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Abstract

In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler equations describing the motion of a
liquid in an unbounded initial domain with moving boundary. The liquid is under the influence of gravity but without surface
tension, and it is not assumed to be irrotational. We apply the tangential smoothing method introduced in Coutand-Shkoller
[10, 11] to construct the approximation system with energy estimates uniform in the smooth parameter. It should be emphasized
that, when doing the nonlinear a priori estimates, we need neither the higher order wave equation of the pressure and delicate
elliptic estimates, nor the higher regularity on the flow-map or initial vorticity. Instead, we adapt the Alinhac’s good unknowns
to the estimates of full spatial derivatives.
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1 Introduction
In this paper we study the motion of a compressible gravity water wave in R® described by the compressible Euler equations:

pDu=-Vp—-pges, inD
Dip + pdiv u = 0 inD (1.1)
p=pp) inD

where D = Jogcrit} X Dy with D, = {(x1, X2, x3) € R : x3 < 8(t,x1, %)} representing the unbounded domain occupied
by the fluid at each fixed time 7, whose boundary 0D, = {(x;,x2,x3) : x3 = S(¢, x1, x2)} moves with the velocity of the
fluid. V := (04, 0,, 0y,) is the standard spatial derivative and div X := V - X is the divergence for any vector field X in D;.
D; := 0; + u - V denotes the material derivative. In (1.1), u, p, p represent the fluid velocity, density and pressure, respectively,
and g > 0 is the gravity constant. The third equation of (1.1) is known to be the equation of states which satisfies

p'(p) >0, forp = po, (1.2)

where pg := plap 1S a positive constant (we set pg = 1 for simplicity), which is in the case of an isentropic liquid. The equation
of states is required in order to close the system of compressible Euler equations.
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The initial and boundary conditions of the system (1.1) are

Do={x:0,x) €D}, and u =uy,p=py on{0}x Dy, (1.3)
Dilop € T(0D) and plap =0, (1.4

where T(0D) stands for the tangent bundle of 9. The first condition in (1.4) means the boundary moves with the velocity of
the fluid, and the second one shows that outside the fluid region D is the vacuum and the surface tension is neglected.

Energy conservation law The system of equations (1.1)-(1.4) admits a conserved energy. Let

1
Ey(t) = —f p|u|2 dx + f pQ)dx + f gx3dx —f gx3dx +f 8o — Dx3dx (1.5)
2 Jp, D, DiN{x3>0} DEN{x3<0} o)

where Q(p) = flp p(D)A72dA and D¢ denotes the complement of D,. A direct computation (cf. [42, Section 1.1]) yields that
d

LEn(t) = 0.

di

Enthalpy formulation and Rayleigh-Taylor sign condition We introduce the new variable i = h(p) := flp p'(Datda,
which is known to be the enthalpy of the fluid. It can be seen that #’(p) > 0 and /|y = O thanks to (1.2). Since p can then be
thought as a function of 4, we define e(h) := log p(h). Under these new variables, (1.1) and (1.3)-(1.4) becomes

D= -Vh — ges, in D,

divu = —D,e(h), in D,

Do ={x:(0,x) € D}, (1.6)
u=uyh=hy on {0} x Dy,

Diop € T(OD) and h=0  ondD.

The system (1.6) looks exactly like the incompressible Euler equations, where & takes the position of p but div « is no longer
0 and determined as a function of p (and hence /). In addition, in Ebin [16], the free-boundary problem (1.6) is known to be
ill-posed unless the physical sign condition (also known as the Rayleigh-Taylor sign condition)

~Vyh>co>0, ondD,. (1.7)

holds. Here, N is the outward unit normal of 9D, and V := N - V. The condition (1.7) is a natural physical condition which
says that the enthalpy and hence the pressure and density is larger in the interior than on the boundary. We remark here that
(1.7) can be derived by the strong maximum principle if the water wave is assumed to be irrotational [62, 63, 42], and the
existence of the positive constant ¢y is a consequence of the presence of the gravity. Otherwise, we have merely that —Vah > 0,
which is insufficient to close the a priori energy estimate for (1.6).

Equation of state for an isentropic liquid We would like to impose the following natural conditions on e(h): For each fixed
k > 1, there exists a constant C > 1 such that

cl<e®m) <. (1.8)
In fact, (1.8) holds true if the equation of states is given by

p) =y’ -1, y=1 (1.9)

In particular, when y = 1, a direct computation yields that e(h) = h.

Compatibility conditions on initial data Finally, in order for the initial boundary value problem (1.6)-(1.7) to be solvable
the initial data has to satisfy certain compatibility conditions at the boundary. In particular 4 verifies a wave equation by taking
divergence to the first equation of (1.6):

Die(h) — Ah = (V' )(V,u'), in D,
h=0, on 0D, (1.10)
hli—o = ho, Dhli=g = hy, in{t =0} X Dy,



where h; can be determined in terms of ug and Ay via the second equation of (1.6), i.e., —e’(hg)h; = divuy. In above and
throughout, the summation convention is used for repeated upper and lower indices, we adopt the convention that the Greek
indices range over 1,2, 3, and the Latin indices range over 1 and 2. The compatibility conditions must be satisfied in order for
(1.10) to have a sufficiently regular solution.

Since hlsp = 0 and D, € T(0D), the second equation of (1.6) implies that div u|sp = 0. We must therefore have /glyp, = 0
and div uplsp, = 0, which is the zero-th compatibility condition. In general, for each k > 0, the k-th order compatibility
condition reads

Dlhloyop, =0, j=0,1,--- k. (1.11)

In [42, Sect. 7], we have proved that for each fixed k > 0, there exists initial data verifying the compatibility condition up to
order k such that the initial energy norm is bounded.

1.1 History and Background

The study of the motion of a fluid has a long history in mathematics, and the study of the free-boundary problems has blossomed
over the past two decades or so. However, much of this activity has focus on incompressible fluid models, i.e., the velocity
vector field satisfies div u = 0 and the density p is fixed to be a constant. Also, the pressure p is not determined by the equation
of states. Rather, it is a Lagrange multiplier enforcing the divergence free constraint. It is worth mentioning here that when
the fluid domain is unbounded and the velocity uy is irrotational (i.e., curl uy = 0, a condition that preserved by the evolution),
this problem is called the (incompressible) water wave problem, which has received a great deal of attention. The local well-
posedness (LWP) for the free-boundary incompressible Euler equations in either bounded or unbounded domains have been
studied in [1, 4, 5, 7, 10, 11, 14, 25, 33, 35, 37, 40, 45, 46, 48, 49, 50, 59, 61, 62, 63, 66, 68]. In addition, the long time
well-posedness for the water wave problem with small initial data is available in [2, 17, 24, 26, 28, 60, 64, 65, 69], and there
are recent results concerning the life-span for the water wave problem with vorticity [18, 27, 51].

On the other hand, much less is known for the free-boundary compressible Euler equations, especially for the ones modeling
a liquid, as opposed to a gas whose density can be zero on the moving boundary. The LWP for the free-boundary compressible
gas model was obtained in [9, 12, 23, 29, 30, 43], whereas for suitable initial data (e.g., data satisfying the compatibility
condition), the LWP for the free-boundary compressible liquid model with a bounded fluid domain is available in [8, 13, 15,
20, 36, 38, 39].

When the fluid domain is unbounded, the free-boundary compressible Euler equations modeling a liquid is known to be
the compressible water wave problem and little is known for this case. The only existence result is due to Trakhinin [56], who
proved the LWP for the compressible gravity water wave with vorticity using the Nash-Moser iteration (and thus with a loss of
regularity). Recently, Luo [42] established the a priori energy estimates for the compressible gravity water wave with vorticity
and proved the incompressible limit by adapting the the approach used in Lindblad-Luo [39] to an unbounded domain.

The goal of this paper is to prove the LWP for the motion of a compressible gravity water wave without the use of Nash-
Moser iteration. The main idea is to approximate the nonlinear compressible water wave problem in the Lagrangian coordinates
using a sequence of “tangentially smoothed” problems, whose solutions converge to that of the original problem when the
smoothing coefficient goes to 0. This in the incompressible free-boundary Euler equations goes back to Coutand-Shkoller [10].
Also, for its application in the compressible free-boundary Euler equations modeling a liquid in a bounded domain, Coutand-
Hole-Shkoller [8] obtained the LWP for the case with surface tension and Ginsberg-Lindblad-Luo [20] obtained the LWP for
the self-gravitating liquid. However, here we use a different set of approximate problems by adapting what appears in [20]
which yields a simpler construction of the sequence of approximate solutions. This will be discussed in Sect. 2.1.

1.1.1 Difference between a liquid and a gas

This manuscript concerns the compressible Euler equations modeling the motion of a liquid, which is treated very differently
from a gas, as what is studied in [29, 30] and [43]. The fundamental difference is that the energy for the compressible gas
model is weighted by the sound speed cy(p) := +/p’(p) which vanishes at the physical vacuum boundary (since p vanishes
there), and thus the estimates on the moving boundary are greatly simplified. In the case of a compressible liquid, however,
we have to exploit the structure of the equations carefully in order to control the top order terms on the boundary even at the a
priori estimate level. Also, it appears that the wave equation verified by the enthalpy £ plays a crucial role in the construction
of a solution. We refer to Section 2.1 for the detailed explanations.



1.2 The Lagrangian coordinates

We introduce the Lagrangian coordinates, under which the moving domain becomes fixed. Let Q := R? X (-0, 0) to be the
lower half space of R3. Denoting coordinates on Q by y = (y1, y2,y3), we define i : [0,T] X Q — D to be the flow map of u,
ie.,

om(t,y) = u(t,n(t,y)), n0,y) =no(), (1.12)

where 79 : Q — Dy is a diffeomorphism, satisfying |Inolly := 1010ll~@) + ||62770|| @) < o (See Notation 1.1 and the remark
after (1.16) for more details on the choice of this norm). For the sake of simplicity, we assume 19 = Id, i.e., the initial domain
is Dy = Q = R? x (—00,0). In fact, our approach is also applicable to the case for general data 179. It is not hard to see that in
(t,y) coordinates D, becomes 9, and the boundary I := 9Q becomes fixed (i.e., I' = R?). We introduce the Lagrangian velocity
by v(t,y) := u(t,n(¢,y)), and denote the Lagrangian enthalpy A(z,y) := h(z,1(t,y)) by a slight abuse of notations.

Let & = A, be the spatial derivative in the Lagrangian coordinates. We introduce the matrix a = (dn)~', specifically
a'® =d, = Zi This is well-defined since 7(t, -) is almost an identity map whenever ¢ is sufficiently small. In terms of v, 7 and
a, (1.6)-(1.7) becomes

0pv* = =Vih - ges, in[0,T] X Q,

div ,v = =0:e(h), in[0,T] x Q,

n=1Id,v=vy,h=hy on {0} X Q, (1.13)
Olio.rixr € T([0, T] xT)

h=0 onl.

Here, the differential operator V, := (V},V2,V3) with V¢ = a**d, denotes the Eulerian (covariant) derivative and div,v =
V,-v =a""d,v, denotes the Eulerian divergence of v. In addition, since 77(0, -) = Id, we have a(0, -) = I, where [ is the identity
matrix, and uy and vy agree. Furthermore, let J := det(dn). Then J satisfies

0J = Jd"0,v,. (1.14)
Finally, we assume the physical sign condition holds initially
—03hy = ¢co >0 (1.15)

and it can be shown that (1.15) propagates to a later time.

1.3 The main result

The goal of this paper is to prove the LWP of the compressible gravity water wave system in the Lagrangian coordinates.
Specifically, we want to construct a solution to (1.13) with localized initial data (vo, hg), i.e., [vo(y)] = 0 and |ho(y)] — 0 as
[y| — oo that satisfies the compatibility condition (1.11) up to 4-th order as well as (1.15). The localized data is required so that
the initial L>-based higher order energy functional is bounded and the existence of such data can be found in [42, Section 7].
Also, we remark here that (1.15) remains hold thanks to the presence of the gravity (cf. [42, Section 7]).

Notation 1.1. (#H-norm) Let f be a smooth function. We define

1l = 10 ll=c) + 167 Fll20y-

Definition 1.1. We define the higher order energy functional
4 3 :
&) = In@, + Y 10} Ol + [N, + D107 ROl g | + 168 10D (1.16)
k=0 k=0

where d = (,8,) is the tangential Lagrangian spatial derivative.

Remark. The terms ||17||§{ and ||h||§{ may be replaced by ||77||i,4 @ and ||h||i,4 @ respectively, in the case when Q is bounded.
However, we have to be more careful in the case of an unbounded Q since neither 7 nor 5 are in L*(Q), which is due to that
1o = Id. In addition to this, we cannot control 9k in L>(Q) due to the presence of the gravity. Because of these, the lower-order

terms dn and 0h will be controlled in L*(Q) instead.



Theorem 1.2. (Main theorem) Suppose that the initial data vy, hy satisfies

AL vollge @), lholln < Mo,
B. the compatibility condition (1.11) up to 4-th order, and
C. the physical sign condition (1.15).

Then there exists a Ty > 0 and a unique solution (1, v, k) to (1.13) on the time interval [0, Ty] which satisfies

sup &(1) < C(My), (1.17)
1€[0,Ty]

where C(M,) is a constant depends on M. Also, let (Vo, fzo) be another set of initial data satisfying conditions A, B, C, and
[vo = Yollrys 1o — holle < €.

Let (7, 9, h) be the solution to (1.13) with initial data (9o, ko). If

2
[E12) := In(2) = OB + D167 () = SO + 1167 (h(r) = RII; +1am)** @ (o 8) = (),
k=0

then
sup [E](F) < C(e&). (1.18)
1€[0.To]

Remark. In the case with general initial data ng, we require that |[noll < Mp.

1.4 Novelty of this result, comparison with existing results, and application to other fluid models

The result presented in this paper addresses the natural question left open in [8], namely, the case of an unbounded domain.
However, the method in [8] requires propagating an extra derivative of the flow map which requires an extra one derivative for
the initial vorticity. This is caused by differentiating the Euler equations in the Lagrangian coordinates and all derivatives fall
on the cofactor matrix. We are able to avoid this by adapting the Alinhac’s good unknowns, which, in turn, satisfy equations
with a better structure. This is due to that these good unknowns tie to the covariant derivatives of the velocity and pressure in
the Eulerian coordinates. We refer to subsection 2.1.2 for the detailed analysis.

In addition, some lower order terms (e.g., 9k and 1) are no longer in L?(Q) as opposed to the case with a bounded fluid
domain. As a result, our energy functional (1.16) has to be chosen carefully so that the aforementioned quantities are merely in
L™. Nevertheless, (1.16) reduces to the following energy in the case of a bounded fluid domain:

4

IOy + D (187 59O g + 13ROI ) + 10 T 00 (O -
k=0

In fact, our proof also works for the case of a bounded domain, producing a LWP result but without propagating the extra
regularity of the vorticity and the flow map. Furthermore, we do not need to consider the surface tension to regularize the free
surface and then take the zero surface tension limit.

Finally, the method developed in this manuscript can be adapted to study the LWP for the non-isentropic compressible
fluids, relativistic fluids, as well as the (inviscid) complex fluids with moving surface boundary. For a non-isentropic fluid,
the equation of states depends on both p and the entropy s, i.e., p = p(p,s), where s verifies D;s = 0 in 9. The LWP for
the free-boundary problem in non-isentropic fluids is proved in [56] with a loss of derivatives. Unlike the isentropic case,
the enthalpy formulation (1.6) is no longer available when s is present. It is, however, possible to avoid the regularity loss
by employing our method in the non-isentropic case by studying the new variable log(p/p) instead of #. Moreover, we have
learned that Ginsberg-Lindblad [19] have employed a similar method to study a relativistic fluid with free-surface boundary.
On the other hand, the complex fluids, e.g., magnetohydrodynamics (MHD) and elastodynamics, can be regarded as Euler
equations under the influence of various external forces brought by other physical quantities (e.g., the elasticity, the Lorentz
force in an electromagnetic field). The presence of such external forces destroys the Cauchy invariance and thus we are unable
to propagate the extra regularity on the flow map. Nevertheless, the method developed in this manuscript has been adapted to
treat the aforementioned complex fluid models by the second author [41, 67].



List of Notations:

Q :=R?X (=00,0) and T := R? x {0}.

- Mls, [T+ 1o We denote || flls := [1/(Z, lms and [|fllgs = £, )llgsq) for any function f(z,y) on [0, T x €.

|5, | - |gs: We denote |f1y := |f(t, g and |f]gs = [f(t, )l gs(r) for any function f(z,y) on [0, T] X T.

