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Abstract

This is the second part of the two-paper sequence, which aims to present a comprehensive study for current-vortex sheets
with or without surface tension in ideal compressible magnetohydrodynamics (MHD). The results of this paper are two-fold:
First, we establish the zero-surface-tension limit of compressible current-vortex sheets under certain stability conditions on the
free interface; Second, when the two-phase flows are isentropic and the density functions converge to the same constant as Mach
number goes to zero, we can drop the boundedness assumption (with respect to Mach number) on high-order time derivatives by
combining the paradifferential approach applied to the evolution equation of the free interface, the structure of wave equations
for the total pressure and the anisotropic Sobolev spaces with suitable weights of Mach number. To our knowledge, this is the
first result that rigorously justifies the incompressible limit of free-surface MHD flows. Moreover, we actually present a robust
framework for the low Mach number limit of vortex-sheet problems, which was never established in any previous works.
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1 Introduction
Current-vortex sheet, as one of the characteristic discontinuities in ideal compressible MHD, is described by the free-interface
problem of two-phase compressible ideal MHD flows where the magnetic fields are tangential to the interface and no mass flow
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transfers across the interface. This model has been widely used in both solar physics (e.g., the heliopause of the solar system,
the night-side magnetopause of the earth) [8] and controlled nuclear fusion [21]. In particular, the surface tension effect on the
interface cannot be neglected when the plasma is a liquid metal [41].

Let H > 10 be a given real number, x = (x1, · · · , xd) and x′ := (x1, · · · , xd−1) and the space dimension d = 2, 3. We define
the regions Ω+(t) := {x ∈ Td−1 × R : ψ(t, x′) < xd < H}, Ω−(t) := {x ∈ Td−1 × R : −H < xd < ψ(t, x′)} and the moving
interface Σ(t) := {x ∈ Td−1 × R : xd = ψ(t, x′)} between Ω+(t) and Ω−(t). For T > 0, we denote Ω±T :=

⋃
0≤t≤T
{t} × Ω±(t) and

ΣT :=
⋃

0≤t≤T
{t} × Σ(t). The following free-interface problem describes the motion of Σ(t) as a current-vortex sheet (or an MHD

tangential discontinuity)

%±(∂t + u± · ∇)u± − B± · ∇B± + ∇Q± = 0, Q± := P± + 1
2 |B
±|2 in Ω±T ,

(∂t + u± · ∇)%± + %±∇ · u± = 0 in Ω±T ,

(∂t + u± · ∇)B± = B± · ∇u± − B±∇ · u± in Ω±T ,

∇ · B± = 0 in Ω±T ,

(∂t + u± · ∇)s± = 0 in Ω±T ,

P± = P±(%±, s±), ∂P±
∂%±

> 0, %± ≥ ρ0 > 0 in Ω±T ,

~Q� = σH on ΣT ,

B± · N = 0 on ΣT ,

∂tψ = u± · N on ΣT ,

u±d = B±d = 0 on [0,T ] × Σ±,

(u±, B±, %±, s±)|t=0 = (u±0 , B
±
0 , %

±
0 , s
±
0 ) in Ω±(0), ψ|t=0 = ψ0 on Σ(0).

(1.1)

Here ∇ := (∂x1 , · · · , ∂xd ) is the standard spatial derivative. Dt := ∂t + u · ∇ is the material derivative. The fluid velocity, the
magnetic field, the fluid density, the fluid pressure and the entropy are denoted by u = (u1, · · · , ud), B = (B1, · · · , Bd), %, P and
s respectively. The quantity Q := P + 1

2 |B|
2 is the total pressure. Note that the fourth equation in (1.1) is just an initial constraint

instead of an independent equation. The fifth equation of (1.1) is derived from the equation of total energy and Gibbs relation
and we refer to [21, Ch. 4.3] for more details. To close system (1.1), we need to introduce the equation of state

P = P(%, s) satisfying
∂P
∂%

> 0. (1.2)

A typical choice in this paper would be the polytropic gas parametrized by λ > 0 [44]:

Pλ(%, s) = λ2(%γ exp(s/CV ) − 1), γ > 1, CV > 0. (1.3)

The assumption % ≥ ρ̄0 > 0 (for some constant ρ̄0 > 0) together with ∂P
∂%
> 0 guarantees the hyperbolicity of system (1.1).

The seventh to the tenth equations in (1.1) are the boundary conditions, in which N := (−∂1ψ, · · · ,−∂d−1ψ, 1)> is the normal

vector to Σ(t) (pointing towards Ω+(t)), σ ≥ 0 is the constant coefficient of surface tension and the quantityH := ∇·
(

∇ψ
√

1+|∇ψ|2

)
is

twice the mean curvature of Σ(t) with ∇ = (∂1, · · · , ∂d−1). The jump of a function f on Σ(t) is denoted by
�

f
�

:= f +|Σ(t) − f −|Σ(t)
with f ± := f |Ω±(t). The first boundary condition ~Q� = σH shows that the jump of total pressure is balanced by surface
tension. The second boundary condition B± · N = 0 shows that both plasmas are perfect conductors. The third boundary
condition ∂tψ = u± · N shows that there is no mass flow across the interface and thus the two plasmas are physically contact
and mutually impermeable. The slip boundary conditions are imposed on the rigid boundaries Σ± := Td−1 × {±H}. We refer to
[54, Appendix A] for detailed derivation of these boundary conditions from the Rankine-Hugoniot conditions. Also note that
the conditions ∇ · B± = 0 in Ω±(t), B± · N|Σ(t) = 0 and B±d = 0 on Σ± are constraints for initial data so that system (1.1) is not
over-determined. These initial constraints can propagate within the lifespan of solutions.

We also require the initial data to satisfy certain compatibility conditions. Let (u±0 , B
±
0 , %

±
0 , s
±
0 , ψ0) := (u±, B±, %±, s±, ψ)|t=0

be the initial data of system (1.1). We say the initial data satisfies the compatibility condition up to m-th order (m ∈ N) if

(D±t ) j ~Q� |t=0 = σ(D±t ) jH|t=0 on Σ(0), 0 ≤ j ≤ m,

(D±t ) j∂tψ|t=0 = (D±t ) j(u± · N)|t=0 on Σ(0), 0 ≤ j ≤ m,

∂
j
t u
±
d = 0 on Σ±, 0 ≤ j ≤ m.

(1.4)
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In fact, the fulfillment of the first condition implicitly requires the fulfillment of the second one. With these compatibility
conditions, one can show that the magnetic fields also satisfy (cf. [53, Section 4.1])

(D±t ) j(B± · N)|t=0 = 0 on Σ(0) and Σ±, 0 ≤ j ≤ m.

System (1.1) admits a conserved L2 energy

E0(t) :=
∑
±

1
2

∫
Ω±(t)

%±|u±|2 + |B±|2 + 2P(%±, s±) + %±|s±|2 dx + σ Area(Σ(t))

where P(%±, s±) =
∫ %±

ρ̄0

P±(z,s±)
z2 dz. See the first part of this paper sequence [63, Section 3.1] for the proof.

The local well-posedness and the incompressible limit of (1.1) for each fixed σ > 0 has been established in [63, Section
3.1]. This paper is a continuation of [63]: we aim to prove the zero-surface-tension limit for the solution to (1.1) under certain
stability conditions and improve the low Mach number limit result in [63] such that the uniform boundedness (with respect to
the Mach number) of high-order (≥ 2 order) time derivatives can be dropped. The motivation to study these limit processes are
stated in Section 1.3.

1.1 Reformulation in flattened domains
1.1.1 Flattening the fluid domains

As in [63], we convert (1.1) into a PDE system defined in Ω± := Td−1×{0 < ±xd < H}.We consider a family of diffeomorphisms
Φ(t, ·) : Ω± → Ω±(t) characterized by the moving interface. Let Φ(t, x′, xd) = (x′, ϕ(t, xd)) where

ϕ(t, x) = xd + χ(xd)ψ(t, x′) (1.5)

and χ ∈ C∞c ([−H,H]) is a smooth cut-off function satisfying the following bounds:

‖χ′‖L∞(R) ≤
1

‖ψ0‖∞ + 20
,

8∑
j=1

‖χ( j)‖L∞(R) ≤ C, χ = 1 on (−1, 1) (1.6)

for some generic constant C > 0. We assume |ψ0|L∞(T2) ≤ 1. One can prove that there exists some T0 > 0 such that
sup
[0,T0]
|ψ(t, ·)|L∞(T2) < 10 < H, the free interface is still a graph within the time interval [0,T0] and

∂dϕ(t, x′, xd) = 1 + χ′(xd)ψ(t, x′) = 1 −
1
20
× 10 ≥

1
2
, t ∈ [0,T0],

which ensures that Φ(t) is a diffeomorphism in [0,T0]. We then introduce the new variables

v±(t, x) = u±(t,Φ(t, x)), b±(t, x) = B±(t,Φ(t, x)), ρ±(t, x) = %±(t,Φ(t, x)),
S ±(t, x) = s±(t,Φ(t, x)), q±(t, x) = Q±(t,Φ(t, x)), p±(t, x) = P(t,Φ(t, x)) (1.7)

that represent the velocity fields, the magnetic fields, the density functions, the entropy functions, the total pressure functions
and the fluid pressure functions defined in the fixed domains Ω± respectively. Also, we introduce the differential operators

∇ϕ = (∂ϕ1 , · · · , ∂
ϕ
d), ∂

ϕ
a = ∂a −

∂aϕ

∂dϕ
∂d, a = t, 1, · · · , d − 1; ∂

ϕ
d =

1
∂dϕ

∂d. (1.8)

We set the tangential gradient operator and the tangential derivatives as ∇ := (∂1, · · · , ∂d−1), ∂i := ∂i, i = 1, · · · , d−1. Invoking
(1.8), we can alternatively write the material derivative Dϕ

t as

Dϕ±
t = ∂t + v̄± · ∇ +

1
∂dϕ

(v± · N − ∂tϕ)∂d, (1.9)

where v̄± := (v±1 , · · · , v
±
d−1)> consists of the horizontal components of the fluid velocity and v̄± · ∇ :=

d−1∑
j=1

v±j ∂ j. N :=

(−∂1ϕ, · · · ,−∂d−1ϕ, 1)> is the extension of the normal vector N into Ω±. This formulation will be helpful for us to simplify the
analysis.
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1.1.2 Parametrization of the equation of state

Assume the fluids in Ω+ and Ω− satisfy the same equation of state of polytropic gases. Specifically, we parametrize the equation
of state to be ρ = ρ(p/λ2, S ) where λ > 0 is proportional to the sound speed cs :=

√
∂pρ. For a polytropic gas, the equation of

state is parametrized in terms of λ > 0 as in Schochet [44]:

pλ(ρ, S ) = λ2 (
ργ exp(S/CV ) − 1

)
, γ > 1, CV > 0. (1.10)

When viewing the density as a function of the pressure and the entropy, this indicates

ρλ(p/λ2, S ) =

((
1 +

p
λ2

)
e−

S
CV

) 1
γ

, and log
(
ρλ(p/λ2, S )

)
= γ−1 log

((
1 +

p
λ2

)
e−

S
CV

)
. (1.11)

Let F ±(p±, S ±) := log ρ±(p±, S ±). Since ∂p±

∂ρ±
> 0 and ρ± > 0 imply ∂F ±

∂p± = 1
ρ±

∂ρ±

∂p± > 0, then the continuity equation becomes

∂F ±

∂p±
(p±, S ±)Dϕ±

t p± + ∇ϕ · v± = 0. (1.12)

Also, we assume there exists a constant C > 0, such that the following inequality holds for 0 ≤ k ≤ 8:

|∂k
pF (p, S )| ≤ C, |∂k

pF (p, S )| ≤ C|∂pF (p, S )|k ≤ C∂pF (p, S ). (1.13)

Hence, we can view F = log ρ as a parametrized family {Fε(p, S )} as well, where ε = 1
λ
. Indeed, we have

∂Fε
∂p

= γ−1 log
(
(1 + ε2 p)e−

S
CV

)
. (1.14)

Since we work on the case when the entropy and velocity are both bounded (later we will assume u, S ∈ H4(Ω)), there exists
A > 0 such that

∂Fε
∂p

(p, S ) =
1
ρ

∂ρ

∂p
(p, S ) ≤ Aε2. (1.15)

We slightly abuse the terminology and call λ the sound speed and call ε the Mach number. When λ � 1 (ε � 1), the constant
A in (1.15) can be greater than 1 such that

A−1ε2 ≤
∂Fε
∂p

(p, S ) ≤ Aε2. (1.16)

We sometimes write F ±p := ∂F ±ε
∂p (p±, S ±) = ε2 for simplicity when discussing the incompressible limit.

System (1.1) is now converted into

ρ±Dϕ±
t v± − (b± · ∇ϕ)b± + ∇ϕq± = 0, q± = p± + 1

2 |b
±|2 in [0,T ] ×Ω±,

F ±p Dϕ±
t p± + ∇ϕ · v± = 0 in [0,T ] ×Ω±,

p± = p±(ρ±, S ±), F ± = log ρ±, F ±p > 0, ρ± ≥ ρ̄0 > 0 in [0,T ] ×Ω±,

Dϕ±
t b± − (b± · ∇ϕ)v± + b±∇ϕ · v± = 0 in [0,T ] ×Ω±,

∇ϕ · b± = 0 in [0,T ] ×Ω±,

Dϕ±
t S ± = 0 in [0,T ] ×Ω±,�

q
�

= σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
on [0,T ] × Σ,

∂tψ = v± · N on [0,T ] × Σ,

b± · N = 0 on [0,T ] × Σ,

v±d = b±d = 0 on [0,T ] × Σ±,

(v±, b±, ρ±, S ±, ψ)|t=0 = (v±0 , b
±
0 , ρ

±
0 , S

±
0 , ψ0).

(1.17)
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Since the material derivatives are tangential to the boundary, that is, Dϕ±
t = D±t := ∂t + v̄± · ∇ on Σ and Σ±, the compatibility

conditions (1.4) for initial data up to m-th order (m ∈ N) are now written as:�
∂

j
t q

�
|t=0 = σ∂

j
tH|t=0 on Σ, 0 ≤ j ≤ m,

∂
j+1
t ψ|t=0 = ∂

j
t (v
± · N)|t=0 on Σ, 0 ≤ j ≤ m,

∂
j
t v
±
d |t=0 = 0 on Σ±, 0 ≤ j ≤ m.

(1.18)

The above conditions also imply ∂ j
t (b
± · N)|t=0 = 0 on Σ and Σ± for 0 ≤ j ≤ m. See [53, Section 4] for details.

1.1.3 Stability conditions for the zero-surface-tension limit

We need to add some extra stability conditions on the free interface when surface tension is neglected, that is, when σ = 0. We
introduce the quantities

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2
where c±A := |b±|/

√
ρ± represents the Alfvén speed (the speed of magneto-sonic waves), c±s :=

√
∂p±/∂ρ± represents the sound

speed. The stability conditions are

d = 3 : 0 < a±
∣∣∣b̄∓ × ~v̄�∣∣∣ < |b̄+ × b̄−| on [0,T ] × Σ, (1.19)

d = 2 :
(
|b+

1 |

a+
+
|b−1 |
a−

)
> | ~v1� | > 0 on [0,T ] × Σ, (1.20)

where we view the horizontal magnetic field b̄ = (b1, b2, 0)> and the horizontal velocity v̄ = (v1, v2, 0)> as vectors lying on
T2 × {x3 = 0} ⊂ R3 to define the exterior product. The “> 0” part in (1.19) and (1.20) is necessary because we are considering
the vortex sheets which automatically require the tangential discontinuity of velocity is nonzero. Thus, the stability conditions
require that the strength of the magnetic fields cannot be too weak. Moreover, the condition for 3D case implies that b+ and b−

are not collinear on Σ and the condition for 2D case requires certain quantitative relation between the strength of magnetic fields
and the jump of tangential velocities. Note that the stability conditions are just initial constraints that can propagate within a
short time interval. We will explain in later sections why such stability conditions are needed.

1.2 An overview of previous results
For incompressible Euler equations, vortex sheets without surface tension tend to be violently unstable, which exhibit the so-
called Kelvin-Helmholtz instability. We refer to [18, 58, 59] and references therein for the special case of 2D irrotational flows
without surface tension and [6, 12, 46] for the case of nonzero vorticity and nonzero surface tension. For compressible Euler
equations, vortex sheets, unlike shock fronts, are characteristic discontinuities and the uniform Kreiss-Lopatinskiı̆ condition is
never satisfied, which leads to a potential loss of normal derivatives. For 3D Euler equations, compressible vortex sheets exhibit
an analogue of Kelvin-Helmholtz instability [19, 40, 51]; whereas for 2D Euler equations, Coulombel-Secchi [14, 15] proved
the existence of “supersonic” vortex sheets when the Mach number for the rectilinear background solution exceeds

√
2, which

is also a critical Mach number for the neutral stability. For the case of nonzero surface tension, we refer to Stevens [47] for the
local existence.

The Kelvin-Helmholtz instability can also be suppressed by magnetic fields. Unlike the transversal magnetic fields in MHD
contact discontinuities (B ·N |Σ(t) , 0) [57], the tangential magnetic fields must satisfy some constraints when the surface tension
is neglected. For 3D incompressible ideal MHD, the following Syrovatskiı̆ condition [50] is necessary and sufficient for the
well-posedness

%+|B+ × ~u� |2 + %−|B− × ~u� |2 < (%+ + %−)|B+ × B−|2. (1.21)

Coulombel-Morando-Secchi-Trebeschi [13] proved the a priori estimate for the nonlinear problem under a more restrictive
condition

max
{∣∣∣∣∣∣ B+

√
%+
× ~u�

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ B−
√
%−
× ~u�

∣∣∣∣∣∣
}
<

∣∣∣∣∣∣ B+

√
%+
×

B−
√
%−

∣∣∣∣∣∣ . (1.22)

Sun-Wang-Zhang [48] proved local well-posedness of the nonlinear problem under the original Syrovatskiı̆ condition (1.21).
See also Liu-Xin [34] and Li-Li [31] for the study for both σ > 0 and σ = 0 cases.
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For compressible current-vortex sheets in ideal MHD, it is unclear whether there is any necessary and sufficient condition
for the linear (neutral) stability when the surface tension is neglected. Trakhinin [52] used the method of “Friedrichs secondary
symmetrizer” to introduce a sufficient condition for the problem linearized around a background planar current-vortex sheet
(v̂±, b̂±, ρ̂±, Ŝ ±) in flattened domains R2 × R±, which reads

| ~v̂� | < | sin(α+ −α−)|min
{

γ+

| sinα−|
,

γ−

| sinα+|

}
on {x3 = 0}, (1.23)

where γ± := c±A√
1+(c±A/c

±
s )2

, c±A := |b̂±|/
√
ρ̂± represents the Alfvén speed, c±s :=

√
∂p̂±/∂ρ̂± represents the sound speed, and α±

represents the oriented angle between ~v̂� and b̂±. Indeed, (1.23) is equivalent to (1.19). Also note that the formal incompress-
ible limit of this condition as ρ̂± → 1 is exactly (1.22), and it is easy to see (1.22) implies (1.21). The well-posedness was
proven by Chen-Wang [10] under a more restrictive condition and Trakhinin [53] under (1.19) with the help of Nash-Moser
iteration. See also [42] for the 2D problem without surface tension under the stability condition (1.20).

However, the study of compressible current-vortex sheets with surface tension is unavailable prior to the first part [63]
of this two-paper sequence. Also, the local existence results in previous works about free-surface compressible ideal MHD were
all established by Nash-Moser iteration. There were quite few results about the energy estimates without loss of regularity: To
the author’s knowledge, the work [33] by Lindblad and the author presents the only available result (except [63]) about the
energy estimates without loss of regularity for one-phase MHD without surface tension. Besides, the study of singular limits
(e.g., the incompressible limit) of free-surface ideal MHD flows remains completely open, and we note that none of the
frameworks in [53, 10, 33, 42] is applicable to the uniform estimates under the low Mach number setting.

1.3 Our goals and motivations
We aim to present a comprehensive study of current-vortex sheets in ideal MHD and to develop a systematic approach to study
the well-posedness and the singular limits for compressible inviscid fluids. The local well-posedness and the incompressible
limit of (1.1) for each fixed σ > 0 has been established in [63]. In this paper, we aim the prove the following results:

• The incompressible and zero-surface-tension limits under the stability conditions (1.19) or (1.20) in 3D or 2D respec-
tively. It should be noted that these two limit process are independent of each other, that is, the energy estimates are
uniform in both Mach number and σ under (1.19) or (1.20).
• The improved incompressible limit such that the uniform boundedness (with respect to Mach number) of high-order

(≥ 2) time derivatives of velocity fields can be dropped.

To our knowledge, this paper presents the first result about the incompressible limit for both compressible vortex
sheets and free-boundary MHD flows. Let us briefly explain the motivations to study these two limit processes.

The zero-surface-tension limit, despite not being a singular limit, rigorously shows that either surface tension or suitable
magnetic field brings suppression effect on the analogue of Kelvin-Helmholtz instability for compressible vortex sheets. Also,
in Section 2.1, we will see the comparison between the stabilization mechanism brought by surface tension and the one brought
by magnetic fields satisfying (1.19) or (1.20).

