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Abstract

In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid
magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition.
Our energy estimates are uniform in the sound speed. As a result, we can prove the convergence of solutions of
the free-boundary compressible resistive MHD equations to the solution of the free-boundary incompressible
resistive MHD equations, i.e., the incompressible limit. The key observation is that the magnetic diffusion
together with elliptic estimates directly controls the Lorentz force, magnetic field and pressure wave simulta-
neously.
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1 Introduction
In this paper, we consider the 3D resistive magnetohydrodynamics(MHD) equations

p(d;u +u-du)=B-9B—d(p+ 3|B>)  inD;

d;p + div (pu) =0 in D; (D)
0:B+u-0B—AAB = B -0u — Bdivu, in D; '
divB =0 in D,

describing the motion of a compressible conducting fluid in an electro-magnetic field with magnetic diffusion,
A > 0 is the magnetic diffusivity constant. D = Ug<;<7{t} X D; and D; C R3 is the domain occupied
by the conducting fluid whose boundary dD; moves with the velocity of the fluid. 0 = (01, d2, d3) is the
standard spatial derivative and div X := 9z X* is the standard divergence for any vector field X. Throughout
this paper, X*¥ = 8% X; for any vector field X, i.e., we use Einstein summation notation. The fluid velocity
u = (u1,us,u3), the magnetic field B = (Bj, B,, B3), the fluid density p, the pressure p and the domain
D C [0, T] x R3 are to be determined. Here we note that the fluid pressure p = p(p) is assumed to be a given
strictly increasing smooth function of the density p.

Given a simply-connected bounded domain Dy C R* homeomorphic to the unit ball in R3 and the initial
data ug, po and By satisfying the constraints div By = 0, we want to find a set D, the vector field u, the magnetic
field B, and the density p solving (1.1) satisfying the initial conditions:

Do ={x:(0,x) e D}, (u,B,p) = (up, Bo,po), in {0} x Dy. (1.2)

Remark. Note that the divergence-free constraint on B is only required for initial data. Such condition auto-
matically holds for any positive time provided that it holds initially. In fact, one can get the heat equation of
div B by

D(div B) — AAdiv B = —(div B)(div u).

We will prove div u € H3 and thus in L®. Then standard energy estimate yields div B = 0 provided it holds
initially.

We also require the following conditions on the free boundary 0D = Ug<;<7{t} X 0D;:

(0 +u-9)|sp € T(ID)
p=20 on 0D, (1.3)
B=0 on 0D,

where N is the exterior unit normal to 0D;.

The first condition of (1.3) means that the boundary moves with the velocity of the fluid. We will use the
notation D; = d; + u - d throughout the rest of this paper, and D, is called the material derivative. The second
condition in (1.3) means that outside the fluid region D; is the vacuum. Since p = p(p) and plsp = 0, we
know the fluid density also has to be a constant pg > 0 on the boundary. We assume py > 0, corresponding to
the case of liquid as opposed to a gas. Hence

p(po) =0, p'(p) >0, forp = po. (1.4)

where we further assume po = 1 for simplicity.

Before we explain the third boundary condition B = 0 on 0Dy, it is necessary to introduce its original
physical model. In fact, the free-boundary problem originates from the plasma-vacuum model: The plasma is
confined in a vacuum in which there is another magnetic field B. It is formulated as follows (see also chapter
4 of [15] for the detailed formulation): Suppose that the free-interface between the plasma region §24(¢) and
the vacuum region £2_(¢) is I"(¢) which moves with the plasma. Then it requires that (1.1) holds in the plasma
region §24 (¢) and the following equations hold for the magnetic field B in vacuum £2_ ():

curl B =0, divB =0. (1.5)



On the interface I"(¢), it is required that there is no jump for the pressure or the normal component of magnetic
fields:

B-N =B-N, (1.6)
where N is the exterior unit normal to I'(¢). Note that for ideal MHD (i.e. A = 0) the normal continuity
B-N=B-NonTl (¢) should not be an imposed boundary condition, otherwise the ideal MHD system is
over-determined as a hyperbolic system. Instead, this is a direct result of propagation of the initial boundary
condition By - N = éo - N. See also Hao-Luo [20] for details.

Now we are able to explain the third boundary condition B = 0 on dD; (and also in the vacuum). In
the ideal case (A = 0), this condition can also be considered as the propagation from initial data, otherwise
the ideal MHD (hyperbolic) system is over-determined if we set B = 0 on dD; to be an imposed constraint.
However, for resistive MHD (A > 0), this condition no longer can be propagated from the initial data because
the magentic diffusivity makes the plasma no longer a perfect conductor. Instead, it should be considered as
an imposed constraint, which makes sense for a parabolic equation as opposed to the ideal case (hyperbolic
system), and thus adding such a constraint will not make the system over-determined. Besides, this condition
also yields that the physical energy is conserved when A = 0 and thus the energy is non-increasing for resistive
MHD (see Section 1.3 for detailed proof).

Hence, the boundary conditions (1.3) is the case that the outside magnetic field B vanishes in vacuum region
in the classical plasma-vacuum model plus the imposed condition B = 0 on the boundary. In other words, the
model we discuss in this paper is an isolated plasma liquid confined in a vacuum region.

1.1 Free-boundary compressible resistive MHD equations

The free-boundary resistive compressible MHD system considered in this paper is

pDu = B-3B —d(p + 1B in D;

Dip+ pdivu =0 in D; 1.7
D;B —AAB = B - 0u — Bdiv u, in D; '
divB =0 in D,

together with the initial conditions (1.2) and the boundary conditions (1.3). As for the pressure p, we impose
the following natural conditions on p’(p) for some fixed constant cg :

1" (p)| < co, and cg o' (p)I™ < 10" (P)] < colp'(p)|™. for 1 <m <6. (1.8)

To make the initial-boundary value problem (1.7), (1.2) and (1.3) solvable, the initial data has to satisfy
certain compatibility conditions on the boundary. In fact, the continuity equation implies that div v|3p = 0 and
thus we have to require polsp, = 0 and div vo|sp, = 0. Also the boundary condition B = 0 requires that
Bolyp, = 0. Furthermore, we define the k-th(k > 0) order compatibility condition as follows:

D! plap, =0, D!Blyp, =0 attimes =0 VO < j <k. (1.9)

Let N be the exterior unit normal vector to dD;. We will prove the a priori bounds for (1.7), (1.2) and (1.3)
in Sobolev spaces under the Rayleigh-Taylor physical sign condition

— VNP >¢y>0 on oDy, (1.10)

where Vy := N'0;, €y > 0is a constant, and P := p + %|B|2 is the total pressure. This physical sign
condition says that the total pressure is higher in the interior than that on the boundary. When B = 0, i.e., in
the case of the free-boundary compressible Euler’s equations, the system will be illposed without this physical
sign condition (See Ebin [14] for counterexamples). For the free-boundary MHD equations, (1.10) plays the
same role as the Rayleigh-Taylor sign condition for the free-boundary Euler’s equations, which was pointed out
in Hao-Luo [20]. Moreover, Hao-Luo [21] proved that the free-boundary problem of 2D incompressible MHD
equations is illposed when (1.10) fails.



1.2 History and background

The study of the motion of fluid has a long history. In particular, the free-boundary problem of inviscid
fluid has blossomed over the past decades. Most of the results are focusing on the incompressible cases.
The first breakthrough is the wellposeness of incompressible irrotational water wave problem solved in Wu'’s
work [54, 55, 56, 57]. For the general incompressible problem with nonzero vorticity, Christodoulou-Lindblad
[6] first obtained the energy bound under the Rayleigh-Taylor sign condition from a geometric perspective.
Then Lindblad [30] proved the local wellposedness(LWP) with Nash-Moser iteration and Coutand-Shkoller [9]
proved the local wellposedness by tangential smoothing which avoided using Nash-Moser iteration. See also
Ambrose-Masmoudi [2], Shatah-Zeng [43, 44, 45], Zhang-Zhang [60] and Alazard-Burq-Zuily [1].

For the free-boundary compressible Euler equations in the case of a liquid, Lindblad [31] proved the LWP in
the case of a liquid by using Nash-Moser iteration. Later on, Lindblad-Luo [32] generalized the method in [6] to
compressible Euler in the case of a liquid and Ginsberg-Lindblad-Luo [16] proved the local wellposedness for
the motion of compressible self-gravitating liquid. As for the incompressible limit, Lindblad-Luo [32] proved
the incompressible limit in Sobolev norms for the free-boundary problem and the nonzero surface tension case
was done by Disconzi-Luo [13]. In the case of a gas, we refer to [12, 11, 23, 36] and references therein.

However, the theory of the free-boundary MHD equations are much less developed, and nearly all of the
available results are focusing on the incompressible case. Actually, MHD equations are quite different from
Euler’s equations. The strong coupling between the velocity and the magnetic fields in MHD equations often
produce extra difficulty. One key difference is the irrotationality assumption for Euler equations no longer hold
for MHD. Hao-Luo [20] generalized the method developed by Christodoulou-Lindblad [6] to incompressible
ideal MHD, to get the a priori bounds under the physical sign condition (1.10) and then Hao [19] generalized
it to the plasma-vacuum model with nonvanishing magnetic field in vacuum. For the wellposedness result,
Sun-Wang-Zhang [46, 47] proved the local wellposedness for the current-vortex sheet and plasma-vacuum
model for incompressible MHD respectively under the non-colinearity condition |B X l§| > co > 0'. Lee
[27, 28] proved the LWP of the 3D free-boundary viscous-resistive MHD equations with infinite and finite
depth respectively. See also Padula-Solonnikov [38]. In Lee [28], a local unique solution was obtained for
the free-boundary ideal incompressible MHD equations by passing to vanishing viscosity-resistivity limit. By
using tangential smoothing, Gu-Wang [17] proved the LWP of the incompressible MHD equations under the
physical sign condition (1.10). Hao-Luo [22] proved the LWP of linearized incompressible MHD equations
under the physical sign condition by generalizing Lindblad [29]. The author joint with C. Luo [34] proved a
low regularity estimate. In the case of nonzero surface tension, the author joint with C. Luo [35] first proved
the a priori estimates for the incompressible ideal MHD, which is the first step to establish the local existence.
Besides, Chen-Ding [4] obtained the inviscid limit for the free-boundary ideal incompressible MHD with or
without surface tension. Wang-Xin [53] proved the global well-posedness of incompressible inviscid-resistive
MHD. Guo-Ni-Zeng [18] proved the decay rate of the solutions to viscous-resistive incompressible MHD.

The structure of free-boundary compressible MHD equations is much more delicate than both incompress-
ible MHD equations and compressible Euler’s equations due to the extra coupling of the magnetic fields and
sound wave. Compared with free-boundary incompressible MHD equations, the top order derivative of the
pressure p and curl B loses control in the free-boundary compressible MHD equations. This does not appear
in the incompressible case thanks to div ¥ = 0. On the other hand, compared with compressible Euler’s equa-
tions, the presence of the magnetic field B in the pressure term V(p + %|B |?) destroys the control of the wave
equation of p which is obtained by taking divergence of the first equation in (1.7). This crucial difficulty does
not appear in the study of the free-boundary compressible Euler’s equations, of which the corresponding wave
equation only contains lower order terms.

We first review the results in fixed-domain problems in compressible ideal MHD which is a quasilinear
symmetric hyperbolic system with characteristic boundary conditions. Due the the failure of div-curl control
mentioned above, even the linearized equation has a loss of normal derivative. Indeed, Ohon-Shirota [37] con-
structed an explicit counterexample to prove the ill-posedness in H!(I > 2) for the linearized compressible
MHD system. Instead, one may have to consider using anisotropic Sobolev spaces H]" which was first intro-
duced by Chen Shuxing [5] to solve the hyperbolic system with characteristic boundary conditions. Yanagisawa-
Matsumura [58] proved the LWP for the fixed domain problem and Secchi [41, 40] proved a refined result of no

The non-collinearity condition gives extra 1/2-order enhanced regularity of the free surface than Rayleigh-Taylor sign condition



regularity loss in anisotropic Sobolev space H)" (m > 16). As for the incompressible limit, Jiang-Ju-Li [24, 25]
got the results for the weak solution in the whole space R3, but no higher order energy control.

As for the free-boundary problem, Chen-Wang [3] and Trakhinin [49] proved the existence of the current-
vortex sheet for 3D compressible MHD. The only LWP results of the free-boundary problem of the plasma-
vacuum model for compressible ideal MHD are Secchi-Trakhinin [42] and Trakhinin [51] under the non-
colinearity condition. To the best of our knowledge, there is NO available result on the free-boundary prob-
lem of compressible MHD equations under the physical sign condition (1.10) before the presence of the first
version? of this manuscript. Very recently, Trakhinin-Wang [52] proved the LWP of compressible ideal MHD
under Rayleigh-Taylor sign condition by using Nash-Moser. The author [59] proved the LWP of compressible
resistive MHD under Rayleigh-Taylor sign condition as a continuation of the presenting manuscript.

In this paper, we obtain the a priori estimates and incompressible limit for the free-boundary problem of
compressible MHD equations with magnetic diffusion from a geometric point of view introduce by Christodoulou-
Lindblad [6]. Our energy bound is also uniform in the sound speed ¢ := 4/ p’(p) and thus implies the incom-
pressible limit. We will discuss the details in Section 1.4 and Section 1.5.

1.3 Energy conservation/dissipation and higher order energy

Energy conservation/dissipation

First we would like to explain the energy conservation for compressible ideal MHD and the energy dissipation
for the compressible resistive MHD, mentioned in the introduction.
In fact, for the ideal compressible MHD, if we set Q(p) = flp p(R)/R?dR, then we use (1.7) to get

— | = ul“dx + = B|“dx + dx
GG [ mrases [ 1arace [ pow)

1
=/ pu-Dtudx+/ B-D,de+/ thQ(,o)dx—f-—/ pD,(1/p)|B|* dx
D, D, D, 2 Jp, (.11
:/ u-(B'aB)dx—/ u'anx—i-/ B~(B~8u)dx—/ | B|?div u dx
Dy Dy Dy

D¢

D 1 D

+f p(p) 2P dx——/ 2P B2 dx.
D, o 2Jp, P

Integrating by part in the first term in the last equality, this term will cancel with fD, B -(B-0du) dx because

the boundary term and the other interior term vanishes due to B = 0 and div B = 0 respectively. Also we
integrate by parts in the second term and then use the continuity equation to get

D 1
—/ u-anx:/ Pdivudx — (u-N)PdSz—/ p—tpdx—i——/ | B|2div u dx
Dy Dy 9D, Dy P 2 Jp,

=0
D 1 .
Z—/ p—r dX+/ IBIZdivudx——/ | B|2div u dx (1.12)
Dy IO Dy 2 Dy
D 1 D
=—/ p—’pdx+/ |B|2divudx+—/ ZtP\B |2 dx.
D¢ 1Y Dy 2 Dy P

Summing up (1.11) and (1.12), one can get the energy conservation for the free-boundary ideal compressible

MHD: i |
—(-f p|u|2dx+—/ |B|2dx+/ ,OQ(p)dx) =0. (1.13)
d[ 2 Dy 2 D, Dy

Also one can see this energy conservation coincides with the analogue for the free-boundary compressible
Euler’s equations in Lindblad-Luo [32].

2The first version of the presenting manuscript was announced on November 10, 2019



For the resistive compressible MHD as stated in (1.7), there will be one extra dissipation term, and one can
integrate by part to get the energy dissipation.

d (1 , 1
— (= u dx—i——/ Bzdx—i—/ dx)
GG [ omrases [ israr+ [ pow)

(1.14)
=0+A/ B-Ade:—A/ |0B|* dx < 0.
Dy Dy

Higher order energy

Now we introduce “Q-tensor” to define the higher order energies. Let Q be a positive definite quadratic form
0 on (0, r)-tensors, which is the inner product of the tangential components when restricted on the boundary,
ie.,

O(a, B) = (e, I1B) on 9Dy, (1.15)

where the projection of a (0, r)-tensor to the boundary is defined by
(@), iy = ¥ v 0jyjp. where ) =8 — N;N7, (1.16)
and N is the unit outer normal to dD;. To be more specific, we define

O, B) = 'V g Ira, iy By (1.17)
where N N o ' -
g7 =87 —n(d)*N' N7, d(x) = dist(x,dD;), N' = —§79;d.

Here 7 is a smooth cut-off function satisfying 0 < n(d) < 1, and n(d) = 1 when d < dy/4; n(d) = 0 when
d > do/2, where dy is a fixed numer smaller than the injective radius ¢¢ of the normal exponential map, defined
to be the largest number ¢o such that thet map:

dD; x (—lg, ly) — {x : dist(x, dD;) < 1o}, (1.18)
given by
(*,L)y>x=X+ LN(X)
is an injection.
We propose the higher order energies to be
Er:= Y Egu+K +WA +H, andEf:=) E. (1.19)
s+k=r r’'<r
Here fors > 1
1 1
Esx(t) = 5/ pQ (3 D¥u, 3° D*u) dx + 3 Q(¥*D¥B, 3 D¥B)dx
Dy

Dy

1 /
+ E[D %Q(BSDi‘p,aSDfp)dx (1.20)
t

1
+3 - Q¥ D¥P. 3 DFPyv ds,
t

with v := (=Vy P)~! and

1 1 Lo
Eo,(t) = _/ o' (p)| DT ul? dx + —/ DT B2 dx + —/ LAV (1.21)
2 Jp, 2 Jp, 2J)p, P



and

K, = / o8 tcurl u|* + [8" tcurl B)? dx, (1.22)

Dy

1 _
W= 3 (Ilp’(p)D,’plle(D,) + IVe' (p)V D] lp”Lz(D[))’ (1.23)
and , N
12

H2(t) == / (/ |D} B(x. x)|2dx) dr + 3 |90 B|| 2 p,) - (1.24)

o \Jp,;

Here H? is the r-th order energy of the heat equation of B

DB —AAB = B -0u — Bdiv u, (1.25)

and W, is the r-th order energy of the wave equation of p
p(p)Dip—Ap = BXABy + w, (1.26)

where

/ /
o (p ;p) - p”(p)) (Dip)* +° ﬁ,”’ 0;p (B~ 9B;) — 9 P) + pdju*dpu’ — 8 Bde B + 0B, (1.27)

This wave equation is derived by taking divergence in the first equation of MHD system (1.7).

