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Abstract

In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler equations describing the motion of a
liquid in an unbounded initial domain with moving boundary. The liquid is under the influence of gravity but without surface
tension, and it is not assumed to be irrotational. We apply the tangential smoothing method introduced in Coutand-Shkoller
[10, 11] to construct the approximation system with energy estimates uniform in the smooth parameter. It should be emphasized
that, when doing the nonlinear a priori estimates, we need neither the higher order wave equation of the pressure and delicate
elliptic estimates, nor the higher regularity on the flow-map or initial vorticity. Instead, we adapt the Alinhac’s good unknowns
to the estimates of full spatial derivatives.
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1 Introduction

In this paper we study the motion of a compressible gravity water wave in R3 described by the compressible Euler equations:
ρDtu = −∇p − ρge3, inD
Dtρ + ρdiv u = 0 inD
p = p(ρ) inD

(1.1)

where D =
⋃

0≤t≤T {t} × Dt with Dt := {(x1, x2, x3) ∈ R3 : x3 ≤ S (t, x1, x2)} representing the unbounded domain occupied
by the fluid at each fixed time t, whose boundary ∂Dt = {(x1, x2, x3) : x3 = S (t, x1, x2)} moves with the velocity of the
fluid. ∇ := (∂x1 , ∂x2 , ∂x3 ) is the standard spatial derivative and div X := ∇ · X is the divergence for any vector field X in Dt.
Dt := ∂t + u · ∇ denotes the material derivative. In (1.1), u, ρ, p represent the fluid velocity, density and pressure, respectively,
and g > 0 is the gravity constant. The third equation of (1.1) is known to be the equation of states which satisfies

p′(ρ) > 0, for ρ ≥ ρ̄0, (1.2)

where ρ̄0 := ρ|∂D is a positive constant (we set ρ̄0 = 1 for simplicity), which is in the case of an isentropic liquid. The equation
of states is required in order to close the system of compressible Euler equations.
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The initial and boundary conditions of the system (1.1) are

D0 = {x : (0, x) ∈ D}, and u = u0, ρ = ρ0 on {0} × D0, (1.3)
Dt |∂D ∈ T (∂D) and p|∂D = 0, (1.4)

where T (∂D) stands for the tangent bundle of ∂D. The first condition in (1.4) means the boundary moves with the velocity of
the fluid, and the second one shows that outside the fluid regionDt is the vacuum and the surface tension is neglected.

Energy conservation law The system of equations (1.1)-(1.4) admits a conserved energy. Let

E0(t) =
1
2

∫
Dt

ρ|u|2 dx +

∫
Dt

ρQ(ρ) dx +

∫
Dt∩{x3>0}

gx3 dx −
∫
Dc

t∩{x3<0}
gx3 dx +

∫
Dt

g(ρ − 1)x3 dx (1.5)

where Q(ρ) =
∫ ρ

1 p(λ)λ−2 dλ and Dc
t denotes the complement of Dt. A direct computation (cf. [42, Section 1.1]) yields that

d
dt E0(t) = 0.

Enthalpy formulation and Rayleigh-Taylor sign condition We introduce the new variable h = h(ρ) :=
∫ ρ

1 p′(λ)λ−1 dλ,
which is known to be the enthalpy of the fluid. It can be seen that h′(ρ) > 0 and h|∂D = 0 thanks to (1.2). Since ρ can then be
thought as a function of h, we define e(h) := log ρ(h). Under these new variables, (1.1) and (1.3)-(1.4) becomes

Dtu = −∇h − ge3, inD,
div u = −Dte(h), inD,
D0 = {x : (0, x) ∈ D},
u = u0, h = h0 on {0} × D0,

Dt |∂D ∈ T (∂D) and h = 0 on ∂D.

(1.6)

The system (1.6) looks exactly like the incompressible Euler equations, where h takes the position of p but div u is no longer
0 and determined as a function of ρ (and hence h). In addition, in Ebin [16], the free-boundary problem (1.6) is known to be
ill-posed unless the physical sign condition (also known as the Rayleigh-Taylor sign condition)

−∇Nh ≥ c0 > 0, on ∂Dt. (1.7)

holds. Here, N is the outward unit normal of ∂Dt and ∇N := N · ∇. The condition (1.7) is a natural physical condition which
says that the enthalpy and hence the pressure and density is larger in the interior than on the boundary. We remark here that
(1.7) can be derived by the strong maximum principle if the water wave is assumed to be irrotational [62, 63, 42], and the
existence of the positive constant c0 is a consequence of the presence of the gravity. Otherwise, we have merely that −∇Nh > 0,
which is insufficient to close the a priori energy estimate for (1.6).

Equation of state for an isentropic liquid We would like to impose the following natural conditions on e(h): For each fixed
k ≥ 1, there exists a constant C > 1 such that

C−1 ≤ |e(k)(h)| ≤ C. (1.8)

In fact, (1.8) holds true if the equation of states is given by

p(ρ) = γ−1(ργ − 1), γ ≥ 1. (1.9)

In particular, when γ = 1, a direct computation yields that e(h) = h.

Compatibility conditions on initial data Finally, in order for the initial boundary value problem (1.6)-(1.7) to be solvable
the initial data has to satisfy certain compatibility conditions at the boundary. In particular h verifies a wave equation by taking
divergence to the first equation of (1.6):

D2
t e(h) − ∆h = (∇µuν)(∇νuµ), in D,

h = 0, on ∂D,

h|t=0 = h0, Dth|t=0 = h1, in {t = 0} × D0,

(1.10)
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where h1 can be determined in terms of u0 and h0 via the second equation of (1.6), i.e., −e′(h0)h1 = div u0. In above and
throughout, the summation convention is used for repeated upper and lower indices, we adopt the convention that the Greek
indices range over 1, 2, 3, and the Latin indices range over 1 and 2. The compatibility conditions must be satisfied in order for
(1.10) to have a sufficiently regular solution.

Since h|∂D = 0 and Dt ∈ T (∂D), the second equation of (1.6) implies that div u|∂D = 0. We must therefore have h0|∂D0 = 0
and div u0|∂D0 = 0, which is the zero-th compatibility condition. In general, for each k ≥ 0, the k-th order compatibility
condition reads

D j
t h|{0}×∂D0 = 0, j = 0, 1, · · · , k. (1.11)

In [42, Sect. 7], we have proved that for each fixed k ≥ 0, there exists initial data verifying the compatibility condition up to
order k such that the initial energy norm is bounded.

1.1 History and Background
The study of the motion of a fluid has a long history in mathematics, and the study of the free-boundary problems has blossomed
over the past two decades or so. However, much of this activity has focus on incompressible fluid models, i.e., the velocity
vector field satisfies div u = 0 and the density ρ is fixed to be a constant. Also, the pressure p is not determined by the equation
of states. Rather, it is a Lagrange multiplier enforcing the divergence free constraint. It is worth mentioning here that when
the fluid domain is unbounded and the velocity u0 is irrotational (i.e., curl u0 = 0, a condition that preserved by the evolution),
this problem is called the (incompressible) water wave problem, which has received a great deal of attention. The local well-
posedness (LWP) for the free-boundary incompressible Euler equations in either bounded or unbounded domains have been
studied in [1, 4, 5, 7, 10, 11, 14, 25, 33, 35, 37, 40, 45, 46, 48, 49, 50, 59, 61, 62, 63, 66, 68]. In addition, the long time
well-posedness for the water wave problem with small initial data is available in [2, 17, 24, 26, 28, 60, 64, 65, 69], and there
are recent results concerning the life-span for the water wave problem with vorticity [18, 27, 51].

On the other hand, much less is known for the free-boundary compressible Euler equations, especially for the ones modeling
a liquid, as opposed to a gas whose density can be zero on the moving boundary. The LWP for the free-boundary compressible
gas model was obtained in [9, 12, 23, 29, 30, 43], whereas for suitable initial data (e.g., data satisfying the compatibility
condition), the LWP for the free-boundary compressible liquid model with a bounded fluid domain is available in [8, 13, 15,
20, 36, 38, 39].

When the fluid domain is unbounded, the free-boundary compressible Euler equations modeling a liquid is known to be
the compressible water wave problem and little is known for this case. The only existence result is due to Trakhinin [56], who
proved the LWP for the compressible gravity water wave with vorticity using the Nash-Moser iteration (and thus with a loss of
regularity). Recently, Luo [42] established the a priori energy estimates for the compressible gravity water wave with vorticity
and proved the incompressible limit by adapting the the approach used in Lindblad-Luo [39] to an unbounded domain.

The goal of this paper is to prove the LWP for the motion of a compressible gravity water wave without the use of Nash-
Moser iteration. The main idea is to approximate the nonlinear compressible water wave problem in the Lagrangian coordinates
using a sequence of “tangentially smoothed” problems, whose solutions converge to that of the original problem when the
smoothing coefficient goes to 0. This in the incompressible free-boundary Euler equations goes back to Coutand-Shkoller [10].
Also, for its application in the compressible free-boundary Euler equations modeling a liquid in a bounded domain, Coutand-
Hole-Shkoller [8] obtained the LWP for the case with surface tension and Ginsberg-Lindblad-Luo [20] obtained the LWP for
the self-gravitating liquid. However, here we use a different set of approximate problems by adapting what appears in [20]
which yields a simpler construction of the sequence of approximate solutions. This will be discussed in Sect. 2.1.

1.1.1 Difference between a liquid and a gas

This manuscript concerns the compressible Euler equations modeling the motion of a liquid, which is treated very differently
from a gas, as what is studied in [29, 30] and [43]. The fundamental difference is that the energy for the compressible gas
model is weighted by the sound speed cs(ρ) :=

√
p′(ρ) which vanishes at the physical vacuum boundary (since ρ vanishes

there), and thus the estimates on the moving boundary are greatly simplified. In the case of a compressible liquid, however,
we have to exploit the structure of the equations carefully in order to control the top order terms on the boundary even at the a
priori estimate level. Also, it appears that the wave equation verified by the enthalpy h plays a crucial role in the construction
of a solution. We refer to Section 2.1 for the detailed explanations.
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1.2 The Lagrangian coordinates

We introduce the Lagrangian coordinates, under which the moving domain becomes fixed. Let Ω := R2 × (−∞, 0) to be the
lower half space of R3. Denoting coordinates on Ω by y = (y1, y2, y3), we define η : [0,T ] × Ω → D to be the flow map of u,
i.e.,

∂tη(t, y) = u(t, η(t, y)), η(0, y) = η0(y), (1.12)

where η0 : Ω → D0 is a diffeomorphism, satisfying ‖η0‖H := ‖∂η0‖L∞(Ω) + ‖∂2η0‖H2(Ω) < ∞ (See Notation 1.1 and the remark
after (1.16) for more details on the choice of this norm). For the sake of simplicity, we assume η0 = Id, i.e., the initial domain
is D0 = Ω = R2 × (−∞, 0). In fact, our approach is also applicable to the case for general data η0. It is not hard to see that in
(t, y) coordinates Dt becomes ∂t and the boundary Γ := ∂Ω becomes fixed (i.e., Γ = R2). We introduce the Lagrangian velocity
by v(t, y) := u(t, η(t, y)), and denote the Lagrangian enthalpy h(t, y) := h(t, η(t, y)) by a slight abuse of notations.

Let ∂ = ∂y be the spatial derivative in the Lagrangian coordinates. We introduce the matrix a = (∂η)−1, specifically
aµα = aµα := ∂yµ

∂ηα
. This is well-defined since η(t, ·) is almost an identity map whenever t is sufficiently small. In terms of v, h and

a, (1.6)-(1.7) becomes 

∂tvα = −∇αa h − ge3, in [0,T ] ×Ω,

div av = −∂te(h), in [0,T ] ×Ω,

η = Id, v = v0, h = h0 on {0} ×Ω,

∂t |[0,T ]×Γ ∈ T ([0,T ] × Γ)
h = 0 on Γ.

(1.13)

Here, the differential operator ∇a := (∇1
a,∇

2
a,∇

3
a) with ∇αa = aµα∂µ denotes the Eulerian (covariant) derivative and div av =

∇a · v = aµα∂µvα denotes the Eulerian divergence of v. In addition, since η(0, ·) = Id, we have a(0, ·) = I, where I is the identity
matrix, and u0 and v0 agree. Furthermore, let J := det(∂η). Then J satisfies

∂t J = Jaµα∂µvα. (1.14)

Finally, we assume the physical sign condition holds initially

−∂3h0 ≥ c0 > 0 (1.15)

and it can be shown that (1.15) propagates to a later time.

1.3 The main result
The goal of this paper is to prove the LWP of the compressible gravity water wave system in the Lagrangian coordinates.
Specifically, we want to construct a solution to (1.13) with localized initial data (v0, h0), i.e., |v0(y)| → 0 and |h0(y)| → 0 as
|y| → ∞ that satisfies the compatibility condition (1.11) up to 4-th order as well as (1.15). The localized data is required so that
the initial L2-based higher order energy functional is bounded and the existence of such data can be found in [42, Section 7].
Also, we remark here that (1.15) remains hold thanks to the presence of the gravity (cf. [42, Section 7]).

Notation 1.1. (H-norm) Let f be a smooth function. We define

‖ f ‖H := ‖∂ f ‖L∞(Ω) + ‖∂2 f ‖H2(Ω).

Definition 1.1. We define the higher order energy functional

E(t) := ‖η(t)‖2
H

+

4∑
k=0

‖∂4−k
t v(t)‖2Hk(Ω) +

‖h(t)‖2
H

+

3∑
k=0

‖∂4−k
t h(t)‖2Hk(Ω)

 + |a3α∂4ηα(t)|2L2(Γ), (1.16)

where ∂ = (∂1, ∂2) is the tangential Lagrangian spatial derivative.

Remark. The terms ‖η‖2
H

and ‖h‖2
H

may be replaced by ‖η‖2H4(Ω) and ‖h‖2H4(Ω), respectively, in the case when Ω is bounded.
However, we have to be more careful in the case of an unbounded Ω since neither η nor ∂η are in L2(Ω), which is due to that
η0 = Id. In addition to this, we cannot control ∂h in L2(Ω) due to the presence of the gravity. Because of these, the lower-order
terms ∂η and ∂h will be controlled in L∞(Ω) instead.
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Theorem 1.2. (Main theorem) Suppose that the initial data v0, h0 satisfies

A. ‖v0‖H4(Ω), ‖h0‖H ≤ M0,
B. the compatibility condition (1.11) up to 4-th order, and
C. the physical sign condition (1.15).

Then there exists a T0 > 0 and a unique solution (η, v, h) to (1.13) on the time interval [0,T0] which satisfies

sup
t∈[0,T0]

E(t) ≤ C(M0), (1.17)

where C(M0) is a constant depends on M0. Also, let (v̂0, ĥ0) be another set of initial data satisfying conditions A, B, C, and

‖v0 − v̂0‖H4(Ω), ‖h0 − ĥ0‖H ≤ ε0.

Let (η̂, v̂, ĥ) be the solution to (1.13) with initial data (v̂0, ĥ0). If

[E](t) := ‖η(t) − η̂(t)‖22 +

2∑
k=0

‖∂2−k
t (v(t) − v̂(t))‖2k + ‖∂2−k

t (h(t) − ĥ(t))‖2k + |a(η)3α∂2(ηα(t) − η̂α(t))|20,

then
sup

t∈[0,T0]
[E](t) ≤ C(ε0). (1.18)

Remark. In the case with general initial data η0, we require that ‖η0‖H ≤ M0.

1.4 Novelty of this result, comparison with existing results, and application to other fluid models
The result presented in this paper addresses the natural question left open in [8], namely, the case of an unbounded domain.
However, the method in [8] requires propagating an extra derivative of the flow map which requires an extra one derivative for
the initial vorticity. This is caused by differentiating the Euler equations in the Lagrangian coordinates and all derivatives fall
on the cofactor matrix. We are able to avoid this by adapting the Alinhac’s good unknowns, which, in turn, satisfy equations
with a better structure. This is due to that these good unknowns tie to the covariant derivatives of the velocity and pressure in
the Eulerian coordinates. We refer to subsection 2.1.2 for the detailed analysis.

In addition, some lower order terms (e.g., ∂h and ∂η) are no longer in L2(Ω) as opposed to the case with a bounded fluid
domain. As a result, our energy functional (1.16) has to be chosen carefully so that the aforementioned quantities are merely in
L∞. Nevertheless, (1.16) reduces to the following energy in the case of a bounded fluid domain:

‖η(t)‖2H4(Ω) +

4∑
k=0

(
‖∂4−k

t v(t)‖2Hk(Ω) + ‖∂4−k
t h(t)‖2Hk(Ω)

)
+ |a3α∂4ηα(t)|2L2(Γ).

In fact, our proof also works for the case of a bounded domain, producing a LWP result but without propagating the extra
regularity of the vorticity and the flow map. Furthermore, we do not need to consider the surface tension to regularize the free
surface and then take the zero surface tension limit.

Finally, the method developed in this manuscript can be adapted to study the LWP for the non-isentropic compressible
fluids, relativistic fluids, as well as the (inviscid) complex fluids with moving surface boundary. For a non-isentropic fluid,
the equation of states depends on both ρ and the entropy s, i.e., p = p(ρ, s), where s verifies Dts = 0 in D. The LWP for
the free-boundary problem in non-isentropic fluids is proved in [56] with a loss of derivatives. Unlike the isentropic case,
the enthalpy formulation (1.6) is no longer available when s is present. It is, however, possible to avoid the regularity loss
by employing our method in the non-isentropic case by studying the new variable log(ρ/ρ̄0) instead of h. Moreover, we have
learned that Ginsberg-Lindblad [19] have employed a similar method to study a relativistic fluid with free-surface boundary.
On the other hand, the complex fluids, e.g., magnetohydrodynamics (MHD) and elastodynamics, can be regarded as Euler
equations under the influence of various external forces brought by other physical quantities (e.g., the elasticity, the Lorentz
force in an electromagnetic field). The presence of such external forces destroys the Cauchy invariance and thus we are unable
to propagate the extra regularity on the flow map. Nevertheless, the method developed in this manuscript has been adapted to
treat the aforementioned complex fluid models by the second author [41, 67].
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List of Notations:

• Ω := R2 × (−∞, 0) and Γ := R2 × {0}.
• ‖ · ‖s, ‖ · ‖Ḣs : We denote ‖ f ‖s := ‖ f (t, ·)‖Hs(Ω) and ‖ f ‖Ḣs = ‖ f (t, ·)‖Ḣs(Ω) for any function f (t, y) on [0,T ] ×Ω.
• | · |s, | · |Ḣs : We denote | f |s := | f (t, ·)|Hs(Γ) and | f |Ḣs = | f (t, ·)|Ḣs(Γ) for any function f (t, y) on [0,T ] × Γ.
• P(· · · ): A generic polynomial in its arguments.
• P0: P0 = P(‖v0‖4, ‖h0‖H ).
• [T, f ]g := T ( f g)−T ( f )g, and [T, f , g] := T ( f g)−T ( f )g− f T (g), where T denotes a differential operator or the mollifier

and f , g are arbitrary functions.
• ∂,∆: ∂ = ∂1, ∂2 denotes the tangential derivative and ∆ := ∂2

1 + ∂2
2 denotes the tangential Laplacian.

• (Eulerian spatial derivative, divergence and curl) Let f be a smooth function. Then ∇αa f := aµα∂µ f , α = 1, 2, 3. Let f be
a smooth vector field. Then div af := aµα∂µfα and (curl af)λ := ελµαaνµ∂νfα, where ελµα is the sign of (λµα) ∈ S 3.

Acknowledgment: The authors would like to thank the referee for his/her careful reading and comments on improving this
manuscript.

2 Strategy of the proof and some auxiliary results

2.1 An overview of the proof of Theorem 1.2
The compressible water waves with vorticity are treated very differently from their incompressible and irrotational counterparts,
as one can completely reduce the latter to a system of quasilinear dispersive equations on the moving interface. The strategy
that we employed to prove Theorem 1.2 contains three parts:

1. The a priori energy estimates in certain functional spaces.
2. A suitable approximate problem which is asymptotically consistent with the a priori estimate.
3. Construction of solutions to the approximate problem.

These steps are highly nontrivial in the case of a compressible water wave thanks to the nontrivial divergence of the velocity
field and the unbounded fluid domain. The rest of this section is devoted to the elaboration of these steps. Also, we assume
e(h) = h in the rest of this section for the sake of simple exposition. But general e(h) will be studied in the later sections.

Notation 2.1. The following notations will be used throughout the rest of this manuscript. Let f (t, y), g(t, y) be smooth functions
on [0,T ] ×Ω and [0,T ] × Γ, respectively. Then we define ‖ f ‖s := ‖ f (t, ·)‖Hs(Ω) and |g|s := |g(t, ·)|Hs(Γ).

2.1.1 Construction of the approximate problem: Tangential smoothing

Although the a priori estimate has been established by the first author in [42], it is still quite difficult to obtain a local-in-time
solution by a direct iteration scheme based on the a priori bounds. The reason is that a loss of tangential derivative necessarily
appears in the linearized system. Specifically, if we start the iteration with the trivial solution (η(0), v(0), h(0)) = (Id, 0, 0) and
inductively define (η(n+1), v(n+1), h(n+1)) by the following linearized system

∂tη
(n+1) = v(n+1) in Ω,

∂tv(n+1) = −∇a(n) h(n+1) − ge3 in Ω,

diva(n) v(n+1) = −∂th(n+1) in Ω,

h(n+1) = 0 on Γ,

(η(n+1), v(n+1), h(n+1))|t=0 = (Id, v0, h0),

(2.1)

where a(n) := [∂η(n)]−1, then:

1. We have to control ‖∂4v(n+1)‖0 when constructing the solution for the linearized system, which requires the control of
‖∂4(∇a(n) h(n+1))‖0. The elliptic estimate derived in [20] (i.e., Lemma 2.8 with f = h(n+1) and η̃ replaced by η(n)) yields

‖∇a(n) h(n+1)‖Ḣ4 . ‖∆a(n) h(n+1)‖3 + ‖∂∂η(n)‖3‖h(n+1)‖H

However, the term ‖∂∂η(n)‖3 on the RHS cannot be controlled.
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2. Also, we need a uniform-in-n energy estimate for (2.1) in order to get a solution for the original nonlinear problem by
passing n→ ∞. During this process, we pick up a boundary term that reads∫

Γ

∂3h(n+1) ∂4η(n)
β︸︷︷︸

n-th solution

a(n)3βa(n)3α ∂t∂
4η(n+1)

α︸     ︷︷     ︸
(n+1)-th solution

dS −
∫

Γ

∂3h(n+1)∂4η(n)
β a(n)3βa(n)3α∂4η(n)

γ a(n)µγ∂µv(n+1) dS .