P(---): A generic polynomial in its arguments.

Po: Po = P(llvolla, [lholl#).

[T, flg :=T(fg)-T(f)g,and [T, f, gl :=T(fg)—-T(f)g— fT(g), where T denotes a differential operator or the mollifier
and f, g are arbitrary functions.

d,A: 8 = 8y, 9, denotes the tangential derivative and A := 8% + 6% denotes the tangential Laplacian.

(Eulerian spatial derivative, divergence and curl) Let f be a smooth function. Then V{ f := a*“d,f, @ = 1,2,3. Let f be
a smooth vector field. Then div ,f := a#*0,f, and (curl ,f), := €,,a"0,£*, where €, is the sign of (lua) € S.

Acknowledgment: The authors would like to thank the referee for his/her careful reading and comments on improving this
manuscript.

2 Strategy of the proof and some auxiliary results

2.1 An overview of the proof of Theorem 1.2

The compressible water waves with vorticity are treated very differently from their incompressible and irrotational counterparts,
as one can completely reduce the latter to a system of quasilinear dispersive equations on the moving interface. The strategy
that we employed to prove Theorem 1.2 contains three parts:

1. The a priori energy estimates in certain functional spaces.
2. A suitable approximate problem which is asymptotically consistent with the a priori estimate.
3. Construction of solutions to the approximate problem.

These steps are highly nontrivial in the case of a compressible water wave thanks to the nontrivial divergence of the velocity
field and the unbounded fluid domain. The rest of this section is devoted to the elaboration of these steps. Also, we assume
e(h) = h in the rest of this section for the sake of simple exposition. But general e(h) will be studied in the later sections.

Notation 2.1. The following notations will be used throughout the rest of this manuscript. Let f(z, y), g(¢, ¥) be smooth functions
on [0, 7] x Q and [0, T'] X I, respectively. Then we define ||flls := || f(Z, )llus@) and |gls := |8, us)-

2.1.1 Construction of the approximate problem: Tangential smoothing

Although the a priori estimate has been established by the first author in [42], it is still quite difficult to obtain a local-in-time
solution by a direct iteration scheme based on the a priori bounds. The reason is that a loss of tangential derivative necessarily
appears in the linearized system. Specifically, if we start the iteration with the trivial solution (@, v®, A®) = (1d, 0, 0) and
inductively define (", v*D z+1) by the following linearized system

QD = D in Q.
0D = _V i hD — ges in Q,
div,wvD = —9,n*D in Q, (2.1)
hD =0 onT,

(DD R g = (Id, vo, o),

where a™ := [07"™]7!, then:

1. We have to control [[0*v"*1]|; when constructing the solution for the linearized system, which requires the control of
164V oy K7 D)||. The elliptic estimate derived in [20] (i.e., Lemma 2.8 with f = 4®"*1 and 7} replaced by n™) yields

IV 2 Dl s < 1A BVl + 11807 ™ 13118Vl

However, the term [|097™]|5 on the RHS cannot be controlled.



2. Also, we need a uniform-in-n energy estimate for (2.1) in order to get a solution for the original nonlinear problem by
passing n — oo. During this process, we pick up a boundary term that reads

1) 44 _(n) 3) 3 ) 1 )4 (n) 3) 3a a4 1
f G Gy @B g g f B3V G g g, D) s
r —— r

) -
n-th solution (n+1)-th solution

It can be seen that the first term no longer contributes to the positive energy term |a3"5417(,|i2 o 8 opposed to what happens

to the original problem due to the loss of symmetry. In addition to this, a cancellation structure that is required to control
the second term becomes unavailable as well.

In fact, the issues listed above appear also in the study of incompressible Euler equations [10, 11]. To overcome this
difficulty, Coutand-Shkoller [10] introduced the tangential smoothing method: Let ¢ = £(y1,y2) € C2(R?) be the standard
cut-off function such that Spt £ = B(0,1) CR?, 0 </ < 1and fR2 ¢ = 1. The corresponding dilation is

1
&G, y2) = —zf(y—l,&), k>0,
22\ kK

and we define the smoothing operator as

Acf1,¥2,3) = f 4O — 21,2 — 2)f (21, 22, 23) dz1 dzo. (2.2)
RZ

Let @ := [07]~" be the smoothed version of a with 7j := A2y and define the approximate system by replacing the coefficient
a with a. Under this setting, we introduce the “tangentially-smoothed” approximate system of the compressible water wave
system (1.13) as follows

om=v+y in Q,
0" = =Vih - ge3 in Q,
divzv = =0k in Q, (2.3)
h=0 onl,

@, v, Wli=0y = (d, vo, ho),

where = (1, v) is a correction term which solves the half-space Laplace equation

Ay =0 in Q, 2.4)

Y =A"P (Znﬁ&iﬁgiAfv - ZA%)’][;&’BE,‘V) onT, ’
where A := 6% + 6% is the tangential Laplacian operator and A f = (€72f)Y is the inverse of A on R2. The index [ ranges
from 1 to 3 and i ranges from 1 to 2, as stated after (1.10). The notation Pf := P, f denotes the standard Littlewood-Paley
projection in R? which removes the low-frequency part, i.e., P> f := (1 — x(£))£(£))Y, where 0 < y(€) < 1 is a C*(R?) cut-off
function which is supported in {|£] < 2} and equals to 1 in {|¢| < 1}. Also, we mention here that the correction term ¢y — 0 as
k — 0.

Remark. The Littlewood-Paley projection P is necessary when we apply the elliptic estimates to control y:

Wlss = IA"Pflss < Iflis,

otherwise the low-frequency part of A f loses control.

In Ginsberg-Lindblad-Luo [20], the compressible Euler equations are approximated by a “fully smoothed system”, in the
sense that all variables are replaced by their smoothed version. Specifically, they smooth the velocity vector field in the
tangential direction first and then obtain the smoothed flow map by integrating it in time (see [20] Section 4). In this paper,
however, we smooth the flow map directly and through this we replace the nonlinear coefficients a** by their smoothed version
a"* in (2.3). The advantage of our mollification and the correction term is three-fold.

e The existence of the solution to the approximate system (2.3) can be obtained by passing to the limit as n — oo in a
sequence of approximate solutions {("”, ™, h)} which are constructed by solving a linearized version of (2.3) (see
(2.14)).



e We do not need to construct the initial data for each linearized approximate system as what was done in [20], because
ali=o = ali=o = I (the identity matrix) implies that the compatibility conditions of the (linearized) approximate problem
are the same as the original system.

e We are allowed to include a correction term ¥ in the first equation of (2.3), which was first introduced by Gu-Wang
[22]. This is crucial in order to eliminate the higher order terms on the boundary when performing the tangential energy
estimate, which shall be explained in Section 2.1.3-2.1.4.

2.1.2 Avoiding extra regularity on the flow map: Alinhac’s good unknown method

The crucial part of the a priori estimates for the approximate system (2.3) is the estimate for the tangential derivatives. In
particular, the top order tangential energy with full spatial derivatives d* enters to the highest order. Due to the special structure

— P,
of the correction term ¢ on the boundary, it is more convenient to replace 3* by 3 A. The corresponding energy reads

Frarwity) 22 302K
[l0 Av|| + [|0 Ah|| +|a@*0 ANT,

12(Q) 12(Q) (2.5)

|2
LX)

=Ery =Erp

P, T J, S
In the control of &7y, it is necessary to deal with the commutator between d A and V;, namely [0 A, a*“]0, f for f = h or v,.

Such commutators contain the higher order term (52&1‘“’)(@, f) with 52&7 = 52&371 X On + - -- whose L?(Q)-norm cannot be
directly controlled. In Ginsberg-Lindblad-Luo [20], such commutators are controlled by adding x*>-weighted higher order terms
to the energy, which corresponds to the fifth order full spatial energy of the wave equation verified by 4. In particular, the extra
regularity of the flow map 7 is necessary in [20] to close the energy of 5-th order wave equation of 4. However, we can use the
Alinhac’s good unknowns method to get rid of the higher regularity requirement for the flow map.

—— ——
Motivation of Alinhac’s good unknowns The main idea is to rewrite & A(Vzh) and § A(V; - v) as

3 A(Vah) = V;H + C(h), with [[H =3 Mhllo + 10,(H = 8- A)llo + IC)lly < PEWD)). (2.6)
G A(a V) = Vi V+C), with [V =8 Avlly + 8,V = 8 Av)[lo + ICOllo < PE®D). 2.7

where P is a generic polynomial. Here H, V are called the “Alinhac’s good unknowns” of / and v, respectively. In other words,
the Alinhac’s good unknowns allow us to take into account the covariance under the change of coordinates to avoid the extra
regularity assumption on the flow map.

Remark. For Euler equations (including the water wave system), it is possible to have higher regularity for 7 than v thanks to
the propagation of the extra regularity assumption on the vorticity. However, when modeling complex fluids with free boundary,
such as magnetohydrodynamics (MHD) equations, MHD current-vortex sheets, and elastic fluid equations, it is not possible to
have n7 more regular than v.

Derivation of Alinhac’s good unknowns It remains to derive the precise expressions of the good unknowns H, V, which
is recorded in Lemma 3.4 in full details. Here we give a brief explanation on the precise forms of the good unknowns from

. . . . . . o .
the perspective of change of variables. In fact, by chain rule, we can rewrite  A(V;f) in terms of covariant derivatives via

2
—— - - - - —2— —2—
Va(@@ Af) = Z Va ((577 - Va)(n - Va)(0im - Va)(0im - Va)f) =0 A(Vaf) + Va0 ARy - Vaf) + Lot
i=1
It is not difficult to find that, other than Vaézx f, there is another highest order term —V;,(szﬁ - Vaf) corresponding to the term
——
that all the derivatives fall on 7. Therefore, the essential highest order term in § A(V;f) is indeed the covariant derivative of
52Z f- 52&7 - Vaf, called the “Alinhac’s good unknown” of f with respect to EZZ.
Therefore, one has V := 8 Av — 8 A7 - Vav, and H := § Ah — 8 A7 - Vh, satisfying (2.6)-(2.7) and

ICOllo < PUAB*Tl2, 10nll=) UVl + 18°VIl2),  ICUllo < PG L2, 107l YISl + 116%ll2).



This circumvents a loss of regularity caused by differentiating the equation v = —V{h — ge3 and all derivative fall on &. Such
a remarkable observation is due to Alinhac [3]. In the study of free-surface fluid, it was first implicitly used in the Q-tensor
energy introduced by Christodoulou-Lindblad [7] which was later generalized by [42]. It has also been applied explicitly in
[22, 44, 61]. Recently, Ginsberg-Lindblad [19] have adapted these good unknowns to study the LWP for the free-boundary
relativistic Euler equations in a fixed hyperbolic space-time domain.

Interior estimates via the good unknowns Now V and H satisfy
8V = —V,H +error, ViV =38 Adivay) + error, in Q 2.8)
H = -9 Afiga*dsh  onT, (2.9)
multiplying V through (2.8), integrating over Q and integrating V; in — fg VzH -V by parts yield
1d
2 dt
For the first term on the RHS of (2.10), invoking the definition of H and the third equation of (2.3), we have

f VP = f HG A(divay) dy + f 93ha P79 DiigVadS + error. (2.10)
Q Q T

f HO A(divay)dy = — f (@ Ah)@ Do,h) dy + f @ A - Vah)(@ Ad,h) dy.
Q Q Q

—2— ——
Here, the first term is equal to _55”6 Ah|| @) which contributes to the positive energy term that controls ||0 Ak, @ The

second term can be controlled after considering its time integral (See (3.88)-(3.89) for the details). In addition, invoking the
definition of V, we have L L
18> AVIIG < V172, + 10°A7 - Vavllg,

and this implies that it suffices to bound [[V|[3 in order to control ||54v||(2) as the last term [|0%A7 - Vavll§ can be controlled
straightforwardly. For details we refer to the proof of Lemma 3.5.

2.1.3 Crucial cancellation structure on the boundary

The second term on the RHS of (2.10) is equal to
a3 s =2— 22—
0zha™*a"d Afjg(0 Adime — 0 Ay — 0 Afj- Vav,)dS. (2.11)
r
By plugging the definition of V and invoking the first equation of (2.3) and then “moving” one A, from fjz to 17,, we have

o [ 2
f Dshia¥d Ay (a AdT1e — 8 A - vm)
r

1d
C2dr Jr
2 — Jg, S —2— 22— L —
+ f 3haPd AN a9 N2v, @0 AN, dS — f 03ha> @ o Aijgd Aijya? 9, dS
r T

0sh|a D A, dS

+ f 93hi¥D AN e 300,78 ANy dS + error. (2.12)
T

The higher order terms on the third line are exactly cancelled out for the original problem (i.e., k = 0) but we are unable to
control them when « > 0. However, in light of the definition of i (2.4), both of the higher order terms can indeed be cancelled

by — fr (93/1513“&3/352Zf7ﬁ523w dS in (2.11) up to lower order terms plus the low-frequency term
& ((d = P) (Angad;A2y — ANInpa* o)),
which can be controlled by using Bernstein’s inequality (2.23) in Lemma 2.5. The details can be found in Section 3.6.3.

Remark. Alternatively, one may boost interior regularity of the flow map to H*>(Q). This can be done via the Cauchy
invariance but one has to assume the initial vorticity curl vy € H*3(Q) (cf. [32, Section 4.2]). The correction term here helps us
get rid of extra regularity of the flow map.



2.1.4 Discussion on the uniform-in-« energy estimate

We have to make sure that our energy estimate is uniform-in-« in order to pass the sequence of approximate solutions to a limit
as k — 0, which, in fact, solves the original problem. This depends crucially on the aforementioned cancellation scheme on
the boundary, as the terms in the second line of (2.12) would otherwise contribute to [|Anllgsry and ||l sy = A7l H(T)»
respectively, which are of 0.5-derivatives more regular than v after moving to the interior. Of course, one may control these
terms by “moving 0% to the tangential mollifier”, i.e.,

Al ey < &1l - (2.13)

But this fails to be uniform-in-x when ¥ — 0.
Nevertheless, we have to use (2.13) to treat the term in the third line of (2.12) but we can get an extra +/k owing to the
structure of y and this cancels k~!/2 out. Specifically,

o — J Y
f O3haPd” AN mpa O, A2, a0 AN 1, dS
r
~3y ~ia A2 22X “’3,3_2_
SI103ha™ @' | L@l ON Wyl 1= () |AD Anlizo)la™ 0 AN gl
i3 e _
SI03ha™ & | o ) OAZY Lo ))& AN gl 2y (K 1/2|77|1‘13-5(r))-

We employ the Sobolev embeddings WI4(R?) < L*(R?) and H*>(R?) < L*(R?), and the tangential smoothing property
(2.29) to have |0y~ < V&P167ll2, 1187l [[V]13). We refer to (3.95)-(3.96) for the details.

2.1.5 Discussion on the existence of the approximate system

The approximate system (2.3) can be solved by an iteration of the approximate solutions. Specifically, let (@, v®, h®) =
™V, v, K1) = (1d, 0, 0) (i.e., the trivial solution). For each n > 1, we inductively define (p*1, v+ h*D) to be the solution
of the linearized system of equations

Ot = D 4y in Q,
OV = V0 h"D — ges in Q,
divzw v D = —9,p0 D inQ, (2.14)
A = onT,

(D D Do = (1d, v, ho),
Here, a™ := [on™]7!, @™ := [057""]~" and the correction term ¢ is determined by (2.4) with (™, ™, a™). The existence of

(D, 0D gDy follows from showing that the map = : X — X (defined below) has a fixed point, where the Banach space
X define as

X ={(§, wor) : (.o = (v, 1d),

(2.15)
sup (IIW(t), O (O)lizs + Vg (@)l + 10V a0 7(0), 8,V an (D)l + 10:£D)lIzs + 16°EDIz> + |I3§(t)|ILw) < M}-
1€[0,T1]
Here, Z* denotes the mixed space-time L?-Sobolev norm of order < k. The map Z is given by
E . (§7 W, ﬂ) — (T](n+l),v(n+l), h(n+1))
where we define D, v"*D and K+, respectively, by
"D =w + ¢, " D(0) = 1d, (2.16)
AV = - Vowm — ges, v(0) = vy, (2.17)
PR — Ay k™D = —g2 0,00 inQ
a n)9rVe - (n+1) 5 1 (n+1) _
and {h<n+1> -0 onr, Wi T, O Dlino = (o, ). (2.18)
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Remark. The quantity ||Vzon||ps +|0Vzmm, 0,Vamm||z3 can be replaced by ||Vzm||z+ if Q is bounded. However, we can merely
control Vzmm in L* as it corresponds to Vmh"+D.

