer obtain the boundary regularity from the analogue of ST term as in (2.4).
Specifically, we consider (2.4) with full spatial tangential derivatives:

- v - d 9V Vi - V) (V) - 3V
ST:o-fa"V{—fo)a,@”wdx’=—g— W TV TV gy 2.8)
s 1+ V2 2de s [ mar —. :
+ [Vl 1 +|Vi?
where the second term has no control because inequality (2.5) is not applicable here. Such a linearization yields the loss of a
tangential derivative. Besides, the unknowns with full time derivatives only have L>(Q) integrability and thus have no boundary

regularity. Some crucial cancellations no longer hold after linearization. Therefore, it is natural to regularize the coefficient ¢
in both 7 and x’ variables.

3The second author recently applied this method to the incompressible limit for current-vortex sheets in ideal compressible MHD. See [77]. This is, to our
knowledge, the first result about the incompressible limit of inviscid vortex sheets.
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2.3.2 The approximation system: important steps of its construction

For each x > 0, we define A, to be the standard convolution mollifier on R? with parameter « > 0 and then define  := A2y
and @(t, x) = x3 + y(x3)¥(t, x’) to be the smogthed coeflicients. We introduce the following nonlinear system with artificial
viscosity whose coefficients are replaced by ¢, ¥ that is asymptotically consistent with the original system (1.24) as k — 0,.

pD{v + V9 = —(p — 1)ges, in[0,71x Q,
F'(@)D g + V¢ -v = F'(q)gvs, in[0,7] x Q,
qa=qp).4=q+gp in[0,T] x Q,
i = gl — oV - | 2L 21 = A)v-N 0,T] x =, 2.9
qg=gy f (W)H( Jv-N) on[0,T]x (2.9)
oy=v-N on [0,T] X Z,
V3 = O on [09 T] X E[h
(Vsp, ¢)|z=0 = (Vg,pg, 'ﬂg)
Here,
V?:@?:a-_%@ i=1,2 V¢=3¢=L53 (2.10)
i i 1 63%5 9 bl 9 3 3 63¢ ) .
— _ 1 —
DY =0,+v-V+ —=-N=0,¢)0;, 2.11)
0z

and v := (v1, ), V := (41, d,) are the horizontal velocities and derivatives, A := V-V = 8% + 6% is the flat tangential Laplacian,
N := (—BIJ, —62@, 1)" is the smoothed Eulerian normal vector and N:= (=019, —0,9, 1)7 is the extension of N into Q.

The tangential smoothing method was first introduced in [14] to study incompressible Euler and then was generalized to
study various free-surface inviscid fluids in Lagrangian coordinates. However, the free surface is now assumed to be a graph,
and the construction of a nonlinear approximate system is quite different from Lagrangian coordinates. The following issues
are crucial and very technical.

e Design the smoothed material derivative D{. When restricted on X, the weight function in front of d; in DY should
agree with the kinematic boundary condition. Otherwise, there will be a boundary mismatched term that cannot be
controlled when studying %E(r). Therefore, we cannot mollify ;¢ in DY.

¢ Introduce the artificial viscosity to control the mismatched terms. The tangential mollification leads to some mis-
matched terms that should be controlled by the artificial viscosity term.

a. The commutator D(f) in (2.1) now involves a new term e(f) = 9,7 *(p — go)ﬁf f which should be bounded by
K|V, T |y after using the mollifier property (3.6).
b. The analysis of the ST term introduces two extra commutators, whose control requires the bound for x|V, 7|

To control the above two crucial mismatched terms, we introduce the artificial viscosity term —K*(1 - Z)@,zp which gives
the energy [k(0)7 “0|y to enhance the regularity of d;i. Due to technical reasons, it should be noted that the coefficient
must be «? instead of any other power of « in the artificial viscosity. The details are explained in Section 4 below (4.85).

It should also be noted that the design of the linearized «-regularized problem is also crucial and technically complicated,
as we must define the “new free surface” in each step of iteration and the boundary conditions must keep consistent with the
nonlinear problem. We refer to those rather technical constructions to the beginning of Section 5.

Now, once the coefficients involving ¢ are regularized in both ¢ and x” variables, the loss of derivatives can be compensated
by such regularization for each fixed « > 0. That is, the existence of nonlinear approximate problem (2.9) is resolved for each
fixed « > 0. Based on the strategies introduced in Section 2.1 and the above analysis of the mismatched terms, we can derive
the uniform-in-« a priori estimates for the nonlinear approximate system (2.9). We can also prove the initial data (vo «, o> Yox)
of (2.9) converges to the initial data of (1.24) as k — 0. This completes the proof of the existence of the original system (1.24).

3 Nonlinear approximate x-problem

The first step to prove the local well-posedness is to introduce our approximation scheme. For each k > 0, we construct a
suitable approximate problem indexed by k which is asymptotically consistent with (1.24).

12



3.1 The tangential mollification

Let £ = £(x') € CX(R?), satisfying 0 < £ < 1 and fRZ {dx" =1, be a standard cut-off function supported in the closed unit ball
B1(0). For each « > 0, we set

LX) = k2N,

and for each f : R? — R, we define
Acf(x) = Lz G =2 f()d7. (3.1
Also, for each g : R3 - R, we set
Ag(x',2) = fR G =g x5) dZ (3.2)

In other words, when acting on a function of three independent variables, A, becomes the smoothing operator in the tangential
direction only. The next lemma records the properties that A, enjoys. This will be frequently used (sometimes silently) in the
rest of this paper.

Lemma 3.1 ([48, Lemma 2.6]). Let f : R> — R be a smooth function. For each x > 0, we have:

Al S Iflys Vs> =0.5; (3.3)
I0Aflo < K *Ifli=s, Vs €[0,1]; (3.4)
If = Acfleo < VlOflos 3.5)
If = Acfler < KIOf Lo (3.6)
Also, for a smooth function g : R3 > R, then

IAglls < llglls, Vs> 0. (3.7)

Moreover, let i : R — R, and [A,, f1h := A(fh) — fA(h). Then we have:
[Aw £1glo < |fl=lglo, (3.8)
(A £1glo < |flw=lglos 3.9)
[ A, £18glo < &1flw110glo. (3.10)

3.2 Construction of the «-problem

Let J = Aflﬂ, o(t, x) = x3 + )(()g)@(t, x') = A,%go(t, x), and N = (—61% —62% 1)T. Then we set the approximate k-problem of
(1.24) to be

pD?y + V95 = —(p — 1)ges in[0,T] X Q,
F'(@)D g+ V¢ -v = F'(q)gv3 in[0,7] x Q,
9=q9p)q=q+gp in[0,7]xQ,
j= gl — oV - [ 21 = A)v-N 0.T] x =, 311
q=2gy i’ (W)-H(( J(v-N) on[0,T] X (3.11)
oy =v-N on [0,T] XX,
v3=0 on [0, T] XX,
(V9 ps ll/)|t20 = (vk,()’ pk,09 d/K,O)'
Here,
- 3
oF =0,- 22y, (3.12)
09
— — a s
Vet =0,- 2%, a=1,2, (3.13)
03¢0
|
V¢ =§% = —06s, 3.14
3 3 63(p 3 ( )
DY =8 +v-V?, (3.15)

13



and A = 0% + 63 is the flat tangential Laplacian. Thanks to (3.12), the smoothed material derivative Df is equivalent to
_ —_ 1 _
DY =0,+V-V+ —=-N=08,p)0s, (3.16)
d3p

where N := (=019, —0>9¢, 1)T. Note that we do not replace v - N- O by v- N- O, in the last term, as this would generate a
severe structural mismatch in the boundary estimates.

The approximate «-system (3.11) is asymptotically consistent with (1.24) as k — 0. Furthermore, the artificial viscosity
k(1 — A)(v - N) in the modified boundary condition

Vv
1+ [V

5I=g$—0'§~ +K2(1—K)(v-ﬁ) onX

is necessary to control the terms generated due to the loss of symmetry in (3.11).

4 Uniform energy estimates for the nonlinear x-problem

For each fixed « > 0, we denote by (V(¢), o“(¢), G“(¢), ¥*“(¢)) the solution of the nonlinear «-system (3.11). Let o > 0 be fixed.
We aim to show that {v(r), g“(¢), p“(t), ¥*(¢)}«>0 has a convergent subsequence that approximates the solution to the original
system (1.24) as k — 0 in some time interval [0, 7] with T being independent of k. From now on, we drop the superscript «
when analyzing the nonlinear k-approximate system for the sake of clean notations. Let

E“(1) =E{(1) + EY(0),

3
E5(t) =llo() = 1 + elAy + I NVF @a0IF + D INF @R,
k=1

4 3
_ Rt . . 4.1)
E{0) = )" 100v0IE, + oV AR, + | NF@aw)|| + 10301 + Y 10kaaii.,
k=0 k=1
P I e )
+|[NF@atao| + Y f Ky dr.
k=0 V0
Theorem 4.1. For each fixed o > 0, there exists some 7, > 0, independent of x and /7 ’(g), such that
E“(t) < P(E*(0)) =: Py, forevery0<t<T,. 4.2)
Thanks to the Gronwall’s inequality, the key step of proving Theorem 4.1 is to show that
T
sup E“(1) < Py + f P(E*(1)) dt, 4.3)
0<t<T 0

for some 7 > 0 chosen sufficiently small. The control of E“(f) will be divided into 3 steps, i.e., the basic [? estimate, the
div-curl analysis, and the interior tangential estimates. We remark that the compatibility conditions on X have changed due to
the artificial viscosity. The new compatibility conditions, expressed in terms of g, are

(DY limo = (DY (=g + o H)limo + (D) (F(1 = D)+ N)) =0,k =0,1,2,3, on X (4.4)

We however are still able to construct initial data satisfying (4.4) in terms of (Y0, V«.0, gx0), that is uniformly bounded and
converges to (Yo, Vo, o) as kK — 0. The details can be located in Appendix C.
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4.1 [*-estimate
First, we establish L?-energy estimate for (3.11). Invoking Theorem (A.3), the identity V¥ = e3, and then integrating by parts,
we have:

1d —— _ 1 _
pIVI O3pdx = — f v VGospdx - f(p— Dgvidspdx + —prVIzé‘eﬁt(cp—fp) dx
2dr o o 2 Ja

= f G(V? - v)dsgdx + f vigdx' - f dqdx — f YW dx’ 4.5)
Q DN ) b
— 1 —
- f (p = Dgvsdspdx + 5 f PIV830,(% — @) dx.
Q Q
Plugging the continuity equation into the first integral, we get
’ 1 o, ’ v 1 , . —
f (V% - v)dspdx =~ 5 — f F(@lgPospdx + 5 f D} (™ F (@)lgl* dx + 5 f T (@I 9:0,@ ~ ¢) dx
Q Q
+ f GF ' (q)gv303p dx (4.6)

<= s INF @ + | NF @[, (1070l + 1950 - ke + | V7))

2dt
Here and in the sequel, we employ the notation A < B to mean that A < CB for a universal constant C. The boundary integral
on X, vanishes due to v3lz, = 0. Then we plug g = -0V - (V—T’) +i3(1 - K)@,zp into the first boundary term in (4.5) and

integrate by parts to get:

2
| dx, A.7)

vy — _
—fﬁ,tpqu’ = —Uf — |- Vo dx’ +f k(OO
o b /1 + Vo z‘

where (-) denotes the Japanese bracket. To treat the first term, we use the self-adjointness of A, in L?(Z) to move one A, from
Vi to d,:

o f YW | Fewdr = o f YAY VA 4 _ f VAW - ([A N Vo) dx
= z |V

\H + |v$|2 z (48)

Vo— |~1|l VAKw f BN | VoA + P(|W|W..w)aj«/c‘r€zw§ +g'ﬁa,¢z
2 b

Now, we get the non-weighted L2-boundary energy from the second boundary integral in (4.5):
T 1d 2 ’
— | g0pdx’ = —5— | gAYl dx. (4.9)
s 2dt Jo

On the other hand, show the L?-estimate for p — 1 for the energy inequality. We use D?p = D?(p —1)and D?’gE =v3+0,(0 — )
to rewrite the continuity equation in terms of p — 1:

Di(p—1)+p(V% -v) = =0, — ¢).

Testing this with p — 1 in L*(Q) and using the mollifier property (3.6), we get

1d —
P 15 < llo = Uo(dvllo + xld8,lo). (4.10)

T _ 2
[ [ Je@aul,
0 z

Let

2 — 2
ES() = VR + H T @i, +llo - 113 +|\/§AK¢|(2)+'\/EVAK¢//0+ v’ dr. @.11)
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Since 1 < |N| = \/1 + (010)2 + (829), we combine (4.5)-(4.10) and obtain

T —_—— —_—
EQ(T) - Ej(0) < f P(IVlwr, 10Vlleo, [€0Bprlo.5) E (1) dt, (4.12)
0

after choosing & > 0 suitably small in (4.8). Here, we note that, using d39,(¢ — ¢) = x’(x3) (O,J(t, x') — ot x’)) together with
(1.9) and (3.5) of Lemma 3.1, we have

1030:@ = @)oo < 101 = Do S VKIBOWlo s, (4.13)

where right side is directly controlled by invoking 0,y = v - N=-@- V) + v3 on T and the Sobolev trace lemma.

4.2 Reduction of pressure

We show how to reduce the control of the pressure to that of the velocity when there is at least one spatial derivative on g. This
follows from using the momentum equation pD{v = =V¥§ — (p — 1)ge;. Particularly, by considering the third component of the
momentum equation, we get

~(359) 933 — (p — 1)ges = pDfvs. (4.14)

Since 93¢ is bounded from below, i.e., there exists ¢y > 0 such that 93¢ > ¢y, then

193dllo Sg.co llo = Llo + llollsallDY vllo, (4.15)

where D?V3 =03 +7- Vs + #(v ‘N- 0,0)03v3. This implies that the L?>-norm of 834 is reduced to the L>-norms of p — 1,

6,\/3,5\13 and w(xg)_03 v3. Here w(x3) € C*(—b,0) is assumed to be bounded, comparable to |x3| in [-2, 0] and vanishing on .
Let 7 = 0, or 0 or w(x3)d3 and D = 0 or d,. The above estimate yields the control of ||[Dds4l|y after taking D*, k > 1 to
(4.14). Specifically, at the leading order, ||D*d34l|o is controlled by

C(g, o) (IF"(@D*gllo + IF (@)D" @llo + llpllL 1D T vllo) - (4.16)
In addition, by considering the first two components of the momentum equation, we have:
— 0i4 = —(059) "' 0,203 + pD¥vi, i=1,2. 4.17)

and thus the control of 551 is reduced to 93¢ and D‘?v,- =0+ -V + 030) " (v - N - 0;)03v;.
Lastly, using (4.14) and (4.17), we obtain

193¢llco Sg.co lo — Tl + ol 1DF V3o, (4.18)
108 Sg.c-t 10cllO3lleo + llpllooll D Pl (4.19)

Thus, . N
10glles S cpczt PAFcor lolloo) (Il = Ulew + IDF ¥l - (4.20)

Invoking the definition of D?v, (4.20) implies that ||0||« is reduced to 9,v, dv and w(x)03v for some weight function w(x)
vanishing on I'.

4.3 Div-Curl analysis

To estimate the Sobolev norm of v, we can use the div-curl analysis to convert one normal derivative to the divergence and curl.
First, we record the well-known div-curl decomposition lemma and refer to [22, Lemma B.2] for the proof.

Lemma 4.2 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s > 1, one has
IXIE S CQss Vb (XI5 + 1Y% - X2, + 1IV% x XIE, + 116°X115) 4.21)

for any multi-index « with || = s. The constant C (|Z| 5 ﬁ@wm) > 0 depends linearly on |E|§.
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We will apply Lemma 4.2 to ||6v|4_x for O < k < 3. Starting from k = 0, we have:
IV < CQlas [Vl (VG + 1IV7 - VIE + 197 x vIi3 + 15*VIi) (4.22)
185G < CUlaic (V) (I05VIG + 1197 - FFIR_ + 9% x GvI3 + 1905l ) (4.23)

where the L?-norm has been controlled in (4.12) and the tangential derivatives will be studied in the next section by using
Alinhac good unknowns. The divergence part is reduced to the estimates of g by using the continuity equation

197 i} = |7 @Dfa, + |7 @evilf. (4.24)
3 3

which will be further reduced to the tangential estimates of v by using the argument in Section 4.2. Similarly, when k = 1,2, 3,
we have

V7 -3y = —0N(F (9)DF ) — 0N F ' (@)gvs) + [VP-, v £ —F ()0 D — F'(@)gvs + (059) ' 00 G03v,

L . S
where = means equality modulo lower-order terms. This implies

D ’ |12 — o )? K ’ K
V2 - a3, < C(co,g,||v||wl‘m)(||¢ @D, + 'aa’;¢3 PO+ f P(E“(1)) dt), (4.25)
- 0

where the last two terms control all lower-order terms generated above. Since the material derivative Df =0, +Vv- V on 2, the
term ¥’ (q)8* DY g involves only tangential derivatives with appropriate #”-weight. By combining this div-curl analysis and the
reduction of pressure in Section 4.2, we eventually only need to control the mixed space-time tangential derivatives of v, ¢, and
g. We refer to Propositions 4.3, 4.5, and 4.6 for the details.

Next, we analyze the vorticity term. We take V¥ in the momentum equation pDfv = —V¥9g + (p — 1)ges to get

pDP(V? xv) = V% x ((p — 1)ges) — (V¥p) x Dy — p[V#x, D]y,
where the first term on the right side is equal to (—gﬁfp, gﬁ‘—fp, 0)" and the second term, using va = —p 'VPq — ges, is equal to

~(V%p) x Dfv = p'(g)(VPq) X (VP q) +V¥p x ge3 = (g0%p, ~g7p,0)"

=0

which exactly cancels the first term. Using [6?, D?](~) = (9?v16f(~) + (9?6,(@5 - go)ﬁf(-), we get the evolution of the smoothed
vorticity to be

D} (V% x v); = —pe o o vy, - pe* %0, - )wi, (4.26)

where €% denotes the sign of the permutation (ijk) € S 3.
To control |[V# x v||3, we take &> in (4.26) to get

pDf (*(V% x v)i) = €& (pd"V' 5 i) — €70 (pd%0,@ - )d%wi) - [6°, pDII(VF X ). 4.27)

It is not necessary to write out the specific form of the right side of (4.27), but we just need to know the source terms in
(4.27) contain < 4 derivatives of v and ¢ except the mismatched term involving ¢ — ¢. This is easy to see because the only term
containing 5 derivatives is the one on the left side of (4.27). Therefore, a straightforward L? estimate for (4.27) gives us the
energy estimate

dl, - ~ _
d—tEIIV" X VI3 < P(IVllas [l 177 (@)l |IF (@8 gl IVOp14), (4.28)

where the mismatched term is controlled by using mollifier property (3.10) and ¢(t, x) = x3 + x(x3)¥(t, x°).
Similarly, we replace 8 by 0*6>~* for 0 < k < 3 to get

pDf (3**9K(VP x v);) = =€k (pd?V 3 ve) - €70k (o5 0T - @)vi) — [056* . pDF1(VZ x v, (4.29)
and thus

dl1 k oe 2 K
d—tEH(?l (V2 X Wl5_, < P(EX(1)). (4.30)
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Then we need to estimate the commutator ||[6 VeXv|l3-k to get the control of IV® x (9kv||3 x Similarly, as in the control
of divergence, we know the highest order term in the commutator should be ||(—d3¢)~ 166?’@63\;“3 « S o]z k||c')(6)2 kc’),(pllo
||(9v||3_k|66f1//|3_k. So we have the following conclusion

T
IV? x VI3, < [00%g3, + P+ f P(EX(r)) dt. (4.31)
0

Combining (4.22), (4.24), (4.25), (4.28), (4.31) and the argument in Section 4.2, it remains to control the tangential deriva-
tives of v and full time derivatives of g, namely ||F ’(q)(?fc}llo.

4.4 The 7 *-differentiated equations

By the div-curl analysis, the crucial step is to study the higher order tangential energy estimate of (3.11). In particular, we
define the following tangential derivatives

To=0:, T1=01, T2=05 T3=wx3)0s, (4.32)

where w € C*(-b,0) is assumed to be bounded, comparable to |x3| when —2 < x3 < 0 and vanishing on X. This requires us to
commute 7 with (3.11), where 7¢ := 7° 7" 7,°73", and |a| < 4.

Remark 4.1. We need the tangential derivative 73 = w(x3)d3 to control the @30) " (v - N - 0,¢)05 in the material derivative
D?. We do not include it in E“(z) as w is comparable to 1. However, we still need the estimates of 73 in the reduction of §.

