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Abstract

Current-vortex sheet is one of the characteristic discontinuities in ideal compressible magnetohydrody-
namics (MHD). The motion of current-vortex sheets is described by a free-interface problem of two-phase
MHD flows with magnetic fields tangential to the interface. First, we prove local well-posedness of current-
vortex sheets with surface tension by developing a robust framework that does not rely on Nash-Moser
iteration nor tangential smoothing. Second, the energy estimates are uniform in Mach number and are also
uniform in surface-tension coefficient under suitable stability conditions. Thus, we present a comprehen-
sive study within one attempt, including well-posedness, nonlinear structural stability and incompressible
limit of current-vortex sheets with or without surface tension.

Our result demonstrates that either suitable magnetic fields or surface tension could suppress the ana-
logue of Kelvin-Helmholtz instability for compressible vortex sheets. The key observation is a hidden
structure of Lorentz force in the vorticity analysis which motivates us to establish the uniform estimates in
some anisotropic Sobolev spaces with suitable weights of Mach number determined by the number of tan-
gential derivatives. Moreover, for isentropic two-phase flows whose density functions converge to the same
constant when taking the incompressible limit, we can drop the boundedness assumption (with respect to
Mach number) on high-order time derivatives by paralinearizing the evolution equation of the free interface.
To our knowledge, this is the first result that rigorously justifies the incompressible limit of compressible
vortex sheets.
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1 Introduction
The equations of compressible ideal magnetohydrodynamics (MHD) in Rd (d = 2, 3) can be written in the
following form 

%Dtu = B · ∇B − ∇Q, Q := P + 1
2 |B|

2,

Dt% + %∇ · u = 0,
DtB = B · ∇u − B∇ · u,
∇ · B = 0,
Dts = 0.

(1.1)

Here ∇ := (∂x1 , · · · , ∂xd ) is the standard spatial derivative. Dt := ∂t + u · ∇ is the material derivative. The
fluid velocity, the magnetic field, the fluid density, the fluid pressure and the entropy are denoted by u =
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(u1, · · · , ud), B = (B1, · · · , Bd), %, P and s respectively. The quantity Q := P + 1
2 |B|

2 is the total pressure.
Note that the fourth equation in (1.1) is just an initial constraint instead of an independent equation. The last
equation of (1.1) is derived from the equation of total energy and Gibbs relation and we refer to [31, Ch. 4.3]
for more details. To close system (1.1), we need to introduce the equation of state

P = P(%, s) satisfying
∂P
∂%

> 0. (1.2)

A typical choice in this paper would be the polytropic gas parametrized by λ > 0 [69]:

Pλ(%, s) = λ2(%γ exp(s/CV ) − 1), γ > 1, CV > 0. (1.3)

We also need to assume % ≥ ρ̄0 > 0 for some constant ρ̄0 > 0, which together with ∂P
∂%

> 0 guarantees the
hyperbolicity of system (1.1).

1.1 Mathematical formulation of current-vortex sheets
Let H > 10 be a given real number, x = (x1, · · · , xd) and x′ := (x1, · · · , xd−1) and the space dimension
d = 2, 3. We define the regions Ω+(t) := {x ∈ Td−1 × R : ψ(t, x′) < xd < H}, Ω−(t) := {x ∈ Td−1 × R :
−H < xd < ψ(t, x′)} and the moving interface Σ(t) := {x ∈ Td−1 × R : xd = ψ(t, x′)} between Ω+(t) and Ω−(t).
We assume U± = (u±, B±, P±, s±)> to be a smooth solution to (1.1) in Ω±(t) respectively. We say Σ(t) is a
current-vortex sheet (or an MHD tangential discontinuity) if the following conditions are satisfied:

~Q� = σH , B± · N = 0, ∂tψ = u± · N on Σ(t), (1.4)

where N := (−∂1ψ, · · · ,−∂d−1ψ, 1)> is the normal vector to Σ(t) (pointing towards Ω+(t)), σ ≥ 0 is the

constant coefficient of surface tension and the quantity H := ∇ ·
(

∇ψ
√

1+|∇ψ|2

)
is twice the mean curvature of

Σ(t) with ∇ = (∂1, · · · , ∂d−1). The jump of a function f on Σ(t) is denoted by
�

f
�

:= f +|Σ(t) − f −|Σ(t) with
f ± := f |Ω±(t). The first condition shows that the jump of total pressure is balanced by surface tension. The
second condition shows that both plasmas are perfect conductors. The third condition shows that there is no
mass flow across the interface and thus the two plasmas are physically contact and mutually impermeable.
These conditions on Σ(t) are given by the Rankine-Hugoniot conditions for ideal compressible MHD when the
magnetic fields are tangential to the interface, and we refer to Trakhinin-Wang [83, Appendix A] for detailed
derivation. Besides, we impose the slip boundary conditions on the rigid boundaries Σ± := Td−1 × {±H}

u±d = B±d = 0 on Σ±. (1.5)

Remark 1.1 (Initial constraints for the magnetic field). The conditions ∇ · B± = 0 in Ω±(t), B± · N|Σ(t) = 0
and B±d = 0 on Σ± are constraints for initial data so that system (1.1) with jump conditions (1.4) is not over-
determined. One can use the continuity equation, the evolution equation of B and the kinematic boundary
condition to show that D±t ( 1

ρ±
∇ · B±) = 0 in Ω±(t) and D±t ( B±

ρ±
· N) = 0 on Σ(t) and Σ± with D±t := ∂t + u± · ∇.

Thus, the initial constraints can propagate within the lifespan of solutions if initially hold.

To make the initial-boundary-valued problem (1.1)-(1.5) solvable, we have to require the initial data to
satisfy certain compatibility conditions. Let (u±0 , B

±
0 , %

±
0 , s
±
0 , ψ0) := (u±, B±, %±, s±, ψ)|t=0 be the initial data of

system (1.1)-(1.4). We say the initial data satisfies the compatibility condition up to m-th order (m ∈ N) if

(D±t ) j ~Q� |t=0 = σ(D±t ) jH|t=0 on Σ(0), 0 ≤ j ≤ m,

(D±t ) j∂tψ|t=0 = (D±t ) j(u± · N)|t=0 on Σ(0), 0 ≤ j ≤ m,

∂
j
t u
±
d = 0 on Σ±, 0 ≤ j ≤ m.

(1.6)

With these compatibility conditions, one can show that the magnetic fields also satisfy (cf. [80, Section 4.1])

(D±t ) j(B± · N)|t=0 = 0 on Σ(0) and Σ±, 0 ≤ j ≤ m.

We also note that the fulfillment of the first condition implicitly requires the fulfillment of the second one.
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For T > 0, we denote Ω±T :=
⋃

0≤t≤T
{t} × Ω±(t) and ΣT :=

⋃
0≤t≤T
{t} × Σ(t). We consider the Cauchy problem

of (1.1): Given the initial data (u±0 , B
±
0 , %

±
0 , s
±
0 , ψ0) satisfying the compatibility conditions (1.6) up to certain

order, the vortex-sheet condition | ~u0 · τ� |Σ > 0 for any vector τ tangential to Σ(0), the constraints ∇ · B±0 = 0
in Ω±(0), (B±0 · N)|Σ(0) = 0 and B±0d |Σ± = 0, we want to study the well-posedness and the incompressible limit
of the following system for both the case σ > 0 and the case σ = 0, and also the zero-surface-tension limit
under suitable stability conditions on ΣT which will be specified later.

%±(∂t + u± · ∇)u± − B± · ∇B± + ∇Q± = 0, Q± := P± + 1
2 |B
±|2 in Ω±T ,

(∂t + u± · ∇)%± + %±∇ · u± = 0 in Ω±T ,

(∂t + u± · ∇)B± = B± · ∇u± − B±∇ · u± in Ω±T ,

∇ · B± = 0 in Ω±T ,

(∂t + u± · ∇)s± = 0 in Ω±T ,

P± = P±(%±, s±), ∂P±
∂%±

> 0, %± ≥ ρ0 > 0 in Ω±T ,

~Q� = σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
on ΣT ,

B± · N = 0 on ΣT ,

∂tψ = u± · N on ΣT ,

u±d = B±d = 0 on [0,T ] × Σ±,

(u±, B±, %±, s±)|t=0 = (u±0 , B
±
0 , %

±
0 , s
±
0 ) in Ω±(0), ψ|t=0 = ψ0 on Σ(0).

(1.7)

System (1.7), as a hyperbolic conservation law, admits a conserved L2 energy

E0(t) :=
∑
±

1
2

∫
Ω±(t)

%±|u±|2 + |B±|2 + 2P(%±, s±) + %±|s±|2 dx + σ Area(Σ(t))

where P(%±, s±) =
∫ %±

ρ̄0

P±(z,s±)
z2 dz. See Section 3.1 for proof.

1.2 Reformulation in flattened domains
1.2.1 Flattening the fluid domains

We shall convert (1.7) into a PDE system defined in fixed domains Ω± := Td−1 × {0 < ±xd < H}. One way to
achieve this is to use the Lagrangian coordinates, but it would bring lots of unnecessary technical difficulties
when analyzing the surface tension. Here, we consider a family of diffeomorphisms Φ(t, ·) : Ω± → Ω±(t)
characterized by the moving interface. In particular, let

Φ(t, x′, xd) =
(
x′, ϕ(t, xd)

)
, (1.8)

where

ϕ(t, x) = xd + χ(xd)ψ(t, x′) (1.9)

and χ ∈ C∞c ([−H,H]) is a smooth cut-off function satisfying the following bounds:

‖χ′‖L∞(R) ≤
1

‖ψ0‖∞ + 20
,

8∑
j=1

‖χ( j)‖L∞(R) ≤ C, χ = 1 on (−1, 1) (1.10)

for some generic constant C > 0. We assume |ψ0|L∞(T2) ≤ 1. One can prove that there exists some T0 > 0
such that sup

[0,T0]
|ψ(t, ·)|L∞(T2) < 10 < H, the free interface is still a graph within the time interval [0,T0] and

∂dϕ(t, x′, xd) = 1 + χ′(xd)ψ(t, x′) = 1 −
1
20
× 10 ≥

1
2
, t ∈ [0,T0],

which ensures that Φ(t) is a diffeomorphism in [0,T0].
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Based on this, we introduce the new variables

v±(t, x) = u±(t,Φ(t, x)), b±(t, x) = B±(t,Φ(t, x)), ρ±(t, x) = %±(t,Φ(t, x)),
S ±(t, x) = s±(t,Φ(t, x)), q±(t, x) = Q±(t,Φ(t, x)), p±(t, x) = P(t,Φ(t, x)) (1.11)

that represent the velocity fields, the magnetic fields, the densities, the entropy functions, the total pressure
functions and the fluid pressure functions defined in the fixed domains Ω± respectively. Also, we introduce
the differential operators

∇ϕ = (∂ϕ1 , · · · , ∂
ϕ
d), ∂

ϕ
a = ∂a −

∂aϕ

∂dϕ
∂d, a = t, 1, · · · , d − 1; ∂

ϕ
d =

1
∂dϕ

∂d. (1.12)

Moreover, setting the tangential gradient operator and the tangential derivatives as

∇ := (∂1, · · · , ∂d−1), ∂i := ∂i, i = 1, · · · , d − 1,

then the boundary conditions (1.4) on the free interface Σ(t) are turned into

�
q

�
= σH(ψ) := σ∇ ·

 ∇ψ√
1 + |∇ψ|2

 on [0,T ] × Σ, (1.13)

∂tψ = v± · N, N = (−∂1ψ,−∂2ψ, 1)> on [0,T ] × Σ, (1.14)
b± · N = 0 on [0,T ] × Σ, (1.15)

where Σ = Td−1 × {xd = 0}.
Let Dϕ±

t := ∂
ϕ
t + v± · ∇ϕ. Then system (1.7) is converted into

ρ±Dϕ±
t v± − (b± · ∇ϕ)b± + ∇ϕq± = 0, q± = p± + 1

2 |b
±|2 in [0,T ] ×Ω±,

Dϕ±
t ρ± + ρ±∇ϕ · v± = 0 in [0,T ] ×Ω±,

p± = p±(ρ±, S ±), ∂p±

∂ρ±
> 0, ρ± ≥ ρ̄0 > 0 in [0,T ] ×Ω±,

Dϕ±
t b± − (b± · ∇ϕ)v± + b±∇ϕ · v± = 0 in [0,T ] ×Ω±,

∇ϕ · b± = 0 in [0,T ] ×Ω±,

Dϕ±
t S ± = 0 in [0,T ] ×Ω±,�

q
�

= σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
on [0,T ] × Σ,

∂tψ = v± · N on [0,T ] × Σ,

b± · N = 0 on [0,T ] × Σ,

v±d = b±d = 0 on [0,T ] × Σ±,

(v±, b±, ρ±, S ±, ψ)|t=0 = (v±0 , b
±
0 , ρ

±
0 , S

±
0 , ψ0).

(1.16)

Invoking (1.12), we can alternatively write the material derivative Dϕ
t as

Dϕ±
t = ∂t + v̄± · ∇ +

1
∂dϕ

(v± · N − ∂tϕ)∂d, (1.17)

where v̄± := (v±1 , · · · , v
±
d−1)> is the horizontal components of the fluid velocity, v̄± · ∇ :=

d−1∑
j=1

v±j ∂ j, and

N := (−∂1ϕ, · · · ,−∂d−1ϕ, 1)> is the extension of the normal vector N into Ω±. This formulation will be
helpful for us to define the linearized material derivative when using Picard iteration to construct the solution.

1.2.2 Parametrization of the equation of state

We assume the fluids in Ω+ and Ω− satisfy the same equation of state of polytropic gases. Specifically,
we parametrize the equation of state to be ρ = ρ(p/λ2, S ) where λ > 0 is proportional to the sound speed
cs :=

√
∂pρ. For a polytropic gas, the equation of state is parametrized [69] in terms of λ > 0:

pλ(ρ, S ) = λ2 (
ργ exp(S/CV ) − 1

)
, γ > 1, CV > 0. (1.18)
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When viewing the density as a function of the pressure and the entropy, this indicates

ρλ(p/λ2, S ) =

((
1 +

p
λ2

)
e−

S
CV

) 1
γ

, and log
(
ρλ(p/λ2, S )

)
= γ−1 log

((
1 +

p
λ2

)
e−

S
CV

)
. (1.19)

Let F ±(p±, S ±) := log ρ±(p±, S ±). Since ∂p±

∂ρ±
> 0 and ρ± > 0 imply ∂F ±

∂p± = 1
ρ±

∂ρ±

∂p± > 0, then the second
equation in (1.16) is equivalent to

∂F ±

∂p±
(p±, S ±)Dϕ±

t p± + ∇ϕ · v± = 0. (1.20)

Also, we assume there exists a constant C > 0, such that the following inequality holds for 0 ≤ k ≤ 8:

|∂k
pF (p, S )| ≤ C, |∂k

pF (p, S )| ≤ C|∂pF (p, S )|k ≤ C∂pF (p, S ). (1.21)

Hence, we can view F = log ρ as a parametrized family {Fε(p, S )} as well, where ε = 1
λ
. Indeed, we have

∂Fε
∂p

= γ−1 log
(
(1 + ε2 p)e−

S
CV

)
. (1.22)

Since we work on the case when the entropy and velocity are both bounded (later we will assume u, S ∈
H4(Ω)), there exists A > 0 such that

∂Fε
∂p

(p, S ) =
1
ρ

∂ρ

∂p
(p, S ) ≤ Aε2. (1.23)

We slightly abuse the terminology and call λ the sound speed and call ε the Mach number. When λ � 1 (ε �
1), the constant A in (1.23) can be greater than 1 such that

A−1ε2 ≤
∂Fε
∂p

(p, S ) ≤ Aε2. (1.24)

We sometimes write F ±p := ∂F ±ε
∂p (p±, S ±) = ε2 for simplicity when discussing the incompressible limit.

1.2.3 Stability conditions for the zero-surface-tension limit

Finally, we need to add some extra stability conditions on the free interface when surface tension is neglected,
that is, when σ = 0. We introduce the quantities

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2
where c±A := |b±|/

√
ρ± represents the Alfvén speed (the speed of magneto-sonic waves), c±s :=

√
∂p±/∂ρ±

represents the sound speed. The stability conditions are

d = 3 : 0 < a±
∣∣∣b̄∓ × ~v̄�∣∣∣ < |b̄+ × b̄−| on [0,T ] × Σ, (1.25)

d = 2 :
(
|b+

1 |

a+
+
|b−1 |
a−

)
> | ~v1� | > 0 on [0,T ] × Σ, (1.26)

where we view the horizontal magnetic field b̄ = (b1, b2, 0)> and the horizontal velocity v̄ = (v1, v2, 0)> as
vectors lying on T2 × {x3 = 0} ⊂ R3 to define the exterior product. The “> 0” part in (1.25) and (1.26) is
necessary because we are considering the vortex sheets which automatically require the tangential discon-
tinuity of velocity is nonzero. Thus, the stability conditions require that the strength of the magnetic fields
cannot be too weak. Moreover, the condition for 3D case implies that b+ and b− are not collinear on Σ and the
condition for 2D case requires certain quantitative relation between the strength of magnetic fields and the
jump of tangential velocities. Note that the stability conditions are just initial constraints that can propagate
within a short time interval instead of imposed boundary conditions. We will explain in later sections why
such stability conditions are needed.
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1.3 History and background
1.3.1 An overview of previous results

There have been a lot of studies about free-boundary problems in ideal MHD, of which the original models
in physics are mainly three types: plasma-vacuum interface model, current-vortex sheets and MHD con-
tact discontinuities. The plasma-vacuum problem is related to plasma confinement problems [31, Chap. 4]
in laboratory plasma physics, which describes the motion of one isolated perfectly conducting fluid in an
electro-magentic field confined in a vacuum region (in which there is another vacuum magnetic field satis-
fying the pre-Maxwell system). When the vacuum magnetic fields are neglected, the plasma-vacuum model
is reduced the free-boundary problem of one-phase MHD flows and we refer to [39, 53, 36, 35, 34, 41] for
local well-posedness (LWP) theory in incompressible ideal MHD. It should be noted that, when the surface
tension is neglected, the Rayleigh-Taylor sign condition −∇N Q|Σ(t) ≥ c0 > 0 should be added as an initial
constraint for LWP which is the analogue of Euler equations [26, 38] and we refer to Hao-Luo [40] for the
proof. For the full plasma-vacuum model without surface tension in incompressible ideal MHD, we refer
to [32, 33, 76, 51]. As for the compressible case, in a series of works [72, 81, 82, 84], Secchi, Trakhinin
and Wang used Nash-Moser iteration to construct the solution due to the derivative loss in the linearized
problems. Very recently, Lindblad and the author [49] proved the LWP and a continuation criterion for the
one-phase free-boundary problem in compressible ideal MHD without surface tension, which gave the first
result about the energy estimates without loss of regularity.

In view of fluid mechanics, a vortex sheet is an interface between two “impermeable” fluids across which
there is a tangential discontinuity in fluid velocity. However, the study of one-phase free-boundary problem
does not tell us how to analyze the free interface between two fluids (e.g., shock fronts, contact disconti-
nuities), which in fact is quite different from the study of free-surface one-phase flow. For incompressible
inviscid fluids without surface tension, vortex sheets tend to be violently unstable, which exhibit the so-called
Kelvin-Helmholtz instability. There have been numerous mathematical studies in this direction, especially
for 2D irrotational flows, and we refer to [27, 88, 89] and references therein. On the other hand, surface ten-
sion is expected to “suppress” the Kelvin-Helmholtz instability. Ambrose-Masmoudi [6] rigorously justified
this for irrotational flows and Cheng-Coutand-Shkoller [19], Shatah-Zeng [73] proved this for incompressible
Euler equations with nonzero vorticity.

When the compressibility is taken into account, we shall consider not only the motion of the interface
of discontinuities but also its interaction with the wave propagation in the interior. Let j = %(u · N − ∂tψ)
be the mass transfer flux. In view of hyperbolic conservation laws, strong discontinuities can be classified
into shock waves (j , 0,

�
%

�
, 0) and characteristic discontinuities. According to Lax [45], characteristic

discontinuities are called contact discontinuities, which are physically contact (j = 0). For compressible
Euler equations, contact discontinuities are further classified to be compressible vortex sheets (~uτ� , 0)
and entropy waves (~u� = ~0,

�
%

�
, ~s� , 0). The existence and the structural stability of multi-dimensional

shocks for compressible Euler equations was proved by Majda [56, 57] (see also Blokhin [10]) provided that
the uniform Kreiss-Lopatinskiı̆ condition [43] is satisfied. Indeed, shock fronts under the uniform Kreiss-
Lopatinskiı̆ condition are non-characteristic discontinuities, while compressible vortex sheets are character-
istic discontinuities and the uniform Kreiss-Lopatinskiı̆ condition is never satisfied. Thus, there is a potential
loss of normal derivatives for compressible vortex sheets, which makes the proof of existence and structural
stability more difficult. For 3D Euler equations, compressible vortex sheets are always violently unstable
[29, 63, 78] which exhibit an analogue of Kelvin-Helmholtz instability; whereas for 2D Euler equations,
Coulombel-Secchi [22, 23] proved the existence of “supersonic” vortex sheets when the Mach number for
the rectilinear background solution (±v, ρ) exceeds

√
2 and the violent instability when the Mach number

is lower than
√

2 by adapting Majda’s frequency analysis [56] to the linearized problem and Nash-Moser
iteration. See also Chen-Secchi-Wang [13] for the study of supersonic relativistic vortex sheets in (1+2)-
dimensional Minkowski space-time. Similarly as the incompressible case, surface tension again prevents
such violent instability and we refer to Stevens [74] for the proof of structural stability.

1.3.2 Strong discontinuities in ideal compressible MHD

Apart from surface tension, suitable magnetic fields or elasticity also have stabilization effect on the vortex
sheets. For example, one can see a series of work [14, 15, 16, 17] by Chen, Hu, Wang, et al., about the
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compressible vortex sheets in elastodynamics. As for MHD, after excluding MHD shocks (j , 0,
�
%

�
, 0)

which are non-characteristic discontinuities, there are three different types of characteristic discontinuities:
current-vortex sheets (j = 0, B± · N |Σ(t) = 0), MHD contact discontinuities (j = 0, B± · N |Σ(t) , 0) and
Alfvén (rotational) discontinuities (j , 0,

�
%

�
= 0). Current-vortex sheets and MHD contact discontinuities

are physically contact, while Alfvén discontinuities are not. The Rankine-Hugoniot conditions for current-
vortex sheets and MHD contact discontinuities (cf. [31, Chap. 4.5] and [83, Appendix A]) are

• (Current-vortex sheets/Tangential discontinuities) ~Q� = σH , B± · N = 0, ∂tψ = u± · N on Σ(t).
• (MHD contact discontinuities) ~P� = σH , ~u� = ~B� = ~0, B± · N , 0, ∂tψ = u± · N on Σ(t).

MHD contact discontinuities usually arise from astrophysical plasmas [31], where the magnetic fields
typically originate in a rotating object, such as a star or a dynamo operating inside, and intersect the surface
of discontinuity. An example is the photosphere of the sun. In contrast, current-vortex sheets require the
magnetic fields to be tangential to the interface. An example in laboratory plasma physics is that the dis-
continuities confine a high-density plasma by a lower-density one, which is isolated thermally from an outer
rigid wall. In particular, when the plasma is liquid metal, the effect of surface tension cannot be neglected
[64]. In astrophysics, a generally accepted model for compressible current-vortex sheets is the heliopause [8]
(in some sense, the “boundary” of the solar system1) that separates the interstellar plasma compressed at the
bow shock (outside the solar system) from the solar wind plasma compressed at the termination shock (inside
the solar system). Besides, the night-side magnetopause of the earth is also considered to be current-vortex
sheets. These facts demonstrate the existence of current-vortex sheets, so the corresponding mathematical
modelling becomes very important.

For MHD contact discontinuities, the transversality of magnetic fields could enhance the regularity of the
free interface and avoid the possible normal derivative loss in the interior. We refer to Morando-Trakhinin-
Trebeschi [66] for the 2D case under Rayleigh-Taylor sign condition N ·∇ ~Q� |Σ(t) ≥ c0 > 0, Trakhinin-Wang
[83] for the case with nonzero surface tension, and Wang-Xin [87] for both 2D and 3D cases without surface
tension or Rayleigh-Taylor sign condition. In other words, Wang-Xin [87] showed that transversal magnetic
fields across the interface could suppress the Rayleigh-Taylor instability.

As for current-vortex sheets, Kelvin-Helmholtz instability can also be suppressed, but, unlike the transver-
sal magnetic fields in MHD contact discontinuities, the tangential magnetic fields must satisfy certain con-
straints. For 3D incompressible ideal MHD, Syrovatskiı̆ [77] introduced a stability condition by using normal
mode analysis:

%+|B+ × ~u� |2 + %−|B− × ~u� |2 < (%+ + %−)|B+ × B−|2, (1.27)

which corresponds to the transition to violent instability, that is, ill-posedness of the linearized problem.
Coulombel-Morando-Secchi-Trebeschi [21] proved the a priori estimate for the nonlinear problem under a
more restrictive condition

max
{∣∣∣∣∣∣ B+

√
%+
× ~u�

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ B−
√
%−
× ~u�

∣∣∣∣∣∣
}
<

∣∣∣∣∣∣ B+

√
%+
×

B−
√
%−

∣∣∣∣∣∣ . (1.28)

Sun-Wang-Zhang [75] proved local well-posedness of the nonlinear problem under the original Syrovatskiı̆
condition (1.27) by adapting the framework of Shatah-Zeng [73]. Very recently, Liu-Xin [50] gave a com-
prehensive study for both σ > 0 and σ = 0 cases (see also Li-Li [47]).

For compressible current-vortex sheets without surface tension, Trakhinin [79] showed that the uniform
Kreiss-Lopatinskiı̆ condition [43] for the linearized problem is never satisfied, so only the neutral stability
can be expected for the linearized problem. However, the specific range for the neutral stability cannot be
explicitly calculated [79, Section 4.2]. Thus, it is still unknown if there is any necessary and sufficient con-
dition for the linear (neutral) stability. To avoid testing the Kreiss-Lopatinskiı̆ condition, Trakhinin [79] used
the method of “Friedrichs secondary symmetrizer” to raise a sufficient condition for the problem linearized
around a background planar current-vortex sheet (v̂±, b̂±, ρ̂±, Ŝ ±) in flattened domains Ω±, which reads

| ~v̂� | < | sin(α+ −α−)|min
{

γ+

| sinα−|
,

γ−

| sinα+|

}
, (1.29)

1On August 25, 2012, Voyager 1 flew beyond the heliopause and entered interstellar space. At the time, it was at a distance about
122 A.U. (around 18 billion kilometers) from the sun. On November 5, 2018, Voyager 2 also traversed the heliopause.
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where γ± := c±A√
1+(c±A/c

±
s )2

, c±A := |b̂±|/
√
ρ̂± represents the Alfvén speed, c±s :=

√
∂p̂±/∂ρ̂± represents the sound

speed, and α± represents the oriented angle between ~v̂� and b̂±. Indeed, (1.29) is equivalently to

max
{
|b̂− × ~v̂� |

√
ρ̂+

(
1 + (c+

A/c
+
s )2

)
, |b̂+ × ~v̂� |

√
ρ̂−

(
1 + (c−A/c

−
s )2

)}
< |b̂+ × b̂−|, (1.30)

which is exactly the same as (1.25). If we formally take the incompressible limit ρ̂± → 1 and c±s → +∞, then
the above inequality exactly converges to (1.28) used in [21], and it is easy to see (1.28) implies (1.27).

Under (1.25), Chen-Wang [12] and Trakhinin [80] proved the well-posedness for the 3D problem without
surface tension by using Nash-Moser iteration. Using similar techniques as [80], Morando-Secchi-Trebeschi-
Yuan [65] proved the well-posedness for the 2D problem without surface tension under the stability condition
(1.26), which covers part of the “subsonic zone” for the neutral stability obtained by Wang-Yu [86]. That is
to say, non-collinear magnetic fields in 3D and sufficiently strong magnetic fields in 2D can also suppress the
analogue of Kelvin-Helmholtz instability for compressible vortex sheets.

The abovementioned results only give the local existence of free-boundary ideal compressible MHD, but
many behaviors of the solutions are still unclear. For example, Ohno-Shirota [67] showed that the linearized
problem in a fixed domain with magnetic fields tangential to the boundary is ill-posed in standard Sobolev
spaces Hl(l ≥ 2), but the corresponding incompressible problem is well-posed in standard Sobolev spaces
[36, 75, 76, 50, 51]. The anisotropic Sobolev spaces defined in Section 1.4.1, first introduced by Chen
[18], have been adopted in previous works about ideal compressible MHD [90, 70, 71, 80, 12, 72, 81, 82].
The author [91] studied compressible inviscid-resistive MHD in standard Sobolev spaces, but the vanishing
resistivity limit is still unknown. In other words, there is no explanation for the mismatch of the function
spaces for local existence yet. Besides, it is also unclear about the comparison between the stabilization
mechanism brought by surface tension and the one brought by certain magnetic fields when the plasma is
compressible. These questions should be answered by rigorously justifying the incompressible limit and
the zero-surface-tension limit. In particular, the existing literature about the incompressible limit of free-
boundary problems in inviscid fluids is only avaliable for the one-phase problems [48, 52, 25, 91, 92, 55, 37].
The incompressible limits of free-boundary MHD and vortex sheet in inviscid fluids remain completely open.

1.3.3 Our goal in this paper

In this paper, we give a comprehensive study for the local-in-time solution to current-vortex sheets in ideal
MHD and particularly give affirmative answers to the abovementioned questions. Specifically, we aim the
prove the following results:

• Well-posedness of current-vortex sheets with surface tension in both 2D and 3D, which corresponds to
the local well-posedness and energy estimates (without loss of regularity) of system (1.16).
• Incompressible and zero-surface tension limits of current-vortex sheets. The incompressible limit re-

sults from the estimates that are uniform in Mach number (which will be achieved together with local
existence) when the initial data is “well-prepared”. Taking the zero surface tension limit requires the
estimates to be uniform in σ > 0 under the stability conditions (1.25) or (1.26) in 3D and 2D respec-
tively. It should be noted that these two limit processes are independent of each other, that is, our
energy estimates are uniform in both Mach number and σ under (1.25) or (1.26).

To our knowledge, this is the first result about the incompressible limit of compressible vortex sheets and
free-boundary MHD and also the first result about compressible current-vortex sheets with surface tension.
The incompressible limit also ties our result to the suppression effect on Kelvin-Helmholtz instability brought
by either surface tension or suitable magnetic fields.

1.4 Main results
1.4.1 Anisotropic Sobolev spaces

Following the notations in [18, 85], we first define the anisotropic Sobolev space Hm
∗ (Ω±) for m ∈ N and

Ω± = Td−1 × {0 < ±xd < H}. Let ω = ω(xd) = (H2 − x2
d)x2

d be a smooth function on [−H,H]. The choice
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of ω(xd) is not unique, as we just need ω(xd) vanishes on Σ ∪ Σ± and is comparable to the distance function
near the interface and the boundaries. Then we define Hm

∗ (Ω±) for m ∈ N∗ as follows

Hm
∗ (Ω±) :=

 f ∈ L2(Ω±)
∣∣∣∣∣(ω∂d)αd+1∂α1

1 · · · ∂
αd
d f ∈ L2(Ω±), ∀α with

d−1∑
j=1

α j + 2αd + αd+1 ≤ m

 ,
equipped with the norm

‖ f ‖2Hm
∗ (Ω±) :=

∑
d−1∑
j=1
α j+2αd+αd+1≤m

‖(ω∂d)αd+1∂α1
1 · · · ∂

αd
d f ‖2L2(Ω). (1.31)

For any multi-index α := (α0, α1, · · · , αd, αd+1) ∈ Nd+2, we define

∂α∗ := ∂α0
t (ω∂d)αd+1∂α1

1 · · · ∂
αd
d , 〈α〉 :=

d−1∑
j=0

α j + 2αd + αd+1,

and define the space-time anisotropic Sobolev norm ‖ · ‖m,∗,± to be

‖ f ‖2m,∗,± :=
∑
〈α〉≤m

‖∂α∗ f ‖2L2(Ω±) =
∑
α0≤m

‖∂α0
t f ‖2

Hm−α0
∗ (Ω±)

. (1.32)

We also write the interior Sobolev norm to be ‖ f ‖s,± := ‖ f (t, ·)‖Hs(Ω±) for any function f (t, x) on [0,T ]×Ω±

and denote the boundary Sobolev norm to be | f |s := | f (t, ·)|Hs(Σ) for any function f (t, x′) on [0,T ] × Σ.
From now on, we assume the dimension d = 3, that is, Ω± = T2 × {0 < ±x3 < H}, Σ± = T2 × {x3 = ±H}

and Σ = T2 × {x3 = 0}. We will see the 2D case follows in the same manner as the 3D case up to slight
modifications in the vorticity analysis and the analysis of stability condition when σ = 0.

1.4.2 Main result 1: Well-posedness and uniform estimates in Mach number

Invoking (1.20) and writing F ±p := ∂F ±

∂p± , system (1.16) is equivalent to

ρ±Dϕ±
t v± − (b± · ∇ϕ)b± + ∇ϕq± = 0, q± = p± + 1

2 |b
±|2 in [0,T ] ×Ω±,

F ±p Dϕ±
t p± + ∇ϕ · v± = 0 in [0,T ] ×Ω±,

p± = p±(ρ±, S ±), F ± = log ρ±, F ±p > 0, ρ± ≥ ρ̄0 > 0 in [0,T ] ×Ω±,

Dϕ±
t b± − (b± · ∇ϕ)v± + b±∇ϕ · v± = 0 in [0,T ] ×Ω±,

∇ϕ · b± = 0 in [0,T ] ×Ω±,

Dϕ±
t S ± = 0 in [0,T ] ×Ω±,�

q
�

= σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
on [0,T ] × Σ,

∂tψ = v± · N on [0,T ] × Σ,

b± · N = 0 on [0,T ] × Σ,

v±d = b±d = 0 on [0,T ] × Σ±,

(v±, b±, ρ±, S ±, ψ)|t=0 = (v±0 , b
±
0 , ρ

±
0 , S

±
0 , ψ0).

(1.33)

Since the material derivatives are tangential to the boundary, that is, Dϕ±
t = D±t := ∂t + v̄± · ∇ on Σ and

Σ±, the compatibility conditions (1.6) for initial data up to m-th order (m ∈ N) are now written as:�
∂

j
t q

�
|t=0 = σ∂

j
tH|t=0 on Σ, 0 ≤ j ≤ m,

∂
j+1
t ψ|t=0 = ∂

j
t (v
± · N)|t=0 on Σ, 0 ≤ j ≤ m,

∂
j
t v
±
d |t=0 = 0 on Σ±, 0 ≤ j ≤ m.

(1.34)

Under (1.34), one can prove that ∂ j
t (b
± · N)|t=0 = 0 is also satisfied on Σ and Σ± for 0 ≤ j ≤ m and we refer to

Trakhinin [80, Section 4] for details.
The first result shows the local well-posedness and the energy estimates of (1.33) for each fixed σ > 0.
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Theorem 1.1 (Well-posedness and uniform estimates for fixed σ > 0). Fix the constant σ > 0. Let
U±0 := (v±0 , b

±
0 , ρ

±
0 , S

±
0 )> ∈ H8

∗ (Ω
±) and ψ0 ∈ H9.5(Σ) be the initial data of (1.33) satisfying

• the compatibility conditions (1.34) up to 7-th order;
• the constraints ∇ϕ0 · b±0 = 0 in Ω±, b± · N |{t=0}×(Σ∪Σ±) = 0 ;
• | ~v̄0� | > 0 on Σ, |ψ0|L∞(Σ) ≤ 1, and E(0) ≤ M for some constant M > 0.

Then there exists Tσ > 0 depending only on M andσ, such that (1.33) admits a unique solution (v±(t), b±(t), ρ±(t), S ±(t), ψ(t))
verifies the energy estimate

sup
t∈[0,T ]

E(t) ≤ C(σ−1)P(E(0)) (1.35)

and sup
t∈[0,Tσ]

|ψ(t)| < 10 < H, where P(· · · ) is a generic polynomial in its arguments. The energy E(t) is defined

to be

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t),

E4+l(t) :=
∑
±

∑
〈α〉=2l

4−l∑
k=0

∥∥∥∥∥(ε2lT α∂k
t

(
v±, b±, S ±, (F ±p )

(k+α0−l−3)+
2 p±

))∥∥∥∥∥2

4−k−l,±

+

4+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5+l−k 0 ≤ l ≤ 4,

(1.36)

where k+ := max{k, 0} for k ∈ R and we denote T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 to be a high-order tangential

derivative for the multi-index α = (α0, α1, α2, 0, α4) with length (for the anisotropic Sobolev spaces) 〈α〉 =

α0 + α1 + α2 + 2× 0 + α4. The quantity ε is the parameter defined in (1.22). Moreover, the H9.5(Σ)-regularity
of ψ can be recovered in the sense that

4∑
l=0

3+l∑
k=0

∣∣∣σε2l∂k
tψ

∣∣∣2
5.5+l−k ≤ P(E(t)), ∀t ∈ [0,Tσ]. (1.37)

Remark 1.2 (Correction of E4(t)). The norm ‖p±‖24,± in E4(t) defined by (1.36) should be replaced by
‖(F ±p )

1
2 p±‖20,± + ‖∇p±‖23,± because we do not have L2 estimates of p± without F ±p -weight. We still write

‖p±‖24,± as above for simplicity of notations.

Remark 1.3 (Weights of Mach number of p±). In (1.36), the weight of Mach number of p is slightly different
from (v, b, S ), but such difference only occurs when T α are full time derivatives and k = 4 − l. In fact, due to
k ≤ 4 − l and α0 ≤ 〈α〉 = 2l, we know (k + α0 − l − 3)+ is always equal to zero unless α0 = 2l and k = 4 − l
simultanously hold.

Remark 1.4 (Relations with anisotropic Sobolev space). The energy functional E(t) above is considered as
a variant of ‖ · ‖8,∗,± norm at time t > 0. For different multi-index α, we set suitable weights of Mach number
according to the number of tangential derivatives that appear in ∂α∗ , such that the energy estimates for the
modified norms are uniform in ε.

Remark 1.5 (Nonlinear structural stability). System (1.33) is studied in a bounded domain T2 × (−H,H).
Indeed, our proof also applies to the case of an unbounded domain, such as T2 × R±, R

2 × R±, for non-
localised initial data U±0 satisfying (U±0 − U±, ψ0) ∈ H8

∗ (Ω) × H9.5(Σ) where U± represents a given piecewise-
smooth background solution of planar current-vortex sheet (v±1 , v

±
2 , 0, b

±
1 , b

±
2 , 0, p±, S ±)> in Ω±. The result

corresponding to this initial data exactly justifies the existence and the local-in-time nonlinear structural
stability of the piecewise-smooth planar current-vortex sheet U±.

1.4.3 Main result 2: Incompressible and zero-surface-tension limits

Next we are concerned with the incompressible limit and the zero-surface-tension limit. For any fixed σ > 0,
the energy estimates obtained in Theorem 1.1 are already uniform in ε. Also, ‖∂t(v, b, S )‖3+|ψt |4.5 is uniformly
bounded in ε. Thus, using compactness argument, we can prove the incompressible limit for current-vortex
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sheets with surface tension. Specifically, the motion of incompressible current-vortex sheets with surface
tension are characterised by the equations of (ξσ,w±,σ, h±,σ) with incompressible initial data (ξσ0 ,w

±,σ
0 , h±,σ0 )

and a transport equation of S±,σ:

R±,σ(∂t + w±,σ · ∇Ξσ

)w±,σ − (h±,σ · ∇Ξσ

)h±,σ + ∇Ξσ

Π±,σ = 0 in [0,T ] ×Ω,

∇Ξσ

· w±,σ = 0 in [0,T ] ×Ω,

(∂t + w±,σ · ∇Ξσ

)h±,σ = (h±,σ · ∇Ξσ

)w±,σ in [0,T ] ×Ω,

∇Ξσ

· h±,σ = 0 in [0,T ] ×Ω,

(∂t + w±,σ · ∇Ξσ

)S±,σ = 0 in [0,T ] ×Ω,

~Πσ� = σ∇ ·

(
∇ξσ

√
1+|∇ξσ |2

)
on [0,T ] × Σ,

∂tξ
σ = w±,σ · Nσ on [0,T ] × Σ,

h±,σ · Nσ = 0 on [0,T ] × Σ,

w±3 = h±3 = 0 on [0,T ] × Σ±,

(w±,σ, h±,σ,S±,σ, ξσ)|t=0 = (w±,σ0 , h±,σ0 ,S±,σ0 , ξσ0 ),

(1.38)

where Ξσ(t, x) = x3 + χ(x3)ξσ(t, x′) is the extension of ξσ in Ω and Nσ := (−∂1ξ
σ,−∂2ξ

σ, 1)>. The quantity
Π± := Π̄± + 1

2 |h
±|2 represent the total pressure functions for the incompressible equations with Π̄± the fluid

pressure functions. The quantity R± satisfies the evolution equation (∂t + w±,σ · ∇Ξσ

)R±,σ = 0 with initial data
R
±,σ
0 := ρ±,σ(0,S±,σ0 ).

Denoting (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) to be the solution of (1.33) indexed by σ and ε, we prove that
(ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) converges to (ξσ,w±,σ, h±,σ,R±,σ,S±,σ) as ε → 0 provided the convergence
of initial datum.

Theorem 1.2 (Incompressible limit for fixed σ > 0). Fix σ > 0. Let (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) be
the initial data of (1.33) for each fixed (ε, σ) ∈ R+ × R+, satisfying

a. The sequence of initial data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) ∈ H9.5(Σ)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×
H8(Ω±) satisfies the compatibility conditions (1.34) up to 7-th order, and |ψε,σ0 |L∞ ≤ 1.

b. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 )→ (ξσ0 ,w
±,σ
0 , h±,σ0 ,S±,σ0 ) in H5.5(Σ)×H4(Ω±)×H4(Ω±)×H4(Ω±) as ε, σ→ 0.

c. The incompressible initial data satisfies |
�
w̄σ

0

�
| > 0 on Σ, the constraints ∇ξ

σ
0 · h±,σ0 = 0 in Ω±, h±,σ ·

Nσ|{t=0}×Σ = 0.

Then it holds that

(ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ)→ (ξσ,w±,σ, h±,σ,S±,σ), (1.39)

weakly-* in L∞([0,Tσ]; H5.5(Σ)×(H4(Ω±))3) and strongly in C([0,Tσ]; H5.5−δ
loc (Σ)×(H4−δ

loc (Ω±))3) after possibly
passing to a subsequence, where Tσ is the time obtained in Theorem 1.1.

Remark 1.6 (The “compatibility conditions” for the incompressible problem). For the incompressible prob-
lem, there is no need to require the so-called “compatibility conditions” for the initial data, for example [19].
The convergence of compressible data automatically implies the fulfillment of time-differentiated kinematic
boundary conditions and the time-differentiated slip conditions at t = 0. The time-differentiated jump con-
ditions can also be easily fulfilled by adjusting the boundary values of Π, as the pressure function Π is NOT
uniquely determined by the other variables for the incompressible problem.

When taking the limit σ → 0, we shall impose suitable stability conditions on Σ to ensure the well-
posedness of “σ = 0”-problem. Assume there exists a constant δ0 ∈ (0, 1

8 ) such that

δ0 ≤ a±
∣∣∣b̄∓ × ~v̄�∣∣∣ ≤ (1 − δ0)|b̄+ × b̄−| on [0,T ] × Σ, (1.40)

where

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2 (1.41)
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and c±A := |b±|/
√
ρ± represents the Alfvén speed (the speed of magnetosonic wave), c±s :=

√
∂p±/∂ρ± repre-

sents the sound speed. It should be noted that (1.40) is not an imposed boundary condition for the “σ = 0”-
problem. Instead, it is just a constraint for initial data which can propagate within a short time. In other
words, we only need to assume

2δ0 ≤ (a±|t=0)
∣∣∣b̄∓0 × ~v̄0�

∣∣∣ ≤ (1 − 2δ0)|b̄+
0 × b̄−0 | on Σ. (1.42)

Under the stability condition, we can establish the uniform-in-(ε, σ) energy estimates.

Theorem 1.3 (Uniform-in-(ε, σ) estimates). Under the hypothesis of Theorem 1.1, if the stability condition
(1.40) holds, then there exists a time T > 0 only depending on M, such that

sup
0≤t≤T

Ẽ(t) ≤ P(Ẽ(0)), (1.43)

where Ẽ(t) is defined by

Ẽ(t) :=
4∑

l=0

Ẽ4+l(t), Ẽ4+l(t) = E4+l(t) +

4+l∑
k=0

∣∣∣ε2l∂k
tψ

∣∣∣2
4.5+l−k . (1.44)

Denote (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) to be the solution of (1.33) indexed by σ and ε. Under the
stability conditions, we prove that (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) converges to (ξ0,w±,0, h±,0,R±,0,S±,0) as
ε, σ→ 0 provided the convergence of initial datum. Here (ξ0,w±,0, h±,0,R±,0,S±,0) represents the solution to
incompressible current-vortex sheets system (1.38) with initial data (ξ0

0 ,w
±,0
0 , h±,00 ,S±,00 ) when σ = 0.

Corollary 1.4 (Incompressible and zero-surface-tension limits). Let (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) be
the initial data of (1.33) for each fixed (ε, σ) ∈ R+ × R+, satisfying

a. The sequence of initial data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 ) ∈ H9.5(Σ)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×H8
∗ (Ω

±) satisfies
the hypothesis of Theorem 1.1.

b. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 )→ (ξ0
0 ,w

±,0
0 , h±,00 ,S±,00 ) in H5.5(Σ)×H4(Ω±)×H4(Ω±)×H4(Ω±) as ε, σ→ 0.

c. The incompressible initial data satisfies |
�
w̄0

0

�
| > 0 on Σ, the constraints