The estimates for 7™+ and v"*!) are straightforward since they verify transport equations. However, the estimate for
10V 200 h* V]| 25 requires that of ||V A" V|| 55 which cannot be done directly by commuting §* through the wave equation, since
there is no hope to control the corresponding source term consists 0,51}’,‘1’)(546va”1)) in L2.

The key observation here is that 536,6va’+]) can in fact be controlled thanks to (2.17) and the finiteness of 16*V s tllo, and
so there is no problem to control the wave energies by commuting D39, (where D = 4 or d,) through the wave equation (2.18).
Now, the remaining ||Vmh"*V||z: can be treated using the elliptic estimate

Ve B llgs < 1Az A" Dlls + 1007 151"Vl (2.19)

which indicates that the control of ||V mwh"*D|| ;5 requires that of ||AzwA”*V|l3 up to the highest order. But this term is under
control since (2.18) suggests that
1 2 (n+1 ~ 1
1Az ™ Vlls < 116787 Plls + 118age 0yve™lla.

where the second term is of lower order and the first term can be controlled by invoking the wave energy with 2 time derivatives.

2.2 Auxiliary results

2.2.1 Sobolev inequalities

Lemma 2.2. (Kato-Ponce [31] inequalities) Let J = (I — A)!/2, s > 0. Then the following estimates hold:
(1) Vs > 0, we have
IOz < W fllwsri gl + fllza lIgllwsez

(2.20)
16°(f Iz < 1 s 1glLr2 + 1 f Il lIglyysan »
with 1/2=1/pi+1/p=1/q1 + 1/qx and 2 < p1,qs < o0;
(2) Vs > 1, we have
1°(f&) = (g = f(I* DNy < fllwron 8llws-1a2 + I f gyt NIl (2.21)

forallthe 1 < p < p1,p2,q1,q2 <o with 1/py +1/pa =1/q1 +1/q2 = 1/p.

Lemma 2.3. (Trace lemma for harmonic functions [53, Prop. 5.1.7]) Suppose that s > 0.5 and u solves the boundary-value
problem
Au=0 inQwithu=g onI’

where g € H*(I'). Then it holds that
I8ls < llulls+os < 18ls

Lemma 2.4 (Normal trace lemma). It holds that for a vector field X
|6X - Nl_os < [10Xlo + lIdiv Xllo (2.22)

Proof. Let ¢ € H*>(0Q) be a scalar test function, whose bounded extension in Q is denoted by ¢ € H'(Q). Then

f 0X - Ny = f div (0X¢) = f XV — f div Xa¢ < (I18Xllo + lIdiv Xllo)lelo.s.
o0Q Q Q Q
O

Lemma 2.5. (Bernstein-type inequalities) Let 0 < y(¢) < 1 be a C2(R?) cut-off function which is supported in {|¢] < 2} and
equals to 1 in {|¢] < 1}. Define the Littlewood-Paley projection P<y in R¢ with respect to y by

Ponf = (YE/NF@) . Ponf = (1~ x@ENDI@) . Puf = (@N) - xQEIN)FE) "

Then the following inequalities hold
1P <r f sy Ssat NIz, Vs = 0 (2.23)
P fllseay Ssat flleays Vs € R (2.24)

Analogous results also hold for H ;(R" ).
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Proof. For the first inequality, we apply Plancherel’s identity to get

IP<n ey = 0P Pen fll2eey = IEPXE/N)FENlzgey < N* - 111 f 2

Note that s > 0 is used in the last inequality. For the second inequality, we just replace y(£/N) above by 1 — y(¢/N) and notice
that 0 < 1 — y(&£/N) < 1 to get
WPsn flisey < WEF FENz@ey S W las@ey-

Analogous results hold for H*(R?) by replacing || and |£| with (3) and (£) respectively. One can see Tao [52, Appendix A] for
more Bernstein-type inequalities. O

2.2.2 Properties of tangential smoothing operator

As stated in the introduction, we are going to use the tangential smoothing to construct the approximate solutions. Here we list
the definition and basic properties which are repeatedly used in this paper. Let £ = £(y1,y2) € C(R?) be a standard cut-off
function such that Spt £ = B(0,1) CR?, 0 </ <1 and f]RZ ¢ = 1. The corresponding dilation is

1
&y, ) = —25(&, y_z)’ k> 0.
K K K
Now we define
Acf (1, y2,y3) = fz Gy = z1,y2 = 22)f (21, 22, 23) dzy dza. (2.25)
R

The following lemma records the basic properties of tangential smoothing.

Lemma 2.6. (Regularity and Commutator estimates) For « > 0, we have
(1) The following regularity estimates:

ANl < Ifllss Vs> 0; (2.26)
IAcfls S Ifls, Y52 -0.5; (2.27)
0ASlo < 61 fli=s, Vs € [0, 11; (2.28)

If = Acfle < VKIOflos. (2.29)

(2) Commutator estimates: Define the commutator [A,, f1g := A(fg) — fA«(g). Then it satisfies

1A f1glo < 1f1=1glo, (2.30)
[ £18glo < 1flwilglo, (2.31)
AL £10glos < |flwilglos. (2.32)

Proof. (1): The estimates (2.27) and (2.28) follows directly from the definition (2.25) and the basic properties of convolution.
(2.29) is derived by using Sobolev embedding and Holder’s inequality:

If = Aufl = KO f

S,y o, -

L3

S VKl

f G@D(f(y—2) - f())dz
R2NB(0,%)
(2): The first three estimates can be found in [11, Lemma 5.1]. To prove the fourth one, we note that
(A f18) = A@f D) + A(f5g) — Of Mg — fAG g = [Ar, 0f10g + [As, [107g.
From (2.30) and (2.31) we know

0[A» £1glo < 10f12=10glo + | flwi=10glo < |flwielgl:- (2.33)

Therefore (2.32) follows from the interpolation of (2.31) and (2.33). ]
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2.2.3 Elliptic estimates
Lemma 2.7. (Hodge-type decomposition) Let X be a smooth vector field and s > 1, then it holds that

IX1ls < XMl + lleurl Xlls—1 + lldiv Xlls—1 + X - Nls—os. (2.34)
Proof. This follows from the well-known identity —AX = curl curl X — Vdiv X and integration by parts. O

Lemma 2.8. (Interior elliptic estimate) The following elliptic estimate holds for f =0 onT.
IVafIZ, <CAlllz) (1A £ + 18£15) . or  IVafil, < CAlille) (1Aafllg + 10517
2 ~ 2 2 2 £112 —
IVaf1F, <Cllzo) (1AafI7) + 10717 + 107 fIF,) . r=2.3, (2.35)

IVafIZ, <CUs, ||a2ﬁ||,_2>(||Af,f||3_1 + 1180712, (012 + ||a2f||%_2)), r>4.

Proof. The proof is largely similar to what is in [20, Appendix B] and so we shall only sketch the details. The main idea here is
to apply the div-curl estimate on ||V f IIi.p. The (Eulerian) divergence contributes to the Laplacian term, and the (Eulerian) curl

of V;f vanishes. Then the term IIE’V;, f |I5 will be generated by Lemma 2.4 during this process. To control this term, we write
f @ Vaf)@Vaf) = f (@ Vaf) (Va0 f) + f @ Vaf)[8. Valf).
Q Q Q
where
f @ Vaf)([0".Valf) < €lld"Vafll§ + 10", Val I,
Q

and ||[5’,Va]f||(2) is controlled by either C(|Ifillz)IIdf113 or C(Ifllz)NIdfI%. when r = 1, by C(lIfll#) (||3f||2w + ||32f||f_2) when
r = 2,3, and by C(||07|.~, |IﬁzﬁlI,_g)lléé)ﬁllf_1 (Ilaflliw + ||82f||f_2) when r > 4. Moreover, by integrating V; by parts, we have

[@vanidn=- [ @avnan. 236)
Q Q

and there is no boundary term since f = 0 on I" implies & f = 0 on . The main term | contributed by the RHS of (2.36) after
commuting V; through 9" is — fQ(B’Aa 1), which can be controlled by integrating 0 by parts and then using the e-Young’s
inequality, i.e.,

- fg @ NP ) = fg @ Ma)@ ) < IAafIP, + elld™ 12,

where €[|d"+! f 12 < €llod” f lIZ, and ellod’ f |I? is comparable to €lloVaf Iz modulo error terms that take the form N, Valf /I7. On
the other hand, the error term generated by the RHS of (2.36) after commuting V; through &’ takes the form

fg 3,310, 0, )@ f),

and it contributes to (up to the highest order)

I:= fQ @) (0,(@,0,)) @ /). and 1I:= fQ @) (07 9,(@,0,1)) @ -
Here,
11 5 eVafI2, + 1@a) @ I,
and [|(9a)(@ f)II2 can be bounded directly by the RHS of (2.35). Also, for /, we have

fg 0a") (0,(@",0,1)) Bf)  ellVaflZ, + 1GD@LI,
fg @) (0u(@,0,.1)) @ f) 516" FII5 + 10(Vaf)llF- 0@, when r > 2,

where ||(571)(5f)||(2), |I5’f||% and ||(9(V;,f)||%wl|5’a||(2) can all be bounded directly by the RHS of (2.35). m]
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Remark. The inequalities in (2.35) can be simplified to
IVafI, < CUillz) (Aafley + A7), r=1,2,3,

IVafll7, < CAIlL-, |I62ﬁllr-z)(I|Aaf|If_1 + IIEGﬁIIf_IIIfIIf), r>4,

when Q is a bounded domain. Nevertheless, for an unbounded domain Q we have to be more careful when f = A since dh can
only be controlled in L™ ().

3 The Approximate system and uniform a priori estimates

In this section we are going to introduce the approximation of the water wave problem and derive its uniform a priori estimates.

3.1 The approximate system

For « > 0, we consider the following approximate system

om=v+y in Q,
0v =-Vzh—ge;s in Q,
divzv = —e’'(h)d:h in Q, (3.1
h=0 onT,

@, v, W)ly=0; = (Ad, vo, ho).

Here @ := (87)~" where 7 is the smoothed version of the flow map 7 defined by 7j := A25. The term ¥ = (1, v) is a correction
term which solves the half-space Laplacian equation
Ay =0 in Q,
e (T iBF A2 ad g (3.2)
W =A"P (Anﬁa’ﬁ[i,-AKv - AAknﬁa’ﬁaiv) onT,

where Pf := Py f denotes the standard Littlewood-Paley projection in R_2 defined is Lemma 2.5, which removes the low-
frequency part. A := 6% + 8% denotes the tangential Laplacian operator and A™! f := (—=|¢]72f)" is the inverse of A on R?.

Remark.

1. The correction term ¢y — 0 as k — 0. We introduce such a term to eliminate the higher order boundary terms which
appears in the tangential estimates of v. These higher order boundary terms are zero when « = 0 but cannot be controlled
when « > 0.

2. The Littlewood-Paley projection is necessary here because we will repeatedly use

A™BSly S Bflys ~ Bflges < |flpsa,
which can be proved via Bernstein inequality (2.24). Without P the low-frequency part loses control when taking A~'.

Fix any « > 0, we will prove in Section 4 that there exists a 7, > 0 depending on the initial data and x > 0 such that there is
a unique solution (v(x), h(«), n(x)) to (3.1) in [0, T ]. For simplicity we omit the x and only write v, 1,77 in this manuscript. The
remaining context in this section is to derive the uniform-in-« a priori estimates for the solutions to (3.1). This guarantees that
we are able to obtain the solution of the original problem in some fixed time interval by passing k — O.

For simplicity in notations, we still denote the solution to the k-approximation system by (77, v, 1) with « omitted. Define the
energy functional for the x-approximate problem (3.1) to be

4 3
E) = IOIB, + D19 v@IR + (IR, + > 10 R | + 168 Ao (O (3.3)
k=0 k=0

14



Remark. We recall that (3.3) can be simplified to

4
lIn(I; + Z(Ilﬁf_kV(t)Ili + 1107 hOI) + 12 0* A (Dl
k=0

in the case a bounded domain. We refer to the remark after (1.16) and Section 1.4 for the details.
The rest of this section is devoted to prove:

Proposition 3.1. Let &, be defined as above. Then there exists a time 7 > 0 independent of « such that

sup (1) < P(lIvolls, lrollx)-
0<t<T

Proposition 3.1 is a direct consequence of the following proposition:

Proposition 3.2. Let &, be defined as above. Then it holds that

15
E(®) < P(lvolla llroll#) + f P(E(m)dr, Viel[0,T]
0
provided the following a priori assumptions hold

_83h(t) > % onT,

IJ(H) - 1]l3 <€ inQ,
Ild — at)ll; < € inQ,

34

(3.5)

(3.6)

(3.7)
(3.8)

where J := det(d77) and we use € > 0 to denote the sufficiently small number which appears here and the e-Young inequality.

Remark. It suffices to show that (3.5) holds true when ¢ = T'. Also, (3.5) can in fact be reduced to

T
E(T) < E(0) + f P& (1)) dt.
0

(3.9

In [42] we are able to prove that there exists initial data satisfying the compatibility condition (1.11) up to order 5 such that

E«(0) < P(||vollas llholl4) holds. For notation simplicity we define Py := P(|[volls, [1Aoll#)-

3.2 Estimates for the flow map and correction term

First we bound the flow map and the correction term together with their smoothed version by the quantities in &,. The following

estimates will be repeatedly use in this section.

Lemma 3.3. Let (v, &, 77) be the solution to (3.1). Then we have

107l < 10nllL,
16%7ll> < 116°7lla,
lls < PO, 16712, IIV]13),
10:61la < PRIz, 11877112, [Vllas 118,V113),
187615 < PO, 16 nll2, [Vlla, 110115, 167 vI1),
10;wlla < PAIOnL=, 10° 71l [IVllas 110113, 107V, 107 V1)

and
10:77lla < 18:mlls < PN, 18P 7112, V)
1677115 < 10271l < Plonll, 16712, [IVlla, 10,vI13),

1677ill> < 110371l < PRIz, 11071l [IVilas 10,V]13, 1107 VI12),
1677l < 110inlli < PRl 11071, [1Vilas 10,v113, 1107112, 18, Vi)
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Proof. First, (3.10) and (3.11) follow from (2.26), i.e., [|37ll= = IA20nll= < 100ll=, 1167l = [IA20%3l, < 10*3ll,. To
bound 6%, it suffices to bound the same norm of #*7 and then apply (2.26) again. From the first equation of (3.1), one has
1y = 0% + 0%y, so the estimates (3.16)-(3.19) automatically holds once we prove (3.12)-(3.15).

Commuting time derivatives through (3.2), we get the equations for 6f:ﬁ (k=0,1,2,3,4):

A"y =0 in Q,
A — - — . (3.20)
Oy = N'PoF (Anpa®diA2v — ANInga#d,v)  onT.
By the standard elliptic estimates, Sobolev trace lemma and Bernstein inequality (2.24) in Lemma 2.5, we can get
||¢’||4 < ’Z_IP (K?]ﬁgllﬁgil\iv - KAznﬁaiﬁE,-v)L s
AreiBG A2y — AA2naiPB:
S |A17ﬁa 0Ny — AN i 8,1/'1.5 (3.21)
< Anga* ;A2 — AN2nga®dpll,
< @ nlllall-lvlls < PAI8*mll. 10mll, [IV]3).
Also, when k = 1, 2, 3, one has
10014 < [A70,P (Anpa®9; A%y — AN>nao;
Wlla S [P (Anga® o\ v KMpd” v )|
< (0r (Anga ai\ v - ZA?’?ﬁaiﬁng)‘l_s (3.22)
< 10:(Anga® 8, A}y — AN a6l
< P>16% 2. 10l 11VILa. 18, vI13),
16301 < 871072 (Anga B2y - AAZnga D),
< |07 (Bnsa?,n2v - AAZnsa? 5,-v)|0 5 (3.23)
< 1107 (Anga® 0}y — ANIna® o)y
< PUIO* 7L, [Vlla, 1871l 118,13, 1167 Vo),
and - o _ o
16;vl> < 'A’laf’P (Anpa® 8N}y - AAinﬁa'ﬁaiv)jl .
> (3.24)

< ' PO} (Kﬂﬁé’ﬁgiA%v - KA,%Uﬁaiﬁaiv)|_o.5

where in the last step we apply the Bernstein’s inequality (2.24).
Combining with 6?“77 = 6fv + aflp, (3.16), (3.17) and (3.18) directly follows from (3.22) and (3.23), respectively. When

k = 3, one has to be cautious because the leading order term in (3.24) is of the form (8,3&7)5151/ and Kna(af’gv) which can only
be bounded in L*(Q) by the quantites in &, and thus loses control on the boundary. To control these terms on the boundary, we
have to use the fact that H(R?) = (H*3(R?))*.