We will not directly commute 7 ¢ with V?. Instead, for i = 1,2, 3, we observe that

T f =T f - O[O T G+ C.(f), (4.33)
where fori = 1,2,
oip 1 — _ 1 — (9 i 0o
CH=-|7%-—=,0 KB f|T 01, —=|— 003 f | T, — | T 03¢ T, 051f + O f1T%, 03],
(N [ 97 3f] 3f[ 7 6390] @ 3f[ (632,5)2] [ s1f @9 3f1 sl
(4.34)
with |y| = 1, and
1 1
CWH =T ==.0 0 R 0 —[7%,0 —0 “0 4.35
3() [T 57 sf [+ 3f[T ' 0 jz}Ty 3¢ + 3¢[T 31f = @ ~)2 s AT, 051 (4.35)
Since (91.G and 6? commute, the identity (4.33) implies
T f = 00T f - FfTP) + 0 fTG+C(f). (4.36)

=G(f)

The quantity 7% f — Bf ST % is the so-called Alinhac good unknown associated with f. It was first observed by Alinhac [7]
that the top order term of ¢ does not appear when we use the above good unknown. It is not hard to see that we can obtain the

control of ||[7¢ f|lo from that of ||[7*f — Bf FTlp. In particular,

17 fllo < 17 = 5 FT@lo + 1% Allel 1T Gllo. (4.37)

In addition to this, we need to commute 7 ¢ with
_ _ 1 _
D;ﬁ =0;+v-V+ —~(v-N—¢9,go)63.
03¢
A direct computation yields:
_ _ 1 —
TeDYf =T 0, f +T“(v-0f)+T* ((3_?,5(‘) -N = 0;0)03f
3

= DITf +(v- TN = 8,700 f — TG - N = 8,00 f + V' (f), (4.38)
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where

- 1 = — 1 1 —
D(f) = [T5]-0f + |T% —=-N=08,0),85f| + |T%v-N =080, — |05 f + —I[T,v] - N5 f
039 03¢ 03¢
—(v-N = 8,005 f |0° L ez L(V-N—a NT,031f +(v-N-8 )ﬂ[fr@ 1. (4.39)
1$)03 * 030) 3¢ 930 1P »03 P (0,00 » 031, .
withfyl = 1.
Since v - TN = —v101T Y@ — v20,T “¢, then we must have
V- TN =8, T Q¥ f - FT G- N - 8,00 f
= TN =3, T°Qf — T (v N = 8,00 f + 0T (@ - 9 f
== 05f (0 +-V+(v-N=0,0)d%) TG+ 0,7 @ - )% f (4.40)
N——— —
=C€(f)
= - O fDITG + &)
Thus,
TDYf = DIT"f - & fDFT G+ ' (f) + &(f)
=Df (T f = & fT°F) + D) + €(f), (4.41)
where D(f) = (D)) TG + D'(f).
Let
V= T - 0T, Q=T -47°% (4.42)

respectively be the Alinhac good unknowns of v and g. Motivated by (4.36) and (4.41), we take 7 to the first two equations
of (1.5) to obtain

PV +97Q = R}, (4.43)
F'(@DfQ + V9 -V = R? — §;(v), (4.44)
where
R} = = [T, pIDfvi = p (D) + €()) - €(G), (4.45)
R =~ [T, F (@ID} G - F'(@) (D@ + @) + T*(F'(g)gv3). (4.46)

In addition, since 7 ¢ reduces to 0% on X and 0°N = (—615(@, —825‘@, 0)7, the §”-differentiated kinematic boundary condition
then reads _ o _
00+ (- V)Y -V-N=8; onk, andV3;=0 onJ,, (4.47)

where
S| = d3v - NOY + [0°, v+, N]. (4.48)

Also, since § = g + gy and 839ls = 1, we have Qly = (3G — 0340 Y)ls = 87q + g8 — (93 + §)d*W = 8*q — 93", and thus
the boundary condition of Q on X reads:

_ Vv
1+ Vg

Q=-0dV- +K2(1 = A)3*(v - N) — 83q0°0. (4.49)
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4.5 Tangential energy estimate with full spatial derivatives

In this subsection, we study the spatially-differentiated equations, i.e., the equations obtained by commuting 7%, @y = 0, and
la| = 4, with (3.11). We aim to prove the following estimate:

Proposition 4.3. For 7% with multi-index « satisfying ap = 0 and |a| = 4, we have

17D + [ NF@T 4, + [NoVa A + fo ' @ o] arsPy+ fo " PE ) (4.50)

_We will not directly consider the 7-differentiated variables but use Alinhac good unknowns to get rid of higher order terms
of . Invoking Lemma A.2 and Theorem A.3, testing (4.43) with V and then integrating over Q with respect to the measure
03¢ dx, we get

1d

_ 1 _ - _ — _
—— | pIVPds@dx = = f pIVI?830,(@ — ) dx + f Q(V¥ - V)d3pdx — f Q(V-N)dx' + f V- R'0;0dx, 4.51)
2dt Jo 2 Ja Q s Q

where the boundary integral on X, vanishes thanks to Vi|y = 0. From now on, we will no longer write any boundary integral
on X, due to the same reason. Before estimating the integrals in (4.51), we record some important properties that Alinhac good
unknowns enjoy.

Lemma 44. LetF = 7°f — Of fT % with || = 4 and oy = 0 be the Alinhac good unknowns associated with the smooth
function f. Suppose that d;¢ > ¢ > 0, then

172 Fllo < 11l + P (c5™ [914) 195 . (4.52)
Furthermore, let €(f), D(f), and E(f) be the remainder terms defined respectively in (4.36), (4.40), and (4.41). Then
IS(Pllo < P(cg" 10la) - 1fllar = 1.2.3, (4.53)
Il < P(c5"s Was 18:813) - (11l + 11, £11) (4.54)
IE(A)llo < KIVT 31010 f lleo- (4.55)
Proof. Since 6? = (939) '3, we have
165 FlITTllo < P (cg" 101a) 13 £ lcos (4.56)

and so (4.52) follows from (4.37). Also, the estimates (4.53) and (4.54) follow from the definition of €(f) and D(f), (1.9), (3.7)
in Lemma 3.1, and the Sobolev inequalities. To establish (4.55), we notice that

I€llo < 18:T*@ = Mol fllco + 15T ol I(@ — @)leoll flloo-
Thus, it suffices to control the leading order terms [|0,7 *(¢ — ¢)|lo and ||6f’7' ¢llo. We have
0T @ - @) = 0,7 (x(x3)b — x(x3))
<X (38,0 W — ) + [T, x(x3)] 6,0 — ).
The L?-norm of the second term can be controlled by the RHS of (4.55) thanks to (1.9). By (3.6) in Lemma 3.1, we have
10,:0° W = Wy < KOYs.
Also,
T = KT (x(e2)) = (95 (x)) T0 + (51T x(x)1) ¥,
and so ||6‘§7““Z,5|I0 can be controlled by the RHS of (4.55). m|

Remark 4.2. The appearance of €(f) is a consequence of the tangential smoothing. This estimate of ||€(f)||y yields a top order
term |05, which can only be controlled by the energy contributed by the artificial viscosity. In other words, the artificial
viscosity compensates for the loss of symmetry in the x-equations.
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4.5.1 Control of fg plV[?330,(¢ — ¢) dx: The integral contains the mismatched term.
We have

fQ PIVI830/(@ — @) dx < llolllIVIEII30,@ — @)llee < VEIVIGIA8:Wloss. (4.57)
4.5.2 Control of fg V - R'05p dx: Error terms
We have
fg V- R'95¢ dx < [[VIlollR [ol105@]lco- (4.58)
where the L?-norm of R! is directly controlled by using (4.45) and (4.53)—(4.55):
IR lo < PIOSEcor Was 10:03) (VT Dutplolvila + Ivlla + 19,115 + 1) (4.59)

where the term containing K|€7~ 0o should be controlled under time integral as we will get L,ZH}C,([O, T] x %) bound for
k0, T Y later.

4.5.3 Control of fQ Q(V¥ - V)d3¢ dx: Tangential energy for Q

Equation (4.44) indicates that
[ v Vg - [ Feofeogars [ R - comogx (4.60)
Q Q Q

For the second term on the RHS of (4.60), we invoke the second inequality in (1.30) and then apply it to the definition of R? in
(4.46) to get:

LQRZ(?ade < IVF" (@ QIR l10/183Pllco- (4.61)

In other words, we “borrow” one /7'(g) from R? and attach it to Q. Thanks to (4.53)-(4.55), we control the L?>-norm of the
rest of terms in R? directly by

PO, Pl 0,01 (970l | VT @1, + | VT @i, + [NT @],
where the term containing K|€7~ 0o should be controlled under time integral as we will get L,ZH}C,([O, T] x %) bound for
k8,7 “y later. Then the contribution of €;(v') is controlled by

HNF@en],). @

- fg QC( A3 dx < P(la, [Viblyre)IT “WlolvIlalIQllo.- (4.63)

Here, ||Ql|p contributes to ||6"q||o and |I6 Z]@"wllo The first term ||(9“Z]||o is not weighted by /7" (q) and thus cannot be controlled
directly by (4.50). Fortunately, we can overcome this issue by invoking (4.17). Similarly, |I3 B“lf/llo < IIB q||m||aw||0, where

we use (4.20) to treat ||6 dlls, and so this can be controlled uniformly as 7”'(g) — 0.
Furthermore, 1nv0k1ng the integration by parts formula (A.8), the first integral on the RHS of (4.60) becomes

fﬂ F @QUFQFdx = 5 = f F (@IQPsFdx + = f (DFF"())QPIs7 dx
! f (V7 - ) F (@IQPsF dx + - f ' (@IQI59,(F - 9957 dx (4.64)

<=5 S NF@Q, + 10571 NFT@QIR (1v1e + KT15).
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4.54 Control of — fz Q(V-N)dx': Boundary energy contributed by surface tension and artificial viscosity

Note that 73 = Oonx implies the corresponding good unknown Q = 0 on X, so it suffices to consider the case 7% = 8 when
analyzing the boundary integral. Using (4.47), we have

- f Q(V-N)dx' = - f Q(0:0y + (- V)3"y - S) dv’. (4.65)
z b

The first term is expected to contribute to two coercive terms if we invoke the boundary condition (4.49) of Q:

_ __ Vo _ _ _ _ -
=- f Q9,0%y dx = o f V.| Y 3,0%y dx’ — K? f (1 — Ao - 3“0 dx’ + f 93g0" 0,0y dx’
z z z z

A1+ Vg (4.66)
=: ST, + ST, + RT.
Since 1 — A = ()2, where (-) denotes the J apanese bracket, we find the term ST, gives us vk-weighted enhanced energy after
integration by parts :
¥ d 102
ST, = f (3, ¢| dx' = - @ aszZH] . (4.67)
In the control of ST, we will repeatedly use
(1) _ Vy-avy
a(f) - Y- oW (4.68)
INI INP?

where IZV | = 1+ WJP denotes the length of the smoothed normal vector N = (—51% —52@, 1)". Now we integrate V. by
parts in ST to get

VI e R
STI = - O'f _,d/ . 8,()"%,0 dx' + o f quﬁ : ataavl!/ dx’
s N NP

ol

= ST|| + ST12+ ST13,

R S 4.69
N—P[aa—“,w] " v.,z,).a,va“wdx’ (469

— 1 ) == 1 ] == ==
aa_(l,ﬁ]aQVlﬂ-FVlﬂ a(l—a’ﬁ}(vlp.aavlﬂ)_

where @’ is a multi-index with |@’| = 1.
The first two terms in (4.69) are expected to produce the energy contributed by the surface tension. Before that, we need to
move one mollifier from the top order term of ¢ = A2y to the top order term of i by using the self-adjointness of A, in L*(Z):

oy X _06 @ @
ST ST e-g [TTM TG T8 TN ATTAD)
z N INP

— 1=, = , — = VVi |- - ) (4.70)
—o-fﬁ"VAKw- Ay, = | V3,0% | dx +0'f6"ViAKz//~ Ay, — V;0,0% | dx
z IN| b INJ?
=: STy + STF, + ST,
Then we find
aﬁ . 2 V 14 . 2
STy = ___f [0 VAY” |V - 3"VA elrl @70
VI+IVeP? e |Vz,b|2
o 1 e 2 1 = == 2
+s f o ——— |a VAW -0 | — 'w-a VAW dx. 4.72)
> 1+ [Vy? 1+ Vgl
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To deal with the first term in ST, we pluga = *V A into the following inequality which can be proved by direct calculation:

2 Vo - al 2
|al Vg -al > |a] . 4.73)
V1+IVyP \/ 1+ [VyP \/ 1+ |[Vy?
in order to get
g o [ 10°VAYP? = e P
f STy dr + ) f — dx” < P(IVolr) VE&"VAK%'O +f (4.72) dt, 4.74)
0 1+ Ve ’
where the terms in (4.72) can be controlled directly:
_ — — 2
(4.72) < P(IVYl1=)10, V|- VEB"VAM’O- (4.75)

To finish the control of ST}, it remains to control ST;3 and ST¥,, STX,. The last two terms can be controlled by using the
mollifier property (3.10) and the k-weighted energy contributed by the artificial viscosity. For STfl, we have

T T _
fo ST, fo 'VE@“AM

T —— ——
v [ P(TO) R |V A, .
0

k0,0

P (V01 Vil

o dr
H]

(4.76)

_
Se ‘K@,ﬁ”w .

2771
s

Also, STf, can be controlled similarly.

As for STy3 in (4.69), we find that all three commutators have similar structures and the same leading order terms, so we
only show the analysis of the first commutator. Note that the leading order term in [6*,IN|"116% Vg appears when 9%~ falls
on [N|™! or 8 falls on |N|™! and 8>~ falls on % Vi for some |o”’| = 1. In either of the two cases, the top-order term
contributes to the following integral:

. f N5 8V 37V - 9,V8w d. @77
>

We integrate one v by parts to get
o [WTIE T IE a5 var
)

= =2~ = . -
modulo lower order terms, and then we move one A, from 0°* V ¢ to 4,0y such that the main term is directly controlled as:

o f INIZ90 5 A 390 0, Ay 4’ 5 PAVII) Nl [ VOT' VAW [VT0d M) (4.78)
b
where the last term will be controlled in §,8°-estimates. Besides, we have to analyze the commutator involving A,:
o f 3T Ay (|Ae POV0Y" V| 6:07y) dx, (4.79)
b3
which is controlled under the time integral:
T T _ - . _
f (4.79)dt s Vor f | VT VA" Aplo - KOVl PV 110,00 dr
0 0
s - - , . . (4.80)
selady], | + f | VTV A INTVIR sP(Vilo) dr.
i Ly 0
Therefore,
T _ 2 O — 2 T
f (ST, + ST,)dr + |Kaaa,w - )Va“AKw(T)'O <P+ f P(E*()) dt, (4.81)
0 TR 0
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where we have chosen € > 0 that appears above to be suitably small such that all e-terms are absorbed by the x-weighted energy.

To finish the control of I; defined in (4.66), it remains to control the term RT. Note that when we drop the mollifier and have
the Rayleigh-Taylor sign condition —~d3g > 3 > 0 assumed on X, RT should directly give us the non-o-weighted boundary
energy. But since we are now solving the gravity-capillary water wave system for fixed o > 0 instead of taking vanishing
surface tension limit, we cannot assume —d3g > 3 > 0 on X. Thus this term is controlled by the surface tension energy after
moving one Ay:

T T T
f RTdr = - f f 93q0° Ay - 8,0° A dx’ dt — f f "N - ([Av 03] 0,6°w) d’ dt
0 0 b 0 )

T
< f 1Oz
0

Se '/«9,5"({/

_ _ — 2
"Ny (00" Ay 601\,(1/10 dr (4.82)

_ 2 T
dt+s|K(') o + gl .
0 0 ! l//L,ZLf_, 0 19dliy

2 T
I (% )

o is the energy term obtained in 0 9,-estimates for |o’| = 1.

I AY| ,[0,0°A

0,

where the term 6t5“AKglr

Remark 4.3. The RHS of (4.82) is not uniform in . However, as mentioned earlier, — fOT fzc%qg"/\,(l// . 6,5“/\,(1,// dx’ dt

contributes to a non-o-weighted energy term fx(—(%q)IE“Akx//I2 dr provided the Rayleigh-Taylor sign condition holds. We shall
revisit the control of RT in Section 7, where the zero surface tension limit is considered.

Combining this with (4.81), we get the estimate for [;

T _ ) o ) T
f Ldr+ 'Ka“a,lp o 3 |V6”Akz//(T)|0 <Pt f P(E*(t)) dt, (4.83)
0 t 0

after choosing & > 0 that appears above to be suitably small.
The second term in (4.65) gives

= \A2 ], oy 6; = INAYT, A+ 2 a A = YN\AYT, A+
Izzz—fQ(v-V)a l//=0'f(9 V| —2 |G- V)agdy -« fa (1= D)o - (- V)" dx
s s ,l Yo s
+ vyl (4.84)
. f 336" T( - V)3 A
T
=:Dhy +1n+ D3,

where we find that I5,, I3 can be directly controlled as follows:
! v 2 ’ naw v (/= v\ ’ 2 ! a — YN\NAY S, A
Lydt = —k Vo V(- V)o"y) dx’ dt — 0y - (v - V)" dx’ dt
0 0o Jz 0o Jz
T —
< f |K6wazw
0
) T
-2
2, + L |V|W1m

D — —
where we use the mollifier property (3.4) to control [kV 0°¥ly < k - k"' [VA*Aly. This step also shows why the power of k
must be 2 in the artificial viscosity, otherwise, the control of I, is not uniform in «. For I3 we integrate v - V by parts to get

s ';ﬁzéf@

T
dr + & f k6" 0| [l [V579] ar (4.85)
0 o 0 0

_ __ 2 _ 2 T
< s|/<af'at.p VO A, di < s|;<a“a,¢/ ot f P(E“(1)) dt,
iHy 0

1 (= _
by = 3 f V- (v 839)|0%¢|? dx’ < P(EX(1)). (4.86)
)

The control of I, is analogous to ST;. Following (4.69), we have

b= O_f(aavlp 3 Vi - 3"V¢§J) - §)5<y§$dx,
p)

IN| INP3
S T P U T ISR I W (4.87)
—o | [, =87V + [0, — | (Vy - 8° V) — — [0, Vy|d*V ).(V.V)vaa dx’
fz([ INI] v |N|3} v v |N|3[ w] v v
=: 1Dy + Do,
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where 151, can be directly controlled if we integrate v - v by parts:

«/E%"Jz < P(E“(1)). (4.88)

b2 S P(l)Vlwis

For I, we integrate v - v by parts and use the symmetric structure to see

_ 506"2 ﬁ" . 50{6"2 L
Ly £ —% f(V 'V)(| ot _ vy id ) dx’ < P(V{/|wo) [Vl
s

— — (4.89)
IN] INP

Vovay) .

2
0

Therefore, plugging (4.85)-(4.89) into (4.84), we get the estimates for /;:

T _ ) T
f Izdt$8|/<6“(9,z,// L f P(E“(t)). (4.90)
0 ;H,  Jo

It remains to control the term involving S; which reads

I3 ::fQSldx’zfQ Oy - NO“Y + Z Pv-PN|dy
z z 181 +[21=4
B11,1821>0
- f (0—5“7{+K2(1—Z)é“@,{p—agqéﬂa)[aw-NE"% Z &v-0PN|dx 4.91)
z 1Bi11=11821=3
v Y [@-TT00@y PR
z

B11+|B21=4
[81121,1<|B21<2

=: I3 + I3,

where we use the definition of Q in /3, and invoke the Dirichlet boundary condition (4.49) for Q in I5; such that the L*()
bound of §*v and non-o-weighted Vo*y with || = 4 can be avoided on X.
The term I3, can be directly controlled as:

s Y 18l |551vﬁﬂ25$|l+

1B1|+(B21=4
1811=1,1<[B,|<2

GGosd| [P'7- T30 < lallalvllldlss + 10l IV sTBge. 4.92)

For I3, we invoke H = -V - (V//|N|) and then integrate V- by parts in the mean curvature term and integrate one tangential
derivative by parts in the viscosity term to get:

— Y — — —
51 < POVg)I0v (| VOVO], vl + [<0°0,0), [«50], ) + 10alu- RV (4.93)
and thus yields
T _ 2 T
f Lydtse |K(9”(’)tgb + f P(E“(t))dt, (4.94)
0 LH,  Jo
which together with (4.92) gives the bound for /5:
T _ ) T
fo L;dt < 5|K6“6,z,0 o +f0 P(E“(2))dt. (4.95)

Combining (4.65), (4.66), (4.83), (4.84), (4.90), (4.91), (4.95), we get the estimates for the boundary integral after choosing
£ > 0 suitably small:

T
- f f Q(V'N)dx’+‘K5”6,zp
0 z

2

S 2 K 4 K
o 3 Vo )| <5+ fo P(E*(1)) dt. (4.96)
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Plugging the estimates (4.57)-(4.60), (4.64) and (4.96) into (4.51) and using p = 1,059 = 1, we get the estimates for the
good unknowns:

V(DR + ” \/T’(q)Q(T)Hz + ‘ «/E%“Akw(T)'z + ‘Kéaa,d/ ? <SPE+ fo ' P(EX(1)) dt. (4.97)

L2HL,([0.T]x%) ~

Finally, using the definition V = 7%y — 7" "&’6?\}, we can replace |[V||y by ||7*v||o because their difference, namely T“g“o'@fv,
is bounded by £ + fOT P(E*(1)) dt. Indeed, using ¢(t, x) = x3 + )((xg)Z(t, x") we only need to investigate the case 7 = O because
the weighted derivative 7 = w(x3)05 only falls on y(x3) and x3 instead of . So we have |0%¢lly < |0%¥|y which is already
bounded by the surface tension energy and thus by £f + fOT P(EX(t)) dt according to (4.97). Since ||6§v||m < VsN03¢lle0 <

Py + j;)T P(EX(1)) dt, we have

||7"'v(T)||§+H VF @) “z;(T)“z+|«/E€5“AK¢/(T)E+ fo ' |K5“(9tl,0(t)'? dr < P+ fo TP(EK(t))dt. (4.98)

We remark here that we can employ the same analysis to prove the tangential estimates with mixed spatial-time derivatives.