Remark. We note that the weight function in (1.21) and (1.23) is necessary for passing to the incompressible
limit, otherwise there will be no control of D? p uniform in the sound speed ¢ := /p’(p). When B = 0, our
energy is exactly the energy functional for the free-boundary compressible Euler’s equation in Lindblad-Luo
[32].

Although E, only contains the tangential components, it actually allows us to control all the components by
the Hodge type decomposition B
[0X| < 10X + |div X| + [curl X|.

The curl part can be controlled by K, while the divergence of u can be controlled via the wave equation (1.26)
of p through the continuity equation D;p = pdiv u and p = p(p). The energy of heat equation helps us to
close the control of the wave equation, because the right hand side of (1.27) contains a higher order term of B
which is out of control without the magentic resistivity term. The details will be discussed in Section 1.5.

The boundary term in (1.20) and the choice of v are constructed to exactly cancel a boundary term coming
from integration by part in the interior. Besides, the tangential projection in the bundary term is necessary to
make it be a lower order term. Indeed, since P = p + %|B|2 = 0 on the boundary and so is [TdP = dP, one
has

oy P =o0@""'P).

The physical sign condition (1.10) implies |V P| > € which allows us to control the regularity of the free
boundary, i.e., the second fundamental form 6:

ar—202 —1 "p2
07200 2y S €0 EF+ D0 107 Pliagp,)
r’'<r—1

from _ _
MY P =(0"20)VyP + 0@ 'P)+ 0(3736).

We will use the following notations throughout the rest of this paper:

o If sk = 18°Df fliL2m,)-

o [flsk = 1D flL2ep,)-

One can reduce the estimates of Q-tensor and curl terms to the control of || - ||zl  ls,k+1 and | - |5 x norms
of u, B, p with s + k < r, which can be further reduced to the control of wave and heat equations by elliptic
estimates Proposition 3.2. Finally, we close the energy bound by controlling wave and heat equation. More
detailed strategy will be discussed in Section 1.5.



1.4 Main results

e A priori estimates

The first result in this paper is the a priori bound of the free-boundary compressible resistive MHD system
(1.7).

Theorem 1.1. Suppose 0 < r < 4. Let (u, B, p) be a solution’ to the free-boundary MHD system
(1.7) together with the initial-boundary conditions (uq, By, po) € H*(Dy) x H>(Dy) x H*(Dy), (1.2),
(1.3) and compatibility conditions (1.9) up to 6-th order*. E, be defined as in (1.19). Then the following
energy bound holds for T > 0 :

T
EF(T) = EFO) Skarcosani iy, | PEO)dr (1.28)
for some polynomial P with positive co-efficients under the a priori assumptions

1
0] + — < K on 0Dy,
Lo
—VNP >¢y >0 on 0Dy,

> 10°Df p| + |0* D B| +0°Dfu| < M in D.
s+k<2

(1.29)

O

Remark. In the a priori assumptions (1.29), the first bound gives us the control of the geometry of the free
boundary dD;: The bound for 6 actually gives the bound for the curvature of 9D;; the lower bound for the
injective radius ¢y of the exponential map characterizes how far away the surface is from self-intersection.
All these a priori assumed quantites are controlled in Lemma 8.1.

Remark. In (1.28), one can apply the nonlinear Gronwall-type inequality introduced in Tao [48] to
conclude that, there exists a positive time T (co, K, £(0), E;(0), vol £2) > 0, then any solution of (1.7) in
t € [0, T] satisfies
sup EF(t) Siya 2EF(0).
0<t<T

See also Proposition 8.3. Our a priori bound depends on 1/A. Hence, we cannot get the vanishing-
resistivity limit by letting A — 0. The necessity of magnetic diffusion is discussed in Section 1.5.
Therefore we can assume the magnetic diffusion constant A = 1 without loss of generality to discuss the
incompressible limit.

e Incompressible limit

From Theorem 1.1, one can use Gronwall-type argument to see our energy E,(¢) is bounded by the initial
data as long as the a priori quantities are bounded in L norm. In fact, this energy bound remains valid
uniformly as the sound speed ¢? := p’(p) goes to infinity. We define x := p’(p) |p=1 to parametrize the
sound speed. Under this setting, we denote the fluid velocity, density, the magnetic field and the pressure
by uy, p«, Br and p, respectively in (1.7). We also assume the following holds for a fixed constant ¢

108 (Pl < co. and ¢5 o (POI™ < 100 (Pe)] < colpie(pOI™. for 1 <m <6,
and as k — 00,
o (pe) = 1,

which can be considered to be passing to the incompressible limit. The result is stated as follows (See
also Theorem 8.7).

3The local well-posedness of this problem is established very recently by the author [59].
4The reason for requiring 6-th order is that D? p appears in the higher order wave equations.



Theorem 1.2. Let vy, By be two divergence free vector fields with By|3p, = 0 such that its corrsponding
pressure g defined by

1 . .
4 (0-+ 1801 = ~@ivkdin}) + 0 BE@LBY. polam, =
satisfies the Rayleigh-Taylor physical sign condition

> €9 > 0.

1
—Vn (610 + —|Bo|2)
2 Do

Let (v, B, q) be the solution to the incompressible resistive MHD equations with data (vg, By), i.e.,

Dy =B-9B—0(q+ 3|B* inD;

divv =0 in D;

P,B—AB:B-GU, %nD; (1.30)
divB =0 in D,

q,Blyp, =0

(v, B)|t=0 = (vo, Bo).

Furthermore, let (u,, By, px) be the solution to the compressible resistive MHD equations (1.7) with
density function p, (p) with initial data (u¢ ., Bo, po,c) satisfying the compatibility condition up to (r +
1)-th order (see (1.9)) as well as the physical sign condition in (1.10). If we have po, — po = B (B is
the constant density in the incompressible case, WLOG set 8 = 1) and uo — vo such that £, (0) is
uniformly bounded in k, then one has

(uK’ BK,PK) - (U, B7ﬂ)

O

Remark. The energy bounds are uniform with respect to the sound speed because it does not depend on
the lower bound of any ,o,((m) (p) which converges to 0 as k — co. Also we note that, in our energy (1.19),
only the highest order time derivative together with 3D} p is assigned with the weight function p’(p) or
v P (p), This together with Sobolev embedding theorem yields that the a priori quantities in (1.29) also
have L°° bounds uniform in « up to a fixed time, and thus the convergence of solutions to compressible
MHD to incompressible MHD then follows.

Remark. The density of the compressible system converges to the incompressible counterpart as the
sound speed goes to infinity, but the pressure does not have analogous convergence. Instead, it should be
the enthalpy A (p) := | 1'0 pT(r)d r that converges to the pressure of incompressible system. See also [32].

Existence of the initial data satifying the compatibility conditions

In Section 9, we prove that for every given divergence-free vector fields vy and By with By|sp, = 0,
there exists initial data (1o . Bo, po,c) satisfying the compatibility conditions (1.9) when « is sufficiently
large, and also converges in our energy norm to the incompressible data as k — oo. Therefore, the
incompressible limit exists.

Theorem 1.3. Let (vg, By, go) be the initial data for the incompressible resistive MHD equations defined
in (1.30) with vo € H> and By € H®, Bylsp, = 0. Then there exists initial data (uo, Bo, po.x)

C2
satisfying the compatibility condition (1.9) up to 6-th order such that (u¢ 4, po,c) —> (vo, B) as k — oo,
and £ ;" (0) is uniformly bounded in «.



1.5 Illustration on Strategies and Difficulties

In this part, we would like to introduce our basic strategies in our proof. In particular, we will point out the
essential difficulty of ideal compressible MHD, and thus the necessity of magnetic resitivity in this paper. We
generalize the method in Lindblad-Luo [32], but our model is very different from the free-boundary compress-
ible Euler’s equations due to the presence of B, the strong coupling among B and u, p and the presence of
magnetic diffusion. Therefore, new ideas are needed to avoid the essential difficulty by utilizing the magnetic
diffusion in a suitable way. These also tell the crucial difference between compressible MHD equations and
Euler equations/incompressible MHD equations.

Difficulty in ideal compressible MHD and necessity of magnetic diffusion
The magnetic diffusion is necessary in our proof. We illustrate this by showing the difficulties in the study
of compressible ideal MHD.

¢ Difference from the free-boundary compressible Euler’s equations: (r + 1)-th order wave equation
is out of control

The highest order energy E4 (i.e. r = 4) contains the 5-th order energy W52 of wave equations of p,
which also appears in the energy of compressible Euler’s equation (see Lindblad-Luo [32]). To bound
D3 p and 9D} p, we need to take D¢ on both sides of (1.26) and study the 5-th order wave equation

o (p)Dép— AD}p=B-AD}!B +---, (1.31)

where the omitted terms are all of < 5 derivatives (see (6.6)). The control of this wave equation requires
the L? norm of AD¢}B. But for compressible ideal MHD, B only satifies a transport equation and thus
one cannot expect to enhance the regularity of B. This difficulty does not appear in the control of the
free-boundary compressible Euler’s equations, of which the corresponding wave equation (1.31) only
contains < 5-th order terms on the right hand side (see Lindblad-Luo [32], Section 4).

However, if we add magnetic diffusion on B, i.e., the equation of B is modified to be

o' (p)

D;B—AAB =B -0u—Bdivu =B -0u-+ B D,p, A > 0isaconstant,

and thus ,
DSB-AAD*B = B-D'u+ B P sy 4. (132)
o
then we can plug (1.32) into (1.31) to exactly eliminate the problematic term B - AD;‘B in (1.31). The
detailed computation is shown in Section 7.

¢ Difference from both compressible Euler and incompressible MHD: curl B loses control

Another crucial difference is that the control of curl B also contains a higher order term || @ *D,pll L2(Dy)
which also requires the energy estimates of 5-th order wave equation after using elliptic estimates Proposi-
tion 3.2. This difficulty does not appear in the case of incompressible MHD (see Hao-Luo [20], Gu-Wang
[17]) due to div u = 0O for incompressible MHD. Indeed, if there is no magnetic diffusion, i.e., for com-
pressible ideal MHD, one has

d d
EK“ == /D, pld3curl u|? 4 |93curl B|? dx

= d3curl (pDu) - 3>curl u dx + dcurl (D;B) - d3curl Bdx + ---
Dy D¢

= / d3curl (B - 0B) - 33curl u dx — / d3curl (3P) -93curl u dx
Dy Dy ———~—

+ / d3curl (B - du) - 33curl B dx + d3curl (B Pp) D,p) -9%curl Bdx + --- .
Dy 1Y

(1.33)

Dy
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The first term on the third line will cancel the first term on the fourth line after integration by parts, up
to some commutators that can be controlled. However, the last term requires the bound of @84D, )4
which is out of control. Such derivative loss is from normal derivative (div-curl decomposition reduces
the normal derivatives to div and curl) and necessarily appears in compressible ideal MHD due to the
coupling between magnetic field and sound wave. One can recall the derivation of energy conservation
that the term —% sz | B|?div u is cancelled by part of — th u - V P. But taking the curl eliminates the
counterpart of — th u - V P before such cancellation is produced because of curl VP = 0. On the other
hand, if we taking tangential derivatives instead of curl, then analogous cancellation is still preserved.

Remark. Secchi [41, 40] proved the LWP for the fixed-domain problem without loss of regularity in
H"(m > 16), but these results are quite difficult to be applied to free-boundary problems because the
free surface introduces extra derivative loss in anisotropic Sobolev spaces. So far, there is no available
result proving the energy estimates without loss of regularity for the free-boundary compressible ideal
MHD system.

Strategy of energy estimates

Our proof of the a priori bounds can be mainly divided into several steps: Q-tensor and curl estimates,
boundary tensor estimates, interior and boundary elliptic estimates and the control of wave and heat equations.
Important steps and illustrations are pointed out as follows, as well as in the summarizing diagram (1.35).

e Key observation: Magnetic diffusion together with elliptic estimates directly controls the Lorentz
force
After introducing magnetic diffusion, we should not seek for cancellation to eliminate the higher order
terms which are exactly the space-time derivatives of (B -d) B in Q-tensor and curl estimates. Notice that
(B - 0) B vanishes on the boundary, one can apply the elliptic estimates Proposition 3.2 and then plug the
heat equation of B to reduce to one order lower. For example, one can first reduce [|0*(B - 9) B L2(Dy) 1O
|A((B-9)B)||2,0- Then plugging AAB = D;B — (B -09)div u + Bdiv u into | A((B - ) B)||2,0 to further
reduce to the control of 4-th order derivatives. This observation is quite crucial to the whole proof: In
fact [|3° B|| L2(p, is out of control even if we use the magnetic diffusion, because the elliptic estimate of
0° B requires the bound of |§30| Leo(3p,) Which is impossible to be bounded. Our proof shows that the
higher order spatial derivatives of B must fall on the Lorentz force (B - d) B so that we avoid the difficulty
mentioned above.

e Boundary energies
In the control of boundary energies, we will get

Q@ D¥P.* D*(D, P) — 8, PO D*u! —vIN; 9 D*u')dS + --- (1.34)
8D[

So we choose v to be —(Vx P)~! in order to exactly cancel the leading order term on the boundary.
Hence, the boundary control will be reduced to |[T3° D¥ P [L23p,) and |13 D1 p |L2(9p,) Which can
be controlled by tensor estimates Proposition 3.3 and Proposition 3.4. This step also illustrates the im-
portance of Rayleigh-Taylor sign condition in the free-boundary problem.

e Control of Wrz, + Hrz, for ' < r: Bound all terms with < r derivatives by E*

After using elliptic estimates and tensor estimates, the control of all the terms with < r derivatives to-
gether with the tangential projection terms has been reduced to the control of Wrz, +H rz/ for r’ < r. Direct

computation in Section 6 shows that £ together with ||8S_2ADf+lB||Lz(DZ), ||8s_2ADf+1p||L2(Dt).
The latter terms will be controlled by W/, | + HZ, | as stated below.
e Control of W2 | + H? |

As mentioned above, one can reduce all the estimates to the control of wave equation of p and the heat
equation of B. With magnetic diffusion, one can simplified AD;‘B to the terms with 1 lower order
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derivatives, and thus we can seek for the control of wave equation. In fact, the RHS of k-th order heat
equation contains Df p as well as other k-th derivative of p, and the RHS of k-th order wave equation
contains k-th derivative of p. Therefore we can try to find a common control for W2, + H?2,, by the

time integral of itself plus other terms in /E¥. The detailed computation are shown in Section 7.

Our basic idea and process to close the energy estimates is briefly summarized in the following diagram.

consists of

reduced to

Esk + Ky W2+ EZy

reduced to

GS‘ZADf“B, 8S_2AD£€+1[)

ellipticT

llll.0- 1l Bllr.0 I+ sges Il - lls 1 of B, p, 3Dy (B-9B) my Di+Jp

elliptic 5 i
l p m lte sor estimate

reduced to

controlled by ( 1 35)

div-curl ~ 19 Df-ﬂ B.IT5° Dgc+ 1 ) tensor estimate . E*
elliptic £
E} > Closed

Diagram (1.35): Illustration on our basic idea and process to do the a priori estimates.

Incompressible limit

Our a priori estimate in Proposition 8.2 is uniform in the sound speed because it does not depend on the
lower bound of p’(p) which converges to 0 as the sound speed goes to infinity. We remark here that the choice
of weight function in (1.19) comes from the control of 5-th order wave equation

1
p'(p)D¢p—Ap = EAIBI2 .,

whose L2-control should be established by multiplying p’(p)D? p instead of D} p. Otherwise the LHS only
gives the energy term ||/’ (p) D} p|lo but RHS needs the control of || D} p||o.

Outline of this paper

This paper is organised as follows: Section 2 and Section 3 are preliminaries on Lagrangian coordinates,
elliptic estimates and tensor estimates. In Section 4 we reduce the Q-tensor estimates and curl estimates to the
control of || - ||sx norm of ¥, B, p and higher order interior terms together with the boundary term (1.34).
Then in Section 5 we use elliptic estimates to reduce the estimates further to the control of heat/wave equations,
which is done for < 4-th order in Section 6 and for 5-th order in Section 7. Finally, in Section 8.2 we summarize
all of the estimates to obtain the a priori bound which is also uniform in the sound speed, and then construct the
initial data satisfying the compatibility conditions to obtain the incompressible limit in Section 9. One can also
understand our idea and basic process of the energy control through the above diagram (1.35).

