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Abstract

We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign
condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. A local existence
and uniqueness result was recently proved by Trakhinin and Wang [64] by using Nash-Moser iteration. However, that result
loses regularity going from data to solution. In this paper, we show that the Nash-Moser iteration scheme in [64] can be
improved such that the local-in-time smooth solution exists and is unique when the initial data is smooth and satisfies the
compatibility condition up to infinite order. Second, we prove the a priori estimates without loss of regularity for the free-
boundary compressible MHD system in Lagrangian coordinates in anisotropic Sobolev space, with more regularity tangential
to the boundary than in the normal direction. It is based on modified Alinhac good unknowns, which take into account the
covariance under the change of coordinates to avoid the derivative loss; full utilization of the cancellation structures of MHD
system, to turn normal derivatives into tangential ones; and delicate analysis in anisotropic Sobolev spaces. As a result, we can
prove the uniqueness and the continuous dependence on initial data provided the local existence, and a continuation criterion
for smooth solution. Finally, we extend the local well-posedness theorem to the case of initial data only satisfying compatibility
conditions up to finite order, assuming these can be approximated by data satisfying infinitely many compatibility conditions.
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1 Introduction
In this paper, we consider the 3D compressible ideal magnetohydrodynamics (MHD) equations

ρDtu = B · ∇B − ∇P, P := p + 1
2 |B|

2 inD;
Dtρ + ρ(∇ · u) = 0 inD;
DtB = B · ∇u − B(∇ · u), inD;
∇ · B = 0 inD,

(1.1)

describing the motion of a compressible conducting fluid in an electro-magnetic field. HereD :=
⋃

0≤t≤T {t} × Dt andDt ⊂ R
3

is the domain occupied by the conducting fluid whose boundary ∂Dt moves with the velocity of the fluid. ∇ := (∂x1 , ∂x2 , ∂x3 )
is the standard spatial derivative and div X := ∂xi X

i is the standard divergence for any vector field X. Dt := ∂t + u · ∇ is the
material derivative. Throughout this paper, Xi = δliXl for any vector field X, i.e., we use Einstein summation convention. The
fluid velocity u = (u1, u2, u3), the magnetic field B = (B1, B2, B3), the fluid density ρ, the fluid pressure p and the domain
D ⊆ [0,T ] × R3 are to be determined. Here we consider the isentropic case, and thus the fluid pressure p = p(ρ) should be a
given strictly increasing smooth function of the density ρ.

1.1 Initial and boundary conditions and constraints
The boundary conditions of (1.1) are 

Dt |∂D ∈ T (∂D)
P = 0 on ∂D,
B · n = 0 on ∂D,

(1.2)

where T (∂D) denotes the tangent bundle of ∂D and n denotes the unit exterior normal vector to ∂Dt. The first condition in
(1.2) means that the boundary moves with the velocity of the fluid. It can be equivalently rewritten as “V(∂Dt) = u · n on ∂D”
or “(1, u) is tangent to ∂D”. The second condition in (1.2) means that outside the fluid region Dt is the vacuum. The third
boundary condition B · n = 0 shows that the fluid is a perfect conductor.

Remark. The conditions ∇ · B = 0 inD and B · n = 0 on ∂D are both constraints only for initial data so that the system is not
over-determined. They can propagate to any time t > 0 if initially hold. See Hao-Luo [29] for details.

We consider the Cauchy problem of (1.1): Given a bounded domain D0 ⊂ R
3 and the initial data u0, ρ0 and B0 satisfying

the constraints ∇ · B0 = 0 inD0 and (B0 · n)|{0}×∂D0 = 0, we want to find a setD, the vector field u, the magnetic field B, and the
density ρ solving (1.1) satisfying the boundary conditions (1.2) and the initial data

D0 = {x : (0, x) ∈ D}, (u, B, ρ) = (u0, B0, ρ0), in {0} × D0, (1.3)

Energy conservation law The free-boundary compressible MHD system (1.1) together with the boundary conditions (1.2)
satisfies the following energy conservation law. Let Q(ρ) =

∫ ρ

1 p(R)/R2dR, then we use (1.1) to get

d
dt

(
1
2

∫
Dt

ρ|u|2 dx +
1
2

∫
Dt

|B|2 dx +

∫
Dt

ρQ(ρ) dx
)

=

∫
Dt

ρu · Dtu dx +

∫
Dt

B · DtB dx +

∫
Dt

ρDtQ(ρ) dx +
1
2

∫
Dt

ρDt(1/ρ)|B|2 dx

=

∫
Dt

u · (B · ∇B) dx −
∫
Dt

u · ∇P dx +

∫
Dt

B · (B · ∇u) dx −
∫
Dt

|B|2(∇ · u) dx

+

∫
Dt

p(ρ)
Dtρ

ρ
dx −

1
2

∫
Dt

Dtρ

ρ
|B|2 dx.

(1.4)

Integrating by part in the first term in the last equality, this term will cancel with
∫
Dt

B · (B · ∇u) dx because the boundary
term and the other interior term vanish due to B · n|∂Dt = 0 and div B = 0. Also we integrate by parts in the second term and
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then use the continuity equation to get

−

∫
Dt

u · ∇P dx =

∫
Dt

P(∇ · u) dx −
∫
∂Dt

(u · N)P dS︸              ︷︷              ︸
=0

= −

∫
Dt

p
Dtρ

ρ
dx +

1
2

∫
Dt

|B|2(∇ · u) dx

= −

∫
Dt

p
Dtρ

ρ
dx +

∫
Dt

|B|2(∇ · u) dx −
1
2

∫
Dt

|B|2(∇ · u) dx

= −

∫
Dt

p
Dtρ

ρ
dx +

∫
Dt

|B|2(∇ · u) dx +
1
2

∫
Dt

Dtρ

ρ
|B|2 dx.

(1.5)

where dS is the surface measure of ∂Dt.
Summing up (1.4) and (1.5), one can get the energy conservation

d
dt

(
1
2

∫
Dt

ρ|u|2 dx +
1
2

∫
Dt

|B|2 dx +

∫
Dt

ρQ(ρ) dx
)

= 0. (1.6)

When B = 0, one can see such energy conservation exactly coincides with that of free-boundary compressible Euler equations
established in Lindblad-Luo [41].

Equation of state: Isentropic liquid We assume the fluid considered in this paper is an isentropic liquid, i.e., there exists
some constant 0 < ρ1 < ρ2 such that ρ1 ≤ ρ ≤ ρ2 as opposed to a gas1, and the fluid pressure p = p(ρ) is an increasing smooth
function of ρ. Next we impose the following natural conditions on ρ′(p) for some fixed constant A0 > 1.

A−1
0 ≤ |ρ

(m)(p)| ≤ A0 for m ≥ 1. (1.7)

For example, the equation of state p(ρ) = γ−1(ργ − 1)/c2 (γ ≥ 1) satisfies this relation.

Rayleigh-Taylor sign condition We also need to impose the Rayleigh-Taylor sign condition

− ∇nP ≥ c0 > 0 on ∂Dt, (1.8)

where c0 > 0 is a constant and P := p + 1
2 |B|

2 is the total pressure. When B = 0, Ebin [16] proved the ill-posedness of the free-
boundary incompressible Euler equations when the Rayleigh-Taylor sign condition is violated. For the free-boundary MHD
equations, (1.8) is also necessary: Hao-Luo [30] proved that the free-boundary problem of 2D incompressible MHD equations
is ill-posed when (1.8) fails. We also note that (1.8) is only required for initial data and it propagates in a short time interval

because one can prove it is C0, 1
4

t,x Hölder continuous by using Morrey’s embedding.

Compatibility conditions on initial data To make the initial-boundary value problem (1.1)-(1.3) well-posed, the initial data
has to satisfy certain compatibility conditions on the boundary. In fact, we need to require P0|∂D0=0. Also the constraints on
the magnetic field div B = 0 and B · n|∂D = 0 requires that ∇ · B0 = 0 and B0 · n|{0}×∂D0 = 0. Furthermore, we say the initial data
satisfies the compatibility condition up to k-th(k ≥ 0) order if

D j
t P|{t=0}×∂D0 = 0 ∀0 ≤ j ≤ k. (1.9)

When (1.9) is fulfilled for any j ∈ N, we say the initial data satisfies the compatibility conditions to infinite order.

1.2 History and background

1.2.1 Background in physics

The free-boundary problem (1.1)-(1.3) can be considered as the basic model of the plasma-vacuum free-interface problem
which is important in the study of confined plasma both in laboratory and in astro-physical magnetohydrodynamics. The
plasma is confined in a vacuum in which there is another magnetic field B̂, and there is a free interface Γ(t), moving with the

1In the case of a gas, the boundary condition should be ρ = 0.
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motion of plasma, between the plasma region Ω+(t) and the vacuum region Ω−(t). This model requires that (1.1) holds in the
plasma region Ω+(t) and the pre-Maxwell system holds in vacuum Ω−(t):

∇ × B̂ = 0, ∇ · B̂ = 0. (1.10)

On the interface Γ(t), it is required that there is no jump for the pressure or the normal components of the magnetic fields:

B · n = B̂ · n = 0, P := p +
1
2
|B|2 =

1
2
|B̂|2 (1.11)

where n is the exterior unit normal to Γ(t). Finally, there is a rigid wall W wrapping the vacuum region, on which the following
boundary condition holds

B̂ × n̂ = J on W,

where J is the given outer surface current density (as an external input of energy) and n̂ is the exterior normal to the rigid wall
W. Note that for ideal MHD, the conditions div B = 0 and B ·n = 0 should also be constraints for initial data instead of imposed
conditions. For details we refer to [20, Chapter 4, 6].

Hence, the free-boundary problem (1.1)-(1.3) can be considered as a special case of plasma-vacuum model that the vacuum
magnetic field B̂ vanishes. It characterizes the motion of an isolated perfect conducting fluid in an electro-magnetic field.

1.2.2 An overview of previous results

In the past a few decades, there have been numerous studies of the free-boundary inviscid fluids. We start with incompressible
Euler equations.

Free-boundary Euler equations The free-boundary Euler equations have been studied intensively by a lot of authors. The
first breakthrough in solving the local well-posedness (LWP) for the incompressible irrotational problem for general initial
data came in the work of Wu [68, 69] who proved the LWP of 2D and 3D full water wave system. In the case of nonzero
vorticity, Christodoulou-Lindblad [8] first established the a priori estimates and then Lindblad [37, 38] proved the LWP by
using Nash-Moser iteration. Coutand-Shkoller [12, 13] proved the LWP for incompressible Euler equations with or without
surface tension and avoid the loss of regularity by introducing tangential smoothing method. We also refer to the related works
[74, 1, 56, 57, 58] and references therein.

The study of compressible perfect fluid is not quite developed as opposed to the incompressible case. Lindblad [39, 40]
established the first LWP result by Nash-Moser iteration. Trakhinin [62] proved the LWP for the non-isentropic case by a
hyperbolic approach and Nash-Moser iteration. Lindblad-Luo [41] established the first result of the a priori estimates and the
incompressible limit. Then Luo [42] generalized [41] to compressible water wave with vorticity. Later, Ginsberg-Lindblad-Luo
[19] proved the LWP for a self-gravitating liquid. Luo-Zhang [45] proved the LWP for a compressible gravity water wave with
vorticity. In the case of nonzero surface tension, we refer to Coutand-Hole-Shkoller [10] for the LWP and the vanishing surface
tension limit and Disconzi-Luo [15] for the incompressible limit. For the case of a gas, we refer to [11, 14, 33, 46, 27, 32] and
references therein.

Free-boundary MHD equations: Incompressible case The study of free-boundary MHD is much more complicated than
Euler equations due to the strong coupling between fluid and magnetic field and the failure of irrotational assumption. For the
incompressible ideal free-boundary MHD under Rayleigh-Taylor sign condition, Hao-Luo [29] established the Christodoulou-
Lindblad [8] type a priori estimates and Gu-Wang [25] proved the LWP. Hao-Luo [31] also proved the LWP for the linearized
problem when the fluid region is diffeomorphic to a ball and of large curvature. Luo-Zhang [43] proved the low regularity a
priori estimates when the fluid domain is small. We also mention that Lee [35, 36] obtained a local solution via the vanishing
viscosity-resistivity limit.

For the full plasma-vacuum model, Gu [21, 22] proved the LWP for the axi-symmetric case with nontrivial vacuum magnetic
field in a non-simply connected domain under Rayleigh-Taylor sign condition. Hao [28] proved the LWP in the case of J = 0.
For the general case, all of the previous results require a non-collinearity condition |B × B̂| ≥ c0 > 0 on the free interface2.
Under this condition, Morando-Trakhinin-Trebeschi [48] proved LWP for the linearized problem and then Sun-Wang-Zhang
[60] proved the LWP for the full plasma-vacuum model. We also note that the study of the full plasma-vacuum model in ideal

2The non-collinearity condition enhaces extra 1/2-order regularity of the free-interface than Taylor sign condtion (1.8). Such condition originates from the
stabilization condition for the current-vortex sheet model.
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MHD under Rayleigh-Taylor sign condition is still an open problem when the vacuum magnetic field B̂ is non-trivial with
J , 0. For the incompressible current-vortex sheets, we refer to Coulombel-Morando-Secchi-Trebeschi [9] for the a priori
estimates and Sun-Wang-Zhang [59] for the LWP.

For incompressible ideal MHD with surface tension, Luo-Zhang [44] proved the a priori estimates and Gu-Luo-Zhang [23]
proved the LWP. For incompressible dissipative MHD with surface tension, we refer to Chen-Ding [4] for the inviscid limit for
viscous non-resistive MHD, Wang-Xin [67] for the global well-posedness of the plasma-vacuum model for inviscid resistive
MHD around a uniform transversal magnetic field, and Padula-Solonnikov [51] and Guo-Zeng-Ni [26] for viscous-resistive
MHD.

Free-boundary MHD equations: Compressible case Compared with compressible Euler equations and incompressible
MHD, compressible MHD has an extra coupling between the pressure wave and the magnetic field which makes the analysis
completely different. Here we emphasize that there is a normal derivative loss in the div-curl analysis of compressible MHD. On
the one hand, the second author [71, 72] recently observed that the magnetic resistivity exactly compensates the derivative loss
mentioned above. However, it is still hopeless to derive the vanishing resistivity limit. On the other hand, one can still expect
to establish the tame estimates for the linearized equation. Based on this and Nash-Moser iteration, Trakhinin-Wang [64, 65]
recently proved the LWP for free-boundary compressible ideal MHD with or without surface tension. We also mention that
Chen-Wang [5] and Trakhinin [61] proved the LWP for the current-vortex sheets, and Secchi-Trakhinin [55] proved the LWP
for the full plasma-vacuum problem for compressible ideal MHD under the non-collinearity condition. However, Nash-Moser
iteration leads to a big loss of regularity and does not give the continuous depedence on initial data. It is still unknown whether
the local well-posedness result can be improved such that the regularity loss can be avoided and the continuous dependence on
initial data can be established.

In this paper, we first prove the a priori estimates without loss of regularity for the free-boundary compressible ideal MHD
system in the anisotropic Sobolev spaces. Our proof is based on the modified Alinhac good unknown method, full utilization of
the cancellation structure of MHD system and very delicate analysis under the setting of anisotropic Sobolev spaces. Using a
parallel argument, we can also prove the uniqueness and the continuous dependence on initial data provided the solution exists.
Then we prove a local existence result and a continuation criterion for the smooth solutions with smooth data. Based on these
results, we can improve the local existence result to the case that the initial data only satisfies the compatibility conditions up
to finite order, such that the regularity loss can be avoided and the continuous dependence on initial data can be established.

1.3 Reformulation in Lagrangian coordinates and main result

We use Lagrangian coordinates to reduce the free-boundary problem to a fixed-domain problem. We assume Ω := T2 × (−1, 1)
to be the reference domain and Γ := T2 × ({−1} ∪ {1}) to be the boundary. The coordinates on Ω is y := (y′, y3) = (y1, y2, y3).
We define η : [0,T ] ×Ω→ D as the flow map of velocity field u, i.e.,

∂tη(t, y) = u(t, η(t, y)), η(0, y) = η0(y), (1.12)

where η0 is a diffeomorphism between Ω and D0. For technical simplicity3 we assume η0 = Id. By chain rule, it is easy to
see that the material derivative Dt becomes ∂t in the (t, y) coordinates and the free-boundary ∂Dt becomes fixed (Γ = T2 ×

({−1}∪ {1})). We introduce the Lagrangian variables as follow: v(t, y) := u(t, η(t, y)), b(t, y) := B(t, η(t, y)), q(t, y) := p(t, η(t, y)),
Q(t, y) := P(t, η(t, y)) and R(t, y) := ρ(t, η(t, y)).

Let ∂ = ∂y be the spatial derivative in Lagrangian coordinates and we define div Y = ∂iY i to be the (Lagrangian) divergence
of the vector field Y . We introduce the matrix A = [∂η]−1, specifically Ali := ∂yl

∂xi where xi = ηi(t, y) is the i-th variable in
Eulerian coordinates. From now on, we define ∇i

A = ∂
∂xi = Ali∂l to be the covariant derivative in Lagrangian coordinates (or say

Eulerian derivative) and divAX := ∇A · X = Ali∂lXi to be the Eulerian divergence mof the vector field X. In the manuscript, we
adopt the convention that the Latin indices range over 1, 2, 3. In addition, since η(0, ·) = Id, we have A(0, ·) = I, where I is the
identity matrix, and (u0, B0, p0) and (v0, b0, q0) agree respectively.

In terms of η, v, b, q,R, the system (1.1)-(1.8) becomes

3The domain T2 × (−1, 1) is known to be the reference domain. Using a partition of unity, e.g., [12], a general bounded domain can also be treated in the
same way. Choosing a reference domain allows us to focus on the real issues and avoid the involved calculation caused by partition ofunity. Indeed, our proof
is also applicable to the case that η0 is a general diffeomorphism that has the same regularity of v0 if we use similar technical modifications as in [24].
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∂tη = v in [0,T ] ×Ω

R∂tv = (b · ∇A) b − ∇AQ, Q = q + 1
2 |b|

2 in [0,T ] ×Ω

∂tR + RdivAv = 0 in [0,T ] ×Ω

q = q(R) in [0,T ] × Ω̄

∂tb = (b · ∇A) v − bdivAv in [0,T ] ×Ω

divAb = 0 in [0,T ] ×Ω

Q = 0, biAliNl = 0 on [0,T ] × Γ

−
∂Q
∂N |Γ ≥ c0 > 0 on {t = 0}

(η, v, b, q,R)|t=0 = (Id, v0, b0, q0, ρ0).

(1.13)

Here N = (0, 0,±1) is the unit outer normal of the boundary T2 × {±1} and q = q(R) is a strictly increasing function of R with
A−1

0 ≤ q′(R) ≤ A0 for some constant A0 > 1.
Let J := det[∂η] and Â := JA. Then we have the Piola’s identity

∂lÂli = 0, (1.14)

and J satisfies

∂t J = JdivAv (1.15)

which together with ∂tR + RdivAv = 0 gives that ρ0 = RJ.
Suppose D is the derivative ∂ or ∂t, then we have the following identity

DAli = −Alr ∂kDηr Aki. (1.16)

Next we express the magnetic field b in terms of b0 and η in the following Lemma. This is called the “frozen effect of the
magnetic field”.

Lemma 1.1. We have b = J−1(b0 · ∂)η.

Proof. Let us first compute the equation of b/R. We have

∂t

(
b
R

)
=

1
R
∂tb + b∂t

(
1
R

)
=

1
R
∂tb + b∂t

( J
RJ

)
=

1
R
∂tb +

b
ρ0
∂t J

=
1
R

((b · ∇A)v − bdivAv) +
b
ρ0

JdivAv =
b
R
· ∇Av −

b
R

divAv +
b
R

divAv

=

(
b
R
· ∇A

)
v.

Therefore, invoking (1.16) we have

∂t

(
bi

R
Ali

)
=∂t

(
bi

R

)
Ali +

bi

R
∂tAli =

b j

R
Ak j ∂kvi Ali −

bi

R
Al j ∂kv j Aki = 0,

which implies bi
R Ali =

b0i
ρ0
δli =

b0
l

ρ0
, i.e., biAli =

b0
lR
ρ0

= J−1bl
0. Finally, the identity Ali∂lηi = 1 gives us bi = J−1bl

0∂lηi =

J−1(b0 · ∂)ηi. �

Inserting ρ0 = RJ and Lemma 1.1 into (1.13), we get the following system with the initial constraints div b0 = 0 in Ω,
b3

0 = 0 on Γ and − ∂Q0
∂N |Γ ≥ c0 > 0. From now on, we call these three conditions to be “initial constraints” without more

explanation. 

∂tη = v in [0,T ] ×Ω

R∂tv = J−1(b0 · ∂)
(
J−1(b0 · ∂)η

)
− ∇AQ, Q = q + 1

2 |J
−1(b0 · ∂)η|2 in [0,T ] ×Ω

JR′(q)
ρ0

∂tq + divAv = 0 in [0,T ] ×Ω

q = q(R) strictly increasing in [0,T ] × Ω̄

Q = 0, on [0,T ] × Γ

(η, v, q,Q)|t=0 = (Id, v0, q0,Q0), Q0 = q0 + 1
2 |b0|

2.

(1.17)
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Before stating our results, we should first define the anisotropic Sobolev space Hm
∗ (Ω) for m ∈ N∗. Let σ = σ(y3) be a cutoff

function on [−1, 1] defined by σ(y3) = (1 − y3)(1 + y3). Then we define Hm
∗ (Ω) for m ∈ N∗ as follows

Hm
∗ (Ω) :=

{
f ∈ L2(Ω)

∣∣∣∣∣(σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 f ∈ L2(Ω), ∀i1 + i2 + 2i3 + i4 ≤ m

}
,

equipped with the norm
‖ f ‖2Hm

∗ (Ω) :=
∑

i1+i2+2i3+i4≤m

‖(σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 f ‖2L2(Ω).

For any multi-index I := (i0, i1, i2, i3, i4) ∈ N5, we define

∂I
∗ := ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 , 〈I〉 := i0 + i1 + i2 + 2i3 + i4,

and define the space-time anisotropic Sobolev norm ‖ · ‖m,∗ by

‖ f ‖2m,∗ :=
∑
〈I〉≤m

‖∂I
∗ f ‖2L2(Ω) =

∑
i0≤m

‖∂i0
t f ‖2

Hm−i0
∗ (Ω)

.

We define f( j) = ∂
j
t f |t=0 for j ∈ N. The main results in this manuscript are the following theorems. The first one is the

improved local existence theorem for smooth data satisfying the compatibility conditions up to infinite order.

Theorem 1.2 (Local existence for smooth solutions). Let (v0, b0,Q0) ∈ C∞(Ω̄) be the initial data of (1.17) satisfying

• the compatibility conditions up to infinite order, i.e., Q( j)|Γ = 0, ∀ j ≥ 0, j ∈ Z;
• the initial constraints div b0 = 0 in Ω, b3

0|Γ = 0 and the Rayleigh-Taylor sign condition − ∂Q0
∂N |Γ ≥ c0 > 0.

Then there exists some T0 > 0 only depending on initial data, c0 and A0 defined in (1.7), such that (1.17) has a unique smooth
solution (η, v, b,Q) in C∞([0,T0] × Ω̄).

Remark (On the existence of smooth initial data satisfying the compatibility conditions up to infinite order). One should prove
the existence of smooth initial data satisfying the compatibility conditions up to infinite order. This can be done by a parallel
argument as in Lindblad [40, Lemma 16.2]. See the explanation in Appendix A.3.

The next two theorems show the a priori bounds without loss of regularity, the uniqueness and continuous dependence on
initial data provided that the solution exists. They also give the energy estimates without loss of regularity and the continuous
dependence on intial data in anisotropic Sobolev spaces for the smooth solution obtained in Theorem 1.2.

Theorem 1.3 (A priori estimates). Assume m ≥ 8 is an integer. Let the initial data be (v0, b0,Q0) ∈ Hm
∗ (Ω) satisfying that

• (v( j), b( j),Q( j)) ∈ Hm− j
∗ (Ω) for 1 ≤ j ≤ m, where f( j) := ∂

j
t f |t=0;

• the compatibility condition holds up to (m − 1)-th order, i.e., Q( j)|Γ = 0 for 0 ≤ j ≤ m − 1;
• the initial constraints div b0 = 0 in Ω, b3

0|Γ = 0 and the Rayleigh-Taylor sign condition − ∂Q0
∂N |Γ ≥ c0 > 0.

Then there exists some T1 > 0 only depending on ‖v0, b0,Q0‖m, c0 and A0 (defined in (1.7)), such that the solution (η, v,Q) to
the system (1.17) satisfies the following estimates in [0,T1]

sup
0≤t≤T1

Em(t) ≤ P(Em(0)), (1.18)

under the a priori assumptions on [0,T1]

‖J − 1‖m−1,∗ ≤
1
4

(1.19)

−
∂Q
∂N
≥

3
4

c0. (1.20)

Here the energy functional E(t) is defined to be

Em(t) := ‖η(t, ·)‖2m,∗ + ‖v(t, ·)‖2m,∗ + ‖J−1(b0 · ∂)η(t, ·)‖2m,∗ + ‖q(t, ·)‖2m,∗ +
∑
〈I〉=m

∣∣∣A3i∂I
∗ηi

∣∣∣2
0 , (1.21)

and P(· · · ) is a generic polynomial in its arguments.
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Theorem 1.4 (Continuous dependence on initial data and uniqueness). Assume m ≥ 8 is an integer. Let (v(i)
0 , b

(i)
0 ,Q

(i)
0 ) ∈

Hm
∗ (Ω) (i = 1, 2) be two initial datum satisfying the hypothesis in Theorem 1.3. Let (η(i), v(i),Q(i)) be the solution to (1.17) with

initial data (v(i)
0 , b

(i)
0 ,Q

(i)
0 ). Define [ f ] = f (1) − f (2) for any function f in Ω̄ and define the energy functional [E](t) to be

[E]m(t) := ‖[η](t, ·)‖2m−2,∗ + ‖[v](t, ·)‖2m−2,∗ + ‖(J−1b0)(1) · ∂[η](t, ·)‖2m−2,∗ + ‖[q](t, ·)‖2m−2,∗ +
∑
〈I〉=m−2

∣∣∣A(1)3i∂I
∗[η]i

∣∣∣2
0 . (1.22)

Then there exists some T2 > 0 depending on ‖v(i)
0 , b

(i)
0 ,Q

(i)
0 ‖m (i = 1, 2), c0 and A0 such that the following estimates hold

sup
0≤t≤T2

[E]m(t) ≤ [E]m(0)P(Em(0)) ≤ P(‖[v0], [b0], [q0]‖m−2,Em(0)), (1.23)

where P(·) > 0 is a generic polynomial of its arguments.

Remark (Control of Em(0)). It would be better to construct the initial data (v0, b0,Q0) satisfying the compatibility conditions
up to (m − 1)-th order in Hm(Ω) ↪→ Hm

∗ (Ω), such that

m∑
j=1

‖(v( j), b( j),Q( j))‖2Hm− j(Ω) . P(Km), (1.24)

where we define Km := ‖v0‖
2
Hm(Ω) + ‖b0‖

2
Hm(Ω) + ‖Q0‖

2
Hm(Ω). In particular, by the Sobolev embedding Hm− j(Ω) ↪→ Hm− j

∗ (Ω) for
0 ≤ j ≤ m, we have

Em(0) . P(Km). (1.25)

If we only focus on (v0, b0,Q0) ∈ Hm
∗ (Ω) then we can only get (v( j), b( j),Q( j)) ∈ Hm−2 j

∗ (Ω) and thus Em(0) < ∞ may fail. See
Section 8.3 for detailed discussion.

Next, we want to extend the local existence theorem to the case of initial data satisfying compatibility conditions up to finite
order. To achieve this, we need a continuation criterion for the smooth solution obtained in Theorem 1.2, which shows that, for
any m ∈ N∗,m ≥ 8, the ‖ · ‖m,∗ norm of a smooth solution remains bounded as long as the ‖ · ‖k,∗ norms (k ≤ m− 1) are bounded.

Theorem 1.5 (Continuation of smooth solution). Assume m ≥ 8 to be an integer. For the smooth solution (η, v, b,Q) obtained
in Theorem 1.2, we define

T ∗ := sup
{
T > 0

∣∣∣(η, v, b,Q) can be extended in C∞([0,T ] × Ω̄)
}
. (1.26)

If T ∗ < +∞, then either lim
t↗T ∗
Em−1(t) = +∞ for some m or lim

t↗T ∗
inf
Γ

(− ∂Q
∂N ) = 0 holds.

Remark. The proof of this continuation criterion requires the energy estimates for Em(t) to be linear in the highest-order terms.
To achieve this, it suffices to carefully analyze each commutator term in the anisotropic Sobolev spaces to ensure the linearity
of the highest-order terms, such that the energy inequality becomes

Em(t) . Em(0) +

∫ t

0
P(Em−1(τ))Em(τ)dτ.

This also inherits the frameworks of [8, 41] which proved that the solutions to free-boundary Euler equations, if exist, can be
extended after time t = T∗ provided that all lower order terms of v, q and the second fundamental form of the free surface are
bounded at time t = T∗.

Finally, we show that, one can prove the local well-posedness for initial data (not necessarily smooth) satisfying the compat-
ibility conditions up to only finite order, provided that one can construct a sequence of smooth data satisfying the compatibility
conditions up to infinite order that converges to the given data in Hm(Ω). However, it is still unknown to how achieve such
construction in general due to some technical difficulties. (We expect this to be true since one can construct data satisfying in-
finitely many compatibility conditions as in [40] and one can construct data satisfying any number of compatibility conditions
approximating given data as in [41, 73].) We have the following theorem.

Theorem 1.6 (Local well-posedness). Assume m ≥ 8 to be an integer. Let (v0, b0,Q0) be the initial data (not necessarily
smooth!) of (1.17) satisfying
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• the compatibility conditions up to (m − 1)-th order, i.e., Q( j)|Γ = 0, 0 ≤ j ≤ m − 1;
• the initial constraints div b0 = 0 in Ω, b3

0|Γ = 0 and the Rayleigh-Taylor sign condition − ∂Q0
∂N |Γ ≥ c0 > 0.

Assume also there exists a sequence of smooth data {(v(n)
0 , b(n)

0 ,Q(n)
0 )}m∈N∗ satisfying the compatibility conditions up to infinite

order that converges to the given data (v0, b0,Q0) in Hm(Ω), i.e.,

lim
n→∞
‖v(n)

0 − v0‖m + ‖b(n)
0 − b0‖m + ‖Q(n)

0 − Q0‖m = 0.

Then there exists some Tm > 0 only depending on ‖v0, b0,Q0‖m, c0 and A0 defined in (1.7), such that the solution (η, v, b,Q) to
(1.17) exists in C([0,Tm]; Hm

∗ (Ω)). The solution also satisfies the conclusions of Theorem 1.3-Theorem 1.4, that is, the a priori
estimates without loss of regularity in ‖ · ‖m,∗ norm, the uniqueness and continuous dependence on initial data in ‖ · ‖m−2,∗ norm.