The study of singular limits of magneto-fluids has been a long-term research topic as stated in Majda’s book [37, Section
2.4]. For ideal compressible MHD, the singular-limit theory (e.g., the low Mach number limit, the small Alfvén number limit),
which has shown great importance in the modelling of nuclear fusion or solar winds, is far less developed even for the fixed-
domain problems, especially when the magnetic fields are tangential to the boundary. One of the major difficulty under the
low Mach number setting is the “mismatch” of function spaces for the local existence: The linearized problem of compressible
ideal MHD in a fixed domain with B · N = 0 on the boundary is ill-posed in standard Sobolev spaces Hl(l ≥ 2) (see [43]),
whereas the incompressible problem is well-posed in standard Sobolev spaces (e.g., see [22]). The anisotropic Sobolev spaces
defined in Section 1.4.1, introduced by Shu-Xing Chen [11], were adopted in previous works about ideal compressible MHD
(e.g., [60, 53, 10, 33]), but none of the energy estimates obtained in these works is uniform in Mach number. The above issues
are not resolved until the appearance of the author’s recent work [55] (joint with J. Wang, for the fixed-domain problem in the
reference domain Td−1 × (−1, 1)) and this paper sequence.

When the fluid domain is Rd,Td or a domain with a fixed boundary, there have been numerous results concerning the
low Mach number limit of compressible inviscid fluids (e.g., the pioneering works [28, 17, 44, 39, 1] about Euler equations),
including the case of “ill-prepared (general) data” (div v0 = O(1), ∂tv|t=0 = O(1/ε)). However, for free-boundary problems, the
study of singular limits remains largely open: There is even no robust framework to establish the low Mach number limit for
inviscid fluids with “well-prepared data” (div v0 = O(ε), ∂tv|t=0 = O(1)). The results in previous works [32, 35, 16, 61, 36] and
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the first part [63] of this paper sequence require the uniform boundedness with respect to Mach number up to top-order time
derivatives. In the author’s previous work [62], the boundedness assumption on high-order (≥ 3) time derivatives1 was dropped
for one-phase elastodynamic flows without surface tension (also applicable to Euler equations), in which the framework is not
applicable to two-phase fluids or fluids with surface tension.

In this paper, we developed a new and robust framework (also applicable to Euler equations) that can help us drop the
boundedness assumption of high-order time derivatives regardless of surface tension. This framework is also applicable to
compressible vortex-sheet problems if the two-phase fluids (not only for MHD, but also for Euler equations) are isentropic and
the density functions are approaching the same constant as the Mach number goes to 0. In Section 2.2.2 and Section 2.2.3, we
will see this method is the combination of a paradifferential approach applied to the evolution equation of the free interface and
the analysis of wave equations for the pressure functions in ε2-weighted Sobolev spaces. We will also see this new approach
leaves open the possibility to establish the low Mach number limit of free-surface inviscid fluids with “ill-prepared” (general)
initial data.

1.4 Main results
1.4.1 Anisotropic Sobolev spaces

Following the notations in [11, 55], we first define the anisotropic Sobolev space Hm
∗ (Ω±) for m ∈ N and Ω± = Td−1 × {0 <

±xd < H}. Let ω = ω(xd) = (H2 − x2
d)x2

d be a smooth function on [−H,H]. The choice of ω(xd) is not unique, as we just need
ω(xd) vanishes on Σ ∪ Σ± and is comparable to the distance function near the interface and the boundaries. Then we define
Hm
∗ (Ω±) for m ∈ N∗ as follows

Hm
∗ (Ω±) :=

 f ∈ L2(Ω±)
∣∣∣∣∣(ω∂d)αd+1∂α1

1 · · · ∂
αd
d f ∈ L2(Ω±), ∀α with

d−1∑
j=1

α j + 2αd + αd+1 ≤ m

 ,
equipped with the norm

‖ f ‖2Hm
∗ (Ω±) :=

∑
d−1∑
j=1
α j+2αd+αd+1≤m

‖(ω∂d)αd+1∂α1
1 · · · ∂

αd
d f ‖2L2(Ω). (1.24)

For any multi-index α := (α0, α1, · · · , αd, αd+1) ∈ Nd+2, we define

∂α∗ := ∂α0
t (ω∂d)αd+1∂α1

1 · · · ∂
αd
d , 〈α〉 :=

d−1∑
j=0

α j + 2αd + αd+1,

and define the space-time anisotropic Sobolev norm ‖ · ‖m,∗,± to be

‖ f ‖2m,∗,± :=
∑
〈α〉≤m

‖∂α∗ f ‖2L2(Ω±) =
∑
α0≤m

‖∂α0
t f ‖2

Hm−α0
∗ (Ω±)

. (1.25)

We also write the interior Sobolev norm to be ‖ f ‖s,± := ‖ f (t, ·)‖Hs(Ω±) for any function f (t, x) on [0,T ] ×Ω± and denote the
boundary Sobolev norm to be | f |s := | f (t, ·)|Hs(Σ) for any function f (t, x′) on [0,T ] × Σ.

From now on, we assume the dimension d = 3, that is, Ω± = T2×{0 < ±x3 < H}, Σ± = T2×{x3 = ±H} and Σ = T2×{x3 = 0}.
We will see the 2D case follows in the same manner as the 3D case up to slight modifications in the vorticity analysis and the
analysis of stability condition when σ = 0.

1.4.2 The existence theorem for compressible current-vortex sheets with surface tension

Let us first record a theorem in [63] about well-posedness and uniform-in-ε estimates of (1.17) for fixed σ > 0.

Theorem 1.1. Fix the constant σ > 0. Let v±0 , b
±
0 , ρ

±
0 , S

±
0 ∈ H8

∗ (Ω
±) and ψ0 ∈ H9.5(Σ) be the initial data of (1.17) satisfying

• the compatibility conditions (1.18) up to 7-th order;

1When σ = 0, the Rayleigh-Taylor sign condition −∇Nq|Σ(t) > 0 is necessary for the local existence. To propagate the Rayleigh-Taylor sign, one has
to require ∂tq ∼ ∂2

t v to be uniformly bounded. Very recently, Gu-Wang [23] derived the L2
t -type bound of ∂tq for free-surface Euler equations with heat

conduction, but this is completely contributied by the parabolic feature of the heat-conductive part.
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• the constraints ∇ϕ0 · b±0 = 0 in Ω±, b± · N |{t=0}×(Σ∪Σ±) = 0 ;
• | ~v̄0� | > 0 on Σ, |ψ0|L∞(Σ) ≤ 1, and E(0) ≤ M for some constant M > 0.

Then there exists Tσ > 0 depending only on M and σ, such that (1.17) admits a unique solution (v±(t), b±(t), ρ±(t), S ±(t), ψ(t))
verifies the energy estimate

sup
t∈[0,T ]

E(t) ≤ C(σ−1)P(E(0)) (1.26)

and sup
t∈[0,Tσ]

|ψ(t)| < 10 < H, where P(· · · ) is a generic polynomial in its arguments. The energy E(t) is defined to be

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t),

E4+l(t) :=
∑
±

∑
〈α〉=2l

4−l∑
k=0

∥∥∥∥∥(ε2lT α∂k
t

(
v±, b±, S ±, (F ±p )

(k+α0−l−3)+
2 p±

))∥∥∥∥∥2

4−k−l,±

+

4+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5+l−k 0 ≤ l ≤ 4,

(1.27)

where k+ := max{k, 0} for k ∈ R and we denote T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 to be a high-order tangential derivative for the

multi-index α = (α0, α1, α2, 0, α4) with length (for the anisotropic Sobolev spaces) 〈α〉 = α0 +α1 +α2 + 2×0 +α4. The quantity
ε is the parameter defined in (1.14). Moreover, the H9.5(Σ)-regularity of ψ can be recovered in the sense that

4∑
l=0

3+l∑
k=0

∣∣∣σε2l∂k
tψ

∣∣∣2
5.5+l−k ≤ P(E(t)), ∀t ∈ [0,Tσ]. (1.28)

1.4.3 Main result 1: Incompressible and zero-surface-tension limits

For any fixed σ > 0, the energy estimates obtained in Theorem 1.1 are already uniform in ε. When taking the limit σ → 0,
we shall impose suitable stability conditions on Σ to ensure the well-posedness of “σ = 0-problem”. Assume there exists a
constant δ0 ∈ (0, 1

8 ) such that

δ0 ≤ a±
∣∣∣b̄∓ × ~v̄�∣∣∣ ≤ (1 − δ0)|b̄+ × b̄−| on [0,T ] × Σ, (1.29)

where

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2 (1.30)

and c±A := |b±|/
√
ρ± represents the Alfvén speed (the speed of magnetosonic wave), c±s :=

√
∂p±/∂ρ± represents the sound

speed. It should be noted that (1.29) is not an imposed boundary condition for the “σ = 0”-problem. Instead, it is just a
constraint for initial data which can propagate within a short time. In other words, we only need to assume

2δ0 ≤ (a±|t=0)
∣∣∣b̄∓0 × ~v̄0�

∣∣∣ ≤ (1 − 2δ0)|b̄+
0 × b̄−0 | on Σ. (1.31)

Under the stability condition (1.29), we can establish the uniform-in-(ε, σ) energy estimates.

Theorem 1.2 (Uniform-in-(ε, σ) estimates). Under the hypothesis of Theorem 1.1, if the stability condition (1.29) holds, then
there exists a time T > 0 only depending on M, such that

sup
0≤t≤T

Ẽ(t) ≤ P(Ẽ(0)), (1.32)

where Ẽ(t) is defined by

Ẽ(t) :=
4∑

l=0

Ẽ4+l(t), Ẽ4+l(t) = E4+l(t) +

4+l∑
k=0

∣∣∣ε2l∂k
tψ

∣∣∣2
4.5+l−k . (1.33)
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Now we introduce the rigorous statement for the zero-surface-tension limit. For σ ≥ 0, the motion of incompressible
current-vortex sheets with surface tension are characterised by the equations of (ξσ,w±,σ, h±,σ) with initial data (ξσ0 ,w

±,σ
0 , h±,σ0 )

and a transport equation of S±,σ:

R±,σ(∂t + w±,σ · ∇Ξσ

)w±,σ − (h±,σ · ∇Ξσ

)h±,σ + ∇Ξσ

Π±,σ = 0 in [0,T ] ×Ω,

∇Ξσ

· w±,σ = 0 in [0,T ] ×Ω,

(∂t + w±,σ · ∇Ξσ

)h±,σ = (h±,σ · ∇Ξσ

)w±,σ in [0,T ] ×Ω,

∇Ξσ

· h±,σ = 0 in [0,T ] ×Ω,

(∂t + w±,σ · ∇Ξσ

)S±,σ = 0 in [0,T ] ×Ω,

~Πσ� = σ∇ ·

(
∇ξσ

√
1+|∇ξσ |2

)
on [0,T ] × Σ,

∂tξ
σ = w±,σ · Nσ on [0,T ] × Σ,

h±,σ · Nσ = 0 on [0,T ] × Σ,

w±3 = h±3 = 0 on [0,T ] × Σ±,

(w±,σ, h±,σ,S±,σ, ξσ)|t=0 = (w±,σ0 , h±,σ0 ,S±,σ0 , ξσ0 ),

(1.34)

where Ξσ(t, x) = x3 + χ(x3)ξσ(t, x′) is the extension of ξσ in Ω and Nσ := (−∂1ξ
σ,−∂2ξ

σ, 1)>. The quantity Π± := Π̄± + 1
2 |h
±|2

represent the total pressure functions for the incompressible equations with Π̄± the fluid pressure functions. The quantity R±

satisfies the evolution equation (∂t + w±,σ · ∇Ξσ

)R±,σ = 0 with initial data R±,σ0 := ρ±,σ(0,S±,σ0 ).
Denote (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) to be the solution of (1.17) indexed by σ and ε. Under the stability conditions,

we prove that (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) converges to (ξ0,w±,0, h±,0,R±,0,S±,0) as ε, σ → 0 provided the convergence of
initial data. Here (ξ0,w±,0, h±,0,R±,0,S±,0) represents the solution to incompressible current-vortex sheets system (1.34) with
initial data (ξ0

0 ,w
±,0
0 , h±,00 ,S±,00 ) when σ = 0.

Corollary 1.3 (Incompressible and zero-surface-tension limits). Let (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) be the initial data of
(1.17) for each fixed (ε, σ) ∈ R+ × R+, satisfying

a. The sequence of initial data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 ) ∈ H9.5(Σ)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×H8
∗ (Ω

±) satisfies the hypothesis of
Theorem 1.1.

b. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 )→ (ξ0
0 ,w

±,0
0 , h±,00 ,S±,00 ) in H5.5(Σ) × H4(Ω±) × H4(Ω±) × H4(Ω±) as ε, σ→ 0.

c. The incompressible initial data satisfies |
�
w̄0

0

�
| > 0 on Σ, the constraints ∇ξ0 · h0,±

0 = 0 in Ω±, h0,± · N0|{t=0}×(Σ∪Σ±) = 0, the
stability condition

2δ0 ≤

√
R
±,0
0

∣∣∣∣h̄∓,00 ×
�
w̄0

0

�∣∣∣∣ ≤ (1 − 2δ0)|h̄+,0
0 × h̄−,00 | on Σ, (1.35)

where δ0 > 0 is the same constant as in (1.29).

Then it holds that

(ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ)→ (ξ0,w±,0, h±,0,S±,0), (1.36)

weakly-* in L∞([0,T ]; H4.5(Σ) × (H4(Ω±))3) and strongly in C([0,T ]; H4.5−δ
loc (Σ) × (H4−δ

loc (Ω±))3) after possibly passing to a
subsequence. Here T > 0 is the time obtained in Theorem 1.2.

Remark 1.1 (Stability conditions in 2D). When taking the zero-surface-tension limit, the stability condition for compressible
current-vortex sheets in 2D is (

|b+
1 |

a+
+
|b−1 |
a−

)
≥ (1 + δ0)| ~v1� | > 0 on [0,T ] × Σ, (1.37)

which is again propagated by the initial constraint(
|b+

1 |

a+
+
|b−1 |
a−

) ∣∣∣∣∣
t=0
≥ (1 + 2δ0)| ~v01� | > 0 on Σ, . (1.38)

The corresponding stability condition for the incompressible data is |h
+,0
01 |√
R

+,0
0

+
|h−,001 |√
R
−,0
0

 ≥ (1 + 2δ0)
∣∣∣∣�w0

01

�∣∣∣∣ > 0. (1.39)
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1.4.4 Main result 2: Dropping redundant assumptions on initial data for the incompressible limit

The uniform-in-ε estimates obtained in Theorem 1.1 and Theorem 1.2 require ∇ϕ ·v0 = O(ε2) and ∂k
t v|t=0 = O(1) for k ≤ 4. Such

assumption is much stronger than the widely used definition of “well-prepared” initial data (∇ϕ · v0 = O(ε) and ∂tv|t=0 = O(1)).
When

�
ρ

�
= O(ε) on the interface Σ (see Remark 1.3 below), we can still prove the incompressible limit under the assumption

∇ϕ · v0 = O(ε), ∂tv|t=0 = O(1) without any boundedness assumptions on high-order (≥ 2) time derivatives. However, the energy
functional should also be modified. We define

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t) (1.40)

Ẽ(t) := Ẽ4(t) + Ẽ5(t) + Ẽ6(t) + Ẽ7(t) + Ẽ8(t) (1.41)

where E4(t) is defined as the following

E4(t) =
∑
±

∥∥∥(v±, b±, p±)
∥∥∥2

4,± +
∥∥∥∂t(v±, b±, εp±)

∥∥∥2
3,± +

4∑
k=2

∥∥∥∥∥ε∂k
t

(
v±, b±, (F ±p )

(k−3)+
2 p±

)∥∥∥∥∥2

4−k,±

+
∣∣∣√σψ∣∣∣25 +

∣∣∣√σ∂tψ
∣∣∣2
4 +

4∑
k=2

∣∣∣√σε∂k
tψ

∣∣∣2
5−k ,

(1.42)

and

Ẽ4(t) = E4(t) + |ψ|24.5 + |∂tψ|
2
3.5 +

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣ε∂3
t ψ

∣∣∣2
1.5 +

∣∣∣ε∂4
t ψ

∣∣∣2
0.5 . (1.43)

Theorem 1.4 (Improved uniform estimates). Assume the fluids in Ω± are isentropic and the initial density functions satisfy
|
�
ρ0

�
|1.5 ≤ C0ε on Σ for some C0 > 0. Under the hypothesis of Theorem 1.1, the assumption E(0) ≤ M′ for some constant

M′ > 0, there exists T ′σ > 0 depending only on M′ and σ−1 such that the solution (v±(t), b±(t), ρ±(t), ψ(t)) to system (1.17)
verifies the uniform-in-ε energy estimate

sup
t∈[0,T ′σ]

E(t) ≤ C(σ−1)P(E(0)). (1.44)

Furthermore, under the stability condition (1.29) and Ẽ(0) ≤ M′, there exists T ′ > 0 depending only on M′ such that such that
the solution (v±(t), b±(t), ρ±(t), ψ(t)) to system (1.17) verifies the uniform-in-(ε, σ) energy estimate

sup
t∈[0,T ′]

Ẽ(t) ≤ P(Ẽ(0)). (1.45)

Remark 1.2. Since ∂tv|t=0 = O(1) still remains bounded, the above uniform estimates directly give the same stronge conver-
gence results as in Corollary 1.3. We do not repeat the statement of convergence theorems here. The result is also true for 2D
case under the stability condition (1.37).

Remark 1.3 (The smallness assumption on the density jump). The assumption |
�
ρ0

�
|1.5 ≤ C0ε on Σ implies that |

�
ρ(t)

�
|1.5 ≤

C1ε on [0,T ′] × Σ for some C1 > 0. To achieve this, one has to assume the fluids are isentropic and that is why the entropy S
is deleted in E and Ẽ. Indeed, taking the incompressible limit yields ~R� = 0 on Σ for the density functions R±. If the fluids
are non-isentropic, then R± are not constants and only satisfy (∂t + w̄± · ∇)R± = 0 on Σ. Since vortex-sheet problems require
~w̄� , 0 on Σ, it is not possible to have R+(t) = R−(t) on Σ even if it holds at t = 0.

List of Notations: In the rest of this paper, we sometimes write T k to represent a tangential derivative T α in Ω± with order
〈α〉 = k when we do not need to specify what the derivative T α contains. We also list all the notations used in this manuscript.

• Ω± := Td−1 × {0 < ±xd < H}, Σ := Td−1 × {xd = 0} and Σ± := Td−1 × {xd = ±H}, d = 2, 3.
• ‖ · ‖s,±: We denote ‖ f ‖s,± := ‖ f (t, ·)‖Hs(Ω±) for any function f (t, x) on [0,T ] ×Ω±.
• | · |s: We denote | f |s := | f (t, ·)|Hs(Σ) for any function f (t, x′) on [0,T ] × Σ.
• ‖ · ‖m,∗: For any function f (t, x) on [0,T ]×Ω, ‖ f ‖2m,∗,± :=

∑
〈α〉≤m

‖∂α∗ f (t, ·)‖20,± denotes the m-th order space-time anisotropic

Sobolev norm of f .
• P(· · · ): A generic polynomial with positive coefficients in its arguments;
• [T, f ]g := T ( f g) − f T (g), and [T, f , g] := T ( f g) − T ( f )g − f T (g), where T denotes a differential operator and f , g are

arbitrary functions.
• ∂: ∂ = ∂1, · · · , ∂d−1 denotes the spatial tangential derivative.
• A L

= B: A is equal to B plus some lower-order terms that are easily controlled.
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2 Strategy of the proof
By the compactness argument, it suffices to establish the uniform-in-(ε, σ) estimates under the stability condition (1.29). Let
us briefly recall the analysis of E(t), defined by (1.27), in the first paper of this sequence [63]. The first step is to reduce the
normal derivatives via div-curl analysis. The divergence part is automatically converted to tangential estimates with suitable
weights of Mach number thanks to the continuity equation. The control of curl part requires the anisotropic Sobolev norms
because the hidden structure of Lorentz force, first discovered in the preparatoty work [55] by J. Wang and the author, shows
that we shall trade one normal derivative (in the curl operator ∇×) for ε2-weighted, second-order tangential derivative ε2D2

t .
This fact exactly explains why we need 8-th order tangential regularity with ε8 weight (Ẽ8(t) in the energy) to control 4-th order
full Sobolev norms (Ẽ4(t) in the energy).

In [63], we adopted the div-curl inequality (B.1) and the reduction of normal derivatives is also recorded in Section 3 of this
paper. It remains to establish the tangential estimates for ε2lT αT β∂k

t where T α = (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 and α, β, k, l satisfy

〈α〉 = 2l, 〈β〉 = 4 − l − k, 0 ≤ k ≤ 4 − l, 0 ≤ l ≤ 4 and β0 = 0. (2.1)

It should be noted that the ε2lT α-part comes from the vorticity analysis for E4+l and the T β∂k
t -part comes from the interior

tangential derivatives in div-curl inequality. See the analysis in [63, Section 2.1-2.2] for more details.

2.1 Zero-surface-tension limit under the stability conditions
Let us rewrite T γ = T αT β∂k

t . Among the major terms arising in tangential estimates, the most difficult one is the following VS
term contributed by the tangential discontinuity of velocity fields

VS := ε4l
∫

Σ

T γq−(~v̄� · ∇)T γψ dx′, (2.2)

where T γ = ∂k
t ∂

4+l−k, 0 ≤ k ≤ 4 + l, 0 ≤ l ≤ 4 (Note that T γ vanishes on Σ when γ4 > 0). This term must appear in
current-vortex sheet problems due to ~v̄� , 0, whereas it vanished in the study of MHD contact discontinuity [57] (~v� |Σ =

0, B · N |Σ , 0). In [63], we use the ellipticity of the mean curvature to get enhanced regularity of ψ and H
1
2 -H−

1
2 duality to

control this term when T γ contains at least one spatial derivative, and present rather delicate analysis to control the full-time
derivatives with the help of some hidden symmetric structures. In this paper, we want to discuss the zero-surface-tension limit
under the stability condition (1.29) and the dependece on σ−1 should be dropped. Thus, we must avoid using the ellipticity
of the equation

�
q

�
= σH and find a new way to control or modify or eliminate VS term with the help of (1.29). Roughly

speaking, the stability condition (1.29) brings the following two benefits that Euler equations do not enjoy:

a. Enhance the regularity of the free surface to Hs+ 1
2 (Σ) in ∂s-estimates (possibly with suitable ε-weights). This gives

1/2-order higher regularity of ψ than the Rayleigh-Taylor sign condition does.
b. Completely eliminate the problematic term VS for vortex-sheet problems.