First we separate them from other lower order terms which has L*(I) control.

P@f’ (ngfliﬁgi/\zv - ZA,%T][;&IBE,‘V)
=P (8?&7]‘(3&%5,‘/\5\/ - af’ZA,%nﬁZziﬁé,-v + Znﬁa’ﬁafaAfv - ZAinﬂ&iﬁﬁféiv) +PY. (325)

leading order terms=:X
The control of Y is straightforward by using Sobolev trace lemma and (3.16), (3.17),

[PY|—05 < [PYlos < 1Yl
< P(1027ll2.5, 110mll3 5, 102ally 5, 1102Vl 5, 110,vIl2.5) (3.26)
< P(16*7lla, Il 110:v13, 1102 VI12).
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As for the |PX|_o5 term, we first use the Bernstein inequality (2.24) to get [PX|_g5 =~ [PX|g-os < |X|g-0s. Then the duality
between H~"3 and H®> yields that for any test function ¢ € H*3(R?) with |¢|z0s < 1, one has
(Anga® o2 d;A2v, ¢y = (320:N2v, Anga® p)
= (070} A3y, 3} (s )
< 10; AZV]osl Andi| s (3.27)
S 10711 (g0 [Anal s + [Analyoss|@lie)
< 10V (10 nllllall =)l s

Here we integrate 1/2-order tangential derivative on I" by part in the second step, and then apply trace lemma to control
|6,3 A2v|;0s and Kato-Ponce product estimate (2.20) to bound |Anég|es. Taking supremum over all ¢ € H%3(R?) with |¢]z0s < 1,
we have by the definition of H%-norm that

|Anga® 83 9:A2v 05 < PUIO™nll2, 10llL, 183 vil1). (3.28)

Similarly as above, we have
IANIEa" ;0105 < PUIG NI, 193V, (3.29)
102 AnpaP @, N2y — B3 AN vl o5 < PUIO; 2. 191z, [VI13)- (3.30)

Combining (3.24)-(3.30) and the bound (3.18) for 6,377, we get

183wl2 < PAIG* L2, [Vllas 110:v113, 102V, 1103 V1),

which is exactly (3.15). Hence, (3.19) directly follows from (3.15) and 8/ = B?(v + ).

3.3 Estimates for the enthalpy /

In this section we are going to control the Sobolev norm |I6;“kh||k fork =0,1,2,3 and ||A]|4.

3.3.1 Estimates for the first order derivatives of /
We need to control ||0k||z~ and ||8;Allg. First, we have

dh
Gy = 0 Ouh = @O+ @ = @ h

Invoking the a priori assumption (3.8) and the second equation in (3.1), we get
l0Rll> < [IVahllr~ + €llOhll> < (g + 10:vllL=) + €llOhl|L. (3.31)
Therefore, for sufficiently small €, which can be achieved by choosing 7" > 0 smaller if needed, we have
0hl= < g + 10Vl (3.32)
Second, as for ||0;4]|o, we use the third equation of (3.1) and the physical assumption (1.8) to get
18:hllo < 1@ Bvallo < llall=l6vllo < linllz lvilo. (3.33)

3.3.2 Estimates for the top order derivatives of %

We take the Eulerian divergence (i.e., div;) in the second equation of system (3.1) and use the third equation of (3.1) to get a
wave equation of &:

Je' (W)d2h — 8,(E™d,h) = —J3,a"*dyve —Je” (h)(;h)*, (3.34)
—

=F
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where E™* = famg’;. Note that the matrix E is symmetric and positive-definite thanks to (3.7).
Let D = 9§, or 4. Let D* = 8°,6%0,,00? or 87, i.e., all the 3rd-order tangential derivatives. Applying D to (3.34), we get

Je' (W3;D°h — d(E™D?0,h) = DF —[D, Je' (W)]07h + D (Je” (h)(0,h)*) +0,([D?, E™1,h). (3.35)

Fs

Multiplying (3.35) by 8,D3h, then integrating 9, by parts, we have

1d (.
—— | JeR)IDhP + E*0, D hd, D hdy (3.36)
2dt Jo
1
= 5 f OE"D0,hD*0,hdy (3.37)
Q
+ f F30,D°hdy (3.38)
Q
+ f D3F, D hdy (3.39)
Q
+ f 3, ([D%, E™0,h)3, D h dy. (3.40)
Q
(3.37) can be directly bounded by the energy:
(3.37) < 10Ell=1D°0hl[§ < P(IOnll, 110VIl2, 10112, 11D Bhllo) (3.41)

To estimate (3.38), it suffices to bound ||F3]|y. The precise form of F is
5
Fy= 3" ™)@ " hy- - (0D,
m=2

where the second sum is taken over the set {ij + -+ i, =2, j1 +--+ ju =3, 1 < iy + ju < 4}. Invoking the condition
imposed on e(h) (i.e., (1.8)), one has

Z 131l < PG, hllo, 197 Ally 1197 Alla, 11: Al | DAl ). (3:42)
Y

As for (3.39), one has D3F = D3(Ja*ad).
e When ©° = &, then D3 (Ja"@)llo < P(lInlls)-
e When D3 contains at least one time derivative, then
1D} Fllo = ID*0,(Ja &y < 10 lallallz + 111 NI0.allllallzs < PlovIa, Imllgo)-
Therefore,
(3.39) < P(nllge, V13110, D*Allo (3.43)

Finally, one has to be cautious when controlling (3.40). The leading order term in 8,([D3, E"*19,h) is 0DE. If D = &°,
then this term loses control in L?. To avoid this problem, one can integrate 9, by parts, and then integrate 9, by parts in the
time integral of (3.40) to replace 9, falling on E by d,. This is because J and 9,J (also for a and d;a) have the same spatial
regularity. If D3 contains at least one time derivative, then the L>-norm of 9DE can be controlled directly thanks to the same
reason above.

e D3 contains at least one time derivative, i.e., ©* = ©?d,. Then
fBv([ﬁzat,EV”]c’),lh)a,D%dy
Q

< D%, E10,h111110, 2Rl
S (ID*O,EIL N8Rl + 1D Ell= 18Rl + 1D Ell||Dhllz + IDE|=1D8:hlly + 16, Ell=1DAI1)IIGD*hllo.

So
Z (3.40) < Pl nllo, 109ll =, [1V]la, 10v13, 110712, 18Rl , 10,12, 167 AlIIG D Allo. (3.44)

DI\(F)
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e When D3 = 8%, we consider the time integral of (3.40). We first integrate d, by parts, then integrate d, by parts to get the
following equality

T
f f 0,([8°, E™10,h)0,0°h dy dt
0 Q

T T
= - f f ([0, E"10,,1)d,0,0°h dy dt + f f ([0°, E™0,h)N, 8,0°h dS dt
0 Q 0 r “;6"
t=T

T
= f f 3,10, E"10,,h)d,0°h dy dt — f ([0, E"10,h)0,0°h dy
0 Q Q

t=0

The leading order term in the first integral is &°0,E which has L2- control, so one can bound this directly by using Holder’s
inequality

T T
f f 0,(10°, E™18,h)8,&°h dy dt < f P(nllg, 0VI13, 10|, 18 AlI3)II6>Ally d. (3.45)
0 Q 0

As for the second integral, we can use Holder’s inequality first, then use e-Young’s inequality and Jensen’s inequality

t=T

- f (18°, E"™10,h)d,8°h dy
Q
< 18P Eolldr(DIz= 8> h(DIy + 118° ECOII0SRTN118* (Tl + IOET)|| = 188> (Tl h(T)Iy

_ 1 — _ _
< el h(D)IIF + g(naE(T)né +IOE(T)|I}« + I0*(THII)

(3.46)
_ 1 /(= _ T _ _
< el h(D)IIF + % (naE(O)ua‘ +IBEO)II + IRO)]I3 + f 16, 0E@)II3 + 10,0 (DI} dt)
0
_ T
< elPhDIT + Po + f PAIllz, [1VIla, 10,7115) dt.
0
The above estimates along with
f (18°, E™10,h)d,8°hdy| < Po
Q =0
give the bound for the time integral of (3.40):
T _ _ _ T
f f 8,([8°, E"10,m),0°h dy dt < €l h(T)|I} + Py + f P llz, [IVIla, 10,7115) dt. (3.47)
0 Q 0

Now, summing up (3.41)-(3.45), (3.47) and then plugging it into (3.36), we get the tangential derivative estimates of h:

=T _ T
> f Te (WD’ 0,h° + 10D hP dy| < el h(T)II} +Po + f P(E (1) dt. (3.48)
> Vo = 0

t=0

Note that we have used E is symmetric and positive-definite. Choosing € > 0 sufficiently small, the term eloh(T )II% can
absorbed by the LHS of (3.48).
3.3.3 Estimates for the full Sobolev norm

Up to now, we have controlled all the tangential space-time derivative of dh. Therefore it suffices to control > 2 normal
derivatives of 4. Actually this follows directly from the wave equation (3.34)

¢ (W07h = d(E™d,h) = —J0,8"0,v, —€” (h)(0,h)*
N—————
Z=F()
that
1 ’” 2 VI ’ 2
Oy3h = 5 |Fo-e (h)(0,h)* — Z ONE™,h) — € (Wd?h|,

v+u<5s
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because the above identity shows that the second order normal derivative 033/ can be bounded by the terms containing 4 with
the same or lower order derivates and less normal derivatives. Hence, one can apply the same method to inductively control
terms containing 4 with more normal derivatives. For example, d3333/4 can be controlled in the same way by taking 8% in (3.34)
and then express 03333/ in terms of the terms with same or lower order and < 3 normal derivatives.

Therefore, combining with (3.7), (3.32), (3.33) and (3.48), one has the control for the Sobolev norm of enthalpy % and its
time derivatives after taking € > 0 in (3.48) sufficiently small to be absorbed by ||h||§{:

3
ROl + D IER@IE, + «/e(h)a;‘hmué]
k=1

=T

t= T

S Po+ f PE)) dt. (3.49)
t= 0
3.4 The div-curl estimates for v

In this section we are going to do the div-curl estimates for v and its time derivatives in order to reduce the estimates of &, to
the tangential estimates. Recall the Hodge-type decomposition in (2.7):

Vs> 1: |IXlly S IIXllo + llcurl Xly—1 + [|div X][s—1 + [X - Nls-0.s.
LetX =v,0v, c')tzv, 8,3v and s = 4, 3,2, 1, respectively. We get
IVla < IMllo + lldiv vils + llcurd vil3 +6° (v - Nlo:s

193 < 18,vllo + lidiv dvila + llcurl Byl + 16°(B,v - Nlos

2 2 s a2 2 a2 (3.50)
19, vil2 < 107 vllo + Idiv 37 vlly + llcurl 97 vlly + 10(9;v - N)lo.s
18Vl < 116 vllo + lidiv 87 vllo + llcur] 8;vllo + 187 v - Nloss.
First, the L?-norm of v is controlled by:
T
V(D)o < lIvollo +f llo,v()llo dt, (3.51)
0
while for ||vllo, |[Villo and ||[vi|lo, we commute 9, through 9,v = —V;h + ges and obtain
T T
10, v(Dllo < 18:v(O)llo + f 67v(Dllo dt < 118,v(0)llo + f PInllge, VI3, 10All =, 10:Ally) dt
0 0
T
167v(T)llo < 187v(0)llo + f P(IInllge 10111, 1108l =, 10:Rlly, 167 hlly) di (3.52)
0

T
13;v(T)llo < 115 v(O)llo +f Pl 113, 10012, 187 VI Whlkg, 18Rl 167 Rl 1167 Rllo) dit.
0

Now we are going to control the curl term. Recall that —V; is the Eulerian gradient of & whose Eulerian curl is 0. This
motivates us to take Eulerian curl in the equation d,v = —V;h + ges to get

Oi(curlav); = €400, 0,7, (3.53)

where (curlzX), 1= €,,8"0,X" is the Eulerian curl of X and €, is the sign of the 3-permutation (dua) € S 3. Taking 8% in the
last equation and then taking inner product with 3*curl;v, we get

1d
2di f 6 curlgv® = f (@ eurly ) (€008 0,v") dy < P(Wlas 1197]), (3.54)
Q Q

and thus ;
lleurlzv(T)ll3 < P(||V0||4)+f P(|Vlla, 19°7ll2) dt. (3.55)
0

The Lagrangian curl only differs from the Eulerian curl by a sufficiently small term which shall be absorbed in the LHS

llcurl v(T)ll3 = lleurl;_zv(T)ll3 + llcurlzvll3

T
< Id = allslvlla + P(llvoll )+f P(IVllas Imlleo) dt
3 4 0 4 (3.56)

T
< €lvlla + P(lIvolls) + f P(IIvll4, lImll#) dt.
0
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Commuting d* (k = 1,2, 3) though (3.53), we get the evolution equation for curl;o*v
d,(curlz0fv)) = €400 (0,@™"0,v") — 0,105, curlzIv),.

Commuting 8°~* through the above equation, and then taking L? inner product with 8*~*(curl;6*v), we get

1d
ST f |0°*curl 05> dy = f ™ (€220 0k (0@ 0,v") = 3,([6F, curla]v)a) 0¥ (curldfvy* dy
Q Q
< lleurladfvll - 0% (enadb @™ 0,0 ~ 8,05, curla ) 357
:ZDk
One can use
(027 x B3
a=of" =J" |07 x 0|,
017 X 07]

dm = v + ¢, and the estimates for ¢ in Lemma 3.2 to control Dy, directly. Note that the leading order terms in Dy are 8> %91

and 0*~*0kv. Therefore,
3

3
Dy £ )" PG aio 10 laio illz) < P(E),
k=1 k=1

which implies

llcurl v|ls_x < €lld Vil + Po + fo ' P(E(1)) dt. (3.58)
For boundary terms in (3.50), we invoke the normal trace lemma (cf. Lemma 2.4) to get
0° - Nlos < 116*vlo + 116°div vllo. (3.59)
Similarly we have
16°@v - Nlos < 1180 vllo + 16°div d,vlo (3.60)
1607V - Nlos < 116°0;vilo + lladiv &7 vl (3.61)
102V - Nlo.s < 1802v]lo + lIdiv 82 v]lo. (3.62)

Therefore the boundary estimates are all reduced to divergence and tangential estimates.
Now we come to estimate the divergence. Recall that the Eulerian divergence divzX = div X + (@* — 6#“)0,X,, which
together with (3.7) implies

Vs >2.5: [ldiv Xlls-1 < [1divaXlls—1 + I = alls-i XI5 < [IdivaX|ls—1 + €llXIls

3.63
V1 <s<25: ||div X]ls-1 S ldivaX]ls-1 + [ = alle=1X]ls < [ldivaX|ls-1 + €llX]l;. (369

The e-terms can be absorbed by ||X]||; on LHS by choosing € > 0 sufficiently small. So it suffices to estimate the Eulerian
divergence which satisfies div;v = —d,e(h). Taking time derivatives in this equation, we get
divadfv = =9 e(h) — [0F, @10,ve, k=0,1,2,3.
The leading order terms in divzd} v are e’'(h)d¥ho,h, 8*@*8,v, and 8,d"*8,0"'v, when k > 1. Therefore, we have
lIdivavils < lle’(h)d:hll3

Idivadvila < lle' (a7 RllalId hlly + 1V < Pdlle’ (a7 hlla, 18:hlL, [IvIls) (3.64)

T
< P(IIE’(/I)(?,Zhllz,|I5thllz)+P(|Iv()||3)+f0 P(l10,v(0)ll3) dt
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and similarly,
Idiva0;vil < P(le’(h)d; hlly, lle’ ()7 hlla, 10:Alla, IVI13., 110:vI12)

T
< P(lle/ (Al lle' Wl 19:h112) + Po + f PO, 197V]1) dt
0

: , , , (3.65)
Idivad;vllo < P(lle’ ()} hllo, lle’ () hlly, e’ ()7 hlla, 110l IVI1s, 10,vlas 1107V

T
< P(le' ()3} hlo, lle’ W3]kl lle’ (37 hlla, 18,hll2) + Po + f PO VII3, 107 Vila, 1167 vI1y) .
0

Combining (3.63) and (3.64)-(3.65), we know the divergence estimates are all be reduced to the estimates of & which has
been done in Section 3.3. By choosing € > 0 in (3.63) to be sufficiently small, and using the estimates of / in (3.49), we finally
finish the divergence estimates

3 T
Z [|div 6fv||3-1< <SPy + f P(E(1)) dt. (3.66)
k=0 0

3.5 Estimates for time derivatives of v

As a result of div-curl estimates, it suffices to estimate the L2-norms of 54v, 538,\/, cee afv. In this part we are going to do the
tangential estimates for the time derivatives of v, in order to finish the control ||6£‘v||4_k with k > 1. The fact that 6’ and 9,0’y
are of the same spatial regularity in Sobolev norms is essential for us to close the estimates.