Organization of the paper. In Section 2, we briefly introduce the strategies and the main techniques used in our proof. In
Section 3 we record the lemmas which will be repeatedly used in the manuscript. Then we show the detailed analysis of MHD
system in anisotropic Sobolev space in Section 4 ∼ Section 7. And we conclude the a priori estimates without loss of regularity,
the uniqueness and the continuos dependence on data in Section 8. Finally, in Section 9, we explain how to improve the Nash-
Moser iteration scheme in [64] such that a local existence theorem for C∞ data can be proved, and then show that continuation
criterion in anisotropic Sobolev spaces by further analysis of the commutators. After that, we prove Theorem 1.6 by using the
conclusions of Theorem 1.2 ∼ Theorem 1.4. The construction of initial data are discussed in Appendix A.
List of Notations:

• Ω := T2 × (−1, 1) and Γ := T2 × ({−1} ∪ {1}).
• ‖ · ‖s: We denote ‖ f ‖s := ‖ f (t, ·)‖Hs(Ω) for any function f (t, y) on [0,T ] ×Ω.
• | · |s: We denote | f |s := | f (t, ·)|Hs(Γ) for any function f (t, y) on [0,T ] × Γ.
• ‖ · ‖m,∗: For any function f (t, y) on [0,T ]×Ω, ‖ f ‖2m,∗ :=

∑
〈I〉≤m ‖∂

I
∗ f (t, ·)‖2L2 denotes the m-th order space-time anisotropic

Sobolev norm of f .
• P(· · · ): A generic polynomial in its arguments;
• P0: P0 = P(E(0));
• [T, f ]g := T ( f g) − f T (g), and [T, f , g] := T ( f g) − T ( f )g − f T (g), where T denotes a differential operator and f , g are

arbitrary functions.
• ∂: ∂ = ∂1, ∂2 denotes the spatial tangential derivative.
• ∇i

A f := Ali∂l f denotes the covariant (Eulerian) derivative.
• X · ∇A f : For any function f and vector field X, such notation denotes the inner-product defined by X · ∇A f := XpAlp∂l f .
• X ·∇AY ·∇A f : For any function f and vector field X,Y , such notation denotes the inner-product defined by X ·∇AY ·∇A f :=

XpAlp∂lYrAmr∂m f .

Acknowledgement. The authours thank the anonymous referees for their comments and suggestions that help us improve the
quality of this paper. Hans Lindblad was supported in part by Simons Foundation Collaboration Grant 638955. Junyan Zhang
would like to thank Tao Wang and Chenyun Luo for helpful discussion.

2 Strategy of the proof
Before going to the details, we introduce the basic strategies and techniques of our proof, especially for the proof of energy
estimates without loss of regularity. At the end of this section we will also explain how we improve the local well-posedness
result using our energy estimates and the local existence result of [64]. From now on, we will only show the proof for Theorem
1.3∼1.4 for m = 8 and drop the index m in Em(t) for simplicity of notations.

2.1 Choice of the function spaces
The compressible MHD system (1.1)-(1.3) is a hyperbolic system with charactersitic boundary conditions and violates the
uniform Kreiss-Lopatinskiı̆ condition [34]. This usually causes a loss of normal derivative. For certain types of such hyperbolic
system, e.g., compressible Euler equations [41, 62], one can control the normal derivatives by the div-curl analysis so that the
energy estimates and the LWP can be established in standard Sobolev spaces. However, such div-curl analysis is not applicable
to compressible ideal MHD. In fact, taking curl eliminates the symmetry enjoyed by the equations, and there is also a derivative
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loss in the source term of the wave equation of pressure which is the key to the divergence estimates. For related details, we
refer to [71, Section 1.5].

To compensate such derivative loss, Chen [6] first introduced the anisotropic Sobolev spaces Hm
∗ to study the hyperbolic

system with characteristic boundary conditions. Then Yanagisawa-Matsumura [70] established the first LWP result for the
fixed-domain problem of compressible ideal MHD in anisotropic Sobolev spaces. Later, [70] was improved by Secchi [52, 53]
such that the regularity loss was avoided. On the other hand, Ohno-Shirota [49] constructed an explicit counterexample to show
the ill-posedness for the linearized fixed-domain problem for compressible MHD in Hl(l ≥ 2).

Hence, the failure of div-curl analysis and the results of the fixed-domain problem [6, 70, 52, 49, 7] motivate us to study
the free-boundary compressible ideal MHD system under the setting of anisotropic Sobolev spaces instead of standard Sobolev
spaces. However, we emphasize that it is still difficult to directly generalize Secchi [52] to the free-boundary problem due to
the following three reasons:

1. The regularity of the boundary is no longer C∞ as in the case of fixed domain. In fact, the regularity of the free boundary
enters to the highest order.

2. The regularity of the flow map is limited. After reducing the free-boundary problem to a fixed-domain problem, the
commutator of the covariant derivative and the full derivative cannot be controlled directly.

3. The Eulerian normal velocity u · n does not vanish on the free boundary. However, u · n = 0 plays an important role in
the proof of [70, 52].

In fact, our analysis in the presenting manuscript is based on the modified Alinhac good unknown method, subtle cancel-
lation structures of MHD system and the utilization of the anisotropy of the function space Hm

∗ . Here we also emphasize that
our strategy is completely applicable to compressible Euler equations just by setting b0 = 0. Our result also gives an alternative
energy estimate for compressible Euler equations without the analysis of div-curl decomposition or the wave equation.

2.2 Motivation for introducing Alinhac good unknowns

Denote ∂I
∗ = ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 with 〈I〉 := i0 + i1 + i2 + 2i3 + i4 = 8. For simplicity of the notations, we use ‖ · ‖s, | · |s to represent

the Hs(Ω) norm and the Hs(Γ) norm respectively. Taking ∂I
∗ in the second equation of (1.17) and multiplying J, we get

ρ0∂t∂
I
∗v = −J∂I

∗(∇AQ) + (b0 · ∂)∂I
∗b + [∂I

∗, (b0 · ∂)]b − J[∂I
∗,R]∂tv

In the energy estimates, we need to commute ∇A with ∂I
∗ and then integrate by parts. However, the commutator [∂I

∗, A
li]∂l f

contains the following terms whose L2(Ω)-norms cannot be controlled in the anisotropic Sobolev space

• (∂I
∗A

li)(∂l f ), which cannot be controlled even in the standard Sobolev spaces when i0 = 0;
• (∂I−I′

∗ Ali)(∂I′
∗ ∂l f ), when l = 1, 2 since Ali consists of (∂η)(∂3η);

• (∂I′
∗ Ali)(∂I−I′

∗ ∂l f ), when l = 3,

where f = Q or vi and I′ is a multi-index with 〈I′〉 = 1. To overcome such difficulty, we can use the ideas of the Alinhac
good unknown method, i.e., we can rewrite ∂I

∗(∇AQ) and ∂I
∗(∇A · v) in terms of the sum of the covariant derivative part and the

commutator part satisfying

∂I
∗(∇AQ) = ∇AQ + C(Q), with ‖Q − ∂I

∗Q‖0 + ‖∂t(Q − ∂I
∗Q)‖0 + ‖C(Q)‖0 ≤ P(E(t)), (2.1)

∂I
∗(∇A · v) = ∇A · V + C(v), with ‖V − ∂I

∗v‖0 + ‖∂t(V − ∂I
∗v)‖0 + ‖C(v)‖0 ≤ P(E(t)). (2.2)

Here Q,V are called the “Alinhac good unknowns” of Q, v (The precise expressions will be determined later).
In other words, the above analysis shows that the essential highest order term in ∂I

∗(∇A f ) is not the term got by simply
commuting ∂I

∗ with ∇A. Instead, the essential highest order term in ∂I
∗(∇A f ) is exactly the covariant derivative of the Alinhac

good unknown of f , and the good unknowns V and Q are essentially formed by replacing the derivatives in the Lagragian
coordinates ∂I

∗ by the covariant derivatives with respect to the Eulerian coordinates expressed in the Lagrangian coordinates.
Such crucial fact was first observed by Alinhac [2] and has been widely used for quasilinear hyperbolic system. In the study
of free-surface fluid, such method was first implicitly used in the Q-tensor energy introduced by Christodoulou-Lindblad [8]
which was later generalized by [29, 41, 42, 17, 71]. See also [47, 66, 25, 45, 72, 18] for the explicit applications.
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Under the setting of (2.1)-(2.2), we can do the energy estimates by analyzing the Alinhac good unknowns via their evolution
equation instead of the ∂I

∗-differentiated variables.

ρ0∂tV = −J∇AQ + (b0 · ∂)(∂I
∗b) +

(
ρ0∂t(V − ∂I

∗v) −C(Q) + [∂I
∗, (b0 · ∂)]b − J[∂I

∗, ρ]∂tv
)︸                                                                ︷︷                                                                ︸

=:F

. (2.3)

Taking L2(Ω) inner product of (2.3) and V and then integrating by parts, we can get the energy identity

1
2

d
dt

∫
Ω

ρ0|V|2 = −

∫
Ω

(∂I
∗(J−1(b0 · ∂)η)) · (b0 · ∂)V dy +

∫
Ω

JQ(∇A · V) dy +

∫
Ω

F · V dy −
∫

Γ

JA3iN3QVi dy′. (2.4)

By direct computation we can prove ‖F‖0 ≤ P(E(t)), so it remains to control

K1 := −
∫

Ω

(∂I
∗(J−1(b0 · ∂)η)) · (b0 · ∂)V dy, (2.5)

I1 :=
∫

Ω

JQ(∇A · V) dy, (2.6)

IB := −
∫

Γ

JA3iN3QVi dy′, (2.7)

where dy′ := dy1 dy2 is the area unit of the boundary Γ.

2.3 Interior estimates and cancellation structure

Below we use “· · · ” to represent the terms whose L2 norms can be directly controlled by P(E(t)). The term K1 gives the energy
of the magnetic field. Recall that the top-order term in V is ∂I

∗v = ∂I
∗∂tη which yields

K1 = −

∫
Ω

(∂I
∗(J−1(b0 · ∂)ηi))((b0 · ∂)∂I

∗∂tηi) dy + · · ·

= −
1
2

d
dt

∫
Ω

J|∂I
∗(J−1(b0 · ∂)η)|2 dy −

∫
Ω

∂I
∗(J−1(b0 · ∂)ηi) (J−1(b0 · ∂)ηi)∂t∂

I
∗J dy + · · ·

= −
1
2

d
dt

∫
Ω

J|∂I
∗(J−1(b0 · ∂)η)|2 dy−

∫
Ω

J∂I
∗(J−1(b0 · ∂)ηi) (J−1(b0 · ∂)ηi)∂I

∗(divAv) dy︸                                                            ︷︷                                                            ︸
=:K11

+ · · · ,

where we use b = J−1(b0 · ∂)η and ∂t J = JdivAv. Note that K11 cannot be directly controlled due to the presence of ∂I
∗(divAv).

Instead, it will be exactly cancelled by another term produced by I1.
The term I1 gives the energy of the fluid pressure q and the cancellation structure with K11. Recall that ∇A ·V = ∂I

∗(divAv)−
C(v) and Q = q + 1

2 |J
−1(b0 · ∂)η|2. We get

I1 =

∫
Ω

J(∂I
∗q)∂I

∗(divAv) +

∫
Ω

J
(
∂I
∗

(
1
2
|J−1(b0 · ∂)η|2

))
∂I
∗(divAv) dy + · · ·

= −

∫
Ω

J(∂I
∗q)∂I

∗

(
JR′(q)
ρ0

∂tq
)

+

∫
Ω

J∂I
∗(J−1(b0 · ∂)ηi)(J−1(b0 · ∂)ηi)∂I

∗(divAv) dy + · · ·

= −
1
2

d
dt

∫
Ω

J2R′(q)
ρ0

|∂I
∗q|

2 dy + (−K11) + · · ·

Then using Q = q + 1
2 |J
−1(b0 · ∂)η|2, we also get the control of the total pressure Q.

2.4 Modified Alinhac good unknowns
Before analyzing the boundary integral IB, we have to figure out the precise expressions of the Alinhac good unknowns V,Q
which can be derived by analyzing ∂I

∗(∇A f ) for f = vi and Q. We will repeatedly use (1.16) in the analysis of commutators.
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First, for any multi-index I′ with 〈I′〉 = 1, we have with the notation [T, f , g] := T ( f g) − T ( f )g − f T (g)

∂I
∗(∇

i
A f ) =∇i

A(∂I
∗ f ) + (∂I

∗A
li) ∂l f + [∂I

∗, A
li, ∂l f ]

(1.16)
= ∇i

A(∂I
∗ f ) − ∂I−I′

∗ (Alr ∂I′
∗ ∂mηr Ami) ∂l f + [∂I

∗, A
li, ∂l f ]

=∇i
A(∂I
∗ f − ∂I

∗ηrAlr∂l f︸               ︷︷               ︸
=:∂I

∗ f−∂I
∗η·∇A f

) + ∂I
∗ηr ∇

i
A(∇r

A f ) − ([∂I−I′
∗ , AlrAmi]∂I′

∗ ∂mηr)∂l f + [∂I
∗, A

li, ∂l f ].

Under the setting of standard Sobolev spaces, the term ∂I
∗ f − ∂I

∗η · ∇A f is already the standard Alinhac good unknown of f
(with respect to ∂I

∗). See also [47, 66, 25, 45, 72, 18]. However, under the setting of anisotropic Sobolev spaces, we still need to
analyze the commutators −([∂I−I′

∗ , AlrAmi]∂I′
∗ ∂mηr)∂l f and [∂I

∗, A
li, ∂l f ] whose L2(Ω) norms may not be directly controlled due

to the anisotropy of Hm
∗ .

In particular, as long as ∂I
∗ is not the purely non-weighted normal derivative ∂4

3, the commutator [∂I
∗, A

li, ∂l f ] always contains
the term (∂I′

∗ Ali)(∂I−I′
∗ ∂l f ) whose L2(Ω) norm cannot be controlled when l = 3 due to the anisotropy of Hm

∗ . In fact, we should
use different methods to analyze this term for f = Q and f = vi respectively.

• When f = vi, by using (1.16), we can rewrite this term to be

(∂I′
∗ Ali)(∂I−I′

∗ ∂lvi) = − (Alp ∂I′
∗ ∂mηp Ami)∂I−I′

∗ ∂lvi = −Ali ∂I′
∗ ∂mηi Amp ∂I−I′

∗ ∂lvp

= − ∇i
A(∂I−I′
∗ vp Amp ∂I′

∗ ∂mηi) + ∇i
A(Amp∂I′

∗ ∂mηi) ∂I−I′
∗ vp.

Then we can merge −∂I−I′
∗ vp Amp ∂I′

∗ ∂mηi into the good unknown of v, i.e., the covariant derivative part in (2.2), and
merge ∇i

A(Amp∂I′
∗ ∂mηi)∂I−I′

∗ vp into the commutator part C(v) in (2.2) because its L2 norm can be directly controlled.

• When f = Q, we invoke (1.16) and the MHD equation −∇ÂQ = ρ0∂tv−(b0 ·∂)(J−1(b0 ·∂)η) to get the following reduction.
Here Â = JA.

J(∂I′
∗ Ali)(∂I−I′

∗ ∂lQ) = − (Âlp ∂I′
∗ ∂mηp Ami)(∂I−I′

∗ ∂lQ)

= − (∂I′
∗ ∂mηp Ami) ∂I−I′

∗ (Âlp∂lQ)︸    ︷︷    ︸
=∇

p
Â

Q

+(∂I−I′
∗ Âlp)(∂lQ)(∂I′

∗ ∂mηp Ami) + [∂I−I′
∗ , Âlp, ∂lQ]

=(∂I′
∗ ∂mηp Ami)∂I−I′

∗

(
ρ0∂tvp − (b0 · ∂)(J−1(b0 · ∂)ηp)

)
+ (∂I−I′

∗ Âlp)(∂lQ)(∂I′
∗ ∂mηp Ami) + [∂I−I′

∗ , Âlp, ∂lQ]

Remark. Note that ∂t and (b0 · ∂) are both tangential derivatives while ∇AQ always contains a normal derivative. Such
substitution actually makes the order of the derivatives lower with the help of the anisotropy of Hm

∗ .

The last term above is directly controlled. Since 〈I − I′〉 = 7, we have

‖(∂I′
∗ ∂mηp Ami)∂I−I′

∗ (ρ0∂tvp)‖0 . ‖∂I′
∗ ∂mηp Ami‖L∞‖∂

I−I′
∗ (ρ0∂tvp)‖0 . P(‖η‖7,∗)‖ρ0‖7,∗‖v‖8,∗. (2.8)

For the term −∂I′
∗ ∂mηp Ami ∂I−I′

∗

(
(b0 · ∂)(J−1(b0 · ∂)ηp)

)
, we need to use b3

0|Γ = 0 to produce a weight function to make
b3

0∂3 become a weighted normal derivative. By the fundamental theorem of calculus, we know (suppose y3 > 0 without
loss of generality)

|b3
0(t, y3)|L∞(T2) =

∣∣∣∣∣0 +

∫ y3

1
∂3b3

0(t, ζ3)dζ3

∣∣∣∣∣
L∞(T2)

≤ (1 − y3)‖∂3b0‖L∞ . σ(y3)‖∂3b0‖L∞ ,

and thus ∥∥∥∥(∂I′
∗ ∂mηp Ami) ∂I−I′

∗

(
(b0 · ∂)(J−1(b0 · ∂)ηp

)∥∥∥∥
0

.P(‖η‖7,∗)
(
‖b0‖7,∗‖J−1(b0 · ∂)η‖8,∗ + ‖∂3b0‖L∞‖(σ∂3)∂I−I′

∗ (J−1(b0 · ∂)η)‖0
)

.P(‖η‖7,∗)
(
‖b0‖7,∗‖J−1(b0 · ∂)η‖8,∗

)
.

(2.9)

In addition, the term (∂I−I′
∗ Âlp)(∂lQ)(∂I′

∗ ∂mηpAmi) can be directly controlled when l = 3 since Â3p consists of (∂η)(∂η) (cf.
(3.2)). When l = 1, 2, one should again invoke (1.16) to compute the highest order term and use ∂Q|Γ = 0 to produce a
weight function as in (2.9).
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Remark. From (2.9), the definition of Hm
∗ and the fact σ|Γ = 0, the weighted derivative (σ∂3) plays a similar role as a

tangential derivative. In fact, one should consider the weighted derivative (σ∂3) as a tangential derivative throughout this
manuscript.

There are three other terms which need further analysis:

• e1 := −∂I−I′
∗ (AlrAmi) (∂I′

∗ ∂mηr ∂l f ). When ∂I−I′
∗ does not contain time derivative, the term ∂I−I′

∗ (AlrAmi) cannot be con-
trolled since both A1i and A2i contain ∂3η.
• e2 := −∂I′

∗ (AlrAmi) (∂I−I′
∗ ∂mηr ∂l f ). When ∂I−I′

∗ does not contain time derivative, the term ∂I−I′
∗ ∂mηr cannot be controlled

when m = 3 since ∂I−I′
∗ ∂3η should be controlled by ‖η‖9,∗.

• e3 := (∂I−I′
∗ Ali) (∂I′

∗ ∂l f ). When ∂I−I′
∗ does not contain time derivative, the term ∂I−I′

∗ Ali cannot be controlled when l = 1, 2
since A1i and A2i contains ∂3η.

Remark. Since ∂tη (resp. ∂tA) has the same spatial regularity as η (resp. A), the L2(Ω)-norms of e1, e2, e3 can be directly
controlled when ∂I−I′

∗ contains at least one time derivative.

• When ∂I
∗ contains the weighted normal derivative (σ∂3), we need to analyze the extra terms which are produced when ∂3

falls on σ(y3). This appears when we commute (b0 · ∂) or ∇A with ∂I
∗.

We note that these terms can be controlled by similar arguments as in the analysis of (∂I′
∗ Ali)(∂I−I′

∗ ∂l f ). In other words, the
following three techniques are enough for us to control the remaining terms.

• Modify the definition of Alinhac good unknowns by rewriting the higher order terms to be a covariant derivative plus
L2(Ω)-bounded terms.

• Produce a weight function by using b3
0|Γ = 0 and ∂Q|Γ = 0 in order to replace one ∂3 by (σ∂3).

• Replace ∇ÂQ by −ρ0∂tv + (b0 ·∂)(J−1(b0 ·∂)η) in order to make the order of the derivatives lower thanks to the anisotropy
of Hm

∗ .

See Section 5.1.1 for detailed derivation of the modified Alinhac good unknowns and Section 7 for the analysis of weighted
derivatives. Therefore, we can write

Q = ∂I
∗Q − ∂

I
∗η · ∇AQ + ∆Q, (2.10)

Vi = ∂I
∗vi − ∂

I
∗η · ∇Avi + (∆v)i, (2.11)

where ‖∆ f ‖1,∗ . P(E(t)) and the properties (2.1)-(2.2) still hold.

2.5 Boundary estimates and necessity of anisotropy
Invoking (2.10)-(2.11), we have

IB = −

∫
Γ

JA3iN3QVi dy′

=−

∫
Γ

JA3iN3(∂I
∗Q)Vi dy′︸                         ︷︷                         ︸

=:IB0

+

∫
Γ

JA3iN3(∂I
∗η · ∇AQ)Vi dy′︸                              ︷︷                              ︸

=:IB1

+ · · · ,
(2.12)

modulo the terms involving ∆Q and ∆v which can be controlled either by using trace lemma for anisotropic Sobolev space or
using the trick of divergence theroem as in (2.17). The detailed analysis can be found in Section 4.3, 5.2.2 and 6.1.3.

Regularity of the free surface and standard cancellation structure First, IB1 in (2.12) gives the boundary energy and a
cancellation structure enjoyed by the standard Alinhac good unknown arguments as in [47, 66, 25, 45, 72, 18]. In specific, since
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∂1Q = ∂2Q = 0 on Γ, we have

IB1 =

∫
Γ

J
∂Q
∂N

∂I
∗ηk A3k A3i (∂I

∗∂tηi − ∂
I
∗ηr Alr ∂lvi + ∆vi ) dy′

= −
1
2

d
dt

∫
Γ

(
−J

∂Q
∂N

) ∣∣∣A3i∂I
∗ηi

∣∣∣2 dy′ +
1
2

∫
Γ

∂t

(
−J

∂Q
∂N

) ∣∣∣A3i∂I
∗ηi

∣∣∣2 dy′

−

∫
Γ

J
∂Q
∂N

(A3k∂I
∗ηk) ∂tA3i ∂I

∗ηi dy′ −
∫

Γ

J
∂Q
∂N

(A3k∂I
∗ηk)A3i∂I

∗ηr Alr∂lvi dy′

+

∫
Γ

J
∂Q
∂N

∂I
∗ηk A3k A3i ∆vi dy′.

(2.13)

Invoking the Rayleigh-Taylor sign condition (1.20), we get the boundary energy
∣∣∣A3i∂I

∗ηi

∣∣∣2
0 which exactly controls the second

fundamental form of the free surface. The second term can be directly controlled thanks to the boundary energy. Then plugging
∂tA3i = −A3r ∂lvr Ali into the third term yields the cancellation with the fourth term. The last term can be controlled directly by
using the boundary energy and trace lemma for anisotropic Sobolev space.

Remark. The cancellation structure above, enjoyed by the Alinhac good unknown, relies on the fact that A3i(∂I
∗∂tηi−∂

I
∗ηr Alr∂l∂tηi) =

∂t(A3i∂I
∗∂tηi) which can be proved by using (1.16) with D = ∂t. This identity will be repeatedly used to derive similar cancella-

tion structure in the boundary estimates.

Reduction of the normal derivatives and the advantage of the anisotropy When ∂I
∗ contains normal derivative, ∂I

∗Q no
longer vanishes on Γ. In this case we write ∂I

∗ = ∂I−e3
∗ ∂3 where the multi-index e3 is defined by (i0, i1, i2, i3, i4) = (0, 0, 0, 1, 0)

and 〈I − e3〉 = 6. We shall analyze

IB0 =

∫
Γ

N3J(∂I−e3
∗ ∂3Q)(A3i ∂I−e3

∗ ∂3vi) dy′ +
∫

Γ

N3J(∂I−e3
∗ ∂3Q)(∂I−e3

∗ ∂3ηp Alp∂lvi) dy′ =: IB01 + IB02. (2.14)

First, for IB01, we invoke the third equation in (1.17) to replace the normal derivative in A3i∂3vi by tangential derivative

A3i ∂I−e3
∗ ∂3vi =∂I−e3

∗ (A3i∂3vi) − [∂I
∗, A

3i]∂3vi = −∂I−e3
∗

(
JR′(q)
ρ0

∂tq
)
−

2∑
L=1

∂I−e3
∗ (ALi∂Lvi) − [∂I−e3

∗ , A3i]∂3vi. (2.15)

Note that we replace a normal derivative by a tangential derivative in the first term on the right side. The highest order terms in
the last commutator are ∂I−e3

∗ A3i∂3vi and ∂I′
∗ A3i∂I−I′

∗ vi with 〈I〉 = 1. Since A3i consists of ∂η × ∂η, we know the highest order of
derivatives in either of these two terms is 7 (in the sense of anisotropy, that is, 〈I〉 = i0 + i1 + i2 + 2i3 + i4).

The most difficult term is ∂I−e3
∗ ALi = −ALp(∂I−e3

∗ ∂mηp)Ami = −ALp(∂I−e3
∗ ∂3ηp)A3i −

2∑
M=1

ALp(∂I−e3
∗ ∂Mηp)AMi, in which the

contribution of −ALp(∂I−e3
∗ ∂3ηp)A3i in IB01 exactly cancels with the contribution of l = 1, 2 in IB02. The highest order term in

∂I−e3
∗ ∂3ηp Alp∂lvi corresponding to l = 3 in IB02 is actually ∂3ηp ∂

I−e3
∗ A3p ∂lvi = ∂3ηp ∂

I−e3
∗ (J−1∂1η × ∂2η)p ∂lvi thanks to the

identity A3p∂3ηp = 1.
Next we replace ∂3Q by tangential derivative of v and (b0 · ∂)η. Since A3i∂3ηi = 1, we have

J(∂I−e3
∗ ∂3Q) =∂3ηi Â3i (∂I−e3

∗ ∂3Q) = ∂3ηi ∂
I−e3
∗ (Â3i∂3Q) − ∂3ηi[∂I−e3

∗ , Â3i]∂3Q

=∂3ηi ∂
I−e3
∗ (Âli∂lQ︸ ︷︷ ︸

=∇i
Â

Q

) −
2∑

L=1

∂3ηi ∂
I−e3
∗ (ÂLi∂LQ) − ∂3ηi[∂I−e3

∗ , Â3i]∂3Q

=∂3ηi ∂
I−e3
∗

(
−ρ0∂tvi − (b0 · ∂)(J−1(b0 · ∂)ηi)

)
−

2∑
L=1

∂3ηi ∂
I−e3
∗ (ÂLi∂LQ) − ∂3ηi[∂I−e3

∗ , Â3i]∂3Q

(2.16)

Note that ∂LQ|Γ = 0 for L = 1, 2 eliminates the highest order term ∂3ηi (∂I−e3
∗ ÂLi) ∂LQ. And b3

0|Γ = 0 implies that (b0 · ∂)|Γ =

b1
0∂1 + b2

0∂2 is a tangential derivative on Γ. The last commutator can be controlled in the same way as (2.15). Combining
(2.14)-(2.16), the highest order terms in IB0 can all be written as the following form∫

Γ

N3(∂I−e3
∗ D f )(∂I−e3

∗ Dg)h dy′,
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where D can be (b0 · ∂), ∂, ∂t(tangential), and f , g can be η, v, q, J−1(b0 · ∂)η, and h consists of the the terms containing at most
first-order derivative of η and v. To control such boundary integral, we first rewrite it to the interior thanks to the divergence
theorem in y-coordinates, and then integrate D by parts∫

Γ

N3(∂I−e3
∗ D f )(∂I−e3

∗ Dg)h dy′

=

∫
Ω

(∂3∂
I−e3
∗ D f )(∂I−e3

∗ Dg)h dy +

∫
Ω

(∂I−e3
∗ D f )(∂3∂

I−e3
∗ Dg)h dy +

∫
Ω

(∂I−e3
∗ D f )(∂I−e3

∗ Dg)∂3h dy

D
= −

∫
Ω

(∂3∂
I−e3
∗ f )(∂I−e3

∗ D
2g)h dy +

∫
Ω

(∂3∂
I−e3
∗ f )(∂I−e3

∗ Dg)Dh dy

−

∫
Ω

(∂I−e3
∗ D

2 f )(∂3∂
I−e3
∗ g)h dy +

∫
Ω

(∂I−e3
∗ D f )(∂3∂

I−e3
∗ g)Dh dy +

∫
Ω

(∂I−e3
∗ D f )(∂I−e3

∗ Dg)∂3h dy

.‖ f ‖8,∗‖g‖8,∗‖h‖3,

(2.17)

where the anisotropy of the function space H8
∗ is crucial in the last step because 〈I − e3〉 = 6 allows us to have two more

tangential derivatives D2. When D in (2.17) is ∂t, this step should be done under time integral. See (4.43) for example.
The analysis of IB0 above also shows the advantage of using anisotropic Sobolev space as pointed out as an important

conclusion in the survey article [7] by Chen who first introduced the anisotropic Sobolev spaces in [6]

“For the nonlinear hyperbolic system with characteristic boundary conditions, the growth of one normal derivative
on the boundary should be compensated by the decrease in regularity of two tangential derivatives. This is one of
the advantages of the anisotropic Sobolev space that the standard Sobolev space fails to carry.”

In specific, if we start with the estimates of ∂4
3, then by (2.17) we need the control of ∂3

3D
2 where D is a tangential derivative.

To control the latter one, we need the control of ∂2
3D

4 again due to (2.17). Repeatedly, we finally need to derive the estimates
of D8. In addition, the weighted derivative (σ∂3) is necessary in the interior estimates, e.g., in (2.9). On the other hand, we
also need the control of 4 normal derivatives in order to close the energy estimates of 8 tangential derivatives. So we find that
the anisotropic Sobolev space exactly meets all of these requirements in our mechanism of reducing normal derivatives on the
boundary.

Finally, the contribution of ∆Q and ∆v in IB can be controlled by using the boundary energy |A3i∂I
∗ηi|0 together with either

the trace lemma for anisotropic Sobolev spaces (cf. Lemma 3.1) or similar technique as in (2.17). Hence, the control of
boundary integral IB is finished.

2.6 Strategy to prove the existence results
It is natural to ask if a local existence result (without loss of regularity) can be proved in Hm

∗ (Ω) by using the energy Em(t). How-
ever, we find it difficult to find a straightforward proof as in the case of compressible Euler equations [45, 18], elastodynamics
[73] or incompressible MHD [25]. Briefly speaking, this is due to the fact that the magnetic field is involved in the pressure part
for compressible MHD. The simultaenous appearance of magnetic field and compressibility leads to a mismatched term
in the linearized equation and causes a loss of derivative in Picard iteration. Such difficulty never appears in either case
of Euler equations, elastodynamics, or incompressible MHD.