Proposition 4.5. Let o be the multi-index satisfying 1 < @y < 3 and |¢| = 4, we have:

2 - 2 T T
17D + || NF@T 4T, + | VoVF" A )| + fo KT Do)} dt < P + fo PES®)dr. (4.99)

4.6 Tangential energy estimate with time derivatives

In this subsection, we study the time-differentiated equations, i.e., the equations obtained by commuting 8¢ with (3.11). We
aim to prove:

Proposition 4.6. We have

) _ 2 T T
||0;‘v(T)||g+'| \/T’(q)ﬁfcv](T)”0+|\/EV6?AK¢(T)'O+ fo kaSw)} di < P+ fo P(EX(1)) L. (4.100)

Although the proof appears to be similar to what has been done in the previous subsection, it should be mentioned that
we only have L2(Q)-regularity for the full-time derivatives of v and ¢, and thus we do not have any information about their
boundary regularity. When the full-time derivatives of v and g appear on the boundary, we use either the artificial viscosity or
Euler equations to reduce a time derivative to a spatial derivative.

4.6.1 Alinhac good unknowns for full-time derivatives

To begin with, we still introduce the Alinhac good unknowns of v, ¢ with respect to d}. Using the same notation as before, we
define

V, = 0t - Fvidle, Q= 8'q - 40'%. (4.101)

Parallel to (4.36) , we have N N
FHVEf) = VIF + Gi(f), (4.102)

where 6,(f) := 8707 0/ + €/(f) and

() =- [0?, %, Osf|-0sf [a;‘, 0:0, %@ + 0,905 f [6,3, @} 8030, i=1,2 (4.103)
Ci(f) = [3?, %«E’ f|+0sf [6?, @] 8,05. (4.104)
Then we take 8} to the first two equations of (1.5) to obtain
pDIV; +VIQ = R!, (4.105)
F'(@DfQ+ V-V =R - €(vy), (4.106)
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where
—[8}, pIDYv; — p (D) + E(v)) — €(), (4.107)
= — [0}, F'(@ID?G - F'(q) (D) + E@)) + 01 F ' (@)gv3), (4.108)

and the commutators D(f), e(f) are defined in the same way as in (4.39) and (4.40) by replacing 7% with d} and replacing
0 with 8,. The last two terms in (4.39) vanish because 9} directly commutes with d3. Analogous to Lemma 4.4, we list the
estimates for commutators €, D, e.

Lemmad4.7. LetF := g} f — (9? f07@ be the Alinhac good unknowns of f with respect to df. Assuming that 93¢ > co > 0, then

102 fllo < IIFllo + caluasfumw‘%, (4.109)
3

ISl < P[c0 ,|Vw|m,z TS k] (uafnm ) ||ai‘f||4k], i=1,23, (4.110)
k=1
3

ID(Hllo < P[co Voo, Z Vo Tl k] (uafnm +> ||a§‘f||4k], @.111)
k=1

IE(A)llo < Kﬁafwlonafuw. (4.112)

The }-differentiated kinematic boundary condition now reads

Ey+@-V)d'Yy-V-N=S;, onz, 4.113)
where
_ 4 P
S} = d3v- Noty + Z (ﬂ)afv-a;‘ ’N. (4.114)
1<B<3

Also, since Qs = d}q — ﬁfq(')j@, the boundary condition of Q on X reads

Q=-0d'v- W + K21 = MY — 03q0Hy. (4.115)

1+ [VyP
4.6.2 Energy estimates for the full-time derivatives
Replacing 7 by 4} in (4.51), we have

dl

1 _ p _ — —
dtzfprlzagtpdx— 5Lp|V|2838,((p—<,0)dx+fQQ(V‘p-V)agtpdx—sz(V-N)dx’+fV-Rlﬁ_ggadx., (4.116)

Q

where the first term and the last term are controlled in the same way as (4.57)-(4.59), so we omit the details. As for the second
term, we follow (4.60)-(4.64) to get

f Q(V? - V)dspdx

Q

=- f *4€,()35F dx+ f O FO G (v >awdx——d—|1 VF @,
Q

=

+[| V@[ dovile + kTawos) + H VF @R, 1%l @117
<li- zdtUVT’WQH [V,

[co Vi, Z Wai%k] 33310l |[NF @3

(I0vlleo + KIVOWo5 + KV Wlo)

. [ 0. gl + Z 195 Vil + I @37 vsllo |
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At this point, we are not able to control /j := — fQ afq(ii(v")(?{(ﬁdx as in (4.63) since this requires the bound for IIquIIO. We

can only obtain the control of || y/F7(q)3%¢llo from the energy estimate because we can no longer use the momentum equation to
reduce d%¢ due to lack of spatial derivatives. Although the method in (4.63) is still valid here when we prove the well-posedness
provided that ¥'(q) is bounded from below, we would like to show that our estimate can be adjusted to be uniform in ' (q).
To achieve this, we find that the problematic terms in €;(v') can be exactly canceled by the boundary error term S; defined in
(4.114). Therefore, this term should be controlled together with the boundary integral if we want our energy estimates to be
uniform in the Mach number. B

Next, we analyze the boundary integral. Most of the steps are parallel to Section 4.5.4 if we replace 4% by 87, so we will
omit the details of those repeated steps but only list the different steps. Plugging the boundary conditions (4.113) and (4.115)
into — fz QV- IV) dx’, we get

—fQ(V'ﬁ)dx’=—fQﬁfzpdx’—fQ(i?)af{ﬁdx’+fQS*{ v = I} + I + I3, (4.118)
z z z z

and [{ is further divided into three parts:

_ Vo — —
I = —fQo”’fwdx’ =crfa;‘V~ v afwdx’—Kzfa;*(1—A)a,¢.af¢dx'+fa3qa;‘wfzpdx/
z z z z

m (4.119)
=: ST} + ST; + RT".
Mimicing the steps (4.67)-(4.81), we can get the bounds for ST}, STj:
T 5 o ) T
fo ST: + ST, dr + |Ka,5¢|L3HL + E‘VﬁfAkxp(T)'o <P+ fo P(EX(1)) dr. (4.120)

Remark 4.4. Parallel to the remark after (4.82), — fOT RT" dt would contribute to the non-o-weighted energy fz(_63 q)lﬁfAKzMz dt
if the Rayleigh-Taylor sign condition holds. This will be revisited in Section 7.

As for RT", if we still follow (4.82) to get:

2

T
s+ [ P ot Joinal)

fOT RT" dr < &[0}y
then we find that the term |6,5AK¢/|0 is not included 12 EX(¢) because there is no spatial derivative here. To overcome this, we
invoke the kinematic boundary condition 0,¢ = —v - Vi + v3 and take at to get
Ry =~ -V + vy — [0}, 71Vy =~ - )3}y + 8ty - N — [6F,v-, V], (4.121)
and thus
RT* = - f B3q0% (v - V) dx’ + f B3qdHpdty - Ndx' — f d3q0* 8} v, V] dx (4.122)
=: R:SF’,‘ + RT; + RT;. ; ;

Note that we only need to analyze the contribution of RT; because the contribution of the other two terms will be canceled
by part of I; and I;. To do this, we need to derive the equation for d} - N on 2. Recall that

DI, =0+ G- V) + @) (v-N-8i9)83 =6, + (- V),
R S——
=0onX
we have the following identity by projecting the momentum equation onto the direction of N on X:
pdy N =~(p—1Dg—p@-V)v-N+ Vg - Vi~ (1 +[Vy)dsd,

and thus
L

pdv N = -8pg — p( - V)PV - N + Vi - VO § — INP93024. (4.123)
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The contribution of the first three terms in (4.123) can be directly controlled after integrating v by parts and using the Sobolev
trace lemma:

[ 0703088 (o5 T3 N+ 55Tl i) ¥
L_ L‘p’l€6fJ- (636] (pV@?v "N+ gﬁﬁ?é)) dx’ - fz‘p’l&qﬁﬁﬁafpg dx’ (4.124)
<l10gll ([¥:3], P (10310, 16331, 901) + 100117 (@) g ol ).
Remark 4.5. Note that the right side of (4.124) involves [Vd?*|y whose control relies on o=, This is due to the lack of the

Rayleigh-Taylor sign condition. When taking the zero surface tension limit, the Rayleigh-Taylor sign condition is assumed and
thus the RT term can be directly controlled.

Then for the last term, we need to do the same reduction for (9;‘(//:
O =~ -V + vy — (8,9 1Vg = - VY + v - N — [63, v, V. (4.125)
Using (4.125) and Sobolev trace lemma, it is controlled by
1070 < P(VPleo, V1) (V070 + 16711 + 107Vl + [V 0lo) - (4.126)

Now we plug the equality above into the boundary integral — [_ p~183gINI?0* 0303 dx’. Note that the unit exterior normal

vector to X is (0,0, 1)T (not the Eulerian normal vector N 1), we can use the divergence theorem to rewrite the boundary integral
into the interior, and integrate by parts in 9, to get the following estimate:

T T
- [ [rtoaRraToaaar at [ [ o g NEA (@907 - - N)asoigar ar
0 z 0 z
T
= f f 95 (0" 03qINP AL (V- V)0]F — 8}v - N) 9307 ) dx dr
0 Q

T
L f f p~'03qINPA (V- V)0% — 6}v - N) - 36; g dx dr
0 Q

(4.127)
0, — NT - ~ NT v
2 f p03qINPAL (V- V)0]% - 0}v - N) - 3367 dx
Q
T
+ f f p193qINI?8,A? ((v V)G - v - N) - 0207 dxdt
0 Q
T
< ell a7 g5 + PG + f P (1103 vllo, 107 V111, 10,les, 107, (Vleo, (V67 910, V8] o) di.
0
Combining this with (4.120), (4.122), (4.124) and (4.127), we get the estimate for /}:
4 5,2 T |Ig 4 2 20212 ’ !
f I dt + |k0u] 2y + E‘Va,Akw(T)L) < el 020Gl + f RT; + RT;dr + P% + f P(E*()) dt, (4.128)
0 T 0 0
after choosing € > 0 that appears above to be suitably small.
Next we expand I3, I; defined in (4.118)
L+ =- f g - Vydtydy + f Od3q( - V)t dx’
z z
N o N 4 B (4.129)
+ f &3S, dx’ — f o303y - NoHy dx' — f a;*mq( Z (ﬂ)afv.a;“ﬁzv} dx’
= = z 1<8<3

and we find that the second term exactly cancels RT| and the fifth term exactly cancels RT} defined in (4.122). The first term

can be controlled in the same way as I, I, defined in (4.84) after replacing o4 by 8;‘. The fourth term is directly controlled by
P(EX(?)) by using the Sobolev trace lemma.
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Hence, it suffices to analyze the third term. Using the definition of S}, we have
— — 4 o
fz 84S dx’ = fz 914 (0sv - Notw) dx' -4 fz 8* g0’y - 9,N dx’ + Z (ﬂ) fE 8oy Vo Py ax, (4.130)
1<<2

where the first term can be controlled by the surface tension energy after invoking (4.115) and integrating v by parts; and the
last term can be controlled after integrating by part in d, under time integral. But for the remaining term

L, ::4faj‘qa§v~a,ﬁdx', (4.131)
z

we have neither the L(X)-regularity of d7g nor the possibility of integrating %—time derivatives by parts as in the control of
(4.91).

Fortunately, we can still control I3 together with the interior term I := — fg 0qC;(v1)039 dx defined in (4.117). In fact,
invoking (4.103) and (4.104), we know G;(v') includes the following terms involving > 3 time derivatives of v and > 4
derivatives of ¢:

KONV G = €01 - €0, i=1,2,3, (4.132)
0.9 : — o 030,000 5.5 , :
—40, (a—f) 8,03V = 40,N;050,V' + 4%858?\/' from the first commutator in €/(v') i = 1,2, (4.133)
3 3P
49, () B3° = ~4 %% 55,3 trom the f in € 4.134
i f‘f’ F03V° = — v 03 v’ from the first commutator in €5(v”), (4.134)

while the terms in ¢ (V') containing only < 2 time derivatives of v and < 3 time derivatives of ¢ are controlled directly after
integrating 0, by parts under time integral.
The contribution of the above four terms in /] is divided into three parts:

Iy = —4 f 8*GO,N0;03 V! dx (4.135)
Q

I = - f qo3(V? - )a*g dx (4.136)
Q
2 —_~7 —~ —

830009\ 5.3 830:9\
x 4+ | 0301Q0iP | (G A3 jq ~ 4+ [O03019 | [GA3 34 ~
Iy, = 4;L6,q[—63¢ )638,11031;7d)c+4‘f96,q(—63,§Z )038,1/ O3pdx. (4.137)

Integrating d3 by parts in I}, and using N3 = 1, we find the boundary term exactly cancels with I3, so we have:

i+l =4 [ (#1083 + 001) v

(4.138)
d — — — —
Q Q
Under the time integral, we have the following bounds after using e-Young’s inequality:
T T
f Iog + L dr 5 &l16;93 + 5 + f (197 (llo + DP(E() dr
0 0
T T
< elld;agll} + & f 167 g% dt + PE + f P(EX(1)) dt. (4.139)
0 0

Here, we still need to study fOT ||6fé(t)||§ dt, as the reduction scheme does not apply to a?qa) due to lack of spatial derivatives.
We control this term through the fundamental theorem of calculus: For each x3 € (—b,0), we write

X3
Dt x', x3) = 32q(t, X', 0) + f 0:824(t, X', 7) dz,
0
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and so -
(B, ) <5 (329(0.%,0)) + f (3:3340, %', ) dz.
0

Integrating both sides with respect to the spatial variables, we obtain
18735 <5 183G + 103,45
The second term on the RHS is bounded by E*(¢). For the first term, note that

Vi

V1 + VP
Vo m

i L | VEE ViVeu o

oV - - vy |,
— — 3
yi+ [Vyl? Vv + IVe?) 1+ [VeP)

»g=-00 + g |+ - A)FHy, on X,

where

|t~

which indicates that §>§ls consists of non-k-weighted terms with at most 5 derivatives on ¢ with at most 3 times derivatives,

and a k-weighted term k(1 — K)ﬁft//. Therefore,

T T 3 . 3 T
[ wanias | P{Z|«/Eva,kAKwa)u_k,Z|afAKw<r>|4_k] ar+ [ watuniar
k=0 k=0

By combining this with (4.139), we conclude:

T

T T
f Iy + Ly dt < ell}0gl + & f llkd} w13 dt + PE + f P(E“())dt.
0 0 0

Next, the term [jj; can be directly controlled if we insert the continuity equation Ve .y = —F ’(q)D?q
Iy < |[NF@ata

we note that ~9,;gd%d3v = 9793V — 8,9%v; for i = 1,2. So it becomes

NNF@ag. NF @a 1070,

As for I,

2
I, =4 f 31 40:0,p(V* - av)dx =4 ) f 8} 40:0,90:0; v; dx
Q = Yo

2
Ly f 8 ga} (VP -v)030,pdx — 4 Z f 8'40:0,0,03v; dx,
Q ' Ja
where the first term is controlled by

|NF @t

(VT

J+|[NF@aion

S+ [NF@aivs|| o

(4.140)

(4.141)

(4.142)

after invoking the continuity equation, and the second term is controlled under time integral after integrating by parts first in 9,

and then in 5,-. So we have:
T

T
f I, dt < lld}agl} + PE + f P(EX(t))dt.
0 0

(4.143)

Summarizing (4.116), (4.117), (4.120), (4.122), (4.128)-(4.131), (4.140), (4.141) and (4.143), we finally get the control of

the Alinhac good unknowns V and Q with respect to d¢:

2 _ 2 T T
IV + | VF@QEr)||, +| Voo )|, + fo [kaSul; dr < & (1076715 +110;0415) + P + fo P(EA()dr. (4.144)
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To recover the energy for [|3}v]2 and || /7 (¢)d7dl2, it suffices to invoke (4.109) and use the estimate of |9}, in (4.126).
Note that the right side of (4.126) has been controlled in 54’k8’;-estimates for k < 3, so we already have |6f@|0 < Pyt
I P(E“(t)) dr and thus

2 _ 2 T T
||3fV(T)||é+“\/T’(t])afcvl(T)HO+'\/EV@?AKL&(T)|O+ fo kaSul; dr < & (102012 + 1630412) + P + fo P(E“(D) dt. (4.145)

4.7 A priori estimates for the nonlinear x-approximate problem
Now we choose £ > 0 suitably small and then combine the tangential estimates (4.98) and (4.145) with div-curl analysis,
reduction of pressure and L2-estimates in Section 4.1-Section 4.3 to get the following energy inequality:

T
EX(T) < EX0) + f P(E*(1)) dt. (4.146)
0

Since the right-hand side of the energy inequality does not rely on x~!

exists some T > 0 independent of « > 0 such that

, we can use Gronwall’s inequality to prove that there

sup E*(1) < P(E*(0)).

0<t<T,

(4.147)

We also note that the above energy estimate does not rely on F'(¢)~!, as a special cancellation structure enjoyed by the
Alinhac good unknowns and delicate analysis (4.130)-(4.143) exclude the only possibility that might make the energy estimates
not uniform in Mach number. Therefore, our a priori bound is also uniform in Mach number.

5 Well-posedness of the nonlinear x-approximate system

For the nonlinear x-approximate problem (3.11), we have established the uniform-in-« estimates. Once we prove the well-
posedness of (3.11) for each fixed k > 0, we can take the limit « — O to prove the local existence of the original system (1.24).
We would use Picard iteration to construct the solution to (3.11) for each fixed « > 0. We start with V@, p©@, @) := (0, 1,0)
and also define Y := . Then we construct the solution by the following iteration scheme: For any n > 0, given

(P, p® y®) ., we define (VD p*D [y (1+Dy to be the solution to the following linear system whose coefficients depend
on (W p™, ™) and yr-D:

PP D) L gE D) = (o) _ [)ges in [0,T]x Q,

FOY (g™) D?‘”) gD 4 v L) = (qm))gvgﬂ in[0,T] x Q,

q(n+1) — q(n+1)(p(n+1))’ Z](n+1) — q(n+1) + g’(ﬁ(n) in [0, T] % Q,

g =gy — oV - (—%) +K2(1 = DD N®Y  on [0,T]x X, (5.1)
atw(n+1) = YD) | N on [0, T] XX,

W =0 on [0, 7] x Zp,

00D, p0*D g D) Lo = (V4 POKs Y00

where for any k < n + 1, ¢¥(¢, x) is the extension of y* defined by (¢, x) := x3 + x(x3)y® and P® := x3 + x(x3)e® is the
smoothed version of . The linearized material derivative is defined to be the following linear operator:

n — 1 —

D?() = 6; + V(”) -V + m(v(’l) . N(n_l) - (9,90("))63, (52)

3

and the covariant derivatives are defined to be
(1)
o _ (3,(,0
o7 =0 G, (5.3)
" n 0,07
v§>=5§):30_8§(ma3, a=1,2, (5.4)
3

art) _ ’()E(n) _ 1

V3 - a3 63‘1‘5(11) 3 (55)



. . . . . . 2 n .
Remark 5.1. Note that the linearized material derivative is no longer equal to 87 +v™ -V#"” . Indeed, one has to set the weight

of 85 to be v . N1 — 3™ to guarantee both the linearity of this operator and the consistency with the linearized kinematic
boundary condition g,y = ytD . N

Remark 5.2. Note that the surface tension term in (5.1) is now replaced by a given term instead of being —o'V - (V1 /|N™),
Under this setting, we can still do energy estimates for "+ by using the kinematic boundary condition and the viscosity term.

For simplicity of notations, for any n > 0, we denote (VD plt*D | g01+1) [y Dy (5,0 500 g 0y and y =D by (v, p, g, ¥),
(V,0,G,¥) and ¥. Hence, we need to solve the following linearized version of system (3.11) for each fixed x > 0 and then
establish an energy estimate to proceed with the iteration scheme.

pDPy + V85 = —(p — )ges, in [0, T] x Q,

FUGDPG + VP v = F(G)ghs, in[0,T]x Q,

q=4q().4=q+g¢ in[0,71x Q,

§= gi—aﬁ( ﬁ”; ]+K2(1 —Z)(v-ﬁ), on [0,T] X X, (5.6)
N

o =v-N, on [0, T] X %,

v3=0 on [0, 7] X 5,

v, 0, Wi=0 = (vV§, G ¥)-

Here ¥ := log p. The linearized material derivative now becomes:

2 - 1 -
D‘f =0, +V-V+ — (- -N-0,0)0; 5.7
00
and the covariant derivatives with respect to 975 are defined to be
o a Y
o =0,- Ly, (5.8)
0z
iy Oup
Vo=0,=0,-——=03, a=1,2, 5.9)
0z
2 o 1
V;’ = ﬁf = — 03, (5.10)
0z

where ¥ - V := V101 + ¥20,. Note that, by the kinematic boundary condition, the normal component in D?, namely (63“:0)’1(\'5 .

N- 0;¢)03 vanishes on X.
From now on, we assume the following given quantities are bounded in some time interval 7 € [0, T*]. This also works as
the induction hypothesis for the uniform-in-n estimates for (5.6):

4 3
1A = WG + D NG + 17 @l + 19615 + > 195G + 17 (@37
k=0 k=1 (5 11)

3 !
41,912 A1 ak+1 5 ak+1 72 2 5,912 2
+K W15 5 + E KO, O s s + K f |02017dr < Ko.
0
k=0

Here, the additional %-regularity for 8{ (,// and 6{ ¥, j = 0,1,2,3,4 is contributed by the artificial viscosity whenever « > 0 is
fixed.