2 Preliminaries on Lagrangian coordinates

In this section, we are going to introduce Lagrangian coordinates which reduces the free-boundary problem in
R" to an equivalent problem in a fixed domain with metric evolving as time goes. To be specific, let 2 be

12



the unit ball in R”, and let fy : 2 — Dy be a diffeomorphism. Then the Lagrangian coordinate (¢, y) where
x = x(t,y) = fy(y) are given by solving

d
= =u(tx(y). x0.9) = foly). ye. @1

The boundary becomes fixed in the new coordinate, and we introduce the notation

D, = 9 = — + uki. (2.2)
at y=conslam at X =constant 8xk
to be the material derivative and
g = L 009
ax! ax! dy“

Due to (2.2), we can also consider the material derivative D, as the time derivative by slightly abuse of termi-
nology.

Sometimes it is convenient to work in the Eulerian coordinate (¢, x), and sometimes it is easier to work
in the Lagrangian coordinate (¢, y). In the Lagrangian coordinate the partial derivative d; = D, has more
direct significance than it in the Eulerian frame. However, this is not true for spatial derivatives d;. Instead, the
“suitable” spatial derivative to characterize the motion of the fluid is the covariant differentiation with respect
to the metric g4 (¢, y) = 8;j gy%g’y‘—,’,

Here we mention that covariant derivative is not involved in our imposed energy function. Instead, we use
the standard Eulerian spatial derivatives. We will work mostly in the Lagrangian coordinate in this paper. How-
ever, our statements are coordinate independent.

assigned to £2.

The Euclidean metric §;; in D; induces a metric

_s dxt x/ 23

gab(t,y) = ijay_“ay_b’ (2.3)

in §2 for each fixed t. We will denote covariant differentiation in the y,-coordinate by V,, a = 1,--- ,n, and
the differentiation in the x;-coordinate by d;, i = 1,---,n. Here, we use the convention that differentiation

with respect to Eulerian coordinates is denoted by letters 7, j, k,/ and with respect to Lagrangian coordinate is
denoted by a, b, c,d.

The regularity of the boundary is measured by that of the normal: Let N¢ to be the unit normal to 942, ie.e,
Zab NeN? =1, and let N, = Zab N? denote the unit conormal, g“b Ny Np = 1. The induced metric y on the
tangent space to the boundary 7'(052) extended to be 0 on the orthogonal complement in 7' (§2) is given by

Yab = 8ab — NaNp,  v** = g°¢"yea = g** = N*N".
The orthogonal projection of an (0, r) tensor S onto the boundary is given by
(ITS)ay o ar = YEV -+ V2 Sy ey
where J/f = g%y = 53 — N,N?. In particular, the covariant differentiation on the boundary V is given by
VS =nvs.

We note that V is invariantly defined since the projection and V are. The second fundamental form of the
boundary, denoted by 6, is given by 6,5 = (VN)ap, and the mean curvature of the boundary o0 = trf =
g ab@ab-

It is now important to compute time derivative of the metric D;g, the normal D;N, as well as the time
derivative of corresponding measures.
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Lemma 2.1. Let x = f;(y) = x(, y) be the change of variable given by

dx

EZM(I,X(I,)/)), X(O,y)sz(J’), yEQ, (24)
and g,p(1,y) = 6;j gyi;g;—,j, to be the induced metric. In addition, we let Y, = gup — NyNp, where N, =

gapN? is the co-normal to 3£2. Now we set

ox!
ua(l’ y) = ui(tsx)a)}_av ua = gabub» (25)
dig : The volume unit with respect to the metric g, (2.6)
du, : The surface area unit with respect to the metric y. 2.7

Then the following result holds

Dtgab = Va”b + Vbuaa 2.8)

D,g" = -g"g"" D,geq. (2.9)
1

D;N, = —ENa(Dtgcd)NcNd, (2.10)

Didpg =divudug, (2.11)

Didu, = (ou-N)du,. (2.12)

Proof. We only briefly state the sketch of the proof. Actually these results all come from direct computation, of
which the details can be found in [32], Section 2.
The fact that D, commutes with d,, together with D, x (¢, y) = u(t, y) yields that

dx? 0w axk Ju;
"9ya T 9y 9ye axk’

and thus

dxt Ox! axk du; ox’ 9x' 9xk du;
D1gar = ZD(Way—b) = Gyaaxk ayP | aya ayb ok e T Veta:

(2.9) follows from 0 = D; (g% gp.) = D;(g*®)gpe + %° D, gpe, and (2.11) follows since in local coordi-
nate we have diug = /detg dy and D;detg = (det 2)g* D, ga, = 2det g div u. To prove (2.10), we choose
the local foliation f so that 02 = {y : f(y) = 0} and f < Oin £2, then

0af
\% ng de fa f

N, =

and (2.10) follows from direct computation.
Now, (2.10) together with dj,, = J=% dS(y) implies D;du, = divu+ %(Dtg‘d)NcNd, where dS(y)
is the Euclidean surface measure.
To prove (2.12), one first uses div u = g“bD,gab/Z together with (2.8) and (2.9) to obtain
1 1
Didpy = 58" Digab = 5 (Digap) NN® = y**Vaup.

And finally (2.12) holds since y**Vup = y*®V(Nyu - N) 4+ y*2V iy, and y?°V 11, = divulye = 0. O
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3 Elliptic estimates on a bounded domain with a moving boundary

In this section, we are going to introduce the elliptic estimates and tensor estimates of tangential projections
which will be used repeatedly in the remaining part of this paper. All the results in this section will be stated in
a coordinate-independent way.

Throughout this section, §2 is a bounded domain in R” with n > 2. V denotes the covariant derivative with
respect to the metric g;; in £2, and V denotes the covariant differentiation on 952 with respect to the induced
metric y;; = gi; — N;N;. In this section (and only), £2 denotes a general domain with smooth boundary. In
addition, we assume the normal vector N to 92 is extended to a vector field in the interior of §2 satisfying
gijN' N/ < 1 by the same way as in Lemma A.1.

3.1 Elliptic estimates

Definition 3.1. (Differentiations) Let u : 2 C R” — R”" be a smooth vector field, and Bx = Brx = Vjuy be
the (0, r)-tensqr defined based on uy, where Vi = V;, ---V; and I = (iy,--- ,i,) is the set of indices. Define
divBy =V, =V'divuandcurl B = V;8; — V;8; = V'curl u;;.

Definition 3.2. (Norms) Suppose |I| = |J| = r, gl/ = git/1...glrJr and y!J = yitji...yirJr  For any
(0, ) tensors a, B, we define (, B) = g’/ a; By and |a| = (o, ). If ([TB); = yi]ﬁj is the projection, then
(Mo, IB) = y' ay By. Also we define

1Bl 120 = ( [ Iﬂlzdug)z,
Blizos = ( [ |ﬂ|2duy)2,

1Bl 20 = ( [ IHﬁlzduy)

Now we introduce the following Hodge’s decomposition theorem, which is crucial in the control of full
spatial derivatives of # and B.

Theorem 3.1. (Hodge’s Decomposition Theorem) Let 8 be defined in Definition 3.1. Suppose 6] + |%| <K,
where 6 is the second fundamental form of 052 and ¢ is the injective radius defined in (1.18), then

VB2 < g/ y* !yl Vi BriViByj + |div B + |curl BI? G.1)
[Q VB[ dpg < fﬂ (N'N7 gFly T BriviByy + 1div B + Jeurl B + K2(B1P) dpg.  (3.2)

Proof. See [6] (Lemma 5.5) for details. O

Proposition 3.2. (Interior/boudnary elliptic estimates) Let ¢ : £2 — R be a smooth function. Suppose that
16| + |%| < K, then we have, forany r > 2 and § > 0,

IV qllL22) + IV 4l 12002) SKvol2 Z [ITViq|L290) + Z [IVFAqllL2(g2), (3.3)
S<r s<r—1
IV gl 2@ + 1V 4l 200) Sk 8 ) 1TV ql200) + 87" Y IV Aqlli2).  (34)
s<r s<r—2

where we have applied the convention that 4 <, , B means A < Cp, ;4 B.

Proof. See [6] (Proposition 5.8) for details. O
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3.2 [Estimates of tangential projections

The projection of the tensor IT VSDfP appears in the boundary part of our imposed energy (1.19) as well as
the elliptic estimates as in Proposition 3.2. It is crucial to compensate the possible loss of regularity with the
help of tensor estimates below.

Actually, one may simply observe that: If ¢ = 0 on 952, then ITV?2q only contains the first order derivatives
of g and all components of the second fundamental form. Specifically, one has

IV2q =Yg+ 0Vnq. (3.5)

where the tangential component qu = 0 on the boundary.
Furthermore, (3.5) gives the following control:

ITV?q|1202) < 10]L002)| VNGl L202)- (3.6)
To prove (3.5), first invoking the components of the projection operator yij = 8{ — N; N/, then one has
YEViyh = —yE Vi (NeN') = —yK 0, N — yE Nl = —6,;N',
and thus o o »
ViViga =y v} Viv} Virg
= vy v Ve Vig + v v Vvl )V
= y{'v] VirViqg - 0, Vg,
In general, the higher order projection formula is of the form
nvig = (' "26)Vng + 0(V 'q) + OV 0),
which yields the following generalisation of (3.6). Its detailed proof can be found in [6].

Proposition 3.3. (Tensor estimate of tangential projections) Suppose that |6| + |%| < K, and forg = 0 on
082, then form =0, 1

r—1

=r—2 —
IV ql1200) Sk |V 0)VNGlr2ee) + Y1V " dli200) (3.7)
I=1
=
+ (0o + Y, [V Olee)( D, IVdl20e) (3.8)
o<l<r—2-m 0<l<r—2+m

where the second line drops for 0 < r < 4.

Proof. See [6] (Proposition 5.9). ]

3.3 Estimate for the second fundamental form on the boundary

The estimate on the second fundamental form 6 is a direct result of Proposition 3.3 with ¢ = P together with
the Rayleigh-Taylor sign condition, e.g., |[Vy P| > —Vy P > €9 > 0.

Proposition 3.4. (0 estimate) >Assume that 0 < r < 4. Suppose that |0] + |%| < K, and the Taylor sign
condition |V P| > € > 0 holds, then

r—1

=r—2 _
V' 0l200) S“K%o IV Plr2goy + IV 7 Plizge).- (3.9)

s=1

O

Remark. We point ou that the estimates of 6 suggests that the boundary regularity is in fact controlled by the
boundary L? -norm of P, with a loss of 2 derivatives.
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4 Energy estimates

4.1 Tangential (Q-tensor) estimates when s > 1

In this section, we will show the estimates of E; g, i.e., the estimates of Q-tensors and curl , when s > 1. We
will work under the Eulerian coordiantes so that we need not worry about the Christoffel symbols. We use the
notation

o 1/ lsx = 18°Df fllL2m,)s

o |flsx =1°D¥ flr2p,)

We start with the velocity field.

1d
33 pQ(3° D¥u, 3° D*u)dx =/
t

pQ(aSDfu,aSD$+1u)dx+/ pQ (3 D¥u,[D;, 9*1D*u)dx
D¢

D:

Ry

— [ 00 Dku.0* D@D + [ pQ DEu.lp. 3 DEIDadx + R
Dy Dy

Ry

/ pQ(3° D*u, 3 D¥(B - 9B))dx —/ pQ(3° D*u’ 3° D*9; Pydx + Ry + R,
Dl Dt

=11+ 1+ Ry + R,,
4.1
where we use the first equation of MHD system (1.7).
The estimates (A.1)-(A.4) together with a priori assumptions imply the following inequalities, of which the
proof can be found in Section 3 of [6].

|Dg”| <M, 10¢7| SM+K, |ou-Nlpspe) S K+ M,

_ 1
|Dv|pocan) = |Di(—VNP) Mooy S 1+ TR

and
ij im,,jn 1
Dy = =2y""y (EDtgmn)' 4.2)

Now we have
It Skom ullsxll(B-0)Blls k- (4.3)

For I,, we first commute 9; with 9° Di‘, then integrate d; by parts, and finally try to construct the Q-tensor
of p by using the continuity equation.

L=—| Q@Dfu' 3,8 DfP)ydx— | Q@ Dfu',o°([3;, Df]P))
Dy Dy
R3
-/ Q (9 D¥div u, 9 D* Pydx + ; Q3 ([8;, DFJu’), 8° D* P)dx — . Q(3*D¥ P, N;3* D*u')dS +R;
Ry R}

4.4)
Plugging P = p + %|B |2 and the continuity equation into the first term, we can get the Q-tensor of p.
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Q (3 D¥div u, 3* D¥ P)dx
Dy

—— [ 0wt vt GlaP) - [ 0w nf .1 D pras

1
- - Q(” (”)aSDf“p,aSDf(§|B|2)>dx— [~ (”)wak“p,awi‘p)dx
D, P

I,

- [ eawot. ”;’))]Dtp, # DY IBP)dx / 0 05, Db,y DFpyax 4
Rs Re

=1 — %% /Dt AYD 220 DX p, 9* DX p)dx + Rs + R
_/D, p;p) Dfp.[0°, D/ D} p)dX+;/D p(p) DFkp. 9*D¥pydx.
R, Rs
Also we have
Ly Sk 10/(P) DEF plir2coy | Bllsi- (4.6)

Next we control the other terms in Ej k. Since |[D;g"/ | < M in the interior and on the boundary ¢/ = y'/,
and by (4.2) D,y is tangential, one has

d 1

=3 Q(3*D¥P.3° D Pyvds
8D[
= Q¥ D¥P, D,3*D¥P)vds

3D[
%))

R

1
+ / EQ(astP, #*DXPYD,v — (ou-N)Q(3°D¥ P, 3 DX P)vds .
8Dt

Ry

For the Q-tensor estimates of the magnetic field B, one should not plug the third equation in (1.7) here, oth-
erwise AA B will appear and produce higher order terms on the boundary which cannot be controlled. Instead,
we directly use || B||s.x+1 to control the Q-tensor, and then reduce it to the control of the parabolic equation of

B in Section 5.
1d
o Q(3*D¥B, 3 D*B)dx

= ¥ D¥B,3* D*T1B) dx
D, Q@ D, o B) (4.8)

+ Q(aSDfB,[D,,aS]DfB)der/ pD;(1/p)Q(8* D¥ B, 3 D* B) dx
Dt Dt

=: I3+ Ryo + Ri1,

where
I3 Skom IBllskll Bllsg+1- 4.9)
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We point out that, Ry, R7, Rg, R1o and the boundary terms R, R’2" vanish if s = 0, in the case of which we
can drop the Q-tensor notation because there is no spatial derivative. Therefore we have

d

Y Eak S IuloklB - DBlok + 1520 DE pllaop 1B lsk + 1B Lokl Blliss
t s+k=r,s>1 (4.10)

+Ri+--+ Ri1+ Ry +R;.

4.2 Energy estimates of full time derivatives

When there is no spatial derivative, we need to add weight /p’(p) in u, i.e.

1 /
Eor =3 (/ o0 (p)|Dyul* dx +/ |DI B|* dx +/ P (p)|D;p|2dx).
D; D; D P

When computing % Ey,r, there will be some terms that D, falls on the weight function, but these terms can all
be controlled by Ey, because |0 (p)| < co+/p'(p). Therefore one can get a similar estimate as above:

d
—Eo, Sk Vo' (P)Diull 2o, (B - 0)Blloa + 10/ (p)0D] pllL2(py | Bllo.a + I Blloall Bllo,s

dt (4.11)
+ Ry + -+ Rs + Rg + Ry1.

4.3 Curl estimates

Similarly as above, one has

1d
277 o, pleurl 3" u|? + |curl "1 B|? dx

= / curl 8" 1w - curl 3" Y(pDsu) dx + / curl ¥ 'B-curl 3 'D;,Bdx +Ri2 + ---+ Rys
Dy Dy

Iy

=/ curl 3" 'u - curl 8r_1(B-BB)dx+/ curl " tu- 9" Yeurl (OP) dx + I4 + Rin +--- + Rys,
Dy

Dy ——
=0
Is
4.12)
where the remainder terms Rj», - , R15 are defined by:
Ry = / pcurl 3"y - [D;, curl 3" Yudx
D¢
Rz := / curl " 'B - [D;,curl 91| B dx
Dy
Ris = / oD:(1/p%)|curl "' B|? dx
Dy
Ry5 = / curl 3" tu - [p, curl 9" ~']D;u dx.
D¢
14 and I5 can also be similarly proceeded as /1 and /5:
Iy Sk 1BllrollBllira, Is Skom [[ullroll (B - 9)Bllro- (4.13)
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Combining all the estimates above, we now have:

d
| X Ea+ Ko | Sr lullal(B - 0)Bllo + 16/ (P)0* DE pll 2o 1Bl + I1Blleill Bllscsn
s+k=r
+Ri+--+Ris+ R} +R;.
(4.14)
Therefore the Q-tensor and curl estimates are all reduced to the higher order terms (/q, - -- , Is, RT, R;) and

the remainders. Next step we will control all the remainders by ||u||,0. || p|ls.x and || B||sx. The reduction of
those higher order terms will be shown in Section 5.

