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Abstract

We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign
condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. A local existence
and uniqueness result was recently proved by Trakhinin and Wang [64] by using Nash-Moser iteration. However, that result
loses regularity going from data to solution. In this paper, we show that the Nash-Moser iteration scheme in [64] can be
improved such that the local-in-time smooth solution exists and is unique when the initial data is smooth and satisfies the
compatibility condition up to infinite order. Second, we prove the a priori estimates without loss of regularity for the free-
boundary compressible MHD system in Lagrangian coordinates in anisotropic Sobolev space, with more regularity tangential
to the boundary than in the normal direction. It is based on modified Alinhac good unknowns, which take into account the
covariance under the change of coordinates to avoid the derivative loss; full utilization of the cancellation structures of MHD
system, to turn normal derivatives into tangential ones; and delicate analysis in anisotropic Sobolev spaces. As a result, we can
prove the uniqueness and the continuous dependence on initial data provided the local existence, and a continuation criterion
for smooth solution. Finally, we extend the local well-posedness theorem to the case of initial data only satisfying compatibility
conditions up to finite order, assuming these can be approximated by data satisfying infinitely many compatibility conditions.
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1 Introduction
In this paper, we consider the 3D compressible ideal magnetohydrodynamics (MHD) equations

pDu=B-VB-VP, P:=p+ 3B’ inD;

Dip+p(V-u)=0 in D; (1.1
D,B=B-Vu-B(V -u), in D; '
V-B=0 in D,

describing the motion of a compressible conducting fluid in an electro-magnetic field. Here D := (Jo,<7{t} X D, and D, C R?
is the domain occupied by the conducting fluid whose boundary D, moves with the velocity of the fluid. V := (dy,,dy,, 0x,)
is the standard spatial derivative and div X := 8,, X’ is the standard divergence for any vector field X. D, := 8, + u - V is the
material derivative. Throughout this paper, X' = §"X; for any vector field X, i.e., we use Einstein summation convention. The
fluid velocity u = (uy, us, u3), the magnetic field B = (By, By, B3), the fluid density p, the fluid pressure p and the domain
D C [0,T] x R? are to be determined. Here we consider the isentropic case, and thus the fluid pressure p = p(p) should be a
given strictly increasing smooth function of the density p.

1.1 Initial and boundary conditions and constraints

The boundary conditions of (1.1) are
Dilop € T (0D)
P=0 on 09D, (1.2)
B-n=0 on 0D,
where 7 (0D) denotes the tangent bundle of 9D and n denotes the unit exterior normal vector to d9;. The first condition in
(1.2) means that the boundary moves with the velocity of the fluid. It can be equivalently rewritten as “V(9D;) = u - n on 09"

or “(1,u) is tangent to 3D”. The second condition in (1.2) means that outside the fluid region D; is the vacuum. The third
boundary condition B - n = 0 shows that the fluid is a perfect conductor.

Remark. The conditions V- B = 0in D and B - n = 0 on 9 are both constraints only for initial data so that the system is not
over-determined. They can propagate to any time ¢ > 0 if initially hold. See Hao-Luo [29] for details.

We consider the Cauchy problem of (1.1): Given a bounded domain Dy C R* and the initial data ug, py and By satisfying
the constraints V - By = 0 in Dy and (By - n)ljojxap, = 0, we want to find a set D, the vector field u, the magnetic field B, and the
density p solving (1.1) satisfying the boundary conditions (1.2) and the initial data

Do=1{x:0,x) € D}, (u,B,p)= (ug,Bo,po), 1in {0} X Dy, (1.3)

Energy conservation law The free-boundary compressible MHD system (1.1) together with the boundary conditions (1.2)
satisfies the following energy conservation law. Let Q(p) = flp P(R)/R*dR, then we use (1.1) to get

d(1 , o1 s f
—|= dx+ = | |BPd d
dt(z fD’plul X+ 5 z),| |“dx + Z),pQ(p) X)

1
=fpu-D,udx+f B~D,de+fpD,Q(p)dx+—fpD,(l/p)|B|2dx
D, D, , 2 Jp,

:fu-(B~VB)dx—f u~Vde+fB'(B'Vu)dx—f IBP(V - u)dx

Dy
D D
+ f P(o) = dx - L
D, p

D,
1
= | ==IBPdx.
2Jp, P
Integrating by part in the first term in the last equality, this term will cancel with fz) B - (B - Vu)dx because the boundary
term and the other interior term vanish due to B - n|sp, = 0 and div B = 0. Also we integrate by parts in the second term and

(1.4)



then use the continuity equation to get

D 1
—fu~Vde:fP(V~u)dx—f (u~N)PdS:—f p—’pdx+—f IBR(V - u) dx
; ; D, D, P 2 D,
N e’

=0

D 1
=—f p—’pdx+ IBIZ(V-u)dx——f IB(V - u)dx
. P

- fp—dx+f|B| (V-u)ydx + = f Db g gy
1 lp

where dS is the surface measure of 0D;.
Summing up (1.4) and (1.5), one can get the energy conservation

a1 2qe 4 L 2 _
dt(Z prlul dx+2fl|B| dx+fDpo(p)dx)—O. (1.6)

When B = 0, one can see such energy conservation exactly coincides with that of free-boundary compressible Euler equations
established in Lindblad-Luo [41].

(1.5)

Equation of state: Isentropic liquid We assume the fluid considered in this paper is an isentropic liquid, i.e., there exists
some constant 0 < p; < p, such that p; < p < p, as opposed to a gas', and the fluid pressure p = p(p) is an increasing smooth
function of p. Next we impose the following natural conditions on p’(p) for some fixed constant Ay > 1.

Ayt < 1™ (p) < Ag form > 1. (1.7)

For example, the equation of state p(p) = y~'(o” — 1)/c* (y > 1) satisfies this relation.

Rayleigh-Taylor sign condition We also need to impose the Rayleigh-Taylor sign condition
—V,P>cy>0 ondD;, (1.8)

where ¢y > 0 is a constant and P := p + %IBI2 is the total pressure. When B = 0, Ebin [16] proved the ill-posedness of the free-
boundary incompressible Euler equations when the Rayleigh-Taylor sign condition is violated. For the free-boundary MHD
equations, (1.8) is also necessary: Hao-Luo [30] proved that the free-boundary problem of 2D incompressible MHD equations
is ill-posed when (1.8) fails. We also note that (1.8) is only required for initial data and it propagates in a short time interval

because one can prove it is C * Holder continuous by using Morrey’s embedding.

Compatibility conditions on initial data To make the initial-boundary value problem (1.1)-(1.3) well-posed, the initial data
has to satisfy certain compatibility conditions on the boundary. In fact, we need to require Pylsp,=0. Also the constraints on
the magnetic field div B = 0 and B - n|sp = 0 requires that V - By = 0 and By - nljgjxan, = 0. Furthermore, we say the initial data
satisfies the compatibility condition up to k-th(k > 0) order if

D! Plojxan, =0 YO < j < k. (1.9)

When (1.9) is fulfilled for any j € N, we say the initial data satisfies the compatibility conditions to infinite order.

1.2 History and background
1.2.1 Background in physics

The free-boundary problem (1.1)-(1.3) can be considered as the basic model of the plasma-vacuum free-interface problem
which is important in the study of confined plasma both in laboratory and in astro-physical magnetohydrodynamics. The
plasma is confined in a vacuum in which there is another magnetic field B, and there is a free interface I'(r), moving with the

'In the case of a gas, the boundary condition should be p = 0.



motion of plasma, between the plasma region Q. (¢) and the vacuum region Q_(#). This model requires that (1.1) holds in the
plasma region Q. (7) and the pre-Maxwell system holds in vacuum Q_(?):

VxB=0, V-B=0. (1.10)
On the interface I'(?), it is required that there is no jump for the pressure or the normal components of the magnetic fields:

N

. 1 1
B-n=B-n=0, P:=p+§|BI2=§|B|2 (1.11)

where n is the exterior unit normal to I'(¢). Finally, there is a rigid wall W wrapping the vacuum region, on which the following
boundary condition holds
Bxn=J onW,

where J is the given outer surface current density (as an external input of energy) and 7 is the exterior normal to the rigid wall
W. Note that for ideal MHD, the conditions div B = 0 and B-n = 0 should also be constraints for initial data instead of imposed
conditions. For details we refer to [20, Chapter 4, 6].

Hence, the free-boundary problem (1.1)-(1.3) can be considered as a special case of plasma-vacuum model that the vacuum
magnetic field B vanishes. It characterizes the motion of an isolated perfect conducting fluid in an electro-magnetic field.

1.2.2 An overview of previous results

In the past a few decades, there have been numerous studies of the free-boundary inviscid fluids. We start with incompressible
Euler equations.

Free-boundary Euler equations The free-boundary Euler equations have been studied intensively by a lot of authors. The
first breakthrough in solving the local well-posedness (LWP) for the incompressible irrotational problem for general initial
data came in the work of Wu [68, 69] who proved the LWP of 2D and 3D full water wave system. In the case of nonzero
vorticity, Christodoulou-Lindblad [8] first established the a priori estimates and then Lindblad [37, 38] proved the LWP by
using Nash-Moser iteration. Coutand-Shkoller [12, 13] proved the LWP for incompressible Euler equations with or without
surface tension and avoid the loss of regularity by introducing tangential smoothing method. We also refer to the related works
[74, 1, 56, 57, 58] and references therein.

The study of compressible perfect fluid is not quite developed as opposed to the incompressible case. Lindblad [39, 40]
established the first LWP result by Nash-Moser iteration. Trakhinin [62] proved the LWP for the non-isentropic case by a
hyperbolic approach and Nash-Moser iteration. Lindblad-Luo [41] established the first result of the a priori estimates and the
incompressible limit. Then Luo [42] generalized [41] to compressible water wave with vorticity. Later, Ginsberg-Lindblad-Luo
[19] proved the LWP for a self-gravitating liquid. Luo-Zhang [45] proved the LWP for a compressible gravity water wave with
vorticity. In the case of nonzero surface tension, we refer to Coutand-Hole-Shkoller [10] for the LWP and the vanishing surface
tension limit and Disconzi-Luo [15] for the incompressible limit. For the case of a gas, we refer to [11, 14, 33, 46, 27, 32] and
references therein.

Free-boundary MHD equations: Incompressible case The study of free-boundary MHD is much more complicated than
Euler equations due to the strong coupling between fluid and magnetic field and the failure of irrotational assumption. For the
incompressible ideal free-boundary MHD under Rayleigh-Taylor sign condition, Hao-Luo [29] established the Christodoulou-
Lindblad [8] type a priori estimates and Gu-Wang [25] proved the LWP. Hao-Luo [31] also proved the LWP for the linearized
problem when the fluid region is diffeomorphic to a ball and of large curvature. Luo-Zhang [43] proved the low regularity a
priori estimates when the fluid domain is small. We also mention that Lee [35, 36] obtained a local solution via the vanishing
viscosity-resistivity limit.

For the full plasma-vacuum model, Gu [21, 22] proved the LWP for the axi-symmetric case with nontrivial vacuum magnetic
field in a non-simply connected domain under Rayleigh-Taylor sign condition. Hao [28] proved the LWP in the case of J = 0.
For the general case, all of the previous results require a non-collinearity condition |B x B| > ¢y > 0 on the free interface’.
Under this condition, Morando-Trakhinin-Trebeschi [48] proved LWP for the linearized problem and then Sun-Wang-Zhang
[60] proved the LWP for the full plasma-vacuum model. We also note that the study of the full plasma-vacuum model in ideal

2The non-collinearity condition enhaces extra 1/2-order regularity of the free-interface than Taylor sign condtion (1.8). Such condition originates from the
stabilization condition for the current-vortex sheet model.



MHD under Rayleigh-Taylor sign condition is still an open problem when the vacuum magnetic field B is non-trivial with
J # 0. For the incompressible current-vortex sheets, we refer to Coulombel-Morando-Secchi-Trebeschi [9] for the a priori
estimates and Sun-Wang-Zhang [59] for the LWP.

For incompressible ideal MHD with surface tension, Luo-Zhang [44] proved the a priori estimates and Gu-Luo-Zhang [23]
proved the LWP. For incompressible dissipative MHD with surface tension, we refer to Chen-Ding [4] for the inviscid limit for
viscous non-resistive MHD, Wang-Xin [67] for the global well-posedness of the plasma-vacuum model for inviscid resistive
MHD around a uniform transversal magnetic field, and Padula-Solonnikov [51] and Guo-Zeng-Ni [26] for viscous-resistive
MHD.

Free-boundary MHD equations: Compressible case Compared with compressible Euler equations and incompressible
MHD, compressible MHD has an extra coupling between the pressure wave and the magnetic field which makes the analysis
completely different. Here we emphasize that there is a normal derivative loss in the div-curl analysis of compressible MHD. On
the one hand, the second author [71, 72] recently observed that the magnetic resistivity exactly compensates the derivative loss
mentioned above. However, it is still hopeless to derive the vanishing resistivity limit. On the other hand, one can still expect
to establish the tame estimates for the linearized equation. Based on this and Nash-Moser iteration, Trakhinin-Wang [64, 65]
recently proved the LWP for free-boundary compressible ideal MHD with or without surface tension. We also mention that
Chen-Wang [5] and Trakhinin [61] proved the LWP for the current-vortex sheets, and Secchi-Trakhinin [55] proved the LWP
for the full plasma-vacuum problem for compressible ideal MHD under the non-collinearity condition. However, Nash-Moser
iteration leads to a big loss of regularity and does not give the continuous depedence on initial data. It is still unknown whether
the local well-posedness result can be improved such that the regularity loss can be avoided and the continuous dependence on
initial data can be established.

In this paper, we first prove the a priori estimates without loss of regularity for the free-boundary compressible ideal MHD
system in the anisotropic Sobolev spaces. Our proof is based on the modified Alinhac good unknown method, full utilization of
the cancellation structure of MHD system and very delicate analysis under the setting of anisotropic Sobolev spaces. Using a
parallel argument, we can also prove the uniqueness and the continuous dependence on initial data provided the solution exists.
Then we prove a local existence result and a continuation criterion for the smooth solutions with smooth data. Based on these
results, we can improve the local existence result to the case that the initial data only satisfies the compatibility conditions up
to finite order, such that the regularity loss can be avoided and the continuous dependence on initial data can be established.

1.3 Reformulation in Lagrangian coordinates and main result

We use Lagrangian coordinates to reduce the free-boundary problem to a fixed-domain problem. We assume Q := T? x (-1, 1)
to be the reference domain and T" := T2 x ({—1} U {1}) to be the boundary. The coordinates on Q is y := (', y3) = V1,2, ¥3)-
We define 7 : [0, 7] X Q — D as the flow map of velocity field i, i.e.,

Im(t,y) = u(t,n(,y)),  n0,y) = no(y), (1.12)

where 77 is a diffeomorphism between Q and Dy. For technical simplicity® we assume 79 = Id. By chain rule, it is easy to
see that the material derivative D, becomes 9, in the (¢, y) coordinates and the free-boundary 99, becomes fixed (I' = T2 x
({—-1}u{1})). We introduce the Lagrangian variables as follow: v(t,y) := u(t, n(t,y)), b(t,y) := B(t,n(t,y)), q(t,y) := p(t,n(t,y)),
Q(1,y) := P(1,n(t, y)) and R(1, y) := p(t,7(z, y)). .

Let 0 = 9, be the spatial derivative in Lagrangian coordinates and we define div ¥ = 6;Y" to be the (Lagrangian) divergence
of the vector field Y. We introduce the matrix A = [dn]~!, specifically A% := g—f where x' = 7/(t,) is the i-th variable in
Eulerian coordinates. From now on, we define Vg = Oix = A9, to be the covariant derivative in Lagrangian coordinates (or say
Eulerian derivative) and diva X := V4 - X = A%9,X; to be the Eulerian divergence mof the vector field X. In the manuscript, we
adopt the convention that the Latin indices range over 1,2, 3. In addition, since (0, -) = Id, we have A(0, -) = I, where I is the
identity matrix, and (u, By, po) and (vo, bg, qo) agree respectively.

In terms of 7, v, b, g, R, the system (1.1)-(1.8) becomes

3The domain T? x (-1, 1) is known to be the reference domain. Using a partition of unity, e.g., [12], a general bounded domain can also be treated in the
same way. Choosing a reference domain allows us to focus on the real issues and avoid the involved calculation caused by partition ofunity. Indeed, our proof
is also applicable to the case that njp is a general diffeomorphism that has the same regularity of vq if we use similar technical modifications as in [24].



om=v in[0,T] x Q

ROy =(b-Va)b-V40, Q=g+ 3b? in[0,T]xQ

AR + Rdivay = 0 in[0,7]xQ

q=q(R) in[0,7T] x Q

db = (b-Va)v—bdivyy in[0,7]x Q (1.13)
divab =0 in[0, 7] x Q

0=0, AN, =0 on[0,T]xT

%> >0 on{t =0}

(m,v,b,q,R)|i=0 = (d, vo, bo, g0, po)-

Here N = (0,0, +1) is the unit outer normal of the boundary T? x {+1} and ¢ = g(R) is a strictly increasing function of R with
Ay ' < ¢'(R) < Ay for some constant Ay > 1.
Let J := det[dn] and A := JA. Then we have the Piola’s identity

9,A" = 0, (1.14)
and J satisfies
0,J = Jdivyv (1.15)

which together with 0,R + Rdivav = 0 gives that pg = RJ.
Suppose D is the derivative d or d;, then we have the following identity

DA = —A" &, Dn, A¥. (1.16)

Next we express the magnetic field b in terms of by and 7 in the following Lemma. This is called the “frozen effect of the
magnetic field”.

Lemma 1.1. We have b = J~'(by - ).
Proof. Let us first compute the equation of b/R. We have
1

b\ 1 1 J b
a, (E) == 0ib -+ b0, (E) = S0/b+ bo) (R—J) = g+ 0

1 b b b b
=§ ((b . VA)V - bdiVAV) + p—OJdiVAV = 1_? . VAV - ﬁdiVAV + EdiVAV

SIRAR

Therefore, invoking (1.16) we have

b .\ _(b\ .. bi. . bi .. b, .
0| = A" =0, | = | A"+ —8,A" = = AY gy AT = — AV v AM = 0,
R R R R R
which implies A" = 24! = ;;_00' ie., hAl = ”g% = J7'b!. Finally, the identity A“0;y; = 1 gives us b; = J™'b\om; =
J (b - ).

Inserting po = RJ and Lemma 1.1 into (1.13), we get the following system with the initial constraints div by = 0 in €,

ba = 0onTI and —%Ir > ¢o > 0. From now on, we call these three conditions to be “initial constraints” without more
explanation.

om=v in[0,7T] x Q

RO =7 (bo - 0) (I (bo - O)n) = VaQ, Q=g+ 317 (bo- O in[0.T]xQ

%6,q+d.iv/‘v.: 0 | %n [0,7]x 117
q = q(R) strictly increasing in[0,T] xQ

0=0, on[0,T]xT

1, v, 4, Dli=o = (d, vo, g0, Q0), Qo = qo + 31bol*-



Before stating our results, we should first define the anisotropic Sobolev space HI'(Q2) for m € N*. Let o = o(y3) be a cutoff
function on [—1, 1] defined by o°(y3) = (1 — y3)(1 + y3). Then we define H?*(Q2) for m € N* as follows

H™(Q) := {f € L2(Q)’(aa3)i4a"; 0205 f € LX(Q), iy + iy +2i3 + iy < m}

equipped with the norm
By = D M@ds)“a} 0505 fi2 g,

iy +ip 4203 +ig <m
For any multi-index I := (i, i1, ia, i3, i4) € N°, we define

0l = 90(a03) 010305, (1) =g+ iy + in + 2i3 + ia,
and define the space-time anisotropic Sobolev norm || - ||,,,.. by

2 L2 o £112
12, = Z 10° £ = Z |I6§0fIIH:,,,vU(Q).

(hysm ip<m

We define f; = 6-[ fli=o for j € N. The main results in this manuscript are the following theorems. The first one is the
improved local existence theorem for smooth data satisfying the compatibility conditions up to infinite order.

Theorem 1.2 (Local existence for smooth solutions). Let (vo, by, Q) € C*(Q) be the initial data of (1.17) satisfying

e the compatibility conditions up to infinite order, i.e., Q¢lr =0, Vj > 0, j € Z;
o the initial constraints div by = 0 in Q, b(3)|r = 0 and the Rayleigh-Taylor sign condition —%Ir >co > 0.

Then there exists some Ty > 0 only depending on initial data, ¢y and Ay defined in (1.7), such that (1.17) has a unique smooth
solution (17, v, b, Q) in C*([0, Ty] x Q).

Remark (On the existence of smooth initial data satisfying the compatibility conditions up to infinite order). One should prove
the existence of smooth initial data satisfying the compatibility conditions up to infinite order. This can be done by a parallel
argument as in Lindblad [40, Lemma 16.2]. See the explanation in Appendix A.3.

The next two theorems show the a priori bounds without loss of regularity, the uniqueness and continuous dependence on
initial data provided that the solution exists. They also give the energy estimates without loss of regularity and the continuous
dependence on intial data in anisotropic Sobolev spaces for the smooth solution obtained in Theorem 1.2.

Theorem 1.3 (A priori estimates). Assume m > 8 is an integer. Let the initial data be (vo, by, Qo) € H'(Q) satisfying that

° (V(j),b(j), Q(j)) € HTij(Q) for1l < ] <m, where f(j) = a{flt:();
e the compatibility condition holds up to (m — 1)-th order, i.e., Q(jlr = 0for0 < j<m-1;
e the initial constraints div by = 0in Q, b(3J|r = 0 and the Rayleigh-Taylor sign condition —%%Ir >co > 0.

Then there exists some 77 > 0 only depending on [|vo, bg, Qollm, co and Ag (defined in (1.7)), such that the solution (1, v, Q) to
the system (1.17) satisfies the following estimates in [0, 7]

sup Ey (1) < P(Ew(0)), (1.18)
0<t<Ty
under the a priori assumptions on [0, 7]
1
(I = Ll <7 (1.19)
00 3
—=o 27 Co. 1.20
aN ~1 (1.20)
Here the energy functional &(¢) is defined to be
- ; 2
En(t) = In(t, . + (I + 197 bo - (e, M, + (e ME L + Y [A¥lni, (1.21)
(y=m

and P(---) is a generic polynomial in its arguments.