Alternatively, we may try to prove the local existence in anisotropic Sobolev spaces by using the existing local existence
result obtained by Nash-Moser iteration. The idea is to approximate the given data, say U0, by a sequence of “sufficiently nice”
data, say {U(n)

0 }, in some Sobolev space. Once we can do this4, the solutions corresponding to the “sufficiently nice” data, say
{U(n)(t)}, may have convergence in some anisotropic Sobolev space by using the continuous dependence on data. The limit, say
U(t), is expected to be solution corresponding to the given data U0.

However, the lifespan of U(n)(t), say T (n), may depend on n, so we need to continue the solution at t = T (n) and use the
energy bounds in Theorem 1.3 to obtain a positive lower bound for the lifespans of {U(n)(t)}. The continuation process requires
a local existence result where the solution and the data lie in the same space. Since [64] only shows the existence theorem for
the data in anisotropic Sobolev spaces and has a loss of regularity, we have to improve the result in [64] such that a unique C∞

solution exists if the initial data is C∞ and satisfies the compatibility conditions up to infinite order. Such improvement can be
achieved, because there are two extra error terms e′′′n and Dn+ 1

2
δΨn (cf. [64, (4.26)-(4.27)]) that can be avoided in Lagrangian

coordinates. See Section 9.1 for detailed explanations for the Nash-Moser iteration, Section 9.2 for the proof of continuation
criterion, Section 9.3 for the proof of Theorem 1.6 via a limit process.

4Indeed, as stated before Theorem 1.6, it is still unknown how to approximate the given data by a sequence of smooth data satisfying the compatibility
conditions up to infinite order. This may be postpone to a future work.
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3 Preliminary lemmas

3.1 Some geometric identities
We record the explicit form of the matrix A which will be repeatedly used.

A = J−1


∂2η

2∂3η
3 − ∂3η

2∂2η
3 ∂3η

1∂2η
3 − ∂2η

1∂3η
3 ∂2η

1∂3η
2 − ∂3η

1∂2η
2

∂3η
2∂1η

3 − ∂1η
2∂3η

3 ∂1η
1∂3η

3 − ∂3η
1∂1η

3 ∂1η
1∂1η

2 − ∂1η
1∂3η

2

∂1η
2∂2η

3 − ∂2η
2∂1η

3 ∂2η
1∂1η

3 − ∂1η
1∂2η

3 ∂1η
1∂2η

2 − ∂2η
1∂1η

2

 (3.1)

Moreover, since Â = JA, and in view of (3.1), we can write

Â1i = ε i jk∂2η j∂3ηk, Â2i = −ε i jk∂1η j∂3ηk, Â3i = ε i jk∂1η j∂2ηk. (3.2)

Here, ε i jk is the sign of the 3-permutation (i jk) ∈ S 3. We will repeatedly use that fact that Â1,·, Â2,· consist of the linear
combination of ±∂η × ∂3η and Â3· consists of ∂η × ∂η.

We also record the following identity: Suppose D is the derivative ∂ or ∂t, then

DAli = −Alr ∂kDηr Aki. (3.3)

3.2 Anisotropic Sobolev space
We list two preliminary lemmas on the basic properties of anisotropic Sobolev space.

Lemma 3.1 (Trace lemma for anisotropic Sobolev space). Let m ≥ 1, m ∈ N∗, then we have the following trace lemma for the
anisotropic Sobolev space.

1. If f ∈ Hm+1
∗ (Ω), then its trace f |Γ belongs to Hm(Γ) and satisfies

| f |m . ‖ f ‖Hm+1
∗ (Ω).

2. There exists a linear continuous operator RT : Hm(Γ)→ Hm+1
∗ (Ω) such that (RT g)|Γ = g and

‖RT g‖Hm+1
∗ (Ω) . |g|m.

Proof. See Ohno-Shizuta-Yanagisawa [50, Theorem 1]. �

Remark. The condition m ≥ 1 is necessary and analogous result may not hold when m = 0. One can see the importance of
m ≥ 1 from (2.17), as a special case, where we need to integrate one tangential derivative by part and thus m ≥ 1 is necessary.

Lemma 3.2 (Sobolev embedding lemma for anisotropic Sobolev space). We have the following inequalities

Hm(Ω) ↪→ Hm
∗ (Ω) ↪→Hbm/2c(Ω), ∀m ∈ N∗

‖u‖L∞ . ‖u‖H3
∗ (Ω), ‖u‖W1,∞ . ‖u‖H5

∗ (Ω), |u|W1,∞ . ‖u‖H5
∗ (Ω).

Proof. See Trakhinin-Wang [64, Lemma 3.3]. For the last inequality, using trace lemma, we have |∂u|L∞ . |∂u|1.5 . ‖∂u‖2 ≤
‖u‖H5

∗ (Ω). �

4 Control of purely non-weighted normal derivatives
In this section, we prove the following estimates by the standard Alinhac good unknown argument.

Proposition 4.1. The following energy inequality holds

‖∂4
3v‖20 +

∥∥∥∥∂4
3

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂4

3q‖20 +
c0

4

∣∣∣A3i∂4
3ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (4.1)
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4.1 Evolution equation of Alinhac good unknowns
We first compute the estimates of purely normal derivatives. When 〈I〉 = 8, the purely non-weighted normal derivative should
be ∂I

∗ = ∂4
3. First we introduce the following Alinhac good unknowns of v and Q with respect to ∂4

3

Vi := ∂4
3vi − ∂

4
3ηp Alp ∂lvi, Q := ∂4

3Q − ∂4
3ηp Alp ∂lQ. (4.2)

Then we have that for any function f

∂4
3(∇i

A f ) = ∇i
A(∂4

3 f ) + (∂4
3Ali)∂l f + [∂4

3, A
li, ∂l f ]

= ∇i
A(∂4

3 f ) − ∂3
3(Alp ∂3∂mηp Ami)∂l f + [∂4

3, A
li, ∂l f ]

= ∇i
A(∂4

3 f − ∂4
3ηp Alp ∂l f︸                 ︷︷                 ︸

good unknowns

) + ∂4
3ηp∇

i
A(∇p

A f ) − ([∂3
3, A

lpAmi]∂3∂mηp)∂l f + [∂4
3, A

li, ∂l f ]︸                                                                    ︷︷                                                                    ︸
=:Ci( f )

,
(4.3)

and thus
∇A · V = ∂4

3(divAv) −Ci(vi), ∇AQ = ∂4
3(∇AQ) −C(Q), (4.4)

where the commutator satisfies the estimate
‖C( f )‖4 . P(‖η‖4)‖ f ‖4. (4.5)

Now taking ∂4
3 in the second equation of (1.17) and invoking (4.2) and (4.4), we get the evolution equation of the Alinhac

good unknowns

R∂tV − J−1(b0 · ∂)∂4
3

(
J−1(b0 · ∂)η

)
+ ∇AQ =

[
R, ∂4

3

]
∂tv +

[
∂4

3, J
−1(b0 · ∂)

]
b −C(Q) − R∂t(∂4

3η · ∇Av)︸                                                                    ︷︷                                                                    ︸
=:F

. (4.6)

Taking L2(Ω)-inner product of (4.6) and JV and using ρ0 = RJ, we get the energy identity

1
2

d
dt

∫
Ω

ρ0 |V|2 dy =

∫
Ω

(b0 · ∂)∂4
3(J−1(b0 · ∂)η) · V −

∫
Ω

(∇ÂQ) · V +

∫
Ω

JF · V. (4.7)

4.2 Interior estimates
The third integral on the RHS of (4.7) can be directly controlled∫

Ω

JF · V . ‖JF‖0‖V‖0 . P(‖ρ0‖4, ‖b0‖4, ‖η‖4, ‖J−1(b0 · ∂)η‖4, ‖Q‖4, ‖v‖4, ‖∂tv‖3)‖V‖0. (4.8)

The first integral on the RHS of (4.7) gives the energy of magnetic field b = J−1(b0 · ∂)η after integrating (b0 · ∂) by parts.
Note that b3

0|Γ = 0 and div b0 = 0, there will be no boundary integral. In specific, we have∫
Ω

(b0 · ∂)∂4
3(J−1(b0 · ∂)η) · V dy = −

∫
Ω

∂4
3(J−1(b0 · ∂)η) · (b0 · ∂)V dy

= −

∫
Ω

∂4
3(J−1(b0 · ∂)η) · (b0 · ∂)∂4

3v dy +

∫
Ω

∂4
3(J−1(b0 · ∂)η) · (b0 · ∂)(∂4

3η · ∇Av) dy︸                                                 ︷︷                                                 ︸
=:L1

= −

∫
Ω

J∂4
3(J−1(b0 · ∂)η) ·

(
J−1(b0 · ∂)∂4

3∂tη
)

dy + L1

= −

∫
Ω

J∂4
3(J−1(b0 · ∂)η) · ∂4

3∂t(J−1(b0 · ∂)η) dy−
∫

Ω

J∂4
3(J−1(b0 · ∂)η) ·

[
J−1(b0 · ∂), ∂4

3∂t

]
η dy︸                                                       ︷︷                                                       ︸

K1

+L1

= −
1
2

d
dt

∫
Ω

J
∣∣∣∂4

3(J−1(b0 · ∂)η)
∣∣∣2 dy +

1
2

∫
Ω

∂t J
∣∣∣∂4

3(J−1(b0 · ∂)η)
∣∣∣2 dy + K1 + L1.

(4.9)

The term L1 can be directly controlled

L1 . P (‖(b0 · ∂)η‖4, ‖η‖4, ‖b0‖4, ‖v‖4) . (4.10)
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The term K1 produces a higher order term when ∂4
3∂t falls on J−1. We invoke ∂t J = JdivAv to get

−
[
J−1(b0 · ∂), ∂4

3∂t

]
η

=∂4
3∂t(J−1) (b0 · ∂)η +

3∑
N=0

∂N
3 ∂t(J−1) ∂4−N

3 b0 · ∂η +

3∑
M=0

∂t

(
∂M

3 (J−1bl
0) ∂l∂

4−M
3 η

)
= − J−1∂4

3(divAv) (b0 · ∂)η

+
(
[∂4

3, J
−1]divAv

)
(b0 · ∂)η +

3∑
N=0

∂N
3 ∂t(J−1)(∂4−N

3 bl
0)(∂lη) +

3∑
M=0

∂t

(
∂M

3 (J−1bl
0)∂l∂

4−M
3 η

)
︸                                                                                                           ︷︷                                                                                                           ︸

KL1

,

(4.11)

and thus
K1 =−

∫
Ω

J∂4
3(J−1(b0 · ∂)η) ·

(
J−1(b0 · ∂)η

)
∂4

3(divAv) dy︸                                                             ︷︷                                                             ︸
K11

+

∫
Ω

J∂4
3(J−1(b0 · ∂)η) · (KL1)

.K11 + ‖J‖L∞‖J−1(b0 · ∂)η‖4‖KL1‖0

.K11 + P (‖(b0 · ∂)η‖4, ‖η‖4, ‖b0‖4) .

(4.12)

Summarizing (4.9)-(4.12), we get the following estimates∫
Ω

(b0 · ∂)∂4
3(J−1(b0 · ∂)η) · V dy . −

1
2

d
dt

∫
Ω

J
∣∣∣∂4

3(J−1(b0 · ∂)η)
∣∣∣2 dy + K11 + P (‖(b0 · ∂)η‖4, ‖η‖4, ‖b0‖4, ‖v‖4) . (4.13)

We note that the term K11 cannot be directly controlled, but will be cancelled by another term produced by −
∫

Ω
(∇ÂQ) · V.

Next we analyze the second integral on the RHS of (4.7). Integraing by parts and invoking Piola’s identity ∂lÂli = 0, we get

−

∫
Ω

(∇ÂQ) · V dy =

∫
Ω

JQ(∇A · V) dy −
∫

Γ

JQAliNlVi dy′ =: I + IB. (4.14)

Plugging (4.2) and (4.4) as well as Q = q + 1
2 |b|

2 into I, we get

I =

∫
Ω

J∂4
3q ∂4

3(divAv) dy +

∫
Ω

J∂4
3

(
1
2

∣∣∣J−1(b0 · ∂)η
∣∣∣2) ∂4

3(divAv) dy

−

∫
Ω

∂4
3ηp Âlp∂lQ ∂4

3(divAv) dy −
∫

Ω

∂4
3Q C(v) dy

=:I1 + I2 + I3 + I4.

(4.15)

The term I4 can be directly controlled by using (4.5)

I4 . ‖Q‖4‖C(v)‖0 . P(‖η‖4)‖Q‖4‖v‖4. (4.16)

The term I1 gives the energy of q by invoking divAv = −
∂tR
R

= −
JR′(q)
ρ0

∂tq

I1 = −

∫
Ω

J∂4
3q ∂4

3

(
JR′(q)
ρ0

∂tq
)

dy = −

∫
Ω

J2R′(q)
ρ0

∂4
3q ∂4

3∂tq dy −
∫

Ω

J∂4
3q

([
∂4

3,
JR′(q)
ρ0

]
∂tq

)
dy

= −
1
2

d
dt

∫
Ω

J2R′(q)
ρ0

∣∣∣∂4
3q

∣∣∣2 dy +
1
2

∫
Ω

∂t

(
J2R′(q)
ρ0

) ∣∣∣∂4
3q

∣∣∣2 dy −
∫

Ω

J∂4
3q

([
∂4

3,
JR′(q)
ρ0

]
∂tq

)
dy

. −
1
2

d
dt

∫
Ω

J2R′(q)
ρ0

∣∣∣∂4
3q

∣∣∣2 dy + P(‖q‖8,∗, ‖ρ0‖4, ‖η‖4).

(4.17)
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The term I2 will produce another higher order term to cancel with K11

I2 =

∫
Ω

J∂4
3

(
J−1(b0 · ∂)η

)
·
(
J−1(b0 · ∂)η

)
∂4

3(divAv)︸                                                       ︷︷                                                       ︸
exactly cancel with K11

dy

+

∫
Ω

3∑
N=1

(
4
N

)
J∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3(divAv) dy

= − K11 −

∫
Ω

3∑
N=1

(
4
N

)
J∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3

(
JR′(q)
ρ0

∂tq
)

dy

= − K11 −

∫
Ω

3∑
N=1

(
4
N

) (
J2R′(q)
ρ0

)
∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3∂tq dy

+

∫
Ω

3∑
N=1

(
4
N

)
J∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

) ([
∂4

3,
JR′(q)
ρ0

]
∂tq

)
dy

=: − K11 + I21 + I22.

(4.18)

We should control I21 by integrating ∂t by parts under time integral∫ T

0
I21

∂t
=

∫ T

0

∫
Ω

3∑
N=1

(
4
N

)
∂t

(
J2R′(q)
ρ0

)
∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3q dy

+

∫ T

0

∫
Ω

3∑
N=1

(
4
N

) (
J2R′(q)
ρ0

)
∂t∂

N
3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3q dy

−

∫
Ω

3∑
N=1

(
4
N

) (
J2R′(q)
ρ0

)
∂N

3

(
J−1(b0 · ∂)η

)
· ∂4−N

3

(
J−1(b0 · ∂)η

)
∂4

3q dy
∣∣∣∣∣T
0

.

∫ T

0
P(‖J−1(b0 · ∂)η‖4, ‖∂t(J−1(b0 · ∂)η)‖3, ‖q‖4) + P0 + ‖J−1(b0 · ∂)η‖23‖∂

4
3q‖0

.P0 +

∫ T

0
P(E(t)) dt + ε‖∂4

3q‖20 +

∫ T

0
‖∂t(J−1(b0 · ∂)η)‖23 ≤ P0 +

∫ T

0
P(E(t)) dt + ε‖∂4

3q‖20.

(4.19)

Then I22 can be directly controlled since at most three ∂3’s fall on ∂tq.

I22 . ‖J−1(b0 · ∂)η‖23‖q‖7,∗. (4.20)

The term I3 should also be controlled under time integral. We have∫ T

0
I3 =

∫ T

0

∫
Ω

JR′(q)
ρ0

∂4
3ηp Âlp∂lQ ∂4

3∂tq dy +

∫ T

0

∫
Ω

∂4
3ηp Âlp∂lQ

[
∂4

3,
JR′(q)
ρ0

]
∂tq︸                                          ︷︷                                          ︸

L2

dy

∂t
= −

∫ T

0

∫
Ω

∂t

(
JR′(q)
ρ0

∂4
3ηp Âlp∂lQ

)
∂4

3q dy +

∫
Ω

JR′(q)
ρ0

∂4
3ηp Âlp∂lQ ∂4

3q dy
∣∣∣∣∣T
0

+ L2

.P0 +

∥∥∥∥∥ JR′(q)
ρ0

A ∂Q
∥∥∥∥∥

L∞
‖∂4

3q‖0‖∂4
3η‖0 +

∫ T

0
P

(
‖q‖8,∗, ‖η‖4, ‖v‖4, ‖ρ0‖4

)
dt.

.P0 +

∫ T

0
P(E(t)) dt +

∥∥∥∥∥ JR′(q)
ρ0

A ∂Q
∥∥∥∥∥

L∞
‖∂4

3q‖0

∫ T

0
‖∂4

3v(t)‖0 dt

.P0 + P(E(t))
∫ T

0
P(E(t)) dt,

(4.21)

where we use ∂4η|t=0 = 0 in the last step. Summarizing (4.16)-(4.21) and choosing ε > 0 suitably small, we get the estimates
of I under time integral ∫ T

0
I dt . −

1
2

∫
Ω

J2R′(q)
ρ0

∣∣∣∂4
3q

∣∣∣2 dy
∣∣∣∣∣T
0

+ P0 + P(E(t))
∫ T

0
P(E(t)) dt. (4.22)
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4.3 Boundary estimates
To finish the estimates of purely non-weighted normal derivative, it remains to control the boundary integral IB in (4.14) which
reads

−

∫
Γ

JQAliNlVi dy′ = −

∫
Γ

Â3iN3 ∂
4
3Q Vi dy′

+

∫
Γ

Â3iN3∂
4
3ηp A3p∂3Q ∂4

3vi dy′ −
∫

Γ

Â3iN3∂
4
3ηp A3p∂3Q (∂4

3ηr Amr ∂mvi) dy′

=:IB0 + IB1 + IB2.

(4.23)

First, IB1 will produce the boundary energy with the help of Rayleigh-Taylor sign condition (1.8) and the error terms will
be cancelled with IB2. In specific, we have

IB1 = −

∫
Γ

(
−
∂Q
∂N

)
JA3i∂4

3ηp A3p∂4
3∂tηi dy′

= −
1
2

d
dt

∫
Γ

(
−J

∂Q
∂N

) ∣∣∣A3i∂4
3ηi

∣∣∣2 dy′

−
1
2

∫
Γ

∂t

(
J
∂Q
∂N

) ∣∣∣A3i∂4
3ηi

∣∣∣2 dy′ +
∫

Γ

(
−J

∂Q
∂N

)
∂tA3i ∂4

3ηp A3p∂4
3ηi dy′

=:IB11 + IB12 + IB13.

(4.24)

Invoking Rayleigh-Taylor sign condition, we get∫ T

0
IB11 dt . −

c0

4

∫
Γ

∣∣∣A3i∂4
3ηi

∣∣∣2 dy′
∣∣∣∣∣T
0
, (4.25)

and thus the term IB12 can be directly controlled by the boundary energy

IB12 . |∂t(J∂3Q)|L∞
∣∣∣A3i∂4

3ηi

∣∣∣2
0 . P(E(t)). (4.26)

Then we plug ∂tA3i = −A3r ∂mvr Ami into IB13 to get

IB13 =

∫
Γ

(
∂Q
∂N

)
A3r∂mvr Âmi∂4

3ηp A3p∂4
3ηi dy′, (4.27)

and this term exactly cancel with IB2 if we replace the indices (r, i) by (i, r).
It now remains to control IB0. We have

IB0 = −

∫
Γ

N3J ∂4
3Q (A3i∂4

3vi) dy′ +
∫

Γ

Â3iN3∂
4
3Q ∂4

3ηp Alp∂lvi dy′ =: IB01 + IB02. (4.28)

To control IB0, we shall differentiate the following relations

A3i∂3vi =divAv − A1i∂1vi − A2i∂2vi = −
JR′(q)
ρ0

∂tq − A1i∂1vi − A2i∂2vi. (4.29)

In IB01, we use the relation (4.29) to get

A3i∂4
3vi =∂3

3(A3i∂3vi) − ∂3
3A3i ∂3vi − 3∂2

3A3i ∂2
3vi − 3∂3A3i ∂3

3vi

= − ∂3
3

(
JR′(q)
ρ0

∂tq
)
−

2∑
L=1

∂3
3(ALi∂Lvi) − ∂3

3A3i ∂3vi − 3∂2
3A3i ∂2

3vi − 3∂3A3i ∂3
3vi,

(4.30)

and thus IB01 becomes

IB01 =

∫
Γ

N3J ∂4
3Q ∂3

3

(
JR′(q)
ρ0

∂tq
)

+

2∑
L=1

∫
Γ

N3J ∂4
3Q ∂3

3(ALi∂Lvi)

+

∫
Γ

N3J∂4
3Q

(
∂3

3A3i ∂3vi + 3∂2
3A3i ∂2

3vi + 3∂3A3i ∂3
3vi

)
=:IB011 + IB012 + IB013.

(4.31)
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In IB012, since ALi has the form ∂3η × ∂η, the highest order term contains ∂3
3ALi = ∂4

3η × ∂η + · · · which cannot be directly
controlled. However, this term can produce cancellation with IB02. We have

∂3
3ALi = − ∂2

3(ALp ∂3∂mηp Ami)

= − ALp∂4
3ηpA3i −

2∑
M=1

ALp∂3
3∂MηpAMi − [∂2

3, A
LpAmi]∂3∂mηp,

(4.32)

and thus IB012 can be written as

IB012 = −

2∑
L=1

∫
Γ

Â3iN3∂
4
3Q ∂4

3ηp ALp∂Lvi (4.33)

−

2∑
L=1

∫
Γ

N3J∂4
3Q

 2∑
M=1

ALp∂3
3∂Mηp AMi + [∂2

3, A
LpAmi]∂3∂mηp

 . (4.34)

On the other hand, we write IB02 as

IB02 =

∫
Γ

Â3iN3∂
4
3Q ∂4

3ηp A3p∂3vi dy′ (4.35)

+

2∑
L=1

∫
Γ

Â3iN3∂
4
3Q ∂4

3ηp ALp∂Lvi dy′. (4.36)

Therefore, (4.36) exactly cancels with the main term (4.33) in IB012.
Now it remains to control IB011, IB013 and (4.34), (4.35). Invoking the relation

Â3i∂3Q = −

2∑
L=1

ÂLi∂LQ − ρ0∂tvi + (b0 · ∂)(J−1(b0 · ∂)ηi), (4.37)

we get
Â3i∂4

3Q =∂3
3(Â3i∂3Q) − ∂3

3Â3i ∂3Q − 3∂2
3Â3i ∂2

3Q − 3∂3Â3i ∂3
3Q

=∂3
3

(
−ρ0∂tvi + (b0 · ∂)(J−1(b0 · ∂)η)

)
−

2∑
L=1

∂3
3(ÂLi∂LQ)

− ∂3
3Â3i ∂3Q − 3∂2

3Â3i ∂2
3Q − 3∂3Â3i ∂3

3Q.

(4.38)

Note that

• The term Â3i is of the form ∂η × ∂η, so the leading order term in ∂3
3A3i should be (∂3

3∂η)(∂η).
• The highest order term in ∂3

3(ÂLi∂LQ) is ∂3
3ÂLi ∂LQ = 0 due to ∂LQ|Γ=0.

• The highest order term in ∂3
3((b0 · ∂)(J−1(b0 · ∂)η)) is (b0 · ∂)∂3

3(J−1(b0 · ∂)η) because b3
0|Γ = 0 makes (b0 · ∂) tangential on

the boundary.

Therefore, we can rewrite ∂4
3Q to be the terms of at most 3 normal derivatives and one tangential derivative:

∂4
3Q = J−1Â3i∂3ηi︸      ︷︷      ︸

=1

∂4
3Q = J−1∂3ηi(Â3i∂4

3Q)

=J−1∂3ηi

(
∂3

3

(
−ρ0∂tvi + (b0 · ∂)(J−1(b0 · ∂)η)

)
−

2∑
L=1

2∑
N=0

(
3
N

)
(∂N

3 ÂLi)(∂3−N
3 ∂LQ)

− ∂3
3Â3i ∂3Q − 3∂2

3Â3i ∂2
3Q − 3∂3Â3i ∂3

3Q
)
.

(4.39)

In (4.35), we need to rewrite A3p∂4
3ηp by using A3p∂3ηp = 1 in Ω̄ (and thus ∂3

3(A3p∂3ηp) = 0)

A3p∂4
3ηp = −∂3

3A3p ∂3ηp − 3∂2
3A3p ∂2

3ηp − 3∂3A3p ∂3
3ηp. (4.40)
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In the light of (4.38)-(4.40), we are able to write IB011, IB013 and (4.34), (4.35) in the form of∫
Γ

N3(∂3
3D f )(∂3

3Dg)h dy′ + lower order terms, (4.41)

where D = ∂ or ∂t or b0 · ∂, and f , g can be η, v, q, J−1(b0 · ∂)η, and h contains at most first order derivative of η, v. Then (4.41)
can be controlled in the following way∫

Γ

N3(∂3
3D f )(∂3

3Dg)h dy′ =

(∫
Ω

(∂4
3D f )(∂3

3Dg)h −
∫

Ω

(∂3
3D f )(∂4

3Dg)h −
∫

Ω

(∂3
3D f )(∂3

3Dg)(∂3h)
)

D
= −

∫
Ω

(∂4
3 f )(∂3

3D
2g)h −

∫
Ω

(∂4
3 f )(∂3

3Dg)(Dh)

+

∫
Ω

(∂3
3D

2 f )(∂4
3g)h +

∫
Ω

(∂3
3D f )(∂4

3g)(Dh) −
∫

Ω

(∂3
3D f )(∂3

3Dg)(∂3h)

.(‖∂4
3 f ‖0 + ‖∂3

3D
2 f ‖0)(‖∂4

3g‖0 + ‖∂3
3D

2g‖0)‖∂h‖L∞ . ‖ f ‖8,∗‖g‖8,∗‖h‖3,

(4.42)

which gives the control of IB011, IB013 and (4.34), (4.35).

Remark. If we integrate D = ∂t by parts in (4.42) (such term appears in a leading order term ∂3
3∂tv in ∂4

3Q), then we should
proceed the estimate under time integral and also consider the terms like

∫
Ω

(∂4
3 f )(∂3

3Dg)h which can be controlled by∫
Ω

(∂4
3v)(∂3

3Dg)h . ε‖∂4
3v‖20 +

1
8ε
‖∂3

3Dg‖40 +
1
8ε
‖h‖4L∞

.ε‖∂4
3v‖20 +

1
8ε

(
‖g(0)‖47,∗ + ‖h(0)‖42 +

∫ T

0
‖∂3

3D∂tg(t)‖40 + ‖∂th(t)‖42

)
.ε‖∂4

3v‖20 + P0 +

∫ T

0
P(‖g‖8,∗, ‖h‖5,∗) dt.

(4.43)

According to (4.42)-(4.43), we can finalize the estimates of the boundary integral IB as follows

IB . ε‖∂4
3v‖20 −

c0

4
d
dt

∫
Γ

∣∣∣A3i∂4
3ηi

∣∣∣2 dy′ + P(E(t)). (4.44)

4.4 Energy estimates of purely normal derivatives
Now, (4.44) together with (4.7), (4.8), (4.13), (4.22) gives the estimates of Alinhac good unknowns of v,Q in the case of purely
non-weighted normal derivatives

‖V‖20 +
∥∥∥∥∂4

3

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂4

3q‖20 +
c0

4

∣∣∣A3i∂4
3ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. ε‖∂4

3v‖20 + P0 + P(E(T ))
∫ T

0
P(E(t)) dt. (4.45)

Finally, by the definition of Alinhac good unknown (4.2) and ∂4
3η|t=0 = 0, ∂4

3v is controlled by

‖∂4
3v‖20 . ‖V‖

2
0 + ‖a∂v‖2L∞

∫ T

0
‖∂4

3v‖20 dt . ‖V‖0 + P(E(T ))
∫ T

0
P(E(t)) dt, (4.46)

and thus by choosing ε > 0 sufficiently small, we get

‖∂4
3v‖20 +

∥∥∥∥∂4
3

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂4

3q‖20 +
c0

4

∣∣∣A3i∂4
3ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (4.47)

5 Control of purely tangential derivatives

Now we consider the purely tangential derivatives. In this case, the top order derivative becomes ∂I
∗ = ∂i0

t ∂
i1
1 ∂

i2
2 with i0 + i1 + i2 =

8. We will prove the following estimates by a modified Alinhac good unknown method.
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Proposition 5.1. The following energy inequality holds for any sufficiently small ε > 0∑
i3=i4=0

‖∂I
∗v‖

2
0 +

∥∥∥∥∂I
∗

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂I

∗q‖
2
0 +

c0

4

∣∣∣A3i∂I
∗ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. ε‖∂3∂

6
t v‖20 + P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (5.1)

For simplicity, we mainly study the case i0 = 0, i.e., ∂I
∗ = ∂i1

1 ∂
i2
2 with i1 + i2 = 8. For sake of clean notations, we denote

∂8 = ∂i1
1 ∂

i2
2 . In fact, most of the steps of the proof in this section are completely applicable to the case of i0 > 0.

5.1 The case of full spatial derivatives

5.1.1 Derivation of “modified Alinhac good unknowns” in anisotropic Sobolev space

We still use Alinhac good unknowns to control the tangential derivatives. However, we cannot directly replace ∂4
3 by ∂8 in (4.2)

because the commutator contains the terms like ∂7∂η, ∂7∂v and ∂7∂Q whose L2-norm cannot be controlled in H8
∗ . In specific,

we have
∂8(∇i

A f ) =∇i
A(∂8 f ) + (∂8Ali)∂l f + [∂8, Ali, ∂l f ]

=∇i
A(∂8 f ) − ∂7(Alr ∂∂mηr Ami)∂l f + [∂8, Ali, ∂l f ]

=∇i
A(∂8 f − ∂8ηr Alr ∂l f ) + ∂8ηr ∇

i
A(∇r

A f ) − ([∂7, AlrAmi]∂∂mηr)∂l f + [∂8, Ali, ∂l f ].

(5.2)

We notice that the L2(Ω)-norm of the following quantities coming from the last two terms of (5.2) cannot be controlled because
∂7 may fall on A = ∂η × ∂η and ∂ f .

e1 := −∂7(AlrAmi) ∂∂mηr ∂l f , e2 := −7∂(AlrAmi) ∂7∂mηr ∂l f

e3 := 8(∂7Ali)(∂∂l f ), e4 := 8(∂Ali)(∂7∂l f ).
(5.3)

Here 8∂7 means there are 8 terms of the form ∂i1
1 ∂

i2
2 with i1 + i2 = 7. We will repeatedly use similar notations throughout the

manuscript.
Our idea to overcome this difficulty is mainly based on the following three techniques:

1. Modify the definition of “Alinhac good unknowns”: Rewrite these quantities in terms of ∇i
A(· · · ) + L2-bounded terms,

and then merge the terms inside the covariant derivative ∇i
A into the “Alinhac good unknowns”.