4.4 The precise form of commutators between D,’s and spatial derivatives

Here we present the precise form of commutators which will be used repeatedly in the control of remainders.
(4.15), (4.16), (4.18) are the same as in (4.5)-(4.7) in Lindblad-Luo [32]. (4.17) is a direct consequence of
Leibniz rule and (4.16).

r—1 r—1
[Di.07] =) 8 [Dy. 9]0 = —Clyy (3" )", (4.15)
s=0 s=0
where |
1+s, yrqr—sy. o I+s ky(gs .
(@ w0y iy = - gsj @Oty VO )
S, is the r-symmetric group.
0.0F1= Y c,5,@DMuy (D) + > dj, .. 1, (DM ) - (D1 u)(3D!M).
I1+Hl=k—-1 h++ly=k—n+1,n>3
(4.16)
[D¥.B-9]=Y_ c{D; By, D] +> ¢l (Df BHID].4)]. (4.17)
j=0 j=1
[D;, A] = (@D;'u) - (9*D7?)
+ > dy, .1, @DPu) - (3D u) - (AD!Mu) - (9D12)
Iy ++lp=r—n,n>3
+ 3 €1y 1, (ADPu) -+ (3D ) - (2 DMu) - (ID12) (4.18)
hi+-+ly=r—n,n>3
+ 3 iy 1, QD) -+ (0D u) - (0D u) - (3 D),

hi+-+ly=r—n,n>3

4.5 Remainder and commutator estimates

1. Boundary term R + R}
Recall that v = (—dP/dN)~1, so v N; = 9; P. Therefore, R} + R} becomes
R + R} :/a pQ(3°D¥ P, D,;3° D¥ P + (3, P)(3° D*u))vds.
Dy

When s = 0 or 1, R¥ + R} vanishes because D, and ITd' = 9 are both tangential derivatives of the moving
boundary dD; on which P = 0. For s > 2, the simplification is exactly the same as (5.14)-(5.15) in Lindblad-
Luo [32]:

20



r—2
s=rk=0: (D P+ (3;P)0u') =TI DP + Y dp (0" u)yd" " P)
m=0
2<s<r: I(D¥D¥P + (3, P)(@° D*u')) = M* DT P + 11((9; P)(8° DFu'y) (4.19)
s—1
+ Y d (@™ )0 DY P).

m=0

Remark. In the last term on the first line, the summation is taken from O to » — 2 instead of » — 1 because
I19" P is cancelled by the commutator. This is essential for our estimate: One cannot control /70" u on the
boundary because u # 0 on 0D, causes loss of regularity. However, |I10° Dg‘u| L2(3p,) can be controlled

when k > 1 since we can use the first equation of (1.7) to reduce this term to [[70*T'D¥1B|;5p,) and
|10t DX~ p| 12 (3p,, which can be controlled by the elliptic estimates.

Hence, by Holder’s inequality we have

R+ Ry Skm Y (IHastP|Lz(3Dt)(|H8st+1P|Lz(3Dt)

k+s=r,s>2
+ |11(3; P)(® Dfu)| + |1T(@"* u)3° " D P 4.20
i tU)L2opy) u t )lL2opy) (4.20)
0<m<s—1
+ |H8rP|L2(8D,)<|HarDtP|L2(Z)’Dt) + Z |n((am+1u)78r_mP)|L2(8D,))'
o<m<r-—2
2. Interior terms R; + --- + Rj5
We are going to control all the remainders R; --- , Ry5. For simplicity we only show the details for top order

case, i.e. § + k = 4. For the lower order cases, we only list the result and omit the proof.

(1) Ry = [p, pQ(3° Dfu,[D;, 8| Dfu) dx.

Since
s+1

[D:. 0°]Dfu = — Y CIH M T " D,
m=0

we know
o s =2 Ry Skom lulls e (luells e + Ilells—1,)s
e s=1, k=3 R Skum ||”||%3’
e 5s=0,k=4:R =0.

(2) Ry = [, (8 Dfu,[p, 3 DF1Du) dx.
Let D be D, or 0, then the commutator can be written as

4 4
[o.#* Df1Du =Y CiD'pD* ' Dou =Y " D" (o' (p)Dp)D* ' Dyu.
I=1 I=1

Therefore we have:

e s=4,k=0: Ry SkMcovol2 lullao(llpllao + llulls1 + llull2,1);

o s=3k=1: Ry Skmconor2 Il31(lpll3,1 + Ipllz0 + llullz,1 + [lullzo0 + llull22 + ulli,2):
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°5s=2k=2: Ry SkMcovo2 [ullz2(Ipllz2+ 1 Pllza+1ullos+lullns+lulli 2+ lullz.2+ 2,0
o s=1k=3: R Skmcomae [ulia(lo’ (P)ID? pliLzo,) + P22 + llullis + llullos + Tull.2);

e s =0, k =4:wehave
R, = / 0 (p)D}tu - [p, D} Dyu dx
Dy

Smco IV (P)Diull L2y IV P (P)Diull L2,y + 1V P/ (P) Dl L2,
+ IV () DY plliL2o,y + 1V (P) D] pllL2p,)-

Note that the constant in the equality depends on vol §2 because we use Poincaré’s inequality on p.

(3) Rs = — [, Q8 Dfu',8°([0;, DF]P)) dx.
Recall (4.16) the highest order terms in the commutator [, Di‘]f are (8Df‘1u)(8f) and (8u)(8Df_1f).
Hence we can get the following estimates up to lower order terms:

e s=4,k=0: R3 =0;

e s=3k=1: R3 Smyae llulls,1(lulls,o + llulls0 + [ Pllao + [ Bllao);

e 5s=2,k=2: Ry Suyae ullz2(lulls1 + lull2a + Iplls0 + | Bllso + ullz0 + I pl31 + [1Bll3,1);
e s=1k=3: R3 Smyae lullis(ull22 + llull2,r + Ipll22 + | Bll22 + [ 2ll2,0 + [ Bll2,1);

e s =0, k = 4: We have

Ra= [ p(p)Dfu-0, DIIP ds
t
Sato INF DDAl 120y (VI DIV DE plliaony + 1Bls + [1Bllzz + 1pla + 1Bz + Ipla.).

) Ry = [, Q@ ([9;, D¥u), 9° DX P) dx.
The commutator term is exactly of the same form as R3 except we replace P by u’. We list the result here
and omit the proof.

e s=4,k=0: Ry =0;
e s=3k=1: Rs Sk.mvoe ([ullao + [ullz0lplz1 + 1Bl3,1);
e s=2k=2: Ry Skmvo2 (Iullz1 + lullz0)lpll2z2 + 1 Bll2,2);
o s=1k=3: Ry Skmvae ([ull22 + [ull2,0)Upliz + 11Bl13):
o s =0, k = 4: We have

Ry = / o' (p)[0;. D' - D} P dx Sareo (lullns + Nulli2) (10 (P) DY pllL2(p,) + |1 Bllo.a)
Dy

Remark. As we can see, the control of R4 when s = 0 illustrates that the weight function is necessary: If we
remove the weight function, then || D{ p/|| L12(s2) has no control, i.e., either wave equation or Eg 4 cannot control
this term.

(5) Rs = = [, 0 (1 DF. LD, p. 9 DE (31 BI)) dx.
Let D be D; or 9, then the commutator can be written as

95 Dk P/(P) D.p— u clp! P/(P) D*lp. = : D! P/(P) p+1p
t,T tP—Z 4 T tP—Z — tD-

=1 =1 p

Therefore we can find that every term is assigned at least \/p’(p) weight. We have

22



® 5>2: Rs Sk,Mevol2 [PllskllBllsks
e s=1,k=3: Rs SkMecona2 VO (PIVD P2yl Bl 3.
e s = 0,k = 4 : The weighted estimate is
o' (p) 1
Re==[ #p) [D;*, ) }D,p-D;‘<—|B|2>dx
Dy

Suco (P (P)D? P2,y + 10/ (P) D7 L2l Bllo,a-

6) R = — [, O ([aSDk 2@, p. & D ) dx.
Similarly as Rs, we have:

e s>2: Rg S_,K,M,co,vol!? ”p”ik;

e s=1k=3:

Re Sk.Meomor2 IV P (P)DEplL2co,) (Ve (P) D pliL2oy + IV (P)V D] pllr2o,y) S Ea

e s =0, k=4:

p'(p) p'(p)
Rs = —/ P [D“ P D:p - Dipdx Smeo IV P (P)D]PI72p,):
D¢

(7) Ry = — [, 220 (0 D¥ p. [6°. D,]D¥ p) dx.
Since
s+1
[Dh aS]Dt p= Z Csm-i-lal-i-mujas—m Dfp,
m=0

e s=4,k=0: R7 Sk.Mcovor2 lulla0 + lullzo + 1IPlla03
e s=3k=1: R; SkMcovoi2 Ull3,0+ 12]3,1;

o s=2,k=2: Ry Sk.Mcovol2 |IP]|2,2;

e s=1k=3: R; Sk.mcoma2 IV (P)VD:pll 122y
os5=0k=4: Ry =0.

(8) Rs = % [, pD(E)0(3° DF p, 8 DF pydx S Vo' ()3 DEpl2spy, ) S Esi
) Ry = [yp, Q(aSDfp, 3 D¥P)D,v ds.

e s <1: Rg=0Dbecause D;, 10 € T(dD;) and P = 0 on dDy;
e 5s>2: Ry ,SK,M Es,k~

(10) Rio = [p, Q(3*D¥B.[D;, 9°]Df B) dx.
The control of Rjy is the same as R; except replacing u by B. Therefore we have:

e s=4,k=0: Rio Sk.Mcovol2 | Blla,o(llulla0 + llullz,0 + [[Bllao);
e s=3k=1: Rio Sk.Mconor2 |Bll3a(llullz0 + [|Bll3,1);

e s <2: Ry ,SK,M,C(),VOISZ ”B”ik
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(11) Riy = [, pD:(1/p)Q(8° Df B, 3 Df B) dx Sey Esk.
(12) Ry2,--+, Ry5 : The control of Ry», R;3, Ry5 are the same as Rj, Rjg, R, respectively when s =
4, k =0,and R14 < K4. So we have:

Riz + -+ Ris Skmcovor 2 Ko+ (lullao + [ullz0 + |Bllao + [ 2ll4,0)>.

Before summarising the estimates, we would like to reduce the estimates of ||u||, x to that of B and p by
using the first equation in (1.7), because we are going to use elliptic estimates for B and p in order to further
reduce to control of the wave equation of p and the heat equation of B.

We prove the following estimates for Bstu when 1 <k <r —1, while |lullo,, = [|Dfullr2(2) < v/ Eo.4
and ||u||,0 will be controlled later by div-curl estimates.

Lemma 4.1. For s + k = 4, one has the following bounds:
lullz,1 Sk,Meo |Bllao + I Pll40.

lull2,2 Sk 1Bl + Pz + 1Bl + I pllso + w30,
lulli,s Sk.mco IBll22 + 2ll22 + 1 Bll2a + I2ll2,0 + [1Blls0 + 2l3.0-

While for s + k = r < 4, the result becomes ||u||sx Mo | Blls+1.6=1 + [12lls+1.k-1-

Proof. For simplicity, we only prove it for s + k = 4. The proof is quite straightforward by the first equation
in (1.7). We have

1
3 D*u = 35 pk! (—(B 9B — dp — (dB) - B))
I
1
P
The main term can be easily controlled by C(M)(|| B|s+1,k—1 + || lls+1,k—1) by Holder’s inequality.

(B LHIpk-ip 4 BSHDf_lp) + commutators,

e 5 = 3, k = 1: In this case the commutator term is Zzzl dk(1/p)3>*(B - 9B — dP) which can be
controlled by || B||4,0 and || p||4,0 by Poincaré’s inequality.

When k > 2. The highest order terms in the commutators consist of 9° ([Di‘_l, d]B), 3*([D*=1,9]p) and
[0° DF=1, 011/ p).

e 5 =2, k = 2: From the specific representation of [D;, d] = (du)-d, ee know the highest order commu-
tator terms are 92 (du-dp) and 9 (du-0B) which can be bounded by || B30 + || pll3.0 + |l¢]3.0-

e s = 1, k = 3: Similarly as above, one can get the commutator terms bounded by || B|l2,1 + || pll2.1 +
lu]l2,1- Then apply the same method to ||u||2,; to derived the result.

O
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Combining all the estimates above, we get

d
a”( 2: E&k*‘KA)

s+k=4
SM,co,vol.Q Z Esk + Ka
s+k=4
+ (lpllsa +lpls.0 + 1Bl3a +11Bl3.0 + llulzo0)(lrlz + [1Bll1,3)

2
+( S IBlsx+ 3 Uplsk + IVIPIDIpll 2, + p/(p)D;‘puLz(D,))

s+k=4 s+k=4,5>2

+ Z (IBlls1,k=1 + 12ls41,k—1) I(B - D) Bllsk
s+k=4k>1 (4.21)

+ 2 1Bl (1Blskr1 + 1023 DE pll 2,
s+k=4
+ (ulla0 + 1Bll4,0)I (B - D)Blla0 + I Blloll Blla,s

+ Z (|H8SD£°P|L2(ap,)(|nasD;€+lP|L2(3Dt)
s+k=4,2<s<3

+ @ PYO Dfu)| p2ap,y + D |n((am+1u)fas—mpfP)|L2(3Dt)))

0<m=<s—1

+|1734P|L2(3D1)(‘1734DtP|L2(aD,)+ > |H((am+1“)734_mP)|L2(BDI))'

0<m<2
Similar estimate holds fors + k =r < 3.

d
- > Egx+ K

s+k=r
5M,CO,VOI.Q Z Es,k + Kr

s+k=r
2
| S Bk + Y Uplek +lpl2z + IV DD pllr2eo,,
s+k=r s+k=r,s>2

2
(4.22)
+( Y Bl + Y ||p||s,k+||¢p/<p)aD?p||Lz(D,))

s+k=4,5>1 s+k=r,s>2

+ ) > (|naSD$P|L2(3D[)(|naSDf+1P|L2(aDt)
s+k=r,s>2k+s=r,s>2

+ 1@ YO Dfu) p2opyy + ) |n(<am+1u)fas—'"Di‘P>|Lz<aDt>))

0<m<s—1

+ |173rP|L2(3Dz)(|n3rDtP|L2(3D,) + > |17((3’”+1u)73r—mP)ILZ(BDt))'

0<m=<r—2

S Control of interior and boundary terms of top order

Now we come back to use Lagrangian coordinate. With a little abuse of terminology, we still define
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o || fllsk = IVD¥ £z,
o | flsk = IVD¥ fl1200)-

As stated in Section 2, our proof is coordinate-independent.
We are going to use elliptic estimates in Section 3 to reduce the interior terms in (4.21) and (4.22).

5.1 Div-curl estimates: Full spatial derivatives of ¥ and B

By the Hodge’s decomposition inequality, we have

. _ _ 1
lullro < Nulloo + lIdiv V"~ ull 20y + llcurl V7~ lu] 120 + 5/ pQ 0 u,d"u)dx .
Dy

S,*/Kir“'/\/ Er,O

and

. _ _ 1
Bllro < l1Bllo,o + || div V; "Bl 12(a) + llcurl V7 B2y + E/D, Q(0"B,d"B)dx.

S«/ Kr+ Er.O

_PW
P

Now we use div u = Dy p to control ||div V’_1u||Lz(_Q):

/ / /
div V" ly = V' ldivy = -V ! (thp) = —MVT_IDtp — |:V’_1, M} D;p.
p p p

Hence,

Idiv V" ull 202y Su Ve (P)Y ' Depliaoy + 1P lr—10 S VEr—1 + I2llr-1,0.

and thus

lullro + 1Bllro SM vVEo + VEr + VE—1 4+ |Pllr=10-

5.2 Elliptic estimates: Control of | B|

s and || p|lsx

G.D

In this part we try to control || B||s x and || p|lsx by using the elliptic estimates in Section 3. The only exception
is | p|l1,3 because it has no weight function /p’(p) and thus it cannot be bounded, independently of the lower
bound of p/'(p) (this lower bound goes to 0 when passing to the incompressible limit), by the terms in our
proposed energy (1.19). This term will be controlled by W5 after using Poincaré’s inequality. For simplicity we

only consider the top order case: s + k = 4.

When s > 2
e s=4,k=0:
By the elliptic estimates, we know V§ > 0, we have

Ipllao == IV*Pllr2(2) Sk.Mol2 8 Z [TV plr2pgy + 67 Z IV7 Apllz2(g)-
s<4 Jj=<2

Using the boundary tensor estimates, we have

s—1

=52
IVEplr2pa) Skv2 IV 0l2p0) | VN PlLe@e) + Z V! pl20)-
I=1
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Using trace lemma and the estimates of || B||4,0, We can control the second fundamental form as follows:

3
—2
IV 0l 1200) Skase TTV*Pl2g0) + Y IV Pli2pe)
=1

SkM1/eo VEo + VEs+ VE3 + || plla.

By trace lemma and Sobolev embedding, one has |Vy p|rood2) Svwie [|plla,0. Combining with the
estimate above, one can pick a suitably small § > 0 such that § ) | _, [ITV® p|12(3g) is absorbed by LHS
of (5.2), i.e.,

(5.2)

Iplla0 Sk Mvo12,1/e0 / EX + Z IV7 Apll12(2)- (5.3)
Jj=<2

s=3,k=1:
Similarly as above, we first use the elliptic estimates to get Vé > 0

1Blls1 = IV2D:Bll12@) Skmvoi2 SITVPD Bl 2oy + 87 Y |V AD B 120
J=1

2
SK.Myol2 8 (|VG|L4(89)|VND1‘B|L4(3.Q) +y |VlDtB|L2(39)>
I=1

+87 Y IIV/AD B 12

J=1

vpnil/2 1/2 vnil/2 1/2
SK,M,VOIQ 8(|VG|H/1(3Q)|VNDIB|H/1(3_Q)|ve|L/2(3g)|VNDtB|L/2(3Q)

2
'y |V’DZB|L2(39)) £ 57 Y IV AD Bl 2.
=1 j<1

where we use the Sobolev interpolation Theorem A.8 in the last step.