5.1 Construction of solution to the linearized approximate system

We can prove that system (5.6) is a symmetric hyperbolic system with characteristic boundary conditions. Therefore, we want
to use the duality argument developed by Lax-Phillips [40] to prove the local existence. Before doing this, we have to make
sure the boundary conditions are homogeneous.
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5.1.1 The homogeneous linearized approximate system

We introduce the variable b defined by the harmonic extension

~Ah=0 inQ,

b=gy— 0—6.( Y ] on, (5.12)
. V1+VyP

h=0 on Xy,

and define g = ¢ — b. Then (5.6) becomes the following linear hyperbolic system with homogeneous boundary conditions:

ﬁDva + Vég = —VPh— (5 - D)ges, in [0,7]x Q,

F(@Diq+ Ve v = F/(G)ghs - DY), in[0,T]x Q,

q=qp), c_1_=q+f$—5 in[0,7]x Q, 5.13)
g =«*(1-A)v-N), on [0, T]XZ,

v3=0 on [0, 7] x 5,

v, Pli=0 = (vo, po)-

Note that the coefficients in (5.13) rely on , 1,7/, v, and p only, all of which are already given. The kinematic boundary condition,

namely 0,y = v - N = -(v- 6)& + v3 on Z, is used to define ¢ after solving (v, g) from (5.13).
We define U := (51, v1,v2,v3)", then (5.13) can be expressed in terms of U by

3
AU + " AU = §, (5.14)
i=1

o ° <5 <5 = =0 T o . 2 ° o o o

where f := (T'(f?)(gﬁa — D{h), —a7h, —a5h, —d5h — (b - l)g) , Ao(U) = diag [7—' (@)1, Ps p], and
° ~ o T

F@o-N-9¢ N |

N PV -N=6p)I;

N TN T o 1
Ay =TT @DV & fori = 1,2, AND) = —
e pvils dyp

Since (0,9 — v - N )s = 0and ez = (0,0,1)7 is the unit exterior normal vector to X, we know that the boundary matrix,
namely the normal projection of the coefficient matrices onto Z, is

o T
0 N
2 03

3
D AilD)es; = Ax(U) = ] onx
i=1

which is a 4 X4 matrix of rank 2 (constant rank but not full rank) with one negative eigenvalue, one positive eigenvalue, and two
zero eigenvalues. This being said, the system (5.13) is a first-order symmetric hyperbolic system with characteristic boundary
conditions. The number of boundary conditions should be equal to the number of negative eigenvalues. Therefore, the correct
number of boundary conditions for (5.13) is indeed equal to 1 which means (5.13) is solvable. After solving (5.13), we use the
kinematic boundary condition to define i for the next step of the iteration.

5.1.2 Well-posedness in L? via u-regularization

From the duality argument by Lax-Phillips [40], we need to prove the following in order to get the well-posedness of (5.13) in
some function space X:

e We need to establish a priori estimate (without loss of regularity from the source term) for (5.13) in X.
e We need to establish a priori estimate (without loss of regularity from the source term) for the dual system of (5.13) in
X'.
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We choose X = L*([0, T]; L*(Q)) whose dual space X’ is just itself. We define W* = (g*,wT,wz,wg)T to be the dual
variables of U = (51, vi,v2,v3)". By testing (5.13) with W* in L*([0, T]; L*(€2)), one can derive the system of W* which reads

3
AT, W* + ZA,»(("J)&,-W* + Ag(OHW* = f*
i=1
— o 3
with boundary condition ¢*|y = —k*(1 — A)(w* - N), where A4 := —6,A3 - c')iAiT — (0 — 1)gE44 with E44 = diag[0,0,0, 1].
= i=1

Note that we do not have the dual variable for ¢ because ¢ is completely determined by the original linearized system. That is
why we only have one boundary condition for the dual system.
We notice that there is an extra minus sign in the boundary condition for ¢*. So, one cannot close the L>-type a priori

estimate for the dual system even if we can derive that L>-type a priori estimate for (5.13). To avoid this difficulty, we introduce
another viscosity term in the boundary for ¢ in (5.13). That is, we alternatively consider the y-regularized linear problem for

U =(g,vi,v2, v3)T, which reads

3
Ao(a,U + Y AU = §, (5.15)

i=1
with boundary condition
q=(1 =D N)+u(1 =D)d(v-N) onX. (5.16)

Then the dual system of (5.15)-(5.16) reads

3
A0, W* + ZA,(&)@,-W* + Ag(OYW* = f* (5.17)
i=1

with boundary condition

g == =)W - N) +u(1 = Da,(w* - N) on, (5.18)

3

where A4 = —c')tAg - BiAiT — (0 — DgEyy with E44 = diag[0,0,0, 1]. Note that we have to integrate by parts once more
i=1

in ¢ variable when deriving the boundary condition for g*. This is the reason that an extra minus sign appears in front of

(1= D)w* - N,
Now we are going to derive the a priori estimates for both (5.15) and (5.17). For linear system (5.15), we test it with U in
L*(Q) and use the symmetry of the coefficient matrices to get:

3
fUT~AO(l°J)de=fUT-f—ZfUT.aiA,-(i’J)de—fUT.A3(z°/)de, (5.19)
Q Q ' Ja b

where the interior integrals are directly controlled by C(Ko)||U II% and the boundary integral reads:

—fUT-Ag(IOJ)de’=—2f(v~ﬁ)qu'
z z -

- -2 f (=B W) My - 20 f 0,(1 =B M) Mydv (520)
Q z

_ df

__'ua‘ i

Eo(t) == IvOIZ +

o 2 o 2
(B -N)| dx’' =22 () - N)| .
0 0

We define

2 d o o
F(@q)|| + fo k(v - N)(@)FdT + [ V(v - MO,
0
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then the above analysis shows that

T
Eo(T) - Eo(0) < C(Ko) fo Eo(d) + \EoI f Dl dr. (5.21)

and thus by Gronwall’s inequality we finish the L?-estimate for (5.15). Note that this a priori bound is also uniform in .
Next, we show the L?-estimate for the dual system (5.17). Note that the matrix A4(U) is still in L*(Q), so we test (5.17) by
W* and take L-inner product to get

3
[ W anowra= [ W*T-f*—W*T-(Z&Ai(&)+A4<i’/>+ﬁgE44]W*dx— Jorra@war. 522
Q Q ~ p>

where the interior integral is directly controlled by C (10(0)||W*||(2), but now there is a sign change in the boundary integral, which
reads:

- f(w*)T A (OHWHdy = =2 f(w* -1°v~)q* dx’
) > -
=28 f ((1 ~Nw* ~]:/~))(w* Ny dx - 2u f P) ((1 — AW -ﬁ))(w* Ny ¥ (5.23)
Q )
@w* - N

2 2
dx’ + 242 .
0 0

d (= . =
s-ns fz '<a>(w )

One can see that the new viscosity term involving u controls the term 2210 w* - N )I(z) due to the change of sign.
So, if we define

Ey0) = Iw O} + | NF"@g" @)

2 o 2
oy ‘(w* M) .
0

then we have ,
Ey(T) - E3(0) s, C(Ko) f Ey(0) + yEXONfOllo dt, (5.24)
0

and thus Gronwall’s inequality helps us close the L?-estimate.

Combining (5.21) and (5.24), we close the a priori bounds for both linear systems (5.15)-(5.16) and its dual system (5.17)-
(5.18). Such energy bounds have no regularity loss from their source terms to solutions. Therefore, by the argument in
Lax-Phillips [40](see also [56, Theorem 5,9]), for each fixed u > 0, system (5.17)-(5.18) admits a unique solution U €
L*([0, TT; L*(Y)). Since the energy bound (5.21) for (5.15)-(5.16) is uniform in u, we can take the limit 4 — 0. to obtain a
local-in-time solution of the homogeneous linearized problem (5.13). Finally, the modification I) is easily controlled by using
the property of the harmonic function

1 o o o —o  _peo
VS > _E, ”b”;.;. $ |b|s < gl‘»Dls + P(|V¢|s)|v ';ms,

%
which implies the local existence for L>-(weak)-solution to the linearized x-approximate system (5.6). By the argument in [51,

Section 2.2.3](see also [56, Theorem 4, 8]), the weak solution U is actually a strong solution.

5.2 Higher-order estimates for the linearized system

Now we prove higher-order energy estimates for the linearized system (5.6).

Proposition 5.1. Let

4 1
E*@) =lp) = 115 + D 10Ol + f 0wz, dr
— 0
k=0 . (5.25)
+INF @O + 10GNE + > N8I + INF (@GR,
k=1
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Then there exists some 7% > 0 depending on « and a constant C™, Io{o) > (, such that

sup EX(1) < C(x™", Ko)EX(0). (5.26)
0<t<T*
Apart from that, we have
3
()2 5 + Z 0 (025, < C", Ko)EX(p),  for all £ € [0, T*]. (5.27)

k=0

5.2.1 [*-estimate

We define the L>-energy for the linearized system (5.6) to be
15
Ef(0) := llo@) = 115 + Iv@I§ + | VF (@l + Kzf 0(r)Fdr. (5.28)
0

The control of Eco is identical to the a priori estimate for (5.15) when u = 0. Note that the control of |jp — 1||g follows from

testing the linearized continuity equation 70”(&)?" ’(q)‘lD?(p -1+ p(V$ -v) = 0 by p — 1 in L*(Q). Also one can control the
L?(Z) norm of ¢ through y(t) = o, + Jg o (T)dr.
5.2.2 Div-Curl analysis

To estimate the Sobolev norms of v, we invoke the following Hodge decomposition lemma which is exactly from [10, Theorem
1.1].

Lemma 5.2 (Hodge elliptic estimates). For any sufficiently smooth vector field X and s > 1, one has

IXIE 5 CO,. . Ty (IXIG + 197 - XIZ + 197 > XIE, + - NE, +16E,, ). (5.29)

where the constant C(Iil |vilwl,vo) > 0 depends linearly on Ijlil.

L
s+3°

Applying this lemma to v with s = 4, one has
ME < CQidlas, Vi) (||v||0 +IIV% V2 + IV o + v+ N2 5) (5.30)

Now we control the curl term. Taking V¥x in the first equation of (5.6), we get the evolution equation satisfied by V¢ x v:
PDF (VP x v) = pIVPx, DV v + Vop x (57 V), (5.31)
and taking three derivatives we get
PDP (VP x v) = (ﬁ[Véx, D) + V¥p x (ﬁ*lv%)) 6%, BDP1(VP x v). (5.32)

We expect that the source terms in (5.32) only contain < 4 derivatives of v, ¢ and quantities marked w1th a ring, but there
still exists a mismatched term in ([V‘Fx D“’]v)’ = e’/kV‘p"’V‘pvk + e’/kV‘p(? (o — g"p‘)a"”vk The contribution of zﬁ is controlled by K.

So, the standard L2-estimate for the §*-differentiated evolution equation of V¢ x v and Reynold transport formula (A.9) gives

1d .
EEHW X VI3 < PKo)AWIZ + lgllalivils + 1841allovilco)- (5.33)

Finally, using the linearized continuity equation, we can control the divergence

- . = |I? o 2
IV 3} < |[F @D + |7 @], (5.34)
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The div-curl analysis for the time derivatives is proceeded similarly. First, the div-curl analysis for IIvalli_k, 1<k<3
yields

IOV S CUlas—tr IVl (||afv||§ +[IV¥ - VI3 + IV X Ovli3, +10Fv - NL%‘S_,(). (5.35)
We replace 9% by 80 for 0 < k < 3 in (5.32) to get the evolution equation:
pDF (3794(VP x v) = ato+ (;)[v?x, D) + V%5 x (ﬁ"V%)) (8P pDPY(VF x v), (5.36)
and thus
d1 % 2 ok
331V X VIR, < PE). (5.37)

Now, since the leading order term in the commutator [é)ﬁ‘ s Véx]v should be 56,’:58’;‘1831), we have
. T
V¥ x dvll5_, < C(Ko) (E"(O) + f EX() dt). (5.38)
0

As for divergence, by taking 4%, 1 < k < 3 in the continuity equation, we get
1 1,0 5. 27,0\ o o L 2,0 5y o S 1A Ak
Ve v = =0T @D g+ T (@)8%3) + [V4. 01y = =T (N9 D} G + g0;¥3) + (95¢) ™ 90 603v.

Parallel to the analysis for (4.25), since ||5(9§<72’||3_k < Io(o thanks to (5.11), we have ||V‘—; . afv||3_k is reduced to the control of
IF7 ()0 §ll3— and ||F(&)D* |l at the top order. Thus,

2

4_k). (5.39)

b ok 2 o 200 3okl | 210 ok
197 - VI, < (CKo) + D (| @ad + | @dla

5.2.3 Estimates for » and normal traces

The normal trace terms in (5.30) and (5.35) can be directly controlled by applying boundary elliptic estimates to the linearized

— = PR — o
viscous surface tension equation k*(1 = A)(v - N) = g — cH(Vy, V ). We start with controlling |v - N|3 5
512 2 2 S22 por 2 b (15112
[v-Nlzs <« \lgli s + oV ¥l sP(VYlis) | < k" P(Ko)llglls- (5.40)

Taking time derivatives in the kinematic boundary condition, we obtain:
2 k k . —
dhv-N=atu = )t ol
=

and thus ,
0 - Nlos < 107l + 7 - VOWls <1079ls + veoll3 + P(Ko) f [0 (5.41)
0
Then we take a time derivative in the linearized viscous surface tension equation to get
k(1 = N2y = b, — o0 H T,V W),

which implies [0?/1,5 < [10,qll; + P(Ky). Repeatedly, we can take more time derivatives to obtain

0 T
0¥y - NI3 5, <10yl 5, + PE + P(Ko) f EX(1)dt, (5.42)
0
and then |6‘f+1¢/|3.5,k is controlled via boundary elliptic estimates:
3,2 N\-1 23,12 N—1 92412 % 2112 % 2 2 % T°K
10, ¥11 5 = {0)"20;yl; < K8)™20;qly + P(Ko) < 10;4ll} + P(Ko) < 116;q(0)Il7 + P(Ko) + Ef(n)dt, (543)
0
0105 ~ ) 2wl < [B) 1 03qlo + P(Ko) < 11634ls + P(Ko). (5.44)

where the leading order term ||60?51||o on the RHS of (5.44) will be further reduced through the reduction scheme shown in the
upcoming subsection.
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5.2.4 Reduction of pressure

We start with ||g||4. From the linearized momentum equation, we know
~@59)" 954 = (b~ Dg +pDYvs,
~8iq = (0:9) ' 8ip03q +/3D?Vi, i=1,2,
and thus we have the following estimates after taking 3° and using D‘? = (0, + P V) + (639"2)’1({’1 . ﬁ — 0;p)03 to get
glls <g, llgllo + 1T vIIs + 116 = 1ll3, (5.45)

where 7 denotes a tangential derivative, including d;,0 and w(x)d3 for some weight function w that vanishes on X and is
approximately equal to |x3| near =. Replacing 8° by 8°*6*, we know the estimate of ||8*9**gl|y is reduced to the estimate of
l0*7V||3_. Combining this with the div-curl analysis in Subsection 5.2.2 we can reduce the top order mixed norms ||3*3**vl|

and [|056**llo to [|7*Vllo. l] = 4, and |[ 7" (§)3*g

, all of which are part of the tangential energy.
0

5.2.5 Control of full time derivatives
From the reduction procedures for ¢ and the div-curl analysis for v, we know a spatial derivative of g is reduced to a tangential

derivative of v, and the divergence of v is reduced to F '(§)0:q. Repeatedly, it remains to control F "(§)dtq and T with

la| = 4 in L*(Q). Here we only present the proof for the estimate with full-time derivatives which is parallel to Section 4.6, and
the mixed space-time tangential estimates are easier. We introduce the Alinhac good unknowns V, Q for the §¢-differentiated
linearized system (5.6):

V=gl -39, Q:=dq-8'60% (5.46)

Similar to the arguments in Section 4.6, when f = v; and ¢, the following identity holds:

VI f) = VIR + &), (5.47)
where &(f) := 829 {0 + €.(f). Also,
7 4 ai“; 4 PO o 3 1 E-
C(f)=~10;, —=,03f| =031 |0;,0ip, —< | = 005 f |0;, —=—| 0,039, i=1,2 (5.48)
03¢ 33 (039
o 1 1 s
() = [é’?, — Gsf} +0sf [6?, —] 0:03¢. (5.49)
3¢ (039)?

Then we take d; to the first two equations of (5.6) to obtain:

POV, + VPQ = R, (5.50)
F/(HDFQ+ V-V = R - &), 5.51)
where
R! = = [0, pIDFv; - p (D) + dw) - €i(g) - 0t pgda, (5.52)
R = [0}, F @107 G — 7@ (D@ + @) + 9/ F @), (5.53)

and the commutators "5( ), 8(f) are defined in the same way as in (4.39) and (4.40) by replacing ‘7"’,5,{5 respectively with
(9;‘, 0y, . The last two terms in (4.39) vanish because 3;‘ commutes with d3. Specifically, we have:

GDPf = DPF + D(f) + (1), (5.54)
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where D(f) := (DFo% 10 + D' (f), and

- 1 1 ~
90 -N=8,9, — |0af + —= 0%, 9] - Nos f

o

30 03¢
} 8,050, (5.55)

1 . = .
3}, — @ -N=0,0),05f
3¢

D(f) =18}, 9] f + +

— 4G5 - N = 0,9)0sf [63, .
' (03p)?

W) = 0@~ 9IS, (5.56)
Analogous to Lemma 4.4, the following estimates hold.

Lemma 5.3. Let I := atf - 6? f@f?}' be the Alinhac good unknowns associated with the smooth function f. Assume d;¢ >
co > 0, and let &( ), @( /), and é(f) be the remainder terms defined as above. Then

167 fllo < 1Fllo + ¢ 1183 £ 1l Yo, (5.57)
. 3 o 3
IEi(f)llo < P[ca', Vo, D |Vafw|3_k] : (uafum +>) ||aff||4_k), i=1,2,3, (5.58)
k=1 k=1
o —2 3 —_ 2 — 3
Dl < P[ca', Vo, D IVOY, Va,kwlz_k] : {uafum +> ||aff||4_k], (5.59)
k=1 k=1
Ao < 185wlo + 165000l (5.60)

Next, we introduce the boundary conditions for \07, Q The 6f-differentiated linearized kinematic boundary condition now
reads:

Pu+@-DIU-V-N=8, onz, (5.61)
where
o 2 o 4\ . .2
Si:=03v- N} + Z (.)6{V~6f 'N. (5.62)
1<j<3

Also, since Qs = atg - Bféc')j@, the boundary condition of Q on = reads:

\Y — o o
W]y K(1 = NPy — 040y + gdty. (5.63)

(i) = —O'va-
1+ |VyP?
Invoking (A.9), we have
dl1 o 712 4. % 1 2 Be L oud ovg T, o1
=5 [ VPasgax =3 [ ¥ ((D, b+ VP - D)0y + pM) dx
. - “ . (5.64)
+ f Q(V? - V)dspdx — f QV-N)dx + f V- R'95pdx,
Q T Q
where M := 8,05 (Z - @)+ 0300, + P ?)(&5 - @ represents the mismatched terms involving tangential smoothing in (A.9). The

first integral on the RHS can be directly controlled by P(K;) because all these quantities are already given. Moreover, the last

integral is directly controlled by P(I°(0)||\°7||0 \/E"(t). For the second term in (5.64), we invoke (5.51) to get the estimates parallel
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t0 (4.117):
| 07 Vgax
Q

- f & 005 dx + f 35518955 dx — f F(@DPQ Q05 dx + f R0 dx
Q Q Q Q

\NF (@3}

\/73"(&’1)0" |

0

+ P(Ko)E“(1),

=y
2

+
0

2
(V% - Plleo + 1M ]|oo)
0

li = (5.65)
T F(PHQ

<l -

+ 1€ 10 lld o +

0
| 2
<lo— =— [ \F (4
slo= 5 INTF'@

0

where we note that all terms in R? come with - ’(¢) and thus the control of \/7—’ ’((})‘170%2 is still uniform in & ().
Now it remains to control the boundary integral. Compared with the nonlinear system, the estimate for the linearized system
is easier as the surface tension term now becomes a given term. Plugging (5.61) and (5.63) into the boundary integral, we get

- f QV - Nydy' = - f 9V - (T INDGw dy’ — & f (1 = Mo -y dx’
z z z
- fz g ooy dx’ + fz 8330 by dx’ (5.66)
- f QG- V) dx' + f 08, v,
p p)

where the second term gives us the boundary energy

2 4 x s 2 a5,
e f 841 = D)aw - By dx’ = k f [@35u| . (5.67)
b b
We note that the first, the third, and the fourth terms in (5.66) can all be directly controlled under the time integral, i.e.,
T — e o o o o o o
- fo fz RV - (VW/INDG W dx’ dr < 1030l + PV YL < eE(T) + P(Ko) (5.68)
T o - o o T o

- f f (8 - DGO A’ dt < AP, 2 + 10T + 10, ) St £EXT) + P(Ko) f Ed. (5.69)

0o Jx e 1 0

Further, the fifth term is controlled directly by invoking (3.5):
T P — 2 T p— —_2 2 - — = T J— P — 2
- f f QG- V)drydx dr = - f o f OV - (VY /INDG - V)dhy dx’ de + k? f f (1 = APy - VYo dx dr
0 z 0 z 0 z
T o _ o
+ f f (g — 030" (v - V)ary dx’ dr (5.70)
0 )
[} T o
Ser iUy, + P [ B
t 0

It remains to analyze the last integral in (5.66) which will be canceled with I, defined in (5.65). Following the analysis in
(4.130)—(4.140), we have

f OS,dx’ =4 f 6;‘@6?\) -8,N dx’ + controllable terms, (5.71)
> >

Ih=—-4 f a;‘z,atﬁiaﬁfvi dx + controllable terms, (5.72)
Q

41



and then we add them together and use the divergence theorem to get

4 f afz,aﬁv.a,ﬁdx’—4 f 8*GoN;030% dx

d - 2 i N B (5.73)

=% f (3}0340,N + 8240,0;N) - 03 v dx + f 8?0330,(0:N - Bv) + 82§0,(8,05N - H3v) dx,
Q Q

whose time integral can be easily bounded by g||6t363§/||% + EK(O) + P(Ie(o) fOT Ea"(t) dr. Hence, we get the control of boundary
integral

T . . T ) . o T,
- f f QY - Ny d' dr + 2 f f |<a>a,5¢|0 dr < ell053112 + E5(0) + P(Ko) f E*(r) dr. (5.74)
0 z 0 b 0

Combining this with (5.64), (5.65) and the definition of Alinhac good unknowns we get the estimates for the full-time

derivatives
NF (@3

This, together with div-curl analysis gives us the energy inequality of E*(¢) after choosing & > 0 suitably small:

2 L , . (.
6}l + + &2 f f |<a>afw‘o dr < £l|9} ;I3 + E*(0) + P(Ko) f EX(r)dr. (5.75)
0 0 JE 0

E“(t) <1 E*(0) + P(Ko) f EX(1)dr, (5.76)
0

which implies that there exists some 7° > 0 such that

sup EX(t) < C(k™", Ko)EX(0).