2. Produce a weighted normal derivative to replace a non-weighted one: There are terms like (∂7∂3η)(∂Q). Since Q|Γ = 0,
we know ∂Q|Γ = 0. Therefore, we can estimate the L∞-norm of ∂Q by fundamental theorem of calculus: (Suppose y3 > 0
without loss of generality)

|∂Q(t, y3)|L∞(T2) =

∣∣∣∣∣0 +

∫ y3

1
∂∂3Q(t, ζ3)dζ3

∣∣∣∣∣
L∞(T2)

≤ (1 − y3)‖∂∂3Q‖L∞ ≤ σ(y3)‖∂∂3Q‖L∞ ,

then we move the σ(y3) to ∂7∂3η to get a weighted normal derivative (σ∂3)1∂7η whose L2-norm can be directly bounded
in H8

∗ .
3. Replace ∇ÂQ (contains a normal derivative) by −ρ0∂tv+ (b0 ·∂)(J−1(b0 ·∂)η) (only contains tangential derivative) in order

to make the order of the derivatives lower thanks to the anisotropy of Hm
∗ .

Now we analyze these extra terms from the commutator. We start with 8(∂7Ali)(∂∂l f ) and 8(∂Ali)(∂7∂l f ) coming from
[∂8, Ali, ∂l f ] in (5.2). Since ∂Ali = −Alp ∂∂mηp Ami, we have

∂7Ali = −Alp ∂7∂mηp Ami − [∂6, AlpAmi]∂mηp,

where the highest order term in [∂6, AlpAmi]∂mηp is ∂6∂mηp whose L2-norm can be directly bounded by ‖η‖8,∗. Therefore, we
have

8(∂7Ali)(∂∂l f ) = − 8(Ami ∂m∂
7ηp Alp)∂∂l f − 8([∂6, AlpAmi]∂mηp)∂∂l f

= − 8∇i
A(∂7ηp Alp∂∂l f ) +8∇i

A(∇p
A∂ f )∂7ηp − 8([∂6, AlpAmi]∂mηp)∂∂l f︸                                                     ︷︷                                                     ︸

=:C1( f )

=: − 8∇i
A(∂7η · ∇A∂ f ) + C1( f ),

(5.4)
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where C1( f ) can be controlled by using H1/2 ↪→ L3 and H1 ↪→ L6 in 3D domain

C1( f ) .‖A‖2L∞‖∂
2∂ f ‖L6‖∂7η‖L3 + ‖A ∂ f ∂A‖L∞‖∂7η‖L2 + P(‖η‖8,∗)‖∂∂ f ‖L∞

.‖A‖2L∞‖∂
2∂ f ‖1‖〈∂〉1/2∂7η‖0 + P(‖η‖8,∗)‖∂∂ f ‖L∞

.‖A‖2L∞‖∂
2∂ f ‖1‖∂7η‖1/20 ‖∂

8η‖1/20 + P(‖η‖8,∗)‖∂∂ f ‖L∞

.P(‖η‖3)‖ f ‖7,∗‖η‖8,∗ + P(‖η‖8,∗)‖∂∂ f ‖L∞ .

The term 8(∂Ali)(∂7∂l f ) should be treated differently in the case of f = vi and f = Q respectively.

• When f = vi, then this term becomes

8(∂Ali)(∂7∂lvi) = − 8Alp ∂∂mηp Ami∂7∂lvi = −8Ali ∂∂mηi Amp ∂7∂lvp

= − 8∇i
A(∂7vp Amp ∂∂mηi) + 8∇i

A(∂∂mηi Amp)∂7vp︸                    ︷︷                    ︸
=:C2(v)

=: − 8∇i
A(∂7v · ∇A∂ηi) + C2(v),

(5.5)

and similarly we have ‖C2(v)‖0 . P(‖η‖7,∗)‖v‖8,∗.

• When f = Q, we cannot mimic the simplification as above. Instead, we need to invoke the MHD equation to replace
∇AQ by tangential derivatives. We consider

8(J∂Ali)(∂7∂lQ) = − 8(Âlp ∂∂mηp Ami)∂7∂lQ

= − 8∂7(Âlp∂lQ) Ami∂∂mηp + 8(∂7Âlp)(∂lQ)(∂∂mηp Ami)

+ 8
6∑

N=1

(
7
N

)
(∂N Âlp)(∂7−N∂lQ)(∂∂mηp Ami)

=8∂7
(
ρ0∂tvp − (b0 · ∂)(J−1(b0 · ∂)ηp)

)
Ami∂∂mηp + 8(∂7Âlp)(∂lQ)(∂∂mηp Ami)

+ 8
6∑

N=1

(
7
N

)
(∂N Âlp)(∂7−N∂lQ)(∂∂mηp Ami)

=:C21 + C22 + C23.

(5.6)

The L2-norm of C23 can be directly controlled since the top order derivative is ∂6∂

‖C23‖0 . ‖η‖8,∗‖Q‖8,∗P(‖η‖7,∗). (5.7)

The L2-norm of C22 can be directly controlled when l = 3 because Â3p consists of ∂η × ∂η. When l = 1, 2, we need to
invoke the second technique above, i.e., using ∂Q|Γ = 0 to produce a weight function σ(y3).

‖C22‖0 .‖∂
7Â3p‖0‖∂3Q ∂∂η a‖L∞ +

2∑
L=1

‖(∂7ÂLp)(∂LQ)(∂∂mηp Ami)‖0

.P(‖η‖7,∗)‖∂8η‖0‖Q‖3 +

2∑
L=1

‖(∂7ÂLp)(σ(y3)∂3∂LQ)(∂∂mηp Ami)‖0

.P(‖η‖7,∗)‖∂8η‖0‖Q‖3 +

2∑
L=1

‖σ∂7ÂLp‖0‖(∂3∂LQ)(∂∂mηp Ami)‖L∞

.P(‖η‖7,∗)‖Q‖7,∗
(
‖∂8η‖0 + ‖(σ∂3)∂7η‖0

)
,

(5.8)

where we use the fact that ÂLp consists of (∂3η)(∂η) in the last step.
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Finally, C21 can also be directly bounded because the top order derivatives are ∂7∂t and ∂7(b0 · ∂). Note that b3
0|Γ = 0

yields the following estimates by using the second technique mentioned above.

‖b3
0∂3∂

7(J−1(b0 · ∂)η)‖0 . ‖∂b0‖2‖(σ∂3)∂7(J−1(b0 · ∂)η)‖0,

and thus
C21 . P(‖η‖7,∗)(‖ρ0‖7,∗‖v‖8,∗ + ‖b0‖7,∗‖(b0 · ∂)η‖8,∗). (5.9)

Therefore, we have the estimates for C2(Q) := 8∂Ali∂7∂lQ

‖C2(Q)‖0 . P(‖b0‖7,∗, ‖ρ0‖7,∗, ‖η‖7,∗)(‖η‖8,∗ + ‖v‖8,∗ + ‖J−1(b0 · ∂)η‖8,∗ + ‖Q‖8,∗). (5.10)

Next we analyze −(∂7(AlrAmi) ∂∂mηr)∂l f coming from −([∂7, AlrAmi]∂∂mηr)∂l f . There are two terms of top order deriva-
tives:

−∂7(AlrAmi) ∂∂mηr ∂l f = −(∂7Alr)Ami ∂∂mηr ∂l f − Alr(∂7Ami) ∂∂mηr ∂l f −
6∑

N=1

(
7
N

)
(∂N Alr)(∂6−N Ami)∂∂mηr ∂l f ,

where the L2-norm of the last term can be directly controlled∥∥∥∥∥∥∥
6∑

N=1

(
7
N

)
(∂N Alr)(∂6−N Ami)∂∂mηr ∂l f

∥∥∥∥∥∥∥
0

. P(‖η‖8,∗)‖ f ‖3.

Similarly as (5.4), the term −Alr(∂7Ami)∂∂mηr ∂l f can be written as the covariant derivatives plus L2-bounded terms

−Alr(∂7Ami)∂∂mηr ∂l f =AlrAmp(∂k∂
7ηp)Aki ∂∂mηr ∂l f + ([∂6, AmpAki]∂∂kηp)Alr ∂∂mηr ∂l f

=∇i
A(∂7ηp Amp ∂∂mηr Alr ∂l f )

−∂7ηp ∇
i
A(Amp ∂∂mηr Alr ∂l f ) + ([∂6, AmpAki]∂∂kηp)Alr ∂∂mηr ∂l f︸                                                                                ︷︷                                                                                ︸

=:C3( f )

=:∇i
A(∂7η · ∇A∂η · ∇A f ) + C3( f ),

(5.11)

where C3( f ) can be directly controlled similarly as C1( f )

‖C3( f )‖0 . P(‖η‖8,∗)‖∂ f ‖2.

We then compute −(∂7Alr)Ami ∂∂mηr ∂l f .

• When f = vi: Similarly as in (5.11), we have

−(∂7Alr)Ami ∂∂mηr ∂lvi =Alp(∂7∂kηp)AkrAmi ∂∂mηr ∂lvi − ([∂6, AlpAkr]∂∂kηp)Ami ∂∂mηr ∂lvi

=Alp(∂7∂kηp)AkiAmr ∂∂mηi ∂lvr − ([∂6, AlpAkr]∂∂kηp)Ami ∂∂mηr ∂lvi

=∇i
A(∂7ηp Alp ∂lvr Amr ∂∂mηi)

−∇i
A(AlpAmr∂∂mηi ∂lvr)∂7ηp − ([∂6, AlpAkr]∂∂kηp)Ami ∂∂mηr ∂lvi︸                                                                               ︷︷                                                                               ︸

=:C4(v)

=:∇i
A(∂7η · ∇Av · ∇A∂ηi) + C4(v),

(5.12)

where C4(v) can be directly controlled similarly as C1( f )

‖C4(v)‖0 . P(‖η‖8,∗)‖∂v‖2.
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• When f = Q: If l = 3, then this term can be directly controlled since A3r = J−1∂η×∂η only contains first-order tangential
derivatives. If l = 1, 2, then we can mimic the treatment of C22, i.e., using ∂LQ|Γ = 0 and fundamental theorem of
calculus to produce a weight function σ(y3) and move that to ∂7Alr. Define C4(Q) := −(∂7Alr)Ami ∂∂mηr ∂lQ, then

‖C4(Q)‖0 .‖(∂7A3r)Ami ∂∂mηr ∂3Q‖0 +

2∑
L=1

‖(∂7ALr)Ami ∂∂mηr ∂LQ‖0

.‖∂8η‖0‖Q‖3P(‖∂η‖2, ‖∂∂η‖2) +

2∑
L=1

‖σ∂7ALr‖0‖Ami ∂∂mηr ∂L∂3Q‖L∞

.
(
‖∂8η‖0 + ‖(σ∂3)∂7η‖0

)
P(‖Q‖3, ‖∂Q‖3, ‖η‖7,∗).

(5.13)

Next we analyze −7∂(AlrAmi)∂7∂mηr ∂l f coming from −[∂7, AlrAmi]∂∂mηr ∂l f . This term cannot be directly controlled when
m = 3. We should analyze it term by term. First we have

−7∂(AlrAmi)∂7∂mηr ∂l f = − 7∂Alr Ami ∂7∂mηr ∂l f − 7Alr ∂Ami ∂7∂mηr ∂l f

=7Alp ∂k∂ηp AkrAmi ∂7∂mηr ∂l f + 7AlrAmp ∂k∂ηp Aki ∂7∂mηr ∂l f .

The first term can be directly rewritten as follows

7Alp ∂k∂ηp AkrAmi ∂7∂mηr ∂l f =7∇i(∂7ηr Akr ∂k∂ηp Alp ∂l f )−7∇i
A(Akr ∂k∂ηp Alp ∂l f )∂7ηr︸                                ︷︷                                ︸

C5( f )

=:7∇i
A(∂7η · ∇A∂η · ∇A f ) + C5( f ),

(5.14)

where C5( f ) can be similarly controlled as C1( f )

‖C5( f )‖0 . P(‖η‖8,∗)‖∂ f ‖3.

Then we analyze 7AlrAmp(∂k∂ηp)Aki(∂7∂mηr)∂l f , which needs different treatment for f = vi and f = Q respectively.

• When f = vi, we have the following simplification

7AlrAmp∂k∂ηp Aki ∂7∂mηr ∂lvi = 7AlrAmi ∂k∂ηi Akp ∂7∂mηr ∂lvp

=7∇i
A(∂7ηr Alr ∂lvp Akp ∂∂kηi) + 7∇i

A(Alr ∂lvp Akp ∂∂kηi)∂7ηr︸                              ︷︷                              ︸
C6(v)

=:7∇i
A(∂7η · ∇Av · ∇A∂ηi) + C6(v),

(5.15)

and ‖C6(v)‖0 . P(‖η‖7,∗)‖η‖8,∗‖v‖3 follows from direct computation, analogous to the analysis of the first term in C1( f ).

• When f = Q, this term becomes

C6(Q) := − 7Alr(∂Ami)(∂7∂mηr)∂lQ

= − 7

∂7(Alr∂mηr)︸        ︷︷        ︸
=∂7δl

m=0

−(∂7Alr)(∂mηr) −
6∑

N=1

(
7
N

)
(∂N Alr)(∂7−N∂mηr)

 ∂Ami ∂lQ

=7(∂7A3r)∂mηr ∂Ami ∂3Q +

2∑
L=1

(∂7ALr)∂mηr ∂Ami ∂LQ

+ 7
6∑

N=1

(
7
N

)
(∂N Alr)(∂7−N∂mηr)∂Ami ∂lQ

=:C61 + C62 + C63.

(5.16)

Since A3r = J−1∂η × ∂η, we know the top order term is of the form ∂8η × ∂η and thus C61 can be directly controlled

‖C61‖0 . P(‖η‖3)‖η‖8,∗‖∂3Q‖2.
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The term C62 can be treated in the same way as C4(Q) in (5.13) by using ∂LQ|Γ = 0 to produce a weight function σ

‖C62‖0 . (‖(σ∂3)∂7η‖ + ‖∂8η‖0)P(‖η‖7,∗)‖∂∂3Q‖2 . P(‖η‖7,∗)‖Q‖7,∗‖η‖8,∗.

Finally, C63 can be directly controlled
‖C63‖0 . P(‖η‖7,∗)‖η‖8,∗‖∂Q‖2,

and thus
‖C6(Q)‖0 . P(‖η‖7,∗)‖η‖8,∗‖Q‖7,∗. (5.17)

Now we plug (5.4)-(5.5), (5.10)-(5.17) into (5.2) and define the “modified Alinhac good unknowns” of v and Q with respect
to ∂8 as

V∗i := ∂8vi − ∂
8η · ∇Avi

− 8∂7η · ∇A∂vi − 8∂7v · ∇A∂ηi

+ ∂7η · ∇A∂η · ∇Avi + ∂7η · ∇Av · ∇A∂ηi

+ 7∂7η · ∇A∂η · ∇Avi + 7∂7η · ∇Av · ∇A∂ηi

= ∂8vi − ∂
8η · ∇Avi − 8∂7η · ∇A∂vi − 8∂7v · ∇A∂ηi + 8∂7η · ∇A∂η · ∇Avi + 8∂7η · ∇Av · ∇A∂ηi,

(5.18)

and
Q∗ := ∂8Q − ∂8η · ∇AQ − 8∂7η · ∇A∂Q + 8∂7η · ∇A∂η · ∇AQ. (5.19)

Then the modified good unknowns satisfy the following relations

∂8(divAv) = ∇A · V∗ +

6∑
M=0

CM(v), ∂8(∇AQ) = ∇AQ∗ +

6∑
M=0

CM(Q), (5.20)

where C0( f ) comes from the directly controllable terms in the RHS of (5.2)

C0( f ) := ∂8ηr ∇
i
A(∇r

A f ) −
6∑

N=2

(
7
N

)
∂N(AlrAmi)∂7−N(∂∂mηr)∂l f +

6∑
N=2

(
8
N

)
(∂N Ali)(∂8−N∂l f ), (5.21)

satisfies
‖C0( f )‖0 . P(‖η‖8,∗)‖ f ‖8,∗,

and C1 ∼ C6 are constructed in (5.4)-(5.5), (5.10)-(5.17).

5.2 Energy estimates of purely tangential derivatives
We denote C∗( f ) := C0( f ) + C1( f ) + · · ·+ C6( f ) and the “extra modification terms” in the modified Alinhac good unknowns by

(∆∗v)i := − 8∂7η · ∇A∂vi − 8∂7v · ∇A∂ηi + 8∂7η · ∇A∂η · ∇Avi + 8∂7η · ∇Av · ∇A∂ηi,

∆∗Q := − 8∂7η · ∇A∂Q + 8∂7η · ∇A∂η · ∇AQ.

Then the modified Alinhac good unknowns become

V∗ = ∂8v − ∂8η · ∇Av + ∆∗v, Q∗ = ∂8Q − ∂8η · ∇AQ + ∆∗Q.

Remark. There are more modification terms in V∗ than in Q∗. The reason is that we can replace ∇AQ which contains a normal
derivative with tangential derivative (∂tv and (b0 · ∂)(J−1(b0 · ∂)η)) by invoking the MHD equation. However, similar relation
only holds for divAv instead of ∇Av. Therefore, for those terms in the commutators containing v, we have to rewrite them to be
the covariant derivatives of the modifition terms plus L2(Ω)-bounded terms.
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It is straightforward to see that the L2(Ω) norms of ∆∗v,∆
∗
Q, ∂t(∆∗v) and ∂t(∆Q) can be controlled by P(E(t))

‖∂t(∆∗v)‖0 .‖∂7v‖0(‖∇A∂v‖2 + ‖∇A∂η‖2‖∇Av‖2) + ‖∂7∂tv‖0‖∇A∂η‖2

+ ‖∂7η‖0(‖∇A∂∂tv‖2 + ‖∇A∂η‖2‖∇A∂tv‖2 + ‖∇A∂v‖2‖∇Av‖2)
.P(‖η‖8,∗, ‖v‖8,∗),

(5.22)

‖∂t(∆∗Q)‖0 .‖∂7v‖0(‖∇A∂Q‖2 + ‖∇A∂η‖2‖∇AQ‖2)

+ ‖∂7η‖0(‖∇A∂∂tQ‖2 + ‖∇A∂η‖2‖∇A∂tQ‖2 + ‖∇A∂v‖2‖∇AQ‖2)
.P(‖η‖8,∗, ‖v‖7,∗, ‖Q‖8,∗),

(5.23)

‖∆∗Q‖0 + ‖∆∗v‖0 . P(‖η‖7,∗, ‖v‖7,∗, ‖Q‖7,∗). (5.24)

Now we take ∂8 in the second equation of compressible MHD system (1.17) to get

R∂t(∂8v) − J−1(b0 · ∂)∂8
(
J−1(b0 · ∂)η

)
+ ∂8(∇AQ) =

[
R, ∂8

]
∂tv +

[
∂8, J−1(b0 · ∂)

] (
J−1(b0 · ∂)η

)
.

Then invoking (5.20) to get

R∂t(∂8v) − J−1(b0 · ∂)∂8
(
J−1(b0 · ∂)η

)
+ ∇AQ∗ =

[
R, ∂8

]
∂tv +

[
∂8, J−1(b0 · ∂)

] (
J−1(b0 · ∂)η

)
−C∗(Q).

Finally, plugging V∗ = ∂8v − ∂8η · ∇Av + ∆∗v yields the evolution equation of V∗ and Q∗

R∂tV∗ − J−1(b0 · ∂)∂8
(
J−1(b0 · ∂)η

)
+ ∇AQ∗ =

[
R, ∂8

]
∂tv +

[
∂8, J−1(b0 · ∂)

] (
J−1(b0 · ∂)η

)
−C∗(Q) + R∂t(−∂8η · ∇Av + ∆∗v)

(5.25)

We denote the RHS of (5.25) by F∗. Similarly as in Section 4, we compute the L2-inner product of (5.25) and JV∗ to get
the energy identity

1
2

d
dt

∫
Ω

ρ0 |V∗|2 dy =

∫
Ω

(b0 · ∂)∂8(J−1(b0 · ∂)η) · V∗ −
∫

Ω

(∇ÂQ∗) · V∗ +

∫
Ω

JF∗ · V∗. (5.26)

5.2.1 Interior estimates

Using (5.22), the third integral on RHS of (5.26) is controlled by direct computation∫
Ω

JF∗ · V∗ . ‖JF∗‖0‖V∗‖0 . P
(
‖(ρ0, η, v,Q, b0, (b0 · ∂)η)‖8,∗

)
‖V∗‖0. (5.27)

The first integral on RHS of (5.26) can be similarly treated as (4.9)-(4.13) by replacing ∂4
3 by ∂8 and ‖ · ‖4-norm by ‖ · ‖8,∗-

norm. We omit the details and list the result∫
Ω

(b0 · ∂)∂8(J−1(b0 · ∂)η) · V∗ dy . −
1
2

d
dt

∫
Ω

J
∣∣∣∣∂8(J−1(b0 · ∂)η)

∣∣∣∣2 dy + K∗11 + P
(
‖(η, v, b0, (b0 · ∂)η)‖8,∗

)
, (5.28)

where K∗11 is defined to be

K∗11 := −
∫

Ω

J∂8(J−1(b0 · ∂)η) ·
(
J−1(b0 · ∂)η

)
∂8(divAv) dy. (5.29)

Next we analyze the term −
∫

Ω
J∇AQ · V. Integrating by parts and using Piola’s identity, we get

−

∫
Ω

(∇ÂQ∗) · V∗ =

∫
Ω

JQ(∇A · V∗) −
∫

Γ

JQAliNlV∗i dy′ =: I∗ + IB∗. (5.30)
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Invoking (5.18), (5.20) and Q = q + 1
2 |J
−1(b0 · ∂)η|2, we get

I∗ =

∫
Ω

J∂8q ∂8(divAv) dy +

∫
Ω

J∂8
(

1
2

∣∣∣J−1(b0 · ∂)η
∣∣∣2) ∂8(divAv) dy

+

∫
Ω

(−∂8ηp Âlp ∂lQ + ∆∗Q)∂8(divAv) dy −
∫

Ω

∂8Q C∗(v) dy

=:I∗1 + I∗2 + I∗3 + I∗4 ,

(5.31)

where I∗4 can be directly controlled by using the estimates of C∗(v)

I∗4 . ‖∂
8Q‖0‖C∗(v)‖0 . P(‖η‖8,∗)‖∂8Q‖0‖v‖8,∗. (5.32)

Similarly, I∗2 produces another higher order term to cancel with K∗11

I2 =

∫
Ω

J∂8
(
J−1(b0 · ∂)η

)
·
(
J−1(b0 · ∂)η

)
∂8(divAv)︸                                                       ︷︷                                                       ︸

exactly cancel with K∗11

dy

+

7∑
N=1

(
8
N

) ∫
Ω

J∂N
(
J−1(b0 · ∂)η

)
· ∂8−N

(
J−1(b0 · ∂)η

)
∂8(divAv) dy

= − K∗11 −

7∑
N=1

(
8
N

) ∫
Ω

J2R′(q)
ρ0

∂N
(
J−1(b0 · ∂)η

)
· ∂8−N

(
J−1(b0 · ∂)η

)
∂8∂tq dy

−

7∑
N=1

(
8
N

) ∫
Ω

J∂N
(
J−1(b0 · ∂)η

)
· ∂8−N

(
J−1(b0 · ∂)η

) ([
∂8,

JR′(q)
ρ0

]
∂tq

)
dy

=: − K∗11 + I∗21 + I∗22

(5.33)

Similarly as in (4.19)-(4.20), the term I∗21 should be controlled by integrating ∂t by parts under time integral and I∗22 can be
directly controlled. We omit the details ∫ T

0
I∗21 .ε‖∂

8q‖20 + P0 +

∫ T

0
P(E(t)) dt (5.34)

I∗22 .‖J
−1(b0 · ∂)η‖27,∗‖q‖8,∗. (5.35)

The term I∗1 produces the energy term ‖∂8q‖20 as in (4.17).

I∗1 . −
1
2

d
dt

∫
Ω

J2R′(q)
ρ0

|∂8q|2 + P(‖q‖8,∗, ‖ρ0‖8,∗, ‖η‖8,∗). (5.36)

I∗3 can be controlled by integrating ∂t by parts under time integral after invoking divAv = −
JR′(q)
ρ0

∂tq and (5.23)-(5.24).∫ T

0
I∗3 =

∫ T

0

∫
Ω

JR′(q)
ρ0

(∂8ηp Âlp ∂lQ − ∆∗Q)∂8∂tq dy +

∫ T

0

∫
Ω

(∂8ηp Âlp ∂lQ − ∆∗Q)
([
∂8,

JR′(q)
ρ0

]
∂tq

)
︸                                                       ︷︷                                                       ︸

L∗2

dy

∂t
= −

∫ T

0

∫
Ω

∂t

(
JR′(q)
ρ0

∂8ηp Âlp ∂lQ − ∆∗Q

)
∂8q dy +

∫
Ω

JR′(q)
ρ0

(∂8ηp Âlp ∂lQ − ∆∗Q)∂8q dy
∣∣∣∣∣T
0

+ L∗2

.P0 +

(∥∥∥∥∥ JR′(q)
ρ0

A ∂Q
∥∥∥∥∥

L∞
‖∂8η‖0 + ‖∆∗Q‖0

)
‖∂8q‖0 +

∫ T

0
P

(
‖(η, v, q, ρ0)‖8,∗

)
dt.

.P0 + ε‖∂8q‖20 +

∥∥∥∥∥ JR′(q)
ρ0

A ∂Q
∥∥∥∥∥4

L∞
+ ‖∂8η‖40 + ‖∆∗Q‖

2
0 +

∫ T

0
P(E(t)) dt

.P0 + ε‖∂8q‖20 +

∫ T

0

∥∥∥∥∥∥∂t

(
JR′(q)
ρ0

A ∂Q
)∥∥∥∥∥∥4

L∞
+ ‖∂8v(t)‖40 + ‖∂t(∆∗Q)‖20 dt +

∫ T

0
P(E(t)) dt

.ε‖∂8q‖20 + P0 +

∫ T

0
P(E(t)) dt,

(5.37)
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Summarizing (5.31)-(5.37) and choosing ε > 0 to be sufficiently small, we get the estimates of I∗ under time integral∫ T

0
I∗ dt . −

1
2

∫
Ω

J2R′(q)
ρ0

∣∣∣∣∂8q
∣∣∣∣2 dy

∣∣∣∣∣T
0

+ P0 +

∫ T

0
P(E(t)) dt. (5.38)

5.2.2 Boundary estimates

Now it remains to deal with the boundary integral IB∗. Since Q|Γ = 0, we know

Q∗|Γ = −∂8ηp A3p ∂3Q + ∆∗Q,

and
∆∗Q|Γ = −8∂7ηp A3p ∂∂3Q + 8∂7η · ∇A∂ηr A3r ∂3Q.

Then the boundary integral IB∗ reads

IB∗ =

∫
Γ

Â3iN3∂
8ηp A3p ∂3Q ∂8vi dy′ −

∫
Γ

Â3iN3(∂8ηpA3p∂3Q)(∂8η · ∇Avi) dy′

−

∫
Γ

Â3iN3∆∗Q ∂
8vi dy′ +

∫
Γ

Â3iN3∆∗Q ∂
8η · ∇Avi dy′

−

∫
Γ

Â3iN3∆∗Q(∆∗v)i dy′ +
∫

Γ

Â3iN3(∂8ηp A3p ∂3Q)(∆∗v)i dy′

=:IB∗1 + IB∗2 + IB∗3 + IB∗4 + IB∗5 + IB∗6.

(5.39)

Before going to the proof, we would like to state our basic strategy to deal with the boundary control

• IB∗1 together with the Raylor-Taylor sign condition gives the boundary energy |A3i∂8ηi|
2
0 and the extra terms can be

cancelled by IB∗2. This step also appears in the study of Euler equations [8, 13, 41, 42, 45] and incompressible MHD
[29, 25, 21, 22] and compressible resistive MHD [72]. It actually gives the control of the second fundamental form of the
free surface [8].
• IB∗3: We can write ∂8vi = ∂8∂tηi and integrate ∂t by parts. When ∂t falls on ∆∗Q, the boundary integral can be directly

controlled by using trace lemma. When ∂t falls on Â3i, such terms exactly cancel with the top order term in IB∗4.
• IB∗5 and IB∗6: Direct computation together with the trace lemma gives the control.

We first compute IB∗1. Similarly as (4.24), we have

IB∗1 = −

∫
Γ

(
−
∂Q
∂N

)
JA3i∂8ηp A3p ∂8∂tηi dy′

= −
1
2

d
dt

∫
Γ

(
−J

∂Q
∂N

) ∣∣∣∣A3i∂8ηi

∣∣∣∣2 dy′

−
1
2

∫
Γ

∂t

(
J
∂Q
∂N

) ∣∣∣∣A3i∂8ηi

∣∣∣∣2 dy′ +
∫

Γ

(
−J

∂Q
∂N

)
∂tA3i ∂8ηp A3p ∂8ηi dy′

=:IB∗11 + IB∗12 + IB∗13,

(5.40)

The term IB∗11 together with the Rayleigh-Taylor sign condition gives the boundary energy∫ T

0
IB∗11 ≤ −

c0

4

∣∣∣∣A3i∂8ηi

∣∣∣∣2
0

∣∣∣∣∣T
0
, (5.41)

and IB∗12 can be directly controlled by the boundary energy

IB∗12 .
∣∣∣∣A3i∂8ηi

∣∣∣∣2
0

∣∣∣∣∣∣∂t

(
J
∂Q
∂N

)∣∣∣∣∣∣
L∞
. P(E(t)). (5.42)

Then we plug ∂tA3i = −A3r∂kvrAki into IB∗13 to get the cancellation structure

IB∗13 =

∫
Γ

J
∂Q
∂N

A3r ∂kvrAki ∂8ηp A3p∂8ηi

=

∫
Γ

J
∂Q
∂N

A3i ∂kvi Akr ∂8ηp A3p ∂8ηr = −IB∗2

(5.43)
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Next we analyze IB∗3. We write vi = ∂tηi and integrate this ∂t by parts∫ T

0
IB∗3 = −

∫ T

0

∫
Γ

JA3iN3∆∗Q ∂
8∂tηi dy′ dt

∂t
=

∫ T

0

∫
Γ

J ∂tA3i N3∆∗Q ∂
8ηi dy′ dt

−

∫ T

0

∫
Γ

A3iN3 ∂t(J∆∗Q) ∂8ηi dy′ dt −
∫

Γ

JA3iN3 ∆∗Q ∂
8ηi dy′

∣∣∣∣∣T
0

=:IB∗31 + IB∗32 + IB∗33.