The enhanced regularity in (a) is easy to prove, as the “non-collinearity” allows us to resolve ∇ψ in terms of b± without
any derivative. The benefit (b) is rather important. When taking the vanishing surface tension limit, the enhanced regularity
obtained in (a) is still not enough to control VS. Thus, we would like to completely eliminate the contribution of ~v̄� in the term
VS by inserting a suitable term involving the magnetic fields. Specifically, we want to insert a term µ±b̄± into VS to get

VS′ :=
∫

Σ

T γq−
(�

v̄ − µb̄
�
· ∇

)
T γψ dx′ (2.3)

and find suitable functions µ± such that
�
v̄ − µb̄

�
= 0 on Σ. Under the stability condition (1.29), the functions µ± uniquely

exist. To construct the term VS′ from MHD equations (1.17), we shall replace the variable v± in the momentum equation by
v± − µ±b±. However, this operation makes the MHD system not symmetric and consequently the energy estimates cannot be
closed. To overcome this difficulty, we introduce the “Friedrichs secondary symmetrization” [20], which was first applied to
compressible idea MHD by Trakhinin [52], to re-symmetrize the MHD system.

The final step is to determine the range for µ± such that the energy estimates for the secondary-symmetrized MHD system
can be closed. Using the idea of Alinhac good unknowns [5], the energy for V,B,P (defined in Section 4.2.2) becomes

1
2

d
dt

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p |P

±|2 − 2µ±ρ±V± · B± − 2µ±ρ±F ±p P±(b± · V±) dVt, (2.4)
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where F ±p = 1/(ρ±(c±s )2) and dVt := ∂3ϕ dx. Thus, we must guarantee the above quadratic form of (V,B,P) to be positive-
definite, which is equivalent to guarantee the hyperbolicity. This requires µ± to satisfy (µ±)2ρ±(1 + (c±A/c

±
s )2) < 1, which gives

the range of µ± that exactly coincides with the stability condition (1.29).

Remark 2.1 (Stabilization effects on 2D subsonic vortex sheets). In the 2D case, the non-collinearity property no longer holds
because the interface is 1D. The functions µ± still exist but are not unique. For a rectilinear piecewise-smooth background
solution (±v, 0,±b, 0, p±, S ±)>, condition (1.37) implies that |v|2 < c2

s
c2

A

c2
A+c2

s
< c2

s , that is, the background solution must be

a subsonic flow, whereas the linear stability only holds for supersonic flow, that is, |v|/cs >
√

2, for 2D vortex sheets of
compressible Euler equations. Thus, sufficiently strong magnetic fields have stabilization effects on 2D subsonic vortex sheets.
However, this range is only a subset of the subsonic zone for the linear neutral stability obtained in Wang-Yu [56]. It still
remains open to justify the nonlinear stability in the whole domain for the linear stability obtained in Wang-Yu [56].

2.2 A generic paradifferential approach for the low Mach number limit of vortex sheets
2.2.1 Difficulty caused by free-surface motion

As stated in Section 1.4.4, when ε is suitably small, the incompressible limit can be established under the assumption ∇ϕ · v0 =

O(ε), ∂tv|t=0 = O(1) without any redundant restrictions on higher-order time derivatives. This is not difficult under the fixed-
domain setting, but for free-boundary problems, we need to use the energy defined in (1.40)-(1.43) and new essential difficulties
caused by the free-interface motion. For example, in the ∂3∂t-estimate (without ε-weight) that arises in E4(t), we have to control
integrals in the following form ∫

Ω±
(∂2∂∂tv±)(∂N)(∂2∂∂tq±) dx,

in which the simultaneous appearance of ∂2∂∂tv and ∂2∂∂tq causes a loss of ε-weight. The appearance of such loss of ε-weight
is actually necessary when T γv (γ0 < 〈γ〉) is assigned a different ε-weight from that of T γq, because the normal vector N
may not necessarily absorb a time derivative when T γ contains both ∂ and ∂t. Also, this difficulty is completely caused by
the free-interface motion because it is produced by introducing the Alinhac good unknowns which are not needed for the
fixed-domain problem [55]. It should be noted that for one-phase flow without surface tension, of which the pressure function
vanished on the free surface, this difficulty can be avoided by combining the elliptic estimates and the interior estimates of the
wave equation for the pressure. This was proven in the author’s previous work [62], but the proof heavily relies on q|Σ = 0.

2.2.2 Improved estimates for double limits: paralinearization of the free-interface motion

To control E4 and Ẽ4 in (1.42)-(1.43), we only need to re-consider the estimates of ‖vt‖3 and ‖bt‖3 because ∂k
t v and ∂k

t q share
the same weights of Mach number for k ≥ 2 (so its control is the same as in E4(t)). To avoid interior tangential estimates, we
apply the div-curl inequality (B.2) to vt, bt and reduce the control to their normal traces |vt · N|2.5 and |bt · N |2.5. In view of the
boundary conditions, we must seek for other ways to control |∂k

tψ|4.5−k for 0 ≤ k ≤ 2 and they must be σ-indepedent when
taking the double limits ε, σ→ 0.

We now consider the time-differentiated kinematic boundary condition, which together with the momentum equation gives

ρ±ψtt = −N · ∇ϕq± + (b̄±i b̄±j − ρ
±v̄±i v̄±j )∂i∂ jψ + · · ·

Motivated by Shatah-Zeng [46], we try to separate the boundary values of q± from the interior contribution of q±. Specifically,
q± satisfies a two-phase wave equation (we write F ±p = ε2 for convenience)

ε2(Dϕ±
t )2q± − ∆ϕq± = ε2(Dϕ±

t )2(
1
2
|b±|2) + (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in Ω±, ∂3q±|Σ± = 0,

�
q

�
|Σ = σH(ψ).

and we introduce the decomposition q± = q±ψ + q±w with

−∆ϕq±ψ = 0 in Ω±, q±ψ = q± on Σ, ∂3q±ψ = 0 on Σ±,

−∆ϕq±w = −ε2(Dϕ±
t )2(q± −

1
2
|b±|2) + (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in Ω±, q±w = 0 on Σ, ∂3q±w = 0 on Σ±.
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Under this setting, we can write −N · ∇ϕq± = ±N±ψ(q±|Σ) − N · ∇ϕq±w where N±ψ represents the Dirichlet-to-Neumann (DtN)
operators with respect to Ω± and ψ (defined in Section 5.2). The traces of q± on Σ can be resolved by inverting the DtN
operators, which then gives us the following evolution equation

(ρ+ + ρ−)∂2
t ψ =

σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) +

(
b̄+

i b̄+
j − ρ

+v̄+
i v̄+

j + b̄−i b̄−j − ρ
−v̄−i v̄−j

)
∂i∂ jψ

− N · ∇ϕq+
w − N · ∇ϕq−w + (N+

ψ − N
−
ψ)(N+

ψ + N−ψ)−1(
�
ρ

�
∂2

t ψ) + · · · (2.5)

Using the paralinearization results in Alazard-Burq-Zuily [2, 3] and Alazard-Métivier [4], the principal symbol of the major
term

(
N+
ψ + N−ψ

)
(H(ψ)) is negative and of the third order. Besides, the stability condition (1.29) ensures the ellipticity of the

second term on the right side. The contribution of qw is completely reduced to the source term of the wave equation thanks
to qw|Σ = 0. Thus, we can simultaneously obtain the estimates of |ψ|4.5, |

√
σψ|5 and |ψt |3.5 by taking a suitable 3.5-th order

paradifferential operator in (2.5) and we refer to Section 5.3 for details.
For the control of |ψtt |2.5, it suffices to take ∂t in (2.5) and take a suitable 2.5-th order paradifferential operator. However, the

underlined term in (2.5), after taking ∂t, contains third-order time derivative, whose H2.5(Σ) norm is bounded by |
�
ρ

�
|1.5|∂

3
t ψ|1.5.

In general, we have a loss of ε-weight, as the energy E(t) only gives ∂3
t ψ = O(ε−1). So, if we additionally require |

�
ρ

�
|1.5 =

O(ε), which can be fulfilled for isentropic flows according to Remark 1.3, this extra ε-weight could compensate the loss of
ε-weight arising in this term. Hence, under the extra assumption |

�
ρ

�
|1.5 = O(ε), we can control the accelaration of the free

interface uniformly in ε without assuming the boundedness of high-order time derivatives of v.

Remark 2.2. As we can see, the framework above is also applicable to compressible vortex sheets with surface tension
for Euler equations, not just MHD system itself. In fact, when b± = 0, the second term on the right side of (2.5) is controlled
by the energy contributed by surface tension. Since the vorticity analysis of Euler equations does not produce high-order terms.
Then the estimates of E4(t) + E5(t) (or Ẽ4(t) + Ẽ5(t) for the double limits) can be closed by applying the above framework. Do
note that E5(t) is necessary to close the uniform estimates because of the term ε2(Dϕ

t )2q. This part vanishes as ε→ 0.

Remark 2.3 (Comparison with the Syrovatskiı̆ condition for incompressible MHD). The original Syrovatskiı̆ stability condition
(cf. Syrovatskiı̆ [50] or Landau-Lifshitz-Pitaevskiı̆ [30, §71]) for ρ± = 1 is |h̄+ × ~w̄� |2 + |h̄− × ~w̄� |2 < 2|h̄+ × h̄−|2 on Σ, which
is less restrictive than the formal incompressible limit of (1.29) as ρ± → 1. We recall that, in the analysis of equation (2.5),
the compressibility introduces an extra term ε2(Dϕ

t )2 p in the source term of qw that should be controlled via interior estimates.
Since Ω+,Ω− are disconnected domains, it is reasonable to have restrictions for solutions in Ω+ and Ω− respectively. Besides,
the extra term ε2(Dϕ

t )2 p presents a loss of derivative in standard Sobolev spaces and again indicates that one should trade a
normal derivative for two tangential derivatives with ε2 weights.

The difference between the two stability conditions is related to the singular nature of incompressible limit. One can further
see such difference from the derivation of these stability conditions and we refer to Trakhinin [52] for details. Similar situation
also occurs in the case of 2D. That is, the formal incompressible limit of (1.37) is more restrictive than the stability condition
(cf. [7]) for 2D incompressible current-vortex sheets.

2.2.3 Comparison with one-phase problems

Finally, we briefly discuss the differences between one-phase problems and vortex-sheet problems. Without loss of generality,
we assume everything in Ω− is vanishing for one-phase problems and thus the term VS is vanishing and other major boundary
terms can be similarly analyzed under the Rayleigh-Taylor sign condition ∂3q+ ≥ c0 > 0. When considering the incompress-
ible limit without boundedness assumptions on high-order time derivatives, compressible vortex-sheet problems exhibit new
essential difficulty because the Dirichlet-type boundary condition q|Σ = σH becomes a jump condition

�
q

�
= σH . Thus, we

have to invert the DtN operators to resolve the traces of q± on Σ. Since the fluids are compressible, we cannot directly apply
(N±ψ)−1 to (1/ρ±)N±ψ(q±|Σ) as in the incompressible case [34, 31] because the product of a harmonic function of 1/ρ± is no longer
harmonic. Then the bad term (N+

ψ − N
−
ψ)(N+

ψ + N−ψ)−1(
�
ρ

�
∂2

t ψ) must appear on the right side of (2.5) which already contains
a second-order time derivative. Without the assumption

�
ρ

�
= O(ε) on Σ, which actually requires the fluids to be isentropic

and the density functions converge to the same constant, there exhibits a loss of ε-weight in the control of ψtt in general. That
is to say, under the assumption ∇ϕ0 · v0 = O(ε), the accelaration of the free interface may be still not uniformly bounded in ε
for compressible vortex sheets. Such loss of ε-weight never appears in the fixed-domain problems [1, 55], one-phase problems
[62, 36] or incompressible (current-)vortex sheets [48, 34, 31]. The above discussion also opens the possibility to study the
low Mach limit for one-phase free-surface compressible fluids (possibly with surface tension) under ill-prepared initial data
(div v0 = O(1), ∂tv|t=0 = O(1/ε), also called “fast singular limit” [45]), which has never been studies before, as neither extra
time derivatives nor loss of ε-weight in the interior estimates appear when using the method in Section 2.2.2.
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3 Reduction of normal derivatives
Compared with the analysis in [63], the control of Ẽ(t) only needs modifications in tangential estimates, as the VS term must be
controlled uniformly in σ. In this section, we record the reduction of normal derivatives that has been analyzed in [63] without
repeating the proof.

Div-Curl analysis and reduction of pressure

Using the div-curl decomposition (Lemma B.1), we have for 0 ≤ l ≤ 3, 0 ≤ k ≤ 3 − l, 〈α〉 = 2l, α3 = 0, we have∥∥∥ε2l∂k
tT

α(v±, b±)
∥∥∥2

4−k−l,± ≤ C
( ∥∥∥ε2l∂k

tT
α(v±, b±)

∥∥∥2
0,± +

∥∥∥ε2l∇ϕ · ∂k
tT

α(v±, b±)
∥∥∥2

3−k−l,±

+
∥∥∥ε2l∇ϕ × ∂k

tT
α(v±, b±)

∥∥∥2
3−k−l,± +

∥∥∥∥ε2l∂4−k−l∂k
tT

α(v±, b±)
∥∥∥∥2

0,±

)
(3.1)

with

C = C

 l∑
j=0

3+ j∑
k=0

|ε2 j∂
j
tψ|

2
4+l− j, |∇ψ|W1,∞

 > 0

a positive continuious function in its arguments. The conclusion for the div-curl analysis is

Proposition 3.1 ([63, Proposition 3.8]). Fix l ∈ {0, 1, 2, 3}. For any 0 ≤ k ≤ l − 1, any multi-index α satisfying 〈α〉 = 2l and
any constant δ ∈ (0, 1), we can prove the following uniform-in-(ε, σ) estimates for the curl part∥∥∥ε2l∇ϕ × ∂k

tT
αv±

∥∥∥2
3−k−l,± +

∥∥∥ε2l∇ϕ × ∂k
tT

αb±
∥∥∥2

3−k−l,±

. δE4+l(t) + P

 l∑
j=0

Ẽ4+ j(0)

 + P(E4(t))
∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 + E4+l+1(τ) dτ,
(3.2)

and for the divergence part ∥∥∥ε2l∇ϕ · ∂k
tT

αv±
∥∥∥2

3−k−l,± +
∥∥∥ε2l∇ϕ · ∂k

tT
αv±

∥∥∥2
3−k−l,±

. δE4+l(t) + P

 l∑
j=0

Ẽ4+ j(0)

 + P(E4(t))
∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ.
(3.3)

Remark 3.1. The above estimates are not uniform in σ in [63, Proposition 3.8] due to the lacking of stability condition.
With the help of stability condition (1.29), we can obtain the non-σ-weighted boundary regularity, namely the quantities in the
constant C in (3.1). This will be proved in Section 4.1.

Reduction of pressure and divergence

Let us start with l = 0. The spatial derivative of q is controlled by invoking the momentum equation:

−∂3q = (∂3ϕ)
(
ρDϕ

t v3 − (b · ∇ϕ)b3

)
; (3.4)

−∂iq = − (∂3ϕ)−1∂iϕ ∂3q + ρDϕ
t vi − (b · ∇ϕ)bi, i = 1, 2. (3.5)

Let T be ∂t or ∂ or ω(x3)∂3. Then we have

‖∂k
t ∂3q‖3−k . ‖∂

k
t (ρT v3)‖3−k + ‖∂k

t (bT b3)‖3−k (3.6)

‖∂k
t ∂iq‖3−k . ‖∂

k
t (∂iϕ∂3q)‖3−k + ‖∂k

t (ρT vi)‖3−k + ‖∂k
t (bT bi)‖3−k, (3.7)

in which the leading order terms are ‖∂k
tT (v, b)‖3−k and |∂k

tψ|4−k. This shows that we can convert the control of spatial derivative
of q to tangential estimates of v and b.
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Control of the entropy

The control of entropy is easy thanks to Dϕ±
t S ± = 0. We now record the result as below.

Proposition 3.2. For 0 ≤ l ≤ 4, 0 ≤ k ≤ 4 − l, multi-index γ satisfying 〈γ〉 = 4 + l and any δ ∈ (0, 1), we have

∥∥∥ε2l∂k
tT

γS ±
∥∥∥2

4−k−l,± . δẼ4+l(t) + P

 l∑
j=0

Ẽ4+ j(0)

 + Ẽ4(t)
∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ, (3.8)

4 Tangential estimates and the zero-surface-tension limit
In this section, we aim to prove the following uniform-in-(ε, σ) tangential estimates

Proposition 4.1 (Tangential estimates). For fixed l ∈ {0, 1, 2, 3, 4} and any δ ∈ (0, 1), the following uniform-in-(ε, σ) energy
inequalities hold:

∑
±

∑
〈α〉=2l

∑
0≤k≤4−l

k+α0<4+l

∥∥∥∥(ε2l∂4−k−lT α∂k
t (v±, b±, p±)

)∥∥∥∥2

0,±
+

3+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5−k−l dτ

. δẼ4+l(t) + P

 l∑
j=0

Ẽ4+ j(0)

 + P

 l∑
j=0

Ẽ4+ j(t)

 ∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ (4.1)

and ∑
±

4−l∑
k=0

∥∥∥∥(ε2l∂4+l
t (v±, b±, (Fp)

1
2 p±)

)∥∥∥∥2

4−k−l,±
+

∣∣∣√σε2l∂4+l
t ψ

∣∣∣2
1

. δẼ4+l(t) + P

 l∑
j=0

Ẽ4+ j(0)

 + P

 l∑
j=0

Ẽ4+ j(t)

 ∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ. (4.2)

Here the first inequality represents the case when there are at least one spatial tangential derivatives and the second inequality
represents the case of full time derivatives.

An analogue of Proposition 4.1 has been proven in [63, Proposition 3.3] without assuming the stability condition (1.29),
and thus the energy bounds in [63, Proposition 3.3] rely on σ−1. Now, we explain how to use the stability condition (1.29) to get
rid of the dependence on 1/σ in the estimates recorded in Section 3. Let us recall what quantities in tangential estimates of E(t)
depend on 1/σ in [63] without assuming the stability condition (1.29). Following the analysis in [63, Section 2.2, 3.3-3.5], we
can obtain the energy inequality for a given multi-index α satisfying 〈α〉 = 2l and for k, l ∈ N satisfying 0 ≤ k ≤ 4− l, 0 ≤ l ≤ 4.∑

±

∥∥∥∥(ε2l∂4−k−lT α∂k
t (v±, b±, (Fp)

1
2 p±)

)∥∥∥∥2

4−k−l,±
≤ δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))

∫ t

0
P(Ẽ(τ)) dτ

+

∫ t

0
ST + VS + RT +

∑
±

(ZB± + Z±) dτ. (4.3)

Here these major terms are defined by

ST := ε4l
∫

Σ

T γ(σH)∂tT
γψ dx′, RT := −ε4l

∫
Σ

�
∂3q

�
T γψT γ∂tψ dx′, (4.4)

VS := ε4l
∫

Σ

T γq−(~v̄� · ∇)T γψ dx′, (4.5)

ZB± := ∓ ε4l
∫

Σ

T γq±[T γ,Ni, v±i ] dx′, Z± := −ε4l
∫

Ω±
T γq±[T γ,Ni, ∂3v±i ] dVt. (4.6)

where T γ = ∂k
t ∂

4+l−k, 0 ≤ k ≤ 4 + l, 0 ≤ l ≤ 4 and dVt := ∂3ϕ dx. Do note that when α4 > 0, all boundary terms vanish and
Z± can be directly controlled, so we only need to analyze the case when α has the same for as γ. To get rid of the dependence
on 1/σ, the above quantities should be controlled in the following way:
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• The control of quantity ST does not depend on 1/σ;
• Quantity RT can be controlled if we have the estimates of |ε2l∂k

tψ|4.5+l−k (under time integral) for 0 ≤ k ≤ 4− l, 0 ≤ l ≤ 4;
• Quantity ZB± + Z± can be controlled if we have the estimates of |ε2l∂k

tψ|4+l−k (NOT under time integral) for 0 ≤ k ≤
4 − l, 0 ≤ l ≤ 4;
• Quantity VS must be completely eliminated.

Besides, the control of the commutators between ∇ϕ· (or ∇ϕ×) and ∂k
tT

α in the proof of Proposition 3.1 (Note that this commu-
tator appears without time integral!) also needs the estimates of |ε2l∂k

tψ|4+l−k.

4.1 Enhanced regularity of the interface: non-collinearity of magnetic fields
It is easy to see that merely invoking the kinematic boundary condition and using trace lemma does not solve any issues
mentioned above. In order to seek for σ-independent estimates for ψ and its time derivatives, we require the stability condition
(1.29) when the space dimension is 3, that is, for some δ0 ∈ (0, 1

8 ),

0 < δ0 ≤ a±
∣∣∣b̄∓ × ~v̄�∣∣∣ ≤ (1 − δ0)

∣∣∣b̄+ × b̄−
∣∣∣ on [0,T ] × Σ, (4.7)

where we view b̄± = (b±1 , b
±
2 , 0)>, ~v̄� = (~v1� , ~v2� , 0)> as vectors lying on the plane T2 × {x3 = 0} ⊂ R3 to define the exterior

product. The quantity a± is defined by

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2
and c±A := |b±|/

√
ρ± represents the Alfvén speed, c±s :=

√
∂p±/∂ρ± represents the sound speed. This condition implies the

following two important features:

1. Magnetics fields are not collinear on Σ, which allows us to gain 1/2-order regularity of the free interface.
2. Quantitative relation between b± and ~v̄� on Σ allows us to completely eliminate the problematic term VS.