Let D* = §%,870, 079, 0,0°. First we compute

d1
—— f D" dy = f D Do dy = - f D, D@ d,h) dy
Q Q Q

dt?2
- f (D*va)d (8,0 dy — f Do (D%, 3419, h) dy (3.67)
Q Q
L
In the first integral above, we integrate d, by parts and invoking the equation div;v = —e’(h)d;h to obtain:
- f (D)@ (9, D*h) dy
Q
=- f D, "N, D*h dS - f ([D*, @10,ve) D hdy + f 4,0, D*hdy + f DdivayD*hdy
r ™ Q Q Q
b b (3.68)
=— f D' (WO, D*hdy + Ly + Ls
Q
d1
=——_ f e (WD dy + f " (MOhD*h — [D*, ¢’ (WN0:hD*hdy +L, + Ls.
dt2 Jg a
Ly
It is not difficult to see L3 and L4 can be controlled directly:
Ly < [1D%lolldall2 1Al < PEW)), (3.69)
DLl «/ef(h)b“hnoP[Z I \/e’(h)af54kh||0] < PE(D). (3.70)
4 k>1

To estimate L, and L, it suffices to control the commutator [D*, &@]f in L>-norm.

11D, alfllo = I(D*a)f + HD*a)(Df) + 6(D*a)( D f) + 4(Da)( D’ o
< ID%allollfllze + 1D} alllIDfll + 1D all ID*£1l; + 1Dall D fllo.-
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Let f = v and Oh respectively (corresponding to L; and L,), and recall a = [0n]~'. By Lemma 3.3, we have

Li < 1D%I(ID*allollovil, + 1D%alli 1Davll; + 1D%alli 1Dovil; + |Dall2l|D*dvllp)

4
< PO 10fvllass 167l IMMla) S PE();
k=1

4 4 3 2 3 (3.71)
Ly < 197 Allo(1D allollohll~ + 11D alli[[D0All + 1D alli |DoAll: + [ Dall2l|D hllo)
3
< PCY 10Vllass 9l 16l 192 Al 167 llo, 16%71) < PAE(1)).
k=0
Summing up (3.67)-(3.71), we are able to get the energy bound
4
d1 - -
=5 | 201G G + Ve ()05 Al | s PE). (3.72)
k=1

3.6 Estimates for spatial derivatives of v: Alinhac’s good unknown method

Now it remains to control ||c794v||2 to close the a priori estimates of the approximation system (3.1). It should be emphasized
here that our method in Section 3.5 cannot be used in the full spatial derivatives, because the L?>-norm of the commutator
[84 al(dv) and [64 @](0h) cannot be controlled due to the lack of time derivatives. To overcome such difficulty, we introduce
Alinhac’s good unknowns for both v and &, which actually uncover that the essential leading order terms in 8*V;v and 8*V;h
is exactly the covariant derivative V; of their Alinhac’s good unknowns. As a result, one can commute §* and V; in the energy
estimate without producing any higher order commutator apart from &*(divzv)@*h. However, the third equation of (3.1) yields
64(d1vav)(94h = 64(6 (h)ﬁ,h)@“h, which gives the energy term — 2 b fQ |¢94h||O and thus no extra higher order term appears. This
being said, the use of Alinhac’s good unknowns avoids the control of the 5-th order wave equation of i together with delicate
elliptic estimates, e.g., Lindblad-Luo [39], Luo [42], Ginsberg-Lindblad-Luo [20].

The Alinhac’s good unknown was first introduced by Alinhac [3], and has been frequently used in the study of free-boundary
problems of incompressible fluids because the incompressibility condition (Eulerian divergence-free) eliminates the only extra
term 0"(divzv) = 0, e.g., Masmoudi-Rousset [44], Gu-Wang [22], Wang-Xin [61], etc. On the other hand, in free-boundary
problems of compressible fluids, the Alinhac’s good unknowns were crucial in [56] together with the Nash-Moser iteration.
Moreover, there are several studies for free-boundary problems in ideal compressible MHD equations in which the passage to
the Alinhac’s good unknowns is used to study the linearized problem in the framework of the Eulerian approach. For example,
in this connection, we refer to [6, 54, 55] for compressible current-vortex sheets, and [47, 57, 58] for the plasma-vacuum
interface problem in compressible MHD.

3.6.1 Introducing Alinhac’s good unknowns

— ——
For simplicity we replace 0* by A which is more convenient for us to deal with the correction term ¢ on the boundary. For a
smooth function g = g(z, x), we define its “Alinhac’s good unknown” (for the 4-th order derivative) to be

22— 2 B
G:=0Ag-0A-V;g=0 Ag—-0 Anﬁaﬂﬂaﬂg, (3.73)
which enjoys the following important properties.

Lemma 3.4. We have

6 A(Vfg) ViG + C(g) (3.74)
with
IC*(®llo < PmllzOllgllz (3.75)
Proof. Invoking the identity
aa"* = —a" 00y, a, (3.76)
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which is obtained from differentiating @“d,1p = &, then

3'A(VIg) = V(@ Ag) + (3 D&V, + [0 A, 3, ,g]
= V(3 Dg) — IAG" i1, ), + [0 A3, ,8]
= V(3 Dg) — 050 Aty i 8,8 — (10D, 3 #100571,)0,8 + [0 By 8, 9,8
= VI@ Dy -8 Ay d9,) +8 Ay VI(Vg) — (0B, 37 10047,)0,8 + [0 B, 3", 0,g).

=G =:C(g)

where [EZZ, f,gl:= 52& feg) — 52Z( g — fézx(g). A direct computation yields that

—2—
10”An, VE(V29)llo s PA*nll)(10glls + 16%gll2);
I([OA, @ @10071,)d,gllo < IIOA, @7 @107, llollgllwre < PAInlle) (10l + 110%¢llr)

i,
116" A, @, duglllo < Plnllz0)10glls + 16°gll).

O
Moreover, ||G|[5 controls ll6*g [I5 modulo a controllable error term. Specifically,
Lemma 3.5. We have
_ T
16%8(DII5 < IG(D)II; +f Pl IVlla, 1108l 10:8ll).- (3.77)
0
Proof. The definition of G implies
7 7A N
13*8(T)lo ~ 13 Ag(Dllo < IGDlo + (7 2sa#a,8)| |, -
where
2 s 2 g T 2 B
||8 Afjpa a”g|t:THo < ”6 Afjpar aﬂgLZOHO + | 10:(0" Adjga” 3,u8)llo-
Here, szﬁﬁa"ﬁﬁﬂgl,:o = 0 because 52&70 = 0. For the integrand of the second term, invoking (3.76) with d = 9;, we have
—2— —2— —2— —2—
0,0 A d,8) = 0 At d,g + 0 Aijpi0,0,8 — 9 Adjgd d.7,a"d,g
whose L?-norm can be controlled by P17l [IVIlas 110gll <5 110:8ll L )- ]
Remark. For general initial data n, the term P(||n0]l#¢)||0g(0)||.~ should also appear on the RHS of (3.77). Specifically,
—2— 2
17”872 3,810 < 18" Anollliomol - 19g(O)= < PAnollz0ogO)le=
3.6.2 Tangential estimates of v: Interior part
Now we introduce the Alinhac’s good unknowns for v and A
R, —2—
V=90 Av—-0 Afj- Vyv (3.78)
H:= 03 Ah -9 Aj- Vah. (3.79)
——
Applying d A to the second equation in system (3.1) and then using (3.78), (3.79) to get
o,V=-V;H+ 6,(52Zﬁ -Vav) = C(h), (3.80)

=F
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subject to the boundary condition
H = -3 Ajsa®dsh onT, (3.81)
with the continuity equation
VoV =8 Adivay) - C(v,) in Q. (3.82)

Thanks to Lemma 3.5, it suffices to bound [[V|]2 + [[HI[? to close the estimates for [|*v]2 + [|3*Al|2. Taking L? inner product
between (3.80) and V, one gets

1d
——flVlzdyz—fVaH-de+fF-de. (3.83)
2 dt Q Q Q

The second term on the RHS of (3.83) can be directly controlled

I,
fF - Vdy < (16,0 Af - Vav)llo + ICMIIn)IVllo
Q

o o (3.84)
S (P(10 Anllo, 16° Avllo, 1071, [IVl13, 19:v113) + PAmllzOllAlle0I Vo

< Pl [Vlas 10,V 1Alle)-
For the first term in RHS of (3.83), we integrate by part and use (3.81), (3.82) to get

—fVaH-Vz—f&”"(’)ﬂH~VQdy
Q Q

. f H(@"N,V,)dS + f H(V,-V)dy + f (8,8 HV, dy
' . . (3.85)

f 93hd AfipaPaIV,dS + f HG A(divav) dy — f HC(vy) + f (0,"HV, dy
r Q Q Q

Lo

I+ K+ L.
First, Ly can be directly controlled by P(&E,) by using (3.75)

Lo < [HlloPAmlizOlvila + lloall Mol Vilo < Pl [VIlas Allz)- (3.86)
Then we use divzv = —e¢’(h)d,h to bound K

K= f HO A(divzy)dy = — f (@ Ah -3 A - Vah)d D (h)d,h) dy
Q Q

d1 o I o o
-4 f ¢/ ()3 DA dy + = f " (h)dhd A dy + f H([3 A, ¢ (h)]8;h) dy
dt2 Q 2 Q Q

+ f €l(h)(52K8;h)52Kf7~Vahdy (3.87)
Q

=K*

dl1 (, - .
S_Eife(h)w Al dy + K* + P(10°nll, [Wlla, Illge, 10:Al13).-
Q

J,
The term K™ cannot be bounded directly because it contains a higher order term 0 Ad,h, but we can consider its time integral
and integrate d, by parts, then using e-Young inequality to absorb the e-term.

T T T
f K*(t)dt = — f f ¢ (W)@ AOh) D DFj - Vah)dydt = — f f ¢ (h)(0,8 Ah)@ D7 - Vah) dy dt (3.88)
0 0 Q 0 Q

Integrating 0, by parts, we get
=T

T
- f f ¢ (h)(0,9 Ah)@ D7 - Vah)dydr = — f ¢ (W)@ Ah)@ D7 - Vzh)dy
0 Q Q =

t=0

T N
+f f(el(h)a Ah)O,(0 ARy - Vzh) dy.
0o Jo
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The second term on the RHS is controlled directly by fOT P(lIRllg, 110*7ll2, IIvIl) dt. For the first term on the RHS, we have

t=T

l— fg ¢ (W)@ M@ D7 - Vahydy| | < PUlollge. volla) + e’ )8 AR IloPn(T) IV ah(T)lze.

t=0

Using e-Young’s inequality, we have
’ 2
lle’ (h)d” AT o 16° (T2 IV ah(T)l|
FONFER ) 4 . 4
< elle’(md A(Tllg + oo™ n(Dl; + IVah(DlL)
—)— T
< €lle’(hd A(T)|[5 + ('Po + f P(|IVlla, [10ml| > 1ll#, ||azh||3)dt)~
0

Therefore,
T

T o
f K*(t)dt < €lle’ (0 AR(T)|§ + Po +f P(|Wlla, Inllze, Wallee, 110:hl15) dt. (3.89)
0 0
Here, e||e’(h)52Zh(T)|I(2) can be moved to the LHS when € is sufficiently small. This concludes the control of K.

3.6.3 Tangential estimates of v: Boundary part

Now it remains to control the boundary term /, where the Taylor sign boundary term in &, is produced and the correction term
¥ exactly eliminates the extra out-of-control terms produced by the tangential smoothing (these terms are 0 if x = 0).

I= f 9sha* a9 MgV, dS
r
_ 3053835 N5 (AR e
= | Ozha™ a0 Aqjg(0 Ave — 0 AR - Vav,) dS (3.90)
r
3 a3 =2— 22—
= | Ozha™*a”0 Afg(0 Adme — 0 Ay — 0 Afj- Vavy) dS.
r
We construct the Taylor-sign term in the energy functional &, from the first term.
3037 N N
0:ha™ @ Afjgd Adm, dS
r
—)— —)—
= f 03ha**a¥d AN 10 AO A, dS
r
+ f @ DAME) (A 0317515 Do) dS
r
_dl1

o 1 o
=42 f 0shla*®d AAma dS — = f 8,057 8 MMl dS
a2 J; 2 J;

- f 03ha ¥ AApd,a>"8 A, dS + f @ DA (A, 9shi7aF18 Do) dS .
r r

(3.91)

B, LB,

In LBy, we integrate 03 by parts (by interpreting it in the Fourier sense) and then use Sobolev trace lemma, (2.32) and Lemma
3.3 to get

LB = f (0" AN ([ A, Dsha** a*10(9AOm.)) dS
T

3~ — 3.92
< 1P l2105ha> & e [BAB a0 s (3.92)
< 1820l lI82 kI 0 -1y + ¥lla < P(nllges 13, 10%A11).
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Next, we plug 8,a°* = —a*79,0,7j,@"* into B; and then separate the normal derivative of 7, from tangential derivatives.

B, = f 93ha P8 AN e 930,77,32°8 AMj dS + f 03ha ¥ AN 1sa% ;0,77 3°8 ANl dS
r T

LB,

—2— — JRp,
= LB, + f O3haPd AN mpa O ALY, @0 AN, dS
r

(3.93)
LB;
. f 3shi8 BAmsa NI, G5 DA, dS .
r S
LB, can be directly bounded
LB, <165 AAnpRI05ha™ 330,71 (3.94)

—2—
< 1@ ANaslE P(IRllge, V115, 107l S P(E).

——
In LBj3, the term § AA, 7, cannot be directly bounded, but we can use (2.28) in Lemma 2.6 to control this term by (1/ v/&)|7l3.5.

Ay iar 132 — 1 —
LB; < 103ha® a| - |a*d AAKnﬁ|o|aA£w|Lm$|aAn|o_s

1 —— _
< ﬁP(Ilﬁznllz, IVlls, Whllz)la* 8" AAmglold . (3.95)

The factor 1/ v/k can be eliminated by plugging the expression of ¢ in (3.2). We apply Sobolev embedding WI(R?) — L¥(R?)
first, and note that 9y = Ps(0A~'(---)) does not contain the low-frequency part, which (actually follows from the Littlewood-
Paley characterization of W' and W'#) implies |0/|y1+ = |00y ~ |A¢|4. Hence, we have

|5¢|Lw < |ZW|L4 = P(Knﬂa’ﬁéiAfv - ZA,%I]‘BZZZBEW)

f 14

According to the Littlewood-Paley characterization of L*(R?) and the almost orthogonality property, we know

e g Azl

NeZ N>0 NeZ

IPfls ~ S

~ | fless

~

L4 4 14
where P is the Littlewood-Paley projection with respect to ¥(-) := y(2-).

Remark. For more details of Littlewood-Paley characterization of Sobolev spaces, we refer readers to Chapter 1.3 in Grafakos
[21] or Appendix A in Tao [52].