Theorem 1.4 (Continuous dependence on initial data and uniqueness). Assume m > 8 is an integer. Let (vg),bg), Qg)) €

H!'(Q) (i = 1,2) be two initial datum satisfying the hypothesis in Theorem 1.3. Let 0P, v®, D) be the solution to (1.17) with
initial data (vg), b(()’), Qg)). Define [f] = f — f® for any function f in Q and define the energy functional [E](¢) to be

[Eln(®) = N1 M s + NI N+ I 50 - DI R, s+ Mgl MR+ Y AV S . (1.22)
(I)=m-2

Then there exists some T, > 0 depending on ||vg), bg), Qg) I (@ = 1,2), co and Ay such that the following estimates hold

sup [E]n(1) < [Eln(0)P(En(0)) < P(ll[vol, [bol, [g0]llm-2, Em(0)), (1.23)

0<t<T,
where P(-) > 0 is a generic polynomial of its arguments.

Remark (Control of &,,(0)). It would be better to construct the initial data (vo, by, Qp) satisfying the compatibility conditions
up to (m — 1)-th order in H™(2) — HI'(Q), such that

D 0G5y, Qppnesiay S PKan), (1.24)
=1
where we define K,, := |[vol| wey T ||b0||12r1,,1(g) + ||Q0|I%1m(g). In particular, by the Sobolev embedding H"~/(Q) — H.' J (Q) for
0 < j < m, we have
Em(0) < P(Kp). (1.25)

If we only focus on (vy, by, Qo) € H;'(Q2) then we can only get (v, by, Q) € H,:"_2'7(Q) and thus &,,(0) < co may fail. See
Section 8.3 for detailed discussion.

Next, we want to extend the local existence theorem to the case of initial data satisfying compatibility conditions up to finite
order. To achieve this, we need a continuation criterion for the smooth solution obtained in Theorem 1.2, which shows that, for
any m € N*,m > 8§, the || - ||~ norm of a smooth solution remains bounded as long as the || - || . norms (k < m — 1) are bounded.

Theorem 1.5 (Continuation of smooth solution). Assume m > 8 to be an integer. For the smooth solution (7, v, b, Q) obtained
in Theorem 1.2, we define

T* := sup {T > 0|(5, v, b, Q) can be extended in C*([0, T] x Q)}. (1.26)
If T* < +c0, then either lim &,,_;(f) = +oo for some m or lim inf(—g%) = 0 holds.
t/'T* t/'T* T

Remark. The proof of this continuation criterion requires the energy estimates for &,,(¢) to be linear in the highest-order terms.
To achieve this, it suffices to carefully analyze each commutator term in the anisotropic Sobolev spaces to ensure the linearity
of the highest-order terms, such that the energy inequality becomes

En(®) < Em(0) + f P(Ep-1(1))Em(T)dT.
0

This also inherits the frameworks of [8, 41] which proved that the solutions to free-boundary Euler equations, if exist, can be
extended after time t = T, provided that all lower order terms of v, g and the second fundamental form of the free surface are
bounded at time ¢t = T,.

Finally, we show that, one can prove the local well-posedness for initial data (not necessarily smooth) satisfying the compat-
ibility conditions up to only finite order, provided that one can construct a sequence of smooth data satisfying the compatibility
conditions up to infinite order that converges to the given data in H"(Q2). However, it is still unknown to how achieve such
construction in general due to some technical difficulties. (We expect this to be true since one can construct data satisfying in-
finitely many compatibility conditions as in [40] and one can construct data satisfying any number of compatibility conditions
approximating given data as in [41, 73].) We have the following theorem.

Theorem 1.6 (Local well-posedness). Assume m > 8 to be an integer. Let (vo, by, Qp) be the initial data (not necessarily
smooth!) of (1.17) satisfying



e the compatibility conditions up to (m — 1)-th order, i.e., Qplr =0, 0 < j<m—1;
e the initial constraints div by = 0 in Q, b(3)|r = 0 and the Rayleigh-Taylor sign condition —aa%lr >co > 0.

Assume also there exists a sequence of smooth data {(vg"), bé"), Q(()"))}meN* satisfying the compatibility conditions up to infinite
order that converges to the given data (vo, by, Qp) in H"(Q), i.e.,

Tim [Ivg” = volln + 165" = bolln +1105” = Qollu = 0.

Then there exists some 7, > 0 only depending on ||vy, by, Qoll,n» co and Ag defined in (1.7), such that the solution (1, v, b, Q) to
(1.17) exists in C([0, T,,]; H'(Q2)). The solution also satisfies the conclusions of Theorem 1.3-Theorem 1.4, that is, the a priori
estimates without loss of regularity in || - ||, norm, the uniqueness and continuous dependence on initial data in || - ||,;—2,. norm.

Organization of the paper. In Section 2, we briefly introduce the strategies and the main techniques used in our proof. In
Section 3 we record the lemmas which will be repeatedly used in the manuscript. Then we show the detailed analysis of MHD
system in anisotropic Sobolev space in Section 4 ~ Section 7. And we conclude the a priori estimates without loss of regularity,
the uniqueness and the continuos dependence on data in Section 8. Finally, in Section 9, we explain how to improve the Nash-
Moser iteration scheme in [64] such that a local existence theorem for C* data can be proved, and then show that continuation
criterion in anisotropic Sobolev spaces by further analysis of the commutators. After that, we prove Theorem 1.6 by using the
conclusions of Theorem 1.2 ~ Theorem 1.4. The construction of initial data are discussed in Appendix A.

List of Notations:

Q:=T?x(-1,1)and T :=T2 x ({-=1} U {1}).

I - Ils: We denote || flls := Il £ (¢, )l for any function f(¢,y) on [0, T] X Q.

|- Is: We denote |fly := |f(%, -)|usa) for any function f(¢,y) on [0,T] X T.

|+ llzm.«: For any function f(z,y) on [0, T] X Q, || f ||,2n,* = Xih<m 0L £z, -)I|i2 denotes the m-th order space-time anisotropic
Sobolev norm of f.

P(---): A generic polynomial in its arguments;

e Po: Po = P(EO0));

[T, flg :=T(fg) — fT(g),and [T, f,g] := T(fg) — T(f)g — fT(g), where T denotes a differential operator and f, g are
arbitrary functions.

0: 0 = 01,0, denotes the spatial tangential derivative.

Vi f := A9, f denotes the covariant (Eulerian) derivative.

X -V f: For any function f and vector field X, such notation denotes the inner-product defined by X - V4 f := X pAl”(h f.
X-V4Y-V,f: For any function f and vector field X, Y, such notation denotes the inner-product defined by X-V,Y -V, f =
X,AP8,Y, A" B, f .

Acknowledgement. The authours thank the anonymous referees for their comments and suggestions that help us improve the
quality of this paper. Hans Lindblad was supported in part by Simons Foundation Collaboration Grant 638955. Junyan Zhang
would like to thank Tao Wang and Chenyun Luo for helpful discussion.

2 Strategy of the proof

Before going to the details, we introduce the basic strategies and techniques of our proof, especially for the proof of energy
estimates without loss of regularity. At the end of this section we will also explain how we improve the local well-posedness
result using our energy estimates and the local existence result of [64]. From now on, we will only show the proof for Theorem
1.3~1.4 for m = 8 and drop the index m in &,,(¢) for simplicity of notations.

2.1 Choice of the function spaces

The compressible MHD system (1.1)-(1.3) is a hyperbolic system with charactersitic boundary conditions and violates the
uniform Kreiss-Lopatinskii condition [34]. This usually causes a loss of normal derivative. For certain types of such hyperbolic
system, e.g., compressible Euler equations [41, 62], one can control the normal derivatives by the div-curl analysis so that the
energy estimates and the LWP can be established in standard Sobolev spaces. However, such div-curl analysis is not applicable
to compressible ideal MHD. In fact, taking curl eliminates the symmetry enjoyed by the equations, and there is also a derivative



loss in the source term of the wave equation of pressure which is the key to the divergence estimates. For related details, we
refer to [71, Section 1.5].

To compensate such derivative loss, Chen [6] first introduced the anisotropic Sobolev spaces H]' to study the hyperbolic
system with characteristic boundary conditions. Then Yanagisawa-Matsumura [70] established the first LWP result for the
fixed-domain problem of compressible ideal MHD in anisotropic Sobolev spaces. Later, [70] was improved by Secchi [52, 53]
such that the regularity loss was avoided. On the other hand, Ohno-Shirota [49] constructed an explicit counterexample to show
the ill-posedness for the linearized fixed-domain problem for compressible MHD in H'(I > 2).

Hence, the failure of div-curl analysis and the results of the fixed-domain problem [6, 70, 52, 49, 7] motivate us to study
the free-boundary compressible ideal MHD system under the setting of anisotropic Sobolev spaces instead of standard Sobolev
spaces. However, we emphasize that it is still difficult to directly generalize Secchi [52] to the free-boundary problem due to
the following three reasons:

1. The regularity of the boundary is no longer C* as in the case of fixed domain. In fact, the regularity of the free boundary
enters to the highest order.

2. The regularity of the flow map is limited. After reducing the free-boundary problem to a fixed-domain problem, the
commutator of the covariant derivative and the full derivative cannot be controlled directly.

3. The Eulerian normal velocity u - n does not vanish on the free boundary. However, u - n = 0 plays an important role in
the proof of [70, 52].

In fact, our analysis in the presenting manuscript is based on the modified Alinhac good unknown method, subtle cancel-
lation structures of MHD system and the utilization of the anisotropy of the function space H.'. Here we also emphasize that
our strategy is completely applicable to compressible Euler equations just by setting by = 0. Our result also gives an alternative
energy estimate for compressible Euler equations without the analysis of div-curl decomposition or the wave equation.

2.2 Motivation for introducing Alinhac good unknowns

Denote 8. = 8;0(063)i4(9’i‘ 6;26;3 with (I) := ip + i + iy +2i3 +is = 8. For simplicity of the notations, we use || - ||, | - |5 to represent
the H*(Q) norm and the H*(T") norm respectively. Taking &/ in the second equation of (1.17) and multiplying J, we get

000:0%v = =J8L(V40) + (b - D)L + [0, (by - D)]b — J[0., R16,v

In the energy estimates, we need to commute V4 with 8/ and then integrate by parts. However, the commutator [0!, A"]9, f
contains the following terms whose L*(Q)-norms cannot be controlled in the anisotropic Sobolev space

e (0'A)(9,f), which cannot be controlled even in the standard Sobolev spaces when i = 0;
o (01T A0 9,f), when I = 1,2 since A consists of (1)(d3n);
o (3VANOI"9,f), when | =3,

where f = Q or v; and I’ is a multi-index with (I’) = 1. To overcome such difficulty, we can use the ideas of the Alinhac
good unknown method, i.e., we can rewrite 8.(V4Q) and 8.(V4 - v) in terms of the sum of the covariant derivative part and the
commutator part satisfying

3.(V40) = VaQ + C(Q), with |Q = &.Qllo + 18:(Q = 3. D)llo + IC(Dllo < PE®)), 2.1)
0U(Va-v) = Va-V+CW), with [V =3l + 118,V = d)llo + ICW)llg < PE)). 2.2)

Here Q, V are called the “Alinhac good unknowns” of Q, v (The precise expressions will be determined later).

In other words, the above analysis shows that the essential highest order term in d/(V4f) is not the term got by simply
commuting ! with V. Instead, the essential highest order term in §1(V, f) is exactly the covariant derivative of the Alinhac
good unknown of f, and the good unknowns V and Q are essentially formed by replacing the derivatives in the Lagragian
coordinates 4. by the covariant derivatives with respect to the Eulerian coordinates expressed in the Lagrangian coordinates.
Such crucial fact was first observed by Alinhac [2] and has been widely used for quasilinear hyperbolic system. In the study
of free-surface fluid, such method was first implicitly used in the Q-tensor energy introduced by Christodoulou-Lindblad [8]
which was later generalized by [29, 41, 42, 17, 71]. See also [47, 66, 25, 45, 72, 18] for the explicit applications.
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Under the setting of (2.1)-(2.2), we can do the energy estimates by analyzing the Alinhac good unknowns via their evolution
equation instead of the 0!-differentiated variables.

pod,V = =IV4Q + (by - )(3Lb) + (podi(V = 8Lv) = C(Q) + 6., (bo - )b — JI9, pld,v). 2.3)

=F

Taking L2(Q2) inner product of (2.3) and V and then integrating by parts, we can get the energy identity

1d

335 | eV = f @ (o - ) - (by - OV dy + f JQ(V, - Vydy + f F-Vdy - f IANQV, Y. (24)
T

By direct computation we can prove ||F|lo < P(&(?)), so it remains to control

- fg @' (bo - O - (bo - D)V dy, 25)
I 3=fJQ(VA -V)dy, (2.6)
Q
IB:=— f JAYN;QV; dy, (2.7
T

where dy’ := dy; dy; is the area unit of the boundary I'.

2.3 Interior estimates and cancellation structure

Below we use “ - - to represent the terms whose L? norms can be directly controlled by P(E(t)). The term K, gives the energy
of the magnetic field. Recall that the top-order term in V is 8/v = 810,57 which yields

- fg @ Bo - )by - )9 Dy dy + -

1d :
==5gq | /0 o O dy - f 0L (bo - Oy (I (by - )DL dy + - --

Q Q
__1d JOLT (b - )PP dy— | JOLIT (bo - D)) (I~ (B - D)) (divav) dy + - - -
_2dtQ* 077)’9* 0" 0)N 0 - 0)1i)0,(d1v4V) dy >

=:Kn

where we use b = J~!(by - 9)n7 and 8,J = Jdiv4v. Note that K;; cannot be directly controlled due to the presence of & (div4v).
Instead, it will be exactly cancelled by another term produced by I;.

The term /; gives the energy of the fluid pressure ¢ and the cancellation structure with K;;. Recall that V4 -V = oL(divav) —
C(v)and Q = g + 3|7 (b - D)n*. We get

I = f J(@Lg)d (divav) + f J(@i(%l]‘l(bo-6)n|2))6i(divAv)dy+-~-
f J@ )a’( p( )a,) f 18 (b - I (bo - D) (divav) dy + - -
Q
1d JZR'(q)

=— - ANlglPdy + (-Ki1) + -
¥T e 10.91”dy + (-=K11)

Then using Q = g + %IJ ~1(by - A)n?, we also get the control of the total pressure Q.

2.4 Modified Alinhac good unknowns

Before analyzing the boundary integral /B, we have to figure out the precise expressions of the Alinhac good unknowns V, Q
which can be derived by analyzing d/(V,f) for f = v; and Q. We will repeatedly use (1.16) in the analysis of commutators.

11



First, for any multi-index I” with (I’) = 1, we have with the notation [T, f,g] :== T(fg) - T(f)g — fT(g)

IV f) =V4@Lf) + @AM O f + 10, A", 0,f]
2V (@1 1)~ 8T (A" 8 B, A OLf + 18], AT, 0]
=Vi@.f — 0, A9 f) + 0ln, Vi (Vi ) — (97" ATA™8, 8,m)01f + 191, A", B f 1.
————
=0l f-0in-Vaf

Under the setting of standard Sobolev spaces, the term &’ f — 3l - V4 f is already the standard Alinhac good unknown of f
(with respect to 61). See also [47, 66, 25, 45, 72, 18]. However, under the setting of anisotropic Sobolev spaces, we still need to
analyze the commutators —([01~", A" A"10" 0,,m,)0,f and [dL, A", d,f] whose L*(Q) norms may not be directly controlled due
to the anisotropy of H".

In particular, as long as @/ is not the purely non-weighted normal derivative 0%, the commutator [3., A, 3, f] always contains

the term (87 A")(0!~"' 8, f) whose L2(€2) norm cannot be controlled when / = 3 due to the anisotropy of H”. In fact, we should
use different methods to analyze this term for f = Q and f = v; respectively.

e When f = v;, by using (1.16), we can rewrite this term to be
@ ADYDL i) = = (A" 8L B,my A" Ovi = —A" 8L 0, AP H B,
== V4@ v, A" 0L B,mi) + V(AP 0mi) 0 v
Then we can merge —ﬁi"/v,, AP c')f()mm into the good unknown of v, i.e., the covariant derivative part in (2.2), and

merge V', (A8 8,m;)0'~" v, into the commutator part C(v) in (2.2) because its L? norm can be directly controlled.

e When f = Q, we invoke (1.16) and the MHD equation —V ;Q = pod,v—(bo-3)(J ' (by-0)n) to get the following reduction.
Here A = JA.

J@Y AN 6,0) = - (A 0! 0,m, A" 0,0)
== (0" 3y A™) " (A0,0) +(017" A7) (8,0)(0" 0, A™) + [0, A, 0,01
N——
:VI;Q
=(9 Oy A" (P00, = (b - (I (bo - O"))
+ (0" A)(0,0)(0! 0pmy A™) + [0, A, 0,01

Remark. Note that 9, and (b, - 9) are both tangential derivatives while V4 Q always contains a normal derivative. Such
substitution actually makes the order of the derivatives lower with the help of the anisotropy of H".

The last term above is directly controlled. Since (/ — I’y = 7, we have

10 31, A" (000"l < 0% Bty A™ N2 110 (0000 Mo < Pl looll7.4[V]5 1 (2.8)

For the term -8 9,37, A™ 9!~ ((bo -O)(J (b - 6)np)), we need to use byl = 0 to produce a weight function to make

b(3)63 become a weighted normal derivative. By the fundamental theorem of calculus, we know (suppose y; > 0 without
loss of generality)

V3
By, = ‘0 + f DB L)AL < (1= ylidsbollie < o O2)Fsbollis
1

L>(T?)
and thus '
@ By 47817 (b0 - 0T~ bo - 0y )|

<PUnll.2) (ol 1T~ (Bo - D)nlls.« + 19350l [@D5)0 " (T (bo - Dll) (2.9)
<PUnll.2) (ol 1T~ (Bo - D)nls..)

In addition, the term (3!~" A'”)(6,0)(8" 8,,7,A™) can be directly controlled when [ = 3 since A> consists of (917)(d1) (cf.
(3.2)). When [ = 1,2, one should again invoke (1.16) to compute the highest order term and use 5Q|r = 0 to produce a
weight function as in (2.9).

12



Remark. From (2.9), the definition of H.' and the fact o|r = 0, the weighted derivative (0°03) plays a similar role as a
tangential derivative. In fact, one should consider the weighted derivative (0-03) as a tangential derivative throughout this
manuscript.

There are three other terms which need further analysis:

o e := =3I (A" A™) (8 3,um, 0, f). When 87" does not contain time derivative, the term 8’ (A" A™) cannot be con-
trolled since both A'" and A% contain d37.
o e := =0l (A" A™) (017" 8,m, 0,f). When 0!~ does not contain time derivative, the term 0’~' 8,17, cannot be controlled

when m = 3 since 0~/ 9317 should be controlled by ||nllo...
o e3:= (0171 Ay (819, f). When 01~!" does not contain time derivative, the term 6’/ A% cannot be controlled when [ = 1,2
since A'" and A% contains d31.

Remark. Since 9,7 (resp. 9,A) has the same spatial regularity as 5 (resp. A), the L>(Q)-norms of ey, e, e3 can be directly
controlled when 8’~" contains at least one time derivative.

e When 4/ contains the weighted normal derivative (c93), we need to analyze the extra terms which are produced when d;
falls on o°(y3). This appears when we commute (by - d) or V4 with oL,

We note that these terms can be controlled by similar arguments as in the analysis of (07 A")(#!~"8,f). In other words, the
following three techniques are enough for us to control the remaining terms.

e Modify the definition of Alinhac good unknowns by rewriting the higher order terms to be a covariant derivative plus
L*(Q)-bounded terms.

e Produce a weight function by using bglr =0and 5Q|r = 0 in order to replace one 03 by (003).

e Replace V;Q by —pod,v + (bg - 0)(J ~!(bg - d)n) in order to make the order of the derivatives lower thanks to the anisotropy
of H".

See Section 5.1.1 for detailed derivation of the modified Alinhac good unknowns and Section 7 for the analysis of weighted
derivatives. Therefore, we can write

Q=0.0-0n-Vi0+ Ay, (2.10)
Vi =0l —dln- Vavi + (A, @.11)

where [|Af]l; « < P(E(r)) and the properties (2.1)-(2.2) still hold.

2.5 Boundary estimates and necessity of anisotropy
Invoking (2.10)-(2.11), we have

IB = - f JAYN;QV; dy
T

== f JAYN;(@.Q)Vidy + f JAYN; @0 VaQVidy +--- 2.12)
r r

=:IBy =B,

modulo the terms involving Ay and A, which can be controlled either by using trace lemma for anisotropic Sobolev space or
using the trick of divergence theroem as in (2.17). The detailed analysis can be found in Section 4.3, 5.2.2 and 6.1.3.

Regularity of the free surface and standard cancellation structure First, /B; in (2.12) gives the boundary energy and a
cancellation structure enjoyed by the standard Alinhac good unknown arguments as in [47, 66, 25, 45, 72, 18]. In specific, since
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51Q = 52Q =0onT, we have
IB, = f J—a i AR AY (L0 — 0, AT O + A,) dy
1d 90 3i 3ial |2
f Q(A3ka 0 3,A% Oy dy’ f Q<A3ka’nk>A3'a’n,A”alv, dy’

f J—=dlm A*AY A, dy .

(2.13)

Invoking the Rayleigh-Taylor sign condition (1.20), we get the boundary energy |A3"6£n,~|g which exactly controls the second
fundamental form of the free surface. The second term can be directly controlled thanks to the boundary energy. Then plugging
0,A% = —A% 9, A into the third term yields the cancellation with the fourth term. The last term can be controlled directly by
using the boundary energy and trace lemma for anisotropic Sobolev space.

Remark. The cancellation structure above, enjoyed by the Alinhac good unknown, relies on the fact that A3(810,5m,—0%n, A"0,0,m;) =
0,(A%9'9,m;) which can be proved by using (1.16) with D = d,. This identity will be repeatedly used to derive similar cancella-
tion structure in the boundary estimates.

Reduction of the normal derivatives and the advantage of the anisotropy When 0 contains normal derivative, 4.0 no
longer vanishes on I'. In this case we write 8/ = 61*_6363 where the multi-index e3 is defined by (i, i1, i, i3, i4) = (0,0,0, 1,0)
and (I — e3) = 6. We shall analyze

IBy = fN3J(6£‘“63Q)(A3i 40 dy + fNBJ(ai_6363Q)(ai_6363np AP§v;)dy’ =: 1By + IBp,. (2.14)
r r

First, for Bg;, we invoke the third equation in (1.17) to replace the normal derivative in A%d;v; by tangential derivative

2
. , A JR' — .
AY 97003y =07 (AY03vy) ~ 19, A 103y, =~ (ﬁatq) = >0 @Al gL - (9570, AN 10w, (2.15)
Po =
Note that we replace a normal derivative by a tangential derivative in the first term on the right side. The highest order terms in
the last commutator are 8. A3d5v; and 8 A39!~""v; with (I) = 1. Since A¥ consists of dn x 95, we know the highest order of
derivatives in either of these two terms is 7 (in the sense of anisotropy, that is, (I) = iy + ij + i + 2i3 + i4).