0<t<T*

Therefore, the uniform-in-n estimates for (5.6) are proven by induction.

5.2.6 Regularity of ¥ and its time derivatives

The regularity of 8**!y (0 < k < 3) can be enhanced to H>37 by the boundary elliptic estimates once we close the energy
estimates for £%(¢). Note that the boundary condition gives

— . 2 —2 D
(1 =Ny =G — g + cHY,V ¥,
thus, by (5.11) and the elliptic estimate, it holds that
— —22 o o o
10+ s 5 < 172 (o-P<|Vzmm>|afv Ulasi + 10 qla s + P(Ko)) < C(!, Ro)EX. (5.77)

Moreover, |55 is controlled by

T
Wss < Woxlss + fo Ol dr. (5.78)

5.3 Picard iteration

So far, we have established the local existence and the uniform-in-n estimates for the linearized system (5.1) for each fixed
k > 0, namely

PP DP" Yt L gE gt = (o) _ [)ges in [0,T]x Q,

FO (g Df’(") gD 4 V8 L) = (qm))gvgn) in [0,T] x Q,

q(n+1) — q(n+1)(p(n+l))’ gl(n+1) — q(n+1) + gan) in [0’ T] X Q,

g = gy — oV - (%) +K2(1 = A™D  N®™Y  on[0,T] X, (5.79)
0t¢(n+1) = ), jv‘(n) on[0,T] XX,

W =0 on [0, T] X Zp,

G, p*D gDy = (v, o8, UE),
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where zp(”),go("),D?"),VW are defined in (5.2)-(5.5). Now it suffices to prove that, for each fixed k > 0, the sequence
{(V™, ™, ™)}, has a strongly convergent subsequence. Once we prove this, the limit of that subsequence becomes the
solution to the nonlinear k-approximate system (3.11) for this chosen «.

For a function sequence {f™} we define [f]™ := f*D — £ and then we find that {([v]™, [§]", [¥]™)} satisfies the
following linear system

p(n)D‘P [V](n) + Ve g = — f in [0,T] X Q,

FO (gDF" [G]™ + VP - ] ® = - {0 in[0,7]x Q,

[41™ = [g]™ + g[@]™" in[0,T]xQ,

[41" = g[y] ™D = o[H]"D + k(1 = A)([v]™ - N®) + (1 = )™ - [N]"D),  on[0,T] X Z, (5.80)
A [Y1™ = [v]™ - N® 4 (v® . [N]0=D), on [0, T] X 3,

v1=0 on [0, T] X =5,

(1, [p1™, [¥1™)l=o = (0,0,0),

where £ and fi;”) are defined by

f(n) = [p](nfl)a v(n) + [p;](nfl) ,ﬁv(n) + [pva](nfl)a v(n) + [p](nfl)geg, + 335](")[14,3]("71), (5.81)
J = [F (@1 V@™ - o) + [F (@] - Vg™ + [F(g) V1" V03 ™ (5.82)
— F (g")glvs1" ™V + 9\ [A5]"7Y,
and
oo™ o™ 1
) . n g1 (n) (n) 1¥ ) ._ 929 ) ._
V= 83¢<")(V NOTE 9, A = o AR = g AT S

[HI"D = HETG®) = HETG" D), HET) = -V - (V—_‘C] :
1+ |Vy?

For n > 1, we define the energy of (5.80) [E]™ to be the following quantity
3 f 2
[E17@) = D 1 1P @I + 10131 @R, + f |0 w1 (@), dr + 1™ @) (5.83)
k=0 0

It suffices to control [E]™(¢) and use ([v]™, [p]™, [¢]™)]=o = (0,0,0) to show that [E]™)(r) < L([E]""D(®) + [E]"?(t)) in
some time interval [0, T{]. The estimates for [E]“)(f) are parallel to Section 5.2, so we will not go into every detail but only list
the sketch of the proof.

5.3.1 Div-curl analysis for [v]"
By Lemma 5.2, we have the following inequalities for k = 0, 1, 2:

IBEI IR < C(Ko) (1051 ™I + 11V9" X EVI™I3_ + V2" - S VI™IB, + 10501 - N 5, ). (5.84)

The estimates for L>(Q) norms follow in the same way as Section 5.2.1 so we do not repeat here. For the curl part, we take
V#"”x in the first equation of (5.80) to get

n n Q n 2 n 2m
p"D?" (V" X []®) = —VF" x f0 — ¥P” p® 5 DP[]® + p™ [V, DP " [v] ™, (5.85)
i —(n) . ) —(n) L =) n 9 . .
where ([V?"x, D" [v]™) = e’f"V‘; vE")Vf [v]}{”) + e’f"Vf 0,(@" — )9, [v]f(”) and V?" x £ contains at most two deriva-

tives of v, ga("), go(”‘l), go(”‘z). Taking 02, we have

™ D" (32" x [v]™) = GA(RHS of (5.85)) — [6%, p™ DF"1(VZ" x [v]™). (5.86)
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Based on the analysis above, we find that the leading-order terms of [v]™, [v]”~" must be linear in [v]®, [v]"~" respec-
tively. Using Reynold transport formula (A.9) for the linearized system, the curl part can be directly controlled as in (5.33):

T
W"’x[v]<"><T>||§sca%o)[uva")x[v]<">(0>||§+ f P(E™, ED | E-D)E1"(p) dt (5.87)
S——— 0
=0

T
< C(Ko) f [E1™() + [E1" V@) + [E1" (1) dr.
0

Similarly, replacing 6> by 3*>~*6* for k = 1,2, we get

T
V%" X BV ™Dy < C(Ko) f [E]™@) + [E1""V () + [E1" (0 d1. (5.88)
0
As for the divergence, the second equation in (5.80) gives
n ’ 20 (n 2 S ny ; (n v1(n
199" - DIIB < I (¢ )07 11 + 1B < PRDIF™ (¢")7 14113, -89

where 7~ = 8, or d or wds for a bounded weight function w vanishing on . Therefore, the divergence is then reduced to the
tangential derivatives of [¢]. Similarly, the divergence of &*[v]™ is reduced to 3“7 §.

Next, the normal traces are still controlled by using boundary elliptic estimates. Note that the Dirichlet boundary condition
for [§]™ can be written as

— (1= D)™ - N®) = =[q]" = o (HETF™) = HEP" D)) + (1 = )™ - [N]*D), (5.90)
and thus _ . . .
I - N®E s <1 llgl ™I + P(Ko) + 5 - Vg DR 5 + pB 5 < g1 ™11} + P(Ko). (5.91)

Similarly, we have for k = 1,2 _
05V - NB sy < 11071111} + P(Ko). (5.92)
5.3.2 Reduction of pressure []"

This is similar to the arguments in Section 5.2.4. We first consider the third component of the first equation in (5.80):
- v(n n) @ n An
(635(”)) 163[(]]( ) — _p( )D:ﬂ [V]( ) 4 f‘f )’ (5.93)

which means the control of 95[§]" is reduced to 7[v]"™. Then by considering the first and second components, we can further
reduce the control of 5,~Z] (i = 1,2) to 03¢ and T v since V‘f =8; - 5,-?;56‘;’. Therefore, combining the div-curl analysis and
reduction procedures for [§]®, it suffices to control 8?8[¢]™ and 8>[§]™.

5.3.3 Tangential estimates for full-time derivatives

Again we only show the control of 8>[§]"™ by introducing the Alinhac good unknowns:

—(n)

[VI® = VoD Y0 = 3™ - 536002 [ ™ — g3g™alf" v — 3@ Dt v, (5.94)
[QI := Q"D - Q" = g1 - G 11 - 3" 4 - 1PV . (5.95)
For a function f and its associated Alinhac good unknown F, we have
F@T LD + a7y = 57 IR + (€1,
D7 1A + D ) = DY FI® + [D1(F) + [ (f)
with
[(i]g”)( = (Eg")( ForDy - (SE"_D( ™) + lower-order controllable terms,
[D17(f) = DO (™) — D=D(£™) + lower-order controllable terms,
[e]f.m( £) = @Dy — =DMy 4 Jower-order controllable terms,
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where € (f0), DO (£ and " (f™) are defined by replacing 87,8 by 87,7, replacing the coefficient 4 in D by 3 and
setting @ = o™, ¢ = =D, f0+D = fand O = fin (5.48)-(5.56).
The Alinhac good unknowns [V]®™, [Q]™ satisfy the following linear system:

pDP VI 4+ ¥V IQI™ = €D + € DG ™) + [R],, (5.96)
7 (@")D] QI + V7"V =~ ) + 60 + [RI,, (5.97)

where [R] terms consist of §? f terms in (5.80) and the omitted commutator terms in the definition of Alinhac good unknowns
[V], [Q] and they are controllable in L*(Q).

IIRIIEZ < C(Ko)LEI™(2) + [E1"V(2) + [E1"2(2)). (5.98)
The boundary conditions now become:

[Q1™ = gd [Y1" ™V + 0} (H(VY™) = HV" D)) — (1 - A3 [y]™

+ 3005191 + 87 91" 93" (5.99)
[V](n) N(n) 34[w](ﬂ) [V](ﬂ) i Va?lﬁ(") + (- V)@? [E](nfl) + agv(n) ,§[J](n*1)
= (@3] - N3P ™ + (939 - NS (1D + [87, N®- v+ D] = [97, N* -], (5.100)

Following the analysis in Section 5.2.5, we have

1d

R ( f PIVIPPosE" dx + f 7 (q"IQI" P aes‘é‘”dx)w f AR

sc<1°<o>([E°1<">(0)+ f [E°]<")(r>+[E°1<"‘1>(t>+[E“]("‘”(r)dt) (5.101)
0

- [11mie: R yax + [ 1QImer ot
z Q

where the last line is analyzed in the same way as in (5.72) (by using divergence theorem and integration by parts in time
variable). Here we only list the highest-order terms. We have

—f[é](")[af,ﬁ',v("_l)]dx' +f[Q](z1)@l(n—1)(vjn))d(vgn)
- . (5.102)
f 3" [Q1™[3;, N',v"D1d V™™ + controllable terms,

and thus it can be controlled under time integral:

T
f f & 1QI10}, N VDV dr < ll6lg ]<">||2+C(Ko>([ E1™(0) + f [E°]<"><t>+[E°]<"”<r>dr). (5.103)
0

Combining the above analysis and using the definition of Alinhac good unknowns, we get

1821 DI + | VF@ (g™ g1 ™ DI + & f |0} w(r)ldr
(5.104)

< ello ™I +C<1°<0,K“)([E°]<"><0>+ fo [E1™@) + [E1" V() + [E1"2 (1) dr)

5.4 Well-posedness of the nonlinear x-approximate problem

Combining the div-curl analysis, the control of the normal traces, the reduction of [¢] and the analysis of full-time derivatives
for the linear system (5.80) for [v]™, [7]™, [¥]™, we arrive at the energy estimate:

T
[E1"(r) < C(Ko, k™ >([ E1"(0) + f [E]<">(r>+[é]<"”<r>+[é]<”2><r>dr). (5.105)
0

45



Since [v]™, [§]™, [w]™ have zero initial data, one can repeatedly use (5.80) to show that their time derivatives also vanish
on {t = 0}, as one can observe that every term in the first two equations of (5.80) contains exactly one term involving [ f]® or
[£1”~Y whose initial value is zero. This implies [E£]™(0) = 0, and thus there exists some T¥ > 0 independent of n, such that

sup [E1™(r) < ! sup [E1" V(@) + sup [E]" 2], (5.106)

0<I<TY 0<I<T* 0<I<T¥
and thus we know by induction that

sup [E]"(1) < C(Ko,k1)/2"" - 0asn — +oo. (5.107)

0<I<T*

Hence, for any fixed « > 0, the sequence of approximate solutions {(v", 7", p™, ™)}, - has a strongly convergent subse-
quence, whose limit (¢, §*, o, ¥*) is exactly the solution to the nonlinear x-problem (3.11). The uniqueness follows from a
parallel argument.

6 Well-posedness and incompressible limit of the gravity(-capillary) water wave
system

We are ready to prove the local existence of the original water wave system (1.24) for each fixed o > 0. In Section 5, we prove
the local well-posedness and higher-order energy estimates of the linearized system (5.6) for each fixed x > 0 and use Picard
iteration to construct the unique strong solution to the nonlinear k-approximate problem (3.11) defined in Section 3.2. To pass
the limit k — 0, to the original system (1.24), we prove the uniform-in-« estimates for (3.11) in Section 4. Therefore, we
prove the local-in-time existence for the stronger solution to the compressible gravity-capillary water wave system (1.24), that
is, given initial data (v, pg, ¥o), there exists 7’ > 0 only depending on the initial data, such that the original system (1.24) has
a solution (v, p, ¥) satisfying the energy estimates

sup E(t) < P(E(0)). 6.1)

0<t<T’

6.1 Uniqueness

To prove the well-posedness, it suffices to prove the uniqueness of the solution to (1.24). We assume

(™, g™, o™ D)), o

to be two solutions to (1.24) and define [f] = f — f@ for any function f. Then it suffices to prove ([, [§], [o], [¥]) =
(0,0,0,0). We find that ([v], [¢], [o], [¥]) = (0,0, 0, 0) satisfies the following system:

pOD 0] + V¢ 4] = - £, in[0,T]x Q,

F(g"D?" [g] + V¢ - [v] = —f, in [0, 77 x Q,

(4] = [q] + gl¢] in[0,7T] X Q,

(91 = gly] - o (HETy™) = HETy))  on[0,T] ., (6.2)
dy) = [v]- NV +v@ . [N] on[0,T] X2,

[vi]=0 on [0,T] X,

(v, 131, [¥Dli=o = (0,0,0)

where the functions f,, f; are defined by

o= 10100 + [pv] - VW + [pVN105v + pPges + 3337 [Ai] (6.3)
fy = [F @10:4% - 9'P) + [F (@] - V3 + [F(9)VN1d3¢® (6.4)
— F(gP)glvs] + 33vP[As],
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and

0 0 1
19 A _ 0w Asy =

1
VN i=—Ww-N-0,9), A1z == ——, = s
N 6390(" ), A1z Br0 23 Bro’ o

Yoy =v. [V S i _argon g (YW (11 o o
H(Vy) =V (INI)’ HEVY') = HVy) =V o~ v~ e vy |.
Let

3 2
[E1@) := > 10 IB + oIV WIR_, + gy + > I9KGIR_, + Il (@) 14115 (6.5)
k=0 k=0

We can then mimic the proof for the uniform-in-« estimates (setting k = 0) in Section 4 to show that [E](0) = 0 and [E](?)
satisfies the following energy inequality

T
[EXT) < fo PEG)EN) dr. 6.6)

Here, compared with the process of Picard iteration, the only difference is that the boundary integral produces some extra terms
that are controlled using mollification before, and we must use the surface tension instead of the artificial viscosity term to
produce the boundary regularity. Following the analysis in Section 5.3.3, the main contribution of the boundary integral arising
from 03-tangential estimates is

- f [QIIV]- NV dx £ - f PlgloF W dx + f Pl - [N ©7)
> > >

where [Q], [V] are the Alinhac good unknowns of [§], [v] with respect to 8% and go(l), that is, [F] := F — F@. For the first
integral, we have

[ Z3r1433 ,Lod -1 ol 40 PV VD +y?) < @) T 6.8
fza [0 =5, fz WO S, a7 - o | S g T WA 69

where the first term gives the boundary energy in [E](#), and the second term appears when & falls on

INOP - NP

NP NP = .
VT = INEE = o e v + v

This term is controlled by

By (1) (2)

N“)IIN@I(IN(”I + |N<2>|)
< P(W”, VYL NVTVE [Wlo( Vodw Dl + | Vo w®)
< el VoV [llg + PV, Ve P10 EQ) < s[ENt) + PE()).

The energy inequality for [E](f) together with Gronwall’s inequality and the energy bounds for E(¢) implies that there exists

some T € [0,7’] only depending on the initial data of (1.24), such that sup [E](f) < 2[E](0) = 0. Therefore, the solution to
0<t<T

(6.2) must be zero. The uniqueness is proven, and the continuous dependence on initial data in H(Q) for v, § and in H*(Z) for
V¥ is similarly proven.

6.2 Incompressible and zero-surface-tension limits

This section is devoted to showing that we can pass the solution of (1.24) to the incompressible and zero surface tension double
limits. In other words, we study the behavior of the solution of (1.24) as both the Mach number A and surface tension coefficient
o tend to 0. Recall that the Mach number A is defined in Section 1.3.
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We study the incompressible Euler equations modeling the motion of incompressible gravity water waves without surface
tension satisfied by (&, w, g;,) with initial data (wy, &) and W?)lz,, =0:

Dfw+V¢p =0 in[0,T] x Q,

V¢¥-w=0 in[0,T] x Q,

P =qin+ 8¢ in[0,7T] x Q,

p=gé on [0,T] x X, (6.9)
0E=w-N on[0,T] XX,

w3 =0 on [0,T] X X,

W, Oli=0 = (wo, &),

where we define ¢(f, x) = x3 + yx(x3)&(¢, x') to be the extension of & in Q after slightly abuse of notations. Denote by
W7, v, pto) the solution of (1.24) indexed by A and o, our goal is to show:

W v pty = (&, w, 1) in CO([0, TT HE 2 (2) x HE(Q) x H°(Q)),  for any 6 € (0, 1], (6.10)

loc loc loc
provided that:
1. The sequence of initial data (lﬁé’(r, vg’”,pg’” - 1) € H(2) x HY(Q) x H*(Q) satisfies the compatibility conditions up to
order 3, Il!/g’glm <1, and vg;/l’”hh = 0. The compatibility condition of order k (k > 0), expressed in terms of the modified
pressure, reads

(DI G zopes = (DO (H + 0™ ) =gy (6.11)
Since Df =0;+ Y. 8 on 2, we can rewrite (6.11) as:
@+ - 0G0 = (0, + V7 - ) (H™ + gy*) |0 on I. (6.12)

Apart from this, we require
IV |zoixs, =0, k=0,1,2,3, (6.13)

The existence of such data is discussed in Appendix B.
2. W7 e o) = (€ w, 1) in HHE) x HH(Q) x H*(Q) as 1,0 — 0.
3. The compressible pressure g% and the incompressible pressure g;, satisfy the Rayleigh-Taylor sign condition:

—03q™ > ¢y >0, on{r=0}xX, (6.14)

—03¢in 2 co >0, on{r=0}x2Z. (6.15)

The key step of showing the A, o-double limits is to prove an energy estimate of (1.24) that is uniform in both A and o. The

analysis in Section 4 indicates that the energy estimate for (4.1) is already uniform in A. In particular, one can see that the
tangential energy estimates in Sections 4.5-4.6 are uniform in ¥, which is of size O(2?) by (1.29).