We aim to prove uniform-in-(ε, σ) estimates for the energy functional Ẽ(t) for the compressible current-vortex sheet system
(1.17). Recall Ẽ(t) is defined by

Ẽ(t) :=
4∑

l=0

Ẽ4+l(t), Ẽ4+l(t) := E4+l(t) +

4+l∑
k=0

∣∣∣ε2l∂k
tψ

∣∣∣2
4.5+l−k , (4.8)

where term added to E4+l(t) is exactly the enhanced regularity for the free interface contributed by the non-collinearity stability
condition (4.7).

Recall that the magnetic fields satisfy the constraint b± · N = 0 on Σ, that is, b±3 = b±1∂1ψ + b±2∂2ψ. So, we can solve ∂ψ in
terms of b± without any derivatives thanks to b̄+ × b̄− , 0. However, due to the anisotropy of the function spaces, we have to
take derivatives on the constraint before we use trace lemma. We have the following estimates for the interface function ψ.

Lemma 4.2. For s ≥ 3, one has

|∂ψ|2
s− 1

2
≤ P(‖b±‖s−1,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )

(
‖∂3〈∂〉

s−2b±‖0,±‖〈∂〉sb±‖0,± + |∂ψ|2s−1 + ‖〈∂〉sb±‖20,±
)
. (4.9)

Here 〈∂〉 :=
√

1 − ∆, that is, 〈̂∂〉 f (ξ) =
√

1 + |ξ|2 f̂ (ξ) in T2.

Proof. Taking ∂s− 1
2 in the constraint b± · N = 0 for s ≥ 3, we get

 b+
1∂1〈∂〉

s− 1
2ψ + b+

2∂2〈∂〉
s− 1

2ψ = f +
b

b−1∂1〈∂〉
s− 1

2ψ + b−2∂2〈∂〉
s− 1

2ψ = f −b

b+∦b−
=====⇒


∂1〈∂〉

s− 1
2ψ =

−b+
2 f −b + b−2 f +

b

b+
1 b−2 − b−1 b+

2

∂2〈∂〉
s− 1

2ψ =
b+

1 f −b − b−1 f +
b

b+
1 b−2 − b−1 b+

2
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with f ±b := 〈∂〉
1
2 (〈∂〉s−1b± · N) + 〈∂〉

1
2 ([〈∂〉s−1, b±,N]) + [〈∂〉

1
2 , b±·]〈∂〉s−1N. The L2(Σ) norms of the last two terms in f ±b can be

directly controlled via Kato-Ponce type inequality (Lemma B.6)∣∣∣∣[〈∂〉s−1, b±,N]
∣∣∣∣ 1

2

. |b±|s− 3
2
|∂ψ|W1,∞ + |b±|W1,∞ |∂ψ|s− 3

2
. ‖∂3〈∂〉

s−2b±‖
1
2
0,±‖〈∂〉

s−1b±‖
1
2
0,±|∂ψ|W1,∞ + ‖b±‖3,±|∂ψ|s− 3

2∣∣∣∣[〈∂〉 1
2 , b±·]〈∂〉s−1N

∣∣∣∣
0
. |〈∂〉

1
2 b±|L∞ |∂ψ|s−1 . ‖b±‖2.5,±|∂ψ|s−1

Then the regularity of the free interface is given by b±

|∂ψ|s− 1
2
≤ P(|b̄±|L∞ )| f ±b |0 ≤ P(‖b±‖3,±, |∂ψ|W1,∞ )

(
‖b±‖

1
2
Hs
∗(Ω±)‖b

±‖
1
2

Hs−1
∗ (Ω±)

+ |∂ψ|s−1 +
∣∣∣∣〈∂〉 1

2

(
∂s−1b± · N

)∣∣∣∣
0

)
.

To control the boundary norm of 〈∂〉s−
1
2 b± · N, we again convert it to an interior integral and use the divergence constraint

0 = ∇ϕ · b± = ∇ · b̄± + ∂
ϕ
3b± · N in Ω±. Note that we may not directly use the trace lemma due to the anisotropy.∣∣∣∣〈∂〉 1

2

(
〈∂〉s−1b± · N

)∣∣∣∣2
0

= ∓ 2
∫

Ω±
〈∂〉

1
2 ∂3

(
〈∂〉s−1b± · N

)
〈∂〉

1
2

(
〈∂〉s−1b± · N

)
dx

〈∂〉
1
2

== ∓ 2
∫

Ω±
∂3

(
〈∂〉s−1b± · N

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

= ∓ 2
∫

Ω±
〈∂〉s−1(∂3b± · N) 〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

∓ 2
∫

Ω±

(
〈∂〉s−1b± · ∂3N −

[
〈∂〉s−1,N·

]
∂3b±

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

= ± 2
∫

Ω±
〈∂〉s−1

(
∂3ϕ(∇ · b̄±)

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

∓ 2
∫

Ω±

(
〈∂〉s−1b± · ∂3N −

[
〈∂〉s−1,N·

]
∂3b±

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

. P(|∂ψ|W1,∞ )
(
‖〈∂〉sb±‖0,± + ‖〈∂〉s−1b±‖0,± + ‖〈∂〉s−2∂3b±‖0,±

)
‖〈∂〉sb±‖0,±.

�

Lemma 4.2 shows that the Hs+ 1
2 (Σ) norm of the free interface ψ can be converted to lower-order terms and Hs

∗(Ω
±) norms of

b±. Thus, the “non-collinearity” of b+ and b− on Σ brings a gain of 1/2-order regularity for the interface. Given l ∈ {0, 1, 2, 3, 4},
the definition of Ẽ4+l(t) suggests that ε2l〈∂〉2lb± ∈ H4−l(Ω±). Thus, letting s = 4 + l in Lemma 4.2, we can get∣∣∣∣ε2l∂ψ

∣∣∣∣2
3.5+l
≤ P(‖b±‖3,±, |∂ψ|W1,∞ )

(
‖ε2lb±‖H4+l

∗ (Ω±)‖ε
2lb±‖H3+l

∗ (Ω±) + |ε2l∂ψ|23+l + ‖ε2lb±‖2H4+l
∗ (Ω±)

)
.

Similarly, we can show the enhanced regularity for time derivatives of ψ after replacing 〈∂〉s−
1
2 by 〈∂〉s−k− 1

2 ∂k
t

Lemma 4.3. For 3 ≤ s ∈ N∗ and 1 ≤ k ≤ s − 1, k ∈ N∗, one has

|∂∂k
tψ|

2
s−k− 1

2
≤ P

(
‖b±‖s−1,∗,±, |∇ψ|W1,∞

)( k−1∑
j=1

|∂
j
t ∂ψ|

2
s− j− 3

2
+ |∂s−k∂k

tψ|
2
0

+ ‖〈∂〉s−k∂k
t b±‖0,±‖∂3〈∂〉

s−k−2∂k
t b±‖0,± + ‖〈∂〉s−k∂k

t b±‖20,±
)
, (4.10)

where the number of time derivatives in ‖b±‖s,∗,± appearing on the right side does not exceed k. The term ∂3〈∂〉
s−k−2∂k

t b± does
not appear when s − k = 1.

In the study of Ẽ4+l(t) for 0 ≤ l ≤ 4, we have ε2l∂k
tT

αb ∈ L2(Ω±) for 0 ≤ k ≤ l, 〈α〉 = 2l, α3 = 0. It should also be noted
that there is no loss of Mach number in the estimates of ∂k

tψ because the number of time derivatives appearing on the right side
of (4.10) does not exceed that on the left side. Thus, the above estimates directly help us to control the quantities ST, RT and
Z± + ZB±.
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Apart from the term VS, we still need to control the commutators
∥∥∥ε2l[∂k

tT
α,∇ϕ·] f

∥∥∥2
3−k−l and

∥∥∥ε2l[∂k
tT

α,∇ϕ×] f
∥∥∥2

3−k−l for
f = v, b and 0 ≤ l ≤ 3, 1 ≤ k+l ≤ 3, 〈α〉 = 2l, α3 = 0, in which the highest order terms have the form ε2l(∂3ϕ)−1(∂∂k

tT
αϕ)(∂3 f )

whose estimate requires the bound for |ε2l∂∂k
tT

αψ|23−k−l. We can also assume α4 = 0 because ϕ has C∞-regularity in x3-direction.
Such terms appear without time integral, so we have control them by P(Ẽ(0)) + P(Ẽ(t))

∫ t
0 P(Ẽ(τ)) dτ.

Letting s = 3.5 + l in Lemma 4.2 for 0 ≤ l ≤ 4, using interpolation and Young’s inequality, we get

|∂ψ|23+l ≤ P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )
(
‖∂3〈∂〉

1.5+lb±‖0,±‖〈∂〉3.5+lb±‖0,± + |∂ψ|22.5+l + ‖〈∂〉3.5+lb±‖20,±
)

. P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )(
‖∂3〈∂〉

1+lb±‖
1
2
0,±‖∂3〈∂〉

2+lb±‖
1
2
0,±‖〈∂〉

3+lb±‖
1
2
0,±‖〈∂〉

4+lb±‖
1
2
0,± + |∂ψ|22.5+l + ‖〈∂〉3+lb±‖0,±‖〈∂〉4+lb±‖0,±

)
. δ

(
‖∂3〈∂〉

2+lb±‖20,± + ‖〈∂〉4+lb±‖20,±
)

+ P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ , δ−1)
(
‖〈∂〉3+lb±‖20,± + ‖〈∂〉3+lb±‖0,± + |∂ψ|22.5+l

)
. δ‖b±‖24+l,∗,± + P(‖b±0 ‖3+l,∗,±, |∂ψ0|2.5+l) +

∫ t

0
P

(
‖∂tb±(τ)‖3+l,∗,±, |∂t∂ψ(τ)|2.5+l

)
dτ.

Similarly, we can show that for 0 ≤ l ≤ 3, 1 ≤ k + l ≤ 3, 〈α〉 = α0 + α1 + α2 = 2l (α3 = α4 = 0)

∣∣∣∣∂∂k
tT

αψ
∣∣∣∣2
3−k−l

=
∣∣∣∣∂1+2l−α0∂k+α0

t ψ
∣∣∣∣2
3−k−l
. δ‖b±‖24+l,∗,± +

k∑
j=0

P
(
‖b±‖3+l,∗,±, |∂∂

j+α0
t ψ|2.5+l− j−α0

) ∣∣∣
t=0

+

∫ t

0
P

(
‖∂tb±(τ)‖3+l,∗,±, |∂∂

j+α0+1
t ψ(τ)|2.5+l− j−α0

)
dτ.

Since there is no loss of weights of Mach number when applying Lemma 4.2-Lemma 4.3 to the estimates of compressible
current-vortex sheet system (1.17), we can conclude the enhanced regularity, which is uniform in (ε, σ), of the free interface by
the following proposition.

Proposition 4.4. For l ∈ {0, 1, 2, 3, 4} and k ≤ 4 + l, k ∈ N, we have

1. When 0 ≤ k ≤ 3 + l:

∣∣∣∣ε2l∂∂k
tψ(t)

∣∣∣∣2
3.5+l−k

≤ P

(l−1)+∑
j=0

Ẽ4+ j(0)

 + P

(l−1)+∑
j=0

Ẽ4+ j(t)


∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ +
∥∥∥b±(t)

∥∥∥2
4+l,∗,±

 . (4.11)

2. When k = 4 + l:∣∣∣ε2l∂4+l
t ψ(t)

∣∣∣2
0.5 ≤ P(|∇ψ|W1,∞ )

(∥∥∥∥ε2l〈∂〉∂3+l
t v±

∥∥∥∥2

0,±
+

∥∥∥∥ε2l+2〈∂〉∂3+l
t Dϕ±

t p±
∥∥∥∥2

0,±

)
+ |v̄|L∞

∣∣∣∣ε2l∂∂3+l
t ψ(t)

∣∣∣∣
0.5

+ P

(l−1)+∑
j=0

Ẽ4+ j(0)

 +

∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ. (4.12)

Proof. When k ≤ 3 + l, the inequality (4.11) is a direct consequence of Lemma 4.2 and Lemma 4.3. Indeed, we just need to
write the ψ term to be P(Ẽ(0)) + P(Ẽ(t))

∫ t
0 P(Ẽ(τ)) dτ. This can be done by applying again 4.2 and Lemma 4.3 to the ψ term

appearing on the right side of (4.9) and (4.10) by replacing s = 4+ l−k with s = 3.5+ l−k. When k = 4+ l, we just differentiate
the kinematic boundary condition ∂tψ = v± · N to get

∂4+l
t ψ = ∂3+l

t v± · N + v̄± · ∇∂3+l
t ψ + [∂3+l

t , v±·,N],

where the second term contributes to the second term on the right side of (4.12) and the last term contributes to the second
line of (4.12). For ∂3+l

t v± · N, we again use Gauss-Green formula to covert its boundary norm to an interior integral and use
∂
ϕ
3v± · N = ∇ϕ · v± − ∇ · v̄± = −ε2Dϕ±

t p± − ∇ · v̄± to replace the normal derivative by tangential derivative. �
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4.2 Elimination of VS term: Friedrichs secondary symmetrization
The quantity ST produces the

√
σ-weighted boundary energy in Ẽ(t) as in the proof of [63, Prop. 3.3]. With the new energy

functional (4.8), remainder terms in ST, quantities RT and ZB± + Z± mentioned at the beginning of Section 4 are all controlled
by P(Ẽ(0)) + P(Ẽ(t))

∫ t
0 P(Ẽ(τ)) dτ thanks to Proposition 4.4. The terms that appear without time integral on the right side of

(4.11) and (4.12) can also be converted to the form P(Ẽ(0)) + P(Ẽ(t))
∫ t

0 P(Ẽ(τ)) dτ via div-curl analysis or tangential estimates.
In other words, we have reached the following energy inequality for Ẽ(t)

Ẽ(t) . δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ +

∫ t

0
VS dτ, (4.13)

so it remains to control or eliminate the term VS arising from the estimates of Ẽ(t), such that we can close the energy estimates
for Ẽ(t) and also get rid of the dependence on 1/σ.

4.2.1 Motivation for Friedrichs secondary symmetrization

The regularity for the free interface needed in the control of VS is higher than the one we obtain in Proposition 4.4. So, we
alternatively try to completely eliminate the term VS by utilizing the jump of tangential magnetic field. Recall that the term VS
is generated due to the discontinuity in tangential velocity

VS =

∫
Σ

T γq− (~v̄� · ∇)T γψ dx′,

in which we may try to insert a term
�
µb̄

�
into ~v̄� such that

�
v̄ − µ̄b̄

�
= 0 on Σ for some function µ̄±. Such functions µ̄± do

exist and are unique thanks to the non-collinearity b̄+ ∦ b̄− on Σ: ~v1� = µ̄+b+
1 − µ̄

−b−1
~v2� = µ̄+b+

2 − µ̄
−b−2

b+∦b−
=====⇒ µ̄± =

b∓1 ~v2� − b∓2 ~v1�

b+
1 b−2 − b−1 b+

2
=

(b̄∓ × ~v̄�)3

(b̄+ × b̄−)3
. (4.14)

Next, a natural question is how to produce such
�
µ̄b̄

�
-terms in the tangential estimates. Recall that the discontinuity term

(~v̄� · ∇)T γψ is produced by taking substraction bewteen the equations of T γv± · N which originates from 1
2

∫
Ω±
ρ±|T γv±|2 dVt

(see [63, (3.33)] for example). This suggests us to replace the variable v± by v± − µ̄±b± in the momentum equation in order to
create the elimination

�
v̄ − µ̄b̄

�
= 0. However, such replacement in the momentum equation will make the compressible ideal

MHD system (1.17) no longer symmetric, which will further lead to the failure of L2 energy conservation. Hence, we must
re-symmetrize the hyperbolic system after replacing v by v − µb for suitable function µ.

The technique we use is the so-called Friedrichs secondary symmetrization [20]. For compressible ideal MHD system, the
symmetrizer was explicitly calculated in Trakhinin [52]. Let µ(t, x) = µ̄(t, x′)η(x3) where η(x3) ∈ C∞c (R) is a smooth, non-
negative, even function satisfying η(0) = 1 and η(x3) = 0 when |x3| > δ1 for some sufficiently small constant δ1 > 0. Inserting
this η is to localise the function µ± near the interface Σ. The new system takes the form

ρDϕ
t v − (b · ∇ϕ)b + ∇ϕ(p + 1

2 |b|
2) − µρ

(
Dϕ

t b − (b · ∇ϕ)v + b(∇ϕ · v)
)

= 0,
FpDϕ

t p + ∇ϕ · v + µFp

(
ρDϕ

t v · b + b · ∇ϕp
)

= 0
Dϕ

t b − (b · ∇ϕ)v + b(∇ϕ · v) − µ
(
ρDϕ

t v − (b · ∇ϕ)b + ∇ϕ(p + 1
2 |b|

2)
)

= 0,
(4.15)

where these equations are obtained by doing the following linear transform on (1.17)

new momentum equation = momentum equation − µρ(evolution equation of b),
new continuity equation = continuity equation + µFp(momentum equation) · b,

new evolution equation of b = momentum equation − µ(momentum equation).

Note that in the second equation we use the fact that
(
∇ϕ(1/2|b|2) − (b · ∇ϕ)b

)
· b = (b × (∇ϕ × b)) · b = 0.
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4.2.2 Reformulations in Alinhac good unknowns

Given a tangential derivative T γ := (ω(x3)∂3)γ4∂
γ0
t ∂

γ1
1 ∂

γ2
2 with 〈γ〉 = γ0 + γ1 + γ2 + γ4., we need to re-consider the tangential

estimates in order to avoid the appearance of the term VS when γ4 = 0 (When γ4 , 0, no boundary term appears thanks to
ω(x3) = 0, so we can just mimic the proof in [63, Section 3.3-3.4]). We define the Alinhac good unknown of a given function
f with respect to T γ by Fγ := T γ f − T γϕ∂

ϕ
3 f . The good unknown F satisfies

T γ∇
ϕ
i f = ∇

ϕ
i Fγ + C

γ
i ( f ), T γDϕ

t f = Dϕ
t Fγ +Dγ( f ), (4.16)

where the commutators Cγi ( f ) and Dγ( f ) are defined by

C
γ
i ( f ) = (∂ϕ3∂

ϕ
i f )T γϕ +

[
T γ,

Ni

∂3ϕ
, ∂3 f

]
+ ∂3 f

[
T γ,Ni,

1
∂3ϕ

]
+ Ni∂3 f

[
T γ−γ′ ,

1
(∂3ϕ)2

]
T γ′∂3ϕ

+
Ni

∂3ϕ
[T γ, ∂3] f −

Ni

(∂3ϕ)2 ∂3 f [T γ, ∂3]ϕ, i = 1, 2, 3, (4.17)

and

D
γ( f ) = (Dϕ

t ∂
ϕ
3 f )T γϕ + [T γ, v̄] · ∂ f +

[
T γ,

1
∂3ϕ

(v · N − ∂tϕ), ∂3 f
]

+

[
T γ, v · N − ∂tϕ,

1
∂3ϕ

]
∂3 f

+
1
∂3ϕ

[T γ, v] · N∂3 f − (v · N − ∂tϕ)∂3 f
[
T γ−γ′ ,

1
(∂3ϕ)2

]
T γ′∂3ϕ

+
1
∂3ϕ

(v · N − ∂tϕ)[T γ, ∂3] f + (v · N − ∂tϕ)
∂3 f

(∂3ϕ)2 [T γ, ∂3]ϕ (4.18)

with 〈γ′〉 = 1. Here N := (−∂1ϕ,−∂2ϕ, 1)> is the extension of normal vector N in Ω±. The third term on the right side of
(4.17) is zero when i = 3 because N3 = 1 is a constant. One can follow [63, Section 3.3-3.5] to verify that the L2(Ω±) norms of
commutators Cγi ( f ) and Dγ( f ) can be controlled by P(Ẽ(t)) for f = v±i or q± by directly counting the number of derivatives.

Under the above setting and dropping the superscript γ for convenience, the T γ-differentiated current-vortex sheet system,
after doing Friedrichs secondary symmetrization, is reformulated in the corresponding Alinhac good unknowns (V±,B±,P±,Q±,S±)
as follows

ρ±Dϕ±
t V± − (b± · ∇ϕ)B± + ∇ϕQ± − µ±ρ±(Dϕ±

t B± − (b · ∇ϕ)V± + b±(∇ϕ · V±)) = R
±,µ
v − C(q±) + µ±ρ±b±Ci(v±i ), (4.19)

F ±p Dϕ±
t P± + ∇ϕ · V± + µ±F ±p (ρ±Dϕ±

t V± · b± + b± · ∇ϕP±) = R
±,µ
p − Ci(v±i ) − µ±F ±p b± · C(q±), (4.20)

Dϕ±
t B± − (b± · ∇ϕ)V± + b±(∇ϕ · V±) − µ(ρ±Dϕ±

t V± − (b± · ∇ϕ)B± + ∇ϕQ±) = R
±,µ
b − b±Ci(v±i ) + µ±C(q±) (4.21)

Dϕ±
t S± = D(S ±), (4.22)

where Rµv ,R
µ
p,R

µ
b terms consist of the following commutators

R
±,µ
v := R±v − µ

±ρ±R±b + [T γ, µ±ρ±]
(
Dϕ±

t b± − (b± · ∇ϕ)v± + b±(∇ϕ · v±)
)

(4.23)

R
±,µ
p := R±p + µ±F ±p b± · R±v − [T γ, µ±F ±p ]

(
ρ±Dϕ±

t v± · b± − (b± · ∇ϕ)p±
)

(4.24)

R
±,µ
b := R±b − µ

±ρ±R±v + [T γ, µ±]
(
Dϕ±

t v± − (b± · ∇ϕ)b± + ∇ϕq±
)
, (4.25)

with R±v ,R
±
b ,R

±
b defined by

R±v := [T γ, b±] · ∇ϕb± − [T γ, ρ±]Dϕ±
t v± − ρ±Dγ(v±), (4.26)

R±p := − [T γ,F ±p ]Dϕ±
t p± − F ±p D

γ(p±), (4.27)

R±b := [T γ, b±] · ∇ϕv± −Dγ(b±). (4.28)

The boundary conditions on the interface Σ are

~Q� = σT γH(ψ) −
�
∂3q

�
T γψ on [0,T ] × Σ, (4.29)

V± · N = ∂tT
γψ + v̄± · ∇T γψ −W±

v on [0,T ] × Σ, (4.30)

b± · N = 0⇒ B± · N = b̄± · ∇T γψ −W±
b on [0,T ] × Σ, (4.31)

20



and the boundary termWγ,± is

W±
f := (∂3 f ± · N)T γψ + [T γ,Ni, f ±i ], f = v, b. (4.32)

Note that the good unknowns V±,B±,Q±,P±,S± also satisfy the above system with mathematically setting µ± = 0 because
the secondary-symmetrized system above is obtained by doing a linear transform on the original system (1.17). Also note that
we only need to re-consider the T γ-estimates for γ4 = 0, we can rewrite T γ to be ∂k

t ∂
4+l−k for 0 ≤ k ≤ 4 + l and 0 ≤ l ≤ 4. In

this case, the second line in (4.17) and the third line in (4.18) are both zero because ∂k
t ∂

4+l−k commutes with ∂3.