. . . 2 — .
The most difficult term is 9, AY = —AP(378,m,)A™ = —A (8L d3n,)AY — Y AP 8ym,)AM, in which the

contribution of —~A™ (8. “ds1,)A¥ in 1By, exactly cancels with the contribution of / = 1,2 in IBp,. The highest order term in
61_636377,, AlP@yv; corresponding to [ = 3 in IBy; is actually 837, B A3 gy = dsn, A9 x dam) » Ov; thanks to the
identity A% 51, = 1.

Next we replace 03 Q by tangential derivative of v and (bg - )n. Since A303m; = 1, we have

J(074050) =03m; A (01790 0) = 3377i 014 (A%0;0) - dsn,[00°, A¥0;0

=0s1; 0 (A"0,0) - Zam,a’ “(A9,0) - dsmild~, A¥10,0
_Vl o LA (2.16)

2
=0371; 017 (=podv' = (b - YT~ (b - O)) = " B3 9 (AH,0) - damildL=, 41950
L=1

Note that 8, Q| = 0 for L = 1,2 eliminates the highest order term d31; (0. A) 8, Q. And b3Ir = 0 implies that (bg - 9)|r =

b(')gl + b%gz is a tangential derivative on I'. The last commutator can be controlled in the same way as (2.15). Combining
(2.14)-(2.16), the highest order terms in /B, can all be written as the following form

f N3@ D)@ Dgh dy,
I
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where D can be (bg - 5), 5, 0,(tangential), and f, g can be n,v, g, J (b - 0)n, and h consists of the the terms containing at most
first-order derivative of n and v. To control such boundary integral, we first rewrite it to the interior thanks to the divergence
theorem in y-coordinates, and then integrate © by parts

f N3@ S D)@ Dghdy’
T

— [(@aon@vondy+ [ @ vl vondy+ [ @ nn@ gy
Q Q Q

2 f (03015 )@ D2 g)hdy + f (03015 (91 Dg)Dh dy (2.17)
Q Q

- f @D )@ hdy + f (@ Df)(0:9" g)Dhdy + f (@5 Df )@ Dg)dsh dy
Q Q Q

<l fllsllglls.«11ll3,

where the anisotropy of the function space H?® is crucial in the last step because (I — e3) = 6 allows us to have two more
tangential derivatives D2. When D in (2.17) is ,, this step should be done under time integral. See (4.43) for example.

The analysis of /B, above also shows the advantage of using anisotropic Sobolev space as pointed out as an important
conclusion in the survey article [7] by Chen who first introduced the anisotropic Sobolev spaces in [6]

“For the nonlinear hyperbolic system with characteristic boundary conditions, the growth of one normal derivative
on the boundary should be compensated by the decrease in regularity of two tangential derivatives. This is one of
the advantages of the anisotropic Sobolev space that the standard Sobolev space fails to carry.”

In specific, if we start with the estimates of (’f‘, then by (2.17) we need the control of 6‘;@2 where D is a tangential derivative.
To control the latter one, we need the control of 6% D* again due to (2.17). Repeatedly, we finally need to derive the estimates
of D3, In addition, the weighted derivative (0°03) is necessary in the interior estimates, e.g., in (2.9). On the other hand, we
also need the control of 4 normal derivatives in order to close the energy estimates of 8 tangential derivatives. So we find that
the anisotropic Sobolev space exactly meets all of these requirements in our mechanism of reducing normal derivatives on the
boundary.

Finally, the contribution of Ag and A, in /B can be controlled by using the boundary energy |A%d.n;|y together with either
the trace lemma for anisotropic Sobolev spaces (cf. Lemma 3.1) or similar technique as in (2.17). Hence, the control of
boundary integral /B is finished.

2.6 Strategy to prove the existence results

It is natural to ask if a local existence result (without loss of regularity) can be proved in H.'(2) by using the energy &,,(f). How-
ever, we find it difficult to find a straightforward proof as in the case of compressible Euler equations [45, 18], elastodynamics
[73] or incompressible MHD [25]. Briefly speaking, this is due to the fact that the magnetic field is involved in the pressure part
for compressible MHD. The simultaenous appearance of magnetic field and compressibility leads to a mismatched term
in the linearized equation and causes a loss of derivative in Picard iteration. Such difficulty never appears in either case
of Euler equations, elastodynamics, or incompressible MHD.

Alternatively, we may try to prove the local existence in anisotropic Sobolev spaces by using the existing local existence
result obtained by Nash-Moser iteration. The idea is to approximate the given data, say Uy, by a sequence of “sufficiently nice”
data, say {Ué”)}, in some Sobolev space. Once we can do this*, the solutions corresponding to the “sufficiently nice” data, say
{U™(#)}, may have convergence in some anisotropic Sobolev space by using the continuous dependence on data. The limit, say
U(1), is expected to be solution corresponding to the given data Uj.

However, the lifespan of U M), say 7w, may depend on n, so we need to continue the solution at ¢ = T™ and use the
energy bounds in Theorem 1.3 to obtain a positive lower bound for the lifespans of {U(¢)}. The continuation process requires
a local existence result where the solution and the data lie in the same space. Since [64] only shows the existence theorem for
the data in anisotropic Sobolev spaces and has a loss of regularity, we have to improve the result in [64] such that a unique C*
solution exists if the initial data is C* and satisfies the compatibility conditions up to infinite order. Such improvement can be
achieved, because there are two extra error terms e, and D,,, 1 oY, (cf. [64, (4.26)-(4.27)]) that can be avoided in Lagrangian
coordinates. See Section 9.1 for detailed explanations for the Nash-Moser iteration, Section 9.2 for the proof of continuation
criterion, Section 9.3 for the proof of Theorem 1.6 via a limit process.

“Indeed, as stated before Theorem 1.6, it is still unknown how to approximate the given data by a sequence of smooth data satisfying the compatibility
conditions up to infinite order. This may be postpone to a future work.
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3 Preliminary lemmas

3.1 Some geometric identities

We record the explicit form of the matrix A which will be repeatedly used.

O3 — dsPar  Bsn' 0o’ — 0! sn® - Ban' B3 — Ban' O
A =T om0 = 8P ds  0in' Oz’ = dsn' i’ Din'dup = din' 93’ (3.1)
OO = POy A v’ = in'dup ' dan* — Ban' iy’

Moreover, since A = JA, and in view of (3.1), we can write
AU = Gijkgzl’]ja_g)’]k, AZ[ = —éijkéﬂ]jay]k, ABi = Eijkéﬂ]jézl]k. (32)

Here, €% is the sign of the 3-permutation (ijk) € S3. We will repeatedly use that fact that A, A% consist of the linear
combination of +dn x 931 and A> consists of dn x dn.
We also record the following identity: Suppose D is the derivative 0 or d,, then

DA" = —A" 5, Dn, AX. (3.3)

3.2 Anisotropic Sobolev space

We list two preliminary lemmas on the basic properties of anisotropic Sobolev space.

Lemma 3.1 (Trace lemma for anisotropic Sobolev space). Letm > 1, m € N*, then we have the following trace lemma for the
anisotropic Sobolev space.

1. If f € H™(Q), then its trace flr belongs to H™(I') and satisfies
[l S W11 @)
2. There exists a linear continuous operator Ry : H™(I') — H"*!(Q) such that (R7g)|r = g and
IR 78l 1) < 18lm-

Proof. See Ohno-Shizuta-Yanagisawa [50, Theorem 1]. O

Remark. The condition m > 1 is necessary and analogous result may not hold when m = 0. One can see the importance of
m > 1 from (2.17), as a special case, where we need to integrate one tangential derivative by part and thus m > 1 is necessary.

Lemma 3.2 (Sobolev embedding lemma for anisotropic Sobolev space). We have the following inequalities

H™Q) — H™Q) —>H"(Q), ¥Ym e N*

llell > < ”u”Hf(Q), llullwr < ”u”[-]f(Q)s |l < ”u”[-]f(g)-

Proof. See Trakhinin-Wang [64, Lemma 3.3]. For the last inequality, using trace lemma, we have 0ulr~ < |0ulys < l0ull, <

llutll 75 - =

4 Control of purely non-weighted normal derivatives
In this section, we prove the following estimates by the standard Alinhac good unknown argument.

Proposition 4.1. The following energy inequality holds

_ 2 c ; T
N3+ [ (7! o - o) + 1all + |4 ainfy| < o+ PET) f PE®) d. @.1)
= 0
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4.1 Evolution equation of Alinhac good unknowns

We first compute the estimates of purely normal derivatives. When (I) = 8, the purely non-weighted normal derivative should
be 8! = 6‘3‘. First we introduce the following Alinhac good unknowns of v and Q with respect to 6‘3‘

Vi = 03 — O, AP 9, Q =050 - d3n, A 9,0. 4.2)
Then we have that for any function f

(VL) = V@i f) + @3AA.f +[03, A", 0 f]
= Vi(83)) = B3(A" 830,m, A0, + 185, A", 0, f]

= V(@3 f = 03m, A 01f) + 331, Vi (V4 ) = (103, A A™1038,m,)00 f + 15, A", B, )
good unknowns =:Ci(f)
and thus
Va-V=83(divay) = C'), VaQ = 5(V40Q) - C(Q), (44)
where the commutator satisfies the estimate
CHla < PARIOIS s 4.5)

Now taking 6‘3‘ in the second equation of (1.17) and invoking (4.2) and (4.4), we get the evolution equation of the Alinhac
good unknowns

RO,V = J(bo - )03 (I (bo - O)n) + VaQ = [R, 83 6w + 03, T~ (bo - )| b - C(Q) - RO(Dn - Vav). (4.6)

=F

Taking L?(Q)-inner product of (4.6) and JV and using py = RJ, we get the energy identity

1d

AL f (bo - G By - Im) - V f (V,Q)-V+ f JE-V. @.7)

4.2 Interior estimates

The third integral on the RHS of (4.7) can be directly controlled
fJF -V < II7FolIVllo < Pdloollas 1bolla, l1nlla, 1" (bo - B)nla, [1Qlla, IVla 118, 113) IV lo.- (4.8)
Q

The first integral on the RHS of (4.7) gives the energy of magnetic field b = J~!(by - 0)1 after integrating (b - 3) by parts.
Note that bglr = 0 and div by = 0, there will be no boundary integral. In specific, we have

fQ (bo - 03T (b - O)n) - Vdy = — fg 85I (bo - ) - (bo - )V dy

- f 3T (bo - ) - (by - D)d3v dy + f (T (bo - ) - (bo - 3)(F3n - Vav) dy
Q Q
=L

== [ g oo (57 - 10 L 49)
Q

=- f T (bo - ) - 950,(J ™ (by - B)p) dy — f T (b - D) - [ (o - 9), D30, | mdy +Ls
Q Q

K
1d 4. 7-1 2 1 40 -1 2
=——— [ J|o3 " @o-Om)| dy+ 5 | 8|03 (bo - O] dy + Ky + Ly
2dt Jq 2 Ja
The term L; can be directly controlled
Ly < Pll(bo - O)mlla, lmlla, [1bolla, [IVIla) - (4.10)

17



The term K produces a higher order term when 6‘3‘6, falls on J~!. We invoke 9,J = Jdiv,v to get
=77 o 9). 830, n

3 3
=030, (o - O+ ) R0 Vbo -+ ) 0, (0517 bf 1)
N=0 M=0

= — J'95(divav) (bo - )

3 3
+ (103,77 1divav) (bo - O + D Y85 bp)@m) + ), 0, (8 (U bpaat M),
N=0 M=0

KL,

and thus
Ky =- f JOT " (bo - ) - (7 (o - D)) B (divav) dy + f JOYT (bo - ) - (KLy)
Q Q

K
<Kt + Wl lld ™ (bo - O)llall K Lillo
<Ki1 + P (ll(bo - Dnllas lImlla, 1Bolls) -

Summarizing (4.9)-(4.12), we get the following estimates

1d
f (bo - D™ (bo - O - Vdy $ =5 f J103 ™ o - am)|” dy + Kt + P (I(bo - Ol nllas ok, IvIla) -
Q Q

4.11)

(4.12)

(4.13)

We note that the term K, cannot be directly controlled, but will be cancelled by another term produced by — fQ(V Q) V.

Next we analyze the second integral on the RHS of (4.7). Integraing by parts and invoking Piola’s identity ;A" = 0, we get

—f(VAQ)-de:fJQ(VA~V)dy—fJQAliNlVidy’ =1 +1IB.
Q Q T

Plugging (4.2) and (4.4) as wellas Q = g + %Ibl2 into I, we get

1
I= f JO%q y(divav) dy + f J@;‘(z|]‘1(b0-6)77|2)8‘3‘(divAv)dy
Q Q

- f &, AP0,0 03(divav) dy — f 830 C(v)dy
Q Q
=L +5L+ 13 + 1.
The term I4 can be directly controlled by using (4.5)

Iy S NQIICWllo < PN Qllallvila-

OR JR’
The term I; gives the energy of g by invoking div4v = —t? =- @)

09

Lo
JR J2R’ JR'(q)
I=- f Ja;‘qag‘( @ qu) dy=- f D g iongay - f 15‘3‘61([53, 4 ]M) dy
a P a Po a Po
1d [ JPR@Q) .4 p lf (JzR’(q)) 42 f 4 ([ 4 JR’(q)} )
___d Sl dy+- | 8 dql dy— [ g8%q(l6t, 2 6,9 d
PTH s |361|y29z o |03q|” dv | J%al |95 = | ) &y
1d [ J?R(g)

2
$->— 634" dy + Plglls... lleolla. Imlla)-

2dt Jo  po
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The term I, will produce another higher order term to cancel with K

L= f J6% (77" (bo - Om) - (I (bo - D)) B3(divav) dy
Q

exactly cancel with Kj;

(4)JaN (77" (bo - 0m) - 337 (17 (o - D) B (divav) dy

QN 1 N
: JR'(q)
N 4-N 4
= — Ky - L;( )Ja (77 b - 0) - 57N (17 b0 - 9) )a( - a,q) dy @.18)
3 JZR/
=—K11—f2( )( (Q))aQ(J—‘(bO.a)n)-a;*-N(J-l(bo~a)n)a;‘a,qdy
N=1
4 JR'(q)
JaNJba TN (I by - 0 ([4 a,)d
anl(N) - 0n)- 047 (17 - o) 0.
=:— K1 + I + In.

We should control I5; by integrating 0, by parts under time integral

’ 0 r : 4 JzR/(CI)) N (7-1 4-N [ 7-1 4
L 2 0, N (I Ny - 0)n) - 5N (1 by - D)) g d
f(; 21 fo ff;NE:l(N) ( o N (77 o - 0m) - 03 (77" (bo - O)m) F3q dy
T~ (4)\ (PR (g)
E 8, (I by - ) - 87N (I by - O)n) Btqd
+fo fQN_I(N)( p ) (7o) 037 (77 B0 - On) Oa

0

JzR’ T .
L ( )( (Q))ag\l (7 o - 0m) - 357N (77 (o - D)) Fq b -
N=1

$f P(IT™" (bo - O)lla, 10:(J " (b - D3, liglla) + Po + 10" (b - D)3 11034llo
0
T

T
<Po + \fo‘ P(E(®) dt + &334l + |I5’t(J_ (bo - O3 < Po + fo P(&(®) dt + &l33ll5.

Then I, can be directly controlled since at most three d3’s fall on d,q.
Iy < 117 (bo - O)li3lIglly... (4.20)

The term I3 should also be controlled under time integral. We have

JR' R T R
f I = f f D gty A5,0 9 9,q dy + f f 3§n,;AlpﬁzQ[
0 Q

L,

T , ’ T
JR'(q) . JR(Q) o -
& _ f f at( L o, A’Pa,Q) dlgdy + f L o, Ar5,0 8q dy
Po Q pPo 0

JR'(q)
Lo

64 JR' (C]) ]

+L2

421

T
SP‘)*H latalolinlo + f P lglls 7l Iles loolle) db.
0

JR’(q)

T
<P + f P(&(0) dt +
0

ol f 1 v(o)lo dr

T
<sPo + P(EM) f P(&E(1)) dt,
0

where we use d*5|;=9 = 0 in the last step. Summarizing (4.16)-(4.21) and choosing & > 0 suitably small, we get the estimates
of 7 under time integral

T 2 pr T T
f Idr < -+ f TR@ 51,1 dy' + P4 + PED)) f PE®) dr. 4.22)
0 2Ja  po ; 0 0
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4.3 Boundary estimates

To finish the estimates of purely non-weighted normal derivative, it remains to control the boundary integral /B in (4.14) which

reads

- f JQANV; dy = - f AYN; 330V, dy’
r r

+ f AN 05, AP 330 93y dy — f AN 05, AP D30 (93m, A™ 0,y dy’
T

=:IBy + IB; + IB;.

(4.23)

First, IB; will produce the boundary energy with the help of Rayleigh-Taylor sign condition (1.8) and the error terms will

be cancelled with IB;. In specific, we have

A0\ . ,
_ 1d aQ 3i a4
T2dr ( aN)|A Ol dy

1 3i 2 90 3i a4 3p a4 ’
2[6,(]—)|A aimi|” dy +£(—Jﬁ)a¢x &n, AP dim; dy

=.IB|1 + IB]2 +IB]3.

Invoking Rayleigh-Taylor sign condition, we get

T
f 1By dt < —— f‘A3la37]z| dy’ >
0 0

and thus the term /B;, can be directly controlled by the boundary energy

1By $10,(J05Q)~ |A¥ 33|, < P(ED)).

=

Then we plug 9,A% = —A% 3,,v, A™ into IB3 to get
0 -
IBy3 =ﬁ(%)AhamvrAmlBgnpA”a;‘m dy’,

and this term exactly cancel with /B, if we replace the indices (7, i) by (i, r).
It now remains to control /By. We have

IBy = f N3J 350 (A¥a5v) dy + f A N3350 83m, AA; dy’ =: IBo; + [Bg.

To control 1By, we shall differentiate the following relations

JR'(q)

Po

A3563v,- ZdiVAV - Aliglvi - Azlgzv, = - 6,(] - Aliglvi - A2i52\/i.

In IBy;, we use the relation (4.29) to get

A3y, =03(AY93v)) — RIAY D3v; — 3RAY B3v; — 30:A% A3,

2
R’ — . . .
=-08} (J p(f‘” 6tq) - § (AL DLv) — RAY D3v; — 33A% B3v; — 30:A% A3y,
L=

and thus /By; becomes

2
R’ _
1By, = fN3J64Q63(J @ )+§ fNﬂ@%‘Q@%(AL’aLv,»)
=1 v

+ f N3JO3Q (93A% D3v; + 305A% Bv; + 30:4% 33v:)
r

=:1By11 + IBo12 + 1Bo3.
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4.27)
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In 1Bos2, since AX has the form 337 X dn, the highest order term contains 33AY = %5 x dn + - -- which cannot be directly
controlled. However, this term can produce cancellation with /By,. We have

6§AU = - 6§(AL" 6361117]p Ami)

2
) _ . ) (4.32)
== ARG, AN = % A SGym, AN — [0, AT A 1030,m,,
M=1
and thus /By, can be written as
2 . -_—
[Boiy = — Z f A N3350 3n, AP ALy, (4.33)
=1 vl
2 2 B ‘ '
-3 f N3J8%Q (Z AL 330ym, AM 4 (02, A% A™1050,m, |- (4.34)
=1 YT M=1
On the other hand, we write 1B, as
1By, = f A N3350 93m, AP0z, dy’ (4.35)
r
2 . —_—
> f A¥N30%0 8%, A G,y dy . (4.36)
=1 vl
Therefore, (4.36) exactly cancels with the main term (4.33) in /By
Now it remains to control /By, IBy;3 and (4.34), (4.35). Invoking the relation
Ai950 == " AH8.0 - podv' + (bo - I (bo - np), (4.37)
=1
we get ‘ ' . ' ‘
A530 =03(A%0;0) — 1AV ;0 - 30347 920 - 30;A% 330
2
=33 (~podn' + (b - ) (bo - O)) — Y | (A3, 0) (4.38)
=1
- KA 0,0 - 303A% 930 - 30;4% 050.
Note that

e The term A% is of the form 517 X 577, so the leading order term in 6§A3i should be (6%517)(577).

e The highest order term in ﬁg(AL’ELQ) is 93AL 8.0 = 0 due to 8, Olr—o.

e The highest order term in 6;((b0 -0)(J by - 0))) is (by - 5)6§(J’I(bo - 0)n) because b8|r = 0 makes (by - d) tangential on
the boundary.

Therefore, we can rewrite 6‘3‘Q to be the terms of at most 3 normal derivatives and one tangential derivative:

830 =J'A¥03m; 050 = T 03mi(AV950)

=1

:rlam(ag (=00 + (b - DI (b - ) = | Zz“ (;)(agVALl‘)(agNELQ) (4.39)
L=1 N=0
— BAY 9,0 - 3024% 920 — 30;4% agQ).
In (4.35), we need to rewrite A3”6‘3‘17,, by using A3P(')377,, =11in Q (and thus 6§(A3p63n,,) =0)
AP35, = —3A%P dn, — 305A4°7 33n, — 304 33ny,. (4.40)
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In the light of (4.38)-(4.40), we are able to write /By, /B3 and (4.34), (4.35) in the form of

f N3 (6; Df )(6; Dg)hdy” + lower order terms, (4.41)
r

where D = 8 or 8, or by - d, and f.gcanben,v,q,J ' (by - O)n, and h contains at most first order derivative of , v. Then (4.41)
can be controlled in the following way

fr Ny@ DB Dhdy =( fﬂ @ D)@ Dg)h - fg (@D ) (@D - fg (6§Df><aibg>(asm)
D 4 32 N 4 3
= L((%f)((%b 2)h L(a3f)(33bg)(®h) (4.42)
" fg B2 f)@igh + fg (@D 1)(@Lg)(Dh) - fg (@D Dg)(@3h)
<183 f1lo + 11032 fllo)(193gllo + 103D gl < N1 flls llglls 1Al
which gives the control of /By, B3 and (4.34), (4.35).