The energy bound that we obtained from the local existence implies the boundedness of ||8fv/l"7(t)||§_ ot |(9§‘¢/l"7(t)|i_ k<4
uniformly in both A and o within the time interval [0, T']. Thus,

W Yty > (w,é), asd, o — 0, (6.16)

weakly-* in L*([0, T']; H*(Q) x H*(Y)), and strongly in Co([0, T1; H9(Q) x Hﬁ)’c‘s(Z)) for any 0 < ¢ < 1. Here, the strong con-

loc
vergence is a direct consequence of the Aubin-Lions lemma, and the uniqueness of the limit function implies the convergence

without squeezing a subsequence.
Moreover, as Df =0, + (- V) +(330) ' (v-N = 8,0)83, invoking the continuity equation

FA@DIG + ¢ v = ¢F 1 ()Dfvy,
and because ||DY g (¢)|ls, |D v (#)||; are uniformly bounded in [0, 7], we have

V9 5 V2w =0, (6.17)
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weakly-* in L*([0, T1; H*(Q)), and strongly in C°([0, T; H};
the Aubin-Lions lemma.
Finally, since the continuity equation can be expressed as

Df(p"" = 1) + p*7 (V¢ - 1) = 0,

°(Q)). Once again, the strong convergence is obtained thanks to

we can derive the energy estimate for p** — 1 in H3(Q) as:

d1 Ao 2 A0 A0 0. 4,0
551" = 1B < o™ = Lo (I lls + 18w 5. (6.18)
where [V, [8y*7]5 are bounded by E17. Similarly, we can prove the uniform bound also for ||8,(p%" — DI3. Therefore,
oY — 1 weakly* in L*([0, T]; H*(Q), and strongly in C°([0, T1; H>~9(Q)).

loc

7 Improved incompressible limit for well-prepared initial data

Recall that the uniform boundedness (with respect to Mach number) of top-order time derivatives is required to establish the
uniform-in-(4, o) estimates in Theorem 1.2. However, only the boundedness of first-order time derivatives is required, namely
divv = O(1) and d,v = O(1) if the initial data is well-prepared. In this section, we aim to drop the boundedness assumption
for high-order time derivatives. Since we also need to guarantee the propagation of the Rayleigh-Taylor sign condition, the
uniform boundedness of 9,03 ~ d?v is still required.

It should be noted that there is a new difficulty in the control of the “weaker” energy €(¢): There exhibits a loss of weight
of Mach number in 9*?-tangential estimates when analyzing €4(¢). In particular, we have to control the following quantity in
the cancellation structure used at the end of Section 4.6:

f (30592, (@N)(30532q) .,
Q

in which 8?q has to be uniformly bounded with respect to Mach number. However, now we only have g = O(1/2), which
leads to a loss of A-weight. Besides, similar difficulty also appears in the control of — fQ V* . €(g*)d?V,. Indeed, such loss of

A-weight necessarily happens in gzaf-tangential estimates because of the following two reasons

1. 3*3q needs one more A-weight than §292v, and
2. The (extension of) normal vector N, which arises from the commutator [6283, N; /039,05 f] in C;(f), may NOT absorb a
time derivative.

Such loss of weights of Mach number is completely caused by the free-surface motion because the commutator €(f) is not
needed in the fixed-domain setting. In the second author’s previous work [76] considering compressible inviscid fluids without
surface tension, such essential difficulty can be avoided thanks to the vanishing Dirichlet boundary condition g|z = 0, but that
framework is no longer applicable here. To get rid of the loss of Mach number, we have to find a new way to control §?v. We
also need to introduce a new energy functional:

©(r) 1= Cq(t) + Es(1), (7.1)
C4(t) = VG + G115 + | Vowls + W15 + 118,v, 0,115 + | Vorowl; + 10,01 5
+107v, 487415 + | Nooruls + 107w13 5 + 10, w7 5 (7.2)

4
+ DI, DI + INTAG YR+ 1A0}u] 5
k=3

5
Es(t) = | 2ok, A% g2 + | Vool + |2k, (7.3)

k=0

We now introduce the following div-curl inequality

Lemma 7.1 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s > 1, one has
IXIE < COplerys [Flro) (IXI + 197 - XIZ, +119% X XIE_, +1X - NP, ), (7:4)

where the constant C(|y/|, +1s szlwu,m) > () depends linearly on IW|2+] .
2 5 3
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Applying this inequality to X = #?v and s = 2, we obtain that
162718 < C s, Ty (19315 + 1V - B30I + 119 x G20l + 103w - NE_, ). (7.5)
The divergence and vorticity are controlled in the same way as in Section 4.3. As for the boundary term, we have
Gjv-N =3}y +7;0,000,

so we shall turn to control |82y, 5 and |#?], 5 without any weights of A, o-.

7.1 Time-differentiated evolution equation of the free surface

We derive the evolution equation of the free surface by further differentiating the kinematic boundary condition in time variable.

7.1.1 Time-differentiated kinematic boundary condition
Let D, := Dfls=0,+V- V. The kinematic boundary condition then implies
Dy =v;, onZ. (7.6)

Taking one more D to (7.6), we infer from the momentum equation that

—2 .
pDi Yy =-03g—-(p—1g, onZ. (1.7
Since [9;, D;1f = ;v;0;f, we obtain
[0, D, f = 8;v;0,f +20,v; 0,0, .
From this and [51-,5,] = 5,-17j Ejf, we see that

(62D, 1f =D, (67V;0,f +20,v;0,0;f) + 87%;8,D.f + 20,9, 0,0,D, f

= 9?Dv;df — 20%; 0 O f — 20,9} 0,0y O f
+20%,0;D,f +20,Dv;8;0,f — 40,9; 0 jvi . f
+40,9;8;0,D,f — 20,9, 8 (0,9 O f).

Therefore, we have
02D, =Dy, 0%y + 02Dy, 0 — 20°7, 8,y By — 20,9, 9,99y Dy
+207; 8, Dy + 20,D,v; 803 — 40,v; 8 vy D (7.8)
+40,9; 0,0, Dy — 20,9 ; 8 (0% Op).
Combining this with (7.7) yields

— 1 . —
D,y = —;afagq ~ Dy Vy+R,+R,, onZ, (7.9)
where
—Ry = — 207, 8,9 Oy — 20,7, 8,0 i Wy + 207V, 9; Dy + 20,D;v; 80, 710
— 40,5, 8,7 OB + 40,9, 0;0, Dy — 20,7, 0;(B,% D) '
and
-1 1
R, = -0 (u) - [a?, —]634}. (7.11)
P P
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Fori=1,2, since pEvi = —5?@ with 5? = 6f|>; = 0; — 0;Y33, we have

. _ 1 _
—0’Dy -V = —8%0"G - Yy +
P

1 _
2, —}5“}} V¢ onZ.
P
[ S——
:Rw.p
Also, since 9 := #%lx = 83, then
1 1 ,=¢, = 1
——0203q+ -0°0"q-Vy=—-N-820"¢ onZX.
P P P
This leads to the following evolution equation of the moving interface:
-2 » 1 A
D, 0;y=--N-0;0 g+Ry, +R, +Ry,, onZ,
e

where Ry, R,,, and Ry , are given respectively in (7.10), (7.11) and (7.12).

7.1.2 The reformulation in Alinhac good unknowns

In the next, we introduce Q to be the Alinhac’s good unknown of g associated with (9,2:
Q:=0;q-0;¢dg, inQ

For j = 1,2, 3, similar to (4.36), we have
a,zvfcj, =ViQ+Ci(@, inQ.

Here, for a generic function f, we define
Ci(f) = 0¥ fo+ Ci(f), i=1,2,and C3(§) = (35)*f0}¢ + C5(f).

where

d; 1
Ci(f)=- [ﬁ?, @“‘; asf] - 0sf [63, dip, @] — 8190 f0, (—

and

’ _ 2 L
G(f) = [‘9:, 6390753f

1

+ 030, (—) 0:03¢.
(2

Note that d3¢|z = 1, (7.15) then yields

#9,3=09,Q+Ci(q, onz,

where C;(¢) = 5;063518,21// —[87, 0, 03] when i = 1,2, and C3(§) = 05gd7y. Therefore, the equation (7.13) turns into

— 1 1
D,y = ~ONVQ- N C@)+ Ry + R, + Ry on%

Parallel to Q, we define V to be the Alinhac’s good unknown of v associated with 2:
V= 0}v—0;pdv, inQ.
Then, similar to (4.43)—(4.44), (V, Q) verifies

pDYV +V¢Q = G, in Q,
BDfQ+ V¥ -V =G* - Ci(v), in Q,
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where we write 7' (g) = A? for simplicity of notations (which is reasonable when discussing the incompressible limit according
to the discussion in Section 1.3)

G! = —-[82,pID¢v; — pD(v;) — Ci(§) — (82p)gdin, i=1,2,3
G? = —2’D(§) + *gdvs.

Here, for a generic function f, we define
D(f) = (D35 1)(@;¢) + D' (f),
with

D'(f) =[32,9]-0f + |22, L oN- 019), 05 f
03¢

1
+ [a?,v-N—a,¢,—]a3f
03¢
1 ., 1
+@[6 ] N3 f = (v-N = 0,0)05 0, (W) 0,03¢.

In the next, we commute the divergence operator V¥- to the first equation of (7.20) to obtain:

pA(DIYQ - AQ = pdV V' + Vop - DYV + pDf (G* = Ci(v))) - V¢ - G (7.21)

7.1.3 Decomposition of the pressure: Dirichlet-to-Neumann operator

Since
Q=074 - 07wdsq = o0 H — 03907y,  on,

we define Q = Q;, + Q,,, where @, solves the elliptic equation
-A*Q, =0, inQ,
Q= o H — 3q0*y, onZ, (7.22)
03Qh = 07 on Zlﬂ

and Q,, satisfies
—A*Q,, = —pA*(Df)*Q + pdV oV + V¥p - DIV + pDf (G2 - c,-(vf)) -v.G!, inQ,
Q,=0, onZX, (7.23)
»:Q, = :Q = —07pg, onXy,

where ;@5 is computed by restricting the third component of the first equation in (7.20) on X.
With this decomposition, we can further reduce the evolution equation of the free surface (7.18) by introducing the Dirichlet-
to-Neumann (DtN) operator.

Definition 7.1 (Dirichlet-to-Neumann (DtN) operator). For a function f : £ — R, we define the Dirichlet-to-Neumann (DtN)
operator associated with (Q, ) by

Ny f = N-V?(Ey)), (7.24)
where &, f is defined to be the harmonic extension of f into 2, namely
-AEyf)=0 inQ, &Ef=f onX, 088, f)=0 onZ,. (7.25)
With this definition, we can rewrite

N-V¥Q=N-VQ, + N - V*Q, = Ny (00> H — d3q07y) + N - V¢Q,,
= Ny (OPH) — Ny (03q0%) + N - V4Q,,,

and thus the evolution equation (7.18) becomes

oD, P+ cNy (PH) — Ny (03q0%0) = =N - V¢Q, — N - C(§) + p(R, + R, + R,,) on < (7.26)
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7.2 Preliminaries on pardifferential calculus

In the equation (7.26), the term involving DtN operators are fully nonlinear, so we shall find out their concrete forms in
order for an explicit energy estimate. In the remaining part of this paper, we will introduce several preliminary lemmas about
paradifferential calculus that have been proven in Alazard-Burg-Zuily [2]. Following the notations in Métivier [52], we first
introduce the basic definition of a paradifferential operator. Note that the dimension d in this section is actually the Hausdorff
dimension of the free surface.

Definition 7.2 (Symbols). Given r > 0, m € R, we denote I""(RY) to be the space of locally bounded functions a(x’,£) on
R4 x (R4\{0}), which are C* with respect to &(& # 0), such that for any @ € N?, & # 0, the function x’ dga(x', €) belongs to

Wr*=(R?) and there exists a constant C, such that
|6§a(',§)|w,-,w(w) < Co(L+ D™, vig) > 1/2.

Definition 7.3 (Paradifferential operator). Given a symbol a, we shall define the paradifferential operator 7, by
Toi@) = Cn* [ e = e = n oty dn (.27)
Rt

where a(6, &) = ﬁ%d exp(—ix’ - O)a(x’, &) dx’ is the Fourier transform of a in variable x’ € RY. Here y and ¢ are two given cut-off
functions such that
¢(m) =0 forinl <1, ¢ =1 fornl =2,

and y(6,n) is homogeneous of degree 0 and satisfies that for 0 < ¢; < &, < 1, y(6,n) = 1if |0 < €|y and ¥(0,n) = O if
|6] > &>|n]. We also introduce the semi-norm

Mj(@:= sup sup |(1+|&)""d%a(, &)

le|<4+1+r E121/2

W@ (7.28)

For m € R, we say T is of order m if for all s € R, T is bounded from H* to H*™™.

Proposition 7.2. Let m € R. If a € T(RY), then T, is of order m. Moreover, for any s € R, there exists a constant K such that
”Tu”HS_)H.r—m < KM(”;(a)

Proposition 7.3 (Composition, [2, Theorem 3.7]). Letm € R and r > 0. If a € IT"(R?), b € T (R?), then T, Ty — T is of
order m + m’ — r where

1 [0 @
atth = ‘Z T ORadLb
a|<r

and 0y = (gx, ,5&). Moreover, for all s € R, there exists a constant K such that
W TuTy = Tatplpgs s pro-m-r < KM™(@M™ (b). (7.29)

Proposition 7.4 (Adjoint, [2, Theorem 3.10]). Letm e R, r > 0O and a € F;”(Rd). We denote by (7,)* the adjoint operator of
T,. Then (T,)* — T, is of order m — r where

* 1 @ N~
a = Z @(')gé)x,a.

la|<r

Moreover, for any s € R, there exists a constant K such that ||[(7,,)* — T ||gs—gs-mer < KM (a).

Here and thereafter in this section, ¢ € C([0, T]; H*S R%)) is a given function with s > 2 + ‘%. The symbolic calculus is not
defined for C* symbols, so we need to introduce the following symbols.

Definition 7.4. Given m € R, we denote X to be the class of symbols a of the form a = a™ + "~V with

a"™(t,x',&) = F@uy(1,x),&), a" V1t x,8) = Z Go (01, x'), )L Y(t, X')

lala

such that
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i. T, maps real-valued functions to real-valued functions;

ii. F is a C™ real-valued functions of ({,&) € RY x (RY\{0}), homogeneous of degree m in &, such that there exists a

continuous function K = K(£) > 0 such that F(£,&) > K()|£"™ for all (£, &) € RY x (RY\{0});

iii. G, is a C* complex-valued function of ({,¢) € R4 x (RY\{0}), homogeneous of degree m — 1 in &.

Definition 7.5 (Equivalence of paradifferential operators). Given m € R and consider two families of operators of order m:
{A(t) : t € [0,T]} and {B(¢) : t € [0, T]}, we say A ~ B if A — B has order m — 1.5 and satisfies the estimate: for all € R there

exists a continuous function C(-) such that

Ve [0,T], A = BOllpr—pr-o-19 < CY(D)] ;1)

From now on, we use the notation | - |5, _,,, to represent the operator norm || - ||+ 5+, and use the notation | - |; to represent

II - lz7sgey- We have the following theorem for the composition

Proposition 7.5 ([2, Prop. 4.3]). Let m,m’ € R. Then
1. IfaeX™, beX™, then T,T), ~ Tup where attb is given by

atth = a™p") 1 g Dp) 4 gmpm =D l.aga("” 9 b™).
i
2. If a € ", then (T,)* ~ T} where b € £ is given by

— 1
b=a"™ +amD 4 =0y - 6f)a(m)’
1

We denote Rz and Jz to be the real part and the imaginary part of a complex number z, respectively. As a corollary, we

have
Corollary 7.6 ([2, Prop. 4.3(2)]). If a € £ satisfies Fam-b = —%(65 - 8y)a"™, then (T,)* ~ T,.

The next proposition is significant for estimates in Sobolev norms via paradifferential calculus.

Proposition 7.7 ([2, Prop. 4.4 and 4.6]). Let m € R, r € R. Then for all symbol @ € £ and ¢ € [0, T], the following estimate

holds.

|Ta(t)u|r—m < C(l‘p(t)ls—l)lulr’
|u|r+m < C(W/(t)ls—l) (lTu(t)u|r + |I/t|0) .

7.3 Paralinearization of evolution equation of the free surface

Now we can start to paralinearize the term involving %, and H in (7.26).
Lemma 7.8 (Paralinearization of the DtN operator, [5, Sect. 4.4]). For f,y € H s+3 (RY), we have
Ny f = Taf + Ry,

with the symbols A = AV + A© give by

AD =1+ [T g PR - Ty 62,
1+ [Voul)

) _
A=A

(Ve - @VVey) +i0:AD - 0,00 V),
and @V := (AD + i Voy - £)/(1 + |Vy|?). The remainder terms satisfy the following estimates

1 1 d
v
RADIr = CWA DIfl Yo sr<s—5,5>24+ 2.

Vi+Vyp

Next, we paralinearize the mean curvature term. Let H () = -v. ( AL ) We have
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Lemma 7.9 (Paralinearization of the mean curvature, [2, Lemma 3.25]). There holds H(¥) = T + R where = $@ + §
is defined by

§® o1 [| g (Vv &) ) (7.36)
N L+ VoyP
8 = - 20 909, (137)
and the remainder term Ry, satisfies
IRgl2s—3 < Clply, 1) (7.38)

Now, we can treat the nonlinear terms on the left side of (7.26). The term involving surface tension is treated as follows
TR (FFHW)) = Ry (0; Teth) + 0Ny (07 Ry)
= 0TATs(029) + oNy (82, T + 87Rs) + R\ (T50> (W) (7.39)
= oTAT(070) + R;T

The term involving the Rayleigh-Taylor sign is treated as follows

L1
Ny (B3q070) = (D3NN (O7w) + [Ny, D3q)07 . (7.40)
L1
=1 (B39)R; N (B7y) + RYT
Now, the evolution equation (7.26) becomes
pD; P + aTATo(020) + (=R (2Y) = — N - V9@, + R + RE (7.41)
~N-C({+pR, +R, +R,,) onZ.

7.4 Uniform estimates for the free surface

In order for an explicit energy estimate via (7.41), we shall symmetrize the 3-rd order paradifferential operator TxTg. That is,
find suitable symbols m € ! and n € X° such that T, TxTs ~ T T T and Ty, ~ (Ty)".

Proposition 7.10 (Symmetrization, [2, Prop. 4.8]). Letn € 30 and m € X! be defined by

1
M= ——— = |N|'2, (7.42)

1+ Vg2
1
mi= VOOAD 4+ — (0 - D) VHDOAD (7.43)
——— 20 °

=m

=:m©05)
Then T, T)Tg ~ Ty T Ty and Ty, ~ (T\)" are both fulfilled.

Recall that we need the uniform bounds for Ié',3 z,blf_s, so we shall take 1.5-th order derivative in (7.41). Since the symbol m
also belongs to >3 we alternatively consider the T',,-differentiated evolution equation thanks to the symmetrization result. We
introduce the following energy functional
2

dx’. (7.44)

1 — 1
M(@) o= 5 f p |TmT“D,a,2¢|2 +o |TmeTn6,2w|2 + %0 N T Tu0;
z

In view of Proposition 7.7 and Lemma D.2, we have the comparison between 9i(f) and standard Sobolev norms

—_ 2 C
M) < Dy, + ol + Z°|a,2¢|§; (7.45)
— 2 J— 2 —_— 2
D67y, 5 <|TwTuD.3w|, + D67y, (7.46)
2
2 !
aloful; < o |TuTwTwdpy| + olo7ul,  107uh < mmnafuzo + 107415 (7.47)
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For those L*(X) norms, we invoke the kinematic boundary condition, trace lemma and Young’s inequality to get
0705 < VIRV e + MV
and
107015 < elloPvIis + 1VIRIVYLe + IvdFIVaug. + VIV

The e-term contributes to £€4(f). The term ||8,2v||(2) can be controlled via §?-estimates of (1.18) in which there is no loss of
A-weight in the corresponding commutators of Alinhac good unknowns, as we take a full-time derivative 0. The other terms
contain at most one time derivatives and thus can be controlled directly. Thus, we have

M(f) < €4(¢) and |a§¢|f~5 + al02yl3 + 107yl5 < M(t) + e4(t) + controllable terms. (7.48)
So, it suffices to control Mi(z) in order to establish the bound for |(’),31//|i5 + O'|at2l,0|§ + |6,2¢/|§ in €4(1).
Now we start to control Mi(¢). Taking the partial derivative in the first term, we obtain

di _
<3 fz |7 T D%y dx’

—2 — , —2 = ,
= f TwTw(pD; 07U\ (T ToD,07) dx’ + f lp — 1, TwTW1D; 07y (T T D,07) dx
) )

7.49
+ % fz @p+V- (pV))|TmT“3,6,Zlﬁ|2 dx’ + fz pID;, T T 1(D;02%) (T ToD;0%y) dx’ e
= fz TuTw(oD; 020 (T T Dy%0) dx’ + RM
Next, plugging the paralinearized equation (7.41) into the above equality, we obtain
[[TuroD G0 D) 0
- fz T W TATs(@2Y) (T T, D, ) dx’ - fz (=03 T T3 02 (G20 (T T D,020) A
+ fg (T T 310 G2) (T TuD320)
Lo fz T T To(029) T T T D020 d’ — fz (=050 (T Tod?) 02 (T TuDi320) A’
(7.50)

- [T Q) D0 A + [ 11T 0G0 (T D) Y
z Q

+ f[Tana 63q]m¢/(5;2!//) (TanBtatzlp) dx’ - f(—(%q)[Tme mn//]azzl// (TanBtale//) dx’
Q Q

- f‘ﬁé(Tanatzw) [m% ) 83Q](TanHtatz¢’) dx’
z

+ fz R} +RT =N - C(@) +pRy + Ry, + Ry ) (T T,:D,0; ) d’
= M + M*T + MY + RY + RY + RY + RY + RY.