(5.44)

Again, plug ∂tA3i = −A3r∂kvrAki into IB∗31 to get the cancellation with IB∗4

IB∗31 = −

∫ T

0

∫
Γ

JA3r ∂kvr Aki N3 ∆∗Q ∂
8ηi dy′ dt

= −

∫ T

0

∫
Γ

JA3i ∂kvi Akr N3 ∆∗Q ∂
8ηr dy′ dt = −IB∗4.

(5.45)

For IB∗33, we use the fact that ∂7η|t=0 = 0 (and thus ∆∗Q|Γ = 0 when t = 0) together with Lemma 3.1 to get∫
Γ

JA3iN3∆∗Q ∂
8ηi dy′

∣∣∣∣∣
t=T

= −

∫
Γ

JA3iN3(8∂7ηp A3p ∂∂3Q − 8∂7η · ∇A∂ηr A3r ∂3Q)∂8ηi dy′

.
∣∣∣∣A3i∂8ηi

∣∣∣∣
0
|J|L∞ (|A3p∂∂3Q|L∞ + |(∇A∂ηr)A3r∂3Q|L∞ )

∫ T

0
|∂7v(t)|0 dt

.
∣∣∣∣A3i∂8ηi

∣∣∣∣
0

P(‖η‖8,∗, ‖Q‖8,∗)
∫ T

0
‖v(t)‖8,∗ dt.

(5.46)

In IB∗32, we invoke the relation (4.37) to get

∂t(J∆∗Q)|Γ = − 8∂7vp Â3p ∂∂3Q + 8∂7v · ∇A∂ηr Â3r∂3Q

− 8∂7ηp ∂t(Â3p∂∂3Q) + 8∂7η · ∂t(∇A∂ηr Â3r∂3Q)

= − 8∂7vp Â3p ∂∂3Q + 8∂7v · ∇A∂ηr Â3r∂3Q

− 8∂7ηp∂t∂(Â3p∂3Q) + 8∂7ηp∂t(∂Â3p ∂3Q) + 8∂7η · ∂t(∇A∂ηr Â3r ∂3Q)
(4.37)
= − 8∂7vp Â3p ∂∂3Q + 8∂7v · ∇A∂ηr Â3r∂3Q

+ 8∂7ηp∂t∂
(
ρ0∂tvp − (b0 · ∂)(J−1(b0 · ∂)η)p

)
+ 8∂7ηp ∂t(∂Â3p ∂3Q) + 8∂7η · ∂t(∇A∂ηr Â3r∂3Q).

Then we use H
3
2 (T2) ↪→ L∞(T2), Lemma 3.1 and standard Sobolev trace lemma to get∣∣∣∂t(J∆∗Q)|Γ

∣∣∣
0
.|∂7v|0

(
|A ∂∂Q|L∞ + |a ∂∂η A ∂Q|L∞

)
+ |∂7ηp|0

(∣∣∣∣ρ0∂
2
t vp + ∂t(b0 · ∂)bp

∣∣∣∣
W1,∞(T2)

+
∣∣∣∣∂t(∂Â3p ∂3Q) + ∂t(∇A∂ηr Â3r ∂3Q)

∣∣∣∣
L∞

)
.‖v‖8,∗‖∂Q‖5,∗P(‖∂η‖3)

+ ‖η‖8,∗

(
‖ρ0∂

2
t v + ∂t(b0 · ∂)bp‖5,∗ +

∥∥∥∥∂t(∂Â3p ∂3Q) + ∂t(∇A∂ηr Â3r ∂3Q)
∥∥∥∥

2

)
.(‖η‖8,∗ + ‖v‖8,∗ + ‖b‖7,∗)(‖Q, η, v‖7,∗, ‖b0, ρ0‖3),

(5.47)

and thus

IB∗32 .

∫ T

0

∣∣∣∣A3i∂8ηi

∣∣∣∣
0

P(‖η‖8,∗, ‖v‖8,∗, ‖Q‖8,∗, ‖b‖8,∗, ‖ρ0‖3) dt. (5.48)

From (5.39), we know it suffices to control the product of “error part” IB∗5

IB∗5 . |Â
3i|L∞ |∆

∗
Q|Γ|0|(∆

∗
v)i|0,
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and the RHS can be directly controlled by Lemma 3.1 and standard trace lemma∣∣∣∆∗Q|Γ∣∣∣0 . ∣∣∣∣∂7ηp

∣∣∣∣
0

(
|A3p∂∂3Q|L∞ + |∇

p
A∂ηr A3r∂3Q|L∞

)
. P(‖Q‖7,∗, ‖η‖7,∗)‖η‖8,∗,

∣∣∣∆∗v∣∣∣0 .|∂7η|0
(
|∇A∂v|L∞ + |∇A∂η · ∇Av|L∞ + |∇Av · ∇A∂η|L∞

)
+ |∂7v|0|∇A∂η|L∞

.P(‖η‖7,∗)(‖v‖8,∗ + ‖v‖7,∗‖η‖8,∗).

Therefore,
IB∗5 . P(‖η‖8,∗, ‖v‖8,∗, ‖Q‖7,∗), (5.49)

and similarly
IB∗6 . |Â

3i∂3Q|L∞ |A3p∂8ηp|0|(∆∗v)i|0. (5.50)

Summarizing (5.39)-(5.50) gives the control of the boundary integral∫ T

0
IB∗ . −

c0

4

∣∣∣∣A3i∂8ηi

∣∣∣∣2
0

+ P0 + P(E(T ))
∫ T

0
P(E(t)) dt. (5.51)

Combining (5.26), (5.27), (5.28), (5.38) and (5.51) and choosing ε > 0 in (5.34) to be suitably small, we get the following
energy inequality

‖V∗‖20 +
∥∥∥∥∂8

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂8q‖20 +

c0

4

∣∣∣∣A3i∂8ηi

∣∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (5.52)

Finally, invoking (5.18), we get the ∂8-estimates of v

‖∂8v‖0 .‖V∗‖0 + ‖∂8η‖0‖∇Avi‖L∞ + ‖∂7η‖0
(
‖∇A∂v‖L∞ + ‖∇A∂η · ∇Av‖L∞

)
+ ‖∂7v‖0‖∇A∂η‖L∞ .

Since ∂mη|t=0 = 0 for any m ≥ 2,m ∈ N∗, we know

‖∂8v‖0 . ‖V∗‖0 + P(‖v‖7,∗, ‖η‖7,∗)
∫ T

0
P(‖v‖8,∗), (5.53)

and thus

‖∂8v‖20 +
∥∥∥∥∂8

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂8q‖20 +

c0

4

∣∣∣∣A3i∂8ηi

∣∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (5.54)

5.3 The case of one time derivative ∂7∂t

If we replace ∂I
∗ = ∂8 by ∂7∂t, then most of steps in the proof above are still applicable because we do not integrate the

derivative(s) in D8 by parts. However, we still need to do the following modifications due to the presence of time derivative.

5.3.1 Extra difficulty: non-vanishing initial data of ∂I
∗η

If ∂I
∗ = ∂7∂t, then we can no longer derive ∂7∂tη|t=0 = 0 from η|t=0 = Id due to the presence of time derivative and ∂tη = v. This

property is used in the analysis of IB∗33 and the control of the difference between V∗ and ∂I
∗v. Before we analyze the analogues

of IB∗33 and (5.53) in the case of ∂I
∗ = ∂7∂t, we have to find out the precise form of the modified Alinhac good unknowns when

∂I
∗ = ∂7∂t.

5.3.2 The modified Alinhac good unknowns

Recall the “extra modification terms” ∆∗Q,∆
∗
v in (5.25) come from the bad terms (5.3). Now we replace ∂8 by ∂7∂t. In e1, e2, e3

in (5.3), if we replace ∂7 by ∂6∂t (i.e., the time derivative falls on the higher order term), then their L2 norms can be directly
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controlled since ∂ta has the same spatial regularity as a. Therefore, the remaining quantities whose L2-norms cannot be directly
controlled in the case of ∂I

∗ = ∂7∂t are

e1 := −∂7(AlrAmi)∂t∂mηr ∂l f , e2 := −7∂t(AlrAmi) ∂7∂mηr ∂l f

e3 := 8(∂7Ali)∂t∂l f , e4 := (∂tAli)(∂7∂l f ) + 7(∂Ali)(∂6∂t∂l f ).
(5.55)

Then the corresponding Alinhac good unknowns now becomes (with the abuse of terminology)

V∗ = ∂7∂tv − ∂7∂tη · ∇Av + ∆∗v, Q∗ = ∂7∂tQ − ∂7∂tη · ∇AQ + ∆∗Q., (5.56)

where
(∆∗v)i := − 8∂7η · ∇A∂tvi − 8∂7v · ∇Avi + 16∂7η · ∇Av · ∇Avi,

∆∗Q := − 8∂7η · ∇A∂tQ + 8∂7η · ∇Av · ∇AQ,
(5.57)

and
∂7∂t(divAv) = ∇A · V∗ + C∗(v), ∂7∂t(∇AQ) = ∇AQ∗ + C∗(Q), (5.58)

with
‖C∗( f )‖0 . P(E(t))‖ f ‖8,∗.

Now, the analogue of IB∗33 becomes the following quantity (recall such term comes from the product of ∆Q and ∂7∂tv∫
Γ

JA3iN3(8∂7ηp A3p ∂t∂3Q − 8∂7η · ∇A∂tηr A3r ∂3Q)∂7∂tηi dy′, (5.59)

and we can still use ∂7η|t=0 = 0.
The analogue of (5.53) now needs some small modifications

‖∂7∂tv‖0 .‖V∗‖0 + ‖∂7v‖0‖∇Av‖L∞ + ‖∂7η‖0
(
8‖∇A∂tv‖L∞ + 16‖∇Av‖2L∞

)
.‖V∗‖0 + ‖∂7v‖20 + ‖∇Av‖22 + ‖∇A∂v‖22 +

(
8‖∇A∂tv‖L∞ + 16‖∇Av‖2L∞

) ∫ T

0
‖∂7v‖0 dt

.‖V∗‖20 + P0 +

∫ T

0
P

(
‖∂7∂tv‖0, ‖∂t∂v‖2, ‖∂t∂∂v‖2, ‖∂∂η‖22

)
+ P(E(T ))

∫ T

0
P(E(t)) dt

.‖V∗‖20 + P0 + P(E(T ))
∫ T

0
P(E(t)) dt.

(5.60)

The remaining analysis should follow in the same way as in Section 5.2, so we omit those details. The result is

‖∂7∂tv‖20 +
∥∥∥∥∂7∂t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂7∂tq‖20 +

c0

4

∣∣∣∣A3i∂7∂tηi

∣∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (5.61)

5.4 The case of 2∼7 time derivatives

If the number of time derivatives in ∂I
∗ is between 2 and 7, i.e,. ∂I

∗ contains at least one spatial and two time derivatives, we can
still mimic most steps in Section 5.3. In this case we write ∂I

∗ = D6∂2
t where D = ∂ or ∂t and D6 contains at least one ∂.

The extra time derivatives allow us to eliminate most of the “extra modification terms” in the modified Alinhac good
unknowns as in (5.25), (5.56)-(5.57) and thus much simplify the analysis of Alinhac good unknowns and tne boundary control.
The reason is that the L2-norm of the analogues of e1 ∼ e3 in (5.3) can be directly controlled in the case of D8 = D6∂2

t . In
specific, we have

D
6∂2

t (∇i
A f ) =∇i

A(D6∂2
t f ) + (D6∂2

t Ali)∂l f + [D6∂2
t , A

li, ∂l f ]

=∇i
A(D6∂2

t f ) −D6∂t(Alr ∂t∂mηr Ami)∂l f + [D6∂2
t , A

li, ∂l f ]

=∇i
A(D6∂2

t f −D6∂2
t ηr Alr∂l f ) +D6∂2

t ηr ∇
i
A(∇r

A f ) − ([D6∂t, AlrAmi]∂t∂mηr)∂l f︸                                                      ︷︷                                                      ︸
C0( f )

+[D6∂2
t , A

li, ∂l f ]
(5.62)
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and
‖C0( f )‖0 . P(‖η‖8,∗, ‖v‖8,∗)‖ f ‖8,∗.

Therefore, the analogous analysis of C1,C3 ∼ C6 in Section 5.1 are no longer needed here. The only problematic term is
−2(∂tAli)(D6∂t∂l f ) − 6(DAli)(D5∂2

t ∂l f ) which comes from [D6∂2
t , A

li, ∂l f ]. By mimicing the treatment of C2(Q) and C2(v) in
(5.5)-(5.6), we can define the modified Alinhac good unknowns in the case of ∂I

∗ = ∂N
t ∂

8−N (2 ≤ N ≤ 7) as the following

V∗ = D6∂2
t v −D6∂2

t η · ∇Av + ∆∗v, Q∗ = D6∂2
t Q −D6∂2

t η · ∇AQ, (5.63)

where
(∆∗v)i := −6D5∂2

t v · ∇ADηi − 2D6∂tv · ∇Avi (5.64)

and
D

6∂2
t (divAv) = ∇A · V∗ + C∗(v), D6∂2

t (∇AQ) = ∇AQ∗ + C∗(Q), (5.65)

with
‖C∗( f )‖0 . P(E(t))‖ f ‖8,∗.

In this case, ∆∗Q = 0, and thus the boundary integrals IB∗3, IB∗4, IB∗5 all vanish. The analogues of IB∗1, IB∗2, IB∗6 in this case
can still be controlled in the same way as in Section 5.2. In the control of the difference between V∗ and D6∂2

t , we have by
(5.63)-(5.64) that

‖D6∂2
t v‖0 .‖V∗‖0 + ‖D6∂tv‖0‖∇Av‖L∞ + ‖D5∂2

t v‖0‖∇ADη‖L∞

.‖V∗‖0 + ‖D6∂tv‖20 + ‖∇Av‖22 + ‖D5∂2
t v‖20 + ‖∇ADη‖

2
2

.‖V∗‖0 + P0 +

∫ T

0
P

(
‖D6∂2

t v‖0, ‖D5∂3
t v‖0, ‖∂Dv‖2

)
dt . ‖V∗‖0 + P0 +

∫ T

0
P(E(t)) dt

(5.66)

The remaining analysis should follow in the same way as in Section 5.2 and 5.3 so we omit the details. The result is

‖D6∂2
t v‖20 +

∥∥∥∥D6∂2
t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖D6∂2

t q‖20 +
c0

4

∣∣∣A3i
D

6∂2
t ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt, (5.67)

where D6 contains at least one spatial derivative ∂.

5.5 The case of full time derivatives
In the case of full time derivatives, the modified Alinhac good unknown is still defined similarly as in (5.63)-(5.65):

V∗ = ∂8
t v − ∂8

t η · ∇Av + ∆∗v, Q∗ = ∂8
t Q − ∂8

t η · ∇AQ, (5.68)

where
(∆∗v)i := −8∂7

t v · ∇Avi (5.69)

and
∂8

t (divAv) = ∇A · V∗ + C∗(v), ∂8
t (∇AQ) = ∇AQ∗ + C∗(Q), (5.70)

with
‖C∗( f )‖0 . P(E(t))‖ f ‖8,∗.

Extra difficulty: trace lemma is no longer applicable When ∂I
∗ = ∂8

t , there are terms of the form ∂7
t v in the boundary

integrals. In the case of full time derivative, one cannot apply Lemma 3.1 to control |∂7
t v|0. This difficulty appears in the

estimates of the analogue of IB∗6. Instead, we need to write IB∗6 in terms of interior integrals by using a similar technique in
(4.42).

IB∗6 = − 8
∫

Γ

Â3iN3 ∂
8
t ηp A3p∂3Q ∂7

t vr Alr∂lvi dy′ = −8
∫

Γ

Â3iN3 ∂
7
t vp A3p∂3Q ∂7

t vr Alr∂lvi dy′

= − 8
∫

Ω

Â3i∂3∂
7
t vp A3p∂3Q ∂7

t vr Alr∂lvi dy − 8
∫

Ω

Â3i∂7
t vp A3p∂3Q ∂3∂

7
t vr Alr∂lvi dy

− 8
∫

Ω

∂7
t vp ∂

7
t vr ∂3(Â3iA3p∂3Q Alr∂lvi) dy

=:IB∗61 + IB∗62 + IB∗63.

(5.71)
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The term IB∗63 can be directly controlled

IB∗63 . P(‖∂7
t v‖0, ‖∂v‖3, ‖∂Q‖3, ‖A‖3) . P(‖v‖8,∗, ‖Q‖8,∗, ‖η‖4). (5.72)

The term IB∗61, IB∗62 should be controlled by integrating ∂t by parts under time integral.∫ T

0
IB∗61 = − 8

∫ T

0

∫
Ω

Â3i∂3∂
7
t vp A3p∂3Q ∂7

t vr Alr∂lvi dy dt

∂t
= − 8

∫
Ω

Â3i∂3∂
6
t vp A3p∂3Q ∂7

t vr Alr∂lvi dy

+ 8
∫ T

0

∫
Ω

Â3i∂3∂
6
t vp A3p∂3Q ∂8

t vr Alr∂lvi dy dt

+ 8
∫ T

0

∫
Ω

Â3i∂3∂
6
t vp ∂

7
t vr ∂t(A3p∂3Q Alr∂lvi) dy dt

.‖∂3∂
6
t v‖0‖∂7

t v‖0P(‖A‖L∞ , ‖∂Q‖L∞ , ‖∂v‖L∞ )

+

∫ T

0
‖∂3∂

6
t v‖0

(
‖∂8

t v‖0P(‖A‖L∞ , ‖∂Q‖L∞ , ‖∂v‖L∞ ) + ‖∂7
t v‖0‖A · ∂t(A · ∂Q · A · ∂v)‖L∞

)
.ε‖∂3∂

6
t v‖20 + P0 +

∫ T

0
P

(
‖∂8

t v‖0, ‖(∂tA, ∂t∂Q, ∂t∂v‖2L∞
)

+

∫ T

0
P(‖v‖8,∗, ‖Q‖7,∗, ‖η‖3) dt

≤ε‖∂3∂
6
t v‖20 + P0 +

∫ T

0
P(E(t)) dt,

(5.73)

IB∗62 can be controlled in the same way, so we omit the details. Summarizing the estimates above, we get the energy
inequality of the full time derivatives

‖∂8
t v‖20 +

∥∥∥∥∂8
t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂8

t q‖20 +
c0

4

∣∣∣A3i∂8
t ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. ε‖∂3∂

6
t v‖20 + P0 + P(E(T ))

∫ T

0
P(E(t)) dt, (5.74)

which together with (5.54), (5.61), (5.67) concludes the proof of Proposition 5.1.

6 Control of mixed non-weighted derivatives

The case of mixed non-weighted derivatives correspond to ∂I
∗ = ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 with 1 ≤ i3 ≤ 3, i4 = 0. In this case, the

modified Alinhac good unknowns introduced in Section 5 are still needed when commuting ∂I
∗ with ∇A. On the other hand, the

highest order term ∂I
∗Q no longer vanishes on the boundary due to the presence of normal derivatives, so we need to use the

method in Section 4 to deal with the boundary integral. Therefore, we should combine the methods in Section 4 and Section 5
to get the control of mixed non-weighted derivatives. The result of this section is

Proposition 6.1. The following energy inequality holds for sufficiently small ε > 0∑
1≤i3≤3, i4=0

‖∂I
∗v‖

2
0 +

∥∥∥∥∂I
∗

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂I

∗q‖
2
0 +

c0

4

∣∣∣A3i∂I
∗ηi

∣∣∣2
0

∣∣∣∣∣
t=T
. ε‖∂4

3v‖20 + P0 + P(E(T ))
∫ T

0
P(E(t)) dt. (6.1)

6.1 Purely spatial derivatives

We still start with the control of purely spatial derivatives. Let N = 1, 2, 3 and we consider ∂I
∗ = ∂N

3 ∂
8−2N .
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6.1.1 The modified Alinhac good unknowns

Similarly as in Section 5.1.1, we have

∂N
3 ∂

8−2N(∇i
A f ) =∇i

A(∂N
3 ∂

8−2N f ) + (∂N
3 ∂

8−2N Ali)∂l f + [∂N
3 ∂

8−2N , Ali, ∂l f ]

=∇i
A(∂N

3 ∂
8−2N f ) − ∂N

3 ∂
7−2N(Alr ∂∂mηr Ami)∂l f + [∂N

3 ∂
8−2N , Ali, ∂l f ]

=∇i
A(∂N

3 ∂
8−2N f − ∂N

3 ∂
8−2Nηr Alr ∂l f ) + (∂N

3 ∂
8−2Nηr)∇i

A(∇r
A f )

− ([∂N
3 ∂

7−2N , AlrAmi]∂∂mηr)∂l f + [∂N
3 ∂

8−2N , Ali, ∂l f ],

(6.2)

where the last line still contains the terms whose L2(Ω)-norms cannot be directly bounded under the setting of anisotropic
Sobolev space H8

∗ (Ω). The reason is that ∂N
3 ∂

7−2N may fall on A = ∂η × ∂η and ∂l f . The following quantities are exactly these
terms.

e]1 := −∂N
3 ∂

7−2N(AlrAmi)(∂∂mηr)∂l f , e]2 := −(7 − 2N)∂(AlrAmi)(∂N
3 ∂

7−2N∂mηr)∂l f ,

e]3 := (8 − 2N)(∂N
3 ∂

7−2N Ali)(∂∂l f ), e]4 := (8 − 2N)(∂Ali)(∂N
3 ∂

7−2N∂l f ).
(6.3)

One can mimic the derivation of (5.18) and (5.19) to define the “modified Alinhac good unknowns” of v and Q with respect
to ∂N

3 ∂
8−2N to be

V]
i :=∂N

3 ∂
8−2Nvi − ∂

N
3 ∂

8−2Nη · ∇Avi

− (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂vi − (8 − 2N)∂N
3 ∂

7−2Nv · ∇A∂ηi

+ (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂η · ∇Avi + (8 − 2N)∂N
3 ∂

7−2Nη · ∇Av · ∇A∂ηi,

(6.4)

and
Q] :=∂N

3 ∂
8−2N Q − ∂N

3 ∂
8−2Nη · ∇AQ

− (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂Q + (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂η · ∇AQ.
(6.5)

Then V] and Q] satisfy the following relations

∂N
3 ∂

8−2N(divAv) = ∇A · V] + C](v), ∂N
3 ∂

8−2N(∇AQ) = ∇AQ∗ + C](Q), (6.6)

where the commutator C] satisfies
‖C]( f )‖0 . P(E(t))‖ f ‖8,∗. (6.7)

Denote ∆
]
v and ∆

]
Q to be

(∆]
v)i := − (8 − 2N)∂N

3 ∂
7−2Nη · ∇A∂vi − (8 − 2N)∂N

3 ∂
7−2Nv · ∇A∂ηi

+ (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂η · ∇Avi + (8 − 2N)∂N
3 ∂

7−2Nη · ∇Av · ∇A∂ηi,

∆
]
Q := − (8 − 2N)∂N

3 ∂
7−2Nη · ∇A∂Q + (8 − 2N)∂N

3 ∂
7−2Nη · ∇A∂η · ∇AQ.

Then we can derive the evolution equation of V] and Q]

R∂tV] − J−1(b0 · ∂)∂N
3 ∂

8−2N
(
J−1(b0 · ∂)η

)
+ ∇AQ]

=[R, ∂N
3 ∂

8−2N]∂tv +
[
J−1(b0 · ∂), ∂N

3 ∂
8−2N

] (
J−1(b0 · ∂)η

)
+ C](Q) + R∂t(−∂N

3 ∂
8−2Nη · ∇Av + ∆

]
v).

(6.8)

Denote the RHS of (6.8) to be F], then direct computation yields that

‖F]‖0 . P
(
‖η‖8,∗, ‖v‖8,∗, ‖Q‖8,∗

)
.

Now we take L2(Ω) inner product of (6.8) and JV] to get the following energy identity

1
2

d
dt

∫
Ω

ρ0|V]|2 dy =

∫
Ω

(b0 · ∂)∂N
3 ∂

8−2N
(
J−1(b0 · ∂)η

)
· V] −

∫
Ω

(∇ÂQ) · V] +

∫
Ω

JF] · V]. (6.9)
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6.1.2 Interior estimates

The last integral on RHS of (6.9) is directly controlled∫
Ω

JF] · V] .

∫
Ω

‖F]‖0‖V]‖0. (6.10)

Then for the first term on RHS of (6.9) we integrate (b0 · ∂) by parts to produce the energy of magnetic field. Again, there is
one term which cannot be directly controlled but will cancel with another term produced by −

∫
Ω

(∇ÂQ) ·V]. The proof follows
in the same way as (4.13) so we omit the details.∫

Ω

(b0 · ∂)∂N
3 ∂

8−2N
(
J−1(b0 · ∂)η

)
· V] dy

. −
1
2

d
dt

∫
Ω

J
∣∣∣∣∂N

3 ∂
8−2N(J−1(b0 · ∂)η)

∣∣∣∣2 dy + K]
11 + P

(
‖(η, v, b0, (b0 · ∂))‖8,∗

)
,

(6.11)

where
K]

11 := −
∫

Ω

J∂N
3 ∂

8−2N(J−1(b0 · ∂)η) ·
(
J−1(b0 · ∂)η

)
∂N

3 ∂
8−2N(divAv) dy. (6.12)

Next we analyze the term −
∫

Ω
(∇ÂQ) · V]. Integrating by parts and using Piola’s identity ∂lÂli = 0, we get

−

∫
Ω

(∇ÂQ) · V] dy =

∫
Ω

JQ](∇A · V]) dy −
∫

Γ

JQ]AliNlV]
i dy′ =: I] + IB]. (6.13)

Plugging (6.6) into I], we get

I] =

∫
Ω

J∂N
3 ∂

8−2Nq∂N
3 ∂

8−2N(divAv) +

∫
Ω

J∂N
3 ∂

8−2N
(

1
2

∣∣∣J−1(b0 · ∂)η
∣∣∣2) ∂N

3 ∂
8−2N(divAv)

+

∫
Ω

(
−(∂N

3 ∂
8−2Nηp)Âlp ∂lQ + ∆

]
Q

)
∂N

3 ∂
8−2N(divAv) −

∫
Ω

(∂N
3 ∂

8−2N Q)C](v)

=:I]1 + I]2 + I]3 + I]4,

(6.14)

where I]4 can be directly controlled by using the estimates of C](v)

I]4 . ‖∂
N
3 ∂

8−2N Q‖0‖C](v)‖0 . P(‖η‖8,∗)‖∂N
3 ∂

8−2N Q‖0‖v‖8,∗. (6.15)

The term I]1 produces the energy of fluid pressure

I]1 . −
1
2

d
dt

∫
Ω

J2R′(q)
ρ0

∣∣∣∣∂N
3 ∂

8−2Nq
∣∣∣∣2 dy + P(‖q‖8,∗, ‖ρ0‖8,∗, ‖η‖8,∗). (6.16)

Similarly as in (5.33), the term I]2 produces the cancellation with K]
11.

I]2 =

∫
Ω

J∂N
3 ∂

8−2N
(
J−1(b0 · ∂)η

)
·
(
J−1(b0 · ∂)η

)
∂N

3 ∂
8−2N(divAv)︸                                                                       ︷︷                                                                       ︸

exactly cancel with K]
11

dy

+
∑

1≤N1+N2=8

(
N
N1

)(
8 − 2N

N2

) ∫
Ω

J∂N1
3 ∂N2

(
J−1(b0 · ∂)η

)
· ∂

N−N1
3 ∂8−2N−N2

(
J−1(b0 · ∂)η

)
∂N

3 ∂
8−2N(divAv) dy

= − K]
11

−
∑

1≤N1+N2=8

(
N
N1

)(
8 − 2N

N2

) ∫
Ω

J2R′(q)
ρ0

∂
N1
3 ∂N2

(
J−1(b0 · ∂)η

)
· ∂

N−N1
3 ∂8−2N−N2

(
J−1(b0 · ∂)η

)
(∂N

3 ∂
8−2N∂tq) dy

−
∑

1≤N1+N2=8

(
N
N1

)(
8 − 2N

N2

) ∫
Ω

J∂N1
3 ∂N2

(
J−1(b0 · ∂)η

)
· ∂

N−N1
3 ∂8−2N−N2

(
J−1(b0 · ∂)η

) ([
∂8,

JR′(q)
ρ0

]
∂tq

)
dy

=: − K]
11 + I]21 + I]22

(6.17)
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and by direct computation we have ∫ T

0
I]21 .ε‖∂

N
3 ∂

8−2Nq‖20 + P0 +

∫ T

0
P(E(t)) dt (6.18)

I]22 .‖J
−1(b0 · ∂)η‖27,∗‖q‖8,∗. (6.19)

Then I]3 can be controlled by integrating ∂t by parts under time integral after invoking divAv = −
JR′(q)
ρ0

∂tq. The proof is
similar to (5.37) so we do not repeat the proof.∫ T

0
I]3 . ε‖∂

8−2N∂N
3 q‖20 + P0 +

∫ T

0
P(E(t)) dt. (6.20)

Summarizing (6.14)-(6.20) and choosing ε > 0 sufficiently small, we get the interior estimates∫ T

0
I] dt . −

1
2

∫
Ω

J2R′(q)
ρ0

∣∣∣∣∂N
3 ∂

8−2Nq
∣∣∣∣2 dy

∣∣∣∣∣T
0

+ P0 +

∫ T

0
P(E(t)) dt. (6.21)

Therefore, it suffices to analyze the boundary integral IB].

6.1.3 Boundary estimates

Invoking (6.4)-(6.5), the boundary integral now reads

IB] = −

∫
Γ

Q]JA3iN3V]
i dy′ = −

∫
Γ

JA3iN3(∂N
3 ∂

8−2N Q)V]
i dy′

+

∫
Γ

Â3iN3(∂N
3 ∂

8−2Nηp)A3p∂3Q ∂N
3 ∂

8−2Nvi dy′

−

∫
Γ

Â3iN3(∂N
3 ∂

8−2Nηp A3p∂3Q)(∂N
3 ∂

8−2Nη · ∇Avi) dy′

−

∫
Γ

Â3iN3(∆]
Q)(∂N

3 ∂
8−2Nvi) dy′ +

∫
Γ

Â3iN3(∆]
Q)∂N

3 ∂
8−2Nη · ∇Avi dy′

−

∫
Γ

Â3iN3∆
]
Q(∆]

v)i dy′ +
∫

Γ

Â3iN3(∂N
3 ∂

8−2Nηp A3p ∂3Q)(∆]
v)i dy′

=:IB]0 + IB]1 + IB]2 + IB]3 + IB]4 + IB]5 + IB]6.

(6.22)

To control IB], we only need to combine the techniques used in Section 4.3 and Section 5.2.2:

• IB]1, IB]2 together with the Rayleigh-Taylor sign condition produces the boundary energy |A3i∂N
3 ∂

8−2Nηi|
2
0, similarly as

IB1 + IB2 in Section 4.3 and IB∗1 + IB∗2 Section 5.2.2.
• The term IB]0 is the analogue of IB0 in Section 4.3 and can be controlled with similar method as in Section 4.3.
• IB]3 ∼ IB]6 are the analogues of IB∗3 ∼ IB∗6 in Section 5.2.2. These terms can be controlled exactly in the same way as

IB∗3 ∼ IB∗6.