Remark. If we integrate © = 9, by parts in (4.42) (such term appears in a leading order term 6%&\/ in 6‘3‘ Q), then we should
proceed the estimate under time integral and also consider the terms like fg(ﬁg f )(ag Dg)h which can be controlled by

1 1
fg (O3 Dgh < elldivll} + guaibgué + 8_8”’1”3%
1 T

sellogvll + = (||g<0>||‘7‘,* +[lh(O)l5 + f 16328, g(t)llg + ||ath<t>||;‘) (4.43)

0
T
<ellogvils + Po + f Pllglls.«. l17lls ) dz.
0
According to (4.42)-(4.43), we can finalize the estimates of the boundary integral /B as follows

co d ; 2 .,
IB < &l|o3vI} - Z"d—t f |A¥a%m|” dy’ + P(E®)). (4.44)
r

4.4 Energy estimates of purely normal derivatives

Now, (4.44) together with (4.7), (4.8), (4.13), (4.22) gives the estimates of Alinhac good unknowns of v, Q in the case of purely
non-weighted normal derivatives

- 2 c i 2 T
IVIG + |03 (' o - o) + 1%l + 5 [4¥6knlo| < sllodvll + 2o+ PED) f PE(®) dr. (445)
0

t=T

Finally, by the definition of Alinhac good unknown (4.2) and 837l = 0, 83v is controlled by
T T
183VI1G < IVIIG + lladvlZ- f 83v115 dz < [IVllo + P(E(T)) f P(&®)) dr, (4.46)
0 0
and thus by choosing € > 0 sufficiently small, we get

I3vIR +[|od (" bo - a)n)H; + 19kl + 5 [A7 9,

T
<SPy + PET)) f P(E®)) dt. (4.47)
=T 0

S Control of purely tangential derivatives

Now we consider the purely tangential derivatives. In this case, the top order derivative becomes 0! = 8;"5’;‘ 5;2 with ig+i; +ip =
8. We will prove the following estimates by a modified Alinhac good unknown method.
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Proposition 5.1. The following energy inequality holds for any sufficiently small € > 0

7.2
DA

i3=iy=0

_ 2 c i 2 ’
3. (77" o - )|, + eqlls + 2 [a"0lm, S ellgs0f I + o+ PET) f PE@)d.  (5.1)
t= 0

For simplicity, we mainly study the case iy = 0, i.e., 8. = 53‘ 5;2 with i + i, = 8. For sake of clean notations, we denote
o = 8"1‘ 6;2. In fact, most of the steps of the proof in this section are completely applicable to the case of iy > 0.

5.1 The case of full spatial derivatives
5.1.1 Derivation of “modified Alinhac good unknowns” in anisotropic Sobolev space

We still use Alinhac good unknowns to control the tangential derivatives. However, we cannot directly replace 6‘3‘ by 8% in (4.2)

because the commutator contains the terms like 3’dn, 8’dv and §’9Q whose L2-norm cannot be controlled in H®. In specific,
we have

VL) =V4@° ) + @ ANGS +18°, A", 0,11
=V, ) = 0" (A" 30,um, A™)Of +16°, A", O] (5.2)
=VL@ f =80 A" 0,f) + 80, V(YL ) — (17, AA™180,m)3,f + 10°, A", O ).
We notice that the L?(Q)-norm of the following quantities coming from the last two terms of (5.2) cannot be controlled because
0" may fall on A = 95 X dn and Of.

e1 1= =0 (AA™)00,m, 0,f, e> = —THA"A™)d 8,m, B, f

= - - (5.3)
e3 := 8(0’A"N0D,f), es := 8(OAT)D'I,f).
Here 897 means there are 8 terms of the form 51‘ 5;2 with i} + i, = 7. We will repeatedly use similar notations throughout the
manuscript.
Our idea to overcome this difficulty is mainly based on the following three techniques:

1. Modify the definition of “Alinhac good unknowns”: Rewrite these quantities in terms of Vj{(- -+) + L?-bounded terms,
and then merge the terms inside the covariant derivative V), into the “Alinhac good unknowns”.

2. Produce a weighted normal derivative to replace a non-weighted one: There are terms like ((797(9317)(5Q). Since Q|r = 0,
we know dQ|r = 0. Therefore, we can estimate the L*-norm of dQ by fundamental theorem of calculus: (Suppose y; > 0
without loss of generality)

Y3
100(t, y3)l=(r2) = ‘0 + jl‘ 005 0(t, £3)d{3 < (I =y3)I035 0~ < o(y3)l003 Ol

L2(T2)
then we move the o(y3) to 57(')377 to get a weighted normal derivative (0'63)15771 whose L2-norm can be directly bounded
in H.

3. Replace V;Q (contains a normal derivative) by —pod,v + (bo - 0)(J~'(by - 9)n) (only contains tangential derivative) in order
to make the order of the derivatives lower thanks to the anisotropy of H”".

_ Now we analyze these extra terms from the commutator. We start with 8(87AM)(80,f) and 8(A")(78,f) coming from
[88, AL, 0;f]1n (5.2). Since OAl = —Alp 00,1, A™  we have

AT = —AP §78,m, A — [3°, AP A8,

where the highest order term in [56,A”’A’"" 10mn, is 566,,,77,, whose L2-norm can be directly bounded by ||n|[s.. Therefore, we

have
8(0"A")(01f) = = 8(A™ 8,00y A)IDf — 8([°, AP A" 10,001 f

= - 8V,(0'n, AT 33, f) +8V' (V23 )0 n, — 8(18°, AP A™18,m,)00, f
=Ci(f)

5.4)

= =8V ("1 - Vadf) + Ci(f),
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where C;(f) can be controlled by using H'/?> < L3 and H' < L® in 3D domain
Ci(f) SIAIZN0*Af Il ell0nll > + A Bf dAllL=116"7ll2 + PAlnlls OO f Il
SIAIZN* LUK 20 nllo + PAllnlls O fll
SIAIZNPA LN nll 21657l + PAmlls, GO f1l1
<Pl Nlls.« + PAlls NGO fll.
The term 8(9A")(678,f) should be treated differently in the case of f = v; and f = Q respectively.
e When f = v;, then this term becomes
8(AA"Y9yv;) = — 8AP 38,m, A" dv; = ~8A" 38,m; A™ & Oy,

= — 8V, (8"v, A" 88,u1;) + 8V, (88,1 A™P)E v,

=G ()

(5.5)
=:- 8Vf4(57v . V;ﬁm) + Ca(v),
and similarly we have [|[Co(v)llo < P(I7ll7, OVl ..

e When f = Q, we cannot mimic the simplification as above. Instead, we need to invoke the MHD equation to replace
V40 by tangential derivatives. We consider

8(JAA"9,0) = — 8(A 30,m, A™)d' 3,0
=—89' (A7 9,0) A" 30,m, + 8(8" A")(0,0)(00,m, A™)

6
+8) ( ;)(ENA’PXE“N@Q)(EBMP A™)
N=1

_ _ —_ - , (5.6)

=83 (pod;v” = (by - )T~ (bo - ")) A™ B,y + 88 A )(O10)(@D i, A™)
6
T\ = — _ .
8 N APV 3,10)( 00 m, A™

B 1; (N)( )@ 0,0)(@m, A™)

=:Cy1 + Co + Cps.
The L?-norm of C,3 can be directly controlled since the top order derivative is 8°0
IC23llo < linlls,«l1Qlls « P(lnll7.)- (5.7

The L?-norm of C,; can be directly controlled_when I = 3 because A3 consists of 57] X 57]. When [ = 1,2, we need to
invoke the second technique above, i.e., using dQ|r = 0 to produce a weight function o (y3).

2
ICxllo <A o050 8o allz= + " 1@ A)(@L.Q)@B, A"y
L=1

2
<Pz NG lolIQlls + > 1167 A™)(0(v5)330.0)(@8,mp A™lo 58)
L=1 .

2
<Pl Il Qlls + > 11ed” A 1lgll (8301 Q) @y A"l
L=1

<Pl Q.. (18%7llo + (3)8nllo) .

where we use the fact that A consists of (6317)(517) in the last step.
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Finally, C,; can also be directly bounded because the top order derivatives are 576, and 57(1)0 - d). Note that bglr =0

yields the following estimates by using the second technique mentioned above.
Ib3830" (™" (bo - Dllo < 10bollall(ed3)d” (I~ (bo - Dymllo,

and thus
Ca1 5 P(ll7)leoll7«lVlls.« + [1Boll7,«lI(bo - D)nllg )

Therefore, we have the estimates for C»(Q) := 89A%679,0

IC2(D)llo < PAIbollz,«» lloolly . Imllz,)Amlls « + Vls o + 117" (bo - Dnlls . + 1Qllg ).

(5.9)

(5.10)

Next we analyze —(57(A1’A’"i) 5(9,,,7],)61 f coming from —([57,A1’Ami]56m7],)61 f. There are two terms of top order deriva-

tives:

6
~07 (A" A™) 80,1, 91f = ~(@AVA" 30, 1f — A @A™ 80y, D1f ~ ) ( )(5NA”><56—NA’"">56mm af,

7

a W

where the L?-norm of the last term can be directly controlled
6

T\ — — L
Z (N)(aNA]r)(aé—NAmz)aamr]r 61f
N=1

< Plinlls, Ol A3

0

Similarly as (5.4), the term —A” (87 A™)38,,n, 8, f can be written as the covariant derivatives plus L2-bounded terms

—A"(©A")30,m, O1f =A" A" (040 1,)AN 80,m, 01 f + ([8°, A" A0y ,)A" 00,m, O1f
=V (@1, A" 80,m, A" 3 f)
—3"n, Vi, (A" 80,,m, A" 8, f) + ([8°, A" A¥18dn ) A" 30,m, O1f
=:C3(f)
=:Vi(@'17- Vadn - Vaf) + C3(f),

where C3(f) can be directly controlled similarly as C;(f)

IC5(Hllo < PInlls OS2
We then compute —(8’ A")A™ 38,,m, 0, f.
e When f = v;: Similarly as in (5.11), we have

—(@' ATYA™ 38,1, Oyvi =AP (D i) AKA™ 30,1, Ayvi — (18°, A AK103,m,)A™ 8D, Dy
=A@ i, ) A A™ 88, Oy, — ([8°, AP A¥186,1,)A™ 3, Ovi
=Vf4 (5777p AP §v, A™ 56mni)

~V (AP A 38, v, 1, — ([0°, AP A 188 ,)A™ 8D, Dy
=:C4(v)
=V (@0 Vv - Vadm) + Ca(v),

where C4(v) can be directly controlled similarly as C;(f)

ICsMllo < PAlIlls, OOVl
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e When f = Q: If [ = 3, then this term can be directly controlled since A>" = J ‘@g X dn only contains first-order tangential
derivatives. If /[ = 1,2, then we can mimic the treatment of_ Cy, i.e., using 0. 0Ir :_0 and fugdamental theorem of
calculus to produce a weight function o(y3) and move that to 3’ A”. Define C4(Q) := —(0’A")A™ 90,1, 3;Q, then

2
IC4(Qllo SI@ AIA™ G0, 05 Qllo + .. ALYA™ 8,1, 31.Qlo
L=1

2
_ _ - — - (5.13)
<l8*nllollQlls PAIdnll2. 100ml2) + Z llod” A" 10 lA™ 88,1, 3103 Ol

=1
< (I8%nllo + (@83)8"mllo) PAIQII3. 10Qlls. limllz..)-
Next we analyze —75(A”Ami)57c')mn, 0;f coming from —[57, Al’Ami]gﬁmnr 0, f. This term cannot be directly controlled when
m = 3. We should analyze it term by term. First we have
—78(A" A" B,y B1f = — TOA” A™ &7 0,um, 0, f — TA” DA™ &7 8,1, O,f
=TA" 8,9, A" A™ 87 0,m, 0,f + TATA™ 3.9n, A &7 0,1, Oy f.
The first term can be directly rewritten as follows
TAY gy, A A 50, dif =TVL(0'n, A &b, A 8, f) ~TV (A" &b, A 8,1)d'n,
Cs(h (5.14)

=17V, @' Vady - Vaf) + Cs(f),
where Cs(f) can be similarly controlled as C;(f)
ICs(Pllo < PAInlls ONOL 13-
Then we analyze 7A" AP (Bkénp)Aki (578,”17,)6, f, which needs different treatment for f = v; and f = Q respectively.
e When f = v;, we have the following simplification
TAT AP 9, A¥ 30, Opvi = TATA™ 8,0 AP 8 8,m, Oy,
=TV4(@ ', A" 9y, AP 8di) + TV (AT 8y, AXP 804D,

Ce(v)

(5.15)

=7V - Vav - V40) + Co(v),
and (|Cs(Wllo < P(I7ll7.)lInlls.«|[vll3 follows from direct computation, analogous to the analysis of the first term in C(f).
e When f = Q, this term becomes
Co(Q) := = TA"(BA™ )@ 3,110
_ _ 5 17\ - - -
== 7(97(A"0n,) ~@ A D) - ) ( )(aNAI"xa“Namm) OA™ 9,0
~— —— N
=3761,=0 V=l
= = S = i (5.16)
=T@ A0 OA™ 950 + ) (@ A*)3,m, GA™ 6.0 '

L=1
6 7\ _ _
+7) ( N)(é”A”)<a7-Na,,,m)aA"“' a0
N=1
=:Ce1 + Ce + Co3.

Since A% = J ‘157] X 57], we know the top order term is of the form 5877 X 57] and thus Cg; can be directly controlled

ICe1llo < PAImlI3)lImlls 103 Oll2.
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The term Cg, can be treated in the same way as C4(Q) in (5.13) by using 5LQ|1- = 0 to produce a weight function o
ICe2llo < (I(ed3)d"nll + 18°7ll0) PInllz, 883 Qll2 < Plinllz. N Qlly..llnlls .-

Finally, Cg3 can be directly controlled
ICe3ll0 < Plinll7,Olnlls«10CIl2,

and thus
ICs(Dllo < PIll7,)lIll8 4| Qll7,5- (5.17)

_Now we plug (5.4)-(5.5), (5.10)-(5.17) into (5.2) and define the “modified Alinhac good unknowns” of v and Q with respect
to 4% as B B
Vii= 0%, - 0% - Vuv,

- 85777 V40v; — 80" - VAén,-
+0717- Va0 - Vavi +3'n - Vav - V0, (5.18)
+ 75777 . VA517 - Vv + 75771 Vv VAgr]i
= 58\1,- - 5817 - Vv — 85777 . VAgvi -89y - VA517,~ + 85771 . VA577 - Vv + 85777 - Vv VAgn,-,
and
Q :=3°0-08%-V40-83"n-VA400 + 83y V8- V0. (5.19)

Then the modified good unknowns satisfy the following relations

6 6
F(divay) = Va -V + )" Cu(v), 3 (Va0) = V4Q" + )" Cu(0Q), (5.20)
M=0 M=0

where Co(f) comes from the directly controllable terms in the RHS of (5.2)

_ . 5 (7\= R 6 18\ = . —
Co(f) = 8", Vy(Vuf) = NZZ ( N)aN(A”Am')a7‘N(aammalf > ( N)(BNAI’)(GS_Nazf), (5.21)

N=2

satisfies

ICo(Nllo < PdImlls, Ol f s
and C; ~ Cg are constructed in (5.4)-(5.5), (5.10)-(5.17).

5.2 Energy estimates of purely tangential derivatives
We denote C*(f) := Co(f) + C1(f) + - - - + Co(f) and the “extra modification terms” in the modified Alinhac good unknowns by
(A); := =891 - V40v; — 80'v - V40n; + 89" - Vadn - Vavi + 895 - Vv - V4,
Ay :=—80"n-V40Q +89'n - Vadn - VAQ.
Then the modified Alinhac good unknowns become
V* =% —5877 -Vav+ AL, QF = 58Q —5817 -V40 + A*Q.

Remark. There are more modification terms in V* than in Q. The reason is that we can replace V4 Q which contains a normal
derivative with tangential derivative (8,v and (by - 0)(J~'(by - d)1)) by invoking the MHD equation. However, similar relation
only holds for div4v instead of V4v. Therefore, for those terms in the commutators containing v, we have to rewrite them to be
the covariant derivatives of the modifition terms plus L*(Q)-bounded terms.
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It is straightforward to see that the L>(Q2) norms of A%, A*Q, 0,(A}) and 9,(Ap) can be controlled by P(E(1))

18: (Ao S VIlo(IV AV + IV 40l I1V aVI) + 1078V llolIV 407l
+ 10" 7ll0(IV 483, VIl2 + IV 4021V A,V Il2 + IV 4OVl V aVI2) (5.22)
<P(IInlls . IV1ls.),

190, (Allo <1107vllo(IV43Qll + Va0V A Qll2)
+ 110" 1llo(IV 488, Qllz + IV a0nll2lIV 48, Qll2 + IV 4011211V 4 Oll) (5.23)
<P(Mllg.0s V17,0, 1Qllg.0),

1Al + 1AVl < Pl [Vll7,4 1Qll7,1).- (5.24)

Now we take 8% in the second equation of compressible MHD system (1.17) to get
RO, (8V) = T (b - )3 (7' by - ) + (V4 Q) = [R. 8| 0w + [6°, 77 (bo - 0)] (7" b0 - O)) .
Then invoking (5.20) to get
RO,(8*v) = T (b - )3 (7' by - ) + VaQ" =R, 8| 0w + [0°, 77 (o - 0)| (77" (b0 - D)) = C*(Q).
Finally, plugging V* = 8% — 3% - V4v + A’ yields the evolution equation of V* and Q*

ROV = T by - )8° (7' by - D)) + VaQ" =[R. G| 0w + 8%, T (b - )| (47" (bo - )

_ (5.25)
—C*(Q) + RO, (=3%n - Vav + AY)

We denote the RHS of (5.25) by F*. Similarly as in Section 4, we compute the L*-inner product of (5.25) and JV* to get
the energy identity

1d

—— | polV*P dy=f(b0~6)58(1‘1(b0-6)n)-V*—f(VAQ*)~V*+fJF*-V*. (5.26)
2.dt Q Q Q Q

5.2.1 Interior estimates

Using (5.22), the third integral on RHS of (5.26) is controlled by direct computation
fJF* VIS IFlV7]lo < P(Il(po,n, v, @, by, (by - 3)77)|Ig,*) V:llo. (5.27)
Q

The first integral on RHS of (5.26) can be similarly treated as (4.9)-(4.13) by replacing 63‘ by 4% and | - [l4-norm by || - ||g -
norm. We omit the details and list the result

= 1d — 2
fg (bo - )G (T by - I - V' dy $ =5 — fg B o - amm| dy+ K3y + P (I v, bo. (bo - ) (5.28)

where K;‘l is defined to be

K = - f JO* T (bo - B)m) - (I (bo - ) 3 (divav) dy. (5.29)
Q

Next we analyze the term — fQ JV4Q - V. Integrating by parts and using Piola’s identity, we get

- f (V4Q) -V = f JQ(V4 - V) — f JQANV:dy =: I" + IB". (5.30)
Q Q T
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Invoking (5.18), (5.20) and Q = g + 3|7 (by - O)n*, we get

— - — (1 —
I = f J3%q 8% (divav) dy + f Jas(E |J—1(b0~6)n|2)<98(divAv)dy
Q Q

+ f (=00, A 8,0 + Apy)d®(divav) dy — f %0 C*(v)dy (5:31)
Q Q
=L +L+0+1;,
where I can be directly controlled by using the estimates of C*(v)
1; < 110°QlollC* Mo < P(lInlls.)NI6® Qllol .- (5.32)
Similarly, I5 produces another higher order term to cancel with K7,
L= f T8 (77 (bo - ) - (I (bo - D)) *(divav) dy
Q
exactly cancel with K},
7
8 _ _
JON (17 bo - ) - 8N (I (o - D)) B(divav) d
+Z(N)f (bo - ) - 3 (4 by - D) B (divyv) dy
7 (5.33)

e Z( )LJZR 5 (71 b0 a)- T (77 b - o) TForg

11
N=1

(8 fJ (77" o - 0m) - 3N (7 By - 9) )([ '(‘1)] )dy
N=1 Q Po
+

- K}, 1;1

Similarly as in (4.19)-(4.20), the term 73, should be controlled by integrating d; by parts under time integral and I, can be
directly controlled. We omit the details

T T
f I, <ello*qllf + Po + f P(&E(1)) dt (5.34)
0 0
L, <7 (bo - Ol . llglls (5.35)
The term I} produces the energy term |I58q||(2) as in (4.17).

1d [ PR

I < - gl + P . o . 5.36
1S5 o —10%ql (Ilgll35» lloolls» [17l35)- (5.36)

I; can be controlled by integrating 8, by parts under time integral after invoking div,v = R/O(q) 0:;q and (5.23)-(5.24).

f L= f f ]R'(q) np A" 8,0 - Ay)d* g dy + f f (@, A" 5,0 - AQ)([ES, JIZSQ)]M) dy

L

ffa,(JRl(")aS Al 8,0 - A? )38 dy +f p'(‘I)( AP 5,0 - A )(98qdy

o 210
Lo

+L

AdQ

o + gl | 1B+ [ P v, gupols)
e 0

L (5.37)

— JR'(q)
<Py + &l Bqll3 + | —2

T
18l + 1Al + f P(E(®) dr
0

T
+|I68V(t)llo+|I31(AQ)||0dt+f0 P(&E(r)) dt

5, (JR’(q)

<Py + ellBql + f A aQ)
0

I

_ T
<ellobqllg + Po + f P(&(t)) dt,
0
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Summarizing (5.31)-(5.37) and choosing € > 0 to be sufficiently small, we get the estimates of /* under time integral

T 2
f 1dz<—-fJR(‘I)|ag| dy
0 2 Ja

Now it remains to deal with the boundary integral /B*. Since Q|r = 0, we know

Q'lr = -8%, A% 8,0 + A},

T
+7’o+f P(&(1)) dr. (5.38)
0

5.2.2 Boundary estimates

and
Aylr = -89, A" 0050 + 80"y - Va0, A* 8;0.
Then the boundary integral /B* reads

IB* = f A3N36%, A% 00 8%, dy’ — f A3N3 (88,4378 0)(3%n - Vavi) dy’
T T

- £A3iN3AE v dy + jr‘A3"N3A*Q 8%y - Vavidy (5.39)
- fr AN NG (A dy + fr A N33, A :0)(A); dy’
=B} + IB; + IB; + IB, + IB; + IB;.
Before going to the proof, we would like to state our basic strategy to deal with the boundary control

e [B] together with the Raylor-Taylor sign condition gives the boundary energy |A3i5877i|é and the extra terms can be
cancelled by /B;. This step also appears in the study of Euler equations [8, 13, 41, 42, 45] and incompressible MHD
[29, 25, 21, 22] and compressible resistive MHD [72]. It actually gives the control of the second fundamental form of the
free surface [8]. B

e [B;: We can write 0®v; = 9%9m; and integrate 9, by parts. When 0, falls on A*Q, the boundary integral can be directly
controlled by using trace lemma. When 9, falls on A¥, such terms exactly cancel with the top order term in I Bj.

e /B and IB;: Direct computation together with the trace lemma gives the control.