It can be seen that the first term no longer contributes to the positive energy term |a3α∂4ηα|
2
L2(Γ) as opposed to what happens

to the original problem due to the loss of symmetry. In addition to this, a cancellation structure that is required to control
the second term becomes unavailable as well.

In fact, the issues listed above appear also in the study of incompressible Euler equations [10, 11]. To overcome this
difficulty, Coutand-Shkoller [10] introduced the tangential smoothing method: Let ζ = ζ(y1, y2) ∈ C∞c (R2) be the standard
cut-off function such that Spt ζ = B(0, 1) ⊆ R2, 0 ≤ ζ ≤ 1 and

∫
R2 ζ = 1. The corresponding dilation is

ζκ(y1, y2) =
1
κ2 ζ

(y1

κ
,

y2

κ

)
, κ > 0,

and we define the smoothing operator as

Λκ f (y1, y2, y3) :=
∫
R2
ζκ(y1 − z1, y2 − z2) f (z1, z2, z3) dz1 dz2. (2.2)

Let ã := [∂η̃]−1 be the smoothed version of a with η̃ := Λ2
κη and define the approximate system by replacing the coefficient

a with ã. Under this setting, we introduce the “tangentially-smoothed” approximate system of the compressible water wave
system (1.13) as follows 

∂tη = v + ψ in Ω,

∂tvα = −∇αã h − ge3 in Ω,

divãv = −∂th in Ω,

h = 0 on Γ,

(η, v, h)|{t=0} = (Id, v0, h0),

(2.3)

where ψ = ψ(η, v) is a correction term which solves the half-space Laplace equation∆ψ = 0 in Ω,

ψ = ∆−1P
(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)
on Γ,

(2.4)

where ∆ := ∂2
1 + ∂2

2 is the tangential Laplacian operator and ∆−1 f := (|ξ|−2 f̂ )∨ is the inverse of ∆ on R2. The index β ranges
from 1 to 3 and i ranges from 1 to 2, as stated after (1.10). The notation P f := P≥1 f denotes the standard Littlewood-Paley
projection in R2 which removes the low-frequency part, i.e., P≥1 f := ((1 − χ(ξ)) f̂ (ξ))∨, where 0 ≤ χ(ξ) ≤ 1 is a C∞c (Rd) cut-off

function which is supported in {|ξ| ≤ 2} and equals to 1 in {|ξ| ≤ 1}. Also, we mention here that the correction term ψ → 0 as
κ → 0.

Remark. The Littlewood-Paley projection P is necessary when we apply the elliptic estimates to control ψ:

|ψ|3.5 = |∆−1P f |3.5 . | f |1.5,

otherwise the low-frequency part of ∆−1 f loses control.

In Ginsberg-Lindblad-Luo [20], the compressible Euler equations are approximated by a “fully smoothed system”, in the
sense that all variables are replaced by their smoothed version. Specifically, they smooth the velocity vector field in the
tangential direction first and then obtain the smoothed flow map by integrating it in time (see [20] Section 4). In this paper,
however, we smooth the flow map directly and through this we replace the nonlinear coefficients aµα by their smoothed version
ãµα in (2.3). The advantage of our mollification and the correction term is three-fold.

• The existence of the solution to the approximate system (2.3) can be obtained by passing to the limit as n → ∞ in a
sequence of approximate solutions {(η(n), v(n), h(n))} which are constructed by solving a linearized version of (2.3) (see
(2.14)).
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• We do not need to construct the initial data for each linearized approximate system as what was done in [20], because
a|t=0 = ã|t=0 = I (the identity matrix) implies that the compatibility conditions of the (linearized) approximate problem
are the same as the original system.

• We are allowed to include a correction term ψ in the first equation of (2.3), which was first introduced by Gu-Wang
[22]. This is crucial in order to eliminate the higher order terms on the boundary when performing the tangential energy
estimate, which shall be explained in Section 2.1.3-2.1.4.

2.1.2 Avoiding extra regularity on the flow map: Alinhac’s good unknown method

The crucial part of the a priori estimates for the approximate system (2.3) is the estimate for the tangential derivatives. In
particular, the top order tangential energy with full spatial derivatives ∂4 enters to the highest order. Due to the special structure
of the correction term ψ on the boundary, it is more convenient to replace ∂4 by ∂

2
∆. The corresponding energy reads

‖∂
2
∆v‖2L2(Ω) + ‖∂

2
∆h‖2L2(Ω)︸                           ︷︷                           ︸

=ET I

+ |ã3α∂
2
∆Λκηα|

2
L2(Γ)︸                ︷︷                ︸

=ET B

. (2.5)

In the control of ET I , it is necessary to deal with the commutator between ∂
2
∆ and ∇ã, namely [∂

2
∆, ãµα]∂µ f for f = h or vα.

Such commutators contain the higher order term (∂
2
∆aµα)(∂µ f ) with ∂

2
∆ã = ∂

2
∆∂η × ∂η + · · · whose L2(Ω)-norm cannot be

directly controlled. In Ginsberg-Lindblad-Luo [20], such commutators are controlled by adding κ2-weighted higher order terms
to the energy, which corresponds to the fifth order full spatial energy of the wave equation verified by h. In particular, the extra
regularity of the flow map η is necessary in [20] to close the energy of 5-th order wave equation of h. However, we can use the
Alinhac’s good unknowns method to get rid of the higher regularity requirement for the flow map.

Motivation of Alinhac’s good unknowns The main idea is to rewrite ∂
2
∆(∇ãh) and ∂

2
∆(∇ã · v) as

∂
2
∆(∇ãh) = ∇ãH + C(h), with ‖H − ∂

2
∆h‖0 + ‖∂t(H − ∂

2
∆h)‖0 + ‖C(h)‖0 ≤ P(E(t)), (2.6)

∂
2
∆(∇ã · v) = ∇ã · V + C(v), with ‖V − ∂

2
∆v‖0 + ‖∂t(V − ∂

2
∆v)‖0 + ‖C(v)‖0 ≤ P(E(t)), (2.7)

where P is a generic polynomial. Here H,V are called the “Alinhac’s good unknowns” of h and v, respectively. In other words,
the Alinhac’s good unknowns allow us to take into account the covariance under the change of coordinates to avoid the extra
regularity assumption on the flow map.

Remark. For Euler equations (including the water wave system), it is possible to have higher regularity for η than v thanks to
the propagation of the extra regularity assumption on the vorticity. However, when modeling complex fluids with free boundary,
such as magnetohydrodynamics (MHD) equations, MHD current-vortex sheets, and elastic fluid equations, it is not possible to
have η more regular than v.

Derivation of Alinhac’s good unknowns It remains to derive the precise expressions of the good unknowns H,V, which
is recorded in Lemma 3.4 in full details. Here we give a brief explanation on the precise forms of the good unknowns from
the perspective of change of variables. In fact, by chain rule, we can rewrite ∂

2
∆(∇ã f ) in terms of covariant derivatives via

∂i =
∂

∂yi =
∂η̃α

∂yi

∂

∂η̃α
= ∂iη · ∇ã:

∇ã(∂
2
∆ f ) =

2∑
i=1

∇ã

(
(∂η · ∇ã)(∂η · ∇ã)(∂iη · ∇ã)(∂iη · ∇ã) f

)
= ∂

2
∆(∇ã f ) + ∇ã(∂

2
∆η̃ · ∇ã f ) + l.o.t.

It is not difficult to find that, other than ∇ã∂
2
∆ f , there is another highest order term −∇ã(∂

2
∆η̃ · ∇ã f ) corresponding to the term

that all the derivatives fall on η̃. Therefore, the essential highest order term in ∂
2
∆(∇ã f ) is indeed the covariant derivative of

∂
2
∆ f − ∂

2
∆η̃ · ∇ã f , called the “Alinhac’s good unknown” of f with respect to ∂

2
∆.

Therefore, one has V := ∂
2
∆v − ∂

2
∆η̃ · ∇ãv, and H := ∂

2
∆h − ∂

2
∆η̃ · ∇ãh, satisfying (2.6)-(2.7) and

‖C(v)‖0 . P(‖∂2η‖2, ‖∂η‖L∞ )(‖∂v‖L∞ + ‖∂2v‖2), ‖C(h)‖0 . P(‖∂2η‖2, ‖∂η‖L∞ )(‖∂h‖L∞ + ‖∂2h‖2).
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This circumvents a loss of regularity caused by differentiating the equation ∂tvα = −∇αã h− ge3 and all derivative fall on ã. Such
a remarkable observation is due to Alinhac [3]. In the study of free-surface fluid, it was first implicitly used in the Q-tensor
energy introduced by Christodoulou-Lindblad [7] which was later generalized by [42]. It has also been applied explicitly in
[22, 44, 61]. Recently, Ginsberg-Lindblad [19] have adapted these good unknowns to study the LWP for the free-boundary
relativistic Euler equations in a fixed hyperbolic space-time domain.

Interior estimates via the good unknowns Now V and H satisfy

∂tV = −∇ãH + error, ∇ã · V = ∂
2
∆(divãv) + error, in Ω (2.8)

H = −∂
2
∆η̃βã3β∂3h on Γ, (2.9)

multiplying V through (2.8), integrating over Ω and integrating ∇ã in −
∫

Ω
∇ãH · V by parts yield

1
2

d
dt

∫
Ω

|V|2 =

∫
Ω

H∂
2
∆(divãv) dy +

∫
Γ

∂3hã3βã3α∂
2
∆η̃βVαdS + error. (2.10)

For the first term on the RHS of (2.10), invoking the definition of H and the third equation of (2.3), we have∫
Ω

H∂
2
∆(divãv) dy = −

∫
Ω

(∂
2
∆h)(∂

2
∆∂th) dy +

∫
Ω

(∂
2
∆η̃ · ∇ãh)(∂

2
∆∂th) dy.

Here, the first term is equal to − d
dt

1
2 ‖∂

2
∆h‖2L2(Ω), which contributes to the positive energy term that controls ‖∂

2
∆h‖2L2(Ω). The

second term can be controlled after considering its time integral (See (3.88)-(3.89) for the details). In addition, invoking the
definition of V, we have

‖∂2∆v‖20 ≤ ‖V‖
2
L2(Ω) + ‖∂2∆η̃ · ∇ãv‖20,

and this implies that it suffices to bound ‖V‖20 in order to control ‖∂4v‖20 as the last term ‖∂2∆η̃ · ∇ãv‖20 can be controlled
straightforwardly. For details we refer to the proof of Lemma 3.5.

2.1.3 Crucial cancellation structure on the boundary

The second term on the RHS of (2.10) is equal to∫
Γ

∂3hã3αã3β∂
2
∆η̃β(∂

2
∆∂tηα − ∂

2
∆ψ − ∂

2
∆η̃ · ∇ãvα) dS . (2.11)

By plugging the definition of V and invoking the first equation of (2.3) and then “moving” one Λκ from η̃β to ηα, we have∫
Γ

∂3hã3αã3β∂
2
∆η̃β

(
∂

2
∆∂tηα − ∂

2
∆η̃ · ∇ãvα

)
=

1
2

d
dt

∫
Γ

∂3h|ã3α∂
2
∆Λκηα|

2 dS

+

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κvγãiα∂

2
∆Λκηα dS −

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆η̃γãiγ∂ivα dS

+

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κψγãiα∂

2
∆Λκηα dS + error. (2.12)

The higher order terms on the third line are exactly cancelled out for the original problem (i.e., κ = 0) but we are unable to
control them when κ > 0. However, in light of the definition of ψ (2.4), both of the higher order terms can indeed be cancelled
by −

∫
Γ
∂3hã3αã3β∂

2
∆η̃β∂

2
∆ψ dS in (2.11) up to lower order terms plus the low-frequency term

∂2
(
(Id − P)

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

))
,

which can be controlled by using Bernstein’s inequality (2.23) in Lemma 2.5. The details can be found in Section 3.6.3.

Remark. Alternatively, one may boost interior regularity of the flow map to H4.5(Ω). This can be done via the Cauchy
invariance but one has to assume the initial vorticity curl v0 ∈ H3.5(Ω) (cf. [32, Section 4.2]). The correction term here helps us
get rid of extra regularity of the flow map.

9



2.1.4 Discussion on the uniform-in-κ energy estimate

We have to make sure that our energy estimate is uniform-in-κ in order to pass the sequence of approximate solutions to a limit
as κ → 0, which, in fact, solves the original problem. This depends crucially on the aforementioned cancellation scheme on
the boundary, as the terms in the second line of (2.12) would otherwise contribute to ‖Λκη‖Ḣ4(Γ) and ‖η̃‖Ḣ4(Γ) = ‖Λ2

κη‖Ḣ4(Γ),
respectively, which are of 0.5-derivatives more regular than v after moving to the interior. Of course, one may control these
terms by “moving ∂0.5 to the tangential mollifier”, i.e.,

‖Λκη‖Ḣ4(Γ) . κ
−1/2‖η‖Ḣ3.5(Γ). (2.13)

But this fails to be uniform-in-κ when κ → 0.
Nevertheless, we have to use (2.13) to treat the term in the third line of (2.12) but we can get an extra

√
κ owing to the

structure of ψ and this cancels κ−1/2 out. Specifically,∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κψγãiα∂

2
∆Λκηα dS

.|∂3hã3γãiα|L∞(Γ)|∂Λ2
κψγ|L∞(Γ)|Λκ∂

2
∆η|L2(Γ)|ã

3β∂
2
∆Λκηβ|L2(Γ)

.|∂3hã3γãiα|L∞(Γ)|∂Λ2
κψγ|L∞(Γ)|ã3β∂

2
∆Λκηβ|L2(Γ)

(
κ−1/2|η|Ḣ3.5(Γ)

)
.

We employ the Sobolev embeddings W1,4(R2) ↪→ L∞(R2) and H0.5(R2) ↪→ L4(R2), and the tangential smoothing property
(2.29) to have |∂ψ|L∞ .

√
κP(‖∂2η‖2, ‖∂η‖L∞ , ‖v‖3). We refer to (3.95)-(3.96) for the details.

2.1.5 Discussion on the existence of the approximate system

The approximate system (2.3) can be solved by an iteration of the approximate solutions. Specifically, let (η(0), v(0), h(0)) =

(η(1), v(1), h(1)) = (Id, 0, 0) (i.e., the trivial solution). For each n ≥ 1, we inductively define (η(n+1), v(n+1), h(n+1)) to be the solution
of the linearized system of equations 

∂tη
(n+1) = v(n+1) + ψ(n) in Ω,

∂tv(n+1) = −∇ã(n) h(n+1) − ge3 in Ω,

divã(n) v(n+1) = −∂th(n+1) in Ω,

h(n+1) = 0 on Γ,

(η(n+1), v(n+1), h(n+1))|t=0 = (Id, v0, h0),

(2.14)

Here, a(n) := [∂η(n)]−1, ã(n) := [∂η̃(n)]−1 and the correction term ψ(n) is determined by (2.4) with (η(n), v(n), ã(n)). The existence of
(η(n+1), v(n+1), h(n+1)) follows from showing that the map Ξ : X → X (defined below) has a fixed point, where the Banach space
X define as

X =

{
(ξ,w, π) : (w, ξ)|t=0 = (v0, Id),

sup
t∈[0,T ]

(
‖w(t), ∂tπ(t)‖Z4 + ‖∇ã(n)π(t)‖L∞ + ‖∂∇ã(n)π(t), ∂t∇ã(n)π(t)‖Z3 + ‖∂tξ(t)‖Z3 + ‖∂2ξ(t)‖Z2 + ‖∂ξ(t)‖L∞

)
≤ M

}
.

(2.15)

Here, Zk denotes the mixed space-time L2-Sobolev norm of order ≤ k. The map Ξ is given by

Ξ : (ξ,w, π) 7→ (η(n+1), v(n+1), h(n+1))

where we define η(n+1), v(n+1) and h(n+1), respectively, by

∂tη
(n+1) =w + ψ(n), η(n+1)(0) = Id, (2.16)

∂tv(n+1) = − ∇ã(n)π − ge3, v(n+1)(0) = v0, (2.17)

and

∂2
t h(n+1) − ∆ã(n) h(n+1) = −∂tãνα(n)∂νv

(n+1)
α in Ω,

h(n+1) = 0 on Γ,
with (h(n+1), ∂th(n+1))|t=0 = (h0, h1). (2.18)
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Remark. The quantity ‖∇ã(n)π‖L∞ + ‖∂∇ã(n)π, ∂t∇ã(n)π‖Z3 can be replaced by ‖∇ã(n)π‖Z4 if Ω is bounded. However, we can merely
control ∇ã(n)π in L∞ as it corresponds to ∇ã(n) h(n+1).

The estimates for η(n+1) and v(n+1) are straightforward since they verify transport equations. However, the estimate for
‖∂∇ã(n) h(n+1)‖Z3 requires that of ‖∇ã(n) h(n+1)‖Ḣ4 which cannot be done directly by commuting ∂4 through the wave equation, since
there is no hope to control the corresponding source term consists ∂tãνα(n)(∂

4∂νv
(n+1)
α ) in L2.

The key observation here is that ∂3∂t∂νv
(n+1)
α can in fact be controlled thanks to (2.17) and the finiteness of ‖∂4∇ã(n)π‖0, and

so there is no problem to control the wave energies by commutingD3∂t (whereD = ∂ or ∂t) through the wave equation (2.18).
Now, the remaining ‖∇ã(n) h(n+1)‖Ḣ4 can be treated using the elliptic estimate

‖∇ã(n) h(n+1)‖Ḣ4 . ‖∆ã(n) h(n+1)‖3 + ‖∂∂η̃(n)‖3‖h(n+1)‖H , (2.19)

which indicates that the control of ‖∇ã(n) h(n+1)‖Ḣ4 requires that of ‖∆ã(n) h(n+1)‖3 up to the highest order. But this term is under
control since (2.18) suggests that

‖∆ã(n) h(n+1)‖3 ≤ ‖∂
2
t h(n+1)‖3 + ‖∂tãνα(n)∂νv

(n+1)
α ‖3,

where the second term is of lower order and the first term can be controlled by invoking the wave energy with 2 time derivatives.

2.2 Auxiliary results

2.2.1 Sobolev inequalities

Lemma 2.2. (Kato-Ponce [31] inequalities) Let J = (I − ∆)1/2, s ≥ 0. Then the following estimates hold:
(1) ∀s ≥ 0, we have

‖J s( f g)‖L2 . ‖ f ‖W s,p1 ‖g‖Lp2 + ‖ f ‖Lq1 ‖g‖W s,q2 ,

‖∂s( f g)‖L2 . ‖ f ‖Ẇ s,p1 ‖g‖Lp2 + ‖ f ‖Lq1 ‖g‖Ẇ s,q2 ,
(2.20)

with 1/2 = 1/p1 + 1/p2 = 1/q1 + 1/q2 and 2 ≤ p1, q2 < ∞;
(2) ∀s ≥ 1, we have

‖J s( f g) − (J s f )g − f (J sg)‖Lp . ‖ f ‖W1,p1 ‖g‖W s−1,q2 + ‖ f ‖W s−1,q1 ‖g‖W1,q2 (2.21)

for all the 1 < p < p1, p2, q1, q2 < ∞ with 1/p1 + 1/p2 = 1/q1 + 1/q2 = 1/p.

Lemma 2.3. (Trace lemma for harmonic functions [53, Prop. 5.1.7]) Suppose that s ≥ 0.5 and u solves the boundary-value
problem

∆u = 0 in Ω with u = g on Γ

where g ∈ Hs(Γ). Then it holds that
|g|s . ‖u‖s+0.5 . |g|s

Lemma 2.4 (Normal trace lemma). It holds that for a vector field X

|∂X · N |−0.5 . ‖∂X‖0 + ‖div X‖0 (2.22)

Proof. Let ϕ ∈ H0.5(∂Ω) be a scalar test function, whose bounded extension in Ω is denoted by φ ∈ H1(Ω). Then∫
∂Ω

∂X · Nϕ =

∫
Ω

div (∂Xφ) =

∫
Ω

∂X∇φ −
∫

Ω

div X∂φ . (‖∂X‖0 + ‖div X‖0)|ϕ|0.5.

�

Lemma 2.5. (Bernstein-type inequalities) Let 0 ≤ χ(ξ) ≤ 1 be a C∞c (Rd) cut-off function which is supported in {|ξ| ≤ 2} and
equals to 1 in {|ξ| ≤ 1}. Define the Littlewood-Paley projection P≤N in Rd with respect to χ by

P≤N f :=
(
χ(ξ/N) f̂ (ξ)

)∨
, P≥N f :=

(
(1 − χ(ξ/N)) f̂ (ξ)

)∨
, PN f :=

(
(χ(ξ/N) − χ(2ξ/N)) f̂ (ξ)

)∨
.

Then the following inequalities hold

‖P≤N f ‖Ḣs
x(Rd) .s,d N s‖ f ‖L2(Rd), ∀s ≥ 0; (2.23)

‖P≥N f ‖Ḣs
x(Rd) .s,d ‖ f ‖Ḣs

x(Rd), ∀s ∈ R. (2.24)

Analogous results also hold for Hs
x(Rd).
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Proof. For the first inequality, we apply Plancherel’s identity to get

‖P≤N f ‖Ḣs
x(Rd) = ‖|∂|sP≤N f ‖L2(Rd) = ‖|ξ|sχ(ξ/N) f̂ (ξ)‖L2(Rd) . N s · 1 · ‖ f ‖L2(Rd).

Note that s ≥ 0 is used in the last inequality. For the second inequality, we just replace χ(ξ/N) above by 1 − χ(ξ/N) and notice
that 0 ≤ 1 − χ(ξ/N) ≤ 1 to get

‖P≥N f ‖Ḣs
x(Rd) ≤ ‖|ξ|

s f̂ (ξ)‖L2(Rd) . ‖ f ‖Ḣs
x(Rd).

Analogous results hold for Hs(Rd) by replacing |∂| and |ξ| with 〈∂〉 and 〈ξ〉 respectively. One can see Tao [52, Appendix A] for
more Bernstein-type inequalities. �

2.2.2 Properties of tangential smoothing operator

As stated in the introduction, we are going to use the tangential smoothing to construct the approximate solutions. Here we list
the definition and basic properties which are repeatedly used in this paper. Let ζ = ζ(y1, y2) ∈ C∞c (R2) be a standard cut-off

function such that Spt ζ = B(0, 1) ⊆ R2, 0 ≤ ζ ≤ 1 and
∫
R2 ζ = 1. The corresponding dilation is

ζκ(y1, y2) =
1
κ2 ζ

(y1

κ
,

y2

κ

)
, κ > 0.

Now we define
Λκ f (y1, y2, y3) :=

∫
R2
ζκ(y1 − z1, y2 − z2) f (z1, z2, z3) dz1 dz2. (2.25)

The following lemma records the basic properties of tangential smoothing.