4.2.3 Tangential estimates (I): Analysis in the interior

Recall that the term VS originates from the tangential estimates. After doing Friedrichs secondary symmtrisation, we shall
consider the tangential estimates for the following functional to establish the ε2lT γ-estimates (0 ≤ l ≤ 4, 〈γ〉 = 4 + l):

G±,µ(t) :=
ε4l

2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±) dVt (4.33)

instead of the following one used in [63, Section 3.3-3.5]

G±(t) :=
ε4l

2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 dVt.

Using Reynolds’s transport theorem (Theorem A.3), we have

d
dt

G±,µ(t) = ε4l
∫

Ω±
ρ±Dϕ±

t V± · (V± − µ±B± + ε4lµ±F ±p P±b±) dVt + ε4l
∫

Ω±
Dϕ±

t B± · (B± − µ±ρ±V±) dVt

+ ε4l
∫

Ω±
F ±p Dϕ±

t P±(P± + µ±ρ±b± · V±) dVt + ε4lR±,µ1

=: ε4l(G±,µ1 + G±,µ2 + G±,µ3 + R±,µ1 )

(4.34)

where

R±,µ1 :=
1
2

∫
Ω±

(∇ϕ · v±)
(
|B±|2 + (

√
F ±p P±)2

)
dVt +

∫
Ω±
µ±F ±p P±(Dϕ±

t (ρ±b±) · V±) dVt

−

∫
Ω±

Dϕ±
t µ

(
ρ±V± · B± + ρ±F ±p P±(b± · V±)

)
dVt. (4.35)

Invoking the evolution equations of good unknowns with all µ±-terms dropped, we get

G±,µ1 =

∫
Ω±

(b± · ∇ϕ)B± ·
(
V± − µ±B±

)
dVt −

∫
Ω±
∇ϕQ± ·

(
V± − µ±B±

)
dVt

+

∫
Ω±
F ±p µ

±(ρ±Dϕ±
t V± · b±)P± dVt −

∫
Ω±
C(q±) ·

(
V± − µ±B±

)
dVt +

∫
Ω±
R±v ·

(
V± − µ±B±

)
dVt

=: G±,µ11 + G±,µ12 + G±,µ13 + R±,µ2 + R±,µ3 . (4.36)

In G±,µ11 and G±,µ12 , we integrate by parts to get

G±,µ11 = −

∫
Ω±

B± · (b± · ∇ϕ)V± dVt −
1
2

∫
Ω±
∇ϕ · (µ±b±)|B±|2 dVt

=: G±,µ111 + R±,µ4 (4.37)

and use ∇ϕ · B± = −Ci(bi) to get

G±,µ12 = ±

∫
Σ

Q±(V± − µ±B±) · N dx′ +
∫

Ω±
Q±(∇ϕ · V±) dVt +

∫
Ω±
µ±Q± Ci(b±i ) dVt

=: G±,µ0 + G±,µ121 + G±,µ122. (4.38)
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In G±,µ13 , we notice that
(−(b± · ∇ϕ)B± + ∇ϕB±j b±j ) · b± = −b±j (∂ϕj B

±
i )b±i + (∂ϕi B±j )b±j b±i = 0,

so it becomes the following controllable quantities by using symmetry

G±,µ13 = −

∫
Ω±
F ±p µ

±ρ±((b± · ∇ϕ)P±) P± dVt +

∫
Ω±
F ±p µ

±(R±v − C(q±)) · b±P± dVt

= −
1
2

∫
Ω±
∇ϕ · (F ±p µ

±ρ±b±)(P±)2 dVt +

∫
Ω±
F ±p µ

±(R±v − C(q±)) · b±P± dVt =: R±,µ5 + R±,µ6 . (4.39)

Note that the terms G±,µ111 and G±,µ122 already appear in the previous analysis for (1.17) in [63, Section 3.3.1], so we no longer need
to put extra effort on it. Next we analyze G±,µ2 ∼ G±,µ3 . Invoking equations of P± and B± with all µ±-terms dropped, we get

G±,µ2 =

∫
Ω±

((b± · ∇ϕ)V±) · B± dVt︸                            ︷︷                            ︸
=−G±,µ111

−

∫
Ω±

b±(∇ϕ · V±) · B± dVt −

∫
Ω±

B± · b±Ci(vi) dVt

+

∫
Ω±
µ±ρ±V± · b±(∇ϕ · V±) dVt +

∫
Ω±
µ±ρ±V± · b±Ci(v±i ) dVt −

∫
Ω±
µ±ρ±(b± · ∇ϕ)V± · V± dVt

=: −G±,µ111 + G±,µ21 + G±,µ22 + G±,µ23 + R±,µ7 + R±,µ8 , (4.40)

and

G±,µ3 = −

∫
Ω±

(∇ϕ · V±)P± dVt −

∫
Ω±

P±Ci(v±i ) dVt −

∫
Ω±
ρ±µ±b±(∇ϕ · V±) · V± dVt︸                                     ︷︷                                     ︸

=−G±,µ23

+

∫
Ω±

P±R±p + µ±(R±p − Ci(v±i ))(ρ±b± · V±) dVt

=: G±,µ31 + G±,µ32 −G±,µ23 + R±,µ9 . (4.41)

Now we can see a lot of cancellation structures among these interior integrals. First, using

Q± = P± + b± · B± + R±q , R±q =
∑

1≤〈γ′〉≤〈γ〉−1

T γb±j · T
γ−γ′b±j ,

we have

G±,µ121 + G±,µ21 + G±,µ31 =

∫
Ω±

(∇ϕ · V±)R±q dVt =: R±,µ10 , (4.42)

G±,µ122 + G±,µ22 + G±,µ32 = −

∫
Ω±

Q±(Ci(vi) − µCi(bi)) dVt +

∫
Ω±
R±q (Ci(vi) − µCi(bi)) dVt

=: ε−4lZ±,µ + R±,µ11 . (4.43)

Here we add ε−4l to the first term just for the consistency of notations. The terms R±,µj (1 ≤ j ≤ 11) can be directly controlled
using the same method in [63, Section 3.3-3.4], so we omit the details.

ε4l
∫ t

0

11∑
j=1

R±,µj ≤ δP(Ẽ(t)) + P(Ẽ(0)) +

∫ t

0
P(Ẽ(τ)) dτ, ∀δ ∈ (0, 1). (4.44)

Thus, it again remains to analyze the boundary integral G±,µ0 and the commutator term Z±,µ.

4.2.4 Tangential estimates (II):Elimination of the term VS

The boundary integral G±,µ0 can be decomposed as follows

ε4l(G+,µ
0 + G−,µ0 ) =ε4l

∫
Σ

Q+(V+ − µ+B+) · N dx′ − ε4l
∫

Σ

Q−(V− − µ−B−) · N dx′

= STµ + STµ′ + VSµ + RTµ + RT±,µ + ZB±,µ (4.45)
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where

STµ := ε4l
∫

Σ

T γ �
q

�
∂tT

γψ dx′, (4.46)

STµ′ := ε4l
∫

Σ

T γ �
q

� (
(v̄+ − µ̄+b̄+) · ∇

)
T γψ dx′, (4.47)

VSµ := ε4l
∫

Σ

T γq−
(�

v̄ − µ̄b̄
�
· ∇

)
T γψ dx′, (4.48)

RTµ := − ε4l
∫

Σ

�
∂3q

�
T γψ∂tT

γψ dx′, (4.49)

RT±,µ := ∓ ε4l
∫

Σ

∂3q± T γψ
(
(v̄± − µ̄±b̄±) · ∇

)
T γψ dx′, (4.50)

ZB±,µ := ∓ ε4l
∫

Σ

Q±(W±
v − µ

±W±
b ) dx′ (4.51)

Among the terms (4.46)-(4.51), STµ, STµ′, RTµ, RT±,µ can be analyzed in the same way as in [63, Section 3.3-3.4], so
we omit the details. Also, the control of these terms do not depend on 1/σ thanks to the enhanced regularity of ψ obtained in
Section 4.1. With the unique choice of µ± in (4.14), the quantity v̄−µb̄ has NO jump across the interface Σ and so VSµ = 0.
Finally, there is a cancellation structure in ZB±,µ + Z±,µ which is similar to the one observed in step 4 of Section 3.3.1 and step
4 of Section 3.4.3 in [63]. It suffices to replace v± by v± − µ±b± and use ∇ϕ · b± = 0 in Ω± in order for the same result.

4.2.5 The stability condition ensures the hyperbolicity

So far, we can prove the following estimates for G±,µ(t) in tangential estimates:∑
±

ε4l

2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±) dVt +

σε4l

2

∫
Σ

|T γ∇ψ|2√
1 + |∇ψ|2

3 dx′

. δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ.

(4.52)

To replace the tangential estimates in [63, Section 3.3-3.4], we must guarantee the positive-definiteness of

|
√
ρ±V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±)

≥ |
√
ρ±V±|2 + |B±|2 + F ±p (P±)2 − 2

∣∣∣∣µ±√
ρ±

∣∣∣∣ ∣∣∣∣ √ρ±V±
∣∣∣∣ ∣∣∣B±∣∣∣ − 2

∣∣∣∣µ±√
ρ±

∣∣∣∣ c±A
c±s

∣∣∣∣∣ √F ±p P±
∣∣∣∣∣ ∣∣∣∣ √ρ±V±

∣∣∣∣
as a quadratic form of (

√
ρ±V±,B±,

√
F ±p P±) in Ω±, respectively. Here we use the fact that Fp = 1/(ρc2

s) and cA := |b|/
√
ρ.

This is equivalent to show that the following matrix only has strictly positive eigenvalues
1 −|µ±|

√
ρ± −|µ±|

√
ρ±

c±A
c±s

−|µ±|
√
ρ± 1 0

−|µ±|
√
ρ±

c±A
c±s

0 1

 ,
which is further converted to the following inequalities

(µ±)2ρ±
1 +

(
c±A
c±s

)2 < 1 in Ω± ⇒ |b̄+ × b̄−| > |b̄∓ × ~v̄� |

√√
ρ±

1 +

(
c±A
c±s

)2 on Σ.

Thus, we find that the stability condition (1.29), that is, for some δ0 ∈ (0, 1
8 ) there holds

(1 − δ0)|b̄+ × b̄−| ≥ |b̄∓ × ~v̄� |

√√
ρ±

1 +

(
c±A
c±s

)2 > 0 on Σ,
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exactly ensures the positive-definiteness of G±,µ(t). Plugging this into the energy inequality (4.53), we find that there exists
some constant δ0 ∈ (0, 1

8 ), such that the following estimate holds for the Alinhac good unknowns with respect to the tangential
derivative ε4lT γ (0 ≤ l ≤ 4, 〈γ〉 = 4 + l).

∑
±

δ0

2
ε4l

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 dVt +

σε4l

2

∫
Σ

|T γ∇ψ|2√
1 + |∇ψ|2

3 dx′

. δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ, ∀δ ∈ (0, δ0/100).

(4.53)

Finally, we just use the definition of Alinhac good unknowns to recover the ε2l-weighted T γ-tangential estimates as recorded
in Proposition 4.1 by following the argument in [63, Section 3.5].

4.3 Incompressible and zero-surface-tension-limits under the stability condition
Combining the tangential estimates (4.53), the enhanced regularity for ψ obtained in Section 4.1 and the div-curl analysis
recorded in Section 3, we conclude the uniform-in-(ε, σ) estimates of Ẽ(t) by

∀δ ∈ (0,
δ0

100
), Ẽ(t) . δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))

∫ t

0
P(Ẽ(τ)) dτ. (4.54)

Using Gronwall-type argument, we know there exists some T > 0 independent of (ε, σ) such that

sup
0≤t≤T

Ẽ(t) ≤ P(Ẽ(0)). (4.55)

With the uniform-in-(ε, σ) estimates, we can pass the limit ε, σ → 0+ to the incompressible current-vortex sheets problem
without surface tension under the non-collinearity condition. Given ε, σ > 0, let (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) be the solution
to (1.17) with initial data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) and let (ξ0,w±,0, h±,0,S±,0) be the solution to (1.34) with σ = 0 with
initial data (ξ0

0 ,w
±,0
0 , h±,00 ,S±,00 ). We assume

a. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 ) ∈ H9.5(Σ)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×H8
∗ (Ω

±) satisfies the compatibility conditions (1.18) up to 7-th
order, the stability condition (1.31) and |ψε,σ0 |∞ ≤ 1.

b. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 )→ (ξ0
0 ,w

±,0
0 , h±,00 ,S±,00 ) in H4.5(Σ) × H4(Ω±) × H4(Ω±) × H4(Ω±) as ε, σ→ 0.

c. The incompressible initial data satisfies the constraints ∇ξ0 · h±0 = 0 in Ω±, h± · N0|{t=0}×Σ = 0, the stability condition

2δ0 ≤

√
R±0

∣∣∣h̄∓0 × [w̄0]
∣∣∣ ≤ (1 − 2δ0)|h̄+

0 × h̄−0 | on Σ, (4.56)

where δ0 > 0 is the same constant as in (1.31).

Then, by the Aubin-Lions compactness lemma, it holds that

(ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ)→ (ξ0,w±,0, h±,0,S±,0), (4.57)

weakly-* in L∞([0,T ]; H4.5(Σ) × (H4(Ω±))3) and strongly in C([0,T ]; H4.5−δ
loc (Σ) × (H4−δ

loc (Ω±))3) after possibly passing to a
subsequence. Theorem 1.2 is proven.

4.4 Double limits in 2D: a subsonic zone
When the space dimension d = 2, the substantial part of the proof for well-posedness, uniform estimates and limit process
remains unchanged. In fact, we shall only re-consider the following aspects

• The curl operator now becomes ∇ϕ,⊥· := (−∂ϕ2 , ∂
ϕ
1)·, so we need to check the special structure given by Lorentz force in

the vorticity analysis. This has been analyzed in [63, Section 3.6.4].
• The interface is now a 1D curve instead of a 2D surface, thus it is impossible to have “non-parallel” magnetic fields b±

on Σ. The functions µ± are no longer uniquely determined by b±1 .

We prove the following lemma about the choice of Friedrichs symmetrizer.
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Lemma 4.5. There exist functions µ̄±(t, x1) satisfying�
v1 − µ̄b1

�
= 0 and |µ̄±| < 1/a± on [0,T ] × Σ, a± :=

√
ρ±

(
1 + (c±A/c

±
s )2

)
if and only if the following inequality holds

| ~v1� | <
|b+

1 |

a+
+
|b−1 |
a−

on [0,T ] × Σ. (4.58)

Under (4.58), the functions µ̄± are chosen to be

µ̄± = ±
sgn(b±1 ) a∓ ~v1�

a−|b+
1 | + a+|b−1 |

. (4.59)

Proof. First, we shall exclude the possibility for b±1 = 0 at some point (x1, 0) ∈ Σ because of ~v1� , 0 everywhere on Σ.
Case 1: One of the two magnetic fields is vanishing on Σ, e.g., we assume |b+

1 | > 0 = |b−1 | on Σ, then
�
v1 − µ̄b1

�
= 0

directly gives us µ̄+ = ~v1� /b+
1 and µ̄− can be any function satisfying the hyperbolicity constraint |µ̄−| < 1/a−. For simplicity,

we may choose µ̄− = 0. Solving the constraint |µ̄+| < 1/a+ gives us | ~v1� | < |b+
1 |/a

+ as a special case of (4.58). Similarly,
when |b−1 | > 0 = |b+

1 | on Σ, we can choose µ̄− = − ~v1� /b−1 and µ̄+ can be any function satisfying the hyperbolicity constraint
|µ̄+| < 1/a+ and we may choose µ̄+ = 0 for simplicity.

Remark 4.1. One can verify that if b0 = 0 on Σ, then b must be identically zero on Σ. In fact, restricting the equation of b onto
Σ and doing L2 estimate shows that d

dt |b
±|20 ≤ C|∂v|L∞ |b±|20. Using Gronwall’s inequality and b0|Σ = 0 yields the result.

Case 2: b±1 are not identically zero on Σ. In this case, we may assume |b±1 | > 0 on Σ as well. In fact, if b−1 vanishes at some
point (x1, 0) ∈ Σ, then we can follow the choice of µ̄± as in case 1 to determine the function µ̄± at this point. Note that the
functions µ̄+ = ~v1� /b+

1 , µ̄
− = 0 still satisfies (4.59), so they do not break the continuity and differentiability of (4.59) at the

points where one of b±1 vanishes. Thus, making the assumption |b±1 | > 0 on Σ is reasonable.
The “if” part is easy to prove. Indeed, when the stability condition (4.58) holds on Σ, we can set µ̄± as in (4.59). The direct

computation shows that such µ̄± satisfy
�
v1 − µ̄b1

�
= 0 on Σ and |µ̄±| < 1/a±. Let us prove the “only if” part. When |b±1 | > 0 on

Σ, we can write

µ̄+ =
~v1� + µ̄−b−1

b+
1

.

Using |µ̄+| < 1/a+, we can solve the inequality by

−
1
a+
−
~v1�

b+
1

<
b−1
b+

1
µ̄− <

1
a+
−
~v1�

b+
1
,

where µ̄− should also satisfy |µ̄−| < 1/a−. Assume b±1 < 0 for simplicity (that is, the horizontal directions of b± on Σ are the
same). Combining these two requirements, we find that the following inequality is necessary

| ~v1� | < −
b+

1

a+
−

b−1
a−

=
|b+

1 |

a+
+
|b−1 |
a−

. (4.60)

Similar calculation for the case b±1 > 0 and the case b+
1 b−1 < 0 also leads to the same inequality as above. �

5 Incompressible limit for vortex-sheet problems: A paradifferential approach
In this final section, we aim to drop the redundant assumptions on the well-prepared initial data, namely ∂k

t v|t=0 = O(1) for
2 ≤ k ≤ 4, when taking the incompressible limit. Compared with the energy E(t) that we use to prove the local existence
in [63], there is a new difficulty in the control of the “weaker” energy E(t): There exhibits a loss of weight of Mach number
in ∂3∂t-tangential estimates when analyzing E4(t). In particular, we have to control the following quantity in the cancellation
structure in Z± + ZB±, ∫

Ω

(∂2∂3∂tvi)(∂Ni)(∂2∂3∂tq) dx,

in which ∂tq has to be uniformly bounded with respect to Mach number. However, now we only have ∇ϕ · v = O(ε) and
∂tq = O(1/ε), which leads to a loss of ε-weight. Besides, similar difficulty also appears in the control of −

∫
Ω±

V± · C(q±) dVt.
Indeed, such loss of ε-weight necessarily happens in ∂3∂t-tangential estimates because of the following two reasons
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1. ∂3∂tq needs one more ε-weight than ∂3∂tv;
2. The (extension of) normal vector N, which arises from the commutator [∂3∂t,Ni/∂3ϕ, ∂3 f ] in Ci( f ), may NOT absorb a

time derivative.

As we can see, this type of difficulty never appears in the fixed-domain setting because the commutator terms in C( f ) are
contributed by the free-interface motion. Unless the fluid is one-phase and the surface tension is neglected [62], such essential
difficulty cannot be avoided as long as we apply the div-curl inequality (B.1) to vt, bt. To get rid of the loss of Mach number,
we have to find a new way to control vt, bt and also avoid the appearance of |

√
σ∇∂tψ|3 without ε-weight.

5.1 The weaker energy for the improved incompressible limit
As in (1.40)-(1.41), we consider the new energy functional

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t)

Ẽ(t) := Ẽ4(t) + Ẽ5(t) + Ẽ6(t) + Ẽ7(t) + Ẽ8(t)

where

E4(t) =
∑
±

∥∥∥(v±, b±, S ±, p±)
∥∥∥2

4,± +
∣∣∣√σψ∣∣∣25 +

∥∥∥∥∂t(v±, b±, S ±, (F ±p )
1
2 p±)

∥∥∥∥2

3,±
+

∣∣∣√σ∂tψ
∣∣∣2
4

+

4∑
k=2

∥∥∥∥ε∂k
t (v±, b±, S ±, (F ±p )

(k−3)+
2 p±)

∥∥∥∥2

4−k,±
+

∣∣∣√σε∂k
tψ

∣∣∣2
5−k (5.1)

and

Ẽ4(t) = E4(t) + |ψ|24.5 + |∂tψ|
2
3.5 +

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣ε∂3
t ψ

∣∣∣2
1.5 +

∣∣∣ε∂4
t ψ

∣∣∣2
0.5 . (5.2)

We aim to prove uniform-in-ε estimates for E(t) for each σ > 0 and prove uniform-in-(ε, σ) estimates for Ẽ(t) under the stability
condition (1.29) (replaced with (1.37) in the 2D case). Let us analyze the estimates for different k in E4(t) and Ẽ4(t).