We first compute /B7. Similarly as (4.24), we have

40 — -
IB = — f(——)JA3’68 A3 8%0m; dy’
1 r aN T]]’ fn y

1d 00\ . 3izs 2
=—=— —J—=||A"0n;| dy
2dr ( )| 7 | Y (5.40)
3ig8 _,90 3i 758 3p A8, v/
3: A °n J 0,A” 0°n, A°F 0°n; dy
r ON
=.IB11 + 1312 + 1813,
The term IB7, together with the Rayleigh-Taylor sign condition gives the boundary energy
T . 2|7
f B, < —04—0 ’A3’68ni R (5.41)
0 0
and /Bj, can be directly controlled by the boundary energy
— 2 40
1B, < |AYd"ni| |0; (1—) < PE). (5.42)
‘ ’0 ON [eo
Then we plug 9,A% = —A%0,v,A¥ into I B to get the cancellation structure
1B, —f A3’6 AR, A,
(5.43)

Q i rq o *
= fr ngﬁ i AF 0%y, A 3%y, = ~IB;
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Next we analyze IB;. We write v; = d,i7; and integrate this , by parts

T T
f IB; = - f f JAYN3Ay, 8°0,m; dy’ di
0 0 r
T
if fJaA3i N3A% 8, dy’ dr
o Jr e (5.44)
T ) _ . _ T
- fo fr AYN3 8,(JAy) 0°n; dy’ dr — fr JAYN3 A, 0°n; dy’o
=:IB;, + IBy, + IBj;.

Again, plug §,A% = —A¥d;v,A" into IB;, to get the cancellation with /B

T
By = - f f JAY div, A N3 Ay 8% dy’ di
0 r

, (5.45)
= - j; fr JAY dvi A N3 Ay 6%, dy’ dt = —IB;,.
For IB7;, we use the fact that 57n|t:0 = 0 (and thus A*er = 0 when ¢ = 0) together with Lemma 3.1 to get
3i * a8 ’ _ 3i a7 3p g 7 a 3r 8 ’
fJA N3AQ 0 ni dy = —fJA N3(86 Mp A 363Q - 80 n- VAan,A 83Q)5 ni dy
r =T r
T
<|A¥8 0] 1111477805 011 + (V4 T0)A% 330l1) f 0" ()lo dr (5.46)
0
_ T
<@, Pt 101 [ ol o
0
In IB;Z, we invoke the relation (4.37) to get
A(JAYIr = —807v, A 330 + 80"v - V.ady, A 650
—80'n, 0,(A%0050) + 80 - 0,(Vadn, A 0;0)
=—83"v, A% 33;0 + 89"v - V40, A7 90
— 80"7,0,0(A05Q) + 80'n,0,(0A™ 30) + 80" - 9(Vadn, A 9;0)
“2D _ 857y, A% 9050 + 897y - V431, A¥530
+80"1,0,0 (o0, = (bo - 9)(J ™ (bo - ") + 897y, DA 030) + 89" - (Yl A79;Q).
Then we use H %(Tz) < L*(T?), Lemma 3.1 and standard Sobolev trace lemma to get
|6:(JAYIc|, <16"vlo (1A OO + la B A QI )
+ @nplo (joodv? + b0 - 07| +[0,GA™ 9:0)+ 0(Vadn, A7 5:0) )
SIvlls <N10Qlls «P(l1onll3) (5.47)
+ .. (o33 + 8,60 - Dl + [0.GA™ 9:0) + .(Vadn, 4 530 )
SUmlls,« + 1Vlls.« + 116ll7,.)UIQ, 1, Vl7 4, 11bo, poll3),
and thus ,
IB3, < f |43 || Pl o0 1.0, 1l Bl o 0l . (5.48)
0

From (5.39), we know it suffices to control the product of “error part” /B3

1B; < |AY|1=|AGIrlol(A})ilos
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and the RHS can be directly controlled by Lemma 3.1 and standard trace lemma

Nglely < [07n, |, (1477005 Q1 +1953m, AV95011-) < PUIQIo, il il

|As], <1870 (IVABVILs + V400 - Vavies + Y4y - Vadnlzs ) + 107 vlolV a0l
<SPl AVlls. + VIl lills..)-

Therefore,
IB; < P(Inllg < IVllg <, | Qll7.4), (5.49)

and similarly _ B
1B}, < 1A% 05 Q11|14 3%, lo(AD)ilo.- (5.50)

Summarizing (5.39)-(5.50) gives the control of the boundary integral

T Co | ams |2 T
j‘urs—z¢4wn%+¢m+maanjaPgm»m. (5.51)
0 0

Combining (5.26), (5.27), (5.28), (5.38) and (5.51) and choosing & > 0 in (5.34) to be suitably small, we get the following
energy inequality

* o — 2 _ 4 iq 2 ’
VI + ][ (77! o - m)|, + 5%l + 5 |4° agm\o' S Po+ PED) f PE(®) dr. (5:52)
1= 0
Finally, invoking (5.18), we get the &®-estimates of v
18Vl <IIV*llo + 118 llolIVavilles + 167 mllo (IV4GVIIL + 11V.407 - Vavilps) + 1167 vilolIV adpl e

Since 0"nl;=o = 0 for any m > 2,m € N*, we know
_ T
18%llo < IV*llo + PAAVIl7... llrll7) f P(Mls..), (5.53)

0

and thus

1853 + [ (7" bo - )| + 8% + 2 [4¥3%n s¢m+Paxn{fJP®a»m. (5.54)
0 4 T 0

2
0=

5.3 The case of one time derivative 576,

If we replace 0! = o by 876, then most of steps in the proof above are still applicable because we do not integrate the
derivative(s) in D8 by parts. However, we still need to do the following modifications due to the presence of time derivative.

5.3.1 Extra difficulty: non-vanishing initial data of 6’5

If ol = 576,, then we can no longer derive 57(9,77|,=0 = 0 from n|,=9 = Id due to the presence of time derivative and 9, = v. This
property is used in the analysis of /B, and the control of the difference between V* and dlv. Before we analyze the analogues

of 1B}, and (5.53) in the case of 8! = §78,, we have to find out the precise form of the modified Alinhac good unknowns when
dl =0,
5.3.2 The modified Alinhac good unknowns

Recall the “extra modification terms” A*Q, A in (5.25) come from the bad terms (5.3). Now we replace o8 by 576,. Iney, e, e

in (5.3), if we replace o’ by 8°0, (i.e., the time derivative falls on the higher order term), then their L?> norms can be directly
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controlled since d;a has the same spatial regularity as a. Therefore, the remaining quantities whose L?-norms cannot be directly
controlled in the case of 8 = 870, are

ey := =8 (A"A™)8,0,m, Oif, ey = ~TO(ATA™) 0, Oif

o o _ (5.55)
e3 = 8(0'A"D,0.f, e4:= (8,A")D0,f) + 1(OA")(0°,0.f).
Then the corresponding Alinhac good unknowns now becomes (with the abuse of terminology)
V =00y -80m-Vav+ AL, Q" =88,0-00m-Vai0+ A, (5.56)
where _ _ _
(AD)i == 80" - V40,v; —80"v - Vav; + 1601 - Vav - Vyv;, (5.5
Ny :==80"7 V40,0 +89'n Vav - Va0, '
and _ _
8'0,(divav) = V4 - V' + C*(v), 8'0,(V40) = V4Q" + C*(Q), (5.58)
with

IC*(Hllo s PEDIf s+

Now, the analogue of /B%; becomes the following quantity (recall such term comes from the product of Ay and 870,y
f JAYN;(80"n, A’ 8,050 — 89'n - Vadim, A 8:0)0 9, Y, (5.59)
r

and we can still use 8’7o = 0.
The analogue of (5.53) now needs some small modifications

187,vllo IV llo + 187vlloIVavilz + 11877l (81VA0,vllz + 16]IV.avi[}..)

T
<V llo + 187VIIG + IV VI3 + IVADVI3 + (8IIVad Ml + 16]IV AV} f 167 vllo d
0

<V + Po + fo p (157 8Mlo. 19,8112, 19,0V, |168mI2) + PETY) fo " e dr 560
SIVIIR + Po + PET)) fo ' P(E®) dr.
The remaining analysis should follow in the same way as in Section 5.2, so we omit those details. The result is
157912 + HE%’), (77" o - a)n)Hi + 1180, + %0 |A3i576t77,» (2) 'H < Po + P(ET)) fo ' P(E®D) dr. (5.61)

5.4 The case of 2~7 time derivatives

If the number of time derivatives in 81 is between 2 and 7, i.e,. 61 contains at least one spatial and two time derivatives, we can
still mimic most steps in Section 5.3. In this case we write 8. = D%9? where D =  or §, and D° contains at least one .

The extra time derivatives allow us to eliminate most of the “extra modification terms” in the modified Alinhac good
unknowns as in (5.25), (5.56)-(5.57) and thus much simplify the analysis of Alinhac good unknowns and tne boundary control.
The reason is that the L>-norm of the analogues of e¢; ~ ez in (5.3) can be directly controlled in the case of D% = D°4?. In
specific, we have

DOV, f) =V (DOF?f) + (DA, f + [D0?, A", ;1]
=V, (D82 f) — DOO,(A" 8,0,m, A", f + [D°F2, A", ;]
=V, (D> f — D87, A"d,f) + D020, Vi (V' f) — ([D°0;, AT A™18,8,m,)d, f +[D°62, A", 3, f]
Co(f)

(5.62)
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and
ICo(Hllo < PdlImlls . lIVIlg Il s,
Therefore, the analogous analysis of C;,C3 ~ Cg in Section 5.1 are no longer needed here. The only problematic term is
-2(8,A")(D°0,0,f) — 6(DAM) (D520, f) which comes from [D9?, A%, §,f]. By mimicing the treatment of C»(Q) and C»(v) in
(5.5)-(5.6), we can define the modified Alinhac good unknowns in the case of 9! = 8?’ N (2 < N <£7) as the following

V' = D092y - D92 - Vav + AL, Q" = D070 - D097 - V40, (5.63)
where
(AD); := —6D°0%v -V, Dy — 2D%0,v - Vv, (5.64)
and
D02 (divav) = Va4 - VE+ C*(v), DPOX(VAQ) = VAQ" + C*(Q), (5.65)
with

IC*(Hllo s PEIflls. -

In this case, A*Q = 0, and thus the boundary integrals /B3, IBj, IB’; all vanish. The analogues of IB7, IB;, IBZ in this case

can still be controlled in the same way as in Section 5.2. In the control of the difference between V* and ©%9?, we have by
(5.63)-(5.64) that

1D°07vllo <IIV*{lo + ID°0WllolIVavlize + 1D vllolIV 4 Drlle

SIVllo + IRl + IVavIl3 + I DG vIig + IVa Dl (5.66)

T T
<IVZllo +Po + f P (I2°87vllo, 12°0}vllo. 0DVII2) d < [[V*lo + Po + f P(En) dt
0 0
The remaining analysis should follow in the same way as in Section 5.2 and 5.3 so we omit the details. The result is

2 C . T
1T + 297 (17! o - o) + 1% gl + F |40 mfy| < o+ PED) f PE®Dd,  (5.67)
t= 0

where D° contains at least one spatial derivative d.

5.5 The case of full time derivatives

In the case of full time derivatives, the modified Alinhac good unknown is still defined similarly as in (5.63)-(5.65):

V= -8% -Vav+ AL, Q' =8%0-3%-V,0, (5.68)
where
(AD); == —831v - Vv (5.69)
and
Adivay) = V4 -V +C*(v), 83(V40Q) = V4Q" + C(Q), (5.70)
with

IC*(Hllo s PEDIflls.+-

Extra difficulty: trace lemma is no longer applicable When 0! = 4%, there are terms of the form /v in the boundary
integrals. In the case of full time derivative, one cannot apply Lemma 3.1 to control [8]v]y. This difficulty appears in the
estimates of the analogue of /Bg. Instead, we need to write /B in terms of interior integrals by using a similar technique in
(4.42).

1B, =8 f A¥N; 08, A3 0]v, Ao dy’ = -8 f A¥N3 3lv, A%350 8] v, Ao, dy
r r
=-38 f A%330]v, A3 3] v, ATOv; dy - 8 f A%y, A30;0 050] v, ATOv; dy
Q Q 5.71)
-8 f 0lv, dlv, 93(A¥ A’ 350 A"9p;) dy
Q

=:IB;, + IB, + IB};.
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The term /B¢, can be directly controlled

1B < (I Vllo, 10V113, 19QI13, 1Allz) < P(IVls . 11Qlls o I17lla)- (5.72)

The term 1 B’él,

T T
f IB,, =8 f f A%950]v, AP0 d]v, A"9v; dy dt
0 0 Q

&g f A¥03000, A050 8] v, A6, dy
Q

1B, should be controlled by integrating d, by parts under time integral.

T
+8 f f A%330%v, A%050 8}v, Ao, dydt
0 Q

T
+8 f f A%330%, d]v, 3,(A* 350 A"d;) dy dt
0 Q

<1885 vllolld] vilo PUIAI =, 19l 10Vl )

(5.73)

T
+ f 11930%V1lo (Ila,SVIIoP(IIAIILm, 100l 10VlI2) + 18] VlIollA - 9,(A - HQ - A - 3V)||Lw)
0
T T
<&lld30%VI5 + Po + f P(Ila,gvllo,II(61A,0t6Q,6,6VIlim)+ f P(Vll3.«, [1QIl7,%, lImll3) dt
0 0
T
<&l|0;0%12 + Po + f P(E®)) d1,
0

IBg, can be controlled in the same way, so we omit the details. Summarizing the estimates above, we get the energy
inequality of the full time derivatives

8112
llo;vily +

2 C . T
o (77" bo - o) + 15l + 5 |A¥0Fm, S ell0sapvly + Po + PET) fo PE®dr,  (5.74)

which together with (5.54), (5.61), (5.67) concludes the proof of Proposition 5.1.

6 Control of mixed non-weighted derivatives

The case of mixed non-weighted derivatives correspond to 4! = 6?(0’89”5?5?8? with 1 < i3 £ 3, i4 = 0. In this case, the
modified Alinhac good unknowns introduced in Section 5 are still needed when commuting 0! with V4. On the other hand, the
highest order term 8.0 no longer vanishes on the boundary due to the presence of normal derivatives, so we need to use the
method in Section 4 to deal with the boundary integral. Therefore, we should combine the methods in Section 4 and Section 5
to get the control of mixed non-weighted derivatives. The result of this section is

Proposition 6.1. The following energy inequality holds for sufficiently small £ > 0

YTV
DTl +

1<i3<3, is=0

oL (7" o - o), + Wt + L |A¥0tn;

1=

T
< ellavlly + Po + PE(T)) f P(&(1)) dt. 6.1)
T 0

6.1 Purely spatial derivatives

We still start with the control of purely spatial derivatives. Let N = 1,2,3 and we consider 8 = 9%V,
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6.1.1 The modified Alinhac good unknowns

Similarly as in Section 5.1.1, we have

6N68 2N(V f) V (6N88 2Nf)+(5N38 ZNAlz)af+[aN68 2N Alz 0f
:V:A(aNaii 2Nf)—(9N67 2N(Alr aam’]r A””)alf+ aNaS -2N Aﬁ,a[f]
_V:A(aNaS 2Nf aNaS 2N77r Alraf)+(aN68 ZNT];)Vl (V f)
= (05072 ATA™130,m )0 f +1059° 2 AT, 9,11,

(6.2)

where the last line still contains the terms whose L*(Q)-norms cannot be directly bounded under the setting of anisotropic
Sobolev space H3(Q). The reason is that c’)év d’>N may fall on A = dn x dny and 0, f. The following quantities are exactly these
terms.

=~ TN AT AMY @O f, € = ~(T = 2N)IATA™YDL TN B,m)df,
- o , o (6.3)
= (8 — 2N)(050" N A0, f), € := (8 = 2N)(DA") (YN 3, f).

One can mimic the derivation of (5.18) and (5.19) to define the “modified Alinhac good unknowns” of v and Q with respect
to 882" to be

V 6N68 2N 61\’68 2NT] VAVi
-8~ 21\1)(913V 7N - Vadvi — (8 = 2N)OY Ny - V4 (6.4)
+ (8= 2NNy - Vadn - Vavi + (8 = 2NNV - Vav - Vadimi,

and _ _
Q=00 - 95"y - v,0
. _ - _ (6.5)
— (8 =2N)3y3" Ny - V400 + (8 = 2N)3Y 0"y - V40 - V4 Q.
Then V* and Q satisfy the following relations
NN (divav) = Va - VA4 CHw), 0¥ 2V (V40) = VAQ" + CH(Q), (6.6)
where the commutator C* satisfies
ICE(f)llo < PED)IIflls.s- (6.7)

Denote A& and AﬂQ to be

A%y == = (8 = 2N)N GV - V4dvi — (8 — 2N)AY 2Ny - V 40,
+(8 = 2NN 2Ny - Va0 - Vavi + (8 = 2NNy - Vv - V.l
= — (8 = 2N)3Y9" Ny - V400 + (8 — 2N)Y Vi - V01 - VA Q.

]
Ao

Then we can derive the evolution equation of V# and Q*
ROV = T\ by - )3y 52 (17 (bo - ) + V4Q*
=[R,0Y 0" M0, + [T (bo - 8), Y 0"V | (17 (ko - O)m) (6.8)
+CHQ) + RO(-0Y ¥y - Vav + AD).
Denote the RHS of (6.8) to be F*, then direct computation yields that

¥l < P (Ills.e. [IVll5.0 1Qlls.) -
Now we take L2(Q) inner product of (6.8) and JV* to get the following energy identity

1d

3T po|v”|2dy f (bo - )Y 0" (7 (bo - O) - f (ViQ) - Vi + f JFF VR, (6.9)
Q
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6.1.2 Interior estimates

The last integral on RHS of (6.9) is directly controlled

f JFVE < f E IV
Q Q

(6.10)

Then for the first term on RHS of (6.9) we integrate (b - d) by parts to produce the energy of magnetic field. Again, there is
one term which cannot be directly controlled but will cancel with another term produced by — fQ(V 40)- V*. The proof follows

in the same way as (4.13) so we omit the details.

f (bo - )Y "N (7 (b - O)m) - V¥ dy
1d
ST3a o TTN G o - am|” dy + K+ (107, v, o, (o D)

where
Kb = f TSN (T (b - D)) - (I (bo - O)m) 658N (divav) dy.
Q

Next we analyze the term — fQ(V £0)- V*. Integrating by parts and using Piola’s identity ;A" = 0, we get

- fQ (V;40)- Vidy = fg JQH(V,4 - VHdy — fr JQATNVEY =i I + 1B,
Plugging (6.6) into I*, we get

I = fg JON BN ol 882N (divav) + fg JOY g 2N (% |77 By - a)n|2) Y3 (divav)
+ fg (~@Y* 2Ny, )A 9,0 + AL) Y5 (divav) - fg @Y )CH(v)
=t v 4
where Iﬁ can be directly controlled by using the estimates of C¥(v)
1 5110332 QlloIC* Wl < PAlmlls NIAY T2V Qllolvll..-

The term [ ? produces the energy of fluid pressure

4o 1d JZR'@

I~ 24dr

[055Va[” dy + Plgls. lpols.. ).

Similarly as in (5.33), the term Ig produces the cancellation with K ?1.

= f TN (17 by - Om) - (17" (bo - D)) Y 8* >N (divav) dy
Q

exactly cancel with K?l

-2
+ Z (N )(8 N) f T 3 (7 (g - ) - Y182V N (17 by - D)) 9Y 02N (divav) dy
1<N +Np=8 V' ' 1 N

— 4
__Kll

- 2 WS
_ Z ( )( )fJaNlaNz J (b() 8)7]) aN N1 68 —2N-N, (J (b a) )(|:ag JR’ (q)]atq) d
1<N; +N,=8 Q Po

_. 4 # #
=—-Kj, +0L, +1,

JR'(q)

aNlaNz J by - a)n) N i (J (bo - a)n) @3V o,q) dy
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and by direct computation we have

T T
f L, <elldY 3> 2N gl + P + f P(E()) dt (6.18)
0 0
15, <" (bo - Ol .- (6.19)
Then Ig can be controlled by integrating d; by parts under time integral after invoking divqv = —%&q. The proof is
similar to (5.37) so we do not repeat the proof.
T _ T
fo I < eld* VoY gli2 + Po + j; PE®D)) dt. (6.20)
Summarizing (6.14)-(6.20) and choosing & > 0 sufficiently small, we get the interior estimates
T 2 pr T T
1 J°R - 2
f Fdts—= f T R(@ |a§’38—2Nq' dy' + P+ f PE®)) dt. (6.21)
0 2Ja  po 0 0

Therefore, it suffices to analyze the boundary integral IB*.

6.1.3 Boundary estimates

Invoking (6.4)-(6.5), the boundary integral now reads
1B = - f QUJAYN;VEdy = - f JAYN; YN Q) VE dy
r r
+ fr AYN3(0Y0° N n,)AY 850 85 05N v; dy

_ f ANV 85Ny, APP330)(0Y 0¥V - Y avi) dy’
( (6.22)

_f AN W@ M) dy + f ANS ATV vy
r r

- [Anababiey s [ AN@F P, 47 0,000y
r r
_.pt # # # i i #
=By + IB| + 1B, + 1B + 1B, + IB; + IB;.

To control /B¥, we only need to combine the techniques used in Section 4.3 and Section 5.2.2:
. IB’i,IBji2 together with the Rayleigh-Taylor sign condition produces the boundary energy |A3[(913V Al nil2
IB + IB; in Section 4.3 and I B} + I B} Section 5.2.2.

e The term / Bg is the analogue of 1By in Section 4.3 and can be controlled with similar method as in Section 4.3.

, similarly as

° IBg ~ IBg are the analogues of /B ~ IBg in Section 5.2.2. These terms can be controlled exactly in the same way as
IB; ~ IBg.

First, 1 Bji and / Bﬁ2 give the boundary energy with the help f’f Rayleigil—Taylor sign condition. The proof is exactly the same
as in Section 4.3 and Section 5.2.2 by merely replacing 6‘3‘ or 8% with (913\’ d%2N, so we do not repeat the computations here.