Lemma 2.6. (Regularity and Commutator estimates) For κ > 0, we have
(1) The following regularity estimates:

‖Λκ f ‖s . ‖ f ‖s, ∀s ≥ 0; (2.26)
|Λκ f |s . | f |s, ∀s ≥ −0.5; (2.27)

|∂Λκ f |0 . κ−s| f |1−s, ∀s ∈ [0, 1]; (2.28)

| f − Λκ f |L∞ .
√
κ|∂ f |0.5. (2.29)

(2) Commutator estimates: Define the commutator [Λκ, f ]g := Λκ( f g) − f Λκ(g). Then it satisfies

|[Λκ, f ]g|0 . | f |L∞ |g|0, (2.30)

|[Λκ, f ]∂g|0 . | f |W1,∞ |g|0, (2.31)

|[Λκ, f ]∂g|0.5 . | f |W1,∞ |g|0.5. (2.32)

Proof. (1): The estimates (2.27) and (2.28) follows directly from the definition (2.25) and the basic properties of convolution.
(2.29) is derived by using Sobolev embedding and Hölder’s inequality:

| f − Λκ f | =

∣∣∣∣∣∣
∫
R2∩B(0,κ)

ζκ(z)( f (y − z) − f (y)) dz

∣∣∣∣∣∣ . |ζκ|L 4
3

∣∣∣∣κ∂ f
∣∣∣∣
L4
.
√
κ |ζ |

L
4
3

∣∣∣∣∂ f
∣∣∣∣
0.5
.

(2): The first three estimates can be found in [11, Lemma 5.1]. To prove the fourth one, we note that

∂([Λκ, f ]g) = Λκ(∂ f∂g) + Λκ( f∂2g) − ∂ f Λκ∂g − f Λκ∂
2g = [Λκ, ∂ f ]∂g + [Λκ, f ]∂2g.

From (2.30) and (2.31) we know

|∂[Λκ, f ]g|0 . |∂ f |L∞ |∂g|0 + | f |W1,∞ |∂g|0 . | f |W1,∞ |g|1. (2.33)

Therefore (2.32) follows from the interpolation of (2.31) and (2.33). �
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2.2.3 Elliptic estimates

Lemma 2.7. (Hodge-type decomposition) Let X be a smooth vector field and s ≥ 1, then it holds that

‖X‖s . ‖X‖0 + ‖curl X‖s−1 + ‖div X‖s−1 + |X · N |s−0.5. (2.34)

Proof. This follows from the well-known identity −∆X = curl curl X − ∇div X and integration by parts. �

Lemma 2.8. (Interior elliptic estimate) The following elliptic estimate holds for f = 0 on Γ.

‖∇ã f ‖2Ḣ1 ≤C(‖η̃‖H )
(
‖∆ã f ‖20 + ‖∂ f ‖20

)
, or ‖∇ã f ‖2Ḣ1 ≤ C(‖η̃‖H )

(
‖∆ã f ‖20 + ‖∂ f ‖2L∞

)
,

‖∇ã f ‖2Ḣr ≤C(‖η̃‖H )
(
‖∆ã f ‖2r−1 + ‖∂ f ‖2L∞ + ‖∂2 f ‖2r−2

)
, r = 2, 3,

‖∇ã f ‖2Ḣr ≤C(‖∂η̃‖L∞ , ‖∂2η̃‖r−2)
(
‖∆ã f ‖2r−1 + ‖∂∂η̃‖2r−1

(
‖∂ f ‖2L∞ + ‖∂2 f ‖2r−2

) )
, r ≥ 4.

(2.35)

Proof. The proof is largely similar to what is in [20, Appendix B] and so we shall only sketch the details. The main idea here is
to apply the div-curl estimate on ‖∇ã f ‖2

Ḣr . The (Eulerian) divergence contributes to the Laplacian term, and the (Eulerian) curl

of ∇ã f vanishes. Then the term ‖∂r∇ã f ‖20 will be generated by Lemma 2.4 during this process. To control this term, we write∫
Ω

(∂r∇ã f )(∂r∇ã f ) =

∫
Ω

(∂r∇ã f )(∇ã∂
r f ) +

∫
Ω

(∂r∇ã f )([∂r,∇ã] f ),

where ∫
Ω

(∂r∇ã f )([∂r,∇ã] f ) . ε‖∂r∇ã f ‖20 + ‖[∂r,∇ã] f ‖20,

and ‖[∂r,∇ã] f ‖20 is controlled by either C(‖η̃‖H )‖∂ f ‖21 or C(‖η̃‖H )‖∂ f ‖2L∞ when r = 1, by C(‖η̃‖H )
(
‖∂ f ‖2L∞ + ‖∂2 f ‖2r−2

)
when

r = 2, 3, and by C(‖∂η̃‖L∞ , ‖∂2η̃‖r−2)‖∂∂η̃‖2r−1

(
‖∂ f ‖2L∞ + ‖∂2 f ‖2r−2

)
when r ≥ 4. Moreover, by integrating ∇ã by parts, we have∫

Ω

(∂r∇ã f )(∇ã∂
r f ) = −

∫
Ω

(∇ã∂
r∇ã f )(∂r f ), (2.36)

and there is no boundary term since f = 0 on Γ implies ∂r f = 0 on Γ. The main term contributed by the RHS of (2.36) after
commuting ∇ã through ∂r is −

∫
Ω

(∂r∆ã f )(∂r f ), which can be controlled by integrating ∂ by parts and then using the ε-Young’s
inequality, i.e.,

−

∫
Ω

(∂r∆ã f )(∂r f ) =

∫
Ω

(∂r−1∆ã f )(∂r+1 f ) . ‖∆ã f ‖2r−1 + ε‖∂r+1 f ‖20,

where ε‖∂r+1 f ‖20 ≤ ε‖∂∂
r f ‖20, and ε‖∂∂r f ‖20 is comparable to ε‖∂r∇ã f ‖20 modulo error terms that take the form ‖[∂r,∇ã] f ‖20. On

the other hand, the error term generated by the RHS of (2.36) after commuting ∇ã through ∂r takes the form∫
Ω

[∂r, ãµα]∂µ(ãνα∂ν f )(∂r f ),

and it contributes to (up to the highest order)

I :=
∫

Ω

(∂rãµα)
(
∂µ(ãνα∂ν f )

)
(∂r f ), and II :=

∫
Ω

(∂ãµα)
(
∂r−1∂µ(ãνα∂ν f )

)
(∂r f ).

Here,

II . ε‖∇ã f ‖2Ḣr + ‖(∂ã)(∂r f )‖20,

and ‖(∂ã)(∂r f )‖20 can be bounded directly by the RHS of (2.35). Also, for I, we have∫
Ω

(∂ãµα)
(
∂µ(ãνα∂ν f )

)
(∂ f ) . ε‖∇ã f ‖2Ḣ1 + ‖(∂ã)(∂ f )‖20,∫

Ω

(∂rãµα)
(
∂µ(ãνα∂ν f )

)
(∂r f ) . ‖∂r f ‖20 + ‖∂(∇ã f )‖2L∞‖∂

rã‖20, when r ≥ 2,

where ‖(∂ã)(∂ f )‖20, ‖∂
r f ‖20 and ‖∂(∇ã f )‖2L∞‖∂

rã‖20 can all be bounded directly by the RHS of (2.35). �
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Remark. The inequalities in (2.35) can be simplified to

‖∇ã f ‖2Ḣr ≤ C(‖η̃‖H )
(
‖∆ã f ‖2r−1 + ‖ f ‖2r

)
, r = 1, 2, 3,

‖∇ã f ‖2Ḣr ≤ C(‖∂η̃‖L∞ , ‖∂2η̃‖r−2)
(
‖∆ã f ‖2r−1 + ‖∂∂η̃‖2r−1‖ f ‖

2
r

)
, r ≥ 4,

when Ω is a bounded domain. Nevertheless, for an unbounded domain Ω we have to be more careful when f = h since ∂h can
only be controlled in L∞(Ω).

3 The Approximate system and uniform a priori estimates
In this section we are going to introduce the approximation of the water wave problem and derive its uniform a priori estimates.

3.1 The approximate system
For κ > 0, we consider the following approximate system

∂tη = v + ψ in Ω,

∂tv = −∇ãh − ge3 in Ω,

divãv = −e′(h)∂th in Ω,

h = 0 on Γ,

(η, v, h)|{t=0} = (Id, v0, h0).

(3.1)

Here ã := (∂η̃)−1 where η̃ is the smoothed version of the flow map η defined by η̃ := Λ2
κη. The term ψ = ψ(η, v) is a correction

term which solves the half-space Laplacian equation∆ψ = 0 in Ω,

ψ = ∆−1P
(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)
on Γ,

(3.2)

where P f := P≥1 f denotes the standard Littlewood-Paley projection in R2 defined is Lemma 2.5, which removes the low-
frequency part. ∆ := ∂2

1 + ∂2
2 denotes the tangential Laplacian operator and ∆−1 f := (−|ξ|−2 f̂ )∨ is the inverse of ∆ on R2.

Remark.

1. The correction term ψ → 0 as κ → 0. We introduce such a term to eliminate the higher order boundary terms which
appears in the tangential estimates of v. These higher order boundary terms are zero when κ = 0 but cannot be controlled
when κ > 0.

2. The Littlewood-Paley projection is necessary here because we will repeatedly use

|∆−1P f |s . |P f |Hs−2 ≈ |P f |Ḣs−2 . | f |Ḣs−2 ,

which can be proved via Bernstein inequality (2.24). Without P the low-frequency part loses control when taking ∆−1.

Fix any κ > 0, we will prove in Section 4 that there exists a Tκ > 0 depending on the initial data and κ > 0 such that there is
a unique solution (v(κ), h(κ), η(κ)) to (3.1) in [0,Tκ]. For simplicity we omit the κ and only write v, h, η in this manuscript. The
remaining context in this section is to derive the uniform-in-κ a priori estimates for the solutions to (3.1). This guarantees that
we are able to obtain the solution of the original problem in some fixed time interval by passing κ → 0.

For simplicity in notations, we still denote the solution to the κ-approximation system by (η, v, h) with κ omitted. Define the
energy functional for the κ-approximate problem (3.1) to be

Eκ(t) := ‖η(t)‖2
H

+

4∑
k=0

‖∂4−k
t v(t)‖2k +

‖h(t)‖2
H

+

3∑
k=0

‖∂4−k
t h(t)‖2k

 + |ã3α∂4Λκηα(t)|20. (3.3)
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Remark. We recall that (3.3) can be simplified to

‖η(t)‖24 +

4∑
k=0

(‖∂4−k
t v(t)‖2k + ‖∂4−k

t h(t)‖2k) + |ã3α∂4Λκηα(t)|20.

in the case a bounded domain. We refer to the remark after (1.16) and Section 1.4 for the details.

The rest of this section is devoted to prove:

Proposition 3.1. Let Eκ be defined as above. Then there exists a time T > 0 independent of κ such that

sup
0≤t≤T

Eκ(t) ≤ P(‖v0‖4, ‖h0‖H ). (3.4)

Proposition 3.1 is a direct consequence of the following proposition:

Proposition 3.2. Let Eκ be defined as above. Then it holds that

Eκ(t) ≤ P(‖v0‖4, ‖h0‖H ) +

∫ t

0
P(Eκ(τ)) dτ, ∀t ∈ [0,T ] (3.5)

provided the following a priori assumptions hold

−∂3h(t) ≥
c0

2
on Γ, (3.6)

‖J̃(t) − 1‖3 ≤ ε in Ω, (3.7)
‖Id − ã(t)‖3 ≤ ε in Ω, (3.8)

where J̃ := det(∂η̃) and we use ε > 0 to denote the sufficiently small number which appears here and the ε-Young inequality.

Remark. It suffices to show that (3.5) holds true when t = T . Also, (3.5) can in fact be reduced to

Eκ(T ) ≤ Eκ(0) +

∫ T

0
P(Eκ(t)) dt. (3.9)

In [42] we are able to prove that there exists initial data satisfying the compatibility condition (1.11) up to order 5 such that
Eκ(0) ≤ P(‖v0‖4, ‖h0‖H ) holds. For notation simplicity we define P0 := P(‖v0‖4, ‖h0‖H ).

3.2 Estimates for the flow map and correction term
First we bound the flow map and the correction term together with their smoothed version by the quantities in Eκ. The following
estimates will be repeatedly use in this section.

Lemma 3.3. Let (v, h, η) be the solution to (3.1). Then we have

‖∂η̃‖L∞ . ‖∂η‖L∞ , (3.10)

‖∂2η̃‖2 . ‖∂
2η‖2, (3.11)

‖ψ‖4 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖3), (3.12)

‖∂tψ‖4 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3), (3.13)

‖∂2
t ψ‖3 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖2), (3.14)

‖∂3
t ψ‖2 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖2, ‖∂3
t v‖1). (3.15)

and

‖∂tη̃‖4 . ‖∂tη‖4 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4), (3.16)

‖∂2
t η̃‖3 . ‖∂

2
t η‖3 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3), (3.17)

‖∂3
t η̃‖2 . ‖∂

3
t η‖2 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖2), (3.18)

‖∂4
t η̃‖1 . ‖∂

4
t η‖1 . P(‖∂η‖L∞ , ‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖2, ‖∂3
t v‖1). (3.19)
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Proof. First, (3.10) and (3.11) follow from (2.26), i.e., ‖∂η̃‖L∞ = ‖Λ2
κ∂η‖L∞ . ‖∂η‖L∞ , ‖∂2η̃‖2 = ‖Λ2

κ∂
2η‖2 . ‖∂

2η‖2. To
bound ∂k

t η̃, it suffices to bound the same norm of ∂k
t η and then apply (2.26) again. From the first equation of (3.1), one has

∂k+1
t η = ∂k

t v + ∂k
tψ, so the estimates (3.16)-(3.19) automatically holds once we prove (3.12)-(3.15).

Commuting time derivatives through (3.2), we get the equations for ∂k
tψ (k = 0, 1, 2, 3, 4):∆∂k

tψ = 0 in Ω,

∂k
tψ = ∆−1P∂k

t

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)
on Γ.

(3.20)

By the standard elliptic estimates, Sobolev trace lemma and Bernstein inequality (2.24) in Lemma 2.5, we can get

‖ψ‖4 .
∣∣∣∣∆−1P

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
3.5

.
∣∣∣∣∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

∣∣∣∣
1.5

. ‖∆ηβãiβ∂iΛ
2
κv − ∆Λ2

κηβã
iβ∂iv‖2

. ‖∂2η‖2‖ã‖L∞‖v‖3 ≤ P(‖∂2η‖2, ‖∂η‖L∞ , ‖v‖3).

(3.21)

Also, when k = 1, 2, 3, one has
‖∂tψ‖4 .

∣∣∣∣∆−1∂tP
(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
3.5

.
∣∣∣∣∂t

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
1.5

. ‖∂t(∆ηβãiβ∂iΛ
2
κv − ∆Λ2

κηβã
iβ∂iv)‖2

. P(‖∂2η‖2, ‖∂η‖L∞ , ‖v‖4, ‖∂tv‖3),

(3.22)

‖∂2
t ψ‖3 .

∣∣∣∣∆−1∂2
t P

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
2.5

.
∣∣∣∣∂2

t

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
0.5

. ‖∂2
t (∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv)‖1

. P(‖∂2η‖2, ‖v‖4, ‖∂η‖L∞ , ‖∂tv‖3, ‖∂2
t v‖2),

(3.23)

and
‖∂3

t ψ‖2 .
∣∣∣∣∆−1∂3

t P
(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
1.5

.
∣∣∣∣ P∂3

t

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
−0.5

(3.24)

where in the last step we apply the Bernstein’s inequality (2.24).
Combining with ∂k+1

t η = ∂k
t v + ∂k

tψ, (3.16), (3.17) and (3.18) directly follows from (3.22) and (3.23), respectively. When
k = 3, one has to be cautious because the leading order term in (3.24) is of the form (∂3

t ∆η)ã∂v and ∆ηã(∂3
t ∂v) which can only

be bounded in L2(Ω) by the quantites in Eκ and thus loses control on the boundary. To control these terms on the boundary, we
have to use the fact that Ḣ0.5(R2) = (Ḣ0.5(R2))∗.

First we separate them from other lower order terms which has L2(Γ) control.

P∂3
t

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)
= P

(
∂3

t ∆ηβãiβ∂iΛ
2
κv − ∂

3
t ∆Λ2

κηβã
iβ∂iv + ∆ηβãiβ∂3

t ∂iΛ
2
κv − ∆Λ2

κηβã
iβ∂3

t ∂iv
)︸                                                                                       ︷︷                                                                                       ︸

leading order terms=:X

+PY. (3.25)

The control of Y is straightforward by using Sobolev trace lemma and (3.16), (3.17),

|PY |−0.5 ≤ |PY |0.5 . ‖Y‖1
. P(‖∂2

t η‖2.5, ‖∂tη‖3.5, ‖∂
2
t ã‖1.5, ‖∂2

t v‖1.5, ‖∂tv‖2.5)

. P(‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2
t v‖2).

(3.26)
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As for the |PX|−0.5 term, we first use the Bernstein inequality (2.24) to get |PX|−0.5 ≈ |PX|Ḣ−0.5 . |X|Ḣ−0.5 . Then the duality
between Ḣ−0.5 and Ḣ0.5 yields that for any test function φ ∈ Ḣ0.5(R2) with |φ|Ḣ0.5 ≤ 1, one has

〈∆ηβãiβ∂3
t ∂iΛ

2
κv, φ〉 = 〈∂3

t ∂iΛ
2
κv,∆ηβã

iβφ〉

= 〈∂0.5
i ∂3

t Λ2
κv, ∂

0.5
i (∆ηβãiβφ)〉

. |∂3
t Λ2

κv|Ḣ0.5 |∆ηãφ|Ḣ0.5

. ‖∂3
t v‖1(|φ|Ḣ0.5 |∆ηã|L∞ + |∆ηã|Ẇ0.5,4 |φ|L4 )

. ‖∂3
t v‖1(‖∂2η‖2‖a‖L∞ )|φ|Ḣ0.5 .

(3.27)

Here we integrate 1/2-order tangential derivative on Γ by part in the second step, and then apply trace lemma to control
|∂3

t Λ2
κv|Ḣ0.5 and Kato-Ponce product estimate (2.20) to bound |∆ηãφ|Ḣ0.5 . Taking supremum over all φ ∈ H0.5(R2) with |φ|Ḣ0.5 ≤ 1,

we have by the definition of Ḣ0.5-norm that

|∆ηβãiβ∂3
t ∂iΛ

2
κv|Ḣ−0.5 . P(‖∂2η‖2, ‖∂η‖L∞ , ‖∂

3
t v‖1). (3.28)

Similarly as above, we have

|∆Λ2
κηβã

iβ∂3
t ∂iv|Ḣ−0.5 . P(‖∂2η‖2, ‖∂

3
t v‖1), (3.29)

|∂3
t ∆ηβãiβ∂iΛ

2
κv − ∂

3
t ∆Λ2

κηβã
iβ∂iv|Ḣ−0.5 . P(‖∂3

t η‖2, ‖∂η‖L∞ , ‖v‖3). (3.30)

Combining (3.24)-(3.30) and the bound (3.18) for ∂3
t η, we get

‖∂3
t ψ‖2 . P(‖∂2η‖2, ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖2, ‖∂3
t v‖1),

which is exactly (3.15). Hence, (3.19) directly follows from (3.15) and ∂4
t η = ∂3

t (v + ψ).
�

3.3 Estimates for the enthalpy h

In this section we are going to control the Sobolev norm ‖∂4−k
t h‖k for k = 0, 1, 2, 3 and ‖h‖H .

3.3.1 Estimates for the first order derivatives of h

We need to control ‖∂h‖L∞ and ‖∂th‖0. First, we have

∂h
∂yα

= δµα∂µh = ãµα∂µh + (δµα − ãµα)∂µh.

Invoking the a priori assumption (3.8) and the second equation in (3.1), we get

‖∂h‖L∞ ≤ ‖∇ãh‖L∞ + ε‖∂h‖L∞ ≤ (g + ‖∂tv‖L∞ ) + ε‖∂h‖L∞ . (3.31)

Therefore, for sufficiently small ε, which can be achieved by choosing T > 0 smaller if needed, we have

‖∂h‖L∞ . g + ‖∂tv‖L∞ . (3.32)

Second, as for ‖∂th‖0, we use the third equation of (3.1) and the physical assumption (1.8) to get

‖∂th‖0 . ‖ãµα∂µvα‖0 . ‖ã‖L∞‖∂v‖0 . ‖η‖2H‖∂v‖0. (3.33)

3.3.2 Estimates for the top order derivatives of h

We take the Eulerian divergence (i.e., divã) in the second equation of system (3.1) and use the third equation of (3.1) to get a
wave equation of h:

J̃e′(h)∂2
t h − ∂ν(Eνµ∂µh) = −J̃∂tãνα∂νvα︸         ︷︷         ︸

:=F

−J̃e′′(h)(∂th)2, (3.34)
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where Eνµ = J̃ãναãµα. Note that the matrix E is symmetric and positive-definite thanks to (3.7).
Let D = ∂t or ∂. Let D3 = ∂3, ∂2∂t, ∂∂

2
t or ∂3

t , i.e., all the 3rd-order tangential derivatives. Applying D3 to (3.34), we get

J̃e′(h)∂2
tD

3h − ∂ν(Eνµ
D

3∂µh) = D3F −[D3, J̃e′(h)]∂2
t h +D3(J̃e′′(h)(∂th)2)︸                                          ︷︷                                          ︸

F3

+∂ν([D3, Eνµ]∂µh). (3.35)

Multiplying (3.35) by ∂tD
3h, then integrating ∂ν by parts, we have

1
2

d
dt

∫
Ω

J̃e′(h)|D3∂th|2 + Eµν∂νD
3h∂µD3h dy (3.36)

=
1
2

∫
Ω

∂tEνµ
D

3∂νhD3∂µh dy (3.37)

+

∫
Ω

F3∂tD
3h dy (3.38)

+

∫
Ω

D
3F∂tD

3h dy (3.39)

+

∫
Ω

∂ν([D3, Eνµ]∂µh)∂tD
3h dy. (3.40)

(3.37) can be directly bounded by the energy:

(3.37) . ‖∂tE‖L∞‖D3∂h‖20 . P(‖∂η‖L∞ , ‖∂v‖2, ‖∂ψ‖2, ‖D3∂h‖0) (3.41)

To estimate (3.38), it suffices to bound ‖F3‖0. The precise form of F3 is

F3 =

5∑
m=2

∑
e(m)(h)(∂i1

t D
j1 h) · · · (∂im

t D
jm h),

where the second sum is taken over the set {i1 + · · · + im = 2, j1 + · · · + jm = 3, 1 ≤ im + jm ≤ 4}. Invoking the condition
imposed on e(h) (i.e., (1.8)), one has∑

D3

‖F3‖0 . P(‖∂4
t h‖0, ‖∂3

t h‖1, ‖∂2
t h‖2, ‖∂th‖3, ‖Dh‖L∞ ). (3.42)

As for (3.39), one has D3F = D3(J̃ãναãµα).