The case k = 0

When k = 0, the reduction of v, b is the same as in Section 3. That is, we use the div-curl analysis to convert normal derivatives
to tangential derivatives

‖(v±, b±)‖24,± ≤ C(|ψ|4, |∇ψ|W1,∞ )
(
‖v±, b±‖20,± +

∥∥∥∇ϕ · v±,∇ϕ × (v±, b±)
∥∥∥2

3,± +
∥∥∥∥∂4(v±, b±)

∥∥∥∥2

0,±

)
, (5.3)∥∥∥∇ϕ · v±∥∥∥2

3,± .
∥∥∥F ±p Dϕ±

t p±
∥∥∥2

3,±
,

∥∥∥∇ϕ × (v±, b±)
∥∥∥2

3,± . δE4(t) +

∫ t

0
P(E4(τ)) + E5(τ) dτ, (5.4)

‖∇q‖23,± .
∥∥∥ρDϕ±

t v±
∥∥∥2

3,± +
∥∥∥(b± · ∇ϕ)b±

∥∥∥2
3,± . (5.5)

The ∂4-control is proved in almost the same way as in [63, Section 3.3] which gives the control of
∣∣∣∣√σ∇ψ∣∣∣∣2

4
. The only difference

is the treatment of RT because we need to avoid using
√
σ-weight enenrgy when taking the limit σ → 0. Using Kato-Ponce

type porduct estimate (B.6) in Lemma B.6, we have

RT =

∫
Σ

�
∂3q

�
∂4ψ∂4ψt ≤

∣∣∣∣�∂3q
�
∂4ψ

∣∣∣∣ 1
2

|ψt |3.5 ≤ ‖q±‖3,±|ψ|4.5|ψt |3.5. (5.6)

So, we need to find (ε, σ)-independent control of |ψ|24.5 and |∂tψ|
2
3.5.

The case k = 1

When k = 1, we cannot use the above div-curl inequality because we must avoid ∂3∂t-estimate. Instead, we use the div-curl
inequality (B.2) to get

‖(∂tv±, ∂tb±)‖23,± ≤ C(|ψ|3.5, |∇ψ|W1,∞ )
(
‖∂tv±, ∂tb±‖20,± +

∥∥∥∇ϕ · (∂tv±, ∂tb±),∇ϕ × (∂tv±, ∂tb±)
∥∥∥2

2,±

+
∣∣∣∂tv± · N, ∂tb± · N

∣∣∣2
2.5

)
. (5.7)
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The divergence part and the curl part are controlled in the same way as [63, Section 3.6.1], so we do not repeat the analysis
here. The boundary normal trace for bt is easy to control. Using b± · N = 0, we have bt · N = b̄ · ∇ψt and thus∣∣∣∂tb± · N

∣∣∣2
2.5 =

∣∣∣∣b̄± · ∇ψt

∣∣∣∣2
2.5
. ‖b±‖23,±|ψt |

2
3.5. (5.8)

For the normal trace |∂tv± · N |
2
2.5, we invoke the kinematic boundary condition ∂tψ = v± · N to get∣∣∣∂tv± · N

∣∣∣2
2.5 ≤

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣∣v̄± · ∇ψt

∣∣∣∣2
2.5
.

∣∣∣∂2
t ψ

∣∣∣2
2.5 + ‖v±‖23,±|ψt |

2
3.5. (5.9)

Since we avoid ∂3∂t-tangential estimates, we must seek for another way to find ε-independent estimates for
∣∣∣∂2

t ψ
∣∣∣2
2.5 and∣∣∣√σ∂tψ

∣∣∣2
4. Also, under the stability condition (1.29), we need to find (ε, σ)-independent control of |ψ|24.5 , |∂tψ|

2
3.5 ,

∣∣∣∂2
t ψ

∣∣∣2
2.5

and
∣∣∣√σ∂tψ

∣∣∣2
4.

The case 2 ≤ k ≤ 4

When k = 2, 3, 4, the reduction stays the same as in [63, Section 3.3-3.5] (for the incompressible limit for fixed σ > 0) or the
analysis in Section 4.2. The reason is that ∂k

t q share the same weight of Mach number as ∂k
t v which helps us avoid the loss of

ε-weight in C(q).

5.2 The evolution equation of the free interface and its paralinearization

To prove the uniform-in-ε estimates for E(t) and the uniform-in-(ε, σ) estimates for Ẽ(t) under the stability condition (1.29), it
remains to prove the ε-indenpedent control of |ψ|4.5, |ψt |3.5, |ψtt |2.5 and |

√
σψt |4 by P(E(0)) + P(E(t))

∫ t
0 P(E(τ)) dτ and (ε, σ)-

indenpedent control of them by P(Ẽ(0)) + P(Ẽ(t))
∫ t

0 P(Ẽ(τ)) dτ. Since we already avoid ∂3∂t-tangential estimates, we shall
further analyze the evolution equation of the free interface.

5.2.1 Derivation of the equation

We take ∂t in the kinematic boundary condition to get ∂2
t ψ = ∂tv± · N − v̄± · ∇∂tψ. Plugging the momentum equation of (1.17)

into the term ∂tv± · N, we get

∂tv± · N = −
1
ρ±

N · ∇ϕq± − (v̄± · ∇)v± · N +
1
ρ±

(b̄± · ∇)b± · N on Σ.

Using ∂tψ = v± · N and b± · N = 0 on Σ, we have

−(v̄± · ∇)v± · N = − (v̄± · ∇)∂tψ + v± · (v̄± · ∇)N = −v̄±j ∂ j∂tψ − v̄±i v̄±j ∂i∂ jψ,

(b̄± · ∇)b± · N = b̄±i b̄±j ∂i∂ jψ,

and thus

∂2
t ψ = −

1
ρ±

N · ∇ϕq± +

(
1
ρ±

b̄±i b̄±j − v̄±i v̄±j

)
∂i∂ jψ − 2(v̄± · ∇)∂tψ. (5.10)

Next we want to separate the boundary value of q± from its interior contribution in order to create an energy term involving
the surface tension. First, taking ∇ϕ· in the momentum equation and invoking the continuity equation in (1.17), we derive a
wave-type equation

F ±p (Dϕ±
t )2 p± − ∆ϕq± = (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ),

which can be written as a wave equation of q± thanks to q± = p± + 1
2 |b
±|2

F ±p (Dϕ±
t )2q± − ∆ϕq± = ε2(Dϕ±

t )2
(

1
2
|b±|2

)
+ (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in [0,T ] ×Ω±, (5.11)

with a jump condition
�
q

�
= σH(ψ) on Σ and a Neumann-type boundary condition ∂3q± = 0 on Σ± (got by restricting the

momentum equations on Σ±), where we omit the terms in which Dϕ±
t falls on F ±p .
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Definition 5.1 (Dirichlet-to-Neumann operator). For a function f : Σ → R, we now define the Dirichlet-to-Neumann
operator with respect to (ψ,Ω±) by

N
±
ψ f := ∓N · ∇ϕ(E±ψ f ), (5.12)

where E±ψ f is defined to be the harmonic extension of f into Ω±, namely

− ∆ϕ(E±ψ f ) = 0 in Ω±, E±ψ f = f on Σ, ∂3(E±ψ f ) = 0 on Σ±. (5.13)

Thus, we can define a decomposition q± = q±ψ + q±w satisfying

q±ψ := E±ψ(q±|Σ) in Ω± (5.14)

and

− ∆ϕq±w = −F ±p (Dϕ±
t )2q± + F ±p (Dϕ±

t )2
(

1
2
|b±|2

)
+ (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in Ω± (5.15)

with boundary conditions q±w = 0 on Σ and N · ∇ϕq±w = ∂3q±w = 0 on Σ±. The second boundary conditions holds thanks to the
slip condition for v±3 , b

±
3 on Σ±. Thus, the evolution equation of ψ can be written as

ρ±∂2
t ψ = ± N±ψ(q±|Σ) − N · ∇ϕq±w +

(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ. (5.16)

We now want to resolve q±|Σ in terms of ρ± and F±ψ by inverting the Dirichlet-to-Neumann operatorsN±ψ. However, we no longer
have

∫
Σ
ρ∂tψ dx′ =

∫
Σ
ρ∂2

t ψ dx′ = 0 due to the compressibility of fluids. Thus, we have to eliminate the zero-frequency part in
ρ±∂2

t ψ before inverting the Dirichlet-to-Neumann operators. In other words, we cannot directly apply (N±ψ)−1 to (1/ρ)N±ψ(q±|Σ).
For a function f : Σ = T2 → R, we define the Littlewood-Paley projection

P,0 f := f − ( f )Σ, ( f )Σ :=
∫
T2

f dx′.

Under this setting, we have
ρ±∂2

t ψ = P,0(ρ±∂2
t ψ) + (ρ±∂2

t ψ)Σ (5.17)

and we insert it back to the evolution equation to get

P,0(ρ±∂2
t ψ) = ± N±ψ(q±|Σ) − (ρ±∂2

t ψ)Σ − N · ∇ϕq±w +
(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ (5.18)

= : ±N±ψ(q±|Σ) + F±ψ . (5.19)

Note that the zero-frequency modes of both P,0(ρ±∂2
t ψ) and ±N±ψ(q±|Σ) are vanishing on the interface Σ, so we deduce that∫

Σ
F±ψ = 0 and then (N±ψ)−1(F±ψ) is well-defined. Now we can resolve the traces q±|Σ from the evolution equations of ψ. We have

N
+
ψ(q+|Σ) + N−ψ(q−|Σ) = P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

⇒∓ N∓ψ(
�
q

�
|Σ) +

(
N

+
ψ + N−ψ

)
(q±|Σ) = P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

⇒ q±|Σ = Ñ−1
(
±N∓ψ(σH(ψ)) + P,0(

�
ρ

�
∂2

t ψ) −
�

Fψ

�)
, (5.20)

where Ñ := N+
ψ + N−ψ (and equivalently we have N±ψ = 1

2 (Ñ ± (N+
ψ − N

−
ψ)) represents the mixed Dirichlet-to-Neumann operator

and
�

Fψ

�
:= F+

ψ − F−ψ .
Plugging (5.20) back into the evolution equation of the free interface, we get

P,0(ρ+∂2
t ψ) = N+

ψ(q+|Σ) + F+
ψ = N+

ψÑ
−1

(
N
−
ψ(σH(ψ)) + P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

)
+ F+

ψ

= σN+
ψÑ
−1
N
−
ψ(H(ψ)) + N+

ψÑ
−1F−ψ − N

+
ψÑ
−1F+

ψ + F+
ψ + N+

ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)

= σN+
ψÑ
−1
N
−
ψ(H(ψ)) + N−ψÑ

−1F+
ψ + N+

ψÑ
−1F−ψ + N+

ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (5.21)

Similarly, we have

P,0(ρ−∂2
t ψ) = σN−ψÑ

−1
N

+
ψ(H(ψ)) + N−ψÑ

−1F+
ψ + N+

ψÑ
−1F−ψ − N

−
ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (5.22)
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Now, using the expressions of N±ψ in terms of Ñ and N+
ψ − N

−
ψ, we have

N
+
ψÑ
−1
N
−
ψ f =

1
2
N

+
ψÑ
−1(Ñ f + (N+

ψ − N
−
ψ) f ) =

1
2
N

+
ψ f +

1
2
N

+
ψÑ
−1(N+

ψ − N
−
ψ) f , (5.23)

N
−
ψÑ
−1
N

+
ψ f =

1
2
N
−
ψÑ
−1(Ñ f − (N+

ψ − N
−
ψ) f ) =

1
2
N
−
ψ f −

1
2
N
−
ψÑ
−1(N+

ψ − N
−
ψ) f , (5.24)

and also for g± : Σ→ R with
∫

Σ
g± dx′ = 0, we have

N
−
ψÑ
−1g+ + N+

ψÑ
−1g− =

1
2

(Ñ − (N+
ψ − N

−
ψ))Ñ−1g+ +

1
2

(Ñ + (N+
ψ − N

−
ψ))Ñ−1g−

=
g+ + g−

2
−

1
2

(N+
ψ − N

−
ψ)Ñ−1 �

g
�
. (5.25)

Let f = H(ψ) and g± = F±ψ in (5.23)-(5.25). We find that (5.21) + (5.22) can be written as

P,0(ρ+∂2
t ψ) + P,0(ρ−∂2

t ψ) =
σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) + F+

ψ + F−ψ

+
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ))

− (N+
ψ − N

−
ψ)Ñ−1(F+

ψ − F−ψ) + (N+
ψ − N

−
ψ)Ñ−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (5.26)

Recall that F±ψ = F±ψ − (ρ±∂2
t ψ)Σ and ρ±∂2

t ψ = P,0(ρ±∂2
t ψ) + (ρ±∂2

t ψ)Σ where

F
±
ψ := −N · ∇ϕq±w +

(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ.

Thus, the evolution equation of the free interface becomes

(ρ+ + ρ−)∂2
t ψ =

σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) +

(
b̄+

i b̄+
j − ρ

+v̄+
i v̄+

j + b̄−i b̄−j − ρ
−v̄−i v̄−j

)
∂i∂ jψ − 2(ρ+v̄+

i + ρ−v̄−i )∂i∂tψ

− N · ∇ϕq+
w − N · ∇ϕq−w

+
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
, (5.27)

where the first line is expected to give the
√
σ-weighted regularity (contributed by surface tension) and the non-weighted

regularity (provided that stability condition (1.29)) for the free interface, the second line will be converted to the interior
estimate of the right side of (5.15), and the last line consists of remainder terms that can be directly controlled by using
paradifferential calculus.

5.2.2 Preliminaries on paradifferential calculus

In the equation (5.27), the term
(
N+
ψ + N−ψ

)
(H(ψ)) is a fully nonlinear term. Although it is well-known that the Dirichlet-to-

Neumann operator is a first-order elliptic operator and the mean-curvature operator is a second-order elliptic operator, it is still
necessary for us to find out their concrete forms and “symmetrize” the paradifferential formulations in order for an explicit
energy estimate. In the remaining part of this paper, we will introduce several preliminary lemmas about paradifferential
calculus that have been proven in Alazard-Burq-Zuily [2]. Following the notations in Métivier [38], we first introduce the basic
definition of a paradifferential operator. Note that the dimension d below is not the same as the one in Section 1.

Definition 5.2 (Symbols). Given r ≥ 0, m ∈ R, we denote Γm
r (Td) to be the space of locally bounded functions a(x′, ξ) on

Td × (Rd\{0}), which are C∞ with respect to ξ(ξ , 0), such that for any α ∈ Nd, ξ , 0, the function x′ 7→ ∂αξ a(x′, ξ) belongs to
Wr,∞(Td) and there exists a constant Cα such that∣∣∣∂αξ a(·, ξ)

∣∣∣
Wr,∞(Td)

≤ Cα(1 + |ξ|)m−|α|, ∀|ξ| ≥ 1/2.

Definition 5.3 (Paradifferential operator). Given a symbol a, we shall define the paradifferential operator Ta by

T̂au(ξ) := (2π)−d
∫
Rd
χ̃(ξ − η, η)â(ξ − η, η)φ(η)û(η) dη (5.28)
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where â(θ, ξ) =
∫
Td exp(−ix′ · θ)a(x′, ξ) dx′ is the Fourier transform of a in variable x′. Here χ̃ and φ are two given cut-off

functions such that
φ(η) = 0 for |η| ≤ 1, φ(η) = 1 for |η| ≥ 2,

and χ̃(θ, η) is homogeneous of degree 0 and satisfies that for 0 < ε1 < ε2 � 1, χ̃(θ, η) = 1 if |θ| ≤ ε1|η| and χ̃(θ, η) = 0 if
|θ| ≥ ε2|η|. We also introduce the semi-norm

Ma
r (a) := sup

|α|≤ d
2 +1+r

sup
|ξ|≥1/2

∣∣∣(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∣∣∣
Wr,∞(Td)

. (5.29)

For m ∈ R, we say T is of order m if for all s ∈ R, T is bounded from Hs to Hs−m.

Proposition 5.1. Let m ∈ R. If a ∈ Γm
0 (Td), then Ta is of order m. Moreover, for any s ∈ R, there exists a constant K such that

‖Ta‖Hs→Hs−m ≤ KMm
0 (a).

Proposition 5.2 (Composition, [2, Theorem 3.7]). Let m ∈ R and r > 0. If a ∈ Γm
r (Td), b ∈ Γm′

r (Td), then TaTb − Ta#b is of
order m + m′ − r where

a#b :=
∑
|α|<r

1
i|α|α!

∂αξ a∂αx′b.

Moreover, for all s ∈ R, there exists a constant K such that

‖TaTb − Ta#b‖Hs→Hs−m−m′+r ≤ KMm
r (a)Mm′

r (b). (5.30)

Proposition 5.3 (Adjoint, [2, Theorem 3.10]). Let m ∈ R, r > 0 and a ∈ Γm
r (Td). We denote by (Ta)∗ the adjoint operator of

Ta. Then (Ta)∗ − Ta∗ is of order m − r where

a∗ :=
∑
|α|<r

1
iαα!

∂αξ ∂
α
x′ ā.

Moreover, for any s ∈ R, there exists a constant K such that ‖(Ta)∗ − Ta∗‖Hs→Hs−m+r ≤ KMm
r (a).

The symbolic calculus adopted in this paper is not of C∞-regularity. We shall introduce the following class of symbols.
Here and thereafter in this section, ψ ∈ C([0,T ]; Hs+ 1

2 (Td)) is a given function with s > 2 + d
2 .

Definition 5.4. Given m ∈ R, we denote Σm to be the class of symbols a of the form a = a(m) + a(m−1) with

a(m)(t, x′, ξ) = F(∇x′ψ(t, x′), ξ), a(m−1)(t, x′, ξ) =
∑
|α|2

Gα(∇x′ψ(t, x′), ξ)∂αx′ψ(t, x′)

such that

i. Ta maps real-valued functions to real-valued functions;
ii. F is a C∞ real-valued functions of (ζ, ξ) ∈ Rd × (Rd\{0}), homogeneous of degree m in ξ, such that there exists a

continuous function K = K(ζ) > 0 such that F(ζ, ξ) ≥ K(ζ)|ξ|m for all (ζ, ξ) ∈ Rd × (Rd\{0});
iii. Gα is a C∞ complex-valued function of (ζ, ξ) ∈ Rd × (Rd\{0}), homogeneous of degree m − 1 in ξ.

Definition 5.5 (“Equivalence” of operators). Given m ∈ R and consider two families of operators of order m: {A(t) : t ∈ [0,T ]}
and {B(t) : t ∈ [0,T ]}, We say A ∼ B if A−B is of order m−1.5 and satisfies the estimate: for all r ∈ R there exists a continuous
function C(·) such that

∀t ∈ [0,T ], ‖A(t) − B(t)‖Hr→Hr−(m−1.5) ≤ C(|ψ(t)|s+ 1
2
).

From now on, we use the notation | · |s1→s2 to represent the operator norm ‖ · ‖Hs1→Hs2 , and use the notation | · |s to represent
‖ · ‖Hs(Td), as we only apply paradifferential calculus on the free interface Σ. With this definition, we have

Proposition 5.4 ([2, Prop. 4.3]). Let m,m′ ∈ R. Then

1. If a ∈ Σm, b ∈ Σm′ , then TaTb ∼ Ta#b where a#b is given by

a#b = a(m)b(m′) + a(m−1)b(m′) + a(m)b(m′−1) +
1
i
∂ξa(m) · ∂x′b(m′).
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2. If a ∈ Σm, then (Ta)∗ ∼ Tb where b ∈ Σm is given by

b = a(m) + a(m−1) +
1
i

(∂x′ · ∂ξ)a(m).

As a corollary, we have

Corollary 5.5 ([2, Prop. 4.3(2)]). If a ∈ Σm satisfies Im a(m−1) = −0.5(∂ξ · ∂x′ )a(m), then (Ta)∗ ∼ Ta.

The next proposition is significant for the estimate of Sobolev norms via paradifferential calculus.

Proposition 5.6 ([2, Prop. 4.4 and 4.6]). Let m ∈ R, r ∈ R. Then for all symbol a ∈ Σm and t ∈ [0,T ], the following estimate
holds.

|Ta(t)u|r−m ≤ C(|ψ(t)|s−1)|u|r, (5.31)
|u|r+m ≤ C(|ψ(t)|s−1)

(
|Ta(t)u|r + |u|0

)
. (5.32)

5.2.3 Paralinearization of the nonlinear terms

Now we can start to paralinearize the term
(
N+
ψ + N−ψ

)
(H(ψ)) in (5.27).