First, IB]1 and IB]2 give the boundary energy with the help of Rayleigh-Taylor sign condition. The proof is exactly the same
as in Section 4.3 and Section 5.2.2 by merely replacing ∂4

3 or ∂8 with ∂N
3 ∂

8−2N , so we do not repeat the computations here.∫ T

0
IB]1 + IB]2 = −

c0

4

∣∣∣∣A3i∂N
3 ∂

8−2Nηi

∣∣∣∣2
0

∣∣∣∣∣T
0

+

∫ T

0
P(E(t)) dt. (6.23)

We then analyze IB]0. Invoking (6.4), we have

IB]0 = −

∫
Γ

N3(J∂N
3 ∂

8−2N Q)(A3i ∂N
3 ∂

8−2Nvi) dy′ +
∫

Γ

JA3iN3(∂N
3 ∂

8−2N Q)(∂N
3 ∂

8−2Nη · ∇Avi) dy′

−

∫
Γ

JA3iN3(∂N
3 ∂

8−2N Q)(∆]
v)i dy′

=:IB]01 + IB]02 + IB]03.

(6.24)
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We note that IB]01 and IB]02 are the analogues of IB01 and IB02 in Section 4.3, so we do not repeat all the details here. The extra
term IB]03 can be directly controlled (cf. (6.31) below).

We differentiate the continuity equation (4.29) by ∂N
3 ∂

8−2N to simplify the top order term containing v in IB]01:

A3i∂N
3 ∂

8−2Nvi = − ∂N−1
3 ∂8−2N

(
JR′(q)
ρ0

∂tq
)
−

2∑
L=1

∂N−1
3 ∂8−2N(ALi∂Lvi)

−
∑

N1+N2≥1,N1≤N−1

(
N − 1

N1

)(
8 − 2N

N2

) (
∂N1

3 ∂N2 A3i
) (
∂N−N1

3 ∂8−2N−N2 vi

)
,

(6.25)

where the term contains ∂N−1
3 ∂8−2N ALi = ∂N

3 ∂
8−2Nη × ∂η+ controllable terms, where ∂N

3 ∂
8−2Nη cannot be controlled on the

boundary. Invoking (3.3) with D = ∂, we expand this problematic term to be

(∂N−1
3 ∂8−2N ALi)∂Lvi = −

(
∂N−1

3 ∂7−2N(ALp ∂∂mηp Ami)
)
∂Lvi

= − ALp ∂N
3 ∂

8−2Nηp A3i∂Lvi −

2∑
M=1

ALp(∂N−1
3 ∂8−2N∂Mηp)AMi∂Lvi − ([∂N−1

3 ∂7−2N , ALpAmi]∂∂mηp)∂Lvi.

(6.26)
On the other hand, in IB]02 we have

A3i∂N
3 ∂

8−2Nη · ∇Avi = A3i
2∑

L=1

∂N
3 ∂

8−2NηpALp∂Lvi + A3i∂N
3 ∂

8−2NηpA3p∂3vi, (6.27)

where the first term exactly cancels with the first term in the RHS of (6.26). In fact, this is the analogue of (4.33)-(4.36) by
merely replacing ∂4

3 with ∂N
3 ∂

8−2N . Thus we get the cancellation of the top order terms in IB]01 and IB]02.
The second term in (6.27) could be treated similarly as in (4.40) by invoking A3p∂3ηp = 1

∂N
3 ∂

8−2NηpA3p = ∂N−1
3 ∂8−2N(∂3ηpA3p)︸                    ︷︷                    ︸

=0

−(∂N−1
3 ∂8−2N A3p)∂3ηp − (∂A3p)(∂N

3 ∂
7−2Nηp) + lower order terms.

(6.28)

To control IB]0, we still need to analyze ∂N
3 ∂

8−2N Q. Following the aruments in (4.37)-(4.39) and replacing ∂4
3 with ∂N

3 ∂
8−2N ,

we can reduce one normal derivative of Q to one tangential derivative of v and (b0 · ∂)η via

∂N
3 ∂

8−2N Q =J−1∂3ηi

(
ρ0∂

N−1
3 ∂8−2N∂tvi + (b0 · ∂)∂N−1

3 ∂8−2N(J−1(b0 · ∂)ηi)
)
−

2∑
L=1

ÂLi(∂N−1
3 ∂8−2N∂LQ)

− (N − 1)(∂N−1
3 ∂8−2N Â3i)(∂3Q) + lower order terms.

(6.29)

Plugging the expression of ∆
]
v and (6.25)-(6.29) into (6.24), we find that every highest order term in IB]0 must be one of the

following forms

K]
1 :=

∫
Γ

N3(∂N−1
3 ∂8−2N

D f )(∂N−1
3 ∂9−2Ng)(∂h)r dy′,

K]
2 :=

∫
Γ

N3(∂N−1
3 ∂8−2N

D f )(∂N
3 ∂

7−2Ng)(∂∂h)r dy′,

K]
3 :=

∫
Γ

N3(∂N−1
3 ∂8−2N

D f )(∂N
3 ∂

7−2Ng)(∂h)r dy′,

where D = ∂ or ∂t or (b0 · ∂), the functions f , g, h can be η, v,Q, J−1(b0 · ∂)η, and r contains at most one derivative of η, v or Q.
We note that the term K]

2 comes from IB]03 where ∆
]
v contributes to ∂N

3 ∂
7−2Ng · ∂∂h · r.

Since 1 ≤ N ≤ 3, we know 7 − 2N ≥ 1 and thus we can directly apply lemma 3.1 to control K]
1 ∼ K]

3.

K]
1 .|∂

N−1
3 D f |8−2N |∂

N−1
3 g|9−2N |∂h r|L∞ . ‖∂N−1

3 D f ‖H9−2N
∗
‖∂N−1

3 g‖H10−2N
∗
‖∂h r‖H2

.‖ f ‖2(N−1)+1+(9−2N),∗‖g‖2(N−1)+(10−2N),∗‖h‖3‖r‖2 = ‖ f ‖8,∗‖g‖8,∗‖h‖3‖r‖2.
(6.30)
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and
K]

2 .|∂
N−1
3 D f |8−2N |∂

N
3 g|7−2N |(∂∂h)r|L∞ . |∂N−1

3 D f |8−2N |∂
N
3 g|7−2N |(∂∂h)r|1.5

.‖∂N−1
3 D f ‖H9−2N

∗
‖∂N

3 g‖H8−2N
∗
‖(∂∂h)r‖2 . ‖ f ‖8,∗‖g‖8,∗‖h‖7,∗‖r‖2,

(6.31)

and
K]

3 .|∂
N−1
3 D f |8−2N |∂

N
3 g|7−2N |(∂h)r|L∞ . |∂N−1

3 D f |8−2N |∂
N
3 g|7−2N |(∂h)r|1.5

.‖∂N−1
3 D f ‖H9−2N

∗
‖∂N

3 g‖H8−2N
∗
‖(∂h)r‖2 . ‖ f ‖8,∗‖g‖8,∗‖h‖3‖r‖2.

(6.32)

One can use either trace lemma or similar techniques as in (4.41)-(4.43) to analyze the remaining terms which are all of
lower order than K]

1 ∼ K]
3. This completes the control of IB]0.

The analysis of IB]3 ∼ IB]6 can be proceeded exactly in the same way as IB∗3 ∼ IB∗6. Since these quantities involving the
modification terms ∆

]
Q,∆

]
v are of lower order, we do not repeat the details again. We can finally prove that∫ T

0
IB]3 + IB]4 dt .

∫ T

0

∣∣∣∣A3i∂N
3 ∂

8−2Nηi

∣∣∣∣
0

P
(
‖(η, v, b)‖8,∗, ‖Q‖8,∗, ‖ρ0‖3

)
dt, (6.33)

+
∣∣∣∣A3i∂N

3 ∂
8−2Nηi

∣∣∣∣
0

P(‖η‖8,∗, ‖Q‖8,∗)
∫ T

0
‖v(t)‖8,∗ dt

IB]5 .|Â
3i|L∞ |∆

]
Q|0|(∆

]
v)i|0 . P(‖η‖8,∗, ‖v‖8,∗, ‖Q‖7,∗), (6.34)

IB]6 .|Â
3i∂3Q|L∞ |A3p∂N

3 ∂
8−2Nηp|0|(∆

]
v)i|0 . P(‖η‖8,∗, ‖v‖8,∗, ‖Q‖7,∗). (6.35)

Summarizing the estimates above, we get the control of the boundary integral∫ T

0
IB] . −

c0

4

∣∣∣∣A3i∂N
3 ∂

8−2Nηi

∣∣∣∣2
0

+ P0 + P(E(T ))
∫ T

0
P(E(t)) dt. (6.36)

Combining (6.9)-(6.11), (6.21), (6.36) and choosing ε > 0 in (6.18) to be suitably small, we get the following inequality

‖V]‖20 +
∥∥∥∥∂N

3 ∂
8−2N

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂N

3 ∂
8−2Nq‖20 +

c0

4

∣∣∣∣A3i∂N
3 ∂

8−2Nηi

∣∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (6.37)

Finally, invoking (6.4), we get the ∂N
3 ∂

8−2N (N = 1, 2, 3)-estimates of v

‖∂N
3 ∂

8−2Nv‖0 .‖V]‖0 + ‖∂N
3 ∂

8−2Nη‖0‖∇Avi‖L∞ + ‖∂N
3 ∂

7−2Nη‖0
(
‖∇A∂v‖L∞ + ‖∇A∂η · ∇Av‖L∞

)
+ ‖∂N

3 ∂
7−2Nv‖0‖∇A∂η‖L∞ .

Since ∂mη|t=0 = 0 for any m ≥ 2,m ∈ N∗, we know

‖∂N
3 ∂

8−2Nv‖0 . ‖V]‖0 + P(‖v‖7,∗, ‖η‖7,∗)
∫ T

0
P(‖v‖8,∗), (6.38)

and thus

‖∂N
3 ∂

8−2Nv‖20 +
∥∥∥∥∂N

3 ∂
8−2N

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂N

3 ∂
8−2Nq‖20 +

c0

4

∣∣∣∣A3i∂N
3 ∂

8−2Nηi

∣∣∣∣2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (6.39)

6.2 Control of time derivatives

In the case of ∂I
∗ = ∂N

3 ∂
8−2N−k∂k

t for 1 ≤ k ≤ 8 − 2N, most of steps in the proof are still applicable. However, the presence of
time derivative(s) could simplify the “modified Alinhac good unknowns”. We note that most of the modifications are essentially
similar to Section (5.3) ∼ Section 5.5, so we no longer repeat the details.
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6.2.1 One time derivative

When k = 1, the modified Alinhac good unknowns can be defined by replacing 8∂7 by (8 − 2N)∂N
3 ∂

7−2N in Section 5.3.2, i.e.,

V] = ∂N
3 ∂

7−2N∂tv − ∂N
3 ∂

7−2N∂tη · ∇Av + ∆
]
v, Q] = ∂N

3 ∂
7−2N∂tQ − ∂N

3 ∂
7−2N∂tη · ∇AQ + ∆

]
Q., (6.40)

where
(∆]

v)i := − (8 − 2N)∂N
3 ∂

7−2Nη · ∇A∂tvi − (8 − 2N)∂N
3 ∂

7−2Nv · ∇Avi + (16 − 4N)∂N
3 ∂

7−2N · ∇Av · ∇Avi,

∆
]
Q := − (8 − 2N)∂N

3 ∂
7−2Nη · ∇A∂tQ + (8 − 2N)∂N

3 ∂
7−2Nη · ∇Av · ∇AQ,

(6.41)

and
∂N

3 ∂
7−2N∂t(divAv) = ∇A · V] + C](v), ∂N

3 ∂
7−2N∂t(∇AQ) = ∇AQ] + C](Q), (6.42)

with
‖C]( f )‖0 . P(E(t))‖ f ‖8,∗.

The difference between ∂N
3 ∂

7−2Nv and V] should be controlled in the same way as (5.60) by replacing ∂7 with ∂N
3 ∂

7−2N

‖∂N
3 ∂

7−2N∂tv‖0 . ‖V∗‖20 + P0 + P(E(T ))
∫ T

0
P(E(t)) dt, (6.43)

and thus
‖∂N

3 ∂
7−2N∂tv‖20 +

∥∥∥∥∂N
3 ∂

7−2N∂t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂N

3 ∂
7−2N∂tq‖20 +

c0

4

∣∣∣∣A3i∂N
3 ∂

7−2N∂tηi

∣∣∣∣2
0

∣∣∣∣∣
t=T

.P0 + P(E(T ))
∫ T

0
P(E(t)) dt.

(6.44)

6.2.2 2∼(7-2N) time derivatives

When 2 ≤ k ≤ 7 − 2N, we can mimic the analysis in Section 5.4: We just need to replace D6∂2
t by ∂N

3D
6−2N∂2

t where D
denotes ∂ or ∂t and D6−2N contains at least one ∂. The analogous problematic term becomes −2(∂tAli)(∂N

3D
6−2N∂t∂l f ) − (6 −

2N)(DAli)(∂N
3D

5−2N∂2
t ∂l f ) which comes from [∂N

3D
6−2N∂2

t , A
li, ∂l f ]. Following (5.63)-(5.65), we can similarly define

V] = ∂N
3D

6−2N∂2
t v − ∂N

3D
6−2N∂2

t η · ∇Av + ∆
]
v, Q] = ∂N

3D
6−2N∂2

t Q − ∂N
3D

6−2N∂2
t η · ∇AQ, (6.45)

where
(∆]

v)i := −(6 − 2N)∂N
3D

5−2N∂2
t v · ∇ADηi − 2∂N

3D
6−2N∂tv · ∇Avi (6.46)

and
∂N

3D
6−2N∂2

t (divAv) = ∇A · V] + C](v), ∂N
3D

6−2N∂2
t (∇AQ) = ∇AQ∗ + C](Q), (6.47)

with
‖C]( f )‖0 . P(E(t))‖ f ‖8,∗.

Again we have ∆
]
Q in this case, and thus the analogues of IB]3 ∼ IB]5 all vanish. The boundary integrals IB]0, IB]1, IB]2, IB]6

and the interior terms can be controlled in the same way as Section 6.1. Finally, one has

‖∂N
3D

6−2N∂2
t v‖20 +

∥∥∥∥∂N
3D

6−2N∂2
t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂N

3D
6−2N∂2

t q‖20 +
c0

4

∣∣∣A3i∂N
3D

6−2N∂2
t ηi

∣∣∣2
0

∣∣∣∣∣
t=T

.P0 + P(E(T ))
∫ T

0
P(E(t)) dt,

(6.48)

where D6−2N contains at least one spatial derivative ∂.
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6.2.3 Full time derivatives

When ∂I
∗ = ∂N

3 ∂
8−2N
t for N = 1, 2, 3, there is not tangential spatial derivative on the boundary and thus Lemma 3.1 is no longer

applicable. In this case, the modified Alinhac good unknowns become

V] = ∂N
3 ∂

8−2N
t v − ∂N

3 ∂
8−2N
t η · ∇Av + ∆

]
v, Q] = ∂N

3 ∂
8−2N
t Q − ∂N

3 ∂
8−2N
t η · ∇AQ, (6.49)

where
(∆]

v)i := −(8 − 2N)∂N
3 ∂

8−2N
t v · ∇Avi (6.50)

and
∂N

3 ∂
8−2N
t (divAv) = ∇A · V] + C](v), ∂N

3 ∂
8−2N
t (∇AQ) = ∇AQ] + C](Q), (6.51)

with
‖C]( f )‖0 . P(E(t))‖ f ‖8,∗.

The proof follows in the same way as Section 5.5 after replacing ∂7
t by ∂7−2N

t and the coefficient 8 by (8 − 2N). So we no
longer repeat the details. Finally, we can get

‖∂N
3 ∂

8−2N
t v‖20 +

∥∥∥∥∂N
3 ∂

8−2N
t

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂N

3 ∂
8−2N
t q‖20 +

c0

4

∣∣∣A3i∂N
3 ∂

8−2N
t ηi

∣∣∣2
0

∣∣∣∣∣
t=T

.ε‖∂N+1
3 ∂6−2N

t v‖20 + P0 + P(E(T ))
∫ T

0
P(E(t)) dt,

(6.52)

which together with (6.39), (6.44), (6.48) concludes the proof of Proposition 6.1.

7 Control of weighted normal derivatives

Now we consider the most general case ∂I
∗ = ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 with i1 + i2 + 2i3 + i4 = 8 and i4 > 0. The presence of the

weighted normal derivatives (σ∂3)i4 makes the following difference from the non-weighted case.

1. Extra terms are produced when we commute ∂I
∗ with ∂3 because σ is a function of y3. Once ∂3 falls on the weight

function, we will lose a weight and (σ∂3) becomes ∂3, which causes a loss of derivative. This appears when we commute
∂I
∗ with ∇i

A that falls on Q or vi and commute ∂I
∗ with (b0 · ∂).

2. There is no boundary integral because the weight function σ vanishes on Γ.

To overcome the difficulty mentioned above, we can again use the techniques, similar with those in the previous sections.

• Invoke the MHD equation and the continuity equation to replace ∇AQ and divAv by tangential derivatives.
• Produce a weight funtion by using b3

0|Γ = 0 and ∂Q|Γ = 0.
• In particular, if ∂I

∗ does not contain time derivative, we need to add an extra modification term in the good unknown of v.

First we analyze [(b0 · ∂), ∂i0
t (σ∂3)i4∂i1

1 ∂
i2
2 ∂

i3
3 ] f . Compared with the non-weighted case, we need to control the extra term

b3
0∂3(σi4 ) (∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3+i4
3 f ) = i4b3

0(∂3σ)
(
∂i0

t (σ∂3)i4−1∂i1
1 ∂

i2
2 ∂

i3+1
3

)
f . Using b3

0|Γ = 0, one can produce a weight function σ as in
(5.9). Therefore ∥∥∥∥b3

0(∂3σ)
(
∂i0

t (σ∂3)i4−1∂i1
1 ∂

i2
2 ∂

i3+1
3 f

)∥∥∥∥
0
. ‖∂3b0‖L∞‖(σ∂3)∂i0

t (σ∂3)i4−1∂i1
1 ∂

i2
2 ∂

i3
3 f ‖0 ≤ ‖b0‖3‖ f ‖8,∗.

Next we analyze the commutator between ∂I
∗ = ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3 and ∇A f . Compared with the non-weighted case, we

shall analyze an extra term Cσ below. In specific, one has

∂i0
t (σ∂3)i4∂i1

1 ∂
i2
2 ∂

i3
3 (Ali∂l f )

=σi4∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3+i4
3 (Ali∂l f )

=σi4
(
Ali∂l(∂

i0
t ∂

i1
1 ∂

i2
2 ∂

i3+i4
3 ) f

)
+ σi4 [∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3+i4
3 , Ali]∂l f︸                          ︷︷                          ︸

C̊

=Ali∂l

(
σi4∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3+i4
3 f

)
− (i4∂3σ) A3i

(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3+1
3 f

)︸                               ︷︷                               ︸
Cσ

+C̊.

(7.1)
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The term C̊ consists of the commutators produced in the same way as the non-weighted case. It can be analyzed in the same
way as in previous sections by just considering (σ∂3) as a tangential derivative on the boundary. As for the extra term, we do
the following computation

A3i
(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3+1
3 f

)
=(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 (A3i∂3 f ) −

[
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 , A

3i
]
∂3 f

=:Cσ
1 ( f ) + Cσ

2 ( f ).

(7.2)

Note that i0+i1+i2+i4 = 8−2i3. We know the leading order terms in Cσ
2 are

(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 A3i

)
f and (DA3i)(D6−2i3∂i3+1

3 f ),

where D represents any one of (σ∂3), ∂t, ∂1, ∂2. Recall that A3i cosists of ∂η · ∂η. This shows that the highest order term in(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 A3i

)
∂3 f is (D8−2i3∂i3

3 η)(∂η) f whose L2(Ω) norm can be directly controlled by ‖η‖8,∗‖∂η‖L∞‖∂3 f ‖L∞ . As for
the second term, we have

‖(DA3i)(D6−2i3∂i3+1
3 f )‖0 . ‖(D∂η)(∂η)‖L∞‖ f ‖8,∗.

Therefore, Cσ
2 can be directly controlled.

The control of Cσ
1 is more complicated. We should use the structure of MHD system (1.17) to replace one normal derivative

by one tangential derivative.

A3i∂3Q = −

2∑
L=1

ALi∂LQ − R∂tvi + J−1(b0 · ∂)(J−1(b0 · ∂)η) (7.3)

A3i∂3vi =divAv − A1i∂1vi − A2i∂2vi = −
JR′(q)
ρ0

∂tq −
2∑

L=1

ALi∂Lvi (7.4)

When f = Q, we plug (7.3) into Cσ
1 (Q) to get

Cσ
1 (Q) =(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 (A3i∂3Q)

= −

2∑
L=1

(σ∂3)i4−1∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 (ALi∂LQ)

− (σ∂3)i4−1∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 (R∂tvi) + (σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3

(
J−1(b0 · ∂)(J−1(b0 · ∂)η))

)
=:Cσ

11(Q) + Cσ
12(Q) + Cσ

13(Q).

(7.5)

When f = vi, we plug (7.4) into Cσ
1 (v) to get

Cσ
1 (v) =(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 (A3i∂3vi)

= −

2∑
L=1

(σ∂3)i4−1∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 (ALi∂Lvi) − (σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3

(
JR′(q)
ρ0

∂tq
)

=:Cσ
11(v) + Cσ

12(v).

(7.6)

The terms Cσ
12(Q) and Cσ

12(v) can be directly controlled. Note that i0 + i1 + i2 + (i4 − 1) = 7 − 2i3, so

‖Cσ
12(Q)‖0 .‖R‖7,∗‖v‖8,∗ . ‖q‖7,∗‖v‖8,∗, (7.7)
‖Cσ

12(v)‖0 .‖ρ0‖7,∗‖q‖8,∗. (7.8)

Using b3
0|Γ = 0, one can produce a weight function σ as in (5.9) when all the derivatives fall on J−1(b0 · ∂)η.

‖Cσ
13(Q)‖0 .‖J−1(b0 · ∂)(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 (J−1(b0 · ∂)η)‖0

+
∥∥∥∥[(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 , J

−1(b0 · ∂)
]

(J−1(b0 · ∂)η)
∥∥∥∥

0

.‖∂3(J−1b0)‖L∞‖(σ∂3)i4∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 (J−1(b0 · ∂)η)‖0

.‖b0‖7,∗‖J−1(b0 · ∂)η‖8,∗.

(7.9)
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As for Cσ
11, the highest order term can be merged into the modified Alinhac good unknowns. One has

Cσ
11( f ) := −

2∑
L=1

(σ∂3)i4−1∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 (ALi∂L f )

= −

2∑
L=1

(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ALi

)
∂L f −

2∑
L=1

[
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 , A

Li
]
∂L f︸                                         ︷︷                                         ︸

Cσ
111( f )

= −

2∑
L=1

ALp
(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ∂kηp

)
Aki∂L f −

2∑
L=1

([
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 , A

LpAki
]
∂kηp

)
∂L f︸                                                       ︷︷                                                       ︸

Cσ
112( f )

+Cσ
111( f ).

(7.10)

Since i0 + i1 + i2 + i4 = 8 − 2i3, one can directly control the L2(Ω)-norms of Cσ
111( f ), Cσ

112( f ) by P(‖η‖8,∗)‖ f ‖8,∗. For the first
term in the RHS of (7.10), one can proceed in the following ways

• f = Q: Since ∂LQ|Γ = 0, one can produce a weight function as in (5.13) and thus∥∥∥∥ALp
(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ∂kηp

)
Aki∂LQ

∥∥∥∥
0

.
2∑

M=1

∥∥∥∥ALp
(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ∂Mηp

)
AMi∂LQ

∥∥∥∥
0

+ ‖ALpA3i∂∂3Q‖L∞‖(σ∂3)i4∂i0
t ∂

i1
1 ∂

i2
2 ∂

i3
3 ηp‖0

.P(‖η‖3)‖Q‖7,∗‖η‖8,∗.

(7.11)

• f = vi: When ∂I
∗ contains time derivative (i0 > 0), then it can be directly controlled due to ∂tη = v∥∥∥∥ALp

(
(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ∂kηp

)
Aki∂Lvi

∥∥∥∥
0

=
∥∥∥∥ALp

(
(σ∂3)i4−1∂i0−1

t ∂i1
1 ∂

i2
2 ∂

i3
3 ∂kvp

)
Aki∂Lvi

∥∥∥∥
0
. P(‖η‖3)‖v‖5,∗‖v‖8,∗. (7.12)

If i0 = 0, then it can be written in the form of covariant derivative plus a controllable term.

− ALp
(
(σ∂3)i4−1∂i1

1 ∂
i2
2 ∂

i3
3 ∂kηp

)
Aki∂Lvi

= − Aki∂k

(
(σ∂3)i4−1∂i1

1 ∂
i2
2 ∂

i3
3 ηpALp∂Lvi

)
+ A3i(∂3σ)

(
(i4 − 1)(σ∂3)i4−2∂i1

1 ∂
i2
2 ∂

i3+1
3 ηp

)
ALp∂Lvi + ∇i

A(ALp∂Lvi)
(
(σ∂3)i4−1∂i1

1 ∂
i2
2 ∂

i3
3 ηp

)︸                                                                                                             ︷︷                                                                                                             ︸
Cσ

113(vi)

= − ∇i
A

(
(σ∂3)i4−1∂i1

1 ∂
i2
2 ∂

i3
3 ηpALp∂Lvi

)
+ Cσ

113(vi).

(7.13)

We note that the first term in Cσ
113( f ) appears when ∂k (k = 3) falls on the weight function and i4 ≥ 2 and can also be

directly controlled by P(‖η‖8,∗)‖ f ‖8,∗.

Next we merge the covariant derivative terms in Cσ into the modified Alinhac good unknowns, i.e., for ∂I
∗ = ∂i0

t (σ∂3)i4∂i1
1 ∂

i2
2 ∂

i3
3

we define

Vσ
i :=


∂I
∗vi − ∂

I
∗η · ∇Avi + (∆σ

v )i i0 ≥ 1

∂I
∗vi − ∂

I
∗η · ∇Avi + (∆σ

v )i +
2∑

L=1

(
(i4∂3σ)(σ∂3)i4−1∂i1

1 ∂
i2
2 ∂

i3
3 ηp

)
ALp∂Lvi, i0 = 0,

(7.14)

and
Qσ := ∂I

∗Q − ∂
I
∗η · ∇AQ + ∆σ

Q. (7.15)

Then one has

∂I
∗(∇A · v) = ∇A · Vσ + Cσ(v), (7.16)

∂I
∗(∇AQ) = ∇AQσ + Cσ(Q), (7.17)
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with ‖Cσ( f )‖0 . P(E(t))‖ f ‖8,∗. Here the “extra modification terms” ∆σ
v and ∆σ

Q comes from the analysis of C̊ in (7.1) whose

precise expressions can be derived in the same way as Section 5 ∼ Section 6. The term
(
(i4∂3σ)(σ∂3)i4−1∂i0

t ∂
i1
1 ∂

i2
2 ∂

i3
3 ηp

)
ALp∂L f

comes from (7.1) and (7.13). Finally, the commutator Cσ( f ) consists of the commutator part in C̊, Cσ
111( f ) ∼ Cσ

113( f ),Cσ
12( f )

and Cσ
13(Q).

Recall that σ|Γ = 0 and ∂Q|Γ = 0 imply Qσ|Γ = 0. Therefore the boundary integral
∫

Γ
N3Â3iQσVσ

i dy′ vanishes. Hence, we
can get the following estimates for ∂I

∗ := ∂i0
t (σ∂3)i4∂i1

1 ∂
i2
2 ∂

i3
3

‖∂I
∗v‖

2
0 +

∥∥∥∥∂I
∗

(
J−1(b0 · ∂)η

)∥∥∥∥2

0
+ ‖∂I

∗q‖
2
0

∣∣∣∣∣
t=T
. P0 + P(E(T ))

∫ T

0
P(E(t)) dt. (7.18)

8 A priori estimates, uniqueness and continuous dependence on data

8.1 Finalizing the a priori energy estimates

Combining the L2-energy conservation (1.6) with (4.1), (5.1), (6.1) and (7.18), and then choosing ε > 0 to be suitably small,
we finally get the following energy inequality

E(T ) − E(0) . P0 + P(E(T ))
∫ T

0
P(E(t)) dt (8.1)

under the a priori asuumptions (1.19)-(1.20). By the Gronwall-type inequality, one can find some T1 > 0 depending only on
the initial data, such that

sup
0≤t≤T1

E(t) ≤ P(E(0)). (8.2)

This completes the a priori estimates of (1.17).

8.2 Justification of the a priori assumptions
It suffices to justify the a priori assumptions (1.19)-(1.20). First, invoking ∂t J = JdivAv and J|t=0 = 1, we get

‖J − 1‖7,∗ ≤
∫ T

0
‖JdivAv‖7,∗ dt .

∫ T

0
P(‖∂η‖L∞ )‖∂tq‖7,∗ dt ≤

∫ T

0
P(‖∂η‖L∞ )‖q‖8,∗ dt.

Therefore choosing T > 0 to be sufficiently small yields (1.19). The Rayleigh-Taylor sign condition in [0,T1] can be justified
by proving ∂Q/∂N is a Hölder-continuous function in t and y variables. In specific, from the energy estimates we know that

∂Q
∂N
∈ L∞([0,T ]; H

5
2 (Γ)), ∂t

(
∂Q
∂N

)
∈ L∞([0,T ]; H

3
2 (Γ)).

By using the 2D Sobolev embedding H
1
2 (Γ) ↪→ L4(Γ) and Morrey’s embedding W1,4 ↪→ C0, 1

4 in 3D domain, we get the Hölder
continuity of the Rayleigh-Taylor sign

∂Q
∂N
∈ W1,∞([0,T ]; H

3
2 (Γ)) ↪→ W1,∞([0,T ]; W1,4(Γ)) ↪→ W1,4([0,T ] × Γ) ↪→ C0, 1

4
t,x ([0,T ] × Γ).

Therefore, (1.20) holds in a positive time interval provided that −
∂Q0

∂N
≥ c0 > 0 holds initially. Theorem 1.3 is proved.

8.3 Control of initial energy by the initial data satisfying the compatibility conditions

Finally we need to show E(0) < ∞. Define f( j) := ∂
j
t f |t=0 to be the initial data of ∂ j

t f for j ∈ N. We know the initial data should
satisfy the following properties:

• The compatibility conditions (1.9) up to 7-th order.
• The constraints ∇ · B0 = 0, B0 · n|{0}×∂D0 = 0 and the Rayleigh-Taylor sign condition (1.8) on {0} × ∂D0.
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• The norms of the initial datum of the time derivatives of (v, b,Q) can be controlled by the norms of initial data (v0, b0,Q0).