• When D3 = ∂3, then ‖D3(J̃ãναãµα)‖0 . P(‖η‖H ).
• When D3 contains at least one time derivative, then

‖D3F‖0 = ‖D2∂t(J̃ãναãµα)‖0 . ‖∂t J‖2‖a‖2L∞ + ‖J‖2‖∂ta‖2‖a‖L∞ . P(‖∂v‖2, ‖η‖H ).

Therefore,
(3.39) . P(‖η‖H , ‖v‖3)‖∂tD

3h‖0 (3.43)

Finally, one has to be cautious when controlling (3.40). The leading order term in ∂ν([D3, Eνµ]∂µh) is ∂D3E. If D3 = ∂3,
then this term loses control in L2. To avoid this problem, one can integrate ∂ν by parts, and then integrate ∂t by parts in the
time integral of (3.40) to replace ∂ν falling on E by ∂t. This is because J and ∂t J (also for a and ∂ta) have the same spatial
regularity. If D3 contains at least one time derivative, then the L2-norm of ∂D3E can be controlled directly thanks to the same
reason above.

• D3 contains at least one time derivative, i.e., D3 = D2∂t. Then∫
Ω

∂ν([D2∂t, Eνµ]∂µh)∂tD
3h dy

. ‖[D2∂t, Eνµ]∂µh‖1‖∂tD
3h‖0

. (‖D2∂tE‖1‖∂h‖L∞ + ‖D2E‖L∞‖∂th‖2 + ‖D∂tE‖L∞‖Dh‖2 + ‖DE‖L∞‖D∂th‖1 + ‖∂tE‖L∞‖D2h‖1)‖∂tD
3h‖0.

So ∑
D3\{∂3}

(3.40) . P(‖∂2η‖2, ‖∂η‖L∞ , ‖v‖4, ‖∂tv‖3, ‖∂2
t v‖2, ‖∂h‖L∞ , ‖∂th‖2, ‖∂2

t h‖1)‖∂tD
3h‖0. (3.44)
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• When D3 = ∂3, we consider the time integral of (3.40). We first integrate ∂ν by parts, then integrate ∂t by parts to get the
following equality ∫ T

0

∫
Ω

∂ν([∂3, Eνµ]∂µh)∂t∂
3h dy dt

= −

∫ T

0

∫
Ω

([∂3, Eνµ]∂µh)∂ν∂t∂
3h dy dt +

∫ T

0

∫
Γ

([∂3, Eνµ]∂µh)Nν ∂t∂
3h︸︷︷︸

=0

dS dt

=

∫ T

0

∫
Ω

∂t([∂3, Eνµ]∂µh)∂ν∂3h dy dt −
∫

Ω

([∂3, Eνµ]∂µh)∂ν∂3h dy
∣∣∣∣∣t=T

t=0
.

The leading order term in the first integral is ∂3∂tE which has L2- control, so one can bound this directly by using Hölder’s
inequality ∫ T

0

∫
Ω

∂t([∂3, Eνµ]∂µh)∂ν∂3h dy dt .
∫ T

0
P(‖η‖H , ‖∂v‖3, ‖∂h‖L∞ , ‖∂th‖3)‖∂3h‖1 dt. (3.45)

As for the second integral, we can use Hölder’s inequality first, then use ε-Young’s inequality and Jensen’s inequality

−

∫
Ω

([∂3, Eνµ]∂µh)∂ν∂3h dy
∣∣∣∣∣
t=T

. ‖∂3E(T )‖0‖∂h(T )‖L∞‖∂3h(T )‖1 + ‖∂2E(T )‖1‖∂∂h(T )‖1‖∂3h(T )‖1 + ‖∂E(T )‖L∞‖∂∂2h(T )‖0‖∂3h(T )‖1

. ε‖∂3h(T )‖21 +
1
8ε

(‖∂E(T )‖42 + ‖∂E(T )‖4L∞ + ‖∂2h(T )‖41)

. ε‖∂3h(T )‖21 +
1
8ε

(
‖∂E(0)‖42 + ‖∂E(0)‖4L∞ + ‖h(0)‖43 +

∫ T

0
‖∂t∂E(t)‖42 + ‖∂t∂

2h(t)‖41 dt
)

. ε‖∂3h(T )‖21 + P0 +

∫ T

0
P(‖η‖H , ‖v‖4, ‖∂th‖3) dt.

(3.46)

The above estimates along with ∫
Ω

([∂3, Eνµ]∂µh)∂ν∂3h dy
∣∣∣∣∣
t=0
. P0

give the bound for the time integral of (3.40):∫ T

0

∫
Ω

∂ν([∂3, Eνµ]∂µh)∂t∂
3h dy dt . ε‖∂3h(T )‖21 + P0 +

∫ T

0
P(‖η‖H , ‖v‖4, ‖∂th‖3) dt. (3.47)

Now, summing up (3.41)-(3.45), (3.47) and then plugging it into (3.36), we get the tangential derivative estimates of h:∑
D3

∫
Ω

J̃e′(h)|D3∂th|2 + |∂D3h|2 dy
∣∣∣∣∣t=T

t=0
. ε‖∂3h(T )‖21 + P0 +

∫ T

0
P(Eκ(t)) dt. (3.48)

Note that we have used E is symmetric and positive-definite. Choosing ε > 0 sufficiently small, the term ε‖∂3h(T )‖21 can
absorbed by the LHS of (3.48).

3.3.3 Estimates for the full Sobolev norm

Up to now, we have controlled all the tangential space-time derivative of ∂h. Therefore it suffices to control ≥ 2 normal
derivatives of h. Actually this follows directly from the wave equation (3.34)

e′(h)∂2
t h − ∂ν(Eνµ∂µh) = −J̃∂tãνα∂νvα︸         ︷︷         ︸

:=F0

−e′′(h)(∂th)2

that

∂33h = −
1

E33

F0 − e′′(h)(∂th)2 −
∑
ν+µ≤5

∂ν(Eνµ∂µh) − e′(h)∂2
t h

 ,
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because the above identity shows that the second order normal derivative ∂33h can be bounded by the terms containing h with
the same or lower order derivates and less normal derivatives. Hence, one can apply the same method to inductively control
terms containing h with more normal derivatives. For example, ∂3333h can be controlled in the same way by taking ∂2 in (3.34)
and then express ∂3333h in terms of the terms with same or lower order and ≤ 3 normal derivatives.

Therefore, combining with (3.7), (3.32), (3.33) and (3.48), one has the control for the Sobolev norm of enthalpy h and its
time derivatives after taking ε > 0 in (3.48) sufficiently small to be absorbed by ‖h‖2

H
:‖h(t)‖2

H
+

3∑
k=1

‖∂k
t h(t)‖24−k + ‖

√
e′(h)∂4

t h(t)‖20

 ∣∣∣∣∣t=T

t=0
. P0 +

∫ T

0
P(Eκ(t)) dt. (3.49)

3.4 The div-curl estimates for v

In this section we are going to do the div-curl estimates for v and its time derivatives in order to reduce the estimates of Eκ to
the tangential estimates. Recall the Hodge-type decomposition in (2.7):

∀s ≥ 1 : ‖X‖s . ‖X‖0 + ‖curl X‖s−1 + ‖div X‖s−1 + |X · N |s−0.5.

Let X = v, ∂tv, ∂2
t v, ∂3

t v and s = 4, 3, 2, 1, respectively. We get

‖v‖4 . ‖v‖0 + ‖div v‖3 + ‖curl v‖3 + |∂3(v · N)|0.5

‖∂tv‖3 . ‖∂tv‖0 + ‖div ∂tv‖2 + ‖curl ∂tv‖2 + |∂2(∂tv · N)|0.5

‖∂2
t v‖2 . ‖∂2

t v‖0 + ‖div ∂2
t v‖1 + ‖curl ∂2

t v‖1 + |∂(∂2
t v · N)|0.5

‖∂3
t v‖1 . ‖∂3

t v‖0 + ‖div ∂2
t v‖0 + ‖curl ∂2

t v‖0 + |∂3
t v · N|0.5.

(3.50)

First, the L2-norm of v is controlled by:

‖v(T )‖0 ≤ ‖v0‖0 +

∫ T

0
‖∂tv(t)‖0 dt, (3.51)

while for ‖vt‖0, ‖vtt‖0 and ‖vttt‖0, we commute ∂t through ∂tv = −∇ãh + ge3 and obtain

‖∂tv(T )‖0 . ‖∂tv(0)‖0 +

∫ T

0
‖∂2

t v(t)‖0 dt . ‖∂tv(0)‖0 +

∫ T

0
P(‖η‖H , ‖v‖3, ‖∂h‖L∞ , ‖∂th‖1) dt

‖∂2
t v(T )‖0 . ‖∂2

t v(0)‖0 +

∫ T

0
P(‖η‖H , ‖∂tv‖1, ‖∂h‖L∞ , ‖∂th‖1, ‖∂2

t h‖1) dt

‖∂3
t v(T )‖0 . ‖∂3

t v(0)‖0 +

∫ T

0
P(‖η‖H , ‖v‖3, ‖∂tv‖2, ‖∂2

t v‖1, ‖h‖H , ‖∂th‖2, ‖∂2
t h‖1, ‖∂3

t h‖0) dt.

(3.52)

Now we are going to control the curl term. Recall that −∇ãh is the Eulerian gradient of h whose Eulerian curl is 0. This
motivates us to take Eulerian curl in the equation ∂tv = −∇ãh + ge3 to get

∂t(curlãv)λ = ελµα∂tãνµ∂νvα, (3.53)

where (curlãX)λ := ελµαãνµ∂νXα is the Eulerian curl of X and ελµα is the sign of the 3-permutation (λµα) ∈ S 3. Taking ∂3 in the
last equation and then taking inner product with ∂3curlãv, we get

1
2

d
dt

∫
Ω

|∂3curlãv|2 =

∫
Ω

(∂3curlãvλ)∂3(ελµα∂tãνµ∂νvα) dy . P(‖v‖4, ‖∂2η‖2), (3.54)

and thus

‖curlãv(T )‖3 . P(‖v0‖4) +

∫ T

0
P(‖v‖4, ‖∂2η‖2) dt. (3.55)

The Lagrangian curl only differs from the Eulerian curl by a sufficiently small term which shall be absorbed in the LHS

‖curl v(T )‖3 = ‖curlI−ãv(T )‖3 + ‖curlãv‖3

. ‖Id − ã‖3‖v‖4 + P(‖v0‖4) +

∫ T

0
P(‖v‖4, ‖η‖H ) dt

. ε‖v‖4 + P(‖v0‖4) +

∫ T

0
P(‖v‖4, ‖η‖H ) dt.

(3.56)
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Commuting ∂k
t (k = 1, 2, 3) though (3.53), we get the evolution equation for curlã∂k

t v

∂t(curlã∂k
t v)λ = ελµα∂

k
t (∂tãνµ∂νvα) − ∂t([∂k

t , curlã]v)λ.

Commuting ∂3−k through the above equation, and then taking L2 inner product with ∂3−k(curlã∂k
t v), we get

1
2

d
dt

∫
Ω

|∂3−kcurlã∂k
t v|2 dy =

∫
Ω

∂3−k
(
ελµα∂

k
t (∂tãνµ∂νvα) − ∂t([∂k

t , curlã]v)λ
)
∂3−k(curlã∂k

t v)λ dy

. ‖curlã∂k
t v‖0 ·

∥∥∥∥∂3−k
(
ελµα∂

k
t (∂tãνµ∂νvα) − ∂t([∂k

t , curlã]v)λ
)∥∥∥∥

0︸                                                      ︷︷                                                      ︸
=:Dk

.
(3.57)

One can use

ã = [∂η̃]−1 = J̃−1

∂2η̃ × ∂3η̃
∂3η̃ × ∂1η̃
∂1η̃ × ∂2η̃

 ,
∂tη = v + ψ, and the estimates for ψ in Lemma 3.2 to control Dk directly. Note that the leading order terms in Dk are ∂3−k∂k+1

t ã
and ∂4−k∂k

t v. Therefore,
3∑

k=1

Dk .
3∑

k=1

P(‖∂k
t v‖4−k, ‖∂

k
tψ‖4−k, ‖η‖H ) . P(Eκ),

which implies

‖curl ∂k
t v‖3−k . ε‖∂

k
t v‖4−k + P0 +

∫ T

0
P(Eκ(t)) dt. (3.58)

For boundary terms in (3.50), we invoke the normal trace lemma (cf. Lemma 2.4) to get

|∂3(v · N)|0.5 . ‖∂4v‖0 + ‖∂3div v‖0. (3.59)

Similarly we have

|∂2(∂tv · N)|0.5 . ‖∂3∂tv‖0 + ‖∂2div ∂tv‖0 (3.60)

|∂(∂2
t v · N)|0.5 . ‖∂2∂2

t v‖0 + ‖∂div ∂2
t v‖0 (3.61)

|∂3
t v · N |0.5 . ‖∂∂3

t v‖0 + ‖div ∂3
t v‖0. (3.62)

Therefore the boundary estimates are all reduced to divergence and tangential estimates.
Now we come to estimate the divergence. Recall that the Eulerian divergence divãX = div X + (ãµα − δµα)∂µXα, which

together with (3.7) implies

∀s > 2.5 : ‖div X‖s−1 . ‖divãX‖s−1 + ‖I − ã‖s−1‖X‖s . ‖divãX‖s−1 + ε‖X‖s
∀1 ≤ s ≤ 2.5 : ‖div X‖s−1 . ‖divãX‖s−1 + ‖I − ã‖L∞‖X‖s . ‖divãX‖s−1 + ε‖X‖s.

(3.63)

The ε-terms can be absorbed by ‖X‖s on LHS by choosing ε > 0 sufficiently small. So it suffices to estimate the Eulerian
divergence which satisfies divãv = −∂te(h). Taking time derivatives in this equation, we get

divã∂
k
t v = −∂k+1

t e(h) − [∂k
t , ã

µα]∂µvα, k = 0, 1, 2, 3.

The leading order terms in divã∂
k
t v are e′(h)∂k

t h∂th, ∂k
t ãµα∂µvα and ∂tãµα∂µ∂k−1

t vα when k ≥ 1. Therefore, we have

‖divãv‖3 . ‖e′(h)∂th‖3
‖divã∂tv‖2 . ‖e′(h)∂2

t h‖2‖∂th‖2 + ‖∂v‖22 . P(‖e′(h)∂2
t h‖2, ‖∂th‖2, ‖v‖3)

. P(‖e′(h)∂2
t h‖2, ‖∂th‖2) + P(‖v0‖3) +

∫ T

0
P(‖∂tv(t)‖3) dt

(3.64)
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and similarly,

‖divã∂
2
t v‖1 . P(‖e′(h)∂3

t h‖1, ‖e′(h)∂2
t h‖2, ‖∂th‖2, ‖v‖3, ‖∂tv‖2)

. P(‖e′(h)∂3
t h‖1, ‖e′(h)∂2

t h‖2, ‖∂th‖2) + P0 +

∫ T

0
P(‖∂tv‖3, ‖∂2

t v‖2) dt

‖divã∂
3
t v‖0 . P(‖e′(h)∂4

t h‖0, ‖e′(h)∂3
t h‖1, ‖e′(h)∂2

t h‖2, ‖∂th‖2, ‖v‖3, ‖∂tv‖2, ‖∂2
t v‖1)

. P(‖e′(h)∂4
t h‖0, ‖e′(h)∂3

t h‖1, ‖e′(h)∂2
t h‖2, ‖∂th‖2) + P0 +

∫ T

0
P(‖∂tv‖3, ‖∂2

t v‖2, ‖∂3
t v‖1) dt.

(3.65)

Combining (3.63) and (3.64)-(3.65), we know the divergence estimates are all be reduced to the estimates of h which has
been done in Section 3.3. By choosing ε > 0 in (3.63) to be sufficiently small, and using the estimates of h in (3.49), we finally
finish the divergence estimates

3∑
k=0

‖div ∂k
t v‖3−k . P0 +

∫ T

0
P(Eκ(t)) dt. (3.66)

3.5 Estimates for time derivatives of v

As a result of div-curl estimates, it suffices to estimate the L2-norms of ∂4v, ∂3∂tv, · · · , ∂4
t v. In this part we are going to do the

tangential estimates for the time derivatives of v, in order to finish the control ‖∂k
t v‖4−k with k ≥ 1. The fact that ∂2η and ∂t∂

2η
are of the same spatial regularity in Sobolev norms is essential for us to close the estimates.

Let D4 = ∂4
t , ∂

3
t ∂, ∂

2
t ∂

2, ∂t∂
3. First we compute

d
dt

1
2

∫
Ω

|D4v|2 dy =

∫
Ω

D
4vαD4∂tvα dy = −

∫
Ω

D
4vαD4(ãµα∂µh) dy

= −

∫
Ω

(D4vα)ãµα(∂µD4h) dy −
∫

Ω

D
4vα([D4, ãµα]∂µh) dy︸                           ︷︷                           ︸

L1

.
(3.67)

In the first integral above, we integrate ∂µ by parts and invoking the equation divãv = −e′(h)∂th to obtain:

−

∫
Ω

(D4vα)ãµα(∂µD4h) dy

= −

∫
Γ

D
4vαãµαNµ D

4h︸︷︷︸
=0

dS −
∫

Ω

([D4, ãµα]∂µvα)D4h dy︸                             ︷︷                             ︸
L2

+

∫
Ω

D
4vα∂µãµαD4h dy︸                     ︷︷                     ︸

L3

+

∫
Ω

D
4divãvD4h dy

= −

∫
Ω

D
4(e′(h)∂th)D4h dy + L2 + L3

= −
d
dt

1
2

∫
Ω

e′(h)|D4h|2 dy +

∫
Ω

e′′(h)∂th|D4h|2 − [D4, e′(h)]∂thD4h dy︸                                                 ︷︷                                                 ︸
L4

+L2 + L3.

(3.68)

It is not difficult to see L3 and L4 can be controlled directly:

L3 . ‖D
4v‖0‖∂a‖2‖D4h‖0 . P(Eκ(t)), (3.69)∑

D4

L4 . ‖
√

e′(h)D4h‖0P

∑
k≥1

‖
√

e′(h)∂k
t ∂

4−kh‖0

 . P(Eκ(t)). (3.70)

To estimate L1 and L2, it suffices to control the commutator [D4, ã] f in L2-norm.

‖[D4, ã] f ‖0 = ‖(D4a) f + 4(D3a)(D f ) + 6(D2a)(D2 f ) + 4(Da)(D3 f )‖0
. ‖D4a‖0‖ f ‖L∞ + ‖D3a‖1‖D f ‖1 + ‖D2a‖1‖D2 f ‖1 + ‖Da‖2‖D3 f ‖0.
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Let f = ∂v and ∂h respectively (corresponding to L1 and L2), and recall a = [∂η]−1. By Lemma 3.3, we have

L1 . ‖D
4v‖0(‖D4a‖0‖∂v‖2 + ‖D3a‖1‖D∂v‖1 + ‖D2a‖1‖D∂v‖1 + ‖Da‖2‖D3∂v‖0)

. P(
4∑

k=1

‖∂k
t v‖4−k, ‖∂

2η‖2, ‖v‖4) . P(Eκ(t));

L2 . ‖D
4h‖0(‖D4a‖0‖∂h‖L∞ + ‖D3a‖1‖D∂h‖1 + ‖D2a‖1‖D∂h‖1 + ‖Da‖2‖D3∂h‖0)

. P(
3∑

k=0

‖∂k
t v‖4−k, ‖∂h‖L∞ , ‖∂th‖1, ‖∂2

t h‖1, ‖∂3
t h‖0, ‖∂2η‖2) . P(Eκ(t)).

(3.71)

Summing up (3.67)-(3.71), we are able to get the energy bound

d
dt

1
2

 4∑
k=1

‖∂k
t ∂

4−kv‖20 + ‖
√

e′(h)∂k
t ∂

4−kh‖20

 . P(Eκ(t)). (3.72)

3.6 Estimates for spatial derivatives of v: Alinhac’s good unknown method

Now it remains to control ‖∂4v‖20 to close the a priori estimates of the approximation system (3.1). It should be emphasized
here that our method in Section 3.5 cannot be used in the full spatial derivatives, because the L2-norm of the commutator
[∂4, ã](∂v) and [∂4, ã](∂h) cannot be controlled due to the lack of time derivatives. To overcome such difficulty, we introduce
Alinhac’s good unknowns for both v and h, which actually uncover that the essential leading order terms in ∂4∇ãv and ∂4∇ãh
is exactly the covariant derivative ∇ã of their Alinhac’s good unknowns. As a result, one can commute ∂4 and ∇ã in the energy
estimate without producing any higher order commutator apart from ∂4(divãv)∂4h. However, the third equation of (3.1) yields
∂4(divãv)∂4h = −∂4(e′(h)∂th)∂4h, which gives the energy term − 1

2
d
dt

∫
Ω
‖∂4h‖20 and thus no extra higher order term appears. This

being said, the use of Alinhac’s good unknowns avoids the control of the 5-th order wave equation of h together with delicate
elliptic estimates, e.g., Lindblad-Luo [39], Luo [42], Ginsberg-Lindblad-Luo [20].

The Alinhac’s good unknown was first introduced by Alinhac [3], and has been frequently used in the study of free-boundary
problems of incompressible fluids because the incompressibility condition (Eulerian divergence-free) eliminates the only extra
term ∂r(divãv) = 0, e.g., Masmoudi-Rousset [44], Gu-Wang [22], Wang-Xin [61], etc. On the other hand, in free-boundary
problems of compressible fluids, the Alinhac’s good unknowns were crucial in [56] together with the Nash-Moser iteration.
Moreover, there are several studies for free-boundary problems in ideal compressible MHD equations in which the passage to
the Alinhac’s good unknowns is used to study the linearized problem in the framework of the Eulerian approach. For example,
in this connection, we refer to [6, 54, 55] for compressible current-vortex sheets, and [47, 57, 58] for the plasma-vacuum
interface problem in compressible MHD.

3.6.1 Introducing Alinhac’s good unknowns

For simplicity we replace ∂4 by ∂
2
∆ which is more convenient for us to deal with the correction term ψ on the boundary. For a

smooth function g = g(t, x), we define its “Alinhac’s good unknown” (for the 4-th order derivative) to be

G := ∂
2
∆g − ∂

2
∆η̃ · ∇ãg = ∂

2
∆g − ∂

2
∆η̃βãµβ∂µg, (3.73)

which enjoys the following important properties.