Lemma 5.7 (Paralinearization of the Dirichlet-to-Neumann operator, [4, Section 4.4]). For f , ψ ∈ Hs+ 1
2 (Td), we have

N
±
ψ f = TΛ±ψ + R±Λ,1(ψ, f ) + R±Λ,2(ψ, f ), (5.33)

with the symbols λ± = λ(1),± + λ(0),± give by

Λ(1),± =

√
(1 + |∇ψ|2)|ξ|2 − (∇ψ · ξ)2, (5.34)

Λ(0),− = −Λ(0),+ =
1 + |∇ψ|2|

2Λ(1),−

(
∇ · (α(1)∇ψ) + i∂ξΛ(1),− · ∇α(1)

)
, (5.35)

and α(1) := (Λ(1),− + i∇ψ · ξ)/(1 + |∇ψ|2). The remainder terms satisfy the following estimates

|R±Λ,1(ψ, f )|s− 1
2
≤ C(|ψ|C2 , | f |3)| f |s+ 1

2
, |R±Λ,2(ψ, f )|s− 1

2
≤ C(|ψ|s− 1

2
)|∂ f |s−2. (5.36)

Lemma 5.8 (Paralinearization of the mean curvature operator, [2, Lemma 3.25]). There holds H(ψ) = −TH f + RH where
H = H(2) + H(1) is defined by

H
(2) =

1√
1 + |∇ψ|2

|ξ|2 − (∇ψ · ξ)2

1 + |∇ψ|2

 , (5.37)

H
(1) = −

i
2

(∇x′ · ∂ξ)H(2), (5.38)

and the remainder term RH satisfies

|RH|2s−3 ≤ C(|ψ|s+ 1
2
). (5.39)

With the paralinearization of operators N±ψ andH(ψ), the term
(
N+
ψ + N−ψ

)
(H(ψ)) in (5.27) becomes

σ
(
N

+
ψ + N−ψ

)
(H(ψ)) = −σTΛTHψ + σRσψ , (5.40)

where −Λ(0),+ = Λ(0),− shows that Re (Λ(0),+) + Re (Λ(0),−) = 0, Im (Λ(0),+) = Im (Λ(0),+) and thus

Λ := (Λ(1),+ + Λ(1),−)︸             ︷︷             ︸
=:Λ(1)

+ (Λ(0),+ + Λ(0),−)︸             ︷︷             ︸
=:Λ(0)

= 2Λ(1),− + 2iIm (Λ(0),−) (5.41)

Rσψ :=
∑
±

TΛ±RH + R±Λ,1(ψ,H(ψ)) + R±Λ,2(ψ,H(ψ)) and |Rσψ |s− 1
2
≤ C(|ψ|s+ 1

2
)|ψ|s+1. (5.42)

In order for an explicit energy estimate for ψ and ψt, we shall symmetrize the 3-rd order paradifferential operator TΛTH.
That is, find suitable symbols m ∈ Σ1.5 and n ∈ Σ0 such that TnTΛTH ∼ TmTmTn and Tm ∼ (Tm)∗.
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Proposition 5.9 (Symmetrisation of the composition). Let n ∈ Σ0 and m ∈ Σ1.5 be defined by

n :=
1

3√2
4
√

1 + |∇ψ|2
= 2−

1
3 |N |−

1
2 , (5.43)

m :=
√
H(2)Λ(1)︸      ︷︷      ︸
=:m(1.5)

+
1
2i

(∂ξ · ∂x′ )
√
H(2)Λ(1)︸                     ︷︷                     ︸

=:m(0.5)

. (5.44)

Then TnTλTH ∼ TmTmTn and Tm ∼ (Tm)∗ are both fulfilled.

Proof. Given the symbol Λ and H, we shall find suitable symbols n ∈ Σ0,m ∈ Σ1.5 such that n(x′, ξ) is independent of ξ and
n#(Λ#H) = (m#m)#n, i.e.,

n
(0)(Λ#H) + n(−1)Λ(1)

H
(2) +

1
i
∂ξn

(0) · ∂x′ (Λ(1)
H

(2))

= (m#m)n(0) + (m(1.5))2
n

(−1) +
1
i
∂ξ((m(1.5))2) · ∂x′n

(0).

Recall that

(Λ#H) = Λ(1)
H

(2) + Λ(0)
H

(2) + Λ(1)
H

(1) +
1
i
∂ξH

(2) · ∂x′Λ
(1),

(m#m) = (m(1.5))2 + 2(m(1.5))(m(0.5)) +
1
i
∂ξ(m(1.5)) · ∂x′ (m(1.5)).

We choose the principal symbol m(1.5) :=
√

Λ(1)H(2) in order for cancelling the leading-order symbols. Since we require
(Tm)∗ ∼ Tm∗ , we must have Im (m(0.5)) = −0.5(∂x′ · ∂ξ)m(1.5) (cf. [2, Prop. 4.3]). With this choice for m, it remains to solve the
symbolic equation

n
(0)(Λ#H −m#m) =

1
i
∂ξ((Λ(1)

H
(2)) · ∂x′n

(0) −
1
i
∂x′ (Λ(1)

H
(2)) · ∂ξn(0), (5.45)

with

Λ#H −m#m = Λ(0)
H

(2) + Λ(1)
H

(1) − 2(m(1.5))(m(0.5)) +
1
i
∂ξH

(2) · ∂x′Λ
(1) −

1
i
∂ξ(m(1.5)) · ∂x′ (m(1.5)).

The sub-principle n(−1) does not appear, so we can choose n(−1) = 0. Since the principal symbols of Λ and H are real-valued,
we now just need to solve

Re (Λ#H −m#m) = 0, n(0)Im (Λ#H −m#m) = −∂ξ((Λ(1)
H

(2)) · ∂x′n
(0) + ∂x′ (Λ(1)

H
(2)) · ∂ξn(0).

The condition for the real part is fulfilled if we have

Re (Λ(0))︸    ︷︷    ︸
=0

H
(2) = 2m(1.5)Re (m(0.5))⇒ Re (m(0.5)) = 0.

For the imaginary part, inserting the symbols H(1), Im (Λ(0)), m(1.5) and Im (m(0.5)), we get

Im (Λ#H −m#m) =
1
2
∂ξH

(2) · ∂x′Λ
(1) −

1
2
∂x′H

(2) · ∂ξΛ
(1),

and thus we need to solve

n
(0)

(
1
2
∂ξH

(2) · ∂x′Λ
(1) −

1
2
∂x′H

(2) · ∂ξΛ
(1)

)
= −∂ξ((Λ(1)

H
(2)) · ∂x′n

(0) + ∂x′ (Λ(1)
H

(2)) · ∂ξn(0). (5.46)

Notice that H(2) = (cΛ(1))2 with c = 1
2 (1 + |∇ψ|2)−

3
4 . Plugging it to the above equation, after a long and tedious calculation, we

get the following relation

n
(0)

(
c2∂x′Λ

(1)(Λ(1)) − (∂x′c)c(Λ(1))2 − c2∂x′ (Λ(1))Λ(1)
)

= −3c2(Λ(1))2∂x′n
(0),

that is,
∂x′n

(0)

n(0) =
−(∂x′c)c(Λ(1))2

−3c2(Λ(1))2 =
1
3
∂x′c

c
⇒ n(0) = c

1
3 = 2−

1
3 (1 + |∇ψ|2)−

1
4 .

�
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We expect to take (s − 1
2 )-th order derivatives in (5.27). In view of the paradifferential formulation, we shall alternatively

take TM with

M := (m(1.5))
2s−1

3 = 2
2s−1

6 |ξ|s−
1
2

(
1 −

∣∣∣∣∣ N
|N |
·
ξ

|ξ|

∣∣∣∣∣2)
s
2−

1
4

∈ Σs− 1
2 (5.47)

for sake of simplicity. Below, we list several commutator estimates for the paradifferential operators.

Lemma 5.10. For any r ∈ R, s > 2 + d
2 , any functions a and f , the following commutator estimates hold

|[TM,Tm]|r+s−1→r ≤ C (|ψ|s+0.5) ,

|[Tn,Ta] f |s− 1
2
≤ C(|∇ψ|W1,∞ )|a|W1,∞ | f |s−1.5,

|[TM, a] Tn f |0 + |TM [Tn, a] f |0 ≤ C(|∇ψ|W1,∞ )|a|s−0.5| f |s−1.5,

|[Tm, a] f |0 ≤ C(|∇ψ|W1,∞ )|a|s−0.5| f |0.5.

We also need to commute ∂t with paradifferential operators. These steps will generate paradifferential operators whose
symbols are spatial or time derivatives.

Lemma 5.11. For any r ∈ R, the following estimates hold

|T∂tn|r→r + |T∂tM|r→r−(s−0.5) ≤ C(|ψ|W1,∞ , |∂tψ|W1,∞ ),

|T∂2
t n
|r→r + |T∂2

tM
|r→r−(s−0.5) ≤ C

(∣∣∣∣∇ψ, ∂tψ, ∂
2
t ψ

∣∣∣∣
W1,∞

)
,

|T∂n|r→r + |T∂M|r→r−(s−0.5) ≤ C(|∇ψ|W1,∞ ),

|T∂tm|r→r−1.5 + |T∂m|r→r−1.5 ≤ C(|∇ψ|W1,∞ , |∇∂tψ|W1,∞ ).

5.3 Uniform estimates for the free interface
With the symmetrized paralinearization of (N+

ψ + N−ψ)H(ψ) derived in Section 5.2.2, we can now prove the uniform-in-(ε, σ)
estimates of ψ under the stability condition (1.29). The equation (5.27) can be written as

(ρ+ + ρ−)∂2
t ψ = −

σ

2
TΛTHψ − (ρ+ + ρ−)(w̄iw̄ j)∂i∂ jψ − 2(ρ+ + ρ−)w̄i∂i∂tψ

+
(
ρ+(b̄+

i b̄+
j − ūiū j) + ρ−(b̄−i b̄−j − ūiū j)

)
∂i∂ jψ

− (N · ∇ϕq+
w + N · ∇ϕq−w) + ΨR, (5.48)

where TΛ,TH are the paradifferential operators defined in Proposition 5.7 and Proposition 5.8, the quantities w,u,b are defined
by

w :=
ρ+v+ + ρ−v−

ρ+ + ρ−
, u :=

√
ρ+ρ−

ρ+ + ρ−
~v� , b± :=

b±
√
ρ±
, (5.49)

and ΨR is defined by

ΨR :=
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
+
σ

2
Rσψ . (5.50)

We pick s = 4 in the paradifferential operator TM, that is,M = (m(1.5))
7
3 ∈ Σ3.5 and then consider the energy functionals

E(t) :=
1
2

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′ +
1
4

∫
Σ

∣∣∣√σTmTMTnψ
∣∣∣2
0 dx′, (5.51)

Ẽ(t) :=
1
2

∫
Σ

ρ+
(∣∣∣∣b̄+ · ∇TMTnψ

∣∣∣∣2 − ∣∣∣∣ū · ∇TMTnψ
∣∣∣∣2) + ρ−

(∣∣∣∣b̄− · ∇TMTnψ
∣∣∣∣2 − ∣∣∣∣ū · ∇TMTnψ

∣∣∣∣2) dx′. (5.52)
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Lemma 5.12 (Comparison between E, Ẽ and Sobolev norms). For any fixed σ > 0, we have the following relations between
E, Ẽ and standard Sobolev norms. ∣∣∣√σψ∣∣∣25 ≤ C(|∇ψ|W1,∞ )

(
E(t) + |

√
σψ|20

)
,

|ψ|24.5 . |
√
σψ|25 + σ−1|ψ|20,

|ψt |
2
3.5 ≤ C(|∇ψ,∇ψt, v̄±, ρ±|W1,∞ )

(
E(t) + |ψ|24.5 + |ψt |

2
0

)
where C(·) represents a generic positive continuous function in its arguments. Moreover, when the stability condition (1.29)
holds, there exist positive continuous functions C1,C′1,C

′′
1 depending on |∇ψ, v̄±, b̄±, ρ±|W1,∞ and independent of σ, such that

C1

(
|∇ψ, v̄±, b̄±, ρ±|W1,∞

)
|ψ|24.5 ≤ Ẽ(t) + C′1|ψ|

2
0, Ẽ(t) ≤ C′′1

(
|∇ψ, v̄±, b̄±, ρ±|W1,∞

)
|ψ|24.5 .

Proof. Recall that TM and Tm are paradifferential operators of order 3.5 and 1.5 respectively, thus the first inequality is a
direct consequence of Proposition 5.6. The second inequality is a directly consequence of Sobolev interpolation and Young’s
inequality

|ψ|24.5 ≤ |
√
σψ|1.85 |σ

− 1
2ψ|0.20 ≤

|
√
σψ|25

10/9
+
|ψ|20
10σ

.

To prove the third inequality, we again use Proposition 5.6 to get

|ψt |
2
3.5 ≤ C(|∇ψ|W1,∞ )

(
|TMTnψt |

2
0 + |ψt |

2
0

)
≤ C(|∇ψ, v̄±, ρ±|W1,∞ )

(
E(t) + |TMT∂tnψ|

2
0 + |T∂tMTnψ|20 + |ψt |

2
0

)
≤ C(|∇ψ,∇ψt, v̄±, ρ±|W1,∞ )

(
E(t) + |ψ|23.5 + |ψt |

2
0

)
.

For the last inequality in this lemma, the right side is trivial. When the stability condition (1.29) holds, it suffices to
prove that Ẽ(t) is a positive-definite energy, then the left side automatically holds. Multiplying (ρ+ρ−)−

1
2 in (1.29), the stability

condition becomes

∃δ0 ∈ (0,
1
8

), |b̄+ × b̄−| ≥ (1 − δ0)−1|b̄± × ~v̄� |
√

1 + (c±A/c
±
s )2 > (1 − δ0)−1|b̄± × ~v̄� |. (5.53)

Since ~v� · N = 0 and b± are nonzero and not collinear, we may assume ~v� = c1b+ + c2b−. Plugging this into the stability
condition, we get c1, c2 ≤ 1 − δ0. Using Cauchy-Schwarz inequality, we derive that

inf
z∈R2

|z|=1

(1 − δ0)2
(
(b̄+ · z)2 + 2(b̄+ · z)(b̄− · z) + (b̄− · z)2

)
− (~v̄� · z)2 ≥ 0

Invoking ū =
√
ρ+ρ−

ρ++ρ−
~v̄� and using the non-collinearity, the above inequality implies that

inf
z∈R2

|z|=1

(
ρ+ρ−

ρ+ + ρ−
(b̄+ · z)2 + 2

ρ+ρ−

ρ+ + ρ−
(b̄+ · z)(b̄− · z) +

ρ+ρ−

ρ+ + ρ−
(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
> 0.

Notice that

ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 −

(
ρ+ρ−

ρ+ + ρ−
(b̄+ · z)2 + 2

ρ+ρ−

ρ+ + ρ−
(b̄+ · z)(b̄− · z) +

ρ+ρ−

ρ+ + ρ−
(b̄− · z)2

)
=

1
ρ+ + ρ−

(
(ρ+)2(b̄+ · z)2 − 2ρ+ρ−(b̄+ · z)(b̄− · z) + (ρ−)2(b̄− · z)2

)
≥ 0.

Thus, it implies that

inf
z∈R2

|z|=1

(
ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
> 0, (5.54)

or equivalently, there exists some δ′0 > 0 such that

inf
z∈R2

(
ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
≥ 2δ′0|z|

2. (5.55)

Now let z = ∇TMTnψ, the above inequality shows that Ẽ(t) ≥ δ′0|∇TMTnψ|20 & |ψ|
2
4.5 − |ψ|

2
0. �
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Remark 5.1 (The 2D case). When the space dimension d = 2, we no longer have the non-collinearity, but the stability condition
(1.37) still guarantees the ellipticity of the corresponding second-order differential operator, i.e.,

∃δ′0 > 0, ρ+
(
(b+

1 )2 − u2
1

)
+ ρ−

(
(b−1 )2 − u2

1

)
≥ δ′0.

In fact, the stability condition (1.37) implies |b+
1 | + |b

−
1 | ≥ (1 + δ0)| ~v1� |. Taking square and invoking u :=

√
ρ+ρ−

ρ++ρ−
~v�, we get

ρ+ρ−

ρ+ + ρ−

(
(b+

1 )2 + 2b+
1 b−1 + (b−1 )2

)
≥ (1 + δ0)(ρ+ + ρ−)u2

1,

in which we find that the left side does not exceed (ρ+ + ρ−)−1
(
ρ+(b+

1 )2 + ρ−(b−1 )2
)

by direct calculation. The desired result
immediately follows thanks to |u1| > 0 (otherwise the interface is not a vortex sheet).

In view of Lemma 5.12, it suffices to prove energy estimates for E(t) and Ẽ(t) under the stability condition (1.29). We start
with the estimate of |ψt |3.5.

d
dt

1
2

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′

=

∫
Σ

(ρ+ + ρ−)(∂2
t TMTnψ)

(
(∂t + w̄ · ∇)TMTnψ

)
dx′ +

∫
Σ

(ρ+ + ρ−)(w̄ · ∇∂tTMTnψ)
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

+

∫
Σ

(ρ+ + ρ−)(∂tw̄ · ∇TMTnψ)
(
(∂t + w̄ · ∇)TMTnψ

)
dx′ +

1
2

∫
Σ

∂t(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′

=: I0 + I1 + IR
1 + IR

2 . (5.56)

The remainder terms are easy to control. Using Proposition 5.6, we have

IR
1 + IR

2 ≤ C
(∣∣∣ρ±, ∂tρ

±, v̄±, ∂tv̄±
∣∣∣
L∞ , |ψ|3

) (
|ψt |

2
3.5 + |ψ|24.5

)
. (5.57)

For the main term I0, we first commute (ρ+ + ρ−)∂2
t with TMTn

(ρ+ + ρ−)∂2
t TMTnψ = (ρ+ + ρ−)

(
TMTn∂2

t ψ + (T∂2
tM

Tn + TMT∂2
t n

)ψ + 2(T∂tMTn + TMT∂tn)∂tψ
)

= TMTn
(
(ρ+ + ρ−)∂2

t ψ
)
−

(
[TM, ρ+ + ρ−]Tn∂2

t ψ + TM([Tn, ρ+ + ρ−]∂2
t ψ)

)
+ (ρ+ + ρ−)

(
(T∂2

tM
Tn + TMT∂2

t n
)ψ + 2(T∂tMTn + TMT∂tn)∂tψ

)
.

The commutators can be controlled straightforwardly thanks to Lemma 5.10 and Lemma 5.11:∣∣∣[TM, ρ+ + ρ−]Tn∂2
t ψ

∣∣∣
0 +

∣∣∣TM([Tn, ρ+ + ρ−]∂2
t ψ)

∣∣∣
0 ≤ C(|∇ψ|W1,∞ )

(
|ρ+ + ρ−|3.5|∂

2
t ψ|2.5

)
,∣∣∣(T∂2

tM
Tn + TMT∂2

t n
)ψ

∣∣∣
0

+
∣∣∣(T∂tMTn + TMT∂tn)∂tψ

∣∣∣
0 ≤ C(|ψtt, ψt,∇ψ|W1,∞ ) (|ψ|3.5 + |ψt |3.5) .

In the remaining of this section, we no longer explicitly write the commutators between the paradifferential operators and
functions or ∂t, ∂i, as they can be controlled in the same way as above. Instead, we will again use the notation L

= to skip these
terms and analyze the main terms.
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Then we can plug the equation (5.48) into the integral to get

I00 :=
∫

Σ

(
TMTn((ρ+ + ρ−)∂2

t ψ)
) (

(∂t + w̄ · ∇)TMTnψ
)

dx′

= −
σ

2

∫
Σ

(
TMTnTΛTHψ

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

− 2
∫

Σ

(
TMTn((ρ+ + ρ−)w̄i∂i∂tψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

−

∫
Σ

(
TMTn((ρ+ + ρ−)w̄iw̄ j∂i∂ jψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

+

∫
Σ

(
TMTn

(
ρ+(b̄+

i b̄+
j − ūiū j) + ρ−(b̄−i b̄−j − ūiū j)

)
∂i∂ jψ

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

−

∫
Σ

(
TMTn

(
N · ∇ϕq+

w + N · q−w
)) (

(∂t + w̄ · ∇)TMTnψ
)

dx′

+

∫
Σ

(
TMTnΨR

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′ =: I000 + I001 + I002 + I003 + Iw

0 + IR
0 . (5.58)

Since Proposition 5.9 indicates that TnTΛTH ∼ TmTmTn and (Tm)∗ ∼ Tm, we have

TMTnTΛTHψ
L
= TMTmTmTnψ

= (Tm)∗TmTMTnψ +
(
((Tm)∗ − Tm)TM + Tm[TM,Tm] + [TM,Tm]Tm

)
Tnψ

L
= (Tm)∗TmTMTnψ

and using the duality, we get

I000
L
= −

σ

2

∫
Σ

(TmTMTnψ) Tm(∂t + w̄ · ∇)TMTnψ dx′

= −
σ

4
d
dt

∫
Σ

|TmTMTnψ|2 dx′

+
σ

2

∫
Σ

(TmTMTnψ)
(
T∂tm + w̄iT∂im

+
1
2

(∇ · w̄) − [Tm, w̄i]∂i

)
TMTnψ dx′, (5.59)

where the second term can be directly controlled (uniformly in σ) by E(t)C
(
|∇ψ, ψt, v̄±, ρ±|W1,∞

)
thanks to Lemma 5.10. Next

we analyze I1 + I001 and I002, I003. For a generic function a ∈ H3.5(Σ→ R2) and a generic ρ ∈ H3.5(Σ→ R+), we have∫
Σ

(
TMTn(ρaia j∂i∂ jψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

L
=

∫
Σ

ρaia j∂i∂ jTMTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′ L

= −

∫
Σ

ρ(ai∂iTMTnψ) (a j∂ j(∂t + w̄ · ∇)TMTnψ) dx′

L
= −

1
2

d
dt

∫
Σ

ρ
∣∣∣∣ai∂iTMTnψ

∣∣∣∣2 dx′.

Setting a = w̄, ū, b̄ and ρ = ρ± or ρ+ + ρ−, we immediately get

I002
L
= +

1
2

d
dt

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(w̄ · ∇)TMTnψ

∣∣∣∣2 dx, I003
L
= −

d
dt
Ẽ(t).