Hence, we have
|5W|Lw < |Znﬁc~l’ﬁ5,~l\fv - KA,%T][;CNZZBE,‘V "
< ]Z(nﬁ - N2np)a a;A2y - B2 div - A2 |
S 1A(g = Nnp)li=1a®]0210;A2vlo 5 + [ Adiglo 1% |1 10(v = Ae)p,

where in the last step we use H* < L* in R%. Now, recall (2.29) in Lemma 2.6 that we are able to control IZnﬁ — A2A7|.- by
VklAgl s < Vk10%7]l. Similarly, [0(v — Aw)|ze < VKIOV]15s < VkIVlls. Therefore, one has

0wl < VKPUImlla, IIVI13),
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and

P, S
LB < P(lInlla, IVl3. all#)|@¥a” ANaglo < P(E). (3.96)
As for B, it cannot be directly bounded, but together with another term they will be exactly eliminated by the correction
term in (3.90).
Now we start to control the third term in (3.90). Again we separate the normal derivative of v from tangential derivatives

- f a3ha3"a3ﬁ52Kﬁﬁ52Kﬁ-vav(, ds
r

—2—  —2— -2 =2 . =
= fr 03ha* @t Aipd Aij,a® d3v, dS — fr 03ha**a¥ 9 Afjpd Aijya"d;v, dS

B (3.97)
D J, Y
- f (—03hi03v,) (@78 Aiig) @ Afr,)dS + B
r
—2— s« s«
< 1a*0 Asigla PV, 10nll=, ki) + B < P(E) + B,
where in the last step we control |Zl3ﬂ52Z7~7ﬂ|o as follows
—2— —2— S
a8 Afiglo < IN@YS AN mp)lo + [ A, @P1OOAA MRl (3.98)
—— — .
S IAL@¥d AN np)lo + lalw1=10°nlo < PAlnllg) < PE,).
So far, what remains to be bounded is the second term in RHS of (3.90)
Lo=— f 93hi GG Miigd Ay dS, (3.99)
r
and
—2— — R
B, = f 03haPd AN mpa Y 0;AR, a0 AN, dS (3.100)
r
and
—2— 2 . —
B, = - f O3ha* @’ d Aipd Aij,a” d;v, dS (3.101)
r
Plugging the expression of ¢ in (3.2) into (3.99), one has
L=- f 03hi ey Biigd* (A, a" BN 2v,) dS (3.102)
r
+ f (93h&3“a3ﬁ52Zﬁ552ﬁy&i75iva ds (3.103)
r
+ f 9sha GG Aiig([8°, 47 B;vo 10T, dS (3.104)
r
+ f 9shia¥d Aijgd* P (Anpa®d; A%y — ANInpa®opv) ds. (3.105)
r
It is clear that (3.103) exactly cancels with B} in (3.101), and (3.104) can be directly bounded
(3.104) < 135ha* |1 a5 AAmIIL6 @7 5yva1BT o 5106
—— .
< P(lhllge, [l (Mllas @8 AN glo) < P(E).
For (3.105), one can apply Bernstein’s inequality (2.23) in Lemma 2.5 and (3.98) to get
(3.105) < |a3ha3“|Lm|a3ﬁ52ZAKnﬁ|o Py (Anga®d;A2y — ZAﬁnﬁaiﬁéiv)‘Hz
< |63h&3“|Lm|a3B52KAknﬁlo . 'Knﬁ&’ﬁgiAiv - KAznﬁEliﬁgiV‘o (3107)

< P(E).
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For (3.102), we try to move one A, on 7 to 1, to produce the cancellation with B} in (3.100):

_ Y iy 307 A2 N2V AN
(3.102) = — | 83ha¥d AN dp(@ 9N v, )@Y d AA1p,) dS (3.108)
r
- f 93hi ¥ A ([ A 756" 5iN20,19 Arp,) dS (3.109)
T
- f a3ha30a3ﬁ523ﬁﬁ([52, a"diN2v,1An,) dS (3.110)
T

Now we see that (3.108) exactly cancels with B} in (3.100). The terms in (3.109) can be controlled by using the mollifier

property (2.32) after integrating 8°3 by part (similar to the estimates of LB;), and (3.110) can be directly controlled by using
Sobolev trace lemma. We omit the detailed computation here.

(3.109) + (3.110) < P(E,). (3.111)

Finally, summing up (3.91)-(3.101), (3.111) and plugging it into (3.90), we get the estimate for the boundary term / after
using the Taylor sign condition 934 < —c(/2 < 0:

T 1 L T o T
f I0di 5 3 f Osh|a G A, dS + f P(SK(t))dts—%|a3"62AAKUQI(Z)+ f PE(D) dt (3.112)
0 T 0 0

Now, summing up (3.83), (3.84), (3.85), (3.86), (3.89) and (3.112), we get the estimates for the Alinhac’s good unknowns
2 2 2 2 2 !
IV(D)IG + lle’ () ARG + 138 AAnaly < Po + f P(E(1) dt. (3.113)
0
Finally, from the property of Alinhac’s good unknowns (3.77), we can get the estimates of &*v that

w4 2 ’ T 2, (=3¢ 3PN 2 !
10" v(T)llg + lle’(h)d"h(T)lly + a0 AANmely < Po + P(E(1)) dt. (3.114)
0

3.7 Closing the «-independent a priori estimates

We conclude this section by deriving the uniform-in-« a priori bound for the energy functional &, of approximation system

(3.1). Let 7(¢) := —m. Then

d
E”T(t)”ﬂ’“ = |7 Ol 1830h D < T DOI7Ex- (3.115)
This implies that the physical sign condition can be propagated if &, remains finite. Next, by plugging (3.50), (3.51), (3.52),

(3.56), (3.58), (3.59)-(3.62), (3.66), (3.72) and (3.114) into (3.3), with € > 0 chosen sufficiently small, together with the
estimates for [|0nllz~ and [|6% 7)., i.e.,

T T
0mllze < llOmollz= + f V(@) + YOl dt < 0ol + f V@)l + Il (@lla dt, (3.116)
0 0
T
6%l < 16%0ll2 + f V)l + (@)l dt, (3.117)
0
we get
T
8K(T)s7>o+f P(&E(1)) dt. (3.118)
0

Now, (3.4) follows from (3.118) and the Gronwall-type inequality in Tao [52], which finishes the proof of Proposition 3.1.
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4 Construction of the solution to the approximation system

The goal of this section is to construct the solution to the k-approximation (nonlinear) system (3.1) by an iteration of the approx-

imate solutions {(v"), h®, p™)}* .. We start with (@, h®, 5@y = (v, D, 5V) = (0,0,1d). Inductively, given (W, ™, ™)

for some n > 1, we construct the (n + 1)-th approximate solutions (v"*1, h*D n®+D) from the linearization of (3.1) near
(n) ._ (n)1-1.

a’ = [on'"™]

atn(n+l) = D) 4 lﬂ(") in Q,
D) = V0 B — ges in Q,
divge ™D = —e'(h™),h"+D inQ, “1
Q) — onTl,

("D VD R 2o = (1d, o, ho).

Here a™ := [47{™]7! and the correction term ¥ is determined by (3.2) with n = ™, v = v, & = @™ in that equation.
Specifically, we need following facts for the linearized approximation system (4.1) to construct a solution to the k-approximation
(nonlinear) system (3.1):

e System (4.1) has a (unique) solution (in a suitable function space).
e The solution of (4.1) constructed in the last step has an energy estimate uniformly in 7.

e The approximate solutions {(v"", A", 77(”))};’;’:0 converge strongly (in some Sobolev spaces).

4.1 A priori estimates for the linearized approximation system

Before we construct the solution of (4.1), we would like to derive the uniform-in-n a priori estimates for this system. Define
the energy functional for (4.1) to be

4 3
EMV@) = " V@I, + Y 10D + | 1KV @IG, + Y 10 R D@ |+ WD), 4.2)
k=0 k=0

where W1 is the energy functional for the 5-th order wave equation of A"*D

4 3
WD) = Y 18R VO] + 10 Vb DOIR + Va0 A" DO« + 10V 50 A D 1) 4.3)
k=0 k=0

Remark. The last two terms in (4.3) can be simplified to ||V AP (1)|[3 if © is bounded. In this case, the wave energy becomes
WoD = St (107 KRR + 110KV o RV ).

Our conclusion is

Proposition 4.1. For the solution (D, A0*+D 5Dy of (4.1), there exists T, > 0 sufficiently small, depending only on « > 0
such that

sup E"V(1) < Py. (4.4)

0<t<T,

Remark. As we will see in the following computation, the control of 4-th order derivatives of v and & does not need the energy
of 5-th order wave equation of 4; the only important difference from the a priori estimates for (3.1) is the boundary term (4.42)
for which we apply the property of tangential smoothing to give a direct control with an extra factor 1/«, instead of producing
subtle cancellation as in Section 3.6. However, we included WD jn &MY since we need this constraint when constructing the
function space when proving the existence of the solution to the linearized system.

We prove Proposition 4.1 by induction on n. First, when n = —1,0, then the conclusion automatically holds because of
O, 1O 70y = M D 51y = (0,0,1d). Suppose uniform bound holds for all positive integers< n — 1. Then from the
induction hypothesis, one has

Vk<n, sup EP() <Py (4.5)

0<t<T,
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We would like to first simplify our notation before we derive the energy estimate for (v"*D, h¢+D 5**1). We denote
W, B ) by (v h ) and & := [)7', J := det[d7]; and (VD A+ D) by (v, b, 7). The smoothed version of &, 7, J

are denoted by &, 7, J respectively. Besides, we define o := e ’(h). Now, the linearized system (4.1) becomes

dn=v+y inQ,
0y =—-Vsh — ges in Q,
divgy = —00:h in Q, (4.6)
h=0 onl’,

(779 v, h)lt:O = (Id, Vo, hO)
We note that the initial data of (4.6) is the same as the original system (1.13) because ;=9 = al=o = 1.

4.1.1 Uniform-in-n bounds for the coefficients

The energy functional for v, ;t, 7 reads

4 3
= Il + ) 19751 + {u/%n; > ||a;‘—"i%||,%] + W, @.7)
k=0

k=0

where W is the energy functional for the 5-th order wave equation of hie.,

W= Zna5 B + Zna“ Vst Bl + 15000 1l + 10V 0 IS (4.8)
We have
sup é(t) < Po 4.9)
0<t<Ty

in light of the induction hypothesis (4.5).
In addition, we have the following bounds for a, 7, J provided they hold for 0, p®, n(k)) for k < n — 1. The control of these
quantities are important when we do the uniform-in-» a priori estimates and construct the solution for system (4.6).

Lemma 4.2. Let T € (0, T,). There exists some 0 < € << 1 and N > 0 such that

g € L([0, T1; HY(Q)), ol e L¥([0,T]; H/(Q)), V1 <1<4; (4.10)

I = 1lls + 117 = 1y + I1d = &lls + [1d - élls < e (4.11)

0i € L*([0, T; L¥(Q)), 075 € L([0, T]; H(Q)); (4.12)

a1 € L=([0, T]; HY(Q)); (4.13)

o'h e L°([0, T H\(Q)), V1 <i<4; (4.14)

J e L*([0,T1; L¥(Q)), dJ € L=([0,T; H*(Q); (4.15)

8,J € L¥([0,T); H*(Q)), 8'*'J e L=([0,T]; H*'(Q)), V1 <I<4; (4.16)

1/N <o <N, 8o eL”(0,T]; H7/(Q)), Y1 <I<5. (4.17)

Particularly, we have

Sup il + 110:7(Dlla + Z 67 A0 lls— + IOl

1<i<4

+ 18Il + 10,5 + D 105 Jllacy + ||a§a(r)||5_l) < Po. (4.18)

1<i<4 1<i<5
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Proof. First, the bound for i and Bﬁlp for 1 </ < 3 directly follows from (3.12)-(3.15) in Lemma 3.3. Then the identity

3 ! s
Id—&:—fa,&:f&:(aa,ﬁ):azf&:(a(ﬁw("—”)):&
0 0 0

yields (4.11) by choosing € suitably small (depending on T,). Similar results hold for J.

As for ), 8,77 = ¥ + "~V gives (4.12) and (4.13). Taking & in this equation and combining the induction hypothesis on £
and "~V we can get the bound for §/*'7 in (4.14). For J, recall J := det[d77] which equals a multi-linear funtion of its elements
1. So the bound for 7 and 8! yields the bounds for c')l

To conclude the proof, it suffices to control ||(94¢/||1 From (3.20), we know

ASY =0 in Q
{ W in Q, (4.19)

Oh = A'PO} (AfaPO:N2 — ANZjpi#d;7)  onT.
Using Lemma 2.3 for harmonic functions, we know
580 <1875 = [N~ 207 (Angd8,A20 — AALisi#a;0)|
< [PO} (A 0: N2> — ANZipaa;) L1
< [P0} (Afga®0: A2 — ANZijpad®d;%) |y-os.
where we used the Bernstein inequality (2.24) and the definition of P (restrict [£] > 1 to get the last inequality).

The most difficult terms appear when d; falls on A7 or 85. Here we only show how to control AAZ7i9;0%% and the rest
highest order terms can be controlled in the same way. For any test function ¢ € HY(R?) with |#lgos < 1, we consider

KAAZE" 005, 9| = (00,5, ANTa P )l
= [(0"°079, 0" (AN} " )|
< 10V os| AN TP B o
< 107V (1 o5 AN + 8114 | Aol )
< (V161107 L)l o

~05_H93 duality and Kato-Ponce inequality (2.20). Taking supremum over all ¢ € H*(R?) with |@|z0s < 1,

where we used H
we obtain
IAAZA" 3,075 7-05 < 107107l N 1

and thus gives the bound for [|g7]|;. From the second equation of (4.1) we know that 8*% = —3>V a1/, of which the H'-norm
of the RHS is exactly in the energy functional &~V as in (4.2)-(4.3). So [|d*|; is bounded by the induction hypothesis.

It remains to control ||6, 7|l which also gives the bounds for 65J Taking 64 in the first equation of (4.6) we have &1 =
at + oty and gty can be bounded in H' in the same way as above. Lastly, (4.18) follows from the estimates above
and (4.9). m|

4.1.2 Uniform-in-n a priori estimates for the linearized system

With the inductive hypothesis (4.5) and Lemma 4.2, we are now able to control the energy functional for (v, #,17) which solves
the system (4.6). Let

4 3
EmY =1l + > N6 vIR + {Ilhllﬁ{ +> ||a§“"h||,§] + W, (4.20)
k=0 k=0
where W1 is the energy functional for the 5-th order wave equation of &
4 3
WD = Z 65~ h|I2 + Z 024V hl2 + IVshl2 + 10V 512, 4.21)
k=0 k=0

The estimate for 81 — WD is quite similar (actually a bit easier) to what we have done in Sect. 3, so we will not
go over all the details, but still point out the different steps, especially the boundary term control, because we no longer need
k-independent estimates.
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Step 1: Estimates for 7 The lower order term ||0h||.~ can be treated identically as what appears in Section 3.3.1. The
arguments in Sections 3.3.2-3.3.3 suggest that the key to control the top order Sobolev norm of 4 is to study the wave equation

Joo2h = 8,(E™a,h) = —J3,6"0,v, — JO,00,h,  where B := J&" &, (4.22)
which is obtained by taking Jgdiv;l in the second equation of (4.6). Let © = d or §,. We take D? in (4.22) to get
Jod2 D3 - 0, (B D33,h) = —D (JO,&0yva) — [D7, Jor102h + DX (JO,00,h) + 8,(ID°, E1A,h). (4.23)

Compared with (3.35), we only replace ¢'(h), @ and J by o, a and J , respectively. Using the same method and the a priori
bound in Lemma 4.2, one can get

Z f Je' (W D3,hP + (0D K dy
D VO

t=T

(4.24)

T

<Py +elPhDIE + ) f P12, 1071 VIl 18,113, 167 Vi3, 10, 18, Alls, 167 All D Rl dt,
o YO

where € > 0 can be chosen sufficiently small such that e||53h(T)||f can be absorbed by LHS. Finally, the full Sobolev norm
104 hlle, k =0, 1,2,3 and ||hll# can be bounded by adapting the arguments in Section 3.3.3.