Lemma 3.4. We have
∂

2
∆(∇αã g) = ∇αã G + Cα(g) (3.74)

with
‖Cα(g)‖0 . P(‖η‖H )‖g‖H . (3.75)

Proof. Invoking the identity

∂ãµα = −ãµγ∂∂βη̃γãβα, (3.76)
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which is obtained from differentiating ãµα∂µηβ = δαβ , then

∂
2
∆(∇αã g) = ∇αã (∂

2
∆g) + (∂

2
∆ãµα)∂µg + [∂

2
∆, ãµα, ∂µg]

= ∇αã (∂
2
∆g) − ∂∆(ãµγ∂∂βη̃γãβα)∂µg + [∂

2
∆, ãµα, ∂µg]

= ∇αã (∂
2
∆g) − ãβα∂β∂

2
∆η̃γãµγ∂µg − ([∂∆, ãµγãβα]∂∂βη̃γ)∂µg + [∂

2
∆, ãµα, ∂µg]

= ∇αã (∂
2
∆g − ∂

2
∆ηγãµγ∂µg)︸                           ︷︷                           ︸

=∇αã G

+ ∂
2
∆ηγ∇

α
ã (∇γãg) − ([∂∆, ãµγãβα]∂∂βη̃γ)∂µg + [∂

2
∆, ãµα, ∂µg]︸                                                                        ︷︷                                                                        ︸

=:Cα(g)

,

where [∂
2
∆, f , g] := ∂

2
∆( f g) − ∂

2
∆( f )g − f∂

2
∆(g). A direct computation yields that

‖∂
2
∆ηγ∇

α
ã (∇γãg)‖0 . P(‖∂2η‖2)(‖∂g‖L∞ + ‖∂2g‖2);

‖([∂∆, ãµγãβα]∂∂βη̃γ)∂µg‖0 . ‖[∂∆, ãµγãβα]∂∂βη̃γ‖0‖g‖W1,∞ . P(‖η‖H )(‖∂g‖L∞ + ‖∂2g‖1)

‖[∂
2
∆, ãµα, ∂µg]‖0 . P(‖η‖H )(‖∂g‖L∞ + ‖∂2g‖2).

�

Moreover, ‖G‖20 controls ‖∂4g‖20 modulo a controllable error term. Specifically,

Lemma 3.5. We have

‖∂4g(T )‖20 . ‖G(T )‖20 +

∫ T

0
P(‖η‖H , ‖v‖4, ‖∂g‖L∞ , ‖∂tg‖L∞ ). (3.77)

Proof. The definition of G implies

‖∂4g(T )‖0 ≈ ‖∂
2
∆g(T )‖0 . ‖G(T )‖0 +

∥∥∥∥(∂2
∆η̃βãµβ∂µg

)∣∣∣
t=T

∥∥∥∥
0
,

where ∥∥∥∥∂2
∆η̃βãµβ∂µg

∣∣∣
t=T

∥∥∥∥
0
≤

∥∥∥∥∂2
∆η̃βãµβ∂µg

∣∣∣
t=0

∥∥∥∥
0

+

∫ T

0
‖∂t(∂

2
∆η̃βãµβ∂µg)‖0.

Here, ∂
2
∆η̃βãµβ∂µg|t=0 = 0 because ∂

2
∆η0 = 0. For the integrand of the second term, invoking (3.76) with ∂ = ∂t, we have

∂t(∂
2
∆η̃βãµβ∂µg) = ∂

2
∆ṽβãµβ∂µg + ∂

2
∆η̃βãµβ∂µ∂tg − ∂

2
∆η̃βãµγ∂τṽγãτβ∂µg

whose L2-norm can be controlled by P(‖η‖H , ‖v‖4, ‖∂g‖L∞ , ‖∂tg‖L∞ ). �

Remark. For general initial data η0, the term P(‖η0‖H )‖∂g(0)‖L∞ should also appear on the RHS of (3.77). Specifically,∥∥∥∥∂2
∆η̃βãµβ∂µg|t=0

∥∥∥∥
0
. ‖∂

2
∆η0‖0‖∂η0‖

2
L∞‖∂g(0)‖L∞ ≤ P(‖η0‖H )‖∂g(0)‖L∞ .

3.6.2 Tangential estimates of v: Interior part

Now we introduce the Alinhac’s good unknowns for v and h

V := ∂
2
∆v − ∂

2
∆η̃ · ∇ãv (3.78)

H := ∂
2
∆h − ∂

2
∆η̃ · ∇ãh. (3.79)

Applying ∂
2
∆ to the second equation in system (3.1) and then using (3.78), (3.79) to get

∂tV = −∇ãH + ∂t(∂
2
∆η̃ · ∇ãv) −C(h)︸                      ︷︷                      ︸

=:F

, (3.80)
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subject to the boundary condition
H = −∂

2
∆η̃βã3β∂3h on Γ, (3.81)

with the continuity equation
∇ã · V = ∂

2
∆(divãv) −Cα(vα) in Ω. (3.82)

Thanks to Lemma 3.5, it suffices to bound ‖V‖20 + ‖H‖20 to close the estimates for ‖∂4v‖20 + ‖∂4h‖20. Taking L2 inner product
between (3.80) and V, one gets

1
2

d
dt

∫
Ω

|V|2 dy = −

∫
Ω

∇ãH · V dy +

∫
Ω

F · V dy. (3.83)

The second term on the RHS of (3.83) can be directly controlled∫
Ω

F · V dy ≤ (‖∂t(∂
2
∆η̃ · ∇ãv)‖0 + ‖C(h)‖0)‖V‖0

. (P(‖∂
2
∆η‖0, ‖∂

2
∆v‖0, ‖∂η‖L∞ , ‖v‖3, ‖∂tv‖3) + P(‖η‖H )‖h‖H )‖V‖0

. P(‖η‖H , ‖v‖4, ‖∂tv‖3, ‖h‖H ).

(3.84)

For the first term in RHS of (3.83), we integrate by part and use (3.81), (3.82) to get

−

∫
Ω

∇ãH · V = −

∫
Ω

ãµα∂µH · Vα dy

= −

∫
Γ

H(ãµαNµVα)dS +

∫
Ω

H(∇ã · V) dy +

∫
Ω

(∂µãµα)HVα dy

=

∫
Γ

∂3h∂
2
∆η̃βã3βã3αVαdS +

∫
Ω

H∂
2
∆(divãv) dy−

∫
Ω

HCα(vα) +

∫
Ω

(∂µãµα)HVα dy︸                                        ︷︷                                        ︸
L0

=: I + K + L0.

(3.85)

First, L0 can be directly controlled by P(Eκ) by using (3.75)

L0 . ‖H‖0P(‖η‖H )‖v‖4 + ‖∂ã‖2‖H‖0‖V‖0 . P(‖η‖H , ‖v‖4, ‖h‖H ). (3.86)

Then we use divãv = −e′(h)∂th to bound K

K :=
∫

Ω

H∂
2
∆(divãv) dy = −

∫
Ω

(∂
2
∆h − ∂

2
∆η̃ · ∇ãh)∂

2
∆(e′(h)∂th) dy

= −
d
dt

1
2

∫
Ω

e′(h)|∂
2
∆h|2 dy +

1
2

∫
Ω

e′′(h)∂th|∂
2
∆h|2 dy +

∫
Ω

H([∂
2
∆, e′(h)]∂th) dy

+

∫
Ω

e′(h)(∂
2
∆∂th)∂

2
∆η̃ · ∇ãh dy︸                                     ︷︷                                     ︸

:=K∗

. −
d
dt

1
2

∫
Ω

e′(h)|∂
2
∆h|2 dy + K∗ + P(‖∂2η‖2, ‖v‖4, ‖h‖H , ‖∂th‖3).

(3.87)

The term K∗ cannot be bounded directly because it contains a higher order term ∂
2
∆∂th, but we can consider its time integral

and integrate ∂t by parts, then using ε-Young inequality to absorb the ε-term.∫ T

0
K∗(t) dt = −

∫ T

0

∫
Ω

e′(h)(∂
2
∆∂th)(∂

2
∆η̃ · ∇ãh) dy dt = −

∫ T

0

∫
Ω

e′(h)(∂t∂
2
∆h)(∂

2
∆η̃ · ∇ãh) dy dt (3.88)

Integrating ∂t by parts, we get

−

∫ T

0

∫
Ω

e′(h)(∂t∂
2
∆h)(∂

2
∆η̃ · ∇ãh) dy dt = −

∫
Ω

e′(h)(∂
2
∆h)(∂

2
∆η̃ · ∇ãh) dy

∣∣∣∣∣t=T

t=0

+

∫ T

0

∫
Ω

(e′(h)∂
2
∆h)∂t(∂

2
∆η̃ · ∇ãh) dy.
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The second term on the RHS is controlled directly by
∫ T

0 P(‖h‖H , ‖∂2η‖2, ‖v‖4) dt. For the first term on the RHS, we have∣∣∣∣∣∣−
∫

Ω

e′(h)(∂
2
∆h)(∂

2
∆η̃ · ∇ãh) dy

∣∣∣∣∣t=T

t=0

∣∣∣∣∣∣ . P(‖h0‖H , ‖v0‖4) + ‖e′(h)∂
2
∆h(T )‖0‖∂2η(T )‖2‖∇ãh(T )‖L∞ .

Using ε-Young’s inequality, we have

‖e′(h)∂
2
∆h(T )‖0‖∂2η(T )‖2‖∇ãh(T )‖L∞

≤ ε‖e′(h)∂
2
∆h(T )‖20 +

1
8ε

(‖∂2η(T )‖42 + ‖∇ãh(T )‖4L∞ )

. ε‖e′(h)∂
2
∆h(T )‖20 +

(
P0 +

∫ T

0
P(‖v‖4, ‖∂η‖L∞ , ‖h‖H , ‖∂th‖3) dt

)
.

Therefore, ∫ T

0
K∗(t) dt . ε‖e′(h)∂

2
∆h(T )‖20 + P0 +

∫ T

0
P(‖v‖4, ‖η‖H , ‖h‖H , ‖∂th‖3) dt. (3.89)

Here, ε‖e′(h)∂
2
∆h(T )‖20 can be moved to the LHS when ε is sufficiently small. This concludes the control of K.

3.6.3 Tangential estimates of v: Boundary part

Now it remains to control the boundary term I, where the Taylor sign boundary term in Eκ is produced and the correction term
ψ exactly eliminates the extra out-of-control terms produced by the tangential smoothing (these terms are 0 if κ = 0).

I =

∫
Γ

∂3hã3αã3β∂
2
∆η̃βVα dS

=

∫
Γ

∂3hã3αã3β∂
2
∆η̃β(∂

2
∆vα − ∂

2
∆η̃ · ∇ãvα) dS

=

∫
Γ

∂3hã3αã3β∂
2
∆η̃β(∂

2
∆∂tηα − ∂

2
∆ψ − ∂

2
∆η̃ · ∇ãvα) dS .

(3.90)

We construct the Taylor-sign term in the energy functional Eκ from the first term.∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆∂tηα dS

=

∫
Γ

∂3hã3αã3β∂
2
∆Λκηβ∂

2
∆∂tΛκηα dS

+

∫
Γ

(∂
2
∆Λκηβ)([Λκ, ∂3hã3αã3β]∂

2
∆∂tηα) dS

=
d
dt

1
2

∫
Γ

∂3h|ã3α∂
2
∆Λκηα|

2 dS −
1
2

∫
Γ

∂t∂3h|ã3α∂
2
∆Λκηα|

2 dS

−

∫
Γ

∂3hã3β∂
2
∆Λκηβ∂tã3α∂

2
∆Λκηα dS︸                                             ︷︷                                             ︸

B1

+

∫
Γ

(∂
2
∆Λκηβ)([Λκ, ∂3hã3αã3β]∂

2
∆∂tηα) dS︸                                                  ︷︷                                                  ︸

LB1

.

(3.91)

In LB1, we integrate ∂0.5 by parts (by interpreting it in the Fourier sense) and then use Sobolev trace lemma, (2.32) and Lemma
3.3 to get

LB1 =

∫
Γ

(∂1.5∆Λκηβ)∂0.5([Λκ, ∂3hã3αã3β]∂(∂∆∂tηα)) dS

. ‖∂2η‖2|∂3hã3αã3β|W1,∞ |∂∆∂tηα|0.5

. ‖∂2η‖2‖∂
2h‖2‖∂ã‖L∞‖v + ψ‖4 . P(‖η‖H , ‖v‖3, ‖∂2h‖2).

(3.92)
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Next, we plug ∂tã3α = −ã3γ∂µ∂tη̃γãµα into B1 and then separate the normal derivative of η̃γ from tangential derivatives.

B1 =

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂3∂tη̃γã3α∂

2
∆Λκηα dS︸                                                     ︷︷                                                     ︸

LB2

+

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂i∂tη̃γãiα∂

2
∆Λκηα dS

= LB2 +

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κψγãiα∂

2
∆Λκηα dS︸                                                     ︷︷                                                     ︸

LB3

+

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κvγãiα∂

2
∆Λκηα dS︸                                                     ︷︷                                                     ︸

B∗1

.

(3.93)

LB2 can be directly bounded
LB2 . |ã3β∂

2
∆Λκηβ|

2
0|∂3hã3γ∂3∂tη̃γ|L∞

. |ã3β∂
2
∆Λκηβ|

2
0P(‖h‖H , ‖v‖3, ‖∂η‖L∞ ) . P(Eκ).

(3.94)

In LB3, the term ∂
2
∆Λκηα cannot be directly bounded, but we can use (2.28) in Lemma 2.6 to control this term by (1/

√
κ)|η|3.5.

LB3 . |∂3hã3γãiα|L∞ |ã3β∂
2
∆Λκηβ|0|∂Λ2

κψ|L∞
1
√
κ
|∂∆η|0.5

.
1
√
κ

P(‖∂2η‖2, ‖v‖3, ‖h‖H )|ã3β∂
2
∆Λκηβ|0|∂ψ|L∞ . (3.95)

The factor 1/
√
κ can be eliminated by plugging the expression of ψ in (3.2). We apply Sobolev embedding W1,4(R2) ↪→ L∞(R2)

first, and note that ∂ψ = P≥1(∂∆−1(· · · )) does not contain the low-frequency part, which (actually follows from the Littlewood-
Paley characterization of W1,4 and Ẇ1,4) implies |∂ψ|W1,4 ≈ |∂ψ|Ẇ1,4 ≈ |∆ψ|L4 . Hence, we have

|∂ψ|L∞ . |∆ψ|L4 =

∣∣∣∣∣∣∣∣∣∣P
(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)︸                                ︷︷                                ︸
f

∣∣∣∣∣∣∣∣∣∣
L4

.

According to the Littlewood-Paley characterization of L4(R2) and the almost orthogonality property, we know

|P f |L4 ≈

∣∣∣∣∣∣∣
∑

N∈Z

|P̃N P≥1 f |2
1/2∣∣∣∣∣∣∣

L4

≈

∣∣∣∣∣∣∣∣
∑

N≥0

|P̃N f |2
1/2

∣∣∣∣∣∣∣∣
L4

.

∣∣∣∣∣∣∣
∑

N∈Z

|P̃N f |2
1/2∣∣∣∣∣∣∣

L4

≈ | f |L4 ,

where P̃ is the Littlewood-Paley projection with respect to χ̃(·) := χ(2·).

Remark. For more details of Littlewood-Paley characterization of Sobolev spaces, we refer readers to Chapter 1.3 in Grafakos
[21] or Appendix A in Tao [52].

Hence, we have

|∂ψ|L∞ .
∣∣∣∣∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

∣∣∣∣
L4

.
∣∣∣∣∆(ηβ − Λ2

κηβ)ã
iβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂i(v − Λ2

κv)
∣∣∣∣
L4

. |∆(ηβ − Λ2
κηβ)|L∞ |ã

iβ|L∞ |∂iΛ
2
κv|0.5 + |∆η̃β|0.5|ãiβ|L∞ |∂(v − Λκv)|L∞ ,

where in the last step we use H0.5 ↪→ L4 in R2. Now, recall (2.29) in Lemma 2.6 that we are able to control |∆ηβ − Λ2
κ∆η|L∞ by

√
κ|∆η|1.5 ≤

√
κ‖∂2η‖2. Similarly, |∂(v − Λκv)|L∞ .

√
κ|∂v|1.5 .

√
κ‖v‖3. Therefore, one has

|∂ψ|L∞ .
√
κP(‖η‖H , ‖v‖3),
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and

LB3 . P(‖η‖H , ‖v‖3, ‖h‖H )|ã3β∂
2
∆Λκηβ|0 . P(Eκ). (3.96)

As for B∗1, it cannot be directly bounded, but together with another term they will be exactly eliminated by the correction
term in (3.90).

Now we start to control the third term in (3.90). Again we separate the normal derivative of v from tangential derivatives

−

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆η̃ · ∇ãvα dS

= −

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆η̃γã3γ∂3vα dS −

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆η̃γãiγ∂ivα dS︸                                            ︷︷                                            ︸

B∗2

=

∫
Γ

(−∂3hã3α∂3vα)(ã3β∂
2
∆η̃β)(ã3γ∂

2
∆η̃γ) dS + B∗2

. |ã3β∂
2
∆η̃β|

2
0P(‖v‖3, ‖∂η‖L∞ , ‖h‖H ) + B∗2 . P(Eκ) + B∗2,

(3.97)

where in the last step we control |ã3β∂
2
∆η̃β|0 as follows

|ã3β∂
2
∆η̃β|0 ≤ |Λκ(ã3β∂

2
∆Λκηβ)|0 + |[Λκ, ã3β]∂(∂∆Λκηβ)|0

. |Λκ(ã3β∂
2
∆Λκηβ)|0 + |ã|W1,∞ |∂3η|0 . P(‖η‖H ) . P(Eκ).

(3.98)

So far, what remains to be bounded is the second term in RHS of (3.90)

I2 := −
∫

Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆ψ dS , (3.99)

and
B∗1 =

∫
Γ

∂3hã3β∂
2
∆Λκηβã3γ∂iΛ

2
κvγãiα∂

2
∆Λκηα dS (3.100)

and
B∗2 = −

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2
∆η̃γãiγ∂ivα dS (3.101)

Plugging the expression of ψ in (3.2) into (3.99), one has

I2 = −

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2(∆ηγãir∂iΛ
2
κvα) dS (3.102)

+

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2η̃γãiγ∂ivα dS (3.103)

+

∫
Γ

∂3hã3αã3β∂
2
∆η̃β([∂2, ãiγ∂ivα]∆η̃γ) dS (3.104)

+

∫
Γ

∂3hã3αã3β∂
2
∆η̃β∂

2P<1

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)
dS . (3.105)

It is clear that (3.103) exactly cancels with B∗2 in (3.101), and (3.104) can be directly bounded

(3.104) . |∂3hã3α|L∞ |ã3β∂
2
∆Λκηβ|0|[∂2, ãiγ∂ivα]∆η̃γ|0

. P(‖h‖H , ‖η‖H , ‖v‖4, |ã3β∂
2
∆Λκηβ|0) . P(Eκ).

(3.106)

For (3.105), one can apply Bernstein’s inequality (2.23) in Lemma 2.5 and (3.98) to get

(3.105) . |∂3hã3α|L∞ |ã3β∂
2
∆Λκηβ|0

∣∣∣∣P<1

(
∆ηβãiβ∂iΛ

2
κv − ∆Λ2

κηβã
iβ∂iv

)∣∣∣∣
Ḣ2

. |∂3hã3α|L∞ |ã3β∂
2
∆Λκηβ|0 ·

∣∣∣∣∆ηβãiβ∂iΛ
2
κv − ∆Λ2

κηβã
iβ∂iv

∣∣∣∣
0

. P(Eκ).

(3.107)
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For (3.102), we try to move one Λκ on ηβ to ηα to produce the cancellation with B∗1 in (3.100):

(3.102) = −

∫
Γ

∂3hã3β∂
2
∆Λκηβ(ã3α∂iΛ

2
κvα)(ãiγ∂

2
∆Λκηγ) dS (3.108)

−

∫
Γ

∂3hã3β∂
2
∆Λκηβ([Λκ, ã3αã3βãir∂iΛ

2
κvα]∂

2
∆ηγ) dS (3.109)

−

∫
Γ

∂3hã3αã3β∂
2
∆η̃β([∂2, ãiγ∂iΛ

2
κvα]∆ηγ) dS (3.110)

Now we see that (3.108) exactly cancels with B∗1 in (3.100). The terms in (3.109) can be controlled by using the mollifier
property (2.32) after integrating ∂0.5 by part (similar to the estimates of LB1), and (3.110) can be directly controlled by using
Sobolev trace lemma. We omit the detailed computation here.

(3.109) + (3.110) . P(Eκ). (3.111)

Finally, summing up (3.91)-(3.101), (3.111) and plugging it into (3.90), we get the estimate for the boundary term I after
using the Taylor sign condition ∂3h ≤ −c0/2 < 0:∫ T

0
I(t) dt .

1
2

∫
Γ

∂3h|ã3α∂
2
∆Λκηα|

2 dS +

∫ T

0
P(Eκ(t)) dt . −

c0

4
|ã3α∂

2
∆Λκηα|

2
0 +

∫ T

0
P(Eκ(t)) dt (3.112)

Now, summing up (3.83), (3.84), (3.85), (3.86), (3.89) and (3.112), we get the estimates for the Alinhac’s good unknowns

‖V(T )‖20 + ‖e′(h)∂
2
∆h(T )‖20 + |ã3α∂

2
∆Λκηα|

2
0 . P0 +

∫ T

0
P(Eκ(t)) dt. (3.113)

Finally, from the property of Alinhac’s good unknowns (3.77), we can get the estimates of ∂4v that

‖∂4v(T )‖20 + ‖e′(h)∂4h(T )‖20 + |ã3α∂
2
∆Λκηα|

2
0 . P0 +

∫ T

0
P(Eκ(t)) dt. (3.114)

3.7 Closing the κ-independent a priori estimates
We conclude this section by deriving the uniform-in-κ a priori bound for the energy functional Eκ of approximation system
(3.1). Let T (t) := − 1

∂3h(t) . Then

d
dt
‖T (t)‖L∞ = ‖T (t)‖2L∞‖∂3∂th(t)‖L∞ ≤ ‖T (t)‖2L∞Eκ. (3.115)

This implies that the physical sign condition can be propagated if Eκ remains finite. Next, by plugging (3.50), (3.51), (3.52),
(3.56), (3.58), (3.59)-(3.62), (3.66), (3.72) and (3.114) into (3.3), with ε > 0 chosen sufficiently small, together with the
estimates for ‖∂η‖L∞ and ‖∂2η‖2, i.e.,

‖∂η‖L∞ ≤ ‖∂η0‖L∞ +

∫ T

0
‖v(t) + ψ(t)‖L∞ dt . ‖∂η0‖L∞ +

∫ T

0
‖v(t)‖2 + ‖ψ(t)‖2 dt, (3.116)

‖∂2η‖2 ≤ ‖∂
2η0‖2 +

∫ T

0
‖v(t)‖2 + ‖ψ(t)‖2 dt, (3.117)

we get

Eκ(T ) . P0 +

∫ T

0
P(Eκ(t)) dt. (3.118)

Now, (3.4) follows from (3.118) and the Gronwall-type inequality in Tao [52], which finishes the proof of Proposition 3.1.
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4 Construction of the solution to the approximation system
The goal of this section is to construct the solution to the κ-approximation (nonlinear) system (3.1) by an iteration of the approx-
imate solutions {(v(n), h(n), η(n))}∞n=0. We start with (v(0), h(0), η(0)) = (v(1), h(1), η(1)) = (0, 0, Id). Inductively, given (v(n), h(n), η(n))
for some n ≥ 1, we construct the (n + 1)-th approximate solutions (v(n+1), h(n+1), η(n+1)) from the linearization of (3.1) near
a(n) := [∂η(n)]−1: 

∂tη
(n+1) = v(n+1) + ψ(n) in Ω,

∂tv(n+1) = −∇ã(n) h(n+1) − ge3 in Ω,

divã(n) v(n+1) = −e′(h(n))∂th(n+1) in Ω,

h(n+1) = 0 on Γ,

(η(n+1), v(n+1), h(n+1))|t=0 = (Id, v0, h0).