We note that the compatibility conditions up to order m can be expressed in Lagrangian coordinates by using the formal
power series solution to (1.17) in t:

v̂(t, y) =
∑

v( j)(y)
t j

j!
, b̂(t, y) =

∑
b( j)(y)

t j

j!
, Q̂(t, y) =

∑
Q( j)(y)

t j

j!
,

satisfying Q( j)|Γ = 0 for j = 0, 1, · · · ,m. Since we study the solutions in (anisotropic) Sobolev spaces, such compatibility
conditions have to be expressed in a weak form

Q( j)(y) ∈ H1
0(Ω), 0 ≤ j ≤ m. (8.3)

From (v0, b0,Q0) ∈ H8
∗ (Ω) and the system (1.17), one can only get (v( j), b( j),Q( j)) ∈ H8−2 j

∗ (Ω) for 0 ≤ j ≤ 4. To guarantee
(v( j), b( j),Q( j)) ∈ H8− j

∗ (Ω) and Q( j) ∈ H1
0(Ω), the initial data should be constructed in standard Sobolev space H8(Ω) with

8∑
j=1

‖(v( j), b( j),Q( j))‖28− j . P(‖v0‖8, ‖b0‖8, ‖Q0‖8).

See the construction in [64, Lemma 4.1].
On the one hand, by Lemma 3.2 we know (v( j), b( j),Q( j)) ∈ H8− j(Ω) ↪→ H8− j

∗ (Ω) which satisfies our requirement and
implies E(0) . P(‖v0‖8, ‖b0‖8, ‖Q0‖8). On the other hand, if we directly construct the initial data (v0, b0, q0) ∈ H8

∗ (Ω) such
that (v( j), b( j),Q( j)) ∈ H8− j

∗ (Ω), then it is not clear in which sense the boundary conditions and the compatibility conditions are
satisfied. For example, Q(7) ∈ H1

∗ (Ω), but the trace of such function in that space has no meaning in general. This also explains
why we require Q(7) ∈ H1

0(Ω) in (8.3). See also Secchi [53, Theorem 2.1]. Therefore, the initial data (v0, b0,Q0) should be
constructed in the standard Sobolev space H8(Ω).

8.4 Continuous dependence on initial data and uniqueness

Now we prove Theorem 1.4 by using a similar argument as in the proof of a priori bounds. Assume U(i)
0 = (v(i)

0 , b
(i)
0 , q

(i)
0 ) ∈

H8
∗ (Ω) (i = 1, 2) to be two initial datum of (1.17) satisfying the hypothesis of Theorem 1.3. Suppose also U(i)(t, ·) =

(η(i)(t, ·), v(i)(t, ·), b(i)(t, ·), q(i)(t, ·)) (i = 1, 2) to be the solutions to (1.17) with initial data U(i)
0 . Then we derive the system

of ([η], [v], [q]) as follows, where [ f ] := f (1) − f (2) for any function f .

∂t[η] = [v] in Ω,

R(1)∂t[v] − J(1)−1b(1)
0 · ∂

(
J(1)−1b(1)

0 · ∂[η]
)

+ ∇A(1) [Q] + ∇[A]Q(2) = fv + fb, in Ω,

F ′(q(1))∂t[q] + div A1 [v] + div [A]v(2) = fq in Ω,

[Q] = 0 on Γ,

([η], [v], [b], [q])|t=0 = (0, [v0], [b0], [q0]),

(8.4)

with the initial constraints (divergence-free condition for b0, b3
0|Γ = 0 and the Rayleigh-Taylor sign condition) for each i = 1, 2.

Here Q(i) := q(i) + 1
2 |b

(i)|2, b(i) = J(i)−1b(i)
0 · ∂η

(i), and F (q(i)) := log R(i)(q(i)). The source terms fv,b and fq are defined by

fv := − [R]∂tv(2) + [b0] · ∂(J(2)−1
b(2)

0 · ∂η
(2)), fb := b(1)

0 · ∂([J−1b0] · ∂η(2)), (8.5)

fq := − (F ′(q(1)) − F ′(q(2)))∂tq(2). (8.6)

Note that system (8.4) has the same structure as (1.17) on the left side of each equation. And it is not difficult to see that
the ‖ · ‖6,∗ norm of both source terms can be directly controlled, because each solution U(i) are bounded in ‖ · ‖8,∗ norm. In
particular, the second term and the fourth term in fb,v can be controlled by writing the [·] terms back to the form f (1) − f (2) and
using the bounds for each U(i). Therefore, the estimates for ([η], [v], [b], [q]) in ‖ · ‖6,∗ norm should follow in a similar way as in
the proof of Theorem 1.3. It is even easier because we no longer need to design the “modified good unknowns” when taking ∂I

∗

with 〈I〉 = 6. Indeed, given the derivative ∂I
∗ with 〈I〉 = 6, we define F(i) := ∂I

∗ f (i) − ∂I
∗η

(i) · ∇A(i) f (i), i = 1, 2, to be the Alinhac
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good unknowns for f (i) with respect to ∂I
∗. Then define [F] := F(1) − F(2) and we have

[F] = ∂I
∗[ f ] − ∂I

∗η
(1) · ∇A(1) [ f ] − ∂I

∗η
(1) · ∇[A] f (2) − ∂I

∗[η] · ∇A(2) f (2), (8.7)

∂I
∗(∇A(1) [ f ] + ∇[A] f (2)) = ∇A(1) [F] + C(1)([ f ]), (8.8)

‖[F] − ∂I
∗[ f ]‖0+ ‖∂t([F] − ∂I

∗[ f ])‖0 + ‖C(1)([ f ])‖0 ≤ P(E(1)(t),E(2)(t))[E](t). (8.9)

We also obtain the evolution equation for the good unknown [V]

ρ(1)
0 ∂t[V] − b(1)

0 · ∂∂
I
∗

(
J(1)−1

b(1)
0 · ∂[η]

)
+ ∇A(1) [Q]

= ∂I
∗ fb + ∂I

∗ fv + C(1)([Q]) − J(1)[∂I
∗,R

(1)]∂t[v] − J(1)[∂I
∗, J

(1)−1
b(1)

0 · ∂]
(
J(1)−1

b(1)
0 · ∂[η]

)
︸                                                                                                 ︷︷                                                                                                 ︸

=:G

, (8.10)

where G satisfies ‖G‖0 ≤ P(E(t))[E](t).
Multiplying [V] in (8.10) and integrating by part, we still get the following terms as in previous sections

1
2

d
dt

∫
Ω

ρ(1)
0 |[V]|2 dy = −

∫
Γ

N3[Q]J(1)A(1)3i[V]i dy′ +
∫

Ω

G · [V] dy +

∫
Ω

∂I
∗ fb · [V] dy

+

∫
Ω

J(1)[Q]∇A(1) · [V] dy −
∫

Ω

∂I
∗

(
J(1)−1

b(1)
0 · ∂[η]

)
(b0 · ∂)[V] dy, (8.11)

where the second term on the right side can be directly bounded. For the third term, we can integrate b(1)
0 · ∂ by parts to avoid

more than 6 derivatives falling on [J−1b0]. When b(1)
0 · ∂ falls on ∂I

∗[v], we write [v] = ∂tη and integrate by parts in ∂t to control
this term.

Since most of the steps are identical to the previous sections, we no longer repeat all those details. Below, we show the
details of some key steps that are slightly different from the previous sections, and we only take ∂6-estimates and ∂3

3 estimates
for examples.

Interior cancellation structure in Section 2.3. We take ∂I
∗ = ∂6 for example. Plugging the expression of [V] into the last

term in (8.11), we get

−

∫
Ω

∂6
(
J(1)−1

b(1)
0 · ∂[η]

)
(b(1)

0 · ∂)[V] dy

= −
1
2

d
dt

∫
Ω

J(1)
∣∣∣∣∣∂6

(
J(1)−1

b(1)
0 · ∂[η]

)∣∣∣∣∣2 dy +
1
2

∫
Ω

∂t J(1)
∣∣∣∣∣∂6

(
J(1)−1

b(1)
0 · ∂[η]

)∣∣∣∣∣2 dy

−

∫
Ω

J(1)∂6
(
J(1)−1

b(1)
0 · ∂[η]

)
·
[
∂6∂t, J(1)

]
(J(1)−1

b(1)
0 · ∂[η]) dy

+

∫
Ω

∂6
(
J(1)−1

b(1)
0 · ∂[η]

)
·
[
∂6, b(1)

0 · ∂
]

([v]) dy

+

∫
Ω

∂6
(
J(1)−1

b(1)
0 · ∂[η]

)
(b(1)

0 · ∂)
(
∂6η(1) · ∇A(1) [v] − ∂6η(1) · ∇[A]v(2) − ∂6[η] · ∇A(2) v(2)

)
dy

. −
1
2

d
dt

∫
Ω

J(1)
∣∣∣∣∣∂6

(
J(1)−1

b(1)
0 · ∂[η]

)∣∣∣∣∣2 dy + P(E(1)(t),E(2)(t))[E](t),

(8.12)

where we note that the third term on the right side contains the analogue of K11 term defined in Section 2.3, that is, ∂6∂t may
fall on J(1). Here we already know ‖J(1)(t, ·)‖8,∗ ≤ P(E(t)) and thus this term can be directly controlled.

Similarly, the fourth term in (8.11) will produce the energy term of [q] as stated in Section 2.3 plus the term∫
Ω

J(1)∂6(J(1)−1
b(1)

0 · ∂[η])(J(1)−1
b(1)

0 · ∂[η])∂6(∇A(1) · [v]) dy,

which is also directly controlled by P(E(1)(t),E(2)(t))[E](t) due to ‖A(1)(t, ·)‖6,∗ . ‖η(t, ·)‖28,∗ ≤ P(E(t)).
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Boundary energy in ∂6-estimates. We plug [Q]|Γ = 0 and Q(i) = 0 into the boundary integral to get

−

∫
Γ

[Q]N3A(1)3i[V]i dy′ =

∫
Γ

N3∂3Q(1)J(1)A(1)3 j∂6[η] jA(1)3i[V]i dy′

+

∫
Γ

N3∂3Q(1)(∂6[η] jA(1)3 j + ∂6η(2)
j [A]3 j)A(1)3i[V]i dy′,

= −
1
2

d
dt

∫
Γ

(−N3∂3Q(1))|A(1)3i∂6[η]i|
2 dy′ +

1
2

∫
Γ

(−N3∂3∂tQ(1))|A(1)3i∂6[η]i|
2 dy′

+

∫
Γ

N3∂3Q(1)A(1)3 j∂6[η] jA(1)3i(∂6ηr[A]kr∂kv(1)
i − ∂

6η(2)
r A(2)kr∂k[v]i) dy′

+

∫
Γ

N3∂3Q(1)(∂6[η] jA(1)3 j + ∂6η(2)
j [A]3 j)A(1)3i[V]i dy′

. −
c0

4

∣∣∣∣A(1)3i∂6[η]i

∣∣∣∣2
0

+ P(E(1)(0),E(2)(0))[E](t).

(8.13)

where we use the Rayleigh-Taylor sign condition for Q(1) in the first term. The other terms can be controlled after integrating
by parts in ∂t or in ∂ and using the trace lemma: |[v]|5 . ‖[v]‖6,∗ and |η(i)|7 . ‖η

(i)‖8,∗.

Boundary terms in ∂3
3-estimates. The boundary integral now reads

−

∫
Γ

N3J(1)[Q][V]iA(1)3i dy′, (8.14)

where
[F] = ∂3

3[ f ] − ∂3
3η

(1) · ∇A(1) [ f ] − ∂3
3η

(1) · ∇[A] f (2) − ∂3
3[η] · ∇A(2) f (2).

What we need to do is again to reduce one ∂3 falling on [Q], [v]i to a tangential derivative by repeatedly invoking system (8.4).
Here we only list the identities analogous to those in Section 4.3. We first have

∂3
3η

(1)
j A(1)3 j = ∂2

3(∂3η
(1)
j A(1)3 j︸       ︷︷       ︸
=1

) − [∂2
3, A

(1)3 j]∂3η( j). (8.15)

Then the third component of the second equation in (8.4) gives

J(1)A(1)3k∂3
3[Q] =∂2

3(∇k
Â(1) [Q]) − [∂2

3, A
(1)3k]∂3[Q]

=∂2
3

(
−ρ(1)

0 ∂t[v]k + b(1)
0 · ∂(J(1)−1

b(1)
0 · ∂[η]k) + f k

v + f k
b − ∇

k
[A]Q

(2)
)

−

2∑
L=1

∂2
3(A(1)Li∂LQ) − [∂2

3, A
(1)3k]∂3[Q],

(8.16)

and thus the top-order derivative on [Q], [v] becomes ∂2
3D for some tangential derivative D. Note also that ∂2

3[A]mk∂mQ(2) =

∂2
3[A]3k∂3Q(2) due to Q(2)|Γ = 0 and A3l only contains tangential derivative ∂η. The term ∂2

3A(1)Li can be directly controlled by
‖η(1)‖24 ≤ E(t), so we no longer needs the subtle cancellation structures introduced in section 4.3. Similarly, using the third
equation of 8.4, we get

A(1)3i∂3
3[v]i =∂2

3(div A(1) [v]) − [∂2
3, A

(1)3i]∂3[v]i

=∂2
3

(
−F ′(q(1))∂t[q] + fq − div [A]v(2)

)
−

2∑
L=1

∂2
3(A(1)Li∂L[v]i) − [∂2

3, A
(1)3i]∂3[v]i,

(8.17)

where the term −∂2
3div [A]v(2) may have a term in which ∂2

3 falls on ∂3[η], that is, A(2)lr∂3
3[η]rA(1)3i∂lv

(2)
i = A(1)3i∂3

3[η] · ∇A(2) v(2)

which cancels with the last term in A(1)3i[V]i.
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After these reductions, the top-order terms on the boundary becomes the following form, which is controlled analogously
to (2.17). For 〈I〉 = 6, we have∫

Γ

N3(∂I−e3
∗ D[ f ])(∂I−e3

∗ D[g])h dy′

=

∫
Ω

(∂3∂
I−e3
∗ D[ f ])(∂I−e3

∗ D[g])h dy +

∫
Ω

(∂I−e3
∗ D[ f ])(∂3∂

I−e3
∗ D[g])h dy +

∫
Ω

(∂I−e3
∗ D[ f ])(∂I−e3

∗ D[g])∂3h dy

D
= −

∫
Ω

(∂3∂
I−e3
∗ [ f ])(∂I−e3

∗ D
2[g])h dy +

∫
Ω

(∂3∂
I−e3
∗ [ f ])(∂I−e3

∗ D[g])Dh dy

−

∫
Ω

(∂I−e3
∗ D

2[ f ])(∂3∂
I−e3
∗ [g])h dy +

∫
Ω

(∂I−e3
∗ D[ f ])(∂3∂

I−e3
∗ [g])Dh dy +

∫
Ω

(∂I−e3
∗ D[ f ])(∂I−e3

∗ D[g])∂3h dy

. ‖[ f ]‖6,∗‖[g]‖6,∗‖h‖3,

(8.18)

where the terms in h only have at most one derivative on each variable.
Define the energy functional for (8.4)

[E](t) := ‖[η](t, ·)‖26,∗ + ‖[v](t, ·)‖26,∗ + ‖(J−1b0)(1) · ∂[η](t, ·)‖26,∗ + ‖[q](t, ·)‖26,∗ +
∑
〈I〉=6

∣∣∣A(1)3i∂I
∗[η]i

∣∣∣2
0 . (8.19)

We can finally get the estimates for (8.4)

[E](t) ≤ [E](0) +

∫ T

0
P(E(1)(t),E(2)(t))[E](t) dt, (8.20)

and thus by Grönwall’s inequality, there exists some T2 ∈ [0,T1] (T1 > 0 is the time for the a priori bounds obtained in Theorem
1.3) depending only on the initial data and c0 such that

sup
0≤t≤T2

E(t) ≤ P(E(1)(0),E(2)(0))[E](0) ≤ P(‖[v0], [b0], [Q0]‖6)P(‖|v(1)
0 , v(2)

0 ‖8, ‖b
(1)
0 , b(2)

0 ‖8, ‖Q
(1)
0 ,Q(2)

0 ‖8).

Note that the energy inequality is linear in [E](t) because (8.4) is a linear system of [v], [b], [Q]. In particular, if the two given
initial datum are equal, we must have [E](0) = 0 and thus [E](t) = 0 in [0,T2]. This proves the uniqueness and continuous
dependence on initial data provided the local-in-time solution exists.

9 On the local existence of solutions

9.1 Local existence theorem for smooth data satisfying compatibility conditions up to infinite order
As stated in Section 2.6, we need to prove Theorem 1.2, that is, a local existence theorem from C∞ data to C∞ solution.
Following the Nash-Moser iteration scheme presented in Alinhac-Gérard [3] and Secchi [54] (also adopted in [38, 40, 64, 65]),
to solve a nonlinear system L(U) = f , we start with an approximate solution Ua and then U = Ua + V is a solution to L(U) = f
if we can prove V solves L(V) := L(Ua + V) − L(Ua) = f a where f a := −L(Ua) with V |t=0 = 0.

Remark (Existence of smooth approximate solution). In [64, Lemma 4.1], an approximate solution was constructed in Sobolev
space. Here we can follow Lindblad [40, Lemma 16.3] to construct a smooth approximate solution by introducing the power
series Qa(t, y) :=

∑
k χ(t/εk)Q(k)(y)tk/k! where Q(k) := ∂k

t Q|t=0 ∈ C∞(Ω̄) ∩ H1
0(Ω) are defined in Appendix A.3, χ(·) ∈ C∞c (R) is

a smooth cut-off function which equals to 1 in [−1, 1] and vanishes outside [−2, 2], and εk > 0 are chosen suitably small such
that the series converges in HN(Ω) for any N. Then solve va, ηa from the MHD system (1.17).

To solve the increment V , we start with V0 = 0 and inductively define Vn+1 = Vn + δVn where δVn is the solution to the
linearized problem L′(Ua + S θn Vn)(δVn) = fn with S θn being the smoothing operator, limn θn = +∞. By Taylor expansion, we
have

L(Vn+1) − L(Vn) = L′(Ua + Vn)(δVn) + e′n = L′(Ua + S θn Vn)(δVn) + e′n + e′′n ,

where e′n is the quadratic error produced by the expansion, and e′′n is the substitution error produced by replacing the basic state
Ua + Vn by the smooth one Ua + S θn Vn.

When proving the convergence of
∑

n δVn in a certain Sobolev space (here we assume it is Hs
∗(Ω)), we need to start with the

following induction hypothesis
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Induction hypothesis (Hn−1) : ∀0 ≤ i ≤ n − 1, ‖δVi‖s,∗ . εθ
s−α−1
i ∆i with ε � 1 and ∆i := θi+1 − θi,

and then prove a similar estimate for δVn, that is, ‖δVn‖s,∗ . εθ
s−α−1
n ∆n. In [64], this induction step was proven in Lemma 4.14.

To prove the existence in C∞, we need to get an improved estimate in the induction, that is, we start with the induction
hypothesis (Hn−1) above, then we need to prove the following “improved estimate” which is better than (Hn)

“Improved estimate”: ‖δVn‖s,∗ . θ
s−α′−1
n ∆n for some α′ = α + γ with γ > 0 a fixed positive number.

Once this is done, then we can replace the induction hypothesis (Hn−1) by the improved one and repeat this again and again, and
finally we will see

∑
n δVn converges in C([0,T ]; Hs+kγ

∗ ) for any k ∈ N where T > 0 is independent of k. See also the “additional
regularity” argument summarized in [3, pp.152], [54, Section 3.7] and adapted by Lindblad [38, (18.40)-(18.43)].

First, we find that, if there are only the first two error terms e′n, e
′′
n in [64, (4.26)-(4.27)], then one can get the following

estimates for δVn based on (Hn−1) above:

‖δVn‖s,∗ . ∆n

(
θs−α−1

n ‖ f a‖α,∗ + ε2θ
ζ2(s)−1
n

)
+ ∆n

(
θ5−α

n ‖ f a‖α,∗ + ε2θ
ζ2(6)−1
n

)
εθ(s+4−α)+

n

where ζ2(s) := max{(s + 2 − α)+ + 12 − 2α, s + 8 − 2α}, α ≥ 12, α̃ := α + 3, 6 ≤ s ≤ α̃ − 2. So the above estimates give us

‖δVn‖s,∗ . (‖ f a‖α,∗ + ε2)θs−α−1
n ∆n ⇒ ‖δVn‖s,∗ . εθ

s−α−1
n ∆n (9.1)

for ε > 0 and ‖ f a‖α,∗/ε sufficiently small. But if we compare the powers of θn, we find that ζ2(6) − 1 = max{3 − α, 14 − 2α} ≤
(5 − α) − 2 and ζ2(s) − 1 ≤ (s − α − 1) − 2. Based on this and the smoothness of f , we can get the improved estimates

‖δVn‖s,∗ . (‖ f a‖α+2,∗ + ε2)θs−α−1−2
n ∆n ⇒ ‖δVn‖s,∗ . θ

s−α−1−2
n ∆n (9.2)

for ε > 0 sufficiently small.
Then, starting from this new estimate, that is, replacing α by α′ = α+ 2, we can get improved estimates for the errors e′n, e′′n

and then the total error En := e0 + · · · + en−1 with ei := e′i + e′′i , the source term fn for the linearized problem, and δVn

‖ei‖s,∗ . εθ
ζ′2(s)−1
i ∆i, ‖S θn en−1‖s,∗ . ∆n−1εθ

ζ′2(s)−1
n−1

‖(S θn − S θn−1 )En−1‖s,∗ . ∆n−1εθ
ζ′2(s)−1
n−1 , ‖(S θn − S θn−1 ) f a‖s,∗ . ‖ f a‖α′,∗θ

s−α′−1
n ∆n

‖ fn‖s,∗ . ∆n(θs−α′−1
n ‖ f a‖α′,∗ + εθ

ζ′2(s)−1
n )

‖δVn‖s,∗ . ∆n

(
θs−α′−1

n ‖ f a‖α′,∗ + εθ
ζ′2(s)−1
n

)
+ ∆n

(
θ5−α′

n ‖ f a‖α′,∗ + εθ
ζ′2(6)−1
n

)
θ(s+4−α′)+

n ,

where ζ′2(s) is defined by replacing α with α′ (and hence ζ′2(s) ≤ ζ2(s) − 4). Note that ε2 in the previous estimates now
becomes ε because we use ‖ f g‖s,∗ . ‖ f ‖s,∗‖g‖4,∗ + ‖ f ‖4,∗‖g‖s,∗ and the ε arising from ‖ f ‖s,∗ is now replaced by 1. We know that
ζ′2(s) − 1 ≤ (s − α′ − 1) − 2 and thus we obtain

‖δVn‖s,∗ . (‖ f a‖α+2+2,∗ + ε)θs−α′−1−2
n ∆n ⇒ ‖δVn‖s,∗ . θ

s−α′−1−2
n ∆n. (9.3)

Again we replace the induction hypothesis (Hn−1) by ‖δVi‖s,∗ . θ
s−α′′−1
n ∆i for i ≤ n − 1 with α′′ = α + 2 × 2 to proceed the

Nash-Moser iteration. Repeat this again and again, we will get ‖δVi‖s,∗ . θ
s−α−2k−1
n ∆i for i ≤ n and for any k ∈ N. Hence, we

can follow the argument in Lindblad [38, (18.40)-(18.43)] to show that the series
∑

n δVn converges in C([0,T ]; Hs+2k
∗ (Ω)) for

any k with T independent of k and similarly
∑

n ∂
r
t δVn converges in C([0,T ]; Hs−r+2k

∗ (Ω)) for 0 ≤ r ≤ s. So the local existence
and uniqueness in C([0,T ] × C∞(Ω̄)) is proven, provided that one can construct a smooth data satisfying the compatibility
conditions up to infinite order, which will be achieved in Appendix A.3. The additional regularity in the time variable can be
obtained by differentiating (1.17) by ∂t repeatedly.

However, there are two extra error terms e′′′n ,Dn+ 1
2
δΨn in [64, (4.26)-(4.27)], which are produced because the free surface

of Ω(t) = T2 × (−∞, ϕ(t)) is directly flattened by an explicit diffeomorphism instead of using Lagrangian coordinates.

• e′′′n : modifications in the boundary conditions. Under the setting of [64], the kinematic boundary condition ∂tϕ = v ·N
and the constraint H ·N = 0 are involved in the equation. But the linearization breaks the structure of these two boundary
conditions. So after adding the increment in each step of Nash-Moser iteration, extra modifications are required to
guarantee these two boundary conditions hold for the basic state Vn+1 = Vn + δVn.
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• Dn+ 1
2
δΨn: Dropping the zero-th order term when replacing δVn by its “good unknown” δV̇n in the linearized

problem. To solve and prove the tame estimates for the linearized problem for δVn, the authors of [64] replaced the
variables δVn by the good unknown (without derivative) δV̇n := δVn − δΨn(∂3Vn/∂3Φn) and drop a zero-th order term
to get the so-called effective linearized problem. This step produces the problematic error Dn+ 1

2
δΨn due to that dropped

term. This is a bad term, as it contributes to ε2θs−α−1
n ∆n which prevents us improving the estimates of δVn.

Under the setting of Lagrangian coordinates, these two terms are not needed. For example, there were no such error terms in
Lindblad [38, 40] where the local existence for smooth solutions to Euler equations are proved by using Nash-Moser iteration.

Indeed, when using Lagrangian coordinates, the material derivative becomes ∂t and the kinematic boundary condition
then becomes “∂t is a tangential derivative”. In other words, there is no description for the position of ∂Ω(t) in Lagrangian
coordinates. Instead, the information of free surface is reflected by η which is defined as the flow map of velocity. Besides,
Lemma 1.1 shows that the magnetic field is completely determined by its initial data and the flow map, i.e., b = J−1(b0 · ∂)η,
and thus the MHD system (1.17) only includes the variables η, v, q. The boundary constraint is now just b3

0 = 0 that has
no dependence on time. Hence, we don’t have to consider the propagation of this condition when doing the iteration. The
formulation (1.17) does not affect the tame estimates, as we can still get the energy of J−1(b0 ·∂)δη together with δv and δq as in
(2.4). In fact, the linearized momentum equation still has the form parallel to the nonlinear problem ∂tδv− (b0 ·∂)2δη+∇AδQ =

· · · (with ρ, J omitted) and multiplying this by δv and integrating by parts in section 2.2-2.3 gives energy estimates. When the
variation operator δ falls on J−1, we can use ρ0 = RJ to get δρ0 = RδJ + JR′(q)δq and the positivity of density R and then δJ
can be expressed in terms of δq. This shows why we can avoid the modification error e′′′n .

The error Dn+ 1
2
δΨn can also be avoided. In Lagrangian coordinates, the analogue of δV̇n is equal to δVn − δηn · ∇AVn. When

doing tame estimates, we may still use δV̇n to do calculation, but we finally derive the energy inequality for δVn instead of δV̇n.
The reason is that their difference can be estimated by ‖δηn‖s,∗‖∇AVn‖L∞ ≤ ‖∇AVn‖L∞

∫ T
0 ‖δvn‖s,∗. The advantange is that δηn

has the same regularity as δvn so we don’t have derivative loss for this term; while under the setting of [64], the regularity for
δΨn is not the same as ∂tδΨn.

On the other hand, dropping the zero-th order term δηn ·∇AVn when solving the linearized problem is not necessary. Indeed,
the dropped term is a zero-th order term that can be moved to the right side, and the estimates for the “effective” linearized
problem (cf. [64, (3.25)]) shows that the interior inhomogeneous term comes with an time integral. Thus, one can solve the
linearized problem by using contraction mapping theorem in some [0,T ′0]. This T ′0 may be smaller than T0 obtained in [64,
Theorem 3.1], but since the system is linear, it can be continued to the full time interval [0,T0].

In Lagrangian coordinates, we have δηn is the flow map of δvn, and one can alternatively use the Galerkin method
presented in Gu-Luo-Zhang [23, Section 7.1] to prove the local existence of the linearized system. If we expand δη to
be

∑
j Z j(t)e j(y) for some Galerkin basis {e j}, then the zero-th order term dropped in [64] is just equal to

∑
j Z j(t)e j(y) ·

(coefficients only involving basic state) and the velocity becomes
∑

j Z′j(t)e j(y). The momentum equation is still an ODE in-
volving Z′′j (t), Z j(t) and terms involving magentic field and pressure. Thus, we no longer need to take into account the error
Dn+ 1

2
δΨn as in [64]. Based the above discussion, we claim that Theorem 1.2 holds.

9.2 Continuation of smooth solutions
To prove the continuation criterion for smooth solution stated in Theorem 1.5, we need to prove the energy inequality in the
following form

Em(t) ≤ Em(0) +

∫ T

0
P(Em−1(t))Em(t) dt, (9.4)

that is, the energy inequality for Em(t) is linear in Em(t) (the highest order terms). Once this energy inequality is proven, then
Theorem 1.5 follows by using contradiction. Indeed, for a given m, if T ∗m < +∞ and we still have Em−1(t) ≤ M in [0,T ∗m] for
some constant M > 0, then the above inequality shows that Em(t) ≤ Em(0)(1 + P(M)teP(M)t) in [0,T ∗m] and thus it still remains
bounded, which contradicts with the maximality of T m

∗ .
To verify the linearity of the highest order terms in the energy estimates, it suffices to analyze the commutators, either the

terms in the modified good unknowns or the reduction of normal derivatives on the boundary, such that the highest order term
is linear. For simplicity of notations, we only verify the case m = 8 and ∂I

∗ = ∂8 for the commutators appearing in the interior
estimates, and ∂I

∗ = ∂4
3 for commutators arising in the reduction of normal derivatives on the boundary.

Commutators [∂8, f ]Dg for f , g ∈ H8
∗ (Ω). Here D is a tangential derivative, such as ∂t or (b0 · ∂). Such commutators appear

when the energy terms are produced. The terms included in such commutators have the form ∂N f∂8−NDg for 1 ≤ N ≤ 8.
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Indeed, when 1 ≤ N ≤ 4, we put L∞(Ω) norm on f and L2(Ω) norm on g. When 5 ≤ N ≤ 8, we put L∞(Ω) norm on g and L2(Ω)
norm on f . By using the definition of anisotropic Sobolev space and the Sobolev embedding H2(Ω) ↪→ L∞(Ω), we will find

‖[∂8, f ]Dg‖0 . ‖ f ‖8,∗‖g‖5,∗ + ‖ f ‖7,∗‖g‖6,∗ + ‖ f ‖6,∗‖g‖7,∗ + ‖ f ‖5,∗‖g‖8,∗,

which is linear in ‖ · ‖8,∗ norm.

The error term I3 when producing the energy of q. In (4.21) and (5.37), we have the following term∫ T

0

∫
Ω

JR′(q)
ρ0

∂I
∗ηpÂlp∂lQ∂I

∗∂tq dy dt,

which is controlled after integrating by parts in ∂t. So, it introduces a term without time integral∫
Ω

JR′(q)
ρ0

∂I
∗ηpÂlp∂lQ∂I

∗q dy . ε‖q‖28,∗ +
1
4ε
‖∂I
∗η‖

2
0

∥∥∥∥∥ JR′(q)
ρ0

Âlp∂lQ
∥∥∥∥∥2

L∞
.