By tensor estimates, one can get

2
IV6|12000) Sk.1/eo 1TV Plr2gay + Y IV Plizoa)
=1 5.4

SkM /e | E3 + 1Pl

Therefore, using Sobolev trace lemma, (5.2), (5.3), (5.4) and Poincaré’s inequality one has

1/2
1Bll3.1 Skmajeomor2 8 | VEX+ D IV Aplliagey | 1B | VEF + D IV Aplliage) + I1Bllaa
J=1 J=2
+ 8| Bl3a + 67" Z IV/ AD; Bl 12(g).-

J=1

If we choose § > 0 to be suitbaly small, then §|| B||3,; will be absorbed to LHSof the last inequality,and
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thus we have

1/2
i 1/2
IBlIs.1 Skmajeomar2 8 | VEF + D IV Apllaey | I1BIY;
J=1
: (5.5
< | VET + IV Apli2a) + [Bllsa
Jj=<2
> IV AD Bl 2o

J=1

for sufficiently small § > 0.
Replace B by p in (5.5), we can get the estimates of || p||3,1:

1Pl31 Skmajeomor2 8 | VES + Y 1V Apllraey | 121057 | VES + Y1V Apllrago) + pliaa

Jj=1 Jj=<2

+ Y IV ADpll 22
J=<1

(5.6)
for sufficiently small § > 0.
e s=2 k=2

Similarly as above, one can get the following estimates by elliptic estimate:

IBll2,2 = IV?D? Bl 12y Sk.Muol2 SITTVZD? Bl 1230y + 8 |AD? Bl 120
SkMvor2 8 (101L02) | VN D7 Blr2@a) + VD7 BlL2pg2))
+ 87 AD? B 12y
SkMuoi2 8Bl + 87 HAD? Bl 2.

where the last step we use the a priori assumption |#| < K and Sobolev trace lemmma. Now choosing
& > 0 suitably small so that the §-term can be absorbed by LHS, one gets

IBll2.2 Sk.mvot2 1AD} Bl 120 (5.7)

Also one can get
Ipll22 Skmvoi2 IAD? P2 (0)- (5.8)

When s <1

We already know ||Bllo.4 = || D} B|l12(q) is a part of \/Eo4 and ||Bll1,3 = [|VD}B||12(g) is a part of the

parabolic equation energy H4. From (4.21) and (4.22) we know there must be a weight function /p’(p) or

©'(p) multiplying on D} p as long as D¢ p appears, and thus can also be controlled by either \/Eq 4 or Wj.
The only term we need to do extra work is || p||1,3, because in our imposed energy function, all the terms

that can control VD3 p contain a weight function p/(p) or /p’(p). Hence, one cannot get the uniform control

with respect to the sound speed ¢ := |/ p’(p) as it goes to infinity when passing to the incompressible limit.
To avoid this problem, we use Poincaré’s inequality to get

Iplls = 1VD? pllr22) Svee IV2D?pllizy = lpll2s-

In other words, we make it to be a higher order term of the form | p||s x+1(recall s + k& = 4), which can be
reduced to the control of 5-th order wave equation. We will deal with these terms in the next section.
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5.3 Elliptic estimates: Reduction of higher order terms

So far, what remained to be controlled are of the form || (B-V) B||s.k, || P|ls.k+1. || Blls,k+1, tangential projections
|11 VSDichl P|12(35) and the wave equation of p coupled with the parabolic equation of B when s + k = 4.

In this section, we will reduce all the control of || p||sx+1, | Blls.k+1 and |17VSD§€+1 P|12(30) to that of wave
equation and parabolic equation.

First we would like to control those interior higher order terms. In fact we cannot control these terms
directly. Instead, we need to control ||(B - V) B|\s.k. || Blls.k+1 = || D¢ B||s,x together with |B|sx + | Bls—1k+13
|pllse+1 = || Dsplls,i together with |p|s—1 k+1 if § > 2, so that we can use Young’s inequality to absorb the
higher order terms. While for s < 1, weight functions must appear as long as all these terms containing p
appear in the previous estimates.

e s =4, k =0 :We consider
IV4*((B - V)B) 2@y + IV*Di Bl 2@y + IV*BlL2g) + IV DiBl12ag).-
Since (B - V) B = 0 on 052, by elliptic estimates, we have V§ > 0:
IV*((B - V)B)ll12(2) + IV*DiBlir2(2) + IV*BlL2aa) + IV Di Bl 12 o)
Skmaor2 8 ((ITVHB - V)Bl125) + [TV D} B|1250))
+67 Y (IV/AB - VB) 120y + V) AD Bl 2(e))
Jj=<2

=2
SK. Mol 2 3(|V O12002)(IVN(B - VB)|Lo@a) + VN D B|L<@(2))

3
+ Y IVH(B-VB)|1200) + |VIDIB|L2(39))
I=1

+ 57 Y (IV/AB - VB) 122 + V) AD B 1)) -

J=2

Using Sobolev trace lemma and Poincaré’s inequality, we know

3
IVN(B - VB)|Lo@2) + VN DiBlropa) + Y _ IV (B - VB)|1200) + |V DiBl12pg)
=1

Skmuo2 IVH(B-V)B)l 2@y + IV4Di Bl 20y + IV*Blr2ga) + IV D Bl 120

and thus these §-terms can be absorbed by LHS of last inequality if we choose a suitably small § > 0 ,i.e.,

IV*((B - V)B)llL2(2) + IV*D( Bl 22y + IV*Blr2ag2) + IV Di Bl 2o

SkMjeomai2 8| VEF+ Y IV Apliragey | (IVH((B - VIB) 2@ + IV D Bll2()
Jj=2 5.9
estimates of |v26‘L2(39)

+ Y (IVVAB-VB)120) + IV AD: Bl 12(g)) -

J=2

holds for sufficiently small § > 0.

One can mimic the steps above to get a similar estimate on || p||4,1 + | pl3,1:
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IV*D;pll 2oy + IV Diplr2gg)

- . . (5.10)
SkMvoi2 8| EF + Z IV Apllr2cay | IV Dipli2) + Z IV/AD:pllL2(g)-

Jj=<2 J=2
holds for sufficiently small § > 0.

Remark. When k& > 0, the estimates of ||(B - V)B|;x can be reduced to that of ||B|s+1x plus
|| Blls+1,k—1 together with ||u 541 k—1, while the latter two terms have been controlled above.

VSD¥(B-V)B = (B-V)VD¥B + V* [Df, B- v] B +[V*.B-V|DFB,

in which the commutator terms consist of < 4 derivatives of B or u multiplying the a priori quantities by
Leibniz rule and (4.17). One has

(B V)Bllsi S 1Blls+14 + (IBlls+1d—1 + [ells16-1) -
Therefore, it suffices to consider || B||; k41 in the rest of this part.
e s = 3, k = 1 : Using elliptic estimates, tensor estimates for the tangential projection and Sobolev

interpolation Theorem A.8, we get: V§ > 0,
IV3D?Bll 20y + V2 D7 Bl 1200

2
SK.Myol2 8 (|V9|L4(8.Q)|VNthB|L4(8.Q) +y |V1Dt2B|L2(80)) +671 Y |V AD?B| 120
=1 j<i1

2
wnil/2 1/2 wnil/2 1/2
SKMvol2 8 (|ve| Hiom YN DBl 0o V01 50 VN DEBL S o) + > :|V’D?B|L2(m>)
=1

+87" Y IV AD]B| 120

J=1

Using Sobolev trace lemma and Poincaré’s inequality, it holds that

2
IVND?Blgiaay + IV DIBl 1200y Swie VP DBl 12y + IV D7 Bl 1200).
=1
Hence, one can choose a suitably small delta 6 > 0 to abosrb these §-terms to LHS. Combining with the
estimates of 6 (5.2) and (5.4), we have

IVD? B2y + IV>D}Bl 200

1/2
Skmajeona2 8| VEF+ Y IV Apliaay | 1BV - [ VES + Y IV Aplliage) + |1Blaz
J=1 j=2
+ Z ||VjADzzB||L2(9),
J=1
(5.11)
for sufficiently small § > 0. Similarly we have the same type estimate on p:
IV2DZpliLa(a) + 1V DEplL2 )
1/2
* i 1/2 * j
Skmemoie 8 | VEF+ D IV Apllzy | 1PN | VES + Y IV Aplliage) + Ipl2z
J=1 j<2
+ Y IV AD?pll12(),
J=1
(5.12)
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holds for sufficiently small § > 0.

e s =2,k =2:Since |#| < K is part of the a priori assumption, then one can mimic the proof above to
get V8 > 0

IV2D}Bll 20y + VD] B2 )
Skmao 2 8 (10]L0@2) VN D7 B2y + VD7 Blr2pe)) + 87 1AD] Bl 2
SkMao2 S(IV2D] Bl 2@y + VD] Blr2g@)) + 8 IIAD] Bl 12(g).
Choosing § > 0 suitably small to absorb the §-term, one gets
IV?D}Bll12(a) + VD] Bl120) Skmae2 |AD? Bl 12 (5.13)
as well as the version of p

IV2D} plir2(a) + VD] Plizpe) Skmaoe 1AD] pllr2(g)- (5.14)

e 5 < 1 : From the previous estimates, we know such terms must appear together with a weight function
Vo' (p) or p(p) (e.g., see (4.21)). Therefore they can be directly controlled by the imposed energy
function:

10" (P)V D} pllr2c2) + VP (P) D] pliL2@y + IVD] B2y Seo v Es. (5.15)

For D? B, it only appears once in the term || Bl|o,4]| B|lo,5 in (4.21). We can control its time integral
because it is still a part of Ey4:

T
fo 1D2 B 20| D3 B@) 12y dt
T 5 2 1 T 4 2
<5 [ UDEBO ey di + 55 [ 1DEBOaaydt
1
=8HZ(T) + 4—5HZ(T),

where one can pick § > 0 sufficiently small to absorb this term in the final estimates of E4.

Apart from the tangential projection terms, we have reduced all the other terms in (4.21) to the control

of [V*2ADF Bl 12y, IV ADF pll2(ay. IV ADFT Bll2(g) and [V 2 ADI pll12g) for s > 2,
which will be controlled through the 4th and 5th order wave equation of p and the parabolic equation of B.
Those tangential projections will be bounded after we control r-th order wave equation.

6 Estimates of wave and heat equation of < 4 order

In this section we are going to give a common control for W/ ; + H?, ;, which is the only thing left to close
the a priori bound. We will first control the energy of 3rd and 4th order wave/heat equation in order to bound
interior terms and tangential projections by E}.

Recall the heat equation of B is

o' (p)

D:B—AAB =B -Vu—Bdivu=B-u+B D p. 6.1)

Taking divergence of the first equation of MHD system (1.7), then commuting V; with pD;, one has

. 1 .
pDdivu — Vi(BkaBi) + A (§|B|2) = —Ap + [pD;, Vi]u'.

31



Plugging the continuity equation, div B = 0 and Dp = po'(p)Dp (D = V or D,) into the last equation,
one gets the wave equation of p:
p'(p)Dip— Ap = BXAB + w, (6.2)

where
/
= (% - p”(p)) (Dtp)z—l—%%p ((B - VB;) — V; P)+ pViukViu' =V By Vi B' + |V B|?. (6.3)

Remark. The derivation of (6.3) is: The first term <(— ,o”(p)) (D; p)? comes from D,divu = D,(—22 (p) D, p).

)
u'. The term V! B; Vi B’ comes from V;(B¥Vy B;) and
= B -AB + |VB|2.

The second and the third term come from [pD,, il
div B = 0. The last term appears because A ( |B|?)

6.1 Higher order equations: Reduction of V*"2AD*1p and VS—2AD*+1 B

Now we are going to derive the higher order heat/wave equation. Taking Df on the heat equation, one gets

DB _AAD¥B = A[D¥, A|B + (B - V)Dku+3p(p)1)k+1p
P

+10f 8-S+ | o B2 Dy ©4
P
=:hp gy + b+ g
where
h}., = A[D¥, A]B,
P'(P) k1
hgt1:= (B -V)D¥u + BE-22 D
k+1 ( ) + 0 p, (6.5)
- (
hiy1:=[D¥ B -Viu + [ B’OTf)) D;p.
Similarly, taking Df on the wave equation, one gets
o (p)D¥*2p — AD*p = [D*, Alp + BD*AB + [D*, B'|AB, 66)
+ DFw + 41, '
where '
Wpt1 = > p™ (p)(D;! p)-+- (D} p). (6.7)

i1 4tim=k+2, 1<ij<k+1

Recall from (6.1) and (6.4) that D¥AB = A~ (D**'B — hyy — hyy ). We can rewrite the (k + 1)-th
order wave equation as

P (P)DF*2p — ADF p = wiesr + Wi + Wiy, (6.8)
where
Wk+1 = wa + [D;{7 A]]%
Wy +1 defined as above, (6.9)

/
_ ~ (p)
wh, = A 1(B-Df“B—B-th—B.hk+1+[Dk,B’](D,B,—(B-V)u,—Blppp D.p)).

From the precise form of the commutators (4.18), we know all the terms onthe RHS of (6.5) and (6.9) are
of < k + 1 derivatives.
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6.2 Energy estimates for 17; and H;: Reduced to the a priori quantities

We first give the control for 3¢ order wave/heat equation. This can give us the control of || AD, p|| r2(2) 1AD: Bl 120
and [VAp|r2(@), IVAB| r2(g) which helps us close the estimates for the terms with 3 derivatives, i.e.,

lull3,0, 12130, | Pll2,1 and [| B]2,1.
Let k = 2 in (6.4) and (6.8), and then we have
AD/B = A"N(D?B — hy — i — h}),

/ (6.10)
o'(p) D.p).

VAB =A"'V(D;B—(B-VB)—B

as well as ,
AD;p = p’(p)Dfp — w5 —wy — Wy,

o R ] 6.11)
VAp = V(o' (p)Dyp — wi —wi —Wy).
Therefore one has
IAD;: Bll 2@y < A (ID?BllL2(@) — 2l 2oy — 12l L2y — 115 22@)-
IVAB| 1200y S A (IVD:Bll2@) + IV(B - VB) 120y + 10 (P)V D: pll12(2)- 6.12)

IAD:pllL22) < 10/ (P)D} Pl 2y + w2l L2gay + W2l 2¢0) + W51l 120
IVAPIlL22) < 1P/ (P)VD?EpllL2) + VWil 222y + V@1l 202y + VWil L2(0)-
We notice that all the terms except ||p’(p)D,3p||Lz(_Q) and ||p’(p)VD,2p||L2(Q) on the RHS of (6.12) are of

< 2 derivatives and thus are our a priori assumed quantities. Therefore, we have

1 1
IAD: B2y + IIVABI L2(2) + 1AD: pll2(2) + IVAPI L2(2) SMeco I+ Ws) = -1+ VE3). (6.13)

Combining with the results in the last section, we actually have that

Yo plskt Y IBlsk+IVO(DVD:pllrzay+ 10 (P) D21l 122y Skmcomol 2.1/c0./a 1+ E3-
s+k=3,s>2 s+k=3
(6.14)

6.3 Energy estimates for W, and H,: Close the estimates for 4-th order derivatives

The computation in the previous section shows that we need to bound

2
. o
S IV ADI pllaqey + IV AD? ™ Bl 120
j=0

by /EJ in order to give a common control for those terms with < 4 derivatives, i.e., ||u||,0, || B|ls,x and || p|ls.x
fors +k = 4, s > 2. The proof is almost the same as Section 6.2.
Let k = 3 in (6.4) and (6.8), and then we have

AD2B = A"Y(D2B — hy — s — h}),
VAD,B = A"\V(D2B — hy — hy — ), (6.15)

/
V2AB = A-'V2(D, B — (B - Vyu — B2P)

D, p);

as well as .
AD?p = p'(p)D}p — wy — w3 — 03,
VAD,p =V(p'(p)D} p — wh — wy — i62). (6.16)
V2Ap = V2(0'(p)D?p — wi — wy — y).
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Again, one can notice that all the terms except ||p’(p)D;‘p||Lz(9) and ||p’(p)VDt3p||Lz(_Q) on the RHS of
(6.15) and (6.16) are of < 3 derivatives and thus can be bounded by (6.14). Therefore, we have

IAD? Bllp2(2) + IVADBll 2y + IV?ABll 122y + 1AD? pliL2y + IVAD: plir2(2) + IV APl L2
SM.co ||D?pI|L2(Q) + ||VD?p||L2(9) + ||V2Dt2p”L2(Q) + (terms of < 3 derivatives)

1
SM,CO X(l + ‘/EI).
(6.17)

Now, (6.13) and (6.17) help us to bound the second fundamental form ?29 on the boundary and thus all the
interior terms || B |5k, || Pllsk:

e Control of 6:
Combining (5.2), (5.3) and (6.17), one gets

—2 —
IV7O0l2000) + IVOlH102) Sk1/a,1760 | + 4/ ES- (6.18)

e Control of interior terms:
Summing up (5.1), (5.3), (5.5), (5.6), (5.7), (5.8), then using (6.17) and (6.18), we have

lullao+ D IBlsk+ Y. Uplsk + IV (DVD2 P12y + 110 (P) D} pll 20

s+k=4 s+k=4,5>2
SkMeowol 2.1/c0.1/h S\ EXC D Ipllsk + IBllsi) + 84/ E3/Ef + | EX
s+k=4,5>2

6.19)
+ |AD} Bl 2@y + IVADBll12(0) + V2 AB| 12(e)

+ 1AD?pllr2(2) + IVAD: pllL2cay + IV APl 20

SkMcomol 2.1/c0/h Sy ESC Y 1pllsk + 1Bllsi) + (1 + JED/ES.

s+k=4,5>2

By using Young’s inequality and choosing a sufficiently small § > 0 such that the §-term can be absorbed
to LHS of (6.19), one has

lullao+ Y 1Bk + D l2lsk + Vo' (2)VD} P22 + 16/ (P) DY pll 22
s+k=4 st+k=4,5>2

SK.M.covol 2,1/e0,1/A (1 + E;‘) VEL.