! # # €0 | 43i gN78-2N 2" ’
fo IB] +1B) = - 7 |A '050° n,-|o . +f0 P(&E®)) dr. (6.23)

We then analyze IBﬁ. Invoking (6.4), we have
1B} = - f N3(J8Y 352N 0)(A% Y5V v) dy + f JASN3(8Y 52N Q)05 85Ny - Vavi) dy’
r T
_ fJA3iN3(6gV58_2NQ)(A€),~ dyl (624)
r
=:IB}, +IB}, + IB,.
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We note that / Bgl and [ Bgz are the analogues of 1By and 1B, in Section 4.3, so we do not repeat all the details here. The extra
term IB?J3 can be directly controlled (cf. (6.31) below).
We differentiate the continuity equation (4.29) by 613" 852N 10 simplify the top order term containing v in / Bfn:

2
- _ R _ _
A3’313V58_2Nvi - _ 613\7—108—21\] (J—@azq) _ Z agv—]a8—2N(ALlaLvi)

po =1 (6.25)
~ N — 1)(8 - 2N) ((913\"51\’2143") (813V—N158—2N—N2vi)’

N N
Ni+N>>1 N <N-1 ( 1 2

where the term contains @) ~'352VAL = 9952V x dn+ controllable terms, where 3)3°2¥n cannot be controlled on the
boundary. Invoking (3.3) with D = d, we expand this problematic term to be

(613V—158—2NAL1')5LV[ - _ (agv—157—2N(ALp Eamnp Ami)) ELV,'

2
=— A 33Ny, Aoy, — Z AP N Apm ) AM v — ([0Y 10T, AP A™08,m,)OL v
M=1
(6.26)

On the other hand, in 1 B?n we have

2
AYON Ny Vv = A Z NN, AP G v; + AX Y35V, A%Pdsv, (6.27)
=1
where the first term exactly cancels with the first term in the RHS of (6.26). In fact, this is the analogue of (4.33)-(4.36) by

merely replacing 8% with 3Y3°-2V. Thus we get the cancellation of the top order terms in / Bg , and IBgz.
The second term in (6.27) could be treated similarly as in (4.40) by invoking A*’dsn, = 1

0;\158—21\/%143,; = 6?‘158‘2N(6317PA3”) —(6?‘158‘2NA3”)6377P - (5A3”)((')13V57‘2Nr]p) + lower order terms.

=0

(6.28)

To control 1 Bf), we still need to analyze 3)3*2¥ Q. Following the aruments in (4.37)-(4.39) and replacing % with 8%V,
we can reduce one normal derivative of Q to one tangential derivative of v and (by - )i via

2
6?&8—2NQ =J_16377i (poaéV—lag—ZNatvi + (b() . a>a/3V—laS—2N(J—l(b0 . a)nl)) _ ZAALi(aé\’—laS—ZNaLQ) (6 29)
L=1 :
—(N - 1)(6’3\] “18-2N A’)(50) + lower order terms.

Plugging the expression of Aﬁ and (6.25)-(6.29) into (6.24), we find that every highest order term in IBg must be one of the
following forms

Kb = f N3 (@Y N D )0 0N g)Bhyr dy
r

Kf = f N3 '8N D)@Y a7 N g)(@myr dy
r

Kt = f N3 @Y1 G 2N D )@Y 8N g)@hyr dy
r

where D = § or 0, or (b ~5), the functions f, g, hcanbe n,v, Q, J (b - d)n, and r contains at most one derivative of , v or Q.
We note that the term Kg comes from / B?B where Ag contributes to Bg’ 0" Ng.90h-r.
Since 1 < N < 3, we know 7 — 2N > 1 and thus we can directly apply lemma 3.1 to control K? ~ Kg .

K* <101 D fls-an1d " glo-aw1dh e < 101D fll o2 10~ gllpgro-ax |0 Hlpge 6.30)

S lv-n+1+0-28)ll8llaav-1y+0-2m < 1lls1IrlL2 = 11.f1lslIglls ll3] Al
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and

K <10V "D fls-an18Y glr-anl(@0m) L < 105D fls-anldY glr-an|(@0h)rl1 s 631)
SNOY D fllo-2v1105 gllggs-2v 18RIl < 11 flls Nglls VAll7 Il

and
K <10Y 1D flg-onl glr-an| @)l < 1Y D fls-an1d glr-anl @)1 5

<UD f N2 1105 &l s~ 1Bl < I1f s . lglls - 1Al lIl2-

One can use either trace lemma or similar techniques as in (4.41)-(4.43) to analyze the remaining terms which are all of
lower order than K ? ~ K§ . This completes the control of 1 Bﬁ.

(6.32)

The analysis of IBg ~ IBﬁ can be proceeded exactly in the same way as /B ~ [Bg. Since these quantities involving the
modification terms AZ, Aﬁ are of lower order, we do not repeat the details again. We can finally prove that

T T
f 1B+ 1B dr < f A% G| P (12, v. D)., 1l . lools) (6.33)
0 0

T
+[470YF 2| PRl 1Q15.0) f IV@)ls,..de
0

1B% SIA¥ 1< AL ol(Adilo < PClnlls.. [Vl 11Q1l7..), (6.34)
1B! <|A¥0011-1A% 8Y 35V, lol(AD)ilo < Pl o [Vl s 1Ql7)- (6.35)

Summarizing the estimates above, we get the control of the boundary integral
! €0 | 43i gN 782N, |* !
fo 15 5 -2 |43 5" ”"'o + Py + PET)) fo P(E@) dr. (6.36)
Combining (6.9)-(6.11), (6.21), (6.36) and choosing £ > 0 in (6.18) to be suitably small, we get the following inequality

IVAG + X352 (5" - o), + 052Vl + 2 [AV0N G2

1=

T

< Py + P(E(T)) f P(E(1)) dt. (6.37)
T 0
Finally, invoking (6.4), we get the 8% 852V (N = 1,2, 3)-estimates of v

18555 vllo <IIVAlo + 10385V pllolIV avill + 10407V nlly (IV.40Vll + 11V ad - Vavllie) + 165672 vlolV il .
Since 0"nl;=9 = 0 for any m > 2, m € N*, we know
_ T
1656% " Vllo < IV¥llo + PVl 0. lInllz.0) f P(IMls..), (6.38)
0

and thus

— — 2 — = 2 T
10552 + 0452 (77! o - )| + 1038 gll + 7 |40Y8 2 m | < Po+ PET) fo PE@) . (639)

1=

6.2 Control of time derivatives

In the case of 4! = 613\' N ~kgk for 1 < k < 8 — 2N, most of steps in the proof are still applicable. However, the presence of
time derivative(s) could simplify the “modified Alinhac good unknowns”. We note that most of the modifications are essentially
similar to Section (5.3) ~ Section 5.5, so we no longer repeat the details.
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6.2.1 One time derivative

When k = 1, the modified Alinhac good unknowns can be defined by replacing 897 by (8 — 2N)613V 82V in Section 5.3.2, i.e.,

VE= 08N, — T No - Vav + AL QF = T N9,0 - YT Nom - Va0 + A (6.40)
where _ _ _
(Af) = = (8 = 2NN N - Vadvi — (8 = 2N)AY 2Ny - Vyvi + (16 — 4N)OY 2N - Vv - Vv, 641)
A”Q 1=~ (8 = 2N)3Y "Ny - V48,0 + (8 = 2NN 01y - Vav - V40, '
and B B
NNG(divav) = Va - VE+ CH1), VG N0,(V40) = VaQF + CHQ), (6.42)
with

ICEA)llo < PEEDIIfls.o-

The difference between 3)4"~2¥v and V¥ should be controlled in the same way as (5.60) by replacing 4’ with 39"~V

T
1607 2Novllo < IIVFIE + Po + PET)) f P(E®) dt, (6.43)
0

and thus

— — _ 2 — C i ANTT—
158" a3 + 0820, (47 by - )| +10YT" N Diqlly + 7 R

2
0li=r

. (6.44)
<Po + P(ET)) f P(E®)) dt.
0

6.2.2 2~(7-2N) time derivatives

When 2 < k < 7 — 2N, we can mimic the analysis in Section 5.4: We just need to replace D°4? by Bé\’ D62V3? where D

denotes 8 or d, and D52V contains at least one 9. The analogous problematic term becomes —2(0,A")OYDN9,0,f) — (6 —
2N)(DAM) (0 D72N 970, f) which comes from [85 DO2Na7, A, §, f]. Following (5.63)-(5.65), we can similarly define

Vi = VDN g2y — VDO N2y - Vv + Af, QF = AV DOV Q - 9V DNy - V40, (6.45)
where
(A% = =6 - 2NN DNy -V, Dy — 20Y DN - Vv (6.46)
and
NDONG (divav) = Vi - VA4 CHy), Y DOV02(V4Q) = VaQ' + CHQ), 6.47)
with

IC*(Pllo < PEIISfls.o-

Again we have AZ in this case, and thus the analogues of IBﬁ3 ~ 1 Bg all vanish. The boundary integrals / Bﬁ, 1 Bq, IBg, 1 Bg
and the interior terms can be controlled in the same way as Section 6.1. Finally, one has

2 .
162G + |9 D26 (57" bo - )|, + 1Y DGl + 5 |4V 7,

t=T

, (6.48)
$Po + PET)) f P(&@) dr,
0

where D52V contains at least one spatial derivative .
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6.2.3 Full time derivatives

When 0! = 6]3\’ 932V for N = 1,2, 3, there is not tangential spatial derivative on the boundary and thus Lemma 3.1 is no longer
applicable. In this case, the modified Alinhac good unknowns become

V= 0¥o8 Ny — aVoE Ny v+ AF, QF = 88PN 0 - 0YoE V- v,0, (6.49)
where
(A% = =8 = 2N)AY 0Ny - Vuw (6.50)
and
NN (divav) = Va - VA4 CHw), 8352V (V40) = Va4Q% + CH(Q), 6.51)
with

IC*(Pllo < PEIISfls.o-

The proof follows in the same way as Section 5.5 after replacing 0/ by /72" and the coefficient 8 by (8 — 2N). So we no
longer repeat the details. Finally, we can get

1052V uIR + |02 (7 o - o) + 1Y a2l + 7 laveN a2

t=T

T (6.52)
<elldy 1N + Py + P(E(T)) f P(E(1)) dt,
0

which together with (6.39), (6.44), (6.48) concludes the proof of Proposition 6.1.

7 Control of weighted normal derivatives

Now we consider the most general case 9] = afﬂ(aa3y45§15§a§ with i} + ip + 2i3 + iy = 8 and iy > 0. The presence of the
weighted normal derivatives (003 )" makes the following difference from the non-weighted case.

1. Extra terms are produced when we commute . with 03 because o is a function of y;. Once 95 falls on the weight
function, we will lose a weight and (0°d3) becomes 93, which causes a loss of derivative. This appears when we commute
4% with V', that falls on Q or v; and commute 8. with (b - 9).

2. There is no boundary integral because the weight function o vanishes on I".

To overcome the difficulty mentioned above, we can again use the techniques, similar with those in the previous sections.

e Invoke the MHD equation and the continuity equation to replace V4 Q and div4v by tangential derivatives.
e Produce a weight funtion by using b} = 0 and Q| = 0.
e In particular, if & does not contain time derivative, we need to add an extra modification term in the good unknown of v.

First we analyze [(bo - 9), 6;“(063)5452‘ 536?] f. Compared with the non-weighted case, we need to control the extra term
bd3(0™) (6?’5';‘ 5;20;3”“ 1) = isb(830) (8;"(0'03)"4"5"]‘ 5;20;3”) f- Using bl|r = 0, one can produce a weight function ¢ as in
(5.9). Therefore

3030 (910093~ 31 3505 1|, < 1030z~ @97 (@033 555 fllo < bollsllfls..

Next we analyze the commutator between o = 0?(0'&)”53‘ 538? and V4 f. Compared with the non-weighted case, we
shall analyze an extra term C, below. In specific, one has

(0038} 6205 (A 9, f)
=003 205 (A9, f)

=0 (A"0,(00 3, 3205 f) + o[98 6265+, AM10 )

¢
=A"0, (o303 030 f) - (a030) A¥ (003 008 92057 ) +C.

Co
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The term C consists of the commutators produced in the same way as the non-weighted case. It can be analyzed in the same
way as in previous sections by just considering (0°d3) as a tangential derivative on the boundary. As for the extra term, we do
the following computation

AY ((0as) 0} 0205 f)
=(003)" 71008 3505 (AY D5 f) — [(003)" ' 00D 5305, A¥| s f (7.2)
=C7(N)+ ().

Note that ig+ij+ir+is = 8-2i3. We know the leading order terms in C§ are ((0—03)54*15;'05"; Ega;wf) fand (DAY (D255 f),
where D represents any one of (0d3), d;,01,0,. Recall that A% cosists of 577 . 577. This shows that the highest order term in
((0'63)i4’16;°6’]‘ 8’22(9'33A3i) Osf is (@84"36’33 17)(0n)f whose L*(Q) norm can be directly controlled by |[5lls.|07]|z<[103 fllz~. As for

the second term, we have ' o o
(DA D255 Fllo < 1DIM@)lzl fls.-

Therefore, C7 can be directly controlled.
The control of C{ is more complicated. We should use the structure of MHD system (1.17) to replace one normal derivative
by one tangential derivative.

2
A¥9;0 = - Z AY9,0 — ROV + TN (bo - )T (by - D)) (7.3)
L=1
2
. — — JR' —
A%y, =div v — AVB,v; — ATy = IR Dy > Ak, (7.4)
Lo =
When f = Q, we plug (7.3) into C{(Q) to get
CT(Q) =(003)" 79198, (AV9;0)
2
=— ) (003)* 71970 0305 (A6,.0)
; Vo (7.5)
— (003)* ' 000 5265 (ROW') + (003)“ ™' 32 82055 (17 (by - )T (bo - D))
=:C(]r1(Q) + C(ITQ(Q) + C(1r3(Q)
When f = v;, we plug (7.4) into C{ (v) to get
CT(v) =(0d3)" "9 9235 (A% d;3v;)
2
. PN — . _._. . (JR
=— 2(053)'4-10;00’; 0203 (AM0,v) — (083070, 020 ( p(f‘” a,q) (7.6)

=1
=:C{,(v) + C{,(v).

The terms C{,(Q) and C7,(v) can be directly controlled. Note that ip + i + i + (i — 1) = 7 — 2i3, so

ICT(Dllo IRl IVls« < Mgl lIVIls s (1.7)
ICLWlo Slloollz,«llglls.s - (7.8)

Using bglr = 0, one can produce a weight function o as in (5.9) when all the derivatives fall on J~'(bg - O)n.

ICT(llo <l (bo - B)erd3)" 5 3335 (™" (bo - Dl
|l woy='6ia 305, 7 bo - @] 0 ko - o) 79)
<03 bo)ll=lI(rds) 078 85 85 (T~ (bo - Ol

Slboll7 0~ (Bo - D)l
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As for CY.

7., the highest order term can be merged into the modified Alinhac good unknowns. One has

2
CL(f) == D (@ ds)" ™98, 3205 (AMa, f)

L=1
: 2 . s — — . q—
- ) (o ord giaat)ovs - 3 [(@os) ' 9rd 5395, AM| oL f
B = (7.10)
Cluh
2
== ) A (003103, 830, 0un,) AVDLS - Z (00«10 3507, A1 4| 04, ) B £ +CFy, (F)-
L=1
Cin(h)

Since iy + i + i + is = 8 — 2i3, one can directly control the L*(Q)-norms of CT1, (), CT,(f) by PlInlls )l flls« For the first
term in the RHS of (7.10), one can proceed in the following ways

e f = Q: Since 5LQ|F = 0, one can produce a weight function as in (5.13) and thus
Lp is—1 qio qi1 qi2 qi3 kig
A7 (@03~ 308, 350, 0um,) 5,0
2
L is—1 aio i 72 A3 Mig Lp 43i5 is nio 71 A2 Ai3
sMZ_l A% (@0~ 673, 3295 0m, ) AY7B,.0| | + 1A 47505 Qll~ (s 075y B 95yl (7.11)
<SPl Imlls,
e f =v;: When 8. contains time derivative (i > 0), then it can be directly controlled due to 9,7 = v
la ((aag)’“a?é";égagakn,,)A’“’ELV,»”O = [[a% (w1015} 5§a§akv,,)A“5Lv,-H0 < P(l)IMlsal M. (7.12)
If ip = 0, then it can be written in the form of covariant derivative plus a controllable term.
- ALp ((0'03 )i4715§l 5122 8? aknp) AkigLV,‘

- Akiak ((0‘63)i4715il] 5122 6’; T]pAL‘DéLV,‘)
+ A%(030) ((ia = 1)(003)" 728, 8505 ', ) A DLy, + Vi (APDLv) ((003) '8} 9305 m,) (7.13)

Cli3)
== Vi, ((003)+7' 8 32 05m, AP Bpvi) + CF5 ().

We note that the first term in C{|,(f) appears when 8; (k = 3) falls on the weight function and i, > 2 and can also be
directly controlled by P(||7lls. Il fllg.«-

Next we merge the covariant derivative terms in C,, into the modified Alinhac good unknowns, i.e., for ol = (9?’ (0'63)"453‘ 5’22 6;3
we define

Biv, 6’7] Vavi + (A7), ip>1
V=2 ’ R L= , (7.14)
vi = 0l - Vavi + (A7), + z (203000 05)+71 3, 0305 m, ) AP BLvi, g =0,
and
Q7 :=0.0-0ln-VaQ + A, (7.15)
Then one has
ANVA-v)=Va- VI +C7(v), (7.16)
0L(V4Q) = V4Q7 + C7(Q), (7.17)
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with [|[C7(Hllo < PED))IIfIls. Here the “extra modification terms” AY and A‘é comes from the analysis of Cin (7.1) whose
precise expressions can be derived in the same way as Section 5 ~ Section 6. The term ((i4830)(083)i4"0£°5’;‘ 536;3UP)AL”5L f

comes from (7.1) and (7.13). Finally, the commutator C?(f) consists of the commutator part in C, CT () ~ CT5(), CTL(f)
and C7.(0).
13

Recall that o|r = 0 and 5Q|r = 0 imply Q7|r = 0. Therefore the boundary integral fr N3A3iQ‘TV;T dy’ vanishes. Hence, we
can get the following estimates for ¢! := 8?‘ (0'(93)"45"1' 5’22 (9;3

T
llolvlls + . < Po + P(ET)) j; P(E(D)) dt. (7.18)

o (7@ - o) + 14l

8 A priori estimates, uniqueness and continuous dependence on data

8.1 Finalizing the a priori energy estimates

Combining the L*-energy conservation (1.6) with (4.1), (5.1), (6.1) and (7.18), and then choosing & > 0 to be suitably small,
we finally get the following energy inequality

T
ET)-8E0) sPo+ P(8(T))f P(&(1)) dt 8.1)
0

under the a priori asuumptions (1.19)-(1.20). By the Gronwall-type inequality, one can find some 7y > 0 depending only on
the initial data, such that
sup &(1) £ P(&E(0)). (8.2)

0<t<T,

This completes the a priori estimates of (1.17).

8.2 Justification of the a priori assumptions
It suffices to justify the a priori assumptions (1.19)-(1.20). First, invoking d;J = Jdivav and J|,—o = 1, we get
T

T T
IIJ—1|I7,*Sf ||JdiVAV||7,*dt5f P(||577||L°°)||5zf]||7,*dfﬁf P(llonll=)llqlls, dz.
0 0 0

Therefore choosing 7 > 0 to be sufficiently small yields (1.19). The Rayleigh-Taylor sign condition in [0, 7] can be justified
by proving dQ/0N is a Holder-continuous function in ¢ and y variables. In specific, from the energy estimates we know that

90 _ 1071 H 90\ ¢ 10,71 1
N e L*([0,T]; H2(I')), at(aN)eL ([0,T]; H2(I)).

By using the 2D Sobolev embedding Hz (') < L*(I") and Morrey’s embedding W'# < C®¥ in 3D domain, we get the Holder
continuity of the Rayleigh-Taylor sign

ZT% e Wh([0, T, HX () — W"([0, T]; WD) — W'([0,T] xT) — cf’j([o, T]1xT).

0
Therefore, (1.20) holds in a positive time interval provided that —% > ¢o > 0 holds initially. Theorem 1.3 is proved.

8.3 Control of initial energy by the initial data satisfying the compatibility conditions

Finally we need to show &(0) < co. Define fi;) := 6{ fli=o to be the initial data of 8{ f for j € N. We know the initial data should
satisfy the following properties:

e The compatibility conditions (1.9) up to 7-th order.
e The constraints V - By = 0, By - nljojxap, = 0 and the Rayleigh-Taylor sign condition (1.8) on {0} X 0Dy.
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e The norms of the initial datum of the time derivatives of (v, b, Q) can be controlled by the norms of initial data (vy, by, Qo).

We note that the compatibility conditions up to order m can be expressed in Lagrangian coordinates by using the formal
power series solution to (1.17) in t:

i i j
) = 3 v B = b0, 00 = 30605,

satisfying Q(jlr = O for j = 0,1,--- ,m. Since we study the solutions in (anisotropic) Sobolev spaces, such compatibility
conditions have to be expressed in a weak form

Q) € Hy(Q), 0< j<m. (8.3)

From (vo, by, Qo) € H3(Q) and the system (1.17), one can only get i by, Q) € Hf_zj(Q) for 0 < j < 4. To guarantee
), bij, Q) € Hf ~(Q) and O i€ Hé (Q), the initial data should be constructed in standard Sobolev space H¥(Q) with

8
Z V(s by Qi)lls-; < Pllvollss I1bolls, 1 Qolls)-

J=1

See the construction in [64, Lemma 4.1]. .

On the one hand, by Lemma 3.2 we know (v(;), b(j), Q(;)) € H*(Q) — HY/(Q) which satisfies our requirement and
implies £0) < P(|volls, [1bolls, [1Qolls). On the other hand, if we directly construct the initial data (vo, by, go) € H3(Q) such
that (v, b(j), Q(j)) € H¥J(Q), then it is not clear in which sense the boundary conditions and the compatibility conditions are
satisfied. For example, Q(7) € H!(Q), but the trace of such function in that space has no meaning in general. This also explains
why we require Q(7) € H(I)(Q) in (8.3). See also Secchi [53, Theorem 2.1]. Therefore, the initial data (vg, by, Qy) should be
constructed in the standard Sobolev space H3(Q).