(4.1)

Here ã(n) := [∂η̃(n)]−1 and the correction term ψ(n) is determined by (3.2) with η = η(n), v = v(n), ã = ã(n) in that equation.
Specifically, we need following facts for the linearized approximation system (4.1) to construct a solution to the κ-approximation
(nonlinear) system (3.1):

• System (4.1) has a (unique) solution (in a suitable function space).
• The solution of (4.1) constructed in the last step has an energy estimate uniformly in n.
• The approximate solutions {(v(n), h(n), η(n))}∞n=0 converge strongly (in some Sobolev spaces).

4.1 A priori estimates for the linearized approximation system
Before we construct the solution of (4.1), we would like to derive the uniform-in-n a priori estimates for this system. Define
the energy functional for (4.1) to be

E(n+1)(t) := ‖η(n+1)(t)‖2
H

+

4∑
k=0

‖∂4−k
t v(n+1)(t)‖2k +

‖h(n+1)(t)‖2
H

+

3∑
k=0

‖∂4−k
t h(n+1)(t)‖2k

 + W (n+1)(t), (4.2)

where W (n+1) is the energy functional for the 5-th order wave equation of h(n+1)

W (n+1)(t) :=
4∑

k=0

‖∂5−k
t h(n+1)(t)‖2k +

3∑
k=0

‖∂4−k
t ∇ã(n) h(n+1)(t)‖2k + ‖∇ã(n) h(n+1)(t)‖2L∞ + ‖∂∇ã(n) h(n+1)(t)‖23. (4.3)

Remark. The last two terms in (4.3) can be simplified to ‖∇ã(n) h(n+1)(t)‖24 if Ω is bounded. In this case, the wave energy becomes
W (n+1) =

∑4
k=0(‖∂5−k

t h(n+1)‖2k + ‖∂4−k
t ∇ã(n) h(n+1)‖2k).

Our conclusion is

Proposition 4.1. For the solution (v(n+1), h(n+1), η(n+1)) of (4.1), there exists Tκ > 0 sufficiently small, depending only on κ > 0
such that

sup
0≤t≤Tκ

E(n+1)(t) . P0. (4.4)

Remark. As we will see in the following computation, the control of 4-th order derivatives of v and h does not need the energy
of 5-th order wave equation of h; the only important difference from the a priori estimates for (3.1) is the boundary term (4.42)
for which we apply the property of tangential smoothing to give a direct control with an extra factor 1/κ, instead of producing
subtle cancellation as in Section 3.6. However, we included W (n+1) in E(n+1) since we need this constraint when constructing the
function space when proving the existence of the solution to the linearized system.

We prove Proposition 4.1 by induction on n. First, when n = −1, 0, then the conclusion automatically holds because of
(v(0), h(0), η(0)) = (v(1), h(1), η(1)) = (0, 0, Id). Suppose uniform bound holds for all positive integers≤ n − 1. Then from the
induction hypothesis, one has

∀k ≤ n, sup
0≤t≤Tκ

E(k)(t) . P0. (4.5)
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We would like to first simplify our notation before we derive the energy estimate for (v(n+1), h(n+1), η(n+1)). We denote
(v(n), h(n), η(n)) by (v̊, h̊, η̊) and å := [∂η̊]−1, J̊ := det[∂η̊]; and (v(n+1), h(n+1), η(n+1)) by (v, h, η). The smoothed version of å, η̊, J̊
are denoted by ˚̃a, ˚̃η, ˚̃J respectively. Besides, we define σ := e′(h̊). Now, the linearized system (4.1) becomes

∂tη = v + ψ̊ in Ω,

∂tv = −∇ ˚̃ah − ge3 in Ω,

div ˚̃av = −σ∂th in Ω,

h = 0 on Γ,

(η, v, h)|t=0 = (Id, v0, h0).

(4.6)

We note that the initial data of (4.6) is the same as the original system (1.13) because å|t=0 = a|t=0 = I.

4.1.1 Uniform-in-n bounds for the coefficients

The energy functional for v̊, h̊, η̊ reads

E̊ := ‖η̊‖2
H

+

4∑
k=0

‖∂4−k
t v̊‖2k +

‖h̊‖2H +

3∑
k=0

‖∂4−k
t h̊‖2k

 + W̊, (4.7)

where W̊ is the energy functional for the 5-th order wave equation of h̊, i.e.,

W̊ :=
4∑

k=0

‖∂5−k
t h̊‖2k +

3∑
k=0

‖∂4−k
t ∇ ˚̃a(n−1) h̊‖2k + ‖∇ ˚̃a(n−1) h̊‖2L∞ + ‖∂∇ ˚̃a(n−1) h̊‖23. (4.8)

We have

sup
0≤t≤Tκ

E̊(t) . P0 (4.9)

in light of the induction hypothesis (4.5).
In addition, we have the following bounds for å, η̊, J̊ provided they hold for (v(k), h(k), η(k)) for k ≤ n − 1. The control of these
quantities are important when we do the uniform-in-n a priori estimates and construct the solution for system (4.6).

Lemma 4.2. Let T ∈ (0,Tκ). There exists some 0 < ε << 1 and N > 0 such that

ψ̊ ∈ L∞t ([0,T ]; H4(Ω)), ∂l
tψ̊ ∈ L∞t ([0,T ]; H5−l(Ω)), ∀1 ≤ l ≤ 4; (4.10)

‖J̊ − 1‖3 + ‖ ˚̃J − 1‖3 + ‖Id − ˚̃a‖3 + ‖Id − å‖3 ≤ ε; (4.11)

∂η̊ ∈ L∞([0,T ]; L∞(Ω)), ∂2η̊ ∈ L∞([0,T ]; H2(Ω)); (4.12)

∂tη̊ ∈ L∞([0,T ]; H4(Ω)); (4.13)

∂l+1
t η̊ ∈ L∞([0,T ]; H5−l(Ω)), ∀1 ≤ l ≤ 4; (4.14)

J̊ ∈ L∞([0,T ]; L∞(Ω)), ∂J̊ ∈ L∞([0,T ]; H2(Ω); (4.15)

∂t J̊ ∈ L∞([0,T ]; H3(Ω)), ∂l+1
t J̊ ∈ L∞([0,T ]; H4−l(Ω)), ∀1 ≤ l ≤ 4; (4.16)

1/N ≤ σ ≤ N, ∂l
tσ ∈ L∞([0,T ]; H5−l(Ω)), ∀1 ≤ l ≤ 5. (4.17)

Particularly, we have

sup
t∈[0,T ]

(
‖η̊‖H + ‖∂tη̊(t)‖4 +

∑
1≤l≤4

‖∂l+1
t η̊(t)‖5−l + ‖J̊(t)‖L∞

+ ‖∂J̊(t)‖2 + ‖∂t J̊(t)‖3 +
∑

1≤l≤4

‖∂l+1
t J̊‖4−l +

∑
1≤l≤5

‖∂l
tσ(t)‖5−l

)
≤ P0. (4.18)
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Proof. First, the bound for ψ̊ and ∂l
tψ̊ for 1 ≤ l ≤ 3 directly follows from (3.12)-(3.15) in Lemma 3.3. Then the identity

Id − å = −

∫ t

0
∂tå =

∫ t

0
å : (∂∂tη̊) : å =

∫ t

0
å : (∂(v̊ + ψ(n−1))) : å

yields (4.11) by choosing ε suitably small (depending on Tκ). Similar results hold for J̊.
As for η̊, ∂tη̊ = v̊ + ψ(n−1) gives (4.12) and (4.13). Taking ∂l

t in this equation and combining the induction hypothesis on E̊
and ψ(n−1) we can get the bound for ∂l+1

t η̊ in (4.14). For J̊, recall J̊ := det[∂η̊] which equals a multi-linear funtion of its elements
∂η̊. So the bound for η̊ and ∂l

tη̊ yields the bounds for ∂l
t J̊.

To conclude the proof, it suffices to control ‖∂4
t ψ̊‖1. From (3.20), we know∆∂4

t ψ̊ = 0 in Ω,

∂4
t ψ̊ = ∆−1P∂4

t

(
∆η̊β ˚̃aiβ∂iΛ

2
κ v̊ − ∆Λ2

κ η̊β ˚̃aiβ∂iv̊
)

on Γ.
(4.19)

Using Lemma 2.3 for harmonic functions, we know

‖∂4
t ψ̊‖1 . |∂

4
t ψ̊|0.5 =

∣∣∣∣∆−1P∂4
t

(
∆η̊β ˚̃aiβ∂iΛ

2
κ v̊ − ∆Λ2

κ η̊β ˚̃aiβ∂iv̊
)∣∣∣∣

0.5

. |P∂4
t

(
∆η̊β ˚̃aiβ∂iΛ

2
κ v̊ − ∆Λ2

κ η̊β ˚̃aiβ∂iv̊
)
|Ḣ−1.5

. |P∂4
t

(
∆η̊β ˚̃aiβ∂iΛ

2
κ v̊ − ∆Λ2

κ η̊β ˚̃aiβ∂iv̊
)
|Ḣ−0.5 ,

where we used the Bernstein inequality (2.24) and the definition of P (restrict |ξ| & 1 to get the last inequality).
The most difficult terms appear when ∂4

t falls on ∆η̊ or ∂v̊. Here we only show how to control ∆Λ2
κ η̊β ˚̃aiβ∂i∂

4
t v̊ and the rest

highest order terms can be controlled in the same way. For any test function φ ∈ Ḣ0.5(R2) with |φ|Ḣ0.5 ≤ 1, we consider

|〈∆Λ2
κ η̊β ˚̃aiβ∂i∂

4
t v̊, φ〉| = |〈∂i∂

4
t v̊,∆Λ2

κ η̊β ˚̃aiβφ〉|

= |〈∂0.5∂4
t v̊, ∂0.5(∆Λ2

κ η̊β ˚̃aiβφ)〉|

. |∂4
t v|Ḣ0.5 |∆Λ2

κ η̊β ˚̃aiβφ|Ḣ0.5

. ‖∂4
t v‖1(|φ|Ḣ0.5 |∆Λ2

κ η̊ ˚̃a|L∞ + |φ|L4 |∆η̊|Ẇ0.5,4 |å|L∞ )

. (‖∂4
t v‖1‖∂2η̊‖2‖∂η̊‖L∞ )|φ|Ḣ0.5 ,

where we used Ḣ−0.5-Ḣ0.5 duality and Kato-Ponce inequality (2.20). Taking supremum over all φ ∈ Ḣ0.5(R2) with |φ|Ḣ0.5 ≤ 1,
we obtain

‖∆Λ2
κ η̊β ˚̃aiβ∂i∂

4
t v̊‖Ḣ−0.5 . ‖∂4

t v̊‖1‖∂2η̊‖2‖∂η̊‖L∞ ,

and thus gives the bound for ‖∂4
t ψ̊‖1. From the second equation of (4.1) we know that ∂4

t v̊ = −∂3
t ∇ã(n−1) h̊, of which the H1-norm

of the RHS is exactly in the energy functional E(n−1) as in (4.2)-(4.3). So ‖∂4
t ψ̊‖1 is bounded by the induction hypothesis.

It remains to control ‖∂5
t η̊‖1 which also gives the bounds for ∂5

t J̊. Taking ∂4
t in the first equation of (4.6) we have ∂5

t η̊ =

∂4
t v̊ + ∂4

t ψ
(n−1) and ∂4

t ψ
(n−1) can be bounded in H1 in the same way as above. Lastly, (4.18) follows from the estimates above

and (4.9). �

4.1.2 Uniform-in-n a priori estimates for the linearized system

With the inductive hypothesis (4.5) and Lemma 4.2, we are now able to control the energy functional for (v, h, η) which solves
the system (4.6). Let

E(n+1) := ‖η‖2
H

+

4∑
k=0

‖∂4−k
t v‖2k +

‖h‖2H +

3∑
k=0

‖∂4−k
t h‖2k

 + W (n+1), (4.20)

where W (n+1) is the energy functional for the 5-th order wave equation of h

W (n+1) :=
4∑

k=0

‖∂5−k
t h‖2k +

3∑
k=0

‖∂4−k
t ∇ ˚̃ah‖2k + ‖∇ ˚̃ah‖2L∞ + ‖∂∇ ˚̃ah‖23. (4.21)

The estimate for E(n+1) − W (n+1) is quite similar (actually a bit easier) to what we have done in Sect. 3, so we will not
go over all the details, but still point out the different steps, especially the boundary term control, because we no longer need
κ-independent estimates.
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Step 1: Estimates for h The lower order term ‖∂h‖L∞ can be treated identically as what appears in Section 3.3.1. The
arguments in Sections 3.3.2-3.3.3 suggest that the key to control the top order Sobolev norm of h is to study the wave equation

˚̃Jσ∂2
t h − ∂µ(E̊νµ∂µh) = − ˚̃J∂t ˚̃aνα∂νvα − ˚̃J∂tσ∂th, where E̊νµ := ˚̃J ˚̃aνα ˚̃aµα, (4.22)

which is obtained by taking ˚̃Jdiv ˚̃a in the second equation of (4.6). Let D = ∂ or ∂t. We take D3 in (4.22) to get

˚̃Jσ∂2
tD

3h − ∂ν(E̊νµ
D

3∂µh) = −D3( ˚̃J∂t ˚̃aνα∂νvα) − [D3, ˚̃Jσ]∂2
t h +D3( ˚̃J∂tσ∂th) + ∂ν([D3, E̊νµ]∂µh). (4.23)

Compared with (3.35), we only replace e′(h), ã and J̃ by σ, ˚̃a and ˚̃J, respectively. Using the same method and the a priori
bound in Lemma 4.2, one can get∑

D3

∫
Ω

J̃e′(h)|D3∂th|2 + |∂D3h|2 dy
∣∣∣∣∣
t=T

. P0 + ε‖∂3h(T )‖21 +
∑
D3

∫ T

0
P(‖∂2η̊‖2, ‖∂η̊‖L∞ , ‖v‖4, ‖∂tv‖3, ‖∂2

t v‖3, ‖∂h‖L∞ , ‖∂th‖3, ‖∂2
t h‖1)‖D3∂h‖0 dt,

(4.24)

where ε > 0 can be chosen sufficiently small such that ε‖∂3h(T )‖21 can be absorbed by LHS. Finally, the full Sobolev norm
‖∂4−k

t h‖k, k = 0, 1, 2, 3 and ‖h‖H can be bounded by adapting the arguments in Section 3.3.3.

Step 2: The div-curl estimates for v From (4.11), (4.13) and (4.14) in Lemma 4.2, we know all the steps can be copied as in
Section 3.4 after replace ã by ˚̃a, η by η̊ and e′(h) by σ. We omit the detailed computations and only list the results here.

• L2-estimates:

‖v(T )‖0 ≤ ‖v0‖0 +

∫ T

0
‖∂tv(t)‖0 dt,

‖∂tv(T )‖0 . ‖∂tv(0)‖0 +

∫ T

0
‖∂2

t v(t)‖0 dt . ‖∂tv(0)‖0 +

∫ T

0
P(‖η̊‖H , ‖v‖3, ‖∂h‖L∞ , ‖∂th‖1) dt,

‖∂2
t v(T )‖0 . ‖∂2

t v(0)‖0 +

∫ T

0
P(‖η̊‖H , ‖∂tv‖1, ‖∂h‖L∞ , ‖∂th‖1, ‖∂2

t h‖1) dt,

‖∂3
t v(T )‖0 . ‖∂3

t v(0)‖0 +

∫ T

0
P(‖η̊‖H , ‖v‖3, ‖∂tv‖2, ‖∂2

t v‖1, ‖h‖H , ‖∂th‖2, ‖∂2
t h‖1, ‖∂3

t h‖0) dt.

(4.25)

• Boundary estimates:

|∂2(∂tv · N)|0.5 . ‖∂3∂tv‖0 + ‖∂2div ∂tv‖0 (4.26)

|∂(∂2
t v · N)|0.5 . ‖∂2∂2

t v‖0 + ‖∂div ∂2
t v‖0 (4.27)

|∂3
t v · N |0.5 . ‖∂∂3

t v‖0 + ‖div ∂3
t v‖0. (4.28)

• The div-curl estimates:

3∑
k=0

‖div ∂k
t v‖3−k . P0 +

∫ T

0
P(E(n+1)(t)) dt. (4.29)

3∑
k=0

‖curl ∂k
t v‖3−k . ε

3∑
k=0

‖∂k
t v‖4−k + P0 + P0

∫ T

0
P(E(n+1)(t) −W (n+1)(t)) dt. (4.30)

Combining with Hodge’s decomposition inequality in Lemma 2.7, to estimate the full Sobolev norm of ∂k
t v, it suffices to

control ‖∂k∂4−k
t ‖0.
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Step 3: Tangential estimates for time derivatives of v This part also follows in the same way as Section 3.5. Let D4 =

∂4
t , ∂∂

3
t , ∂

2∂2
t , ∂

3∂t. One can directly compute d
dt

1
2

∫
Ω
|D4h| dy and follow the same method in (3.67)-(3.71) to get the analogous

conclusion as (3.72):
4∑

k=1

d
dt

(
‖∂k

t ∂
4−kv‖20 + ‖

√
σ∂k

t ∂
4−kh‖20

)
. P0 · P(E(n+1)(t) −W (n+1)(t)). (4.31)

Step 4: Tangential estimates for v In this step we still mimic the proof as in Section 3.6. For a given function g, we use G̊
to denote its Alinhac’s good unknown. Then there holds

∂
2
∆(∇ ˚̃ag) = ∇ ˚̃aG̊ + C̊(g), (4.32)

where the error term C̊(g) is defined in the same way as in (3.74) but replacing ã by ˚̃a. In view of (3.75), we have

‖C̊(g)‖0 . P(‖η̊‖H )‖g‖H . (4.33)

Similar to (3.77), one also has

‖∂4g(T )‖0 . ‖G̊(T )‖0 +

∫ T

0
P(‖η̊‖H , ‖v̊‖4, ‖∂g‖L∞ , ‖∂tg‖L∞ ). (4.34)

We introduce the Alinhac’s good unknown V̊ and H̊ for v and h:

V̊ := ∂
2
∆v − ∂

2
∆ ˚̃η · ∇ ˚̃av, (4.35)

H̊ := ∂
2
∆h − ∂

2
∆ ˚̃η · ∇ ˚̃ah. (4.36)

Applying ∂
2
∆ to the second equation in the linearization system (4.6), one gets

∂tV̊ = −∇ ˚̃aH̊ + ∂t(∂
2
∆ ˚̃η · ∇ ˚̃av) − C̊(h)︸                      ︷︷                      ︸

=:F̊

, (4.37)

subject to the boundary condition
H̊ = −∂

2
∆ ˚̃ηβ ˚̃a3β∂3h on Γ, (4.38)

and the corresponding compressibility condition

∇ ˚̃a · V̊ = ∂
2
∆(div ˚̃av) − C̊α(vα), in Ω. (4.39)

Now we take L2 inner product between (4.37) and V̊ to get analogous result to (3.83).

1
2

d
dt

∫
Ω

|V̊|2 dy = −

∫
Ω

∇ ˚̃aH̊ · V̊ dy +

∫
Ω

F̊ · V̊ dy, (4.40)

where ‖F̊‖0 can be directly controlled as in (3.84). As for the first term, we integrate by parts to get

−

∫
Ω

∇ ˚̃aH̊ · V̊ dy = −

∫
Γ

˚̃a3αV̊αH̊ dS +

∫
Ω

H̊(∇ ˚̃a · V̊) dy +

∫
Ω

∂µ ˚̃aµαH̊V̊α dy, (4.41)

where the second and the third term can be controlled in the same way as in (3.85)-(3.89).
For the boundary term in (4.41), we no longer need to plug the precise form of ψ̊ into it and find the subtle cancellation

as in Section 3.6 because the energy estimate is not required to be κ-independent. Instead, we integrate ∂0.5 by parts, apply
Kato-Ponce inequality (2.20) and Sobolev embedding H0.5(R2) ↪→ L4(R2) to get

−

∫
Γ

˚̃a3αV̊αH̊ dS =

∫
Γ

∂3h∂
2
∆(Λ2

κ η̊β) ˚̃a3β ˚̃a3αV̊α dS

.
(
|∂3h ˚̃a3β ˚̃a3α|L∞ |∂

2
∆(Λ2

κ η̊β)|0.5| + |∂3h ˚̃a3β ˚̃a3α|W0.5,4 |∂
2
∆(Λ2

κ η̊β)|L4
)
|V̊|Ḣ−0.5

. ‖h‖H (| ˚̃a|L∞ + |∂ ˚̃a|20.5)
1
κ
‖∂3η‖1(|∂3v|Ḣ0.5 + |∂3 ˚̃η|Ḣ0.5 | ˚̃a∂v|L∞ + |∂3 ˚̃η|L4 | ˚̃a∂v|Ẇ0.5,4 )

.
1
κ

P(‖η̊‖H , ‖h‖H , ‖v‖4).