Here we use Ty TwTyw ~ TwITaTg and Ty, ~ T}, to derive MST and omit the low-order error terms in this equivalence. We
also use the self-adjointness of DtN operator in L*(2) to derive MRT. Note that we may not use Ta to replace Ny, in the term
involving the Rayleigh-Taylor sign, as we do not have Ty ~ T;. The major terms are M5”, M®" and MY, among which the
first two terms contribute to the boundary regularity with or without o-weight, while the term M" contributes to a fifth-order
term that motivates us to involve Es(#) in the energy functional €(¢). The control of Rg” ~ Rg4 and other commutators generated

by MST, MRT and M"Y will be postponed at the end of this section.
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The term M37 contributes to v/o-weighted boundary regularity. We have

MST == UmeTan(atzlﬁ) Tm(TmTuﬁta;zl//) dx’
z

d — _
= - %a‘ f |TmeTnazzw|2 dx, -0 f TmeTu(azzlﬁ) [TmeTm Dt]agw d-x/ - %(V : ‘_}) |TmeTna,2W|2 dx/ (751)
Q z

od 2
= —— | |TWTuT0%y| dx’ + RY.
2 dr L | zl//| X 7

The term M®T contributes to non-weighted boundary regularity with the help of Rayleigh-Taylor sign condition —83q >
co/2 > 0. We have

M = [N TT ) R (T T D) &
z

1d 1 o,
- 33 [conpiardo| o
? | . o 1 _ 1 5 (7.52)
+ f O3q 0, (T Tn079) [0 T T, DG dx’ = = f 0:03q +V - (03qv) Ry (TuTud79)| dx’
b Q
— 1d 0 ER% 82 : dx’ M
- = Ed_t Q(_ 361) ¢(Tr11T11 t';l’) X +R3 .
Currently, we have arrived at the following energy inequality
t 8 t
ML) < M) + f MY (1)dr + Z f RY(7)dr. (7.53)
0 — J0
Jj=1

7.5 Weighted fifth-order energy
7.5.1 Necessity of fifth-order energy

Recall that MV = — fz TwTw(N -V°Q,) (T Tnﬁt@zt//) dx’ and T, T}, is a 1.5-th order paradifferential operator, so it remains to
control |N - V¥@Q,,|, 5 in order for the control of MY . Using trace theorem, we have |N - V¢@Q,,|; 5 < [Vl 5IV¥Q,l>. Then, we
use the following div-curl inequality

IV QuIB < C(VYlwies, Wl5) (IVFQuIG + IAPQUIIT + V9 X V2QuIIF + IN X V¥Qu 1} 5 +105QulFpiss,)),  (7.54)

where the third and the fourth terms are all zero because V¥ x V¥ f = 0 and Q,, has zero boundary value on X. The fifth term is
easy to control, we have

103Qulyss,) = 10708l15s,) < 1074l (7.55)
The first term is of lower-order and we omit the treatment. For the second term, invoking (7.23), we have
4 4
IA*Q, |l < C [Z I/l(k_Z)*Bfl/fI4k] [Z %0 Glls—k + 1107 VI 10Vl + 2118l lld;vily + P(Ca(t)) | (7.56)
k=2 k=2

where the first term requires the control of Es(#). It should be noted that the A° in the third term is generated from V¥¢p such
that the term DYV can be controlled without loss of A-weight. The last two term on the right side of (7.23) can be directly
controlled by P(€4(?)), as the number of derivatives does not exceed 4 and the number of time derivatives does not exceed 2.
Therefore, the energy inequality (7.57) becomes

t 8 t
Ni(r) < IMO) + f P(C4(1))Es(T)dT + Z f R?’I(T) dr, (7.57)
0 = Jo

and it remains to control

5
Es(t) = Y [ 23w, 2% SR R G 7w o il

k=0

uniformly in 4, 0.
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7.5.2 Control of E5(r) and the remaining terms in €4(7)

Notice that E5(7) has exactly the same structure as the energy E(f) used to prove the local existence in Theorem 1.1 if we remove
the weight A2: all quantities except the top-order time derivative of § share the same weight of Mach number. This indicates us
to use the div-curl inequality in Lemma 4.2 and follow the same strategies as in Section 4 instead of using the one in Lemma
7.1 to establish the following energy inequality

Es(1) < P(€(0)) + P((E(t))f P(C())dr. (7.58)
0

Also, notice that 8}v,32¢ and 8}v, 87§ in €4(t) also share the same weight of Mach number, so we can still control them by
following the same strategies as in Section 4. What’s different is that the high-order time derivatives in both €4(¢) and E5(f) may
need more weights in order for the uniform boundedness. Thus, it remains to carefully check if there is any loss of A-weight in
the control of commutators €'(g), €(v;) and D’(¢), D'(v;) in the tangential estimates. Let us recall the concrete forms of these

commutators when 7 has the form 9.

N;
€N = [‘Tﬂ, a—,ﬁaf
3

1
+ 63f |:7"(Y’ Ni7 a
03¢

+Niosf [T"V ]7’76390 (7.59)

" (B3)?
with |y| = 1, and

(f) = [T°,7]-0f + +

1
T, B_(V ‘N =0,0),0sf
3¢

1 1
TQ,V N - 6,(,0, @]&f + @[7—07 V] . Na’;f

—(v-N=-01p)0sf [T“V ]’7’763(,0. (7.60)

" (03¢)?

Here, we only check the most difficult cases and omit the other easier ones: €(¢) and D(g) in /lafg—estimates, /lﬁf—estimates
(for €4(t)), A%070-estimates and /lzaf-estimates (for E5(¢)). Note that there is no need to check the same commutators for v;
because the power of A weight that 8*v; needs never exceeds that for %g.

/lafg-estimates for €4(r). We shall control ||A€;(g)||p uniformly in A when 7¢ = 6,35 and f = ¢. The worst case is that all
time derivatives fall on ¢ and such terms have the following forms

- (1
AON;/330)8,0:4, A9 (a—w "N- atsa)) Y
3¥
whose L? norms are bounded by P(Wz//, O, ||5v||Lm)||/lé)?qI|1.

/laj‘-estimates for €4(r). We shall control ||1C€;(§)||p uniformly in A when 7¢ = 6? and f = ¢. The worst case is that three out
of the four time derivatives fall on ¢ and such terms have the following forms

1
10,(N;/83¢)0; B34, 18, (@(v N - t%so}) 8}03q
whose L? norms are bounded by P(Wd/, O, ||5v||Loo, |6,21J/|Lw)||/18,35]||1.

Azafg-estimates for Es(r). We shall control [|12€;(§)|lo uniformly in A when 7 = 6;‘5 and f = §. Although every quantity in
E5(t) needs A%-weight, the terms involving § becomes a lower order term and contains at most one time derivative if there are 5
derivatives falling on N or v - N. Since 9,V¢ is uniformly bounded in L*(Q), there is no need to out extra effort on such terms.
The worst case is still that all time derivatives fall on § and such terms have the following forms

- -1
LO(N;/039)8}034, %0 (@(v N - a,¢)) 3t 0

whose L? norms are bounded by P(ﬁa,//, O, ||5v|| 1=)I220%Gll;. As for the intermediate terms, we check the case that 8;’ falls
on 93§ and 99, falls on (v - N — d,¢) because neither of these two terms can be uniformly bounded in L*. We have that

Hﬁaﬁ«ag@-%v N = 8,903,054
SN2 (Wilas + Wl 5)Vills PUVY, 8blyr) < VEsOP(Ey(t)).

o S 128}053l4110,0((03¢) ™' (v N = 9,0l
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A28 -estimates for Es(f).  We shall control [|22C;(g)|lo uniformly in 2 when 7¢ = 8> and f = §. Again, the worst case is still
that all time derivatives fall on ¢ and such terms have the following forms

1
0,(Ni/030)803q, A0, (@w N- a,@) 87054

whose L? norms are bounded by P(|V, |y, |0V, [020]=)1A287G|l1. As for the intermediate terms, we check the case
that 8 falls on 93¢ and 67 falls on (v - N — d,¢). We have that

[[4262((@3¢) (v - N = 8,903 33

o S 148 llo(Wila.s + Wulos + 1AWl 1.5)VAlls PAVY, dblwns) < P(Ca(t)).

The omitted terms can be controlled in a similar or easier manner. Thus, we conclude that inequality (7.58) holds true.

7.5.3 Uniform estimates for ¢(7) and the incompressible limit

So far, we already obtain the following energy inequalities.

1. The terms involving less than 2 time derivatives in €4():

1 t
D MO + Oty + W+ 1801 s + GG < P(Ca0)) + f P(€4y(1)dr, (7.61)
k=0 0

8.5 < 157VI15 + P(€4(0)) + fo P(Cy(7)) dr. (7.62)

These two inequalities are proved in the same way as in Section 4.
2. The terms involving 3 and 4 time derivatives in €4():

4 t
D MG, A GG + AGIE, + G 5 + 167ulG 5 < P(Eu(0) + f P(€4(1)) dr, (7.63)
k=3 0

which is obtained by following the same strategy as in Section 4 and the analysis of commutator in Section 7.5.2.
3. Control of Es5(7):

Es(r) < P(€(0)) + P(@(t))f P(C(7))dr. (7.64)
0

4. Control of ||v,,||§ in €4(?) via paradifferential calculus:

8 t !
||vn||§ssc%4(r>+2 f RY (1) dr + P(€4(0)) + f P(€4(1)) dr, (7.65)
=170 0
10024113 < VIR + P(€4(0)) + f P(€4(7)) dr. (7.66)
0

Summing up the above estimates, we can prove the Gronwall-type inequality for the energy functional ()
!
C(r) < P(€(0)) + P(€(1)) f P(€(1))dr uniformly in 4, o, (7.67)
0 - S P

provided that we have the bounds for the remainders |R§” Oz < P(€(1)) for 1 < j < 8. Since the first-order time derivatives in
€4(?) still remain uniformly bounded, we can obtain the same convergence result as in Section 6.2, and we no longer repeat the
statement here.
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7.6 Control of commutators involving paradifferential operators

At the end of this paper, it remains to prove that |R§4 Oz < P(€(r)) for 1 < j < 8. It should be noted that there are many time
derivatives involved in these remainders, so the commutator estimates shown in [2] may not be directly applied. In particular,
we only show the control of most difficult ones:

o Two commutators in RY: [T, Ty, p — 1]5,26,2¢ and [T\, Ty, D,1D,;0%.
1

e The commutator in RY: [N}, 83g]Tw 107

e The concrete forms of RiT and RiT.

The control of the other terms in these remainders will be omitted. In fact Rg” s Rg” s Ré"’ , Ré” and can be controlled in the same

way as Rfl"l . The control of Rﬁ” is easier than that of Ré” as the function contains less time derivatives. The other terms in Ré”
can be controlled in L*(X) uniformly in A, o by directly counting the number of derivatives.

. .. -2 .
We start with the first one. Writing f = D, 0y and a = p — 1 for convenience, we have

[Tana a]f = Tm([Tm Cl]f) + [Tm, a](Tnf),

where the two terms share similar structures and we only show the control of the first one. Using Bony’s paraproduct decom-
position in Appendix D.1, we rewrite this commutator as

[Ty, alf =T.T.f + Tana +Tw(R(a, ) = T T f - TT“fa - R(a,T.f)
= [Tn’ Ta]f + Tana - TT“fa + Tn(R(a’ f)) - R(a7 Tnf) (768)

Here we must a := p — | instead of p because p > 1 does not belong to L>. This also avoids the loss of A-weight in f = 512631/1,
as p — 1 = O(A?). The last two terms on the right side of (7.68) are controlled by using Lemma D.1

—2
IT.(R(a, s < IR@, Hlis < lo = 1bslflo < 142Dy 02, (7.69)
—2
IR(a, Tof)li 5 < lali sITuflos < 142D, 024loss. (7.70)

Next, we control the commutator [T, T,]f. Since 1, a are both function depending on x’ € R?, not a symbol depending on
both x” and the frequency variable £ € R?, we have a#n = n#a = an and thus

1T = TuTallos—15 < NTuTw = Tuallos—1s + 1TaTa = Tuallos—15 S MY()M (@) 5 C(1le2)lalyis,
which leads to
—2
[Tw Talflis < CQ¥lc2)lalwr=|flos < CWle2)lA° Dy 67 los. (7.71)

The other two terms in (7.68) are controlled in the same way and we only show the control of T, ra. Since n € 20, it suffices
to control |T yal; 5. Using Plancherel’s identity and the definition (7.27) of paradifferential operators, we have

ITsalis = K&)' Tra@)lpe = 27

fR OVUE —n.mFE - nemamdn| (1.72)
2 L?

By definition of ¥ and ¢ (see Appendix D.1), we know that the integrand is nonzero only if || > 1 and |£ — 1| < &;|n| for some
0 < & < 1, which means (£) and (n) are comparable: (1 — &)n| < |€] < (1 + &)|nl. Then, using this, |y| < 1,|¢| < 1 and
Minkowski’s inequality for integrals, we have

yahs < | [_w€=nmsie = ma'ssamaon an
2 L?
VO<6<) s lflpe [ m*am),
< ek e 0> amlze, < |folals < 12D, 02ulolqls. (1.73)

Next, we analyze the commutator [Tan,ﬁ,] f for f = E@flp. Since E =0;+V- V and 0; is a time derivative, we only
show the details for the control of [T, Ty, d;]f. Expanding this commutator, we have

[Tme 6t]f = Tm([Tm az]f) + [Tma at]Tnf-
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Again, these two terms have similar structures, so we only focus on the first one, that is, the control of [T, d;]f]; 5. We have
that [Ty, 0;]1f = =Tsnf, so using Lemma D.1, we have

ITonflis < 10mlzlflis < CAVYIL)I VYl DM 5 < P(€4(1)). (7.74)

1
Next, we analyze the commutator [, a]f with a := d3g and f := T}, T“a,zw. Using Lemma D.5, we have

Vs >3, I[‘ﬁi,a]flo < CQYlalislflos s CApllglsld7vla < P(E4(0)). (1.75)

Also, the term Rf" := [R,, 3g107¢ is controlled in the same way
Vs >3, [Ny, 83q107¢lo < CWIIBgh 5107wl < P(E4(t)). (7.76)

Finally, we need to establish the L*(X) of RiT = o"JQ,([éf, Tely + B%Rg,) + UR/‘”\(T@@?(L//)). The difficulty is that this term
simultaneously contains the commutators between a paradifferential operator and 92, the time derivatives of Rg which is not
explicitly calculated in previous works about incompressible fluids [3, 2, 63], and the control of remainders for the DtN operator.
Among the three terms in RiT, the last one is directly controlled by using Lemma D.3 and Proposition 7.7

R (T8> W)l < T2 Wlo $ CWlwi) il < P(€a(2)). (7.77)

Next, we control the first term in RiT. In view of Lemma D.2, it remains to control |o[4?, T ]/|;. Expanding the commutators,
we have
(07, Ts o = Tipot +2T5,500-

We only analyze the first one as the symbol contains second-order time derivative and 0>$ ¢ C?(Z) and the second one is
directly controlled with the help of Proposition 7.7. Again, using the definition (7.27), Plancherel’s identity and Minkowski’s
inequality, we have

Tpsth = [© [ xte - mase - momiam an
R? LZ(R?)

VO<5<1) SISl "l K> Bz e,
< CUVY, VYilio) Vilollass < P(C4(1). (7.78)

The last step is to control snw(a,sz) and it suffices to control Iang,ll. This step is actually a refinement of [2, Lemma 3.25].

Recall that the mean curvature is given by H = -V-F (ﬁzﬁ) with F(x) := Vl):-j and F(0) = 0. We expand F into 2nd-order
term to get

FII F/I
F(a) =0+ F'(a)a + 2@) @ = Tpa + To(F'(a)) + R(a, F'(a)) + #az.
Let a = Vi and then T (a is exactly the term Ty defined in Lemma 7.9 and
1d Vg ® Vi - = — -
Ry =T - B LR, FITg) + T)T - M) - (T

vy — —
I+ WP (\1+Tupy

where M(Vy) is a 2 X 2 matrix depending on Vy. Thus, the leading-order part in the last two terms of 0?Rg must have the form
(Vi + Vi, - Vg )C' (V) for some continuous function C’(+), while the first term is controlled by either using Lemma D.1 or
following the same way as in the control of [0?, T ]y. We conclude the result as follows

ald?Rslo < CUVY, Vil =)o Vil + I NTVY =l VT Vilo) < P(E4(1)). (7.79)

Now, we have finished all estimates and the proof of improved incompressible limit ends here.
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A The Reynold transport theorems

Below, the formulas involving @, J are used for the nonlinear x-problem (3.11) and the formulas involving (,’2’, @ are used for the

linearized x-problem (5.6).

Lemma A.1. Let f, g be smooth functions defined on [0, 7] X Q. Then:

d _ o o , _
& [ reoas= [(@neogars [ seFoogas [ reowaxs [ genoc-pas
Q Q Q Q

X3:0

d K3 i 2 i 2 o ., o
7 f fgospdx = f(ﬁ‘ff)g(%(p dx + f f(ﬁfg)(%(p dx + fgodx" + f f8030,(p — @) dx.
Q Q Q Q

X3=0

Proof. In view of (3.12),

LHS of (A.1)=f(@,f)g635dx+ff(B,g)63de+ffg636,¢dx
Q Q Q

i ii

- f Fe030,5 dx + f @ redspdx + f £ )dspdx + f 31003 g dx + f Bip(@38)f dx.
Q Q Q Q Q

Integrating 05 in ii by parts, we have

i= [ geowax - [ go oy o~ | femdpdr-i
X3 =0 X3=—, ) (—vb)z() Q

This concludes the proof of (A.1). Moreover, in light of (5.8),

LHS of (A.2) = f (0.f)g03¢ dx + f £(8,8)05p dx + f fg050,p dx
Q Q Q

i i

= f fg0:0,0dx + f (0% f)gdspdx + f f(07 )03 dx + f 8,0(03f)g dx + f 8,0(039) f dx.
Q Q Q Q Q

Integrating 3 in ii by parts, we have
i = f feduydx — ffgéh@,g?) dx —1,
X3=0 Q

and thus (A.2) follows.

Lemma A.2 (Integration by parts for covariant derivatives). Let f, g be defined as in Lemma A.1. Then:
[ @neogac=- [ s@Fooars [ reiax.
Q Q X3=0

f O f)gxg dx = — f Foypdx+ | feNidx.
Q Q

X3 =0

(A.1)

(A.2)

(A.3)

(A.4)

Proof. (A.3) follows from the fact that 8? is the covariant spatial derivative and 63$dx is the associated volume element. (A.4)

follows from a parallel argument.
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Let D? be the smoothed material derivative defined in (3.15). Then the following theorem holds.

Theorem A.3 (Reynold transport theorem for nonlinear x-problem). Let f be a smooth function defined on [0, 7] X Q.
Then:
1d

— = —_ 1 .
37 plfIPosp dx = f p(DY ) fdsgdx + = f plfI70:0,@ — ¢) dx. (A.5)
tJo Q 2 Q

Proof. First, we express
[ winsagac= [ pafnsogaxs [ pv-vinsoma
Q Q Q

Invoking (A.1), we have

fg (P ) fo57dx = 0, fﬂ PP dx - fﬂ Fp ) fo5p dx - f PlfPowdx - fg P0G - ) d,

and this indicates that

A C

S 14 . 7 o _
fp(ﬁff)fﬁw dx = 2 plfPospdx —= f(afp)|f|2a390 dx——f plfPow dx’ —= fp|f|2(93(9z(90—90) dx. (A6)
o t Ja 2 Ja 2 2 Ja

X3 =0

Furthermore, invoking (A.3), we have
[ o Fnsagac= [ F-wuprogac- [ V- poirtagas
Q Q Q
= - f pf - V¢ )dspdx + f plfPv- Ndx' - f Ve - (ov)| fPOsp dx,
Q X3=0 Q

and thus

D B

f p(v- VP[5 dx = » f plfPy- Ny -1 f VP - (on)|f P8 dx. (A7)
Q 2 Jy=0 2 Ja

We have A + B = C + D = 0 thanks to the second and fifth equations of (3.11), respectively. Hence, (A.5) follows after adding
(A.6) and (A.7) up. m]

Theorem A.3 leads to the following two corollaries. The first one records the integration by parts formula for D?.

Corollary A.4 (Reynold transport theorem for nonlinear x-problem). It holds that
d — z — 5o~ = — —
o f fg0spdx = f(fo)gayp dx + f f(Df2)dspdx + f(V"’ V) fgdspdx + f f8030,(¢ — @) dx. (A.8)
Q Q Q Q Q
Proof. Given (A.1), we have

- _ d _ ~ _
f (07 f)gdspdx = o f fgdspdx - f (87 8)03pdx — 8o dx' - f f8030,(¢ — @) dx,
Q tJo Q Q

X3:0
Also, (A.3) yields
f (v- VP f)g05pdx = f V% - (uf)905% dx - f (V% - v) 3055 dx
Q Q Q
=— f fv-V¥9g)ds0dx + f fe(v-Nydx — f (V¥ -v) fgdspdx.
Q x3=0 Q

Then we obtain (A.8) by adding these up. O
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The second corollary concerns the transport theorem as well as the integration by parts formula for the linearized material
derivative DY, defined in (5.7).

Corollary A.5 (Reynold transport theorem for linearized x-problem). Let Df =0 +(-V)+ ﬁ_(f? . ﬁ — 0,0)03 be the

linearized material derivative defined in (5.7). Then:

1d o o o/ yE o 1 S oS o o

53 | AfIospdx = f B} f)fOspdx + f (Dfp+pV*’-v) |fPdspdx (A.9)
t Ja o 2 Ja
A <, o
+3 fQ ISP (0:0.@ — §) + 030, + ¥ V)@ - B)) d.