8.4 Continuous dependence on initial data and uniqueness

Now we prove Theorem 1.4 by using a similar argument as in the proof of a priori bounds. Assume U(()i) = (vg) , bg), qg)) €
H3Q) (i = 1,2) to be two initial datum of (1.17) satisfying the hypothesis of Theorem 1.3. Suppose also U, =
@, ), v, ), b, ), (¢, ) (i = 1,2) to be the solutions to (1.17) with initial data U(()'). Then we derive the system
of ([n], [v], [q]) as follows, where [f] := f(V — £ for any function f.

Oilnl = vl in Q,
R, [v] - ](l)—lbél) . 3(1(1)—1%1) ) 5[77]) + V40[0] + Vi 02 = £, + fi, inQ,
F'(g")dlq] + div 41 [v] + div 4@ = Ja in Q, (8.4)
[0]1=0 onT,

([n], 1, [B), [gDl=0 = (0, [vol, [bol, [goD)s

with the initial constraints (divergence-free condition for by, bglr = 0 and the Rayleigh-Taylor sign condition) for each i = 1, 2.
Here Q0 := ¢ + Lp@P, p® = J (’)_lbg) -0n, and F(¢?) := log R?(g'). The source terms f,, and £, are defined by

fo 1= = [RIOY® + [bo] - 007 b - @), fi = b - 81T o] - ), (8.5)
fy== @) = F @) (86)

Note that system (8.4) has the same structure as (1.17) on the left side of each equation. And it is not difficult to see that
the || - [ls.« norm of both source terms can be directly controlled, because each solution U® are bounded in || - ||g.. norm. In
particular, the second term and the fourth term in f},, can be controlled by writing the [-] terms back to the form £V — f® and
using the bounds for each U @ Therefore, the estimates for (], [v], [b], [¢]) in || - |l6.« norm should follow in a similar way as in
the proof of Theorem 1.3. It is even easier because we no longer need to design the “modified good unknowns” when taking 9.
with (I) = 6. Indeed, given the derivative 4. with (I) = 6, we define F? := 9L fO — 9ly® . Vv, f?, i = 1,2, to be the Alinhac
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good unknowns for £ with respect to .. Then define [F] := F"' — F® and we have

[F1=0/[f1- 07" Vao[f1 =00 - Vi f@ = 0[] - Vao £ 2, (8.7)
LV an[f]+ Vi f@) = Vao [F1 + CO(fD), (8.8)
IIF] = 3L f No+ 10:(IF] = & LfDllo + ICV A Dllo < PED (1), EP(D)IEN(®). (8.9)

We also obtain the evolution equation for the good unknown [V]
(1)6,[V] b(]) aal (J(l) lb(l) 6[7’]]) + Va0 [Q]

= 0Ly + 0L, + COAQD — I V1L RVIL IV - T V10l 7V b 01 (107 B - i), (8.10)

=G

where G satisfies ||Gllo < P(E(1))[E](D).
Multiplying [V] in (8.10) and integrating by part, we still get the following terms as in previous sections

1d .
1d f pOIVIP dy = - f No QI VATV, dyf + f G-[Vldy+ f d'f, - [V1dy
2 dr Q r Q Q

+ f JO[QIV.40 - [V]dy — f Pl (J“>"b<0”-a[n])(bo-a)w]dy, @.11)
Q Q

where the second term on the right side can be directly bounded. For the third term, we can integrate bg) - 0 by parts to avoid

more than 6 derivatives falling on [J~'bg]. When bf)]) - 0 falls on 9! [v], we write [v] = d,n and integrate by parts in d, to control
this term.

Since most of the steps are identical to the previous sections, we no longer repeat all those details. Below, we show the
details of some key steps that are slightly different from the previous sections, and we only take 3%-estimates and 62 estimates
for examples.

Interior cancellation structure in Section 2.3. We take 0! = 8° for example. Plugging the expression of [V] into the last
term in (8.11), we get

- fé" (70764 o) @) - o)1V dy
Q
1d I 2 1

— M) |96 [ (D™ (1) _ ()

2d;fj & (107 a[n])] dy+2an[J

_fJ(l)aé(J(l)’lb(()l).@[n]).[gﬁat’J(l)] (J(‘)flbgl)-a[n])dy
Q

" f (1076 ot ) - [8°, 60 - 5] AvD ay
Q

+ f & (J(”_]bél)ﬁ[n])(bél)~6)(567](1)~VAm[v]—56n“)-V[Ajv(z)—56[17]~VA<2)V(2)) dy
Q

<_lifj<1)
To2de Jo

where we note that the third term on the right side contains the analogue of K;; term defined in Section 2.3, that is, 8%, may
fall on JV. Here we already know [|J(z, -)|ls.. < P(E(f)) and thus this term can be directly controlled.
Similarly, the fourth term in (8.11) will produce the energy term of [¢] as stated in Section 2.3 plus the term

2
- -1
5 (7075 -a[n])‘ dy

(8.12)

2
5° (JU)‘lbg" : a[n])' dy + PEV ), EX)IEN®),

f TV oI B - AINF (Ve - VD) dy.
Q

which is also directly controlled by P(ED(), 8 (1)[E](¢) due to AV, .. < (2, -)|I2,* < P(&(1)).
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Boundary energy in d°-estimates. We plug [Q]|r = 0 and Q¥ = 0 into the boundary integral to get
- f [QIN3A¥[V];dy = f N33 QM I DAY ] ANV dyf
r r
b [ N QUG A T PPV

1 d Py , 1 i 2
=-33 f (=N303Q)ADI 12 dy’ + 3 f (—=N3030,0)AD3 3 [];* dy
r r (8.13)
+ f N33 QM AV ), AN (6, (AT Dy = 8P APV Blv]) dy’
T

b [ Nad Q@A FoPIAP DA VY
I
— 2
<- C4—° AV 1| + PED), EXOIEND.

where we use the Rayleigh-Taylor sign condition for QW in the first term. The other terms can be controlled after integrating
by parts in ; or in  and using the trace lemma: |[v]|5 < [I[V]lls.. and [7P]7 < [[7]ls...

Boundary terms in ag-estimates. The boundary integral now reads

- f N;JO[QIIVEAT dy | (8.14)
T

where
[F] = &3/1- 30" - Vao [f1 = 8307 - Viay f = 831 - Vo f2.
What we need to do is again to reduce one 95 falling on [Q], [v]; to a tangential derivative by repeatedly invoking system (8.4).

Here we only list the identities analogous to those in Section 4.3. We first have

R —
=1

Then the third component of the second equation in (8.4) gives

JOADRG 0] =@2(VE | [Q]) — [62, AV*165[ Q]

A

=53 (o a1+ B - 0V B oty + £ + £ - Vi 0®) (8.16)

2
= > BAVHG0) - 3, AV H651 01,
L=1

and thus the top-order derivative on [Q], [v] becomes 43D for some tangential derivative D. Note also that 83[A]™8,,0 =

32[A1*0;0? due to Q@|r = 0 and A only contains tangential derivative dn. The term 32AM% can be directly controlled by
||7](1)||421 < &(1), so we no longer needs the subtle cancellation structures introduced in section 4.3. Similarly, using the third
equation of 8.4, we get

AN ) =03(div 40 [v]) = [0, AV )05 [v];

2 _ , 8.17
=% (~F"(¢™dlq) + f — div up®) = > BAVHG[v]) - (83, AVMI05[v];, ®17
L=1

where the term —83div (4»® may have a term in which &5 falls on d5[7], that is, A" 93 [n],A(')3i61v§2) = AW n] - V4o r®
which cancels with the last term in AD3[V],.
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After these reductions, the top-order terms on the boundary becomes the following form, which is controlled analogously
to (2.17). For (I) = 6, we have

f N3@ - DLFD@ - Dlghh dy
T

_ fﬂ (@30 DLN@ = Dlghhdy + fg @ D)@ Dighhdy + fg @ D)@ Dg)dsh dy

o)

- f @30 [F1)@ D [gDhdy + f @30 1)@~ D[g])Dh dy (8.18)
Q Q

- fg @S DL/ [gDh dy + fQ (@ DL [g)Dhdy + fg (@ D)@ Dlg)dsh dy
< 1 oo e o Vel

where the terms in & only have at most one derivative on each variable.
Define the energy functional for (8.4)

[E10) = NI(eIE, + I IE , + 10 5o) Y AlIGe, IR, + lig)e. MR, + Y [V al L. (8.19)
(Iy=6

We can finally get the estimates for (8.4)

T
[E1(r) < [E1(0) + f PED @), EX)[E)(1) dr, (8.20)
0

and thus by Gronwall’s inequality, there exists some 75 € [0, T] (T > 0 is the time for the a priori bounds obtained in Theorem
1.3) depending only on the initial data and c( such that

sup &(t) < P(EM(0), EXO)IENO) < P(llvol. [bol. [Qollle) PV, v ls. 1b5”. 55 1Is. 105, OFlls).
0<t<T,
Note that the energy inequality is linear in [E](#) because (8.4) is a linear system of [v], [b], [Q]. In particular, if the two given
initial datum are equal, we must have [£](0) = 0 and thus [E](#) = 0 in [0, T,]. This proves the uniqueness and continuous
dependence on initial data provided the local-in-time solution exists.

9 On the local existence of solutions

9.1 Local existence theorem for smooth data satisfying compatibility conditions up to infinite order

As stated in Section 2.6, we need to prove Theorem 1.2, that is, a local existence theorem from C* data to C* solution.
Following the Nash-Moser iteration scheme presented in Alinhac-Gérard [3] and Secchi [54] (also adopted in [38, 40, 64, 65]),
to solve a nonlinear system L(U) = f, we start with an approximate solution U? and then U = U“ + V is a solution to L(U) = f
if we can prove V solves L(V) := L(U* + V) — L(U%) = f* where f* := —L(U%) with V|,-o = 0.

Remark (Existence of smooth approximate solution). In [64, Lemma 4.1], an approximate solution was constructed in Sobolev
space. Here we can follow Lindblad [40, Lemma 16.3] to construct a smooth approximate solution by introducing the power
series Q(1,y) 1= Yy x(t/&1) Quo()* /k! where Quy := 9 Qli=o € C™(Q) N Hy(Q) are defined in Appendix A.3, x(-) € CX(R) is
a smooth cut-off function which equals to 1 in [—1, 1] and vanishes outside [-2, 2], and &, > O are chosen suitably small such
that the series converges in HV(Q) for any N. Then solve v¢, n® from the MHD system (1.17).

To solve the increment V, we start with Vy = 0 and inductively define V,.; = V,, + §V,, where ¢V, is the solution to the
linearized problem L' (U + Sy, V,)(6V,) = f, with S, being the smoothing operator, lim, 6, = +co. By Taylor expansion, we
have

L(Vo) = L(V,) = L'(U + V,)(6V) + €, = L'(U% + 84, V,)6V) + €, + €.,

where e, is the quadratic error produced by the expansion, and e]; is the substitution error produced by replacing the basic state
U“ + V, by the smooth one U® + S, V,,.

When proving the convergence of ), 6V, in a certain Sobolev space (here we assume it is H}(£2)), we need to start with the
following induction hypothesis
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Induction hypothesis (H,—1) : YO <i<n—1, [|6Vills. < 89;““"A,- withe < 1 and A; := 6,41 — 6;,

and then prove a similar estimate for 6V,,, that is, [[0V,|ls« S sH,ﬁ“"lAn. In [64], this induction step was proven in Lemma 4.14.
To prove the existence in C*°, we need to get an improved estimate in the induction, that is, we start with the induction
hypothesis (H,-1) above, then we need to prove the following “improved estimate” which is better than (H,,)

“Improved estimate”: ||0V, ||, S 95,“’"'An for some @’ = @ + y with y > 0 a fixed positive number.

Once this is done, then we can replace the induction hypothesis (H,,-;) by the improved one and repeat this again and again, and
finally we will see },, 6V, converges in C([0, T']; H*”ky) for any k € N where T > 0 is independent of k. See also the “additional
regularity” argument summarized in [3, pp.152], [54, Section 3.7] and adapted by Lindblad [38, (18.40)-(18.43)].

First, we find that, if there are only the first two error terms e), e, in [64, (4.26)-(4.27)], then one can get the following
estimates for 6V, based on (H,,_;) above:

16Valls < A (057 1 Nl + &262 1) + A (6371 le + 2657 847
where {(s) :=max{(s +2 —a); + 12 -2a,s + 8 —2a},a > 12, @ :=a + 3, 6 < s < & — 2. So the above estimates give us
16Vallse < U + 8057 Ay = 16Vallye < £657°7'A, O.1)

for £ > 0 and || f“|l,.. /€ sufficiently small. But if we compare the powers of 8,, we find that £2(6) — 1 = max{3 — @, 14 — 2} <
(5—a)—2and {r(s) — 1 < (s —a — 1) — 2. Based on this and the smoothness of f, we can get the improved estimates

I6Viullsse S UL Nas2s + €O TI2A, = [[6Vallsn < 657771 72A, 9.2)

~ - n

for £ > 0 sufficiently small.
Then, starting from this new estimate, that is, replacing @ by &’ = a + 2, we can get improved estimates for the errors e}, e
and then the total error E,, := ey + - - - + ¢,_1 with ¢; := e + e’, the source term f;, for the linearized problem, and 5V,

7
n

05 (5)—1 05 (s)-1
”ei”s,* < 59,'2 Ai, ”S(-),,en—l”s,* < An—lgenll
.(/(5)_1 s—a’—1
ISe, = Se, VEn-1llss S Au-186,71" 7, 11S6, = So, ) Nlsse S W llar sy " Ay

-1 (91

||ﬁl||s,* $ An(gfl ¢ ”fa”a’,* + ggn_ )

—a/— ()1 —a 5 (6)—1 —a),

16Vl < A, (ef, S g + 6 ) A, (0,5, Nl + 68 )efj*“ ),

where }(s) is defined by replacing @ with o’ (and hence {J(s) < {»(s) — 4). Note that £? in the previous estimates now
becomes & because we use ||fglls < IIflls.«llglla« + 1 fllallglls« and the £ arising from || f|l;.. is now replaced by 1. We know that
3(s)—1 < (s—a’ —1) -2 and thus we obtain

16Vl S U Nas22s + 805720, = 16Vills. < 657771 72A,. 9.3)

Again we replace the induction hypothesis (H,-1) by [[0Vills. < 0;,""”" A; fori <n—1with@” = a+2 X2 to proceed the
Nash-Moser iteration. Repeat this again and again, we will get ||0Vi|ls.« < gs—@=2k-1A. for i < n and for any k € N. Hence, we
can follow the argument in Lindblad [38, (18.40)-(18.43)] to show that the series )., 6V, converges in C([0, T']; H*(Q)) for
any k with T independent of k and similarly 3, 876V, converges in C([0, T]; H™"*?*(Q)) for 0 < r < s. So the local existence
and uniqueness in C([0, T] x C*(Q)) is proven, provided that one can construct a smooth data satisfying the compatibility
conditions up to infinite order, which will be achieved in Appendix A.3. The additional regularity in the time variable can be
obtained by differentiating (1.17) by J, repeatedly.

However, there are two extra error terms e,,’, D, +%6‘Pn in [64, (4.26)-(4.27)], which are produced because the free surface

of Q(f) = T? x (—o0, (1)) is directly flattened by an explicit diffeomorphism instead of using Lagrangian coordinates.

N

e ¢;’: modifications in the boundary conditions. Under the setting of [64], the kinematic boundary condition d,¢p = v-N
and the constraint H - N = 0 are involved in the equation. But the linearization breaks the structure of these two boundary
conditions. So after adding the increment in each step of Nash-Moser iteration, extra modifications are required to
guarantee these two boundary conditions hold for the basic state V.1 = V,, + 6V,,.
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e D, +%6‘I’,,: Dropping the zero-th order term when replacing 5V, by its “good unknown” 6V, in the linearized
problem. To solve and prove the tame estimates for the linearized problem for §V,,, the authors of [64] replaced the
variables 5V, by the good unknown (without derivative) 6V, := 8V, — 6%,(d3V, /03D, and drop a zero-th order term
to get the so-called effective linearized problem. This step produces the problematic error D, 1 0¥, due to that dropped

term. This is a bad term, as it contributes to £26:*~! A, which prevents us improving the estimates of 6V,,.

Under the setting of Lagrangian coordinates, these two terms are not needed. For example, there were no such error terms in
Lindblad [38, 40] where the local existence for smooth solutions to Euler equations are proved by using Nash-Moser iteration.

Indeed, when using Lagrangian coordinates, the material derivative becomes 9, and the kinematic boundary condition
then becomes “0, is a tangential derivative”. In other words, there is no description for the position of 9€(¢) in Lagrangian
coordinates. Instead, the information of free surface is reflected by n which is defined as the flow map of velocity. Besides,
Lemma 1.1 shows that the magnetic field is completely determined by its initial data and the flow map, i.e., b = J~'(by - 0)7,
and thus the MHD system (1.17) only includes the variables n,v,q. The boundary constraint is now just bg = 0 that has
no dependence on time. Hence, we don’t have to consider the propagation of this condition when doing the iteration. The
formulation (1.17) does not affect the tame estimates, as we can still get the energy of J~! (by - )67 together with 6v and dq as in
(2.4). In fact, the linearized momentum equation still has the form parallel to the nonlinear problem 8,6v — (bg - 0)*61 + V46Q =
.-+ (with p, J omitted) and multiplying this by év and integrating by parts in section 2.2-2.3 gives energy estimates. When the
variation operator ¢ falls on J~!, we can use py = RJ to get 6py = R6J + JR'(q)dq and the positivity of density R and then 5J
can be expressed in terms of ¢q. This shows why we can avoid the modification error e]”.

The error D, 1 0%, can also be avoided. In Lagrangian coordinates, the analogue of § V, is equal to 6V, —dm, - V4 V,. When
doing tame estimates, we may still use 6V, to do calculation, but we finally derive the energy inequality for 6V, instead of §V,.
The reason is that their difference can be estimated by ||67,|ls.<[IVaVallee < VA Vallre fOT [[6vnlls.«. The advantange is that o7,
has the same regularity as ¢v, so we don’t have derivative loss for this term; while under the setting of [64], the regularity for
0¥, is not the same as 9,6%¥,,.

On the other hand, dropping the zero-th order term 617, - V4 V,, when solving the linearized problem is not necessary. Indeed,
the dropped term is a zero-th order term that can be moved to the right side, and the estimates for the “effective” linearized
problem (cf. [64, (3.25)]) shows that the interior inhomogeneous term comes with an time integral. Thus, one can solve the
linearized problem by using contraction mapping theorem in some [0, 7]. This 7; may be smaller than T, obtained in [64,
Theorem 3.1], but since the system is linear, it can be continued to the full time interval [0, Ty].

In Lagrangian coordinates, we have dn, is the flow map of év,, and one can alternatively use the Galerkin method
presented in Gu-Luo-Zhang [23, Section 7.1] to prove the local existence of the linearized system. If we expand o7 to
be > ;Z;(t)e;(y) for some Galerkin basis {e;}, then the zero-th order term dropped in [64] is just equal to }; Z;(f)e;(y) -
(coefficients only involving basic state) and the velocity becomes }:; Z_;(t)e (). The momentum equation is still an ODE in-
volving Z;.’(t), Z;(t) and terms involving magentic field and pressure. Thus, we no longer need to take into account the error
D, ,16%, as in [64]. Based the above discussion, we claim that Theorem 1.2 holds.

9.2 Continuation of smooth solutions

To prove the continuation criterion for smooth solution stated in Theorem 1.5, we need to prove the energy inequality in the
following form

T
En() < E(0) + f PEn-1(1)En(1) db, 9.4)
0

that is, the energy inequality for &,,(¢) is linear in &,,(¢) (the highest order terms). Once this energy inequality is proven, then
Theorem 1.5 follows by using contradiction. Indeed, for a given m, if T, < +co and we still have &,,_1(#) < M in [0, T},] for
some constant M > 0, then the above inequality shows that &,,(1) < E,,(0)(1 + P(M)te?™") in [0, T}] and thus it still remains
bounded, which contradicts with the maximality of 77".

To verify the linearity of the highest order terms in the energy estimates, it suffices to analyze the commutators, either the
terms in the modified good unknowns or the reduction of normal derivatives on the boundary, such that the highest order term
is linear. For simplicity of notations, we only verify the case m = 8 and 4! = ¢® for the commutators appearing in the interior
estimates, and &/ = 6‘3‘ for commutators arising in the reduction of normal derivatives on the boundary.

Commutators [8°, f1Dg for f,g € H3(Q). Here D is a tangential derivative, such as 8, or (by - d). Such commutators appear
when the energy terms are produced. The terms included in such commutators have the form 0V f9®VNDg for 1 < N < 8.
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Indeed, when 1 < N < 4, we put L®(Q) norm on f and L*(Q2) norm on g. When 5 < N < 8, we put L*(€) norm on g and L*(Q)
norm on f. By using the definition of anisotropic Sobolev space and the Sobolev embedding H*(Q) — L*(Q), we will find

116, £1Dgllo < 1fNslglls.« + 1/117.ellglls.« + 11f Tl lgll7. + ILF1ls Allglls.»

which is linear in || - [|3 » norm.
The error term /3 when producing the energy of g. In (4.21) and (5.37), we have the following term
T ’
JR «
f f —(‘])ainpAl” 8,00%0,q dy dt,
0 Ja Po
which is controlled after integrating by parts in d;. So, it introduces a term without time integral

JR' (q)
f poq 0ln,AP6,00Lq dy < £llglly , + —||6’n||0 LAy Q
Q

JR'(q)
£0

I

Note that the terms in L*(€2) norm only have at most one derivative, so this term is bounded by || - ||s.. norms of 7, py, Q. Next
. T . . L .

using 7 = Id + fo vdr gives the energy estimate that is linear in || - [|g . norm.

Commutators in modifided Alinhac good unknowns. This is the most involved part in the paper. We take the case 8. = a8,
i.e., the most difficult case, for an example. Recall the calculations in section 5.1.1 and we find that the control of C3, Cy4, Cs is
parallel to C; and the control of Cg is parallel to C», so we only focus one the control of C;(f) and Ca(f). L

Recall that Cy(f) = 8V, (V43 )8"n,—8([8°, A"’ A"™18,,,)00,f. In the first term, the top-order part has the form P(9)d°dnd’n,
whose L?(Q) norm can be controlled by using H Q) — L5Q)

10Tl = [ 37 3 #3f Ty
Q

15!

- f & f d'n &of ndy — f &of 8°n 8*0f 8°ndy ©9.5)
Q Q :

S 1020* FI 1% 111107 nllolldnlly + 160131105 nllo 6l

<lnlls <l f 1l Flls« + 12 FIR, < Es(DEn (D).