(4.42)
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Combining (4.34) with the estimates above, we have

‖∂4v(T )‖0 .κ P0 +

∫ T

0
P(E(n+1)(t) −W (n+1)(t)) dt. (4.43)

Summing up the estimates for h, div-curl estimates and tangential estimates, we get

4∑
k=0

‖∂4−k
t v‖2k +

(
‖h‖2
H

+

3∑
k=0

‖∂4−k
t h‖20

)
.κ P0 +

∫ T

0
P(E(n+1)(t) −W (n+1)(t)) dt. (4.44)

4.1.3 Estimates for W (n+1): 5-th order wave equation of h

We would like to control

W (n+1) =

4∑
k=0

‖
√
σ∂5−k

t h‖2k +

3∑
k=0

‖∂4−k
t ∇ ˚̃ah‖2k + ‖∇ ˚̃ah‖2L∞ + ‖∂∇ ˚̃ah‖23.

It suffices to control only the top order terms. We take div ˚̃a in the second equation of (4.6) to get the wave equation for h:

σ∂2
t h − ∆ ˚̃ah = −∂t ˚̃aνα∂νvα − ∂tσ∂th. (4.45)

Before we derive the higher order wave equation, we would like to reduce the estimates of W (n+1) to that of ‖
√
σ∂5

t h‖20+‖∂4
t ∇ ˚̃ah‖20

via (4.45) and the elliptic estimate Lemma 2.8.
We start with ‖∂4∇ ˚̃ah‖0 and ‖∂4∂th‖0. By the elliptic estimate Lemma 2.8, we have

‖∂4∇ ˚̃ah‖0 . C(‖ ˚̃η‖H )(
∑
r≤3

‖∂r∆ ˚̃ah‖0 + ‖∂∂ ˚̃η‖3‖h‖H ), (4.46)

in which the term ‖∂∂ ˚̃η‖3 . κ−1‖∂2η̊‖2 by the property of tangential smoothing. The term ∂3∆ ˚̃ah can be expressed as follows by
using (4.45)

∂3∆ ˚̃ah = ∂3(σ∂2
t h) + ∂3(∂t ˚̃aνα∂νvα + ∂tσ∂th), (4.47)

which produces one more time derivative and thus reduce the control of ∂4∇ ˚̃ah to ∂3∂2
t h:

‖∂3∆ ˚̃ah‖0 ≤ ‖σ∂3∂
2
t h‖0 + ‖[∂3, σ]∂2

t h‖0 + ‖∂t ˚̃aνα∂νvα‖3 + ‖∂tσ∂th‖3. (4.48)

As for ∂4∂th, we note that for any 1 ≤ r ≤ 4,

(∂r f )α = ∂r−1∂α f = ∂r−1( ˚̃aµα∂µ f ) + ∂r−1((δµα − ˚̃aµα)∂µ f )

together with ‖ ˚̃a − 1‖ ≤ ε gives
‖∂r f ‖0 . ‖∂r−1∇ ˚̃a f ‖0 + ε‖∂r f ‖0, (4.49)

where the last term can be absorbed by LHS after choosing ε > 0 sufficently small.
Therefore we have

∂3∂α∂th = ∂3( ˚̃aµα∂µ∂th) + ∂3((δµα − ˚̃aµα)︸       ︷︷       ︸
‖·‖3≤ε

∂µ∂th), (4.50)

which gives
‖∂4∂th‖0 . ‖∂3∇ ˚̃a∂th‖0 + ε‖∂4∂th‖0, (4.51)

where the last term can be absorbed by LHS after choosing ε > 0 sufficiently small. So we are able to reduce the estimates for
‖∂4∇ ˚̃ah‖0 and ‖∂4∂th‖0 to ‖∂3∂2

t h‖0 and ‖∂3∇ ˚̃a∂th‖0, respectively, plus lower order terms. In other words, we replace one spatial
derivative by one time derivative via the elliptic estimate and wave equation (4.45).

Next, since ∂th|Γ = 0, we apply the elliptic estimate in Lemma (2.8) to ∇ ˚̃a∂th to get

‖∂3∇ ˚̃a∂th‖0 . C(‖ ˚̃η‖H )(
∑
r≤2

‖∂r∆ ˚̃a∂th‖0 + ‖∂∂ ˚̃η‖3‖∂th‖3). (4.52)
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The term ∂r∆ ˚̃a∂th can be re-expressed as follows by commuting ∂t through (4.45):

∂2∆ ˚̃a∂th = σ∂2∂3
t h + ∂2∂t(∂t ˚̃aνα∂νvα + ∂tσ∂th) + [∂2∂t, σ]∂2

t h − ∂2([∂t,∆ ˚̃a]h), (4.53)

and thus the control of ∂2∆ ˚̃a∂t is reduced to σ∂2∂3
t h plus the other terms on the RHS of the last inequality

‖∂2∆ ˚̃a∂th‖0 . ‖σ∂2∂3
t h‖0 + ‖∂t(∂t ˚̃aνα∂νvα + ∂tσ∂th)‖2 + ‖[∂2∂t, σ]∂2

t h‖0 + ‖[∂t,∆ ˚̃a]h‖2. (4.54)

As for ∂3∂2
t h, we again rewrite one Lagrangian spatial derivative in terms of one Eulerian spatial derivative plus an error term:

∂2∂α∂
2
t h = ∂2( ˚̃aµα∂µ∂2

t h) + ∂2((δµα − ˚̃aµα)∂µ∂2
t h), (4.55)

which gives
‖∂3∂2

t h‖0 . ‖∂2∇ ˚̃a∂
2
t h‖0 + ε‖∂3∂2

t h‖0, (4.56)

where the last term can be again absorbed by LHS after choosing ε > 0 sufficiently small.
The reduction mechanism above can be summarized as the following diagram

∂4∂th
(4.49)
−−−−→ ∂3∇ ˚̃ah

Lem 2.8
−−−−−→

(4.45)
∂2∂3

t h
(4.49)
−−−−→ ∂∇ ˚̃a∂

3
t h

Lem 2.8
−−−−−→

(4.45)
∂5

t h;

∂4∇ ˚̃ah
Lem 2.8
−−−−−→

(4.45)
∂3∂2

t h
(4.49)
−−−−→ ∂2∇ ˚̃a∂

2
t h

Lem 2.8
−−−−−→

(4.45)
∂∂4

t h
(4.49)
−−−−→ ∇ ˚̃a∂

4
t h.

(4.57)

As is shown above, we are able to replace one spatial derivative by one time derivative after using the elliptic estimate and
wave equation (4.45). Repeat the steps above, we can reduce the estimates of W (n+1) to ‖∂5

t h‖0 and ‖∂4
t ∇ ˚̃ah‖0 which can be

controlled via the 5-th order wave equation of h (i.e., taking ∂4
t in (4.45)) plus commutator terms. Specifically,

4∑
k=1

‖∂5−k
t ∂kh‖0 + ‖∂4−k

t ∂k∇ ˚̃ah‖0 . C(‖∂η̊‖L∞ , ‖∂2η̊‖2)(σ + σ2)(‖∂5
t h‖0 + ‖∇ ˚̃a∂

4
t h‖0) (4.58)

+
1
κ

C(‖∂η̊‖L∞ , ‖∂2η̊‖2)(σ + σ2)(‖h‖0 + ‖∂th‖0 + · · · + ‖∂3
t h‖0) (4.59)

+ ‖[∂3, σ]∂2
t h‖0 + ‖∂t ˚̃aνα∂νvα‖3 + ‖∂tσ∂th‖3 (4.60)

+ ‖∂t(∂t ˚̃aνα∂νvα + ∂tσ∂th)‖2 + ‖[∂2∂t, σ]∂2
t h‖0 + ‖[∂t,∆ ˚̃a]h‖2 (4.61)

+ ‖∂2
t (∂t ˚̃aνα∂νvα + ∂tσ∂th)‖1 + ‖[∂∂2

t , σ]∂2
t h‖0 + ‖[∂2

t ,∆ ˚̃a]h‖1 (4.62)

+ ‖∂3
t (∂t ˚̃aνα∂νvα + ∂tσ∂th)‖0 + ‖[∂3

t , σ]∂2
t h‖0 + ‖[∂3

t ,∆ ˚̃a]h‖0 (4.63)

+

4∑
k=1

‖∂k([∂4−k
t , ˚̃aµα]∂µh)‖20 (4.64)

Here, all the commutator and error terms (4.59)-(4.64) consists of ≤ 4 derivatives of v, η, h, and ˚̃a which have no problem to
bound. Thus,

(4.59) + · · · + (4.64) . P0

(
E(n+1)(t) −W (n+1)(t)

)
, (4.65)

where the RHS is controlled in (4.44).
It remains to control ‖

√
σ∂5

t h‖0 + ‖∂4
t ∇ ˚̃ah‖0. We apply ∂4

t to (4.45) to get:

σ∂6
t h − ˚̃aνα∂ν( ˚̃aµα∂µ∂4

t h) = −∂4
t (∂t ˚̃aνα∂νvα) − ∂4

t (∂tσ∂th) − [∂4
t , σ]∂2

t h + [∂4
t ,∆ ˚̃a]h︸                                                                 ︷︷                                                                 ︸

=:F5

. (4.66)

Multiplying (4.66) by ∂5
t h and integrate over Ω, we get∫

Ω

σ∂5
t h∂6

t h dy −
∫

Ω

∂5
t h ˚̃aνα∂ν( ˚̃aµα∂µ∂4

t h) dy =

∫
Ω

F5∂
5
t h dy︸         ︷︷         ︸

LW1

. (4.67)

The first term in (4.67) is
1
2

d
dt

∫
Ω

σ|∂5
t h|2 dy −

1
2

∫
Ω

∂tσ|∂
5
t h|2 dy. (4.68)
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For the second term in (4.67), we integrate ∂ν by parts and note that ∂5
t h|Γ = 0 makes the boundary integral vanish.

−

∫
Ω

∂5
t h ˚̃aνα∂ν( ˚̃aµα∂µ∂4

t h) dy

=

∫
Ω

( ˚̃aνα∂ν∂5
t h)( ˚̃aµα∂µ∂4

t h) dy +

∫
Ω

∂5
t h∂ν ˚̃aνα( ˚̃aµα∂µ∂4

t h) dy︸                           ︷︷                           ︸
LW2

=
1
2

d
dt

∫
Ω

|∇ ˚̃a∂
4
t h|2 dy +

∫
Ω

([ ˚̃aνα, ∂t]∂ν∂4
t h)( ˚̃aµα∂µ∂4

t h) dy︸                                   ︷︷                                   ︸
LW3

+LW2.

(4.69)

Plugging (4.68) and (4.69) into (4.67), we have

d
dt

(∫
Ω

σ|∂5
t h|2 + |∇ ˚̃a∂

4
t h|2 dy

)
=

1
2

∫
Ω

∂tσ|∂
5
t h|2 dy + LW1 + LW2 + LW3. (4.70)

Now we come to estimate the RHS of (4.70): First, invoking (4.17), we have

1
2

∫
Ω

∂tσ|∂
5
t h|2 dy . ‖∂tσ‖L∞‖∂

5
t h‖20 . P0‖

√
σ∂5

t h‖20. (4.71)

Second, invoking (4.18), we have
LW2 . P0‖∂

5
t h‖0‖∇ ˚̃a∂

4
t h‖0, (4.72)

LW3 = −

∫
Ω

(∂t ˚̃aνα)(∂ν∂4
t h)( ˚̃aµα∂µ∂4

t h) dy . P0‖∂∂
4
t h‖0‖∇ ˚̃a∂

4
t h‖0. (4.73)

We can write ∂α∂4
t h = ˚̃aµα∂µ∂4

t h + (δµα − ˚̃aµα)∂µ∂4
t h and invoke | ˚̃a − Id| ≤ ε to get ‖∂∂4

t h‖0 . ‖∇ ˚̃a∂
4
t h‖0. In consequence,

LW3 . P0‖∇ ˚̃a∂
4
t h‖20. (4.74)

It remains to estimate LW1, i.e., ‖F5‖0.

• ‖∂4
t (∂t ˚̃aνα∂νvα)‖0: There are two terms containing 5 derivatives: ∂5

t
˚̃aνα∂νvα and ∂t ˚̃aνα∂4

t ∂νvα. The rest terms are of ≤ 4
derivatives and hence controlled. By (4.18) we know that ‖∂5

t
˚̃a‖0 . P0, which gives ‖∂5

t
˚̃aνα∂νvα‖0 . P0‖∂v‖2. As for the

second term, we invoke the second equation of (4.6) to get ∂4
t ∂v = −∂3

t ∂(∇ ˚̃ah + ge3) = −∂3
t ∂(∇ ˚̃ah), so we have

‖∂4
t (∂t ˚̃aνα∂νvα)‖0 . P0

(
‖∂v‖2 + ‖∂3

t ∂(∇ ˚̃ah)‖0
)
. (4.75)

• ‖∂4
t (∂tσ∂th)‖0: Expanding all the terms, and then use the previous estimates for ≤ 4 derivative and invoking (4.18), we

have
‖∂4

t (∂tσ∂th)‖0
. ‖∂5

t σ‖0‖∂th‖2 + ‖∂4
t σ‖0‖∂

2
t h‖2 + ‖∂3

t σ‖1‖∂
3
t h‖1 + ‖∂2

t σ‖L∞‖∂
4
t h‖0 + ‖∂tσ‖L∞‖∂

5
t h‖0

. P0(‖∂th‖2 + ‖∂2
t h‖2 + ‖∂3

t h‖1 + ‖∂4
t h‖0 + ‖∂5

t h‖0).

(4.76)

Also, one can control [∂4
t , σ]∂2

t h in exactly the same way, so we omit the details.
• [∂4

t ,∆ ˚̃a]h: A direct computation gives

[∂4
t ,∆ ˚̃a]h = ∂4

t ( ˚̃aνα∂ν( ˚̃aµα∂µh)) − ˚̃aνα∂ν( ˚̃aµα∂µ∂4
t h)

= ∂4
t ( ˚̃aνα∂ν( ˚̃aµα∂µh)) − ˚̃aνα∂ν∂4

t ( ˚̃aµα∂µh) + ˚̃aνα∂ν∂4
t ( ˚̃aµα∂µh) − ˚̃aνα∂ν( ˚̃aµα∂µ∂4

t h)

= [∂4
t , ˚̃aνα]∂ν( ˚̃aµα∂µh) + ˚̃aνα∂ν([∂

4
t , ˚̃aµα]∂µh)

=

4∑
l=1

(∂l
t
˚̃aνα)(∂4−l

t ∂ν( ˚̃aµα∂µh)) + ˚̃aνα∂ν
(
(∂l

t
˚̃aµα)(∂4−l

t ∂µh)
)
.

Therefore,

‖[∂4
t ,∆ ˚̃a]h‖0 . ‖∂4

t å‖0‖η‖H‖h‖H + ‖∂3
t å‖1‖∂t∇ ˚̃ah‖2 + ‖∂2

t å‖2‖∂2
t ∇ ˚̃ah‖1 + ‖∂tå‖1‖∂3

t ∇ ˚̃ah‖1
+ ‖å‖L∞ (‖∂∂4

t å‖0‖∂h‖L∞ + ‖∂∂3
t å‖0‖∂∂th‖2 + ‖∂∂2

t å‖1‖∂∂2
t h‖1 + ‖∂∂tå‖2‖∂∂3

t h‖0)

. P0 · (P(E(n+1) −W (n+1)) + ‖∂3
t ∇ ˚̃ah‖1).

(4.77)
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Combining (4.75)-(4.77), one has

LW1 .
1
√
σ
P0 · P(E(n+1))‖∂5

t h‖0. (4.78)

Summing up (4.70), (4.71), (4.72), and (4.74), we get the estimates for the wave equation (4.66)

d
dt

(∫
Ω

σ|∂5
t h|2 + |∇ ˚̃a∂

4
t h|2 dy

)
. P0 · P(E(n+1)(t)). (4.79)

Therefore we finish the control of W (n+1) by (4.58),(4.65) and (4.79)

d
dt

W (n+1)(t) . P0 · P(E(n+1)(t)). (4.80)

4.1.4 Uniform-in-n a priori estimates for the linearized approximation system

From (4.20), (4.21), (4.44) and (4.80), we get

E(n+1)(T ) . E(n+1)(0) + P0

∫ T

0
P(E(n+1)(t)) dt, (4.81)

which gives the uniform-in-n a priori estimates
sup

0≤t≤Tκ
E(n+1)(t) .κ P0

for the linearized approximation system (4.6) (also for (4.1)) with the help of Gronwall-type inequality in Tao [52].

�

4.2 Construction of the solutions to the linearized approximation system
In this subsection we are going to construct the solutions to the linearized approximation system (4.6):

∂tη = v + ψ̊ in Ω;
∂tv = −∇ ˚̃ah − ge3 in Ω;
div ˚̃av = −σ∂th in Ω;
h = 0 on Γ;
(η, v, h)|t=0 = (Id, v0.h0),

given that η̊, å, ψ̊, σ satisfying Lemma 4.2.

4.2.1 Function space and Solution map

Definition (Norm, Function space and Contraction)
We define the norm

‖ · ‖Zr :=
r∑

s=0

∑
k+l=s

‖∂k
t ∂

l · ‖0

and define the function space

X(M,T ) :=
{
(ξ,w, π) : (w, ξ)|t=0 = (v0, Id),

sup
t∈[0,T ]

(
‖w(t), ∂tπ(t)‖Z4 + ‖∇ã(n)π(t)‖L∞ + ‖∂∇ã(n)π(t), ∂t∇ã(n)π(t)‖Z3 + ‖∂tξ(t)‖Z3 + ‖∂2ξ(t)‖Z2 + ‖∂ξ(t)‖L∞

)
≤ M

}
.

(4.82)

We notice here that for given M > 0,T > 0, X(M,T ) is a Banach space.

Remark. As mentioned in the remark after (2.18), the quantity ‖∇ã(n)π(t)‖L∞ + ‖∂∇ã(n)π(t), ∂t∇ã(n)π(t)‖Z3 can be replaced by
‖∇ã(n)π(t)‖Z4 if Ω is bounded.
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We then define the solution map Ξ : X(M,T )→ X(M,T ) by

Ξ : X(M,T )→ X(M,T )
(w, π, ξ) 7→ (v, h, η).

(4.83)

The image (v, h, η) is defined as follows:

1. Define η by
∂tη = w + ψ̊, η(0) = Id. (4.84)

2. Define v by
∂tv = −∇ ˚̃aπ − ge3, v(0) = v0. (4.85)

3. Define h by the solution of the following wave equation
σ∂2

t h − ∆ ˚̃ah = −∂t ˚̃aνα∂νvα − ∂tσ∂th in Ω,

h = 0 on Γ,

(h, ∂th)|t=0 = (h0, h1).
(4.86)

The existence of this linear wave equation can be shown by adapting the method provided in Lax-Phillips [34] after
turning it into a system of hyperbolic equations. Also, this solution lies in the space X(M,T ) owing to (4.98) in the
upcoming subsection.

Here, we have to show that a solution for (4.84)-(4.86) with (w, π, ξ) = (v, h, η) implies a solution for (4.6). It suffices to show
that we can recover the third equation of (4.6). First, since π = h, (4.85) reads ∂tv = −∇ ˚̃ah − ge3. We take div ˚̃a on both sides
and get

∂t(div ˚̃av) + ∆ ˚̃ah = ∂t ˚̃aνα∂νvα. (4.87)

Moreover, (4.86) implies ∆ ˚̃ah = ∂t(σ∂th) + ∂t ˚̃aνα∂νvα, and by plugging this to (4.87) we get

∂t(div ˚̃av + σ∂th) = 0 (4.88)

and hence div ˚̃av + σ∂th = constant. This constant must be 0 since div ˚̃av + σ∂th|t=0 = 0.

4.2.2 Construct the solution: Contraction Mapping Theorem

Now we need to verify

1. Ξ is a self-mapping of X,
2. Ξ is a contraction on X.

Once these two properties are proved, we can apply the Contraction Mapping Theorem to Ξ to get there exists a unique fixed
point (v, h, η) of Ξ which solves the linearized system (4.6).

First we verify Ξ is a self-mapping of X.

Estimates for η: A direct computation gives

‖∂η‖L∞ ≤ ‖∂η(0)‖L∞ +

∫ T

0
‖∂(w + ψ̊)‖L∞ dt ≤ 1 +

∫ T

0
‖w‖Z4 + ‖∂ψ̊‖2 dt, (4.89)

‖∂2η‖Z2 ≤ ‖∂2η(0)‖Z2 +

∫ T

0
‖∂2(w + ψ̊)‖Z2 ≤

∫ T

0
‖w‖Z4 + ‖ψ̊‖Z4 dt, (4.90)

‖∂3−k∂k
t ∂tη‖0 . ‖∂

3−k∂k
t ∂tη(0)‖0 +

∫ T

0
‖∂3−k∂k+1

t (w + ψ̊)‖0 .
∫ T

0
‖w‖Z4 + ‖ψ̊‖Z4 dt. (4.91)

39



Estimates for v : First we have for l = 1, 2, 3, 4:

‖v‖0 ≤ ‖v0‖0 +

∫ T

0
‖∂tv(0)‖0 +

(∫ t

0
‖∂2

t v(τ)‖0dτ
)

dt ≤ ‖v0‖0 + T‖∂tv(0)‖0 + T
∫ T

0
‖∂t∇ ˚̃aπ‖0 dt (4.92)

‖∂l
tv‖0 ≤ ‖∂

l
tv(0)‖0 +

∫ T

0
‖∂l

t∇ ˚̃aπ‖0 dt ≤ ‖∂l
tv(0)‖0 +

∫ T

0
‖∂t∇ ˚̃aπ‖Z3 dt 1 ≤ l ≤ 4, (4.93)

‖∇ ˚̃ah‖L∞ ≤ g + ‖∂tv‖L∞ . (4.94)

For the space-time derivatives, we also have

‖∂4v‖0 ≤ ‖v0‖4 +

∫ T

0
‖∂t∂

4v‖0 dt ≤ ‖v0‖4 +

∫ T

0
‖∂4∇ ˚̃aπ‖0 dt ≤ ‖v0‖4 +

∫ T

0
‖∂∇ ˚̃aπ‖Z3 dt, (4.95)

‖∂l
t∂

4−lv‖0 ≤ ‖∂l
t∂

4−lv‖0 +

∫ T

0
‖∂l

t∂
4−l∇ ˚̃aπ‖0 dt ≤ ‖v(0)‖Z4 +

∫ T

0
‖∂t∇ ˚̃aπ‖Z3 dt. (4.96)

Therefore,

‖v‖Z4 ≤ ‖v0‖Z4 + T‖∂tv(0)‖0 +

∫ T

0
‖∇ ˚̃aπ(t)‖L∞ + ‖∂∇ ˚̃aπ(t), ∂t∇ ˚̃aπ(t)‖Z3 . (1 + T )P0 + T M. (4.97)

Estimates for h: It suffices to estimate ‖∂t∇ ˚̃ah‖Z3 and ‖∂∇ ˚̃ah‖Z3 via the wave equation of h, i.e., (4.86). Again we can apply
the same method as in Section 4.1.3 to derive

‖∂t∇ ˚̃ah‖Z3 + ‖∂∇ ˚̃ah‖Z3 .M P0 + P0

∫ T

0
P(‖∂η‖L∞ , ‖∂2

t η‖2, ‖v‖Z4 , ‖∇ ˚̃aπ(t)‖L∞ , ‖∂∇ ˚̃aπ(t), ∂t∇ ˚̃aπ(t)‖Z3 , ‖∂th‖Z4 ) dt. (4.98)

Combining (4.89)-(4.91), (4.97) and (4.98), we obtain that the solution map Ξ is a self-map of X after applying the Gronwall’s
inequality.