Step 2: The div-curl estimates for v From (4.11), (4.13) and (4.14) in Lemma 4.2, we know all the steps can be copied as in
Section 3.4 after replace @ by a, by 77 and ¢’(h) by o~. We omit the detailed computations and only list the results here.

e [2-estimates:
T
IV(Dllo < lIvollo +f 16:v(D)llo dt,
0

T T
18:v(llo < 118:v(0)llo +f 67v(D)llo dt < 10 (O)llo + f Pl VI3, 10All=, 110:All1) dt,
0 0

T 4.25)
107v(T)llo < 1107v(0)llo + f P([ll#¢, 110111, 18Rl , 18,All, 107 Al ) dt,
0
T
tv 0= ;V 0 ﬁ'Ha VI3, V2, [V 1s H s 120123 t 1s t 0 .
103(T)llo < 1182vO)lo + | Pk, V113, 10Vl 102VI11, WAlla, 1012, 11071, 1103 hllo) dt
0
e Boundary estimates:
1020y - N)los < 18°0,vllo + ll6*div d,vllo (4.26)
102 - N)lo.s < 118°02vllo + 1ddiv 2vllo (4.27)
183V - Nlos < 1109;vllo + IIdiv 87 vllo. (4.28)
e The div-curl estimates:
3 T
Z Idiv O vls—x < Po + f PE™ V(1)) dt. (4.29)
k=0 0
3 3 T
2 lleurl dvils-ic 5 € 3 10 vlaos +Po +Po f PE™ D (0) = W D(n)) . (4.30)
k=0 =0 0

Combining with Hodge’s decomposition inequality in Lemma 2.7, to estimate the full Sobolev norm of d%v, it suffices to
control ||6* 3} (.
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Step 3: Tangential estimates for time derivatives of v This part also follows in the same way as Section 3.5. Let Dt =
8%,80;,0%07,0°9,. One can directly compute 41 [,1D*Al dy and follow the same method in (3.67)-(3.71) to get the analogous
conclusion as (3.72):

4
(I1650* VG + | Vorafa* ™ hllg) < Po - PE™ V(1) - WD (). (4.31)
k=1

SRS

Step 4: Tangential estimates for v In this step we still mimic the proof as in Section 3.6. For a given function g, we use G
to denote its Alinhac’s good unknown. Then there holds

P, T o o

0 A(V:g) = V:G + C(g), (4.32)
where the error term C (g) is defined in the same way as in (3.74) but replacing a by a. In view of (3.75), we have

IC@llo < PAR#)lIgll- (4.33)
Similar to (3.77), one also has

T
16*g(Tllo < IG(D)llo +f Pllllg¢, 119]la, 110l 10:8l2)- (4.34)
0
We introduce the Alinhac’s good unknown V and H for v and h:
V=9 Av—3 A% Vv, (4.35)
f1:=32Ah—3 A% Vsh. (4.36)

——
Applying 0 A to the second equation in the linearization system (4.6), one gets

0,V = ~VsH + 8,@ A - Vsv) — C(h), (4.37)
“F
subject to the boundary condition
M1 = -3 Afgé¥osh onT, (4.38)

and the corresponding compressibility condition
VsV =38 Adivyy) — C(vg), in Q. (4.39)

Now we take L? inner product between (4.37) and Vto get analogous result to (3.83).
1d . o o o
——flVIzdy:—fV3H~de+fF-de, (4.40)
2dt Q Q Q
where ||F°‘||0 can be directly controlled as in (3.84). As for the first term, we integrate by parts to get
- f V:H-Vdy=- f &V, HdS + f H(V: - V) dy + f 8,a" "V, dy, 4.41)
Q r Q Q

where the second and the third term can be controlled in the same way as in (3.85)-(3.89).

For the boundary term in (4.41), we no longer need to plug the precise form of ¢ into it and find the - subtle cancellation
as in Section 3.6 because the energy estimate is not required to be k-independent. Instead, we integrate 0°> by parts, apply
Kato-Ponce inequality (2.20) and Sobolev embedding H*(R?) — L*(R?) to get

_ f &V, HdS = f 03h8 DA &5V dS
r r

2382301 AZ A, A 20 23823y T2 A2 e
S (1050 3110 AA )0 s| + 103haP & |yosald ANVl g-os @)
2 72 1 = o T32 ° T32, 2 ’
< Whllge(lals + |aa|3,5>;||a3n||1<|a3v|ﬁo.s +10° 7| gos |0V + |07 7l 21@OWlyjo5.4)

1o
S < Pl Wallze, [Vla)-
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Combining (4.34) with the estimates above, we have
_ T
10 (T)llo <k Po + f PE™D(1) — WD (1)) dt. (4.43)
0

Summing up the estimates for £, div-curl estimates and tangential estimates, we get
4 3 T
DGR + (Wl + > 157 RIR) s Po + f PE™ V(1) = WD (1)) dt. (4.44)
k=0 =0 0

4.1.3 Estimates for W"*D: 5-th order wave equation of /
We would like to control

4 3
WD = N INGE R + 3 10F VAR + IV + 10V 342,
k=0 k=0

It suffices to control only the top order terms. We take divg in the second equation of (4.6) to get the wave equation for A:
T h — Ash = 8,88, vq — 8,070;h. (4.45)

Before we derive the higher order wave equation, we would like to reduce the estimates of W1 to that of || \/E[ifhn(z) +otV 5h||(2)
via (4.45) and the elliptic estimate Lemma 2.8.
We start with ||64V5h||0 and [|0*0,hlly. By the elliptic estimate Lemma 2.8, we have

10 3hllo < CAIlOCY 1 Aghllo + 80 slallz), (4.46)

r<3

in which the term ||5(95I|3 < k71|8%Al2 by the property of tangential smoothing. The term 8°Ash can be expressed as follows by
using (4.45)
B Nsh = O (T07h) + (8,30 yv + 8,00,h), (4.47)

which produces one more time derivative and thus reduce the control of 8*Vzh to 8°6%h:
16°Azhllo < llo @307 hllo + &%, 167 hllo + 110, Byvalls + 118,07 d;hlls. (4.48)
As for 0*0,h, we note that for any 1 < r < 4,
@ fa=0""0af = 0 @ 0,0) + (" = &")D,f)

together with la—1<e gives
10" fllo < 10" V5. fllo + €lld” fllo (4.49)

where the last term can be absorbed by LHS after choosing € > 0 sufficently small.
Therefore we have

F0,0:h = 3 (@0,0,h) + & (" — &) 3,0,h), (4.50)
[I-ll3<e
which gives
16*0;hllo < 10°V50,hllo + €lld*dhllo, (4.51)

where the last term can be absorbed by LHS after choosing € > 0 sufficiently small. So we are able to reduce the estimates for
||(94V5h||0 and [6*0;hl|o to [|0°6?hl|o and ||83V§6th||0, respectively, plus lower order terms. In other words, we replace one spatial
derivative by one time derivative via the elliptic estimate and wave equation (4.45).

Next, since d;h|r = 0, we apply the elliptic estimate in Lemma (2.8) to V3d,h to get

18°V30,hllo 5 CQlle) > 1 Asdihllo + 1807519,1ls): 452)

r<2
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The term 8"A;0;h can be re-expressed as follows by commuting d, through (4.45):
PA:0:h = 0?0 h + 020,(0,8" 0, v + 0,00;h) + [0°0;, 107 h — 3 ([8;, As]h), (4.53)
and thus the control of §*A;0; is reduced to 0”02 h plus the other terms on the RHS of the last inequality
10°Az0:hllo < Nl @3} hllo + 10:(8,8 Oyva + 8,00 M)la + 678, 107 hllo + 1[0, Azl (4.54)
As for 0°9?h, we again rewrite one Lagrangian spatial derivative in terms of one Eulerian spatial derivative plus an error term:
00,07h = 0*(@"0,0*h) + 9*((3" — &#)d,07h), (4.55)

which gives
16°0 hllo < 116°V 87 hllo + €ll6°; hllo, (4.56)

where the last term can be again absorbed by LHS after choosing € > 0 sufficiently small.
The reduction mechanism above can be summarized as the following diagram

(4.49) Lem 2.8 (4.49) Lem 2.8

8*0,h &V:h o h —— 9V, a3h Fh;

4.57)

Lem 2.8 (4 49) Lem 2.8 (4.49)

*Vih —— 0°0%h 62v 9h 99} h véa;‘h.

As is shown above, we are able to replace one spatial derivative by one time derivative after using the elliptic estimate and
wave equation (4.45). Repeat the steps above, we can reduce the estimates of WD to ||6fh||o and ||c')j‘V5h||0 which can be
controlled via the 5-th order wave equation of 4 (i.e., taking 87 in (4.45)) plus commutator terms. Specifically,

4
D18z Rl + 11970V shllg < CAAIL, 15l + ®)(US; hllo + 11V llo) (4.58)
k=1

1 .
+ ~CUI9le, 16%1l) (o + )(WlAllo + 10:hllo + - - - + 1102 hllo) (4.59)
+1[6°, 102 hllo + 10,80y valls + 110,00, hll3 (4.60)
+110,(8,8" 0yv + 8,070\l + 11670, 107 hllo + [I[Dy, Ag 1l 4.61)
+102(0,@"0yve + 0,00y + 1082, 07107 hllo + 1167, Aglhlly (4.62)
+110; (8,80, + 0,00, W)lo + 17, 187 hllo + 1118;, Aglhllo (4.63)
4
SN A (A W (4.64)
k=1

Here, all the commutator and error terms (4.59)-(4.64) consists of < 4 derivatives of v, 7, h, and & which have no problem to
bound. Thus,
(4.59) + -+ + (4.64) < Py (8" V(1) - WD (1), (4.65)

where the RHS is controlled in (4.44).
It remains to control || Yo d>hlly + |10V zhllo. We apply 87 to (4.45) to get:

o — @0,(d0,07h) = =0} (0,d*dyve) — 87(8,000,h) — (8}, 07107 h + (8}, Agh. (4.66)

=:Fs

Multiplying (4.66) by 8°h and integrate over Q, we get

f a0, hd®hdy — f B hd (0,0 h) dy = f Fs®hdy. (4.67)
Q Q Q
LW,
The first term in (4.67) is
ld S 2 f 5712
- 4,
ST cr|a h? dy 8,71 hI* dy. (4.68)
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For the second term in (4.67), we integrate 8, by parts and note that 8 hlr = 0 makes the boundary integral vanish.
- f 3 ha"0,(0,07h) dy
Q

= fQ (@9,02 h)(iy0,0h) dy + fQ 3 hd,a"* (0,07 h) dy

(4.69)
LW,
1d . .
=-— f V00 hI* dy + f ([, 0,10,0; h)(&y0,0; h) dy +LW,.
2dt Jo Q
LW3
Plugging (4.68) and (4.69) into (4.67), we have
d 1
— f ol hP? + V0 dy| = = f &,crO>hl* dy + LWy + LW, + LW, (4.70)
dt\ Jq 2 Ja
Now we come to estimate the RHS of (4.70): First, invoking (4.17), we have
1
> f 8,010 h* dy 5 110,111 187 RllG < Poll VoroZ hllg. 4.71)
Q
Second, invoking (4.18), we have
LW, < Polld hllolIV 507 Ao, 4.72)
LW; = - f (0,8 )(0,0; )0, 07 h) dy < Polldd; hllolI V57 hllo.- (4.73)
Q

We can write 9,0¢h = a"*0,0¢h + (4 — &)d,0*h and invoke |G — 1d| < € to get [|837Ally < [[V50?hllo. In consequence,
LW5 < PollV:0thll3. (4.74)
It remains to estimate LWy, i.e., ||Fs]o.

) ||6f(¢9,c£zv"6vva)||0: There are two terms containing 5 derivatives: 6?5“&1}0 and (9,3V“(‘);‘8Vva. The rest terms are of < 4
derivatives and hence controlled. By (4.18) we know that ||#ally < P9, which gives ||(9,55"‘16ch,||0 < Pollovllp. As for the
second term, we invoke the second equation of (4.6) to get 870v = —=828(V3h + ges) = —029(Vh), so we have

167 (8, Dyva)llo < Po (I0VIl2 + 116;0(V 3o - (4.75)

° ||6j‘(6,0'6,h)||0: Expanding all the terms, and then use the previous estimates for < 4 derivative and invoking (4.18), we

have .
167 (8:06:W)llo

< 1B ollolldehlly + 102 llolld?hlly + 182 Tl 103 Ally + 1102 ll= 110 hllo + 18 07ll= 116 Allo (4.76)
< Po(0:hlla + 1107kl + 103 kIl + 1167 Rllo + 1187 Allo).

Also, one can control [(');‘, o-]@,zh in exactly the same way, so we omit the details.
e [9},Azlh: A direct computation gives

[0}, Aglh = OH@ (s, h)) — &0 ,(&s0,0}h)
= 0}(@0,(a0,h)) — @ 0,07 (Ey0yuh) + G 0,0} (@y0h) — &' 0,0, h)
= [8},&10,(d0,h) + a,0,(18;, &410,h)

4
= > (@@ )0} 0E D)) + &0, (D@ b))
=1

Therefore,
I8¢, As1hllo < 1102 allolimllgdlhlle + 102l 110,V sl + 102allall07V shlly + 110,611 107V Al
+ llallz (1087 allollonll= + 108; allolldd.hll> + 11087 &l 11067 hlly + 1108,él121106; hllo) (4.77)
S Po - (PE™D = WDy + 1103V ahl).
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Combining (4.75)-(4.77), one has

1
LW, £ —Po - PE™ )07 hllo. (4.78)
Nz
Summing up (4.70), (4.71), (4.72), and (4.74), we get the estimates for the wave equation (4.66)
d
- ( f ald ) + V50t kI dy| < Po - PE™V(1)). (4.79)
Q

Therefore we finish the control of W+ by (4.58),(4.65) and (4.79)

%W“*“(r} < Py - PE™(1)). (4.80)

4.1.4 Uniform-in-n a priori estimates for the linearized approximation system

From (4.20), (4.21), (4.44) and (4.80), we get
T
(T < E"D(0) + Py f PE"™ V@) i, (4.81)
0

which gives the uniform-in-n a priori estimates
sup E"V(1) 5, Po

0<t<T,

for the linearized approximation system (4.6) (also for (4.1)) with the help of Gronwall-type inequality in Tao [52].

O
4.2 Construction of the solutions to the linearized approximation system
In this subsection we are going to construct the solutions to the linearized approximation system (4.6):
dn=v+y in Q;
0y ==Vzh—ge; in Q;
diviv = —00/h in Q;
h=0 onl;
(1, v, Wli=0 = (1d, vo.ho),
given that 7, &, gb o satisfying Lemma 4.2.
4.2.1 Function space and Solution map
Definition (Norm, Function space and Contraction)
We define the norm
- llze = ) > 11850 -l
s=0 k+l=s
and define the function space
XM, T) :={(€wom) : . Olco = (v, 10),
(4.82)

S[lél;] (IIW(I),('J’MT(I)IIZ4 + Va7l + 10Van (@), 8 Van (D)l +118£Dlzs + 107Dz + ||3§(t)||Lw) < M}-
tel0,

We notice here that for given M > 0,T > 0, X(M, T) is a Banach space.

Remark. As mentioned in the remark after (2.18), the quantity [|Vama(f)||~ + ||0Vamn(t), 0;Vazwnm(t)||zz can be replaced by
IVawm(®)||z+ if Q is bounded.
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We then define the solution map = : X(M, T) — X(M, T) by

= X(M,T) — X(M,T)

(4.83)
w,m,&) = (v, h, 7).
The image (v, h, n7) is defined as follows:
1. Define 5 by
dn=w+y, n0)=Id (4.84)
2. Define v by
0y = =Vgm — ge3, v(0) = . (4.85)

3. Define h by the solution of the following wave equation

00?h — Ash = 0,80 vy — ,00,h  inQ,
h=0 onT, (4.86)
(h, 0:)li=0 = (ho, h1).

The existence of this linear wave equation can be shown by adapting the method provided in Lax-Phillips [34] after
turning it into a system of hyperbolic equations. Also, this solution lies in the space X(M, T) owing to (4.98) in the
upcoming subsection.

Here, we have to show that a solution for (4.84)-(4.86) with (w, m,&) = (v, h,n7) implies a solution for (4.6). It suffices to show
that we can recover the third equation of (4.6). First, since = = h, (4.85) reads 9,v = —V:h — ge3. We take div ; on both sides
and get

O,(div zv) + Ash = 0,3"0,Vs. (4.87)
Moreover, (4.86) implies Azh = 9,(c0;h) + 83", vy, and by plugging this to (4.87) we get
0¢(divsy + 00:h) =0 (4.88)
and hence divgv + 00,4 = constant. This constant must be 0 since divzv + 08;hl,=9 = 0.

4.2.2 Construct the solution: Contraction Mapping Theorem

Now we need to verify

1. ZEis a self-mapping of X,
2. Zis a contraction on X.

Once these two properties are proved, we can apply the Contraction Mapping Theorem to E to get there exists a unique fixed
point (v, h, 1) of E which solves the linearized system (4.6).

First we verify = is a self-mapping of X.