In the second term of C;(f), we need to control [|[3°, A”A™13,,1,lo, whose top-order part reads P(81, )@~ 9n)(8°~N dn) for
1 < N <6. So it is controlled by

P(llnll7.)AI6°8nllollonllzs + 18> dnllollddnllz= + 118" anllolld*dnliz=) < PAmllz.linlls.

The control of C»(f) is divided into three parts in section 5.1.1, and C»(v), C21(Q) and Cx(Q) are already controlled in our
desired form. Now we analyze C,3(Q) that has the form dVA?d"V3,Q for 1 < N < 6. For N = 5,6, we put L>(€) norm on A
and L*(2) norm on Q; and put L*(£2) norm on A and L*(Q) norm on Q for 1 < N < 2. When n = 3,4, we need a observation
that when [ = 3, A% = 677 x 0n only contains tangential derivative; and when [ = 1, 2, 9; itself is tangential. So when N = 4, we
have either ((’)4677 X [977)64Q or (65 n X 877)636Q which is controlled by

16* dnllollonllL=116* Qlli + 10 71l 10nllL=118*OQlIzs < IInllg I Qlls.«

Similar approach applies to the modified good unknowns for other derivatives which shoule be easier than the case 3 = 85.
So we show that, for a function f € H3(Q) and its “modified” good unknown F with respect to d’, the following property holds

OUVLS) = V4F + C'(f), with [|IC(flls, < PE(1)Es(1),

where &,,(7) is the energy functional defined in (1.21).

The estimates for the modification terms Ay onI'.  In the boundary estimates in section 5.2.2, we have to control the LX)
norms of Ag, A, and 6,(JAp). Indeed, the analysis in (5.47) and the Sobolev inequality |f|y1~ < [|f|l5 . have already make the
energy estimates linear in the top-order term, that is,

1Aglo + 1Avlo + 10:(JAg)lo < P(E7(1))Es(1).
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Commutators arising in the reduction of normal derivatives. When there is a normal derivative 03 included in 9., we need
to repeatedly use the MHD system to reduce one normal derivative to one tangential derivative, which then produces lots of
commutators. We take 0! = 6‘3‘ for an example. There are two types of commutators in section 4.3 and we need to control their
| - |o norm.

e [83,A%]05f. This is easy to control, it equals to 3A% 5 f + 392A%0% f + 303A% 33 f and is then controlled by

1103, A*105 £1| < P(10n, 30n.) (103711103 f1i> + 1630m] 14103 f11s + 1030m].103 1o
< Pl )il + 11f1la), 9.6)

where we use the fact that A = dn x an.
o [83, A" A™1830,mp, L = 1,2. The analysis is similar as above, because the top-order term has the form (837)(83m)P(0n).

Summarizing the above analysis, we show that, for m > 8, the energy inequality is in fact

T
E(T) < 6,0+ PE1(T) [ EnDPE1 D)
0

so we have proved a continuation criterion.

9.3 Passing to the case of initial data satisfying compatibility conditions up to finite order

Finally, we prove Theorem 1.6. First we recall that, we say the initial data (vo, bo, Qo) satisfies the compatibility conditions up
to k-th order, if Q; := 6{ QOli=o = 0 on T" holds for 0 < j < k; and we say (vg, by, Qo) satisfies the compatibility conditions up to
infinite order if Q; := 6{Q|,=0 =0onT holds forall j >0, jeZ.

Given an integer m > 8 and initial data Uy := (vo, by, Qo) satisfying the compatibility conditions up to (m — 1)-th order,
assume we already find a sequence of smooth data U(()”) = (vg’), bg’), Q(()”)) satisfying the compatibility conditions up to infinite
order, such that ||U(()") — Up|lm = 0 as n — oco. Now we introduce the following procedure:

1. For each n, using Theorem 1.2, we know there exists a unique smooth solution U™, e C2([0, T™]; Q) for some
T™ > 0. The lifespan T may depend on # at this point.

2. By our a priori estimates (Theorem 1.3), we have [[U™ (¢, )ln. < P(IU(0, )| < P(IIU(()”)II,,,) provided the existence
and the right side is independent of n. Using the continuation criterion (Theorem 1.5), we can extend the solution a bit
more after T, until the a priori bounds become invalid. So, the lifespan of {U(¢)} in H3(Q) has a lower bound T
independent of 7.

3. Using Theorem 1.4, we know [|[UN(z,) = UD(t, Ylws. < CUUS = UPluo) PAUS, UL L), Here C¢) > 0'is a
continuous function of its arguments and C(x) — 0 as |x| — 0. This is because the equations for U ® _ y® are linear
in U® - UD, so0 (('ﬁ‘ Uk — 8fU(l))|,:0 can be expressed linearly in terms of U(()k) — U(()l). When k,/ — oo, the right side
converges to zero, and then {U"(£)} has a limit U(r) € H""*(Q) in [0, To].

4. The limit U(¢) must be a solution with the given initial data Uy € H™(Q) by using Sobolev embedding. Since each U™ ()
belogns to H?(Q) in [0, Ty], we know by the a priori bounds, the limit U(¢) also satisifies [|U(#)||n. < P(|Uoll:») in some
[0, T,,] with T, only depending on ||Uyl|,», co in the Rayleigh-Taylor sign, and A in the equation of state.

Therefore, under the assumption of Theorem 1.6, for each given data Uy := (v, by, Qp) satisfying the compatibility
conditions up to (m — 1)-th order, we prove that there exists a unique solution to (1.17) in C([0, T',,], H'(€2)) for some T}, only
depending on ||Uy||,,, co in the Rayleigh-Taylor sign, and Ag in the equation of state. This solution also satisfies the a priori
bounds, continuous dependence on initial data and uniqueness as stated in Theorem 1.3 and Theorem 1.4.

A Construction of smooth data satisfying compatibility conditions up to infinite
order

In the appendix, we prove the existence of smooth data satisfying compatibility conditions up to infinite order. Assume m > 8
is an integer and we are given an initial data (wy, bg, Py) satisfying the compatibility conditions up to (m — 1)-th order in H™(€2),
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where P is the total pressure, while the fluid pressure is denoted by pg = Py — %Ibolz. For simplicity of notations, we assume
R'(q)/Rlg=1 = 1.
The initial constraints and compatibility conditions for (wy, by, Py) are

e (Compatibility conditions) P := 8{ Plieo=0onl,0<j<m—-1.
(?P()

o (Initial constraints) div by = 0 in Q, bglr = 0, and the Rayleigh-Taylor sign condition =53 > co > OonT.

A.1 Compatibility conditions in terms of initial data

First we express the compatibility conditions in terms of wy, by, Py. The zero-th order compatibility condition is Py|r = 0. To
express the first-order compatibility condition, we use P = p + %Ibolz, where p is the fluid pressure, the continuity equation
0p+divv =0, and 9,b = b- Vv — bdiv v to get (we omit the coefficient A as it equals to Id at ¢ = 0. The appearance of A does
not affect the essence of the proof.)

div wo = —|bol*div wo + (by - V)wg - by on T, (A.1)

and we define the right side of (A.1) to be the functional M_;(wy, by). Next we take divergence in the momentum equation to
get a wave equation of P

P~ AP = 6,2(%|b|2) + Vaw!Vw' = VbV b, Polr =0 (A.2)
and again use 0,b = b - Vv — bdiv v and 9,v ~ (by - )b — VP to get
87P — AP = Moy(wy, by, Po) + No(wo. by) on {t = 0},
where Ny(wo, bg) := V,-wéijf) - V[béijg and Mo (wo, bo, Po) is defined by
Mao(wo, bo, Po) := [bo* APy — (bo - V)* Po + (bo - V)b - by + Ro(wo, bo)
and Ro(wo, bp) only contains the first-order derivative of by and vg
Ro(wo, bo) := Po(bo) (V" wo)(V2wo) + (V7' b) (Vb))

where Py(by) is a polynomial of by only contains cubic and quadratic terms, and (iy, &2, ji, j2) = (1,1,0,0) or (0,0, 1, 1).
We see that the 2nd-order compatibility condition P := 6,2P|,=0 = 0 on I is equivalent to (we use bglr =0)

~ APy = Mo(w, bo, Po) + No(wo, bo, Po) = [bol* APy — (bo - V)*Po + (bo - V)*by - by + R(wo, by) on T. (A3)
Taking time derivatives in the wave equation above repeatedly we get for k > 1
P2y — APy = Mi(wo, by, Po) + Ni(wo, by, Pp) in Q,
where, after long and tedious calculations, the functionals My, N have the following form for r > 1

k=2r—1, Ma_1(wo,bo, Po) = — |bol*A"div wq + (by - V) A" div wy

r+l1

+ Z by -+ bg (V" 'wo) +Ray—1 (o, bo, Po), (A.4)
— S—
=2 <2! terms

k =2r, Ma(wo, bo, Po) = [bol* A" P — (B - V)*A" Py + Rar(wo, bo, Po),

r+1

+ Z (o - V)V bo)bl! - b2 + (by - VYA(V¥ Po)b]! - - b (A.5)
=2

<2! terms

and the term Ry, where every top-order term has (k + 1)-th order derivative, has the following form

Ri(Wo. bo, Po) = Pibo) (CF i i1iv it (V" W0) -+ (VW)W by) - - (Vb)) (V¥ Po) -+ (V¥ Py)).
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where Py (+) is a polynomial of its arguments and the lowest power is 4 and the indices above satisfy
L<it, yim Jis s jn <k+1,0<ky,-- ki <k+1,
i+ +ig+j+ - +ju+ki++k=k+1.
The term N (wy, by, Py) has the following form
Nicwo, bo, Po) = P (bo)(V 25 wig) (Vo) + Pra(bo) (V22 Po)(Vwi) + Pro(bo)(V** bo)(Vwo)
+ PUb0ID) i i gty (VW) - (Vmwig) (V1 b) -+ (V) (VM Po) -« (V Py))

where Py 1(+), Pr2(+), Pi(-) are polynomials of their arguments and Py o(-) is a polynomial of its arguments and the lowest power
is 2. The indices above satisfy

1Sil’.."im’jl,'..7jl’l$k,0$kl"..,klsk’
W+ +ipg+j+ - +ju+k+ - +k=k+1.

So the k-th compatibility condition can be equivalently written as

r

k=2r+1, A'divwg = Z A(Ma,—1-2j(wo, bo, Po) + Nay_1-2j(wo, bo, Po)) on T, (A.6)
=0
r—1

k=2r, = APy =" N(Moy2i(wo, bo, Po) + Nar-2-2(wo, bo, Py)) on T, (A7)
=0

where M_; (W, bg) := |bol>div wo — (b - VIwg - by and N_; := 0.

A.2 Regularization of the given data and recovery of compatibility conditions

To construct a smooth data satisfying the compatibility conditions up to infinite order, the first step is to regularize the given
data such that we get smooth functions. By the standard approximation of Sobolev function, we know for any given £ > 0,
there exists (w§, bf, Pj) € C*(€2) such that

llwg — wo, b — bo, P — Polls < €.

However, such smooth approximation does not preserve the boundary conditions, even for the vanishing boundary condi-
tions for Py and bg. So we need to recover the compatibility conditions up to the same order as the given data.
From now on, we assume

e m = 8, that is, the given data satisfies the compatibility conditions (A.6)-(A.7) up to 7-th order. This corresponds to the
minimal requirement in Theorem 1.3.

® |lbollL~@) < 6o < 1 where dy is a suitably small number to be determined: to absorb the terms containing (k + 2)-th order
derivative arising in M. Note that we do not need |[|by||;~q, to be arbitrarily small in the proof.

A.2.1 Recovering the initial constraints

The new data should also satisfy the initial constraints: divergence-free condition of magnetic field, vanishing normal compo-
nent of magnetic field on the boundary and the Rayleigh-Taylor sign condition. The Rayleigh-Taylor sign condition still holds
for Pg, as =93 P is just a small perturbation of —d3Py. We then modify bf. First, we introduce b defined by

7e1 _ el
B = b

ol b5 =b57 - ADS = —Ab inQ, b5 =0onT, (A8)

and then Bg € C*(Q) and the elliptic estimates imply ||I;S = bolls < 1By — bolls + 10 — Ols—05 = O(e). Next, we recover the
divergence-free condition by introducing bfj := l;g + Vo with ¢ determined by

~Ap = div b in Q, d39p =0onT. (A.9)

With this modification, we now have div b, = div Eg + Ap = 0in Q, and bglr = 0 still holds thanks to the Neumann boundary
condition 93¢ = 0 on I'. So, by is the desired magnetic field that we need, and it still satisfies a smallness assumption |[bo|| g, <
26¢. We’ll drop ¢ in by for the sake of clean notations.
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A.2.2 Recovering the compatibility conditions up to (m — 1)-th order

Next we focus on the modification of W‘S, PS. After the regularization, we don’t even know if PS = 0 on I holds or not. So the
first step is to recover the 0-th order compatibility condition Py|r = 0. We define PE)I) by

~AP{" = -AP:inQ, P =0onT. (A.10)
Since Py|r = 0, we know

P — Polls < IIP5 — Polls +10 = Ol,—05 = O(e).

(1)
0
M1 _ el (D2 _

to be the following function such that (Wél), by, Pél)) satisfies the compatibility condition up to first
M3

Next we define w,

order: w, "' = wg ', Wy = wy % and W, is determined by the bi-harmonic system
A" = A n (A1)
wg” = wg3, 03 w(l)3 -0, ng 52Wg,2 + M_l(wf)l), by) onT, '

where M_; (wé'), bél)) is given by (A.1). Note that the second boundary contidition only involves 63wf)1) because the tangential
components are the same of w. So the elliptic estimates give us

(1)

2.€ 2 e 1
WS = wolls < 1A%WS — A%wolls—a + W — wols—os + 103w} = d3wols1 5

o (A.12)
< 0(&) + lboli=IVWy " — Vwols-1s,

where the last term can be absorbed by the left side if we pick dyp sufficiently small. Therefore, by the second boundary
condition, we know (Wél), bo, Pf)l) ) satisfies the compatibility condition up to first order.

Again, we construct P(()z) such that (wél),bo,Pf)z)) satisfies the compatibility condition (A.7) up to 2nd order. The new
pressure is defined by the poly-harmonic system

~AP§) = —A’P{) inQ,
P = P<” 0, 63P(2) ;P onT, (A.13)
—APY = M (W(l),bo, <“>+No<wg“,bo) onT,

and thus

2
P — Polly < AP — A3Polls6 + 105P — 85 Ply-1 5

+ IMo(w(, o, 11QU 7 llo + QU II1”) + Mo(wg, bo) — Mo(w, bo, Po) = No(wo, bo)ls-2.5 (A.14)

< 0(e) + 1ol |03 (PS = Po)ls-2s,

where the last term is again absorbed by the left side if we choose |by| < 0 to be suitably small. It should also be noted that,
M also has other terms containing (k + 2)-th order derivative, but there are at least two derivatives appearing as (b - 6), and
thus we can replace P(z) with P(()l) using the remaining boundary conditions.

Next we construct w(z)

3rd order.

via the following system such that (W(()z), bo,PE)Z) ) satisfies the compatibility condition (A.6) up to
Af‘wi)zm = Al“wf)l)’3 in Q,
Aw = 8wl (0 < j<2) onT (A.15)
Adiv w<2> Ml(w(z), bo, PS) + MW, bo, PS) + AM_ (W), bg)  onT,

and similarly as above we can get

2 4 (1 4 1 i
WS = wolly < 1A*WS" = A*woll;_s + ZW M _ 3 wol -0
Jj=0

+ 1My + Ny + AMDW, b0, PS) — (My + Ny + AM_1)(wo, bo, Po)ls-35

S 0(&) + o213 (WS = wo)lss5,

(A.16)
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where the last term is again absorbed by the left side if we choose [by| < §y to be suitably small.

So, we can repeat the above procedures such that Pg") is determined by the poly-harmonic equation A>"~! Pg") = Az’”“Pg”_l)
in Q equipped with the boundary conditions BﬁPgm) = BéPf)'"_l) onTI for 0 < j < 2m — 3 and the compatibility condition (A.7)
for the case k = 2m — 2 with (wy, by, Po) replaced by (w(()'"_l), by, P(()'")).

Similarly, Wgn) is determined by wg")’l‘z
ditions (9éwg")’3 = [)éwg”_l)’3 onI for 0 < j < 2m — 2 and the compatibility condition (A.6) for the case k = 2m — 1 with
(wo, bo, Po) replaced by (wg"), bo, Pg")).

Since the given rough data (wy, by, Py) satisfies the compatibility conditions up to 7-th order, we stop the above procedure
after we get (wgl), by, Pg”) which is a smooth data and also satisfies the compatibility conditions up to 7-th order. We rename
this smooth data to be (v, by, Q). For any given £ > 0, we construct a smooth data (vy, by, Q) that satisfies the compatibility
conditions up to the same order as the given rough data (wy, by, Py) and has the following approximation

= Wg"_l)’l’z and Az’”wgy‘)’3 = Az’”wgn_l)’3 in Q equipped with the boundary con-

[Ivo — wollg + Ilbo — bollg + [1Qg — Polls = O(e). (A.17)

A.3 Extend the compatibility conditions up to infinite order
A.3.1 Formal constructions

We then try to extend the initial data such that the compatibility conditions are fulfilled up to infinite order. First we briefly
state some formal construction. Recall in section A, for a given data (wy, by, Po), the corresonding solution satisfies the wave
equation

P — AP = Mo(v, b, P) + No(v,b), Ay := (1 + |bHA - (b- ),

and My(v,b, P) := (b - 3)*b - b + R(v, b) where R only contains the first-order derivatives of b,v. So if we start with an
irrotational velocity wy = V¢ and define Py := =i, then since P = p + %Ibl2 we have

WP =0p+b-0b=—divw+b-((b-0)w—bdivw) = —(1 +|b)divw + (b-d)w - b,
which then gives, after restricting it to {# = 0}
—ApP_1y = =Py + (b - )V - by,

where the right side only depends on the given data of velocity and magnetic field. Taking more time derivatives and setting
t = 0 yields an infinite elliptic system of the form

—Ap, Py = —Pgsay + N{(P<1y, -+, Pyry), k> -1,

where N, is a functional that only depends on the derivatives of its arguments and by up to a certain order. This system has
similar structure as in [40, Lemma 16.1] and thus can be solved in a similar manner. The only difference comes from the
appearance of magnetic field, but (by - ) is a tangential derivatiev and we can pick suitable by such that its normal component
vanishes in a neighborhood of the boundary.

A.3.2 Full construction procedure

For specific calculations, we now define the desired smooth data (v, by, Q) by
Vo i=Vo— Vfol), by := by. (A.18)

And after a long and tedious calculation, we find Qg is determined by the following infinite elliptic system in Q, where
A:=1+ byl

—AAQ% = - Q) — Q) — (bo - V)?’Q%, + N’ (bp, Q%) (A.19)
—AAQF = - Q) — (bo - V)’QF + (bg - V)*by - bg + Nj(bo, v, Q%)) (A.20)
—AAQ) == Q) — (bo - V)’QF + (bg - V)*vg - by — [bo*(bo - V)*(V - v*) + N (b, v, Q. Q). (A21)
—AAQQ, = — Q) — (bo - V)*AQF + Nj(bo, vy, Q. Q5. Q) (A.22)
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and for k > 2
—AAQS) = — Q) — (bo - VPAQE ) + Ni(bo, v, Q7. Q5. Q). -+, Q). (A.23)
with vanishing boundary conditions for each Q. These N;’s have the following structure

N/;(VSC’ bO’ in])’ Tt QE;O_)I))
= Po)Cym " (VW) (V)Y bg) -+ (VDo) (V1 Q) -+ (V' Qi)

s j1 jnoki

(A.24)

where the indices satisfy

i+ +ip+p+ -+t +m)+--+ k- +m)=k+2,
L<it, yimsjis s jmo ki o ok Sk +1,
-1<my, - m<k-1, 1<k +my,-- k. +m, <k+1.

Remark. Note that (A.22) is derived from taking two time derivatives in (A.20). On can also In fact, taking two time derivatives
in (A.20), we know the right side has top-order terms (bg - V)?Q, — (bg - V)b, - bg. For the latter term (b - V)2b, - by, we recall
that Q = q + %|b0|2. Taking one time derivative and using continuity equation, we get Q(;y = —div vo + by - bg. Taking one
more time derivative and using the momentum equation v; = (b - V)by — VQyq, we get div v| = div (-VQq + (bg - V)by). Using
div by = 0 we know div (bg - V)b is of lower order. So we have Q) ~ AQq + b, - by, and thus

(bo - V)?Qs — (bo - V)?b, - by = (by - V)’AQ, + lower order terms.

We choose to write in this form because it makes equations shorter. Alternatively one can differentiate (A.21) in time
varlable again and again to get the form AbOQ(k) Q(k+2) + M(bg, Qny, -+, Qu-y) + N(bg, Qc-1y, - -+, Q—1y) where
= (1 + [bo|>)A — (bg - V)2, and M denotes the terms containing (k + 2)-th order derivative.

This elliptic system has a parallel structure as [40, (16.11)]. Following [40, Lemma 16.2], we impose the system with
boundary conditions

Qiplr = Qox: = VnQplr = Qix, k> -1

Then the system has a formal power series in the distance to the boundary

(1 —ry

6(1()(" , W) ~ Z Qi(w)

where r is the distance to the boundary and w is the angular variable. Let 0 < y(-) < 1 be a smooth bump function on R that
equals to 1 in [-1, 1] and vanishes outside [-2, 2]. Then, by [40, Lemma 16.2], there exist &, such that

Q(k)(r w) = Z)((

such that the above elliptic system holds to infinite order on the boundary. Note that (b - V) is tangential on the boundary and
by has smallness assumption, so the extra terms involving by will not affect the convergence of the power series.
Now let (Vy, by, Q) are functions that vanish to infinite order on the boundary. Define

(a —r)"

)Qn k((t))

Wy = Vo = VQy), P = Qy + Qq, Py := —(1 + [bo)(div Vo + AQ__y)) + (bg - VIWS - by,

where Q,, Q( 1y are given by the above construction. Then inductively one can show that P, = Qo(k) + Q(k), where Q(k) are

constructed above and Qo(k) vanishes to infinite order on the boundary. Hence, choosing boundary data such that Qg = 0 for
k> 0and Q;x > co > 0, then the Rayleigh-Taylor sign condition for P; is fulfilled and also we have P(k)|r =0forall k > 0.
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