Note that the terms in L∞(Ω) norm only have at most one derivative, so this term is bounded by ‖ · ‖6,∗ norms of η, ρ0,Q. Next
using η = Id +

∫ T
0 v dt gives the energy estimate that is linear in ‖ · ‖8,∗ norm.

Commutators in modifided Alinhac good unknowns. This is the most involved part in the paper. We take the case ∂I
∗ = ∂8,

i.e., the most difficult case, for an example. Recall the calculations in section 5.1.1 and we find that the control of C3,C4,C5 is
parallel to C1 and the control of C6 is parallel to C2, so we only focus one the control of C1( f ) and C2( f ).

Recall that C1( f ) = 8∇i
A(∇p

A∂ f )∂7ηp−8([∂6, AlpAmi]∂mηp)∂∂l f . In the first term, the top-order part has the form P(∂η)∂2∂η∂7η,
whose L2(Ω) norm can be controlled by using H1(Ω) ↪→ L6(Ω)

‖∂2∂ f∂7η‖20 =

∫
Ω

∂2∂ f ∂7η ∂2∂ f ∂7η dy

∂
= −

∫
Ω

∂2∂2 f ∂7η ∂2∂ f ∂6η dy −
∫

Ω

∂2∂ f ∂8η ∂2∂ f ∂6η dy

. ‖∂2∂2 f ‖1‖∂2∂ f ‖1‖∂7η‖0‖∂
6η‖1 + ‖∂2∂ f ‖21‖∂

8η‖0‖∂
6η‖1

.‖η‖8,∗‖η‖7,∗‖ f ‖7,∗‖ f ‖8,∗ + ‖η‖28,∗‖ f ‖
2
7,∗ . E8(t)E7(t).

(9.5)

In the second term of C1( f ), we need to control ‖[∂6, AlpAmi]∂mηp‖0, whose top-order part reads P(∂η, ∂η)(∂N∂η)(∂6−N∂η) for
1 ≤ N ≤ 6. So it is controlled by

P(‖η‖7,∗)(‖∂6∂η‖0‖∂η‖L∞ + ‖∂5∂η‖0‖∂∂η‖L∞ + ‖∂4∂η‖0‖∂
3∂η‖L∞ ) ≤ P(‖η‖7,∗)‖η‖8,∗

The control of C2( f ) is divided into three parts in section 5.1.1, and C2(v), C21(Q) and C22(Q) are already controlled in our
desired form. Now we analyze C23(Q) that has the form ∂N Âlp∂7−N∂lQ for 1 ≤ N ≤ 6. For N = 5, 6, we put L2(Ω) norm on A
and L∞(Ω) norm on Q; and put L∞(Ω) norm on A and L2(Ω) norm on Q for 1 ≤ N ≤ 2. When n = 3, 4, we need a observation
that when l = 3, Â3p = ∂η× ∂η only contains tangential derivative; and when l = 1, 2, ∂l itself is tangential. So when N = 4, we
have either (∂4∂η × ∂η)∂4Q or (∂5η × ∂η)∂3∂Q which is controlled by

‖∂4∂η‖0‖∂η‖L∞‖∂
4Q‖L∞ + ‖∂5η‖L3‖∂η‖L∞‖∂

3∂Q‖L6 ≤ ‖η‖26,∗‖Q‖8,∗.

Similar approach applies to the modified good unknowns for other derivatives which shoule be easier than the case ∂I
∗ = ∂8.

So we show that, for a function f ∈ H8
∗ (Ω) and its “modified” good unknown F with respect to ∂I

∗, the following property holds

∂I
∗(∇

i
A f ) = ∇i

AF + Ci( f ), with ‖C( f )‖8,∗ ≤ P(E7(t))E8(t),

where Em(t) is the energy functional defined in (1.21).

The estimates for the modification terms ∆ f on Γ. In the boundary estimates in section 5.2.2, we have to control the L2(Γ)
norms of ∆Q,∆v and ∂t(J∆Q). Indeed, the analysis in (5.47) and the Sobolev inequality | f |W1,∞ ≤ ‖ f ‖5,∗ have already make the
energy estimates linear in the top-order term, that is,

|∆Q|0 + |∆v|0 + |∂t(J∆Q)|0 ≤ P(E7(t))E8(t).
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Commutators arising in the reduction of normal derivatives. When there is a normal derivative ∂3 included in ∂I
∗, we need

to repeatedly use the MHD system to reduce one normal derivative to one tangential derivative, which then produces lots of
commutators. We take ∂I

∗ = ∂4
3 for an example. There are two types of commutators in section 4.3 and we need to control their

| · |0 norm.

• [∂3
3, A

3i]∂3 f . This is easy to control, it equals to ∂3
3A3i∂3 f + 3∂2

3A3i∂2
3 f + 3∂3A3i∂3

3 f and is then controlled by

‖[∂3
3, A

3i]∂3 f ‖ ≤ P(|∂η, ∂∂η|L∞ )
(
|∂3

3η|1|∂3 f |L∞ + |∂2
3∂η|L4 |∂2

3 f |L4 + |∂3∂η|L∞ |∂
3
3 f |0

)
≤ P(‖η‖7,∗)(‖η‖4 + ‖ f ‖4), (9.6)

where we use the fact that A3i = ∂η × ∂η.

• [∂2
3, A

LpAmi]∂3∂mηp, L = 1, 2. The analysis is similar as above, because the top-order term has the form (∂3
3η)(∂2

3η)P(∂η).

Summarizing the above analysis, we show that, for m ≥ 8, the energy inequality is in fact

Em(T ) ≤ Em(0) + P(Em−1(T ))
∫ T

0
Em(t)P(Em−1(t)) dt,

so we have proved a continuation criterion.

9.3 Passing to the case of initial data satisfying compatibility conditions up to finite order
Finally, we prove Theorem 1.6. First we recall that, we say the initial data (v0, b0,Q0) satisfies the compatibility conditions up
to k-th order, if Q j := ∂

j
t Q|t=0 = 0 on Γ holds for 0 ≤ j ≤ k; and we say (v0, b0,Q0) satisfies the compatibility conditions up to

infinite order if Q j := ∂
j
t Q|t=0 = 0 on Γ holds for all j ≥ 0, j ∈ Z.

Given an integer m ≥ 8 and initial data U0 := (v0, b0,Q0) satisfying the compatibility conditions up to (m − 1)-th order,
assume we already find a sequence of smooth data U(n)

0 := (v(n)
0 , b(n)

0 ,Q(n)
0 ) satisfying the compatibility conditions up to infinite

order, such that ‖U(n)
0 − U0‖m → 0 as n→ ∞. Now we introduce the following procedure:

1. For each n, using Theorem 1.2, we know there exists a unique smooth solution U(n)(t, ·) ∈ C∞([0,T (n)]; Ω) for some
T (n) > 0. The lifespan T (n) may depend on n at this point.

2. By our a priori estimates (Theorem 1.3), we have ‖U(n)(t, ·)‖m,∗ ≤ P(‖U(n)(0, ·)‖m,∗) ≤ P(‖U(n)
0 ‖m) provided the existence

and the right side is independent of n. Using the continuation criterion (Theorem 1.5), we can extend the solution a bit
more after T (n), until the a priori bounds become invalid. So, the lifespan of {U(n)(t)} in H8

∗ (Ω) has a lower bound T0
independent of n.

3. Using Theorem 1.4, we know ‖U(k)(t, ·) − U(l)(t, ·)‖m−2,∗ ≤ C(‖U(k)
0 − U(l)

0 ‖m−2)P(‖U(k)
0 ,U(l)

0 ‖m). Here C(·) > 0 is a
continuous function of its arguments and C(x) → 0 as |x| → 0. This is because the equations for U(k) − U(l) are linear
in U(k) − U(l), so (∂k

t U(k) − ∂k
t U(l))|t=0 can be expressed linearly in terms of U(k)

0 − U(l)
0 . When k, l → ∞, the right side

converges to zero, and then {U(n)(t)} has a limit U(t) ∈ Hm−2
∗ (Ω) in [0,T0].

4. The limit U(t) must be a solution with the given initial data U0 ∈ Hm(Ω) by using Sobolev embedding. Since each U(n)(t)
belogns to Hm

∗ (Ω) in [0,T0], we know by the a priori bounds, the limit U(t) also satisifies ‖U(t)‖m,∗ ≤ P(‖U0‖m) in some
[0,Tm] with Tm only depending on ‖U0‖m, c0 in the Rayleigh-Taylor sign, and A0 in the equation of state.

Therefore, under the assumption of Theorem 1.6, for each given data U0 := (v0, b0,Q0) satisfying the compatibility
conditions up to (m − 1)-th order, we prove that there exists a unique solution to (1.17) in C([0,Tm],Hm

∗ (Ω)) for some Tm only
depending on ‖U0‖m, c0 in the Rayleigh-Taylor sign, and A0 in the equation of state. This solution also satisfies the a priori
bounds, continuous dependence on initial data and uniqueness as stated in Theorem 1.3 and Theorem 1.4.

A Construction of smooth data satisfying compatibility conditions up to infinite
order

In the appendix, we prove the existence of smooth data satisfying compatibility conditions up to infinite order. Assume m ≥ 8
is an integer and we are given an initial data (w0, b0, P0) satisfying the compatibility conditions up to (m−1)-th order in Hm(Ω),
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where P0 is the total pressure, while the fluid pressure is denoted by p0 = P0 −
1
2 |b0|

2. For simplicity of notations, we assume
R′(q)/R|R=1 = 1.

The initial constraints and compatibility conditions for (w0, b0, P0) are

• (Compatibility conditions) P( j) := ∂
j
t P|t=0 = 0 on Γ, 0 ≤ j ≤ m − 1.

• (Initial constraints) div b0 = 0 in Ω, b3
0|Γ = 0, and the Rayleigh-Taylor sign condition − ∂P0

∂N ≥ c0 > 0 on Γ.

A.1 Compatibility conditions in terms of initial data
First we express the compatibility conditions in terms of w0, b0, P0. The zero-th order compatibility condition is P0|Γ = 0. To
express the first-order compatibility condition, we use P = p + 1

2 |b0|
2, where p is the fluid pressure, the continuity equation

∂t p + div v = 0, and ∂tb = b · ∇v − bdiv v to get (we omit the coefficient A as it equals to Id at t = 0. The appearance of A does
not affect the essence of the proof.)

div w0 = −|b0|
2div w0 + (b̄0 · ∇)w0 · b0 on Γ, (A.1)

and we define the right side of (A.1) to be the functionalM−1(w0, b0). Next we take divergence in the momentum equation to
get a wave equation of P

∂2
t P − ∆P = ∂2

t (
1
2
|b|2) + ∇iw j∇ jwi − ∇ib j∇ jbi, P0|Γ = 0 (A.2)

and again use ∂tb = b · ∇v − bdiv v and ∂tv ∼ (b0 · ∂)b − ∇P to get

∂2
t P − ∆P =M0(w0, b0, P0) +N0(w0, b0) on {t = 0},

where N0(w0, b0) := ∇iw
j
0∇ jwi

0 − ∇ib
j
0∇ jbi

0 andM0(w0, b0, P0) is defined by

M0(w0, b0, P0) := |b0|
2∆P0 − (b0 · ∇)2P0 + (b0 · ∇)2b0 · b0 + R0(w0, b0)

and R0(w0, b0) only contains the first-order derivative of b0 and v0

R0(w0, b0) := P0(b0)
(
(∇i1 w0)(∇i2 w0) + (∇ j1 b0)(∇ j2 b0)

)
,

where P0(b0) is a polynomial of b0 only contains cubic and quadratic terms, and (i1, i2, j1, j2) = (1, 1, 0, 0) or (0, 0, 1, 1).
We see that the 2nd-order compatibility condition P(2) := ∂2

t P|t=0 = 0 on Γ is equivalent to (we use b3
0|Γ = 0)

− ∆P0 =M0(w0, b0, P0) +N0(w0, b0, P0) = |b0|
2∆P0 − (b̄0 · ∇)2P0 + (b̄0 · ∇)2b0 · b0 + R(w0, b0) on Γ. (A.3)

Taking time derivatives in the wave equation above repeatedly we get for k ≥ 1

P(k+2) − ∆P(k) =Mk(w0, b0, P0) +Nk(w0, b0, P0) in Ω,

where, after long and tedious calculations, the functionalsMk,Nk have the following form for r ≥ 1

k = 2r − 1, M2r−1(w0, b0, P0) = − |b0|
2∆rdiv w0 + (b̄0 · ∇)2∆r−1div w0

+

r+1∑
l=2

bi1
0 · · · b

i2l
0 (∇2r+1w0)︸                  ︷︷                  ︸

<2l terms

+R2r−1(w0, b0, P0), (A.4)

k = 2r, M2r(w0, b0, P0) = |b0|
2∆r+1P0 − (b̄0 · ∇)2∆rP0 + R2r(w0, b0, P0),

+

r+1∑
l=2

(b̄0 · ∇)r+2(∇rb0)bi1
0 · · · b

i2l
0 + (b̄0 · ∇)2(∇2rP0)b j1

0 · · · b
j2l
0︸                                                                  ︷︷                                                                  ︸

<2l terms

; (A.5)

and the term Rk, where every top-order term has (k + 1)-th order derivative, has the following form

Rk(w0, b0, P0) = Pk(b0)
(
Ck

i1···im, j1··· jn,k1···kl
(∇i1 w0) · · · (∇im w0)(∇ j1 b0) · · · (∇ jn b0)(∇k1 P0) · · · (∇kl P0)

)
,
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where Pk(·) is a polynomial of its arguments and the lowest power is 4 and the indices above satisfy

1 ≤ i1, · · · , im, j1, · · · , jn ≤ k + 1, 0 ≤ k1, · · · , kl ≤ k + 1,
i1 + · · · + im + j1 + · · · + jn + k1 + · · · + kl = k + 1.

The term Nk(w0, b0, P0) has the following form

Nk(w0, b0, P0) = Pk,1(b0)(∇1+2b k
2 cw0)(∇w0) + Pk,2(b0)(∇2d k

2 eP0)(∇w0) + Pk,0(b0)(∇k+1b0)(∇w0)

+ P′k(b0)Dk
i1···im, j1··· jn,k1···kl

(
(∇i1 w0) · · · (∇im w0)(∇ j1 b0) · · · (∇ jn b0)(∇k1 P0) · · · (∇kl P0)

)
,

where Pk,1(·), Pk,2(·), P′k(·) are polynomials of their arguments and Pk,0(·) is a polynomial of its arguments and the lowest power
is 2. The indices above satisfy

1 ≤ i1, · · · , im, j1, · · · , jn ≤ k, 0 ≤ k1, · · · , kl ≤ k,

i1 + · · · + im + j1 + · · · + jn + k1 + · · · + kl = k + 1.

So the k-th compatibility condition can be equivalently written as

k = 2r + 1, ∆rdiv w0 =

r∑
j=0

∆ j(M2r−1−2 j(w0, b0, P0) +N2r−1−2 j(w0, b0, P0)) on Γ, (A.6)

k = 2r, − ∆rP0 =

r−1∑
j=0

∆ j(M2r−2−2 j(w0, b0, P0) +N2r−2−2 j(w0, b0, P0)) on Γ, (A.7)

whereM−1(w0, b0) := |b0|
2div w0 − (b0 · ∇)w0 · b0 and N−1 := 0.

A.2 Regularization of the given data and recovery of compatibility conditions
To construct a smooth data satisfying the compatibility conditions up to infinite order, the first step is to regularize the given
data such that we get smooth functions. By the standard approximation of Sobolev function, we know for any given ε > 0,
there exists (wε

0, b
ε
0, P

ε
0) ∈ C∞(Ω) such that

‖wε
0 − w0, bε0 − b0, Pε

0 − P0‖s < ε.

However, such smooth approximation does not preserve the boundary conditions, even for the vanishing boundary condi-
tions for P0 and b3

0. So we need to recover the compatibility conditions up to the same order as the given data.
From now on, we assume

• m = 8, that is, the given data satisfies the compatibility conditions (A.6)-(A.7) up to 7-th order. This corresponds to the
minimal requirement in Theorem 1.3.

• ‖b0‖L∞(Ω̄) < δ0 < 1 where δ0 is a suitably small number to be determined: to absorb the terms containing (k + 2)-th order
derivative arising inMk. Note that we do not need ‖b0‖L∞(Ω̄) to be arbitrarily small in the proof.

A.2.1 Recovering the initial constraints

The new data should also satisfy the initial constraints: divergence-free condition of magnetic field, vanishing normal compo-
nent of magnetic field on the boundary and the Rayleigh-Taylor sign condition. The Rayleigh-Taylor sign condition still holds
for Pε

0, as −∂3Pε
0 is just a small perturbation of −∂3P0. We then modify bε0. First, we introduce b̃ε0 defined by

b̃ε,10 = bε,10 , b̃ε,20 = bε,20 ; − ∆b̃ε,30 = −∆bε,30 in Ω, b̃ε,30 = 0 on Γ, (A.8)

and then b̃ε0 ∈ C∞(Ω) and the elliptic estimates imply ‖b̃ε0 − b0‖s ≤ ‖bε0 − b0‖s + |0 − 0|s−0.5 = O(ε). Next, we recover the
divergence-free condition by introducing bε0 := b̃ε0 + ∇ϕ with ϕ determined by

−∆ϕ = div b̃ε0 in Ω, ∂3ϕ = 0 on Γ. (A.9)

With this modification, we now have div bε0 = div b̃ε0 + ∆ϕ = 0 in Ω, and b3
0|Γ = 0 still holds thanks to the Neumann boundary

condition ∂3ϕ = 0 on Γ. So, bε0 is the desired magnetic field that we need, and it still satisfies a smallness assumption ‖b0‖L∞(Ω̄) <
2δ0. We’ll drop ε in b0 for the sake of clean notations.
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A.2.2 Recovering the compatibility conditions up to (m − 1)-th order

Next we focus on the modification of wε
0, P

ε
0. After the regularization, we don’t even know if Pε

0 = 0 on Γ holds or not. So the
first step is to recover the 0-th order compatibility condition P0|Γ = 0. We define P(1)

0 by

−∆P(1)
0 = −∆Pε

0 in Ω, P(1)
0 = 0 on Γ. (A.10)

Since P0|Γ = 0, we know
‖P(1)

0 − P0‖s ≤ ‖Pε
0 − P0‖s + |0 − 0|s−0.5 = O(ε).

Next we define w(1)
0 to be the following function such that (w(1)

0 ,b0,P(1)
0 ) satisfies the compatibility condition up to first

order: w(1),1
0 = wε,1

0 , w(1),2
0 = wε,2

0 and w(1),3
0 is determined by the bi-harmonic system ∆2w(1),3

0 = ∆2wε,3
0 in Ω,

w(1),3
0 = wε,3

0 , ∂3w(1),3
0 = −∂1wε,1

0 − ∂2wε,2
0 +M−1(w(1)

0 ,b0) on Γ,
(A.11)

whereM−1(w(1)
0 ,b(1)

0 ) is given by (A.1). Note that the second boundary contidition only involves ∂3w(1)
0 because the tangential

components are the same of wε
0. So the elliptic estimates give us

‖w(1)
0 − w0‖s . ‖∆

2wε
0 − ∆2w0‖s−4 + |wε

0 − w0|s−0.5 + |∂3w(1)
0 − ∂3w0|s−1.5

. O(ε) + |b0|
2
L∞ |∇w(1)

0 − ∇w0|s−1.5,
(A.12)

where the last term can be absorbed by the left side if we pick δ0 sufficiently small. Therefore, by the second boundary
condition, we know (w(1)

0 ,b0,P(1)
0 ) satisfies the compatibility condition up to first order.

Again, we construct P(2)
0 such that (w(1)

0 ,b0,P(2)
0 ) satisfies the compatibility condition (A.7) up to 2nd order. The new

pressure is defined by the poly-harmonic system
−∆3P(2)

0 = −∆3P(1)
0 in Ω,

P(2)
0 = P(1)

0 = 0, ∂3P(2)
0 = ∂3P(1)

0 on Γ,

−∆P(2)
0 =M0(w(1)

0 ,b0,P
(1)) +N0(w(1)

0 ,b0) on Γ,

(A.13)

and thus

‖P(2)
0 − P0‖s . ‖∆

3P(1)
0 − ∆3P0‖s−6 + |∂3P(1)

0 − ∂3P0|s−1.5

+ |M0(w(1)
0 ,b0, ‖Q(m−1)

(m+7)‖0 + ‖Q(m−1)
(m+6)‖

(1)
1 ) +M0(w(1)

0 ,b0) −M0(w0, b0, P0) − N0(w0, b0)|s−2.5

. O(ε) + |b0|
2
L∞ |∂

2
3(P(2)

0 − P0)|s−2.5,

(A.14)

where the last term is again absorbed by the left side if we choose |b0| ≤ δ0 to be suitably small. It should also be noted that,
Mk also has other terms containing (k + 2)-th order derivative, but there are at least two derivatives appearing as (b̄0 · ∇), and
thus we can replace P(2)

0 with P(1)
0 using the remaining boundary conditions.

Next we construct w(2)
0 via the following system such that (w(2)

0 ,b0,P(2)
0 ) satisfies the compatibility condition (A.6) up to

3rd order. 
∆4w(2),3

0 = ∆4w(1),3
0 in Ω,

∂
j
3w(2),3

0 = ∂
j
3w(1),3

0 , (0 ≤ j ≤ 2) on Γ

∆div w(2)
0 =M1(w(2)

0 ,b0,P(2)
0 ) +N1(w(2)

0 ,b0,P(2)
0 ) + ∆M−1(w(1)

0 ,b0) on Γ,

(A.15)

and similarly as above we can get

‖w(2)
0 − w0‖s . ‖∆

4w(1)
0 − ∆4w0‖s−8 +

2∑
j=0

|∂
j
3w(1)

0 − ∂
j
3w0|s− j−0.5

+ |(M1 +N1 + ∆M−1)(w(1)
0 ,b0,P(2)

0 ) − (M1 +N1 + ∆M−1)(w0, b0, P0)|s−3.5

. O(ε) + |b0|
2
L∞ |∂

3
3(w(2)

0 − w0)|s−3.5,

(A.16)
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where the last term is again absorbed by the left side if we choose |b0| ≤ δ0 to be suitably small.
So, we can repeat the above procedures such that P(m)

0 is determined by the poly-harmonic equation ∆2m−1P(m)
0 = ∆2m−1P(m−1)

0

in Ω equipped with the boundary conditions ∂ j
3P(m)

0 = ∂
j
3P(m−1)

0 on Γ for 0 ≤ j ≤ 2m − 3 and the compatibility condition (A.7)
for the case k = 2m − 2 with (w0, b0, P0) replaced by (w(m−1)

0 ,b0,P(m)
0 ).

Similarly, w(m)
0 is determined by w(m),1,2

0 = w(m−1),1,2
0 and ∆2mw(m),3

0 = ∆2mw(m−1),3
0 in Ω equipped with the boundary con-

ditions ∂ j
3w(m),3

0 = ∂
j
3w(m−1),3

0 on Γ for 0 ≤ j ≤ 2m − 2 and the compatibility condition (A.6) for the case k = 2m − 1 with
(w0, b0, P0) replaced by (w(m)

0 ,b0,P(m)
0 ).

Since the given rough data (w0, b0, P0) satisfies the compatibility conditions up to 7-th order, we stop the above procedure
after we get (w(4)

0 ,b0,P(4)
0 ) which is a smooth data and also satisfies the compatibility conditions up to 7-th order. We rename

this smooth data to be (v0,b0,Q0). For any given ε > 0, we construct a smooth data (v0,b0,Q0) that satisfies the compatibility
conditions up to the same order as the given rough data (w0, b0, P0) and has the following approximation

‖v0 − w0‖8 + ‖b0 − b0‖8 + ‖Q0 − P0‖8 = O(ε). (A.17)

A.3 Extend the compatibility conditions up to infinite order

A.3.1 Formal constructions

We then try to extend the initial data such that the compatibility conditions are fulfilled up to infinite order. First we briefly
state some formal construction. Recall in section A, for a given data (w0, b0, P0), the corresonding solution satisfies the wave
equation

∂2
t P − ∆bP =M0(v, b, P) +N0(v, b), ∆b := (1 + |b|2)∆ − (b · ∂)2,

and M0(v, b, P) := (b0 · ∂)2b · b + R(v, b) where R only contains the first-order derivatives of b, v. So if we start with an
irrotational velocity w0 = ∇ψ and define P(−1) := −ψ, then since P = p + 1

2 |b|
2 we have

∂tP = ∂t p + b · ∂tb = −div w + b · ((b · ∂)w − bdiv w) = −(1 + |b|2)div w + (b · ∂)w · b,

which then gives, after restricting it to {t = 0}

−∆bP(−1) = −P(1) + (b0 · ∂)∇ψ · b0,

where the right side only depends on the given data of velocity and magnetic field. Taking more time derivatives and setting
t = 0 yields an infinite elliptic system of the form

−∆b0 P(k) = −P(k+2) +N ′k(P(−1), · · · , P(k−1)), k ≥ −1,

where N ′k is a functional that only depends on the derivatives of its arguments and b0 up to a certain order. This system has
similar structure as in [40, Lemma 16.1] and thus can be solved in a similar manner. The only difference comes from the
appearance of magnetic field, but (b0 · ∂) is a tangential derivatiev and we can pick suitable b0 such that its normal component
vanishes in a neighborhood of the boundary.

A.3.2 Full construction procedure

For specific calculations, we now define the desired smooth data (v∞0 ,b
∞
0 ,Q

∞
0 ) by

v∞0 := v0 − ∇Q∞(−1), b∞0 := b0. (A.18)

And after a long and tedious calculation, we find Q∞0 is determined by the following infinite elliptic system in Ω, where
λ := 1 + |b0|

2.

−λ∆Q∞−1 = − (Q∞(1) −Q(1)) − (b0 · ∇)2Q∞−1 +N ′−1(b0,Q∞−1) (A.19)

−λ∆Q∞0 = −Q∞(2) − (b0 · ∇)2Q∞0 + (b0 · ∇)2b0 · b0 +N ′0(b0, v∞0 ,Q
∞
−1) (A.20)

−λ∆Q∞(1) = −Q∞(3) − (b0 · ∇)2Q∞1 + (b0 · ∇)3v∞0 · b0 − |b0|
2(b0 · ∇)2(∇ · v∞0 ) +N ′1(b0, v∞0 ,Q

∞
−1,Q

∞
0 ), (A.21)

−λ∆Q∞(2) = −Q∞(4) − (b0 · ∇)2∆Q∞0 +N ′2(b0, v∞0 ,Q
∞
−1,Q

∞
0 ,Q

∞
(1)) (A.22)
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and for k ≥ 2

−λ∆Q∞(k) = −Q∞(k+2) − (b0 · ∇)2∆Q∞(k−2) +N ′k(b0, v∞0 ,Q
∞
−1,Q

∞
0 ,Q

∞
(1), · · · ,Q

∞
(k−1)), (A.23)

with vanishing boundary conditions for each Q(k). These N ′k’s have the following structure

N ′k(v∞0 ,b0,Q∞(−1), · · · ,Q
(∞)
(k−1))

= P(b0)Ck;m1···mr
i1···im, j1··· jn,k1···kr

(
(∇i1 v∞0 ) · · · (∇im v∞0 )(∇ j1 b0) · · · (∇ jn b0)(∇k1 Q(m1)) · · · (∇kr Q(ml))

)
,

(A.24)

where the indices satisfy

i1 + · · · + im + j1 + · · · + jn + (k1 + m1) + · · · + (kr + mr) = k + 2,
1 ≤ i1, · · · , im, j1, · · · , jm, k1, · · · , kr ≤ k + 1,

−1 ≤ m1, · · · ,mr ≤ k − 1, 1 ≤ k1 + m1, · · · , kr + mr ≤ k + 1.

Remark. Note that (A.22) is derived from taking two time derivatives in (A.20). On can also In fact, taking two time derivatives
in (A.20), we know the right side has top-order terms (b0 · ∇)2Q2 − (b0 · ∇)2b2 · b0. For the latter term (b0 · ∇)2b2 · b0, we recall
that Q = q + 1

2 |b0|
2. Taking one time derivative and using continuity equation, we get Q(1) = −div v0 + b1 · b0. Taking one

more time derivative and using the momentum equation v1 = (b0 · ∇)b0 −∇Q0, we get div v1 = div (−∇Q0 + (b0 · ∇)b0). Using
div b0 = 0 we know div (b0 · ∇)b0 is of lower order. So we have Q(2) ∼ ∆Q0 + b2 · b0, and thus

(b0 · ∇)2Q2 − (b0 · ∇)2b2 · b0 = (b0 · ∇)2∆Q0 + lower order terms.

We choose to write in this form because it makes equations shorter. Alternatively one can differentiate (A.21) in time
variable again and again to get the form −∆b0 Q∞(k) = −Q∞(k+2) +M′k(b∞0 ,Q(−1), · · · ,Q(k−1)) + N ′k(b∞0 ,Q(−1), · · · ,Q(k−1)) where
∆b0 := (1 + |b0|

2)∆ − (b0 · ∇)2, andM′k denotes the terms containing (k + 2)-th order derivative.

This elliptic system has a parallel structure as [40, (16.11)]. Following [40, Lemma 16.2], we impose the system with
boundary conditions

Q∞(k)|Γ = Q0,k, − ∇NQ∞(k)|Γ = Q1,k, k ≥ −1.

Then the system has a formal power series in the distance to the boundary

Q(k)(r, ω) ∼
∑

Qn,k(ω)
(1 − r)n

n!
,

where r is the distance to the boundary and ω is the angular variable. Let 0 ≤ χ(·) ≤ 1 be a smooth bump function on R that
equals to 1 in [−1, 1] and vanishes outside [−2, 2]. Then, by [40, Lemma 16.2], there exist εk,n such that

Q(k)(r, ω) =
∑

χ

(
1 − r
εk,n

)
Qn,k(ω)

(1 − r)n

n!
,

such that the above elliptic system holds to infinite order on the boundary. Note that (b0 · ∇) is tangential on the boundary and
b0 has smallness assumption, so the extra terms involving b0 will not affect the convergence of the power series.

Now let (ṽ0,b0, Q̃0) are functions that vanish to infinite order on the boundary. Define

w∞0 := ṽ0 − ∇Q(−1), P∞0 := Q̃0 + Q0, P(1) := −(1 + |b0|
2)(div ṽ0 + ∆Q(−1)) + (b0 · ∇)w∞0 · b0,

where Q0,Q(−1) are given by the above construction. Then inductively one can show that P∞(k) = Q̃0(k) + Q(k), where Q(k) are
constructed above and Q̃0(k) vanishes to infinite order on the boundary. Hence, choosing boundary data such that Q0,k = 0 for
k ≥ 0 and Q1,k ≥ c0 > 0, then the Rayleigh-Taylor sign condition for P∞0 is fulfilled and also we have P∞(k)|Γ = 0 for all k ≥ 0.
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