Estimates for n: A direct computation gives

T T
107llz= < 107O0)]| = + f 10w + )l dt < 1+ f Iwllz + llogl> dt, (4.89)
0 0
T o T o
16%77ll2 < 116 7(0)ll2 + f 162w + Pl < f Iwllzs + Il dt, (4.90)
0 0
T T
18>8k imllo < 18>8k am(O)llo + f 16* a8 w + llo f [Wllzs + iz dt. “.91)
0 0
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Estimates for v : First we have for/ = 1,2, 3, 4:
T ! T
Mo < IIvollo + f 1Ol + ( f ||3,2V(T)||0dT) dt < Ivollo + TGOl + T f 10,V el di
0 0 0

T T
8'vllo < 18 (O)llo + f 16!V stllo dt < lojv(O)lo + f 10, Vsrlldt 1 <1<4,
0 0
IVshllrs < g + 10Vl
For the space-time derivatives, we also have
T T T
1o < Ivolls + f 10,00 d < Ivolls + f 19Vl dt < IIvoll + f 10Vl d,
0 0 0
T T
18:6*vllo < 116:6*"vllo + f 10,0*'V stllo dt < [Iv(O)ll+ + f 110,V srlls d.
0 0

Therefore,

T
IVllz+ < lvollz+ + T8 v(O)llo +f IVam@llz> + 10Vem(0), 0, Vel 2 < (1 + T)Po + TM.
0

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

Estimates for /: It suffices to estimate ||0,Vzhl|z and [|0V3hl|z via the wave equation of £, i.e., (4.86). Again we can apply

the same method as in Section 4.1.3 to derive

T
10:V3hllzs + 10V 3hllzs < Po + ?’of POl 1107 7ll2, WVl 2+, IV 5700 |s, 10V 370 (2), B,V 57 (Dl 3, 10, Pl z+) it
0

(4.98)

Combining (4.89)-(4.91), (4.97) and (4.98), we obtain that the solution map = is a self-map of X after applying the Gronwall’s

inequality.

Next we prove E : X(M,T) — X(M, T) is a contraction. Given (wy,7m1,&1), (Wa, M2, &) € X(M, T) and their images under

E (i, hi,m1), (v2, ha,1m2), we define
W] :=wi —wy, [n] =1 —m, [£]:= &1 = &3 VIi=vi—va, [h]:=h1 = ho, [] := 1 — 1o
From (4.84), (4.85) and (4.86), we can derive the equations for ([v], [], [7]) with initial data (0, 0, 0):

0inl = [w],
0,[v] = Vg[n],

007 [h] — Aglh] = —0,&8,[v], — 8,00,[h], [h]lr = 0.
Similarly as above we can derive the estimates
80l + 16°[mlllz2 + 18,0l + IV [xllls, 10V 7], 8, V[l zo + NIl
<u Po fOT P01 107 (1l 22, 10, €]l s, IV g 7o, 18V 5[], 0, V sl xllzs, 1wl z+) .

Therefore, choosing T, > 0 sufficiently small such that RHS of (4.99) is bounded by

1
3 (||3[§]||1,°° +118*[Ellz2 + 18,0&lz5 + V5 xlIz + 18,7l z+ + |I[W]|Iz4),

(4.99)

we prove that = : X(M, T,) — X(M,T,) is a contraction self-map. By the Contraction Mapping Theorem, we know = has a

unique fixed point (v, k,77) € X(M, T,) which is the solution to the linearized approximation system (4.6).
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4.3 Iteration and convergence of the solutions to the linearized system

Up to now we have constructed a sequence of solutions {(v”, A", ™)} which solves the n-th linearized k-approximation
system (4.1). The last step in this section is to prove that {(v*, A, n™)} | converges in some strong Sobolev norm, and thus
produce a solution (v, h, 17) to the nonlinear k-approximation system (3.1).
Let n > 3, and define
[V](n) = D) _ v(")’ [h](n) .= pltD) _ h("), [n](n) = n(n+1) _ 7](")’ (4.100)

and
[a](") = g™ _ a(nfl), [lﬁ](n) = w(ﬂ) _ w(nfl)' (4.101)

Then these quantities satisfy the following system with vanishing initial data and no gravity term:

O™ = v]™ + [y]™ in Q
Gl[v](”) = —Va(»x) [h](n) - V[al(n)h(n) in Q

: n : n 71, (n n 71, (n 7 (1, (n—1 n) : (4102)
divam [v]I™ = —divigmv™ — e’ (h™)d,[h]™ — (e'(h™) — e’ (K"~ 1))d,h in Q
[h]®™ =0 onI"

We will prove the following energy converges to 0 as n — oo for all ¢ € [0, T']
3
[E17¢) = ) 18, I Ol + 187 1 DI + 1 DI + 11l O3 (4.103)

k=0

Remark. Since the gravity term has been cancelled in (4.102), we then could directly include the standard H> Sobolev norm
of [A] in [&] instead of [|8[A]l[Z.. + 16*[A]I3.

4.3.1 Estimates of [a], [] and [7]

By definition, we have
T
[a](")”V(T) - f at(a(")/lv _ a(ﬂ—l)ﬂv) dt
0
T
__ j; (1™ 3pd P a™ + a3, 10V + a0, D],
which gives
T T
[l (T)ll2 < Po f L™ OI3118,lm " lls dt < Py f L™ OIEAI" 1l + 111" lls)) . (4.104)
0 0
As for []™, it satisfies —A[]™ = 0 subject to the following boundary condition
1" = 3 BBty A PG AL + BV AN + B Va AT
_A Az[n];n—l) AMBG W _ A A%nl(;—l)[a](n)iﬁgiv(n) _A A[%ﬂ/(}n—l)&(n—l )iﬁgi[v](nm).

By the standard elliptic estimates, we have the control for []™

1™ < 11" B 5 < Po (N1 IR + I3 + 1@ ™ 1) (4.105)
Therefore, we obtain

sup ™15 < PoT> (I1al™, [al" Vllere + 11D, 0172, 1" 2120 (4.106)
[0,T] '

and the bound for [] combining with 8,[7]™ = [v]® + [y]™:

sup [In1 13 < PoT> (Il ®llzepe + 11, 17, 1"V ) (4.107)
[0,7] !
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Similar as in Lemma 3.3 and Lemma 4.2, one can get estimates for the time derivatives of [] and [¢/]

1184115 < Po (Il ™1 + M1~ PIB + IDv1 ™, i@ V13) (4.108)
17w1™115 < Po (a1 ™13 + 1671 PIR + 118113 + I, [y V1) (4.109)
0 ™15 < PoT> (Ila)™, (81, 191 Pllgere + 11, 10, 11 VIl ) (4.110)
6713 < PoT (IO VI, + a1, 001 Dl + 11D, ] Ol ) (4.111)
1671 < Po (671 DIy, + M@l (01 Dl + 11, 11"Vl ) (4.112)

4.3.2 Estimates of [/]
Taking J™divw in the second equation of (4.102), we get an analogous wave equation for [A]:
e/(h("))f(”)ﬁtz[h](") _ 5V(EV#(9IJ [h](")) — j(n)a(n)vaav([a](n)ﬂaaﬂh(n))
= T3, ((/(h™) = & (K" D))a,h™) (4.113)
= I @™, 1,
where E := Jgmvag e
One can apply the similar method in Section 3.3 and use the estimates of [;7], [/] to obtain the following energy estimates
2 T
DGR + e )3 1™ I < Po f (1”@ + &1 @) dr. (4.114)
k=0 0
4.3.3 The div-curl estimates
From Hodge’s decomposition inequality Lemma 2.7, we have
NI < NDvI™IG + Nidiv D115 + fleurl V]™15 + V™ - Nlas

10113 < 0113 + lIdiv [0,v1™12 + [lcurl [9,v] 11 + 1[0 - Ny 5
IOAI™IT < A7V + idiv [07v]™15 + licur] [97v] ™15 + 1[8,v1™ - Nlos

The L?-norm can be bounded in the same way as in Section 3.4 and the boundary term can be reduced to the tangential
estimates for [v] and its time derivative. As for the curl part, we apply curl ;» to the second equation of (4.102) to get the
evolution equation of curl o ,m

di(eurl gongyn)a = €ua0@ "8, V1Y = €xuadilal™ o, (4.115)
Applying D? = 8,09, or & to (4.115), and mimicking the proof in Section 3.4, one can get

2 2 2 -1 -1 ~ -1
lleurl V113 < ellvI™IB + PoT? (101D, 1" Pl + M@l 72

< elllvI™IR + PoT? supl &1 (r)
[0,T]

leurt 91”1 elloII + PoT” supl&) -0 @110
lleurl (V1115 < elllaPvI ™I} +PoT [s();fg[S]“)""‘”(r).
Similar results hold for div control by using the same method as in Section 3.4, so we only list the result here
Idiv [VI™115 + lidiv [8,v] Il + div [67v] ™13
(4.117)

S PT? sup (IE1” () + [E1" ().
t€[0,T]
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4.3.4 Tangential estimates of [ﬁfv] fork > 1

Let D3 = 526,, 56% 8?. Using the same method as in Section 3.5 and Section 4.1.2 (Step 4), we can derive the estimates

3 T
DA + 18 o111 < Po f [E1@ + [E]" V(@) + [E]" 2 () dr.
k=1 0

4.3.5 Tangential estimates of [v]: Alinhac’s good unknown

We adopt the same method as in Section 3.6. For each n, we define the Alinhac’s good unknowns by
V0D — Gy a0 g, D gD 2 G e G em g, prD),
Their difference is denoted by
[V](") .= Yt _ V("), [H](") = gD _ g™,
Similarly as in Section 3.6, we can derive the analogous version of (3.80) as
OIVI™ + Vo [H]™ = Vo H™ + F®,

subject to the boundary data
[H](n)h__ — (5377[(;)&(")3,3 + 53 [ﬁ]g’l—l)a(}’lﬂﬁ + 5377;”—1)[&](}1)3[3) ,
and the compressibility equation
Vao - [VI? = =Vigm - V? + G,
where
FO = 9, (@710 @000 + B0 VL@l o000 + G0 e, v
+ [a](ll)ﬂﬁa”(a(n)“/ﬂayh(n+1))53;7;") + a(n—l)ﬂﬁaﬂ([a](ﬂ)ydayh('ﬁl))5377;;!)
+ ZZ("_I)ﬂﬁaﬂ(&("_l)way[h]("))53ﬁ§1) + Zi("_1)”ﬁ(9#([51](")7067h("))53 [f]]/(;lfl)
_ [52, [a](n)yﬁa(n)ng] ayﬁgt)aﬂh(n+l) _ [52’ a(n—l)yﬁ[&](n)yag] (97772”)5#}1(”“)
_ [52’ a(n—l)yﬁa(n—l)yag] 57[77](;_1) 6/, oD _ [52’ Zl(n—l)yﬁa(n—l)yag] &yﬁgz—l) 6/, [ h](n)
_ [53, [a](n)/la’aﬂh(wr])] _ [ES’a(n—l)ya,aH[h](n)] ,

and

G™ = &(div zow [V — div (70 ™)
_ [52’ [a](n)pﬁa(n)yag] ayﬁ’(gn)aﬂvgwl) _ [52’ a(n—l)uﬁ[a](n)yag] ayﬁ;n)aﬂvgwl)
- [52, g,(n-l)yﬁg,(n—l)yng] By[ﬁ]g’_” gD — [52’ a(n—l)/lﬁa(n)ydg] 6yf7§"” 8, [
_ [53, [&](n)yaf’ aﬂv((;m)] _ [53’ a(n—l),ua, 6/,[\/]&")]
+ [a] 0,7 5, v D)5 ﬁ[(;m + @, ([a) ", )G ﬁ;;")

~(n— ~(n— 3. ~(n— - 3 (n—1
+a@ 1)”58H(a(" l)way[v]gl))a%gl) +a@ ‘)”ﬁay([a](">7”ayv§;’>)a3[n];;' ).

Multiplying [V]® in (4.120) and integrate by parts in the [H] term, we get
1d

5 IVIG = f [HI" (Vo - [VI®) = 8,8 [V1}") dy + f (F" = Vi H™) - [V]™ dy
Q Q

_ f[H](")Zl(”)S"[V]g') ds.
r
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(4.118)

(4.119)

(4.120)

4.121)

(4.122)



Similarly as in (3.84)-(3.89), the first two integrals contribute to the energy term

1d -
e [P AN (n))2
2dz”e (R ATl

modulo error terms that can be controlled by Po([E1™ + [E17 D). As for the boundary term, we can mimic the proof in (4.42),
i.e., integrate 0° by parts, to get

_ f[H](n)a(n)M[V]gl) ds
r

_ f 05 ha(n)&r[v]gn) (53 ’7;(;") amB L F [ﬁ]l(;n—l) amP L ﬁ;n—l)[a](nﬂﬂ)
r

1, = - .
S VI 05 (;Polaz[ﬂ](" Vlgos + ||[a]||2).
Summing up all the estimates above and using the analogue of (3.77), we get

16° V115 + lle’ ()& TR ™G < PoT? sup (IE1(@) + [E1" (@) + [E1" (1)) . (4.123)
te[0,T]

Finally, we combine the estimates for [77], [a], [A], [v] and div-curl estimates above and obtain

[E1"(0) < PoT? sup ([E]”(1) +[E]""(1) +[E]" D).
t€[0,T]

Therefore by choosing T = T, > 0 sufficiently small (The time 7, depends on k > 0 because the uniform-in-n estimates depend
on x~!), we can get

1
sup [E]™ (1) < —( sup [E]" V(1) + sup [8]<"2>(t)), (4.124)
[0.7,] 8 \ref0,11 €00,

which implies

1
sup [E]1P() < =Py > 0 asn — oo.
[0.7,] 2

4.4 Construction of the solution to the approximation system (3.1)

Proposition 4.3. Suppose the initial data (vo, hg) satisfying ||voll4 + ||hollzr < M and the compatibility conditions up to order 4.
Given « > 0, there exists a T, > 0 such that the nonlinear x-approximation system (3.1) has a unique solution (v(«), h(k), n(«))
in [0, T, ] satisfying the estimates

sup &(1) < C(My), (4.125)

0<t<T,

where

4 3
&) = 103 + 1on(I- + Y 197V + {nhn; +>) +||a;‘-’<h||i] + W),
=0 =0 (4.126)

4 3
W) = D 16 ROIE + > 107 VoI + IVahl}e + 10Vah1R.
k=0 k=0

Proof. In Section 4.2, we proved that the linearized system (4.1) admits a solution ("D, v**D_ p+D) assuming that

(Tl(k)’ V(k), h(k)), k<n

are known and satisfying (4.5). Moreover, in light of (4.81) and (4.124), we obtain the strong convergence of the sequence
of approximation solutions {(z"*", v?"*D p*+D)} ag n — +oc0. The limit (57(x), v(k), h(k)) solves the nonlinear k-approximation
system (3.1) and the energy estimate (4.125) is a direct consequence of the uniform-in-z estimate (4.81). O
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5 Local well-posedness of the compressible gravity water wave system

From Proposition 4.3, given « > 0, we have constructed a solution (v(x), h(k), n(«)) to the nonlinear xk-approximation system
(3.1). Proposition 3.1 gives a k-independent estimate (3.4) on some time interval [0, 7], which yields a strong convergence to
a limit (v, h,n) for every t € [0, To]. This limit (v, h,77) is a solution to the compressible gravity water wave system (1.13) with
energy estimate (1.17) in Theorem 1.2 if we set k — 0+ in (3.1). Therefore, the existence has been proved.

Let ', h',pY), (2, k2, %) be two solutions to the compressible gravity water wave system (1.13) with the initial data (vo, /o)
and (Do, ho), respectively. Denoting their difference by ([v], [A],[7]) := (V' —vEL A" — B2, p' — ?) and &' := (9n)" with
[a] := a® — a', then ([v], [A], [17]) solves the following system:

dinl = bl in Q,
8[v] = =Valh] + V g inQ,
div o [v] = div (V2 = & (h2)0,[h] — (' (h") — &' (W) > in Q 5.1
[l =0 onTl,

([n1. [v], [1Dli=0 = (0, v = Do, hg — ho).
We define the energy functional of (5.1) by

2
[E1 = MG + 167 IR + 1167 (IR + 1@y @[l (5.2)
k=0

This looks very similar to (4.102). The only essential difference is the boundary term

f [H](a')Y**[V], dS,
T

where we define the Alinhac’s good unknowns
Vi= 6 - -V, H = &h — 8 -Vl

and
[V]:=V'-V? [H]:=H'-H%.

The boundary terms then becomes

[ @y, = - [t ¥ s - [ o @iy + Frgiae V1, ds
r r T

1d —
La RTINS -
$-32 fr B3 |(@ Y 1 dS

- fr d3h' (@'Y & [l (@ njlalPo,v), — P nj@yY#o,v]a)(a' ) dS

- [[osh! @ty + Prglar a1V, ds
T

c-Qd f @)@ [n]al3 dS + C(Mo)P([E](t)),
2 dt r

where M) is the constant defined in Theorem 1.2. Here in the second step we use the precise formula of [V], and in the third
step we apply the physical sign condition for 4'. Therefore we have

Ty
S[(l)lIT) ][8](0 < P(Ivo = Dol 1o — Fiolla) + j(; C(Mo)P([E](D)) dt,

which implies (1.18). Also, when vy = ¥ and hy = fzo, we know [E](f) = 0 for all ¢ € [0, T] which gives the uniqueness of the
solution to the compressible gravity water wave system (1.13).
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