1d 2, 2 5 o 1 S ol p2a 2

s— | IfPospdx= | (DYNfdspdx+ 5 | V2-0|fPdspdx (A.10)

2 dt Q Q 2 Q

1 . .
v [P @069 +030,47- G - ) ax
Q

Proof. 1t suffices to show (A.9) only since the proof of (A.10) follows by setting p = 1. We write the first term on the RHS of
(A.9) as

[ p0insosas= [ ponsosars [ p(@-Dr)rodaxs [ p(e-N-apaws)ran @
Q Q Q Q
and then integrate 9;, V and 3 by parts respectively in these terms to get:

. 2 dl . 2 1 N I, < ona o o
f BDY ) fdspdx =—= f plfIFospdx — = f 3p+v-Vp+ —=( - N=08,0)0:0 || fI* 030 dx
Q dr2 Q 2 Q 0

3¢
1 = 5 53 1 VA
"f pV - DIfPospdx - 5 f PIFP@, + - V)dsgdx (A-12)
2 Q 2 Q
1 o T =~ ° °
- f pos(—( - Vg + b3 — B fIP d,
Q

where we used v - N = —(5 . ﬁ)g'? + ¥3 in the last line. We find that the second integral in the first line is fg D?,[’)| f |263$dx. Also,
the term in the last line can be written as

1 (L, == . .
- f pO(—(V - V) + v3 — 0, @) fI” dx
Q

2
1, 1 0o, . 0. .).=
=-3 f PP [—Lam - 2250, - %a3vz]asso dx (A.13)
Q 03¢ 03¢ 03¢

L A B T o
+5 fplflzaav V(g -p)dx + 3 fp|f|2(3t3390 + (V- V)d39) dx.
Q Q
The first term on the RHS together with the third term in (A.12) contributes to

1 o s o 2
3 fg (VP - DI fI*0sip dx

in (A.9). Meanwhile, the terms in the last line of (A.13) together with the fourth term in (A.12) give the terms in (A.9) with
mismatches. o

B Construction of initial data for the original system
This section aims to construct the initial data for Theorem 1.2 and Theorem 1.3 satisfying the compatibility conditions

(D¥Y qly=opz = DFY (@ H)ly=opxzs 0V lumop, = 0, j=0,1,2,3.
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Since Df|s = 8, + V- dand H = -V - ( AL ) we rewrite the compatibility conditions in terms of g as

V1+Vy2
_ (- 5
@+ B ileops = 0,47 9) |0V ——L— s qp|| , j=0,1,2,3, B.1)
[1 + |§w|2 {r=0}xZ

Here, we use the modified pressure ¢ since we want dgy € L*(Q) for the sake of convenience. Such compatibility conditions are
required to show that E(f) (defined as (1.33)), and E*“(f) (defined as (1.39)) are bounded at ¢ = 0 by adapting the arguments in
[18, Section 4.3].

B.1 Formal construction

We shall adapt the method developed in [18] to construct smooth data (¢, v, §o) that satisfies (B.1). We first describe the
method formally which serves as a good guideline. The key difference, however, is that in [18] we constructed the initial data
in Lagrangian coordinates, where (B.1) has a different formulation.

By identifying ¥ (q) = A% without loss of generality, and since 8,¢ls = 01, Or¢ls = 021, O3¢ls = 1, the momentum and
continuity equations reduce respectively to

p(0, +7-0)v+V¥G = —g(p— 1es, on T (B.2)
20, +7-0)g + divy = 81ydsv' + 03 + 12gv°, on 3, (B.3)

where V¥q = (01q — 01039, 029 — 0203q,039) " and divv = § - v. By ignoring the terms contributed by the denominator, we
have H ~ —Ay. Invoking the kinematic boundary condition 94 = v - N, we have

@ +7v-9W =1, onZ,
we obtain from the zeroth compatibility condition ¢ ~ —o Ay that

0, +7-0)f ~—0cAV’, on %, (B.4)

which is the first compatibility condition. Since the continuity equation (B.3) implies A2(0; + v - 5)5 ~ —divv, we can deduce
from (B.4) that: _
divv ~ cA>AV?, on X. (B.5)

Furthermore, the momentum equation (B.2) implies (0, + v - )V} ~ —034, and thus the second compatibility condition on ¢
becomes: B e _
O +7-0)*§ ~ —0(d; +v- DAV} ~ cAd3§, on X (B.6)

Taking 8, + ¥ - @ to the continuity equation to obtain A2(8; + v - 8)2§ ~ —div (8, + v - d)v ~ Ag, and this gives
Ry~ cA’Ad3G — Ag, on Z. (B.7)
Finally, we derive from the third compatibility condition on ¢ that

(0, +7-0Y°G ~ cAd3(, + V- 0)§ ~ oA *Ad3divy, on I, (B.8)

together with the relation A%(d, + v - 9)? g~AO+V- 5)(? ~ A72Adiv v obtained by taking (9; + v - 9)? to the continuity equation
that

Adivv ~ 0 A*Ad5divy, on X (B.9)
In other words,
Oy ~ c2Ad3divy — Adv — Adyv — Adzv, on X (B.10)

Therefore, the first order compatibility condition on ¢ yields an “identity in terms of v’ (B.5), the second order compatibility
condition on ¢ yields an “identity in terms of ¢” (B.7), and lastly, the third order compatibility condition on ¢ yields an “identity
in terms of v” again (B.10).
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We construct our data by the following iterative procedure. To begin with, let (&9, wo, po) be the generic smooth localized
Véo

. . . . 1+‘V§0|2 . . . aqe

fixed a smooth function ¥ which represents the moving interface, and constructed the data satisfying the first compatibility

condition. Given (B.5), we shall need to construct the appropriate velocity vector field denoted by uy = (u(l), ué, ug). We achieve

this by setting u(l) = w(l), ué = Wé, and construct ug by solving a poly-harmonic equation of order 2:

incompressible data that verifies the zeroth order compatibility condition py = -V - + g& on X. In the first step, we

A = APw3, in Q,

w=w, o ~ —0,w! — 9w + cA2AW? nx (B.11)
0= W O3l 1Wy — 02Wy + CATAW, on 2z, :

uw=w, O = 0w on .

In particular, the boundary condition (93u(3) ~ —61W(1) - Bzwé + 0'/12ng is derived from (B.5).
In the second step, we construct the data verifying the second compatibility condition. We shall construct g, here because
of (B.7). This is achieved by solving a poly-harmonic equation of order 3:

NGy = A po, in Q,
do = Po» 030 = 03Po, on X,
2. ha % K (B.12)
93540 ~ cA°A03po — APy,  on I,
6éqo =0 0<j<2), on X.

It can be seen that the boundary condition (9%5]0 ~ MZK33 Do is a consequence of (B.7).
In the third (and final) step, we construct the data verifying the compatibility conditions up to order 3 with a fixed smooth
function representing the moving interface still denoted by . Since gy has been constructed, we need only to construct

vo = (vg, v3,va) by setting wy = vj, wg = vZ, and solving the following order 4 poly-harmonic equation for v}:

A4v(3) = A4u(3), in Q,

vi=w, B33 ~ —0ju) — 0ul + 0-/12Zu(3) on X,

023 ~ —0501u) — 030,02 + T A2 Adsu}, on X, (B.13)
vy = —Adjuy — Adruf + o A2 Adzdiv ug — Adzu, on X,

Ay =dju) (0<j<3) on .

The second and third boundary conditions arise from (B.5), whereas the fourth boundary condition is derived from (B.10).

B.2 The full construction procedure

We shall repeat the method introduced in Subsection B.1 with detailed boundary conditions generated by the compatibility
conditions. We will use $, Q to denote generic non-negative continuous functions. Apart from this, we will set

throughout.
By invoking the commutator

[6°,0,+7v-8] = [8°,7] - 9, (B.14)

and since it holds on X that

o A -5V =
@ 479 =V, é=—0(ﬁ—%)+gw, NI = 1+ VP,

the first compatibility condition on ¢ reads:

— 1 =, = =
(6,+V~6)é=0'P(W,6kw,6k§,6kv3), on X. (B.15)
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In addition, the continuity equation (B.3) gives
20, +7-0)g = —divv + 9y - 83 + 1°gv°,  on X.
Hence, we combine (B.15) and (B.16) to get
divy = c2P(N|™", 8%y, 8, 85, 859),  on X.

and the equation used to determine u is

0
A*u) = Aw;, in Q,
ug = wg, on X UZX,,
W = —3, W — w2 + T PPN, 8o, I Wo, W2, 3w, )

Uy = —01W, — 2wy + T ATP(INo| ™, 8"o, 0" Wo, 0" Wy, d3Wo), on X,
dyuy = 03w, on .

whose rough version is given by (B.11). Let sy > 8. The poly-harmonic estimate yields

3_ 3 203 _ 3 3_ W3 3_ W3 2
llug — wolls, < I1A™(ug = Wo)llsy-4 + ug — Wolsg—0.5 +103(ug — Wp)ls,—1.5 < A“C(Wols, Iwolls),

=0 =0

for some s > s, and hence |juy — wJ[l;, = 0 as 2 — 0.

We construct g using the second-order compatibility condition in the next stage. Owing to (B.2), the identities

PO + V-0 + G = dydsg, and p(d; + V- A)vs + 03§ = —g(p — 1),
hold on X, and we view p = p(g) here and throughout. Taking d; + v - 4 to (B.15) and invoking (B.14), we have
@ +7-0Yq = oP " INIT, 8y, 0,0, 04,8 93g), on X.
Moreover, by taking d; + v - d to the continuity equation (B.3), we get
B0, +7-0)%g = —div(d, + V-0 + [div, (8, + V- D)y + (8, +V - D) DY - 03V + L gv),
where [div, (8, + V- d)]v = 8;v - OV,

~div (@ +7-0)V = 007 0:9) ~ (' 0w + 0307 050) +gds(pT o~ D), T=1.2,
N ———

2G+03p71 034

=10
and
(O, +7V-0) O - B3 + 2gv®) = OV - 3 + Ay - D3(—p~' 0 + p~ ' Bds)
07 - Oy - B3V — By - 057 - B3V + Ag(=p ™' 034~ gp (p — 1)
Since the third term on the RHS of (B.24) contributes to p~! |5¢|26§51, it holds that
2@, +7-07q =p ' (1 +10yH)55 + Qo™ ", INI", 8"y, 0¥ 03v,8" 334), on X.
Therefore, we combine (B.21) and (B.25) to get

o7 (1 +10yPHdg = o AP~ INI, 8y, 8,07, 8'q, 8 93q) + Q" INI", ", 8" 33v,8" 339), on =,

and we set g by solving

NGy = N po, in Q,

do = Po, 03go = 03Po, on X,

330 = po(1 + |5¢0|2)_1(0'/127D(P5] . INoI™, 8y, 800, w3, &' o, 63 o)

+Q(p, ", |No|_1,5kl!/0,51‘/5300,5"/33150)), onZ,

dgo=0 (0<j<2) on %,
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whose rough version is (B.12). Also, the poly-harmonic estimate implies

IGolls, < A% Pollsy—6 + 1Polso—0.5 + 103 Polsy-1.5 + [03G0ls-2.5 < A2C1(Wols» Iolls, 1Polls) + Callols, Mol 1Folls)s (B.28)

for some s > s¢.
Finally, we construct v(3) using the third-order compatibility condition in the last stage. We obtain

@ +7-0)'q = P IN 8w, 85,9V, ') (1720% + 17%5% + 177093y + A28k 33v), on X, (B.29)
by taking (0; + v - 5) to (B.21). Further, taking (9, + Vv - 5) to (B.25) to get
(0, +7-0Y°q = =227 (1 +10yHFdivy + Qo ' INL, 8y, ', 8 d3v, & 83v, '), on I (B.30)
Therefore, we combine (B.29) and (B.30) to obtain

P (1 + 10y D)divy = o 2P INIT, 8y, 35,8V, 0'9) (6*w + 5*v + 303y + 3 B3v)

- _, _ (B.31)
+22Q( 7", INI™", 8'y, 8y, 3'v, 8 03v, 8" 33v,8'G), on X,
and we set v} by solving
AW} = Atug, in Q,
vg = ug, on X,
833 = —01u) — 2 + T 2P(Nol ™!, 0o, 0ug, 6 ul, d5tp), 0 <k <2, on s,
B2v3 = —0105u) — 0,0502 + o 2P(INol™", 8w, 8w, 9u}, d31p), on X, (B.32)
vy = po(l + |3l/fo|2)_1(0'/127>(/061, INol™", 8o, 08, 0w, 8' o) (54% +0*ug + 8'03u + Bkr?%uo)
+22Q(pg", INol ™, 80, 8", 8'g, 8 D309, 8 Fu, 5’%)) = pg (1 + [0y )3 (0ruy) + Hru3), on X,
Vi =du} (0<j<3) on .
whose rough version is (B.13). By the poly-harmonic estimate, we have
V5 = wgllsy < IA* VG = wllsy-s + Vg = Glep-05 +10° (7 = uPlsy-1.5 + 103075 = lsg-2.5 + 16° (Vg — W)5-35. (B.33)
The first two terms on the RHS are 0. Invoking (B.19), (B.28), we have, for some s, s’ satisfying s > s’ > s, that
Vg = glsg-05 + 18705 = up)lsp-1.5 < A2Cllolys luolly) < A>Cllrols, IIwolly),
and
10305 — ulsp-2.5 < LC(Woly, aolly. llGolly) < A>Colss [IWolls [1Bolls)-
Thus,
lIvg — uglls, < A*Cllols, IWolls. l1Bolls). (B.34)
In particular, since we have set wi=ug =V, 7=1,2,we deduce from (B.19) and (B.34) that
lIvo = Wolls, < Vg = wlls, + g = Wlls, = O(%). (B.35)
In addition, we deduce from V¥ - wy = 0 and (B.35) that
V¢ - voller = O(23). (B.36)

Apart from these, it can be seen from (B.27) and (B.32) that |[volls, and [|Golls, are uniform in both o~ and A. This allows us to
take the zero surface tension and incompressible limits at the same time.
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C Construction of initial data for the nonlinear x-approximate system

The construction of smooth initial data for the x-problem (3.11) is parallel to what has been done in the previous section and
thus we shall only sketch the details. We will set

in the sequel.
Let (0, vo, o) be the smooth initial data constructed in the previous section. Our goal is to construct (¥, V0, gx0) that
satisfies the k-compatibility conditions up to the third order:
@ + V- Y qluzopxs = 00 + 7 - 0 Hljmopes + K°@0; + - 0)/ (1 = A)(=019v" = 0090” + V7)) ly=opes 7 =0,1,2,3, (C.1)
OV l=ojxs, = 0, j=0,1,23. (C2)

Setting ¥, o = Yo, we need only to compute the last term on the RHS to formulate the poly-harmonic equations for g, ¢ and v,.
Since

[(1=A),8,+v-8] = —[A,V] -6,

we have, when j = 1:

@, +7-0)((1 = A)=0Y - ¥ + 1)) = R@'p, 8", 8%, 87, 8'3,003), on X. (C.3)
This implies that the equation used to determine ui ols
Azuio = A2v(3), in Q,
“;3<,0 = V5, onZ,
d5u)y = 01wy — 02f + T PANol™", 60, V0, 6V, 3370) (C4)
+C R0, 8o, 8o, IV, 8o, 3 D3do). on %,
Ayl =adug (0<j<1) on .

which is parallel to (B.18).
Then, when j = 2, we have
0, +7V- 5)2((1 N v3)) = (8, + V- DR, v, 'y, IV, 8, 80:9)

= Ry, 3%, 3V, 8%, 8", 893, 720, A720'3v, 1725 32w, A720M), on X, (C.5)
where the power of 1! does not exceed 2. Thus, we determine g, o by solving
Ngeo = Mo, in Q,
deo = 4o, 934x0 = 930, on X,
330 = po(1 + |5wo|2>-‘(m2¢><pg' INoI™!, 8y, 8* 0, 002 . 8o, *D3j0)
+Q(pg "INt 8o, 8 D3u,c, 8 B3500)
+EL2R(@E o, o, 8, W, "o, D30, F*ug, 5153111(,0,5]‘3_%“;(,0, 54',00)), on X,

(C.6)

«,0° «,0°
@R =0 (0<;j<2) on X,.

Finally, when j = 3, we have

O, +7- 5)3((1 — A0y -V + v3)) = R, 8", 8"V, "V, 8", 3" D3, A7V, A2 93, 1720 0%, 1720°y),  on I,
(C.7)
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where the power of 1! does not exceed 4. Therefore, we construct vi o by solving

A4vz’0 = A4ui,0, in Q,
Vip =W on %,
83\};’3‘0 = _alu,:vo - aZ“io + O—/lzp(lNol_l > akl//()’ aku;(,()a akuivoa a3ﬁk,0)

+E LR Yo, 0, g, 0o, I, @G0, 3 03G10), on X,
B} = =0195u | — 8,050 ) + TAOP(No| ™, 0o, o, 02, Dstie)

+KE 203 R(0"o, 00, 3o, O, 80, 0" D3dco), on X,

- Rt _ _ _ _ _ (C.8)
vy = poll + |al/’0|2)_1(0'/127)([’61, INol™", 8o, 9,0, 0}, 8'G0) (641/’0 + 0 + Pou + 32(9%“;@0)

+22Q(05", INo| ™", 8o, 8ug, 8* A3, 8 8200, 3G 0)

+R(5m%, 5"@0’ gmui,oy 5111’11’5;(,0’ E"ZIK,O, 5'"(9351&0, > Uy 0, 5'"(93 Wy 0, 5/3§UK,0, > ¥ 0))

=05 (1 + [0yo )31l ) + Bru2 ), ony,
i, =0uy (0<j<3) on .

Let A > 0 be fixed. Invoking the poly-harmonic estimate subsequently to (C.4), (C.6), and (C.8), we obtain that ||v,olls, and
llGx0lls, are bounded for some sy > 8. Thus, the energy E*(f) (defined as (4.1)) is bounded at ¢ = 0. In addition,

Vo — vollsy> and llgco — glls, = 0, as x — 0.

D Paraproducts and the Dirichlet-to-Neumann operator

D.1 Bony’s paraproduct decomposition

We already introduce the paradifferential operator in Section 7.2. Here we present the relations between paradifferential opera-
tors and paraproducts. The cutoff function ¥(&, n7) in the definition of T,u is

XED = ) 0300,
k=0

where O(¢) = 1 when [£] < 1 and O(¢) = 0 when |£] > 2 and

@k(f)l= ®(§)’ kEZ, 19():@, 19]( = ®k_®k—l, k>1.

Based on this, we can introduce the Littlewood-Paley projections P, and P, as follows

Pou(&) := ©a&), Vk>0, Pu:=0 Vk<0, Pu:= Z Pu.
1<k

When the symbol a(x, &) (in the paradifferential operator 7,) does not depend on &, we can take (n) = 1 and then we have

T =) Py sa(Piu)
k

which is the usual Bony’s paraproduct. In general, the well-known Bony’s paraproduct decomposition is

au = Tyu+ Tya+ R, a), R(u,a) = Z (Pra)(Pu).
lk—1|<2

We have the following estimates for the remainder R(u, a)

Lemma D.1 ([2, Section 2.3]). For s € R, r <d/2, 6 > 0, we have
[Taulps < min{lalzslulgs, lalarlul . g, lal g lulgso)
and for any s > 0, 51, 5, € R satisfying s; + 55 = 5 + ‘51, we have

\R(u, @)|rs < lalgs [l -
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D.2 Basic properties of the Dirichlet-to-Neumann operator

Let the space dimension d = 3 for simplicity. Given a function f : £ = T?> — R, we define the Dirichlet-to-Neumann (DtN)
operator (with respect to ¢ and region Q) by

Ny f :=FN-V9E; Pz, —AE;f)=0inQ*, E;fls = f, 05(E; s+ =0.

Here the Laplacian operator is defined by A? := V¥ - V¥ = §,(EVd,) with

LB 0 cae] o 0 0
FE = a— 0 a3§0 _((izso = a—PPT, P:: 9 6_390 0 s
Wlbip -Gy LTL] DY ~ip ~ap 1

and ¢(7, x) := x3 + y(x3)U(t, x’) is defined as the extension of ¢ into Q*. The choice of y(x3) is slightly different from [2, 3, 5],
but it does not introduce any substantial difference because the expression of A is still written to be A? := V¥ - V¥ = 0,(E" d))
and we have A?¢ = 0 in Q*. The DtN operators satisfy the following estimates and we refer to [63, Appendix A.4] for the
proof.

Lemma D.2 (Sobolev estimates for DtN operators). For s > 2 + d _l<r<s—1and W € H(RY), we have

3
9y £l < CUWIDIflrs.

Lemma D.3 (Remainder estimates for DtN operators). For s > 2 + ‘—21 and ¥ € H*(R?), we have
Ny f = Taf +RY(f)

with A defined in Proposition 7.8. The remainder R‘K( f) satisfies

IRA (O < Cl DI

Lemma D.4 (Sobolev estimates for the inverse of the DtN operator). For s > 2 + d —l<r<s—1land W € H*(RY), we have

1
2
IR flrer < CUlS)If,-

Lemma D.5 (Commutator estimate for the DtN operator and its square root). For s > 2 + d%l and y € H*(R?), we have

1
Dty alfl-1 < CQWlDlallfl: YO<r<s—2,

and |
I[(m;p)%,a]flr_1 < Clyllal1lf1 V- 3 <r <s-1

3=
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