Next we prove Ξ : X(M,T ) → X(M,T ) is a contraction. Given (w1, π1, ξ1), (w2, π2, ξ2) ∈ X(M,T ) and their images under
Ξ (v1, h1, η1), (v2, h2, η2), we define

[w] := w1 − w2, [π] := π1 − π2, [ξ] := ξ1 − ξ2; [v] := v1 − v2, [h] := h1 − h2, [η] := η1 − η2.

From (4.84), (4.85) and (4.86), we can derive the equations for ([v], [h], [η]) with initial data (0, 0, 0):

∂t[η] = [w],
∂t[v] = ∇ ˚̃a[π],

σ∂2
t [h] − ∆ ˚̃a[h] = −∂t ˚̃aνα∂ν[v]α − ∂tσ∂t[h], [h]|Γ = 0.

Similarly as above we can derive the estimates

‖∂[η]‖L∞ + ‖∂2[η]‖Z2 + ‖∂t[η]‖Z3 + ‖∇ ˚̃a[π]‖L∞ , ‖∂∇ ˚̃a[π], ∂t∇ ˚̃a[π]‖Z3 + ‖[v]‖Z4

.M P0

∫ T

0
P(‖∂[ξ]‖L∞ , ‖∂2[ξ]‖Z2 , ‖∂t[ξ]‖Z3 , ‖∇ ˚̃a[π]‖L∞ , ‖∂∇ ˚̃a[π], ∂t∇ ˚̃a[π]‖Z3 , ‖[w]‖Z4 ) dt.

(4.99)

Therefore, choosing Tκ > 0 sufficiently small such that RHS of (4.99) is bounded by

1
2

(
‖∂[ξ]‖L∞ + ‖∂2[ξ]‖Z2 + ‖∂t[ξ]‖Z3 + ‖∇ ˚̃a[π]‖Z4 + ‖∂t[π]‖Z4 + ‖[w]‖Z4

)
,

we prove that Ξ : X(M,Tκ) → X(M,Tκ) is a contraction self-map. By the Contraction Mapping Theorem, we know Ξ has a
unique fixed point (v, h, η) ∈ X(M,Tκ) which is the solution to the linearized approximation system (4.6).
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4.3 Iteration and convergence of the solutions to the linearized system

Up to now we have constructed a sequence of solutions {(v(n), h(n), η(n))}∞n=1 which solves the n-th linearized κ-approximation
system (4.1). The last step in this section is to prove that {(v(n), h(n), η(n))}∞n=1 converges in some strong Sobolev norm, and thus
produce a solution (v, h, η) to the nonlinear κ-approximation system (3.1).

Let n ≥ 3, and define
[v](n) := v(n+1) − v(n), [h](n) := h(n+1) − h(n), [η](n) := η(n+1) − η(n), (4.100)

and
[a](n) := a(n) − a(n−1), [ψ](n) := ψ(n) − ψ(n−1). (4.101)

Then these quantities satisfy the following system with vanishing initial data and no gravity term:
∂t[η](n) = [v](n) + [ψ](n) in Ω

∂t[v](n) = −∇ã(n) [h](n) − ∇[ã](n) h(n) in Ω

divã(n) [v](n) = −div[ã](n) v(n) − e′(h(n))∂t[h](n) − (e′(h(n)) − e′(h(n−1)))∂th(n) in Ω

[h](n) = 0 on Γ

(4.102)

We will prove the following energy converges to 0 as n→ ∞ for all t ∈ [0,T ]

[E](n)(t) :=
3∑

k=0

‖∂3−k
t [v](n)(t)‖2k + ‖∂3−k

t [h](n)(t)‖2k + ‖[η](n)(t)‖23 + ‖[a](n)(t)‖22. (4.103)

Remark. Since the gravity term has been cancelled in (4.102), we then could directly include the standard H3 Sobolev norm
of [h] in [E] instead of ‖∂[h]‖2L∞ + ‖∂2[h]‖21.

4.3.1 Estimates of [a], [ψ] and [η]

By definition, we have

[a](n)µν(T ) =

∫ T

0
∂t(a(n)µν − a(n−1)µν) dt

= −

∫ T

0
[a](n)µγ∂β∂tη

(n)
γ a(n)βν + a(n−1)µγ∂β∂t[η](n−1)

γ a(n)βν + a(n−1)µγ∂β∂tη
(n−1)
γ [a](n)βν,

which gives

‖[a](n)(T )‖2 . P0

∫ T

0
‖[a](n)(t)‖22‖∂t[η](n−1)‖3 dt . P0

∫ T

0
‖[a](n)(t)‖22(‖[v](n−1)‖3 + ‖[ψ](n−1)‖3)) dt. (4.104)

As for [ψ](n), it satisfies −∆[ψ](n) = 0 subject to the following boundary condition

[ψ](n) = ∂−1P
(
∆[η](n−1)

β ã(n)iβ∂iΛ
2
κv

(n) + ∂η(n−1)
β [ã](n)iβ∂iΛ

2
κv

(n) + ∂η(n−1)
β ã(n−1)iβ∂iΛ

2
κ[v](n−1)

− ∆Λ2
κ[η](n−1)

β ã(n)iβ∂iv(n) − ∆Λ2
κη

(n−1)
β [ã](n)iβ∂iv(n) − ∆Λ2

κη
(n−1)
β ã(n−1)iβ∂i[v](n−1)

)
.

By the standard elliptic estimates, we have the control for [ψ](n)

‖[ψ](n)‖23 . |[ψ](n)|22.5 . P0

(
‖[η](n−1)‖23 + ‖[v](n−1)‖22 + ‖[ã](n)‖21

)
. (4.105)

Therefore, we obtain

sup
[0,T ]
‖[a](n)‖22 . P0T 2

(
‖[a](n), [a](n−1)‖L∞t H2 + ‖[v](n−1), [v](n−2), [η](n−2)‖2L∞t H3

)
, (4.106)

and the bound for [η] combining with ∂t[η](n) = [v](n) + [ψ](n):

sup
[0,T ]
‖[η](n)‖23 . P0T 2

(
‖[a](n)‖L∞t H2 + ‖[v](n), [v](n−1), [η](n−1)‖2L∞t H3

)
(4.107)
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Similar as in Lemma 3.3 and Lemma 4.2, one can get estimates for the time derivatives of [η] and [ψ]

‖[∂tψ](n)‖23 . P0

(
‖[a](n)‖22 + ‖[∂tv](n−1)‖22 + ‖[v](n−1), [η](n−1)‖23

)
(4.108)

‖[∂2
t ψ](n)‖22 . P0

(
‖[a](n)‖22 + ‖[∂2

t v](n−1)‖21 + ‖[∂tv](n−1)‖22 + ‖[v](n−1), [η](n−1)‖23

)
(4.109)

‖[∂tη](n)‖23 . P0T 2
(
‖[a](n), [∂tv](n), [∂tv](n−1)‖L∞t H2 + ‖[v](n), [v](n−1), [η](n−1)‖2L∞t H3

)
(4.110)

‖[∂2
t η](n)‖22 . P0T 2

(
‖[∂2

t v](n),(n−1)‖2L∞t H1
+ ‖[a](n), [∂tv](n),(n−1)‖L∞t H2 + ‖[v](n),(n−1), [η](n−1)‖2L∞t H3

)
(4.111)

‖[∂3
t η](n)‖21 . P0

(
‖[∂2

t v](n),(n−1)‖2L∞t H1
+ ‖[a](n), [∂tv](n),(n−1)‖L∞t H2 + ‖[v](n),(n−1), [η](n−1)‖2L∞t H3

)
. (4.112)

4.3.2 Estimates of [h]

Taking J̃(n)divã(n) in the second equation of (4.102), we get an analogous wave equation for [h]:

e′(h(n))J̃(n)∂2
t [h](n) − ∂ν(Ẽνµ∂µ[h](n)) = J̃(n)ã(n)να∂ν([ã](n)µ

α∂µh(n))

− J̃(n)∂t

(
(e′(h(n)) − e′(h(n−1)))∂th(n)

)
− J̃(n)(∂tã(n)να)∂ν[v](n)

α ,

(4.113)

where Ẽνµ := J̃(n)ã(n)ναã(n)µ
α .

One can apply the similar method in Section 3.3 and use the estimates of [η], [ψ] to obtain the following energy estimates

2∑
k=0

‖∂k
t [h](n)‖23−k + ‖

√
e′(h(n))∂3

t [h](n)‖20 . P0

∫ T

0

(
[E](n)(t) + [E](n−1)(t)

)
dt. (4.114)

4.3.3 The div-curl estimates

From Hodge’s decomposition inequality Lemma 2.7, we have

‖[v](n)‖23 . ‖[v](n)‖20 + ‖div [v](n)‖22 + ‖curl [v](n)‖22 + |[v](n) · N |2.5
‖[∂tv](n)‖22 . ‖[∂tv](n)‖20 + ‖div [∂tv](n)‖21 + ‖curl [∂tv](n)‖21 + |[∂tv](n) · N |1.5
‖[∂2

t v](n)‖21 . ‖[∂
2
t v](n)‖20 + ‖div [∂2

t v](n)‖20 + ‖curl [∂2
t v](n)‖20 + |[∂tv](n) · N |0.5

The L2-norm can be bounded in the same way as in Section 3.4 and the boundary term can be reduced to the tangential
estimates for [v] and its time derivative. As for the curl part, we apply curl ã(n) to the second equation of (4.102) to get the
evolution equation of curl ã(n)[v](n)

∂t(curl ã(n)[v](n) )λ = ελµα∂tã(n)νµ∂ν[v](n)
α − ελµα∂t[ã](n)νµ∂νv(n)

α . (4.115)

Applying D2 = ∂2, ∂∂t or ∂2
t to (4.115), and mimicking the proof in Section 3.4, one can get

‖curl [v](n)‖22 . ε‖[v](n)‖23 + P0T 2
(
‖[v](n),(n−1), [η](n−1)‖L∞t H3 + ‖[ã](n),(n−1)‖L∞t H2

)
. ε‖[v](n)‖23 + P0T 2 sup

[0,T ]
[E](n),(n−1)(t)

‖curl [∂tv](n)‖21 . ε‖[∂tv](n)‖22 + P0T 2 sup
[0,T ]

[E](n),(n−1)(t)

‖curl [∂2
t v](n)‖20 . ε‖[∂

2
t v](n)‖21 + P0T 2 sup

[0,T ]
[E](n),(n−1)(t).

(4.116)

Similar results hold for div control by using the same method as in Section 3.4, so we only list the result here

‖div [v](n)‖22 + ‖div [∂tv](n)‖21‖ + div [∂2
t v](n)‖20

. P0T 2 sup
t∈[0,T ]

(
[E](n)(t) + [E](n−1)(t)

)
.

(4.117)
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4.3.4 Tangential estimates of [∂k
t v] for k ≥ 1

Let D3 = ∂2∂t, ∂∂
2
t , ∂

3
t . Using the same method as in Section 3.5 and Section 4.1.2 (Step 4), we can derive the estimates

3∑
k=1

‖∂3−k∂k
t [v](n)‖20 + ‖∂3−k∂k

t [h](n)‖20 . P0

∫ T

0
[E](n)(t) + [E](n−1)(t) + [E](n−2)(t) dt. (4.118)

4.3.5 Tangential estimates of [v]: Alinhac’s good unknown

We adopt the same method as in Section 3.6. For each n, we define the Alinhac’s good unknowns by

V(n+1) = ∂3v(n+1) − ∂3η̃(n) · ∇ã(n) v(n+1), H(n+1) = ∂3h(n+1) − ∂3η̃(n) · ∇ã(n) h(n+1). (4.119)

Their difference is denoted by

[V](n) := V(n+1) − V(n), [H](n) := H(n+1) −H(n).

Similarly as in Section 3.6, we can derive the analogous version of (3.80) as

∂t[V](n) + ∇ã(n) [H](n) = −∇[ã](n) H(n) + F(n), (4.120)

subject to the boundary data

[H](n)|Γ = −
(
∂3η̃(n)

β ã(n)3β + ∂3[η̃](n−1)
β ã(n)3β + ∂3η̃(n−1)

β [ã](n)3β
)
, (4.121)

and the compressibility equation
∇ã(n) · [V](n) = −∇[ã](n) · V(n) + G(n), (4.122)

where

F(n)α = ∂t

(
∂3[η̃](n−1)

β ã(n)µβ∂µv(n+1)
α + ∂3η̃(n−1)

β [ã](n)µβ∂µv(n+1)
α + ∂3η̃(n−1)

β ã(n)µβ∂µ[v](n)
α

)
+ [ã](n)µβ∂µ(ã(n)γα∂γh(n+1))∂3η̃(n)

β + ã(n−1)µβ∂µ([ã](n)γα∂γh(n+1))∂3η̃(n)
β

+ ã(n−1)µβ∂µ(ã(n−1)γα∂γ[h](n))∂3η̃(n)
β + ã(n−1)µβ∂µ([ã](n)γα∂γh(n))∂3[η̃](n−1)

β

−
[
∂2, [ã](n)µβã(n)γα∂

]
∂γη̃

(n)
β ∂µh(n+1) −

[
∂2, ã(n−1)µβ[ã](n)γα∂

]
∂γη̃

(n)
β ∂µh(n+1)

−
[
∂2, ã(n−1)µβã(n−1)γα∂

]
∂γ[η̃](n−1)

β ∂µh(n+1) −
[
∂2, ã(n−1)µβã(n−1)γα∂

]
∂γη̃

(n−1)
β ∂µ[h](n)

−
[
∂3, [ã](n)µα, ∂µh(n+1)

]
−

[
∂3, ã(n−1)µα, ∂µ[h](n)

]
,

and

G(n) = ∂3(div ã(n) [v](n) − div [ã](n) v(n))

−
[
∂2, [ã](n)µβã(n)γα∂

]
∂γη̃

(n)
β ∂µv(n+1)

α −
[
∂2, ã(n−1)µβ[ã](n)γα∂

]
∂γη̃

(n)
β ∂µv(n+1)

α

−
[
∂2, ã(n−1)µβã(n−1)γα∂

]
∂γ[η̃](n−1)

β ∂µv(n+1)
α −

[
∂2, ã(n−1)µβã(n)γα∂

]
∂γη̃

(n−1)
β ∂µ[v](n)

α

−
[
∂3, [ã](n)µα, ∂µv(n+1)

α

]
−

[
∂3, ã(n−1)µα, ∂µ[v](n)

α

]
+ [ã](n)µβ∂µ(ã(n)γα∂γv(n+1)

α )∂3η̃(n)
β + ã(n−1)µβ∂µ([ã](n)γα∂γv(n+1)

α )∂3η̃(n)
β

+ ã(n−1)µβ∂µ(ã(n−1)γα∂γ[v](n)
α )∂3η̃(n)

β + ã(n−1)µβ∂µ([ã](n)γα∂γv(n)
α )∂3[η̃](n−1)

β .

Multiplying [V](n) in (4.120) and integrate by parts in the [H] term, we get

1
2

d
dt
‖V(n)‖20 =

∫
Ω

[H](n)
(
∇ã(n) · [V](n) − ∂µãµα[V](n)

α

)
dy +

∫
Ω

(F(n) − ∇[ã](n) H(n)) · [V](n) dy

−

∫
Γ

[H](n)ã(n)3α[V](n)
α dS .
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Similarly as in (3.84)-(3.89), the first two integrals contribute to the energy term

−
1
2

d
dt
‖e′(h(n))∂4[h](n)‖20.

modulo error terms that can be controlled by P0([E](n) + [E](n−1)). As for the boundary term, we can mimic the proof in (4.42),
i.e., integrate ∂0.5 by parts, to get

−

∫
Γ

[H](n)ã(n)3α[V](n)
α dS

=

∫
Γ

∂3hã(n)3α[V](n)
α

(
∂3η̃(n)

β ã(n)3β + ∂3[η̃](n−1)
β ã(n)3β + ∂3η̃(n−1)

β [ã](n)3β
)

. |[V](n)|Ḣ−0.5

(
1
κ
P0|∂

2[η](n−1)|Ḣ0.5 + ‖[ã]‖2

)
.

Summing up all the estimates above and using the analogue of (3.77), we get

‖∂3[v](n)‖20 + ‖e′(h(n))∂3[h](n)‖20 . P0T 2 sup
t∈[0,T ]

(
[E](n)(t) + [E](n−1)(t) + [E](n−2)(t)

)
. (4.123)

Finally, we combine the estimates for [η], [a], [h], [v] and div-curl estimates above and obtain

[E](n)(t) . P0T 2 sup
t∈[0,T ]

(
[E](n)(t) + [E](n−1)(t) + [E](n−2)(t)

)
.

Therefore by choosing T = Tκ > 0 sufficiently small (The time Tκ depends on κ > 0 because the uniform-in-n estimates depend
on κ−1), we can get

sup
[0,Tκ]

[E](n)(t) ≤
1
8

(
sup

t∈[0,T ]
[E](n−1)(t) + sup

t∈[0,T ]
[E](n−2)(t)

)
, (4.124)

which implies

sup
[0,Tκ]

[E](n)(t) ≤
1
2nP0 → 0 as n→ ∞.

4.4 Construction of the solution to the approximation system (3.1)

Proposition 4.3. Suppose the initial data (v0, h0) satisfying ‖v0‖4 + ‖h0‖H ≤ M0 and the compatibility conditions up to order 4.
Given κ > 0, there exists a Tκ > 0 such that the nonlinear κ-approximation system (3.1) has a unique solution (v(κ), h(κ), η(κ))
in [0,Tκ] satisfying the estimates

sup
0≤t≤Tκ

E(t) . C(M0), (4.125)

where

E(t) := ‖∂2η(t)‖22 + ‖∂η(t)‖2L∞ +

4∑
k=0

‖∂4−k
t v‖2k +

‖h‖2H +

3∑
k=0

+‖∂4−k
t h‖2k

 + W(t),

W(t) :=
4∑

k=0

‖∂5−k
t h(t)‖2k +

3∑
k=0

‖∂4−k
t ∇ãh(t)‖2k + ‖∇ãh‖2L∞ + ‖∂∇ãh‖23.

(4.126)

Proof. In Section 4.2, we proved that the linearized system (4.1) admits a solution (η(n+1), v(n+1), h(n+1)) assuming that

(η(k), v(k), h(k)), k ≤ n

are known and satisfying (4.5). Moreover, in light of (4.81) and (4.124), we obtain the strong convergence of the sequence
of approximation solutions {(η(n+1), v(n+1), h(n+1))} as n → +∞. The limit (η(κ), v(κ), h(κ)) solves the nonlinear κ-approximation
system (3.1) and the energy estimate (4.125) is a direct consequence of the uniform-in-n estimate (4.81). �

44



5 Local well-posedness of the compressible gravity water wave system
From Proposition 4.3, given κ > 0, we have constructed a solution (v(κ), h(κ), η(κ)) to the nonlinear κ-approximation system
(3.1). Proposition 3.1 gives a κ-independent estimate (3.4) on some time interval [0,T0], which yields a strong convergence to
a limit (v, h, η) for every t ∈ [0,T0]. This limit (v, h, η) is a solution to the compressible gravity water wave system (1.13) with
energy estimate (1.17) in Theorem 1.2 if we set κ → 0+ in (3.1). Therefore, the existence has been proved.

Let (v1, h1, η1), (v2, h2, η2) be two solutions to the compressible gravity water wave system (1.13) with the initial data (v0, h0)
and (v̂0, ĥ0), respectively. Denoting their difference by ([v], [h], [η]) := (v1 − v2, h1 − h2, η1 − η2) and ai := (∂ηi)−1 with
[a] := a2 − a1, then ([v], [h], [η]) solves the following system:

∂t[η] = [v] in Ω,

∂t[v] = −∇a1 [h] + ∇[a]h2 in Ω,

div a1 [v] = div [a]v2 − e′(h2)∂t[h] − (e′(h1) − e′(h2))∂th2 in Ω

[h] = 0 on Γ,

([η], [v], [h])|t=0 = (0, v0 − v̂0, h0 − ĥ0).

(5.1)

We define the energy functional of (5.1) by

[E] = ‖[η]‖22 +

2∑
k=0

‖∂2−k
t [v]‖2k + ‖∂2−k

t [h]‖2k + |(a1)3α∂2[η]α|20. (5.2)

This looks very similar to (4.102). The only essential difference is the boundary term∫
Γ

[H](a1)3α[V]α dS ,

where we define the Alinhac’s good unknowns

Vi = ∂2vi − ∂2ηi · ∇ai vi, Hi = ∂2hi − ∂2ηi · ∇ai hi,

and
[V] := V1 − V2, [H] := H1 −H2.

The boundary terms then becomes∫
Γ

[H](a1)3α[V]α = −

∫
Γ

∂3[h]∂2η2
β(a

2)3β(a2)3α[V]α dS −
∫

Γ

∂3h1(∂2[η]β(a1)3β + ∂2η2
β[a]3β)(a1)3α[V]α dS

. −
1
2

d
dt

∫
Γ

∂3h1|(a1)3α∂2[η]α|20 dS

−

∫
Γ

∂3h1(a1)3γ∂2[η]γ(∂2η2
β[a]µβ∂µv1

α − ∂
2η2

β(a
2)µβ∂µ[v]α)(a1)3α dS

−

∫
Γ

∂3h1(∂2[η]β(a1)3β + ∂2η2
β[a]3β)(a1)3α[V]α dS

. −
c0

2
d
dt

∫
Γ

|(a1)3α∂2[η]α|20 dS + C(M0)P([E](t)),

where M0 is the constant defined in Theorem 1.2. Here in the second step we use the precise formula of [V], and in the third
step we apply the physical sign condition for h1. Therefore we have

sup
t∈[0,T0]

[E](t) ≤ P(‖v0 − v̂0‖2, ‖h0 − ĥ0‖2) +

∫ T0

0
C(M0)P([E](t)) dt,

which implies (1.18). Also, when v0 = v̂0 and h0 = ĥ0, we know [E](t) = 0 for all t ∈ [0,T0] which gives the uniqueness of the
solution to the compressible gravity water wave system (1.13).
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