For I1 + I001, we have

I001
L
= − 2

∫
Σ

(ρ+ + ρ−)(w̄ · ∇)∂tTmTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

⇒ I1 + I001
L
= −

∫
Σ

(ρ+ + ρ−)(w̄ · ∇)∂tTmTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

L
= −

1
2

d
dt

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(w̄ · ∇)TMTnψ

∣∣∣∣2 dx, (5.60)
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which cancels with the main term in I002. Whenσ > 0 is given and the stability condition (1.29) is not assumed, the quantity Ẽ(t)
is not necessarily positive, but its contribution, namely the term I003, can be controlled by integrating by parts for 1/2-derivative

I003 . P(‖v±, ρ±, b±‖4,±)(|ψ|25 + |ψ|5|ψt |4) . σ−1P(E4(t)).

Now, it remains to control Iw
0 and IR

0 . In view of Proposition 5.6, it suffices to control the H3.5(Σ) norms of N · ∇ϕq±w and ΨR.
For the term q±w, we use trace lemma and div-curl inequality with tangential trace (see (B.3)) to get

|N · ∇ϕq±w|
2
3.5 ≤ |ψ|

2
4.5‖∇

ϕq±w‖
2
4,±

≤ C(|ψ|4.5)
(
‖∇ϕq±w‖

2
0,± + ‖∆ϕq±w‖

2
3,± + ‖∇ϕ × ∇ϕq±w‖

2
3,± +

∣∣∣N × ∇ϕq±w
∣∣∣2
3.5 +

∣∣∣N · ∇ϕq±w
∣∣∣2
H3,5(Σ±)

)
(5.61)

where the last three terms are zero because of

∇ϕ × ∇ϕq±w = ~0, N · ∇ϕq±w|Σ± = 0, q±w|Σ = 0⇒ N × ∇ϕq±w|Σ = (−∂2q±w, ∂1q±w, ∂2ψ∂1q±w − ∂1ψ∂2q+
w)>|Σ = ~0.

Then invoking the definition of q±w and using F ±p . ε
2, we find

‖∆ϕq±w‖
2
3,± ≤ C(|ψ|4, |ψt |3)

(∥∥∥ε2T 2(b±, p±)
∥∥∥2

3,± + P
(∥∥∥v±, b±

∥∥∥
4,±

))
≤ P(Ẽ4(t))Ẽ5(t). (5.62)

Remark 5.2 (Necessity of anisotropic Sobolev spaces). The term bounded by Ẽ5(t) is contributed exactly by the extra 1
2 |b
±|2 in

the total pressure. From this, we can also see the necessity of the anisotropic Sobolev spaces when studying ideal compressible
MHD. For Euler equations, the source terms for the wave equation only contain quadratic first-order terms, and one can use the
trick in [32, 62] to close the energy bound by Ẽ4(t). For incompressible MHD, the second-order time derivative term vanishes
because q± satisfies an elliptic equation.

The term |ΨR|3.5 can also be directly controlled. Recall that

ΨR :=
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
+
σ

2
Rσψ .

Using the Sobolev estimates for the Dirichlet-to-Neumann operators, we have∣∣∣∣∣σ2 (N+
ψ − N

−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ))

∣∣∣∣∣
3.5

+
∣∣∣∣(N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)∣∣∣∣
3.5

. |σH(ψ)|2.5 +
∣∣∣F±ψ∣∣∣2.5 +

∣∣∣�ρ�
∂2

t ψ
∣∣∣
2.5

. ((1 + σ)|ψ|4.5 + |ψt |3.5)
(∥∥∥ε2∂2

t p±
∥∥∥

2,± + P(‖v±, b±‖3,±, |ψ|3)
)

+
∣∣∣�ρ�

∂2
t ψ

∣∣∣
2.5 . P(Ẽ4(t)). (5.63)

Setting s = 4 in the remainder estimate (5.42), we have |σRσψ |3.5 ≤ C(|ψ|4.5)|σψ|5 ≤
√
σC(Ẽ(t))

√
E(t) ≤

√
σC(Ẽ4(t)).

Summarizing the estimate above, we get

d
dt
E(t) . σ−1P(E4(t))E5(t), (5.64)

and under the stability condition (1.29), we get

d
dt

(E(t) + Ẽ(t)) . P(Ẽ4(t))Ẽ5(t). (5.65)

Invoking Lemma 5.12, we actually prove the following uniform-in-ε estimate for fixed σ > 0

d
dt

(∣∣∣√σψ∣∣∣25 + |ψt |
2
3.5

)
. σ−1P(E4(t))E5(t), (5.66)

and the following uniform-in-(ε, σ) estimate under the stability condition (1.29)

d
dt

(∣∣∣√σψ∣∣∣25 + |ψ|24.5 + |ψt |
2
3.5

)
. P(Ẽ4(t))Ẽ5(t). (5.67)
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It remains to prove the uniform estimates for |ψtt |
2
2.5. We just need to take one more ∂t in the paralinearized evolution equation

(5.48). The proof follows in the same way as the above analysis for the TMTn-differentiated version of (5.48), so we skip the
details and only list the differences. The first difference is that we should replace TM by TM′ whereM′ ∈ Σ

5
2 is defined by

M
′ := (m(1.5))

5
3 = 2

5
6 |ξ|

5
2

(
1 −

∣∣∣∣∣ N
|N|
·
ξ

|ξ|

∣∣∣∣∣2)
5
4

∈ Σ
5
2 .

The second difference is essential: we notice that the remainder term ΨR already contains second-order time derivative (N+
ψ −

N−ψ)Ñ−1(
�
ρ

�
∂2

t ψ). Taking one more time derivative, we are required to control (N+
ψ −N

−
ψ)Ñ−1(

�
ρ

�
∂3

t ψ). Using Lemma C.3 and
Lemma C.4, we have ∣∣∣∣(N+

ψ − N
−
ψ)Ñ−1(

�
ρ

�
∂3

t ψ)
∣∣∣∣
2.5
. |

�
ρ

�
|1.5|∂

3
t ψ|1.5.

Since we require |
�
ρ

�
|1.5 . ε, we can control the right side by |ε∂3

t ψ|1.5. Under the stability condition (1.29), this term is already
a part of Ẽ4(t). For fixed σ > 0, we again invoke the kinematic boundary condition to get

|ε∂3
t ψ|1.5 . ‖ε∂

2
t v±‖2,±|ψ|2.5 + ‖ε∂tv±‖2,±|ψt |2.5 + ‖εv±‖2,±|ψtt |2.5,

where the right side is already controlled by P(E4(t)). As for the fifth-order terms arising from N · ∇ϕq±w, they now contribute
to ‖ε2∂3

t q±‖2,± which is still a part of E5(t). Thus, we can conclude the following uniform-in-ε estimate for fixed σ > 0

d
dt

(∣∣∣√σψt

∣∣∣2
4 + |ψtt |

2
2.5

)
. σ−1P(E4(t))E5(t), (5.68)

and the following uniform-in-(ε, σ) estimate under the stability condition (1.29)

d
dt

(∣∣∣√σψt

∣∣∣2
4 + |ψt |

2
3.5 + |ψtt |

2
2.5

)
. P(Ẽ4(t))Ẽ5(t). (5.69)

5.4 Improved double limits without the boundedness of ≥ 2 time derivatives
5.4.1 Improved incompressible limit for fixed σ > 0

From the analysis in Section 5.1-Section 5.3, we can prove the uniform-in-ε estimates for E4(t). For any δ ∈ (0, 1)

E4(t) . δE4(t) + P(E4(0)) + P(E4(t))
∫ t

0
P(σ−1,E4(τ)) + E5(τ) dτ. (5.70)

For 1 ≤ l ≤ 4, since we do not change anything E4+l(t), we still have

l = 1, 2, 3 : E4+l(t) . δE4+l(t) + P(E4+l(0)) + P(E4(t))
∫ t

0
P

σ−1,

l∑
j=0

E4+ j(τ)

 + E4+l+1(τ) dτ; (5.71)

l = 4 : E8(t) . δE8(t) + P(E8(0)) + P(E4(t))
∫ t

0
P(σ−1,E8(τ)) dτ. (5.72)

Therefore, we get the Gronwall-type energy inequality for E(t)

E(t) . δE(t) + P(E(0)) + P(E(t))
∫ t

0
P(σ−1,E(τ)) dτ. (5.73)

Choosing δ > 0 suitably small, the term δE(t) can be absorbed by the left side. Thus, there exists a time T ′σ > 0 depending on
σ−1 and the initial data, but independent of ε, such that

sup
0≤t≤T ′σ

E(t) . P(σ−1,E(0)). (5.74)

With the uniform-in-ε estimates for E(t), we now take the incompressible limit. Again, since ‖∂t(v, b)‖3 is uniformly
bounded with respect to ε and we still have ε-independent bound |ψt |3.5, the Aubin-Lions compactness lemma gives the same
strong convergence result as in Section 4.3.
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5.4.2 Improved double limits under the stability conditions

With the estimates (5.67) and (5.69) in Section 5.3, we can get

|vt · N |22.5 + |bt · N|22.5 . P(Ẽ4(0)) + P(Ẽ4(t))
∫ t

0
P(Ẽ4(τ))Ẽ5(τ) dτ.

This finishes the control of Ẽ4(t). Since Ẽ4+l(t) = Ẽ4+l(t) when 1 ≤ l ≤ 4 and the strategies to control them remain unchanged,
we can now close the energy estimates for Ẽ(t), uniformly in ε and σ, under the stability condition (1.29) (d = 3) or (1.37)
(d = 2).

Ẽ(t) ≤ P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ. (5.75)

By Grönwall’s inequality, there exists T ′ > 0 independent of σ and ε such that

sup
t∈[0,T ]

Ẽ(t) ≤ P(Ẽ(0)). (5.76)

Thus, by Aubin-Lions compactness lemma, we can prove the same convergence result as in Theorem 1.2.

Data avaliability. This manuscript has no associated data.

Ethics Declarations
Conflict of interest. The author declares that there is no conflict of interest.

A Reynolds transport theorems
We record the Reynolds transport theorems used in this paper. For the proof, we refer to Luo-Zhang [36, Appendix A]

Lemma A.1. Let f , g be smooth functions defined on [0,T ] ×Ω. Then:

d
dt

∫
Ω

f g∂3ϕ dx =

∫
Ω

(∂ϕt f )g∂3ϕ dx +

∫
Ω

f (ϕ̃tg)∂3ϕ dx +

∫
x3=0

f g∂tψ dx′, (A.1)

d
dt

∫
Ω

f g∂3ϕ̊ dx =

∫
Ω

(∂ϕ̊t f )g∂3ϕ̊ dx +

∫
Ω

f (∂ϕ̊t g)∂3ϕ̊ dx +

∫
x3=0

f g∂tψ̊ dx′. (A.2)

Lemma A.2 (Integration by parts for covariant derivatives). Let f , g be defined as in Lemma A.1. Then:∫
Ω

(∂ϕi f )g∂3ϕ dx = −

∫
Ω

f (∂ϕi g)∂3ϕ dx +

∫
x3=0

f gNi dx′, (A.3)∫
Ω

(∂ϕ̊i f )g∂3ϕ̊ dx = −

∫
Ω

f (∂ϕ̊i g)∂3ϕ̊ dx +

∫
x3=0

f gN̊i dx′. (A.4)

The following theorem holds.

Theorem A.3 (Reynolds transport theorem). Let f be a smooth function defined on [0,T ] ×Ω. Then:

d
dt

∫
Ω

ρ| f |2∂3ϕ dx =

∫
Ω

ρ(Dϕ
t f ) f∂3ϕ dx. (A.5)

Theorem A.3 leads to the following corollary. The first one records the integration by parts formula for Dϕ
t .

Corollary A.4 (Reynolds transport theorem - a variant). It holds that

d
dt

∫
Ω

f g∂3ϕ dx =

∫
Ω

(Dϕ
t f )g∂3ϕ dx +

∫
Ω

f (Dϕ
t g)∂3ϕ dx +

∫
Ω

(∇ϕ · v) f g∂3ϕ dx. (A.6)
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B Preliminary lemmas about Sobolev inequalities
Lemma B.1 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s ≥ 1, one has

‖X‖2s ≤ C(|ψ|s, |∇ψ|W1,∞ )
(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + ‖∂αX‖20

)
, (B.1)

‖X‖2s ≤ C′(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X · N |2

s− 1
2

)
, (B.2)

‖X‖2s ≤ C′′(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X × N |2

s− 1
2

)
, (B.3)

for any multi-index αwith |α| = s. The constant C(|ψ|s, |∇ψ|W1,∞ ) > 0 depends linearly on |ψ|2s and the constants C′(|ψ|s+ 1
2
, |∇ψ|W1,∞ ) >

0 and C′(|ψ|s+ 1
2
, |∇ψ|W1,∞ ) > 0 depend linearly on |ψ|2

s+ 1
2
.

Lemma B.2 (Normal trace lemma). For any sufficiently smooth vector field X and s ≥ 0, one has

|X · N |2s− 1
2
. C′′′(|ψ|s+ 1

2
, |∇ψ|W1,∞ )

(
‖〈∂〉sX‖20 + ‖∇ϕ · X‖2s−1

)
(B.4)

where the constant C′′′(|ψ|s+ 1
2
, |∇ψ|W1,∞ ) > 0 depends linearly on |ψ|2

s+ 1
2
.

We list two lemmas for the estimates of traces in the anisotropic Sobolev spaces. Define

L2
T (Hm

∗ (Ω±)) =

m⋂
k=0

Hk((−∞,T ]; Hm−k
∗ (Ω±))

with the norm ‖u‖m,∗,T,± :=
∫ T
−∞
‖u(t)‖2m,∗,± dt. Similarly, we define

L2
T (Hm(Σ)) =

m⋂
k=0

Hk((−∞,T ]; Hm−k(Σ))

with the norm |u|m,T :=
∫ T
−∞
|u(t)|2m dt.

Lemma B.3 (Trace lemma for anisotropic Sobolev spaces). Let m ≥ 1, m ∈ N∗, then we have the following trace lemma for
the anisotropic Sobolev space.

1. If f ∈ L2
T (Hm+1

∗ (Ω±)), then its trace f |Σ belongs to L2
T (Hm(Ω±)) and satisfies

| f |m,T . ‖ f ‖m+1,∗,T,±.

2. There exists a linear continuous operator R±T : L2
T (Hm(Σ))→ L2

T (Hm+1
∗ (Ω±)) such that (R±T g)|Σ = g and

‖R±T g‖m+1,∗,T,± . |g|m,T .

Proof. See [63, Appendix B]. �

There is one derivative loss in the above trace lemma, which is 1/2-order more than the trace lemma for standard Sobolev
spaces. Indeed, for Ω± defined in this paper, we have the following estimate that will be applied to control the non-characteristic
variables q, v · N and b · N.

Lemma B.4 (An estimate for traces of non-characteristic variables). Let Ω± := Td−1 × {0 ≶ xd ≶ ±H}, Σ = Td−1 × {xd = 0}
and Σ± = Td−1 × {±H}. Let T α = (ω(xd)∂d)αd+1∂α0

t ∂
α1
1 · · · ∂

αd−1
d−1 ∂

αd
d with 〈α〉 := α0 + · · · + αd−1 + 2αd + αd+1 = m − 1, m ∈ N∗.

Let q±(t, x) ∈ Hm
∗ (Ω) satisfy ‖q±(t)‖m,∗,± + ‖∂dq±(t)‖m−1,∗,± < ∞ for any 0 ≤ t ≤ T and let f ± ∈ H2

∗ (Ω
±) ∩ H

3
2 (Ω±) be a function

vanishing on Σ±. Then we have∫
Σ

(〈∂〉
1
2T γq±) (〈∂〉 f ±) dx′ ≤ (‖∂dq±‖m−1,∗,± + ‖q±‖m,∗,±)‖〈∂〉

1
2 f ±‖1,± (B.5)

In particular, for s ≥ 1, we have the following inequality for any g± ∈ Hs
∗(Ω

±) with g±|Σ± = 0.

|g±|2s−1/2 ≤ ‖〈∂〉
sg±‖0,±‖〈∂〉s−1∂dg±‖0,± ≤ ‖g±‖s,∗,±‖∂dg±‖s−1,∗,±.
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Proof. See [63, Appendix B]. �

The following lemma concerns the Sobolev embeddings.

Lemma B.5. We have the following inequalities

Hm(Ω±) ↪→ Hm
∗ (Ω±) ↪→Hbm/2c(Ω±), ∀m ∈ N∗

‖u‖L∞(Ω±) . ‖u‖H3
∗ (Ω±), ‖u‖W1,∞(Ω±) . ‖u‖H5

∗ (Ω±), |u|W1,∞(Ω±) . ‖u‖H5
∗ (Ω±).

We also need the following Kato-Ponce type multiplicative Sobolev inequality.

Lemma B.6 ([27]). Let J = (1 − ∆)1/2, s ≥ 0. Then the following estimates hold:

‖J s( f g)‖L2 . ‖ f ‖W s,p1 ‖g‖Lp2 + ‖ f ‖Lq1 ‖g‖W s,q2 , (B.6)

where 1/2 = 1/p1 + 1/p2 = 1/q1 + 1/q2 and 2 ≤ p1, q2 < ∞.

‖[J s, f ]g‖Lp . ‖∂ f ‖L∞‖J s−1g‖Lp + ‖J s f ‖Lp‖g‖L∞ (B.7)

where s ≥ 0 and 1 < p < ∞.

We also need the following transport-type estimate in order to close the uniform estimates for the nonlinear approximate
system.

Lemma B.7. Let f (t) ∈ W1,1(0,T ) and g ∈ L1(0,T ) and κ > 0. Assume that

f (t) + κ f ′(t) ≤ g(t) a.e. t ∈ (0,T ).

Then for any t ∈ (0,T ),
sup
τ∈[0,t]

f (τ) ≤ f (0) + ess sup
τ∈(0,t)

|g(τ)|.

C Paraproducts and the Dirichlet-to-Neumann operator

C.1 Bony’s paraproduct decomposition
We already introduce the paradifferential operator in Section 5.2.2. Here we present the relations between paradifferential
operators and paraproducts. The cutoff function χ̃(ξ, η) in the definition of Tau is

χ̃(ξ, η) =

∞∑
k=0

Θk−3(ξ)ϑ(η),

where Θ(ξ) = 1 when |ξ| ≤ 1 and Θ(ξ) = 0 when |ξ| ≥ 2 and

Θk(ξ) := Θ(
ξ

2
), k ∈ Z, ϑ0 = Θ, ϑk := Θk − Θk−1, k ≥ 1.

Based on this, we can introduce the Littlewood-Paley projections Pk and P≤k as follows

P̂ku(ξ) := ϑk(ξ)û(ξ), ∀k ≥ 0, Pku := 0 ∀k < 0, P≤ku :=
∑
l≤k

Plu.

When the symbol a(x, ξ) (in the paradifferential operator Ta) does not depend on ξ, we can take ψ(η) ≡ 1 and then we have

Tau =
∑

k

P≤k−3a(Pku)

which is the usual Bony’s paraproduct. In general, the well-known Bony’s paraproduct decomposition is

au = Tau + Tua + R(u, a), R(u, a) =
∑
|k−l|≤2

(Pka)(Plu).

We have the following estimates for the remainder R(u, a)
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Lemma C.1 ([3, Section 2.3]). For s ∈ R, r < d/2, δ > 0, we have

|Tau|Hs . min{|a|L∞ |u|Hs , |a|Hr |u|
Hs+ d

2 −r , |a|H d
2
|u|Hs+δ }

and for any s > 0, s1, s2 ∈ R satisfying s1 + s2 = s + d
2 , we have

|R(u, a)|Hs . |a|Hs1 |u|Hs2 .

C.2 Basic properties of the Dirichlet-to-Neumann operator
Let the space dimension d = 3 for simplicity. Given a function f : Σ = T2 → R, we define the Dirichlet-to-Neumann (DtN)
operator (with respect to ψ and region Ω±) by

N
±
ψ f := ∓N · ∇ϕ(E±ψ f )|Σ, −∆ϕ(E±ψ f ) = 0 in Ω±, E±ψ f |Σ = f , ∂3(E±ψ f )|Σ± = 0.

Here the Laplacian operator is defined by ∆ϕ := ∇ϕ · ∇ϕ = ∂i(Ei j∂ j) with

E =
1
∂3ϕ


∂3ϕ 0 −∂1ϕ

0 ∂3ϕ −∂2ϕ

−∂1ϕ −∂2ϕ
1+|∇ϕ|2

∂3ϕ

 =
1
∂3ϕ

PP >, P :=


∂3ϕ 0 0
0 ∂3ϕ 0
−∂1ϕ −∂2ϕ 1

 ,
and ϕ(t, x) := x3 + χ(x3)ψ(t, x′) is defined in (1.5) as the extension of ψ into Ω±. The choice of χ(x3) is slightly different from
[2, 3, 4], but it does not introduce any substantial difference because the expression of ∆ϕ is still written to be ∆ϕ := ∇ϕ · ∇ϕ =

∂i(Ei j∂ j) and we have ∆ϕϕ = 0 in Ω±. The DtN operators satisfy the following estimates and we refer to [48, Appendix A.4]
for the proof.

Lemma C.2 (Sobolev estimates for DtN operators). For s > 2 + d
2 , −

1
2 ≤ r ≤ s − 1 and ψ ∈ Hs(Td), we have

|N±ψ f |r ≤ C(|ψ|s)| f |r+1.

Lemma C.3 (Remainder estimates for DtN operators). For s > 2 + d
2 and ψ ∈ Hs(Td), we have

N
±
ψ f = TΛ(1),± f + R±1 ( f )

with Λ(1),+ = Λ(1),± defined in Proposition 5.7 and

∀r ∈ [
1
2
, s − 1], |R±1 ( f )|r + |(N+

ψ − N
−
ψ) f |r ≤ C(|ψ|s)| f |r.

Lemma C.4 (Sobolev estimates for the inverse of DtN operators). For s > 2 + d
2 , −

1
2 ≤ r ≤ s − 1 and ψ ∈ Hs(Td), we have

|(N±ψ)−1 f |r+1 ≤ C(|ψ|s)| f |r.
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