With the help of (6.20), one can repeat the steps above for one more time to derive the control of || V¢ Df (B-
VBl 22). IV D' Bl 2(q) and [V DF+! pl| 2 () for s > 2. In fact, summing up (5.9), (5.10), (5.11),
(5.12), (5.13), (5.14), then combining (6.20), we can get the following bounds for the higher order interior terms
after choosing a sufficiently small § > 0 in those previous estimates to absorb the §-terms to LHS

(6.20)

> plsksr + 1Blsasr + 1B - VBllsk + |Bls—iisr + [Pls—rh1
s+k=4,5>2

SK M,covol 2,1/€0,1/4 (1 +E ) E} + IVS"2ADET Bl 12y + IV 2ADE  pll 12y
s+k 4,5>2
6.21)
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6.4 Control of tangential projections

We still need to control the tangential projection terms which appears in (4.21)

> |17VSD§‘P|L2(39)(|nVSDf+1P|L2(m) + [IT(V; P)(VS DFul) 125

s+k=r,s>2
s—1
+ Y IV uy Ve Df P)|L2(39)) (6.22)
m=0
r—2
+ |HVrP|L2(8(2)(|HVrDtP|L2(8.Q) +> |H((Vm+1u)7vr_mP)|L2(a:z))-
m=0

For simplicity we still only give the details for the top order case r = 4. Lower order cases are similar and
easier.
First we control the term |[[TV* DK*+1p |L2(ag2) for s > 2. We have

s—1
=5—2
[TV DfT Plragay Sk IV 0(VNDFTIP) 120y + D IV DET Plr2gg).
=1

The second term is a part of | P|s—1 g+1 S | Pls—1.k+1 + | Bls—1.k+1 Which has been controlled before, while
the first term is bounded in the same way as the previous sections.
The remaining work is to bound the following terms for s + k = 4,5 > 2:

s—1 2
[IT(Vi PY(V*Dfu) 1200y Y 1TV )V " DEP) 120y D TV u) VA" P)| 1230y
m=0 m=0

o o L (V" u) VS DEP)| 1250y fork > 0
— 5 =3, k = 1: We use Sobolev interpolation Theorem A.8 to get
|H(VMTV3DtP)|L2(aQ) + |H(V2MTV2DtP)|L2(39) + |H(V3M:’VDtP)|L2(3_Q)
1/2 1/2 1/2 1/2
Sk |VPDiPlr2g) + |V2D’P|L/2(8.Q)|VZM|L/2(3.Q)|VthP|H/1(3(2)|Vzu|H/l(89)
+ [Vul 1200

SkMaol2.1/eo (1 + ED*JEF.

— 5 = k = 2 : Again, we use Sobolev interpolation to get
[T(VuV2D? P)| 290y + 1TV D] P)|12(30)

1/2 1/2 1/2 1/2
SKM |V2D?P|L2(39) + |VDt2P|L/2(asz)|V2”|L/2(a:z)|VDt2P|H/1(aQ)|V2”|H/1(an)

SkMol 21760 (1 + ED?ES.

o X o TV Uy VA" P)| 125y

To bound this term, one needs the following lemma:

Lemma 6.1. Let S, 7" be two tensors, then it holds that
T1(ST) = O(S)y-T(T) + N(S"N)RIT(N-T),

where ® denotes the symmetric tensor product which is defind similarly as the symmetric dot product.

35



Proof. This is a straightforward result of g?? = y%® 4 NeN?, O

The three terms in this sum are
[T(Vuy'V*P)| 20y + T((Vu)V> P)| 1260y + 1T(Vu)V?P)|1200),
which by Lemma 6.1 can be bounded by

[TV ooy TV P2y + 1TV ul 22 TTV? Pl L2
+ |HN . VM|L0<>(3Q)|HNJ V3VjP|L2(3_Q) + |HNJVzvj‘ule(aQ)lnN/VVjP|Loo(ag) (6.23)
+ [TV?u| 4 [TV Plraggy + TN/ VVju|p40) [ TTN; V2V, Plracg).

The first and the second line of (6.23) can be controlled by /E} times the quantities in the a priori
assumptions. The terms in the last line can be bounded by using tensor interpolation in Theorem A.9.
The result is

[TV2ulp a0 TV Plrae) + TN/ VVjul 4o TTN; V2V, PlLaq)
Sk (Vuleo@a) + ) 1V 0l 1200) IV Pli2pe)
Jj=2
+ (\V2Propa) + D IV Plr2pe) | Vil 200
J=<3

_2 .
+ (10] L0 a2) + [V 0leo02) (| VulLope) + Y 1V ul260)
J=2

(6.24)

x (|V?P |0 + Z IV/ Plr22))
J=3

*
SKMyvol2,1/e0 1 + Ej.

o [IT1(V; P)(V*DFul)|12(30) for k > 0:

For this term, we can mimic the proof of Lemma 4.1, i.e., use the first equation of the MHD system (1.7)
to reduce the estimates of VSDfu to that of |B|s k. |plsk. [4]r—1,0- This term has the following control:

\IT(V; PY(V2Diu') 1200y Su |Blao + | Plao. (6.25)

and
[T(V; P)(V2D}u') 12000y Sm |Bla1 + |pla1 + |Blao + [plae + lullao. (6.26)

where these terms again have been bounded in the previous sections.
O

Now we have reduced all the estimates (except W5 and Hs) to the control of ||VS_2ADf+lB | 2(s2) and
||Vs_2ADf+1p||L2(Q) fors > 2, s + k = 4. Considering

E, = Z Esj + Ky + W2y + HP
s+k=r

or from the diagram (1.35) we can assert that all the difficulties have been reduced to the control of W2 | +

H r2 1~ We will do this in the next section to complete all the a priori estimates.
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7 Energy estimates for W5 and Hs;: The last step to close the energy
bound

In this section we will give control of ||Vs_2AD;‘+l B| 12(e) and ||Vs_2ADf+1p||L2(Q) fors >2, s+k =4
together with W52 + H 52 to complete all the estimates under the a priori assumptions.

Again, from the heat/wave equations (6.4) and (6.8), one has

AD?B = AN (D¥B — hy — hy — h}),
VAD?B = A"'V(D3B — h3 — hs — h%), (7.1)
VZAD,B = A"'V3(D?B — hy — hy — h):
as well as ,
AD}p = p'(p)D] p — wj — w4 — 1,
VAD?p = V(o' (p) D} p — wi — w3 —3), (7.2)
VZAD;p = V*(p'(p) D} p — w) — wy — ).

As one can see from the wave equation (6.6), the estimates of V572 A Df *1p can be converted to that of
V520 (p) D+ p) and VS 2ADFTB e, p/(p) D3 p. /o' (p)V D} p . V2D} p, VD2 p (this one appears
in some commutators) and VS_ZADgC *1B plus the other terms with < 4 derivatives. On one hand, p'( p)Dp
and /p'(p)V D} p is a part of Ws, while V2D3 p and V3 D? p can again be simplified to p'(p) D} p and VD} p
after using elliptic estimate and invoking wave equation. The energy W5 will be controlled together with Hs.
On the other hand, from (7.1), one finds that VS_ZADf 1B can be reduced to VS_ZD;‘""ZB plus other terms
with < 4 derivatives. In other words, V* _ZADf 1B can all be reduced to the estimates of 4-derivative terms

computed in the previous sections. Therefore, all the difficulties are further reduced to seek a common
control of W5 and Hs by those terms with < 4 derivatives.

Heat equation

(6.4) gives us the 5-th order heat equation for B is
DB —AAD?!B = hs + hs + h%. (1.3)

Multiplying D7 B on both sides of (7.3), integrating in y € $2, then integrating by part to eliminiate the
Laplacian, we get

Ad
/|DfB|2de+——/ |VD}B|* J dy
I?) 2dt Jgo
=f(h5+ﬁs+h§)-DfBde +/x/ VD;‘B-([D,,V]D;‘B)de—)L/ VD!B-D?BVJdy.
2 2 2

Then we integrate the last identity in time ¢ € [0, T] for some 7 > 0 and the use Holder’s inequality,
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Young’s inequality to get: V§ > 0,

r Ad
H2(T) — H2(0) =/ / |DfB|2dedz+——/ |VD?B|* J dy
0o Ja 2dt Jo

T
=/ /(h5+h5+h§)-DfB de+A[ VD;‘B[Dt,V]D;‘Bde—)L/ VD!B-D}BVJdy| dt
0 2 2 — 2

=Vu'VD}B

- A
M ||DSB||2Lz([0 TEL2(2)) (||h5||L2([o 2@ + 125l L2qo,m;02¢2)) + 145 ||L2([0,T];L2(Q)))

/ H2(t)dt + | D3 Bl 2o,y 2@y IV DA Bll 2o,y 12 @y

T
< / 1D Bli32qy i + 55 /0 sz + Vsl + Vi gy e + [ 2@ .
(7.4)
Choosing a suitably small § > 0 such that the first term in the last step can be absorbed by LHS of (7.4),and
thus we have

H2(T) — H2(0) Sw / 151220, + 151220y + NH2122 0, d1 + / H2@0ydi.  (15)

Now we are going to control ||/5]| 125y ||hé||L2(Q) and ||h5||L2(Q). The first two terms are 5-th order
terms.
e Control of ||};5||L2(Q):
We have

hs = [D¥, B - V]u + [Dk,B%”)]Dt

4
- Z CLD™B'V, D"y + D™ (Bp (p)) DS p + DY BL(D™ V) lu).
— p

where all the terms with > 3 derivatives are |[ul|1.3, |[u]1.2, | Bllo.4. | Bllo.3. lo'(p) D} Pllr2e) and
v o' (p) Df’p||L2(Q) Hence we have the estimates for /5 that

lhsl L2y Sa (1 + VED?. (7.6)

Before coming to control ||héL [ L2(2) and ||A5]| L2(s2), we need the following lemma to convert the terms
containing 5 derivatives of u to that of p and B by using the first equation of the MHD system (1.7).
Lemma 7.1. We have the following estimates for u:

IVD{ull 22y Sum I1Bll2s + Ipll2s + 1+ E,
and

IAD}ul 1200y Sm IVAD? Bl 2@y + IVAD? plir2o) + 1 + E.

Proof. The proof is almost the same as Lemma 4.1. From the first equation of (1.7), (4.16) and (4.18),

one has
VDu =VD} (%((B-VB)—Vp—(VB)-B)) = ;(B VD}B —V?D}p)
+ (terms of < 4 derivatives)
Su Bl2s + lples + 1+ E.
Similar proof holds for AD 13” so we omit the details. O

38



e Control of ||hé||Lz(_Q):

Recall we have

A~'ht = [D* AlB

= C ((ADu)(VB) + (Vv)(V>D} B))
2 2
+ > c(ADju) (VDI B) + ) di(V¥'u)(V2D{B) + L.O.T.,
1=0 1=0
where L.O.T means the terms with < 3 derivatives in the commutator.
Therefore one has the bound
A3 122y Sm A (IAD Ul 22y + IV2D} Bl 2oy + 1 + E)

<m A(IVAD?B| 120y + IVAD? pllp2(@) + IV2D} Bl 2@y + 1 + EJ) (1.7)

SkMao2 A(IVAD? Bl 200y + IVAD? pll2@) + IAD] Bll 20y + 1 + EJ) .
where in the second step we use Lemma 7.1, and in the last step we use (5.13).

e Control of |15 12(q):

This step also needs Lemma 7.1 to convert VD}u to V2D3? p and V2D3? B. We have

/
hs = (B-V)D4u + 82D ps)
0

t

« 7.8
= hslz2@) Smeo IV2D2 B2 + V2D plliage + 19/ (0) D plliaay + 1+ Ef T
SkMconol2 |AD] B2y + 1AD] plir2oy + Ws + 1 + Ej.

Combining (7.5), (7.6), (7.7) and (7.8), we have the bound for Hs:
T
H(T) ~ H2O) Sk [ HEO)+ W20 + PES(0) di
0

T
+ /0 V2D B30y + IV2DF p(0)]122g) + IVADZB() |22y + IVADZ ()22 i
(7.9)
From (7.1) and (7.2), one can reduce the 5-th order terms in (7.9) to < 4-th order terms. Therefore we are
able to use E} and W5 to bound Hs
HZ(T) — H3(0)

T
Sz [ HAO+ W2+ PELO)di
0
1 T 4 2 2 A 2 I 2

+|1+ X 0 ”Dt B(Z)”LZ(Q) + ||h4([)||L2(Q) + ||h4(t)”L2(g) + ||h4(t)”L2(Q)

+IVDBIZag) + IVh3 B2 + VIO aq) + ||w€3(z)||iz(m) di 710

T
+/0 (”p/(p)D;‘p(t)”%}(Q) + ||w4(t)”iZ(_Q) + ”wjt\(t)”%}(g) + ||1I)4(I)||2Lz(9)

+ IV DIV DI p) 22 + IVW3 ()32 + IVWE ()2 + ||Vuv3(z)||iz(m) di
1

T
,SK,M,VOIA’Z,C() / Hsz(t) + WSZ(I) + (1 + 1
0

) P(EL (1)) dt.
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Wave equation

Let k = 4 in (6.8) and we can get the 5-th order wave equation:
p(p)D{p— AD}p = ws + s + w}. (7.11)

Multiplying p’(p)D; p on both sides of (7.11), then integrating by parts to eliminate Laplacian term, one
has

1d d
33 ([ 101D Pl + VIV DERI) = W20
/ §(p)(ws + s + wh)DS pfdy+[ P(P)VD*p - (IDy.VID*p) J dy — / P (P)VDEp VI Dipdy
4 / V(p'(p) - VD?pD3 p dy.
2

Note that [Dy, V]D{p = Vu'VD}p and |p"(p)| Seo £/(P)?, so one has the following estimates for Ws
after integrating in time variable in ¢t € [0, T'].

WZ(T) — W3 (0)
<Mco/ (lwsll 2@y + 15l 222y + w20 (P) D] plir2co) dt +/ Vo' (p) VD4P(I)||L2(_Q) t

4 /0 10/ (D) DS (O 20 IV F DIV D () 12y

T T
SMoco / (lwsll 2@y + 15l 222y + w20 (P) D] plir2co) dt +/ W (1) dt.
0 0

(7.12)
Now we are going to bound wé, W5 and ws.
e Control of ws:
From (6.9), we know
Bs= D Cmin™(P)D} ) (D] p)
i1+ t+im=6, 1<ix <5
=p"(p)D;Dip + > Ciy i P (P)(DF p) -+ (D} p).
i1++im=6, 1<ix <4
Since [p"™ (p)| Seo P (p)™, one has the energy bound for ws
”'I)SHLz(Q) fSMch W5 + 1 + EI (713)

e Control of w?:

From (6.9) we know

Awl=B-D}B—B-hs—B-hs

4
+Y cipiB. (Df_ZB — D¥(B - Vyu— D! (B%D,p))

I=1

We notice that the second line only contains < 4 derivatives of u, B, p, and thus controlled by E I.
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Combining this with (7.6) and (7.8), one has
T
| [ pwmwionipe sdy
0o Jo
1
SK,M,covol 2 I/o 1D} B(t) | L2 llp' (P) D7 pll 22y dt +/ Ws(t)(1+ E(¢))dt
—IIP (P)D; Pl 2@) (IV2 D7 B0l 122y + V2 D] p() 12(2) + 110/ (P) D] p(D) | 12(2)) dt

By elliptic estimate (5.13), we know || V2 D} B| 1 2(g) can be bounded by || AD} B||;2(g) which can again
be reduced to 4-th order terms by using (7.1). Hence the above estimates can be rewritten to be

T
| [ e wuionipe say
0 2

1 1 1 T
SK.Movol 2,0 I51L152(T)+( +m+ )/ W2(t)dt + (1+ A)/0 Ef(t)dt (7.14)

1
1 [ I DEPO LD 0@
for any § > 0.

Again, by the elliptic estimate (5.14) and (7.2), one has

IV2D?pllL2ey S 1AD} plir2ey S 0" (P)D] pllzey + llwj lz2¢2) + WallL2¢2) + llwallL2(e)

< 4 derivatives

and thus
IV2D} plir22) SkMconor2 10/ (P) D] pll2cay + (1 + - ) I+ EY).

Combining this with (7.14), one can bound wé as follows

T
[ / 5 (Pwk(O)DE p(t) J dy di
0 22

1 1 1 T
<KMol 2,00 X(SHSZ(T) +( o T )/ W2(t)dt + (1 + k)/o E;(t)dt.

for any § > 0.

(7.15)

e Control of ws:
Recall from (6.3) and (6.9) that we have

ws = D}w + [D}, Alp
=D;‘((";’)) p”(p)) (i + L2, (B Y B) = ¥ P) + pV Vel — 5 BT, +|VB|2)
+ (D}, Alp

_ (M _ pﬂ(p)) D3pD, p + 2pV D¥uVu + (VD*B)(VB) + (AD2u)(Vp) + (Vu)(V2D? p)
0

(VD;‘p VP +Vp-VD!P —(VD}!P)-(B-V)B—VP-(B- V)D;‘B)

(7.16)

where X5 consists of:
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— commutators produced when taking D on w;
— all the terms in [D}, A]p except (AD3u)(V p) + (Vu)(V2D? p), i.e., all the terms with < 4 deriva-
tives in [D#, A]p.

From the commutator (4.18), the precise formula of X5 is:

2 2
Xs =Y c(ADu) (VD] p) + Y di(V*u)(V2Dip)

=0 1=0

n Z Clyet, (VD£3u)...(VDf"u)(ADilu)(VDizp)
Li+++lp=5-nn>3

n Z dy, .1, (VD£3M)...(VDﬁ”u)(VzDglu)(VDizp)
I ++l,=5—n,n>3

+ Y e, (YDPu)- (VDIu)(V D) (VD) p)

l+-+1l,=5—n,n>3

+ [D;‘, P ff’) - p”(p)} (D1 p)? [D;‘, ” E)” )} (Vp)- (VP —(B-V)B)) (7.17)

/ / 3
- /(op)'([D“, Vip)- (VP —(B-V)B) — % Zci(DiViP)(D?_I(B -V)B)
=1
o' (p)

+ [D}, p)(VurVu) + 20([D}, VIu)Vu + A~ D}, VIB - (B -V)u + B D;p)

AB
3
+ > CiDIVBY(D{T'VB).
=1

One has :
1Xsll L2y SkMcomor2 (1 + X) (1 +ED), (7.18)

because all these terms are of < 4 derivatives and thus controlled by E}.

Combining (7.16), (7.18), together with Lemma 7.1(control of u), (5.11), (5.12), (5.13) and (5.14)(elliptic
estimates for B and p), one can finally get the estimates on ws:

T
/ [p’(p)Dfp-wstydt
0 2
T T
<Mool DA/ [ W2(t)di + [ P(EI(0)) di
0 0
T
+ [0 ||p’<p)D,5p<r>||Lzm)(||VD;‘B<r)||Lz(m L IVEDEBO) 2 + IV D20 2o

VP D2BWO)] 12 + ||V3D?p(z)||Lz(m) di

~.

T

<k Mcomo 21/ / W2(t) + PEL (1)) di + H2 (1) dr.
0

(7.19)

Summing (7.13), (7.15) and (7.19), one gets the estimates on Ws:

T
W(T) = W3 (0) Sk Mcoor2,1/2 SHF(T) + / WE(t) + P(E; (1) dt + HZ (1) dt.  (7.20)
0
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for any § > 0.

Summing up (7.10) and , then picking § > 0 suitably small such that SHZ(T') can be absorbed by LHS of
(7.10), we finally get the common control of W2 + HZ by

T
W(T) + HZ(T) — W3 (0) — HF(0) Sk M.covol 2,1/c0,1/2 / Wi (t) + Hz (1) + P(Ef (1)) dr.  (1.21)
0

Therefore we can bound Ws and Hs by E and initial data in ¢ € [0, T] for sufficiently small 7' > 0.

O
8 Summary of the estimates and the incompressible limit
Summing up (4.21), (4.22) and (7.21), we get
T
ES(T) = 3O Skameomizjeonss | PEI®)di ®.1)
0

under the a priori assumptions

1
0] + — < K on 0Dy,
Lo

—VNP >¢90>0 on 0Dy,

> 10°Df p| + |0* D B| + |0°Dful < M in D,.
s+k<2

Hence, it suffices to recover the bounds of these a priori quantites so that our a priori estimates can be completed.

8.1 Justification of the a priori assumptions
The following lemma gives control of these a priori quantities.

Lemma 8.1. Define £(7) := [(Vy P(7,-))™!|Loo(92)- Then there exist continuous functions G such that

> IVEDEplizeoay + IV DFBllpoc() + IV DEull ooy + 1812000 + €10
1<s+k<2 (8.2)
<G(K,co,Eq, -+, E4,v0l 2)

Proof. By Sobolev embedding, one has

> IVEDFpllzecca) + IV DF BllLooi) + IV Dfull o)
1<s+k<2

2
Sk Y. Y IV DRull 2oy + IV DY Bl 2oy + IV Df pllr2a).-
s+k<2j=0

As a result of our previous estimates, the bound for #, B, p in (8.2) holds.
By the definition of &£, one has |V2P| > |[[TV?P| = |Vy P||0| > £7!|6]. Finally,

d _ _
2 1EVN P() Yeeo@a) S (=VN P, ) eo@a) | YN D P(t, )| L 02)

implies the bound of £(z). O
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8.2 Energy estimates

Now we can close all the a priori estimates with the help of Lemma 8.1.

Proposition 8.2. There exists a positive continuous function 7, such that: If 0 < T < T (co, K, £(0), £} (0), vol £2),
then any solution of (1.7) in ¢ € [0, T'] satisfies the following bounds for some polynomial P with positive co-

efficients: . .
Ef@t) Si/a 2E5(0),

E() Siya 2£(0), (8.3)
8ap(t.9)Z°Z" ~ g4 (0,y)2°Z°,

and there exists some fixed n > 0 such that the following bounds hold

IN(x(t,y)) = N(x(0, )| Sn. Yy €082,
[x(,y) —x(0, )| Sn, VyeL,

dx(t,y)  9x(0,y
x(t,y) _ 9x(0,y) < Vi€,
dy dy

(8.4)

Proof. From (8.1) and Lemma 8.1, one has

t
E2(1) = E2(0) Seq Kt Egmm Esmol 2.1/3 / P(EL(s)) ds.
0

where P is a polynomial with positive coefficients. The the Gronwall’s inequality in [48] yields the bound of
E7 provided that T (co, K, £(0), E}(0), vol £2) > 0 is sufficently small. Therefore the estimates for £(¢) is a
straightforward result from (8.2) and the bounds for E}.

In addition, we get from Ej(t) Si/» P(E;(0)) that all the a priori quantities can be controlled by their
intial data for ¢t € [0, T']:

Y AIVEDE p(t.)|es(@) + IV DF B )lLoo(@y + [V Dfult, ) |Loo(@) + 1001, )| Lo ag2)
1<s+k<2

Sua Pl Do IV DEPO.)iLee@) + IV DEBO. ) eo() + IV DFu(0.)lLooq) + 16(0. ) 2p2)
1<s+k=<2

Besides, one can also bound the L°°(§2) norm of u, B, p by their initial data. This follows directly from

(1.7). gap(t, V)Z2Zb ~ g4p(0, y)Z% ZP holds because D;g ~ Vu. Furthermore, this inequality together with
1
DiNg = = Na(D1g" NeNa)
implies
IN(x(7,7)) = N(x(0,y)| Sn, Vyeosf2.

Finally, the definition of Lagrangian coordiantes D,x (¢, y) = u(t, x(¢, y)) yields that

|x(t9y)_x(09y)| 5 n, Vy € Q?

dx(t.5) _ 9x(0.5)| _
dy ay |~

n, Yy €082.

Before we end the proof of Proposition 8.2, we have to make sure that the constants of Sobolev embedding
inequalities can be controlled. In fact, these constants depend on Ko := (5! which can be chosen to be only
dependent on the inital conditions. This result (see the following lemma) has been proved in Lemma 3.6 in
Christodoulou-Lindblad [6]:
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Lemma 8.3. Let 0 < n < 2 be a fixed number, and define /; = /1 (1) to be the largest number such that
IN(X1) = N(x2)| <7
whenever |xX7 — X3| < [; and X7, X, € 0D;. Suppose also |#| < Kj. Then the injective radius satisfies

to >min{l +1/2,1/Ko}, 1 = min{2:i9, 1/ Ko}

Actually, Lemma 8.3 shows that ¢y and /; are comparable if the free surface is regular.
Corollary 8.4. Fix n > 0 sufficently small. Let 7 be in Proposition 8.2. Choose /; > 0 such that
INCe(0, y1)) = N(x(0, y2)) = /2
holds whenever |x(0, y1) — x(0, y2)| < 2[;. Then for ¢t < T, one has
IN(x(z, y1)) = N(x(t, y2))| =7
whenever |x (¢, y1) — x(t, y2)| < ;.
Proof. See Lemma 5.11 in Lindblad-Luo [32]. O

Remark. As shown above, our a priori estimates depend on 1/A and thus there is no “vanishing-resistivity
limit”. In the rest of this paper, we will suppose A = 1 for simplicity.

8.3 Incompressible limit

Now we are able to prove that the energy estimates for compressible resistive MHD equations are actually
uniform in sound speed. In physics the sound speed is defined by

c(t,x) = v p'(p).

We assume {p,(p)} is parametrized by k € RT such that p.(p)|,=1 = k Therefore one has

o = 1 as kK — oo, (8.5)
and for some fixed constant ¢y and Vim < 6
10 (P)] = co and [p™ (p)] < colpi (). (8.6)

From now on, we set the magnetic diffusion constant A = 1 because our previous estimates in Proposition
8.2 deny the possibility of getting vanishing resistivity limit. The previous computation still implies the energy
estimates in Proposition 8.2 are uniform in k.

Proposition 8.5. Forz € [0, T], r < 4, the following estimates hold for all «:

t
Eriet) = Erse(0) S.1/eqMcomol Dy E2 /0 P(ES (5)ds. 8.7)

for some polynomial P with positive coefficients(the upper bound is uniform in k), provided the following a
priori assumptions together with the imposed conditions on p, (p) hold:

1
6] + — < K on 012,
lo
—VNPe>€y>0 on 052,
L<|p| =M in 2

> 10°Df pel +10° Dy Be| + |* Dfuel < M in .
s+k<2

(8.8)
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O

Mimicing the proof of Proposition 8.2, one can get the following estimates uniform in « from Proposition
8.5:

Theorem 8.6. There exists a positive continuous function 7, such that: If0 < 7' < T (co, K, 1/€g, E} « (0), vol £2),
then any solution of (1.7) in ¢ € [0, T] satisfies the following bounds for some polynomial P with positive co-

efficients:
E; (1) S2E;,(0), (8.9)

provided the Rayleigh-Taylor physical sign condition
—VNPe >¢€9>0 on 952
holds.

O

Given a sequence of initial data (uo,x, Bo, po.c), if E; ,(0) are uniformly bounded in «, then a straightfor-
ward result of Theorem 8.6 is that the corresponding solution (1, B, p,) converges in C2([0, T]; £2).

Theorem 8.7. Let v, By be two divergence free vector fields with Bylsp, = 0 such that its corrsponding
pressure g defined by

1 . .
A (0-+ 1Bol) = ~@ivkdin}) + 0 BE@LBY. polam, =0
satisfies the Rayleigh-Taylor physical sign condition

> €9 > 0.

1 2
—Vn [ g0 + | Bo]
2 Do

Let (v, B, ¢) be the solution to the incompressible resistive MHD equations with data (vo, By), i.e.,

D,v=B-0B—0d(g+%|B*> inD;

divv=0 in D;

P,B—AB:B-av, %nD; (8.10)
divB =0 in D,

q,Blap, =0

(v, B)|t=0 = (vo, Bo).

Furthermore, let (1, By, pi) be the solution to the compressible resistive MHD equations (1.7) with density
function p,(p) with initial data (1o, Bo, o) satisfying the compatibility condition up to 5-th order as well
as the physical sign condition in (8.8).

If we have p, — po = 1 and ug  — vo such that £ Z,K (0) is uniformly bounded in «, then one has

(i, Be.pc) = (v, B,1)  inC?([0,T]; 2).
Proof. By Sobolev embedding, the C2 norm of u,, B,, p, can be bounded by Ej  (1):
lullc2qo,m1:2) + 1B llc2o, ri:2) + lecll 2o, 11:02)
2
Sk Y DIV Dfuclfa gy + IV DEBell o gy + IV DEpellF o g

s+k<2j=0
S Ep (1) <2E; ,(0).
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Hence this together with energy estimates in Theorem 8.6 yields the uniform boundedness of the C? norm of
Uy, By, pi. Besides, using Morrey’s embedding theorem, the uniform boundedness of

2
i 0k i 0k i Nk
> S IV DEwelaggy + IV DEBel2a g + IV DEpelag
s+k<2j=0

implies that
Vv Dku,, V' D¥ B, V¥ DFp, € C3(2).

This Holder continuity implies the equi-continuity of u,, By, p, in C 2([0,T); £2). Therefore, Arzela-Ascoli
theorem gives a convergent subsequence (we still call it {(uy, By, pc) }x)-

Finally, as k — oo, we have (uy, By, px) — (v, B, 1) because now the wave equation (for compressible
MHD) converges to the elliptic equation (for incompressible MHD) and the term B,div u, will vanish when
k = 00, i.e., the equation of B, for compressible MHD converges to that of B for incompressible MHD. This
is actually a direct consequence of the uniform boundedness of || o« | c2(jo,77;52)- O

9 Construction of the initial data satisfying the compatibility conditions

Now we are going to the last step of passing to the incompressible limit: Given an initial data (vg, Bg) for the
incompressible resistive MHD system, we construct a sequence of initial datum of compressible resistive MHD
system { (1o, Box, Po,c)}cer+ > depending on the sound speed k, that satisfies the compatibility conditions of
wave and heat equations and converges to (vg, Bg, 1) as k — o0o. Once we can do this, then by Theorem 8.7,
the incompressible limit exists for this sequence. From now on, we assume for simplicity® that

. P
Pe(pe) = k(pe—1), ie, pe=1+ TK

9.1 Construction of the initial data
Review of compatibility conditions

Consider the compressible resistive MHD equations in Lagrangian coordinates

(1+2)Du=B-VB-V(p+3|B*) in;

ﬁDtp—i—divu:O in £2;
D(B—AAB =B -Vu+ B :Dip, in 2
divB =0 in £2,

with boundary conditions
plag =0, Blse =0.

and initial data
Ult=0 = Ug, Plt=0 = po, Bli=o = Bo, depending on «.

In order for the initial data to be compatiable with the boundary condition, we need
polag =0, Bolse = 0.

Also we need div ug |y = 0 to guarentee the compatibility condition D; p|y; = 0 whent = 0.
B satisfies the following heat equation

D:B—AB~B-Vu+«"'D,pB, 9.1)

5The proof in general case can be similarly proceeded. See Luo [33].
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while p satisfies the following wave equation after taking divergence of the first equation of the compressible
MHD system

k" 'D?p— Ap ~B - AB + (Vu):(Vu) + (VB)(VB)
+ 7' (D p)* = |Vp|> + (Vp)(VB)B)
~—B-D;B+ (B-Vu)- B+ (Vu)(Vu) + (VB)(VB)
+«'(IB?Dip + (D:p)* = |Vp|* + (Vp)(VB)B).

9.2)

The compatibility condition for wave/heat equation requires that D, B|se = 0 and D?p|ye = 0 at time
t = 0. Therefore we must have

AOPO + (auo)N(Buo) + (830)(830) =0 on 89,

9.3
ABy =0 on 952, ©-3)

where Ay is the Laplacian with respect to the smooth metric at # = 0 on 952, and d; = dy%/dx; - d/dy? is a
smooth differential operator at t = 0.
Similarly, if we take more time derivative to get higher order wave/heat equations

Kk 'DFB = AD¥'B 4+ Ty
K_lDpr = ADf_lp + Sk
for some function 7%, Sk , then we need to guarentee that Df Plag =0, Df“B|3_Q = 0 at t = 0 by requiring

ABp_1 4 Tilt=0 =0 on 982.
Apg—1 + Sklt=0 =0 on 9£2.

Here py := Dfp|,=0 and By := DfB|t=0.

Constructing the initial data

Now we construct the initial data py, By which satisfies the compatibility conditions up to order N.
Suppose vg and By are given divergence-free vector field. We still choose By as the initial data for com-
pressible equations. Now we define
Ug = Vg + 0¢. 94

Then the continuity equation requires that
Ao ~ —k "1 py, 9.5)

and we will choose boundary condition such as

Vnolase = 0. 9.6)

Moreover, taking D; on (9.1) and (9.2) repeatedly, we should require that

Ao Bk ~ Biy1 — B - duo — k' (pr+1Bo + p1Bi) + Gk (uo, Bo, po, B1, p1.+*+ , Be—1. Pr—1)
Aopk ~ K 'Pr42 + Bo - Bet1 + Bi - Br + (0Bo)(3By) + Fi(uo, Bo, po, B1, p1,+* » Bk—1, Pk—1)
— &k "(|Bol?Pk+1 + P1* Pk+1 + Bo - Bk - p1 + p2 - pr — (3px)(9po))

— k' (Bk(dBo)(3po) + Bo(3By)(9po) + Bo(9Bo)(dpk)).
and Bk|3g = 0, pk|3g = 0, k = O, 1,--- ,N.

©.7

Here Fy, Gy are functions of ug, By, po, B1, p1,--- » Bx—1, px—1 and their spatial derivatives. If we prescrib
BN+1, BN+2, PN+1, PN+2 10 be any functions vanishing on 042, e.g.,

Byi1,BN4+2 =0, pNi1,PN+2 =0, (9.8)
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then (9.4), (9.5), (9.6), (9.7) together with (9.8) give a system of

(uo, po. B1, p1.-++ . BN, PN, BN+1, PN+1, BN+2, PN +2)
such that the data of compressible equation ug , — vo as k — oo. Since the system (9.4)-(9.8) is an elliptic
system and p is totally determined by p, so we only need to give a priori bound uniform in k as k — oo which
will directly imply the existence of such data and thus complete our proof.

9.2 A priori bounds and the existence of the initial data

Our energy estimates in Theorem 8.6 requires the compatibility conditions up to order 5, i.e.,

Prlag =0, Bilag =0, VO <k <5. (9.9)
This can be achieved by solving the following elliptic system for 0 < k < 3.
Ug = vo + ¢ in £2
Ap = -k p; in 2 and Vyolsgo =0
ABi = Byy1 — Bi - duo — k' (pr+1Bo + p1Bir) + Gr in §2 and Bi|pe =0

Apr = k' pgi2 + Bo - Bit1 + B1- Bi + (0Bo)(0By) + Fi.
— k(| Bo? pk+1 + P1 - Pk+1 + Bo - Bk - p1+ p2 - pr — (9pk)(9po))

— k(B (0Bo)(dpo) + Bo(dBk)(dpo) + Bo(dBo)(dpk)) in 2 and pilpe =0
p4=p5=O,B4235=0 in £2.
9.10)
Here
Fy = (auo)T(auo), Go=0. (9] 1)

Fi = c1(9u0)® 4 ¢4.5(8%10) (3P po) 4 o, (9140)(3B0)(9Bo) + k' cq.p.1 Bo(910)(9Bo) (dpo),
G1 = ca,u(0%u0)(0" Bo) + c1(0u0)(0uo)Bo. 1 <, B, pu <2, +pf =0+ p=3.
For k = 2,3, one has

9.12)

Fr=cllmm o g 1 (0%10) - (9%"10) (3 py,) -+ (877 py,)
o e (071 20) -+ (3% Q) (31 By, ) -+ (9 Byy)

1 Yy v e, ’ / ’ ’ ’ ’
T o) (o) Oy Py )0 By (04 B ),

9.13)
where

Yo+ Bi+y)=k+2

i=1 j=1
m 1
Do+ (untvn) =k +2
i=1 h=1
m’ n’ 4
Do+ B Y)Y (y ) =k +2.
i=1 Jj=1 h=1

l<oj<k, 1<Bj+y,<k+1,8>1 05y, <k—1, 1<m+n<k+2.
Un+vp <k+1, 1<up<k, 0svy,<k—-1, 1<m+1=<k+2.
l<of <k, 1=<B,+yj+u,+v,<k+2, 1<p; <k 0=y ,vy<k—1 0<pu, <k,
l<m'+n +1'<k+3.
(9.14)
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and
Gy = ¢/ ,,ﬂmk(aaluo)"'(3am”0)(8ﬂ13y1)”‘(3ﬂ" By,)

apamPBr-

oo . . . h (9.15)
+Ca1'“am/m'“m,k(a "ug) -+ (09" ug) (3" By,) - -+ (0" By,),
where

m n

Yoty Bity)=k+2

i=1 j=1

m’ l
Zai+2(uh+vh) =k +1 9.16)
i=1 h=1

l <o <k, 1<Bi+y<k+1 6>1 0<5y;<k-1, 1<m+n=<k+2.
Ph+ve <k 1<pp<k O0<vy<k—-1 1<m'+1<k+2.
This is an elliptic system. To show the existence of a solution to (9.9), one only needs to give the a priori

bound uniform in « for this system which directly implies the existence. We impose vo € H> and By € HS.
For 0 < k < 3, we define

mic = | pells—cqay + 1 Bells—ccay me = Y mi + ol grs.
k

We will repeatedly use elliptic estimates.

e Estimates on u
We have
luollgrs < llvollgs + 19¢lls < llvollga + k™" poll g 9.17)
e Control of Fy, G

The precise form of Fj and Gy are the same as Fj in Section 7.1 of Lindblad-Luo [32] up to some lower
order terms. Therefore we only list the result and refer readers to that paper for details:

I F2llgr + 1G2llgr S Plluollgs. 1 Bollgs. Ip1llg2. | Billg2)

(9.18)
I F3ll2¢2) + 1G5l 22y S Plluollgs | Bollgs, I p1llgs, I Billgs: | p2ll g2 | B2llg2)-

e Reduce all the diffuculty to || B2|| 12y and || B3| 2(g)-

Using elliptic estimates and Poincaré’s inequality, one has

Ipollezs < &~ (Ip2llms + Ipoliza + Ip1llzs + llpoll g+l Boll gl Boll 3) + Pluoll 4. | Boll grs)
1Billge S B2l + IBillg2lluoll g3 + Gl + &~ (I1Boll a2l 2l 2 + I Bill g2l pall )

Ipillzs S e~ (pslliaz + Ipilaslipollias + Ip2la2lpillaz + 1 p1llas I Bollg2 |l Boll g
+ I pollzzlBillgsl Bollar2) + | Fillg2 + I Bill a2l ABol gz + [ Boll a2 | ABil g2 + | Bill a3 | Boll 3
9.19

As we can see, we reduce the estimates of || pollgs + | Billg+ + || p1llg4 to || B2|| g2, lower order terms
of p1, By, initial data and k ~1m... For those lower order terms, one can repeat the elliptic estimates above
to reduce these terms to further lower order until these terms are only assigned by L2-norm.
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The elliptic estimates for By and py when k > 2 are listed as follows:

IB2llggs < 11Bsllgr + | B2l lluoll s + G2l g
+c UBollg2ll sl + IBillg2l p2llgt + B2l I p1llg2),

Ip2llgs S« A2l lpollgs + 1 psll i lpillg2 + P2l 21 Boll a2l Boll s + Il poll 3 | Boll g3 Il B2l gr2)
+ 1 B2llg1 1ABoll g2 + | Boll g2l ABall g1 + | B2ll 2 | Boll s + [ 2l s

I1Bslla> S 1IBsli2luollgs + 1GsllL> + &~ (IBoll g2l p3li> + 1Billa=ll p3llc> + B3l pallz2)

Ipslaz <« Alpsle2llpollas + I palla I Bollgs + I psli2lBoligs + Ilpollmsll Bollss Il B3l L2)

+ 1 F3llz2 + [1B3llL2 | ABoll g2 + | Boll g2 [lwoll g3 [ B3l .2
(9.20)

Summing up (9.19) and (9.20), we can find that || px || y5—«, || Bk || y5—« are bounded by lower order terms
of themselves together with initial data and x ~!m. These lower order terms can be repeatedly reduced
to further lower order until being assigned with L2 norm. In other words, after repeatedly using elliptic
estimates, one actually can get the estiamtes of the following form:

5
Y mi S ma+P(luollgs. 1Bollgs. | oll ) +P I Boll g3, ol ) (1 Ball 2+ 11 Bsllz2)- (9:21)
k=1

e Reduction to By:

It remains to deal with || B2||;2 + || B3||;2. We can use the heat equation of B again to reduce it to By.
The advantage is that By is a prescribed data with given regularity instead of those py, Bx whose control
relies on the equations. In fact, we have

Bs; = ABy + By - ug + k! terms + lower order terms containing By, Bo, po, 4o,

and
B, = ABy + By -up + &~ ! terms + lower order terms containing By, ug.

Then || B2 ;2 + || B3||.2 can be bounded by || By || ;74 together with initial data and k ~!m.. In other words,
we can re-write the energy estimates to be

my Sk~ my+ Plluollgs. I Bollgs) + PUIBoll . luoll g3 | Billgra)- 9.22)

Finally we have
By = ABy + By - duo + k' Bop:

which is derived by (9.1), and thus

1Billms S 1Bollge + Il Bollgallvoll s + &~ P (my).

Therefore, we get the energy estimates uniform in « as follows

my S k7 P () + Pl Boll s, lvoll r5)- (9.23)

~

Let k« — oo, and we finally get the uniform a priori bound for the elliptic system (9.9). Therefore we
complete the construction of initial data satisfying the compatibility conditions of wave/heat equations.

9.3 Uniform enegry bounds, convergence of data and Rayleigh-Taylor physical sign
condition

Now we are able to show that E4 ,(0) in Theorem 8.6 is uniformly bounded regardless of «. In fact

4
> / poQ (9 pic. 0° pic) + Q9" Bie. 0° B) dx < D I picl s + 1 BicllZacsc S ma
s+k<4 £ k=0
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and by the Sobolev trace lemma together with P = p + %|B 2,

4
> [ p00@ P PO S Y Ikl + 1Blys i S
s+k<4 %2 k=0

Additionally, we can mimic the proof of Lemma (4.1) to prove that
> / poQ(° D¥u|;—¢. 9 D*ul,—0) dx < m..
kts<a’®

Since py = ps = 0 and B4 = Bs = 0, we have

> WR2(0) + HZ(0) < ma.
k<5

Summing up these bounds, we know Ej , (0) is bounded uniformly in « as k — oo.
To achieve the incompressible limit, the very last thing is to verify the uniform convergence of the initial
data we constructed above and the Rayleigh-Taylor sign condition, as k — co. Actually,

-1
[uox = vollgs < 19kllas S« Il prllms

and thus by Sobolev embedding H> < C? in a bounded domain of R3, we actually prove ug, — v in C>
because || p1,c| 4 has uniform upper bound independent of «.
As for the Rayleigh-Taylor physical sign condition, we can assume it holds when ¢t = 0, i.e.,

1
Vi (po + E|Bo|2) < —€9 <0 on dDy. (9.24)

Due to Lemma (8.1), it can be perturbed in a small time interval [0, T].
Now, given any data for the incompressible resistive MHD equations (vg, By) such that the corresponding
pressure term ¢ satisfies

1
—Vn (qO + §|Bo|2) > €y >0,

1

our initial data pg , will also satisfy (9.24) when «™" is sufficiently small. In fact, we have

Apoe ~ (0uo)(Quo) + (3Bo)(0Bo) + K_IPZ,Ks

which implies
A(Po —qo) ~ (Bu0,) (@ ¢ic) + (329)* + k' pae.

The standard elliptic estimate yields the convergence. Hence, the incompressible limit of compressible resistive
MHD equations is achieved.

A Appendix

List of notations:
e D;: the material derivative D; = 9; +u - 0
e 0;: partial derivative with respect to Eulerian coordinate x;
e D, € R”": the domain occupied by fluid particles at time ¢ in Eulerian coordinate

e 2 € R": the domain occupied by fluid particles in Lagrangian coordinate

g = ayia: partial derivative with respect to Lagrangian coordinate y,
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V,: covariant derivative with respect to y,

I1S': projected tensor S on the boundary
V.0 projected derivative on the boundary
e N: the outward unit normal of the boundary
6 = VN the second fundamental form of the boundary

e o = Tr 0: the mean curvature

Mixed norms
o | fllsk = IVSD¥ fllp2e2)

o |flsx =IVD¥ fli200)

A.1 Extension of the normal to the interior and the geodesic normal coordinate

The definition of our energy (1.19) relies on extending the normal to the interior. This can be accomplished
by foliating the domain close to the boundary into the surface that is not self-intersecting. Also we want to
control the evolution of the moving boundary, which can be estimated by the time derivative of the normal in
Lagrangian coordinate. We conclude the above statements by the following two lemmata, whose proof can be
found in [6].

Lemma A.1. let ¢ be the injective radius (1.18), and let d(y) = distg (v, 52) be the geodesic distance in the
metric g from y to d§2. Then the co-normal n = Vd to the set S, = d{y € 2 : d(y) = a} satisfies, when
d(y) < % that

Vil < 10]L@p0) (A.1)
|Din| < |Diglroo(s2)- (A.2)
O

Lemma A.2. let (o be the injective radius (1.18),and dy be a fixed number such that i% <dy < ‘70. Let n be a

smooth cut-off function satisfying 0 < n(d) < 1, n(d) = 1 whend < %0 and n(d) = O whend > %. Then
the psudo-Riemannian metric y given by

Yab = &ab — Nallp,

where 71, = n(dio)vcd satisfies

1
[VylLeo2) < (18]L<@2) + ;) (A3)
Dyt y)| S |Diglroo(e)- (A4)
O

Remark. The above two lemmata show that | D;n| and |D,y(¢, y)| involved in the Q-tensor can be controlled
by the a priori assumptions (1.29), because the behaviour of D, g is almost like Vv by that of (2.8). Therefore,
the time derivative on the coefficients of the Q-tensor only produces lower order terms. In addition, by the first
equation of (1.29), |Vn| and |Vy| are controlled by K, which is essential when proving the elliptic estimates.
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A.2 Sobolev inequalities: Embedding, interpolation and trace lemma

The following results are standard in R”, but we need to illustrate how it depends on the geometry of the moving
domain. The coefficients involved in our inequalities depend on K, whose reciprocal is the lower bound for the
injective radius tg. The proofs of these lemmata are omitted which can be found in the appendix of [6] and [32].

Sobolev embedding
First we list some Sobolev lemmata in a domain with boundary.

Lemma A.3. (Interior Sobolev inequalities) Suppose % < K and « is a (0, r) tensor, then

s
lull, 2 o SK DIV ull2). 25 <n. (A.5)
1=0
N
lullzeo@) Sk ) IV ull2). 25 > n. (A.6)
1=0
O
Similarly on 02, we have
Lemma A.4. (Boundary Sobolev inequalities)
s
1
hell, 201y @ SK IZ:; IViulr2pe), 25 <n—1, (A7)
s—1
lull o2y Sk 81V ulp200) + 87 Z IV'ul2pg). 25 >n—1, (A.8)

=0

for any § > 0. In addition, for the boundary we can also interpret the norm be given by the inner product
(a,a) = y" ayay, and the covariant derivative is then given by V.

O
Poincaré’s inequalities
Lemma A.5. (Poincaré type inequalities) Let ¢ : £2 C R” — R be a smooth and ¢|s = 0, then
1
l9ll22) S (vol &) [Vq | L2(g)- (A.9)
1
IVallL22) S (vol 2)7 | Aqll 12 (A.10)

Proof. The first inequality is called Faber-Krahns theorem which can be found in [39]. The second inequality
follows from the first and integration by parts. U

Interpolation inequalities

Theorem A.6. (Interior interpolation) Let u be a (0, r) tensor, and suppose tal < K, we have

l J 1_% . i r—i %
j;onv ””L%<9>5”””Lzzr:,”(m(g IV ull 2y K77 (A11)
In particular, if k =1,
k . 1-k r . .k
DIVl 2 o S Tl iy Qo IV 2 KT (A.12)
j=0 i=0
O
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Interpolation on 052

We need the following boundary interpolation inequalities to control the boundary part of our energy (1.19).
Theorem A.7. (Boundary interpolation) Let u be a (0, r) tensor, then

=l

1
1—5

l
v u|Ller(39) s |u|L_27;r:ll) (ag)lvrmzz(m). A1)
In particular, if k =1,
Voul 2 Sl [V Ul (A.14)
Lk (082) (082)
O

Theorem A.8. (Gagliardo-Nirenberg interpolation inequality) Let u be a (0, r) tensor, and suppose 352 € R?
and % < K, we have

|u|24(39) Sk ulezee)lvla oe), (A.15)
where the boundary Sobolev norm ||u|| 5155y is defined via tangential derivative V.

Proof. See Theorem A.8 in Lindblad-Luo [32] for details. Its proof requires the result of Constantin-Seregin
[7]. O

Remark. One can also prove a generalized (A.15) of the form

|”|Zp(ag) S lulper@eylulaoo), r=4 (A.16)
The next theorem is to delta with the interpolation of tangential projections on the boundary. First, we define
that the projected (0, r), r < t derivative I1"°°V"« has components
(HV’)Z-I oo ,irair-l-l,‘" Jr = )/lilll s )/i]rr le s er(x,‘r+1,... Vit
for any (0, ¢) tensor «. The detailed proof can be found in [6].

Theorem A.9. (Tensor interpolation) Let o be a (0, ¢) tensor, ¥’ = r — 2. Suppose |0] + |%| < K, then we
have fort +s <r

1— / ’ ’
OVl 2 o Skl (1Y 2 + (1 + 1Blaa)”
, r'—1
=
(10lo@2) + IV 0lr202) Y |V106|L2(39))
=0
, r’'—1
— ,
+ (14 10] 2002 (10]Lo02) + [V 012002 Y IV elr200).
1=0
(A.17)
In particular,
HS,OvS . Hr/—s,Ovr’—s
I( Jee] - |( Bl L2082)
r'—1
Sk (lalre@e) + Z IVl 2020V Blr2ga)
I1=0
r'—1 ,
’ / —r
+ (1BlLoo) + D IV Bl2ee)IV elr2pe) + (1 + [0l Le@2)” (01262 + 1V bl200)

I=0

r'—1 r’—1

+ (alzeee) + ) IV el200) (BlLeoe) + Y IV BlL2oe)-
I=0 I=0
(A.18)
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Proof. See [6], section 4. O

Sobolev trace theorem

Theorem A.10. (Trace theorem) Let u be a (0, ) tensor, and assume that |0|70p0) + % < K. Then

|M|L2(3.Q) ,SK,r,n Z |VJM|L2(Q) (A]g)
J=1

Proof. Let N’ be the extension of the normal to the interior, then the Green’s identity yields

[ diy = [ Ve di
082 2

Hence, by Lemma A.1 and A.2, (A.19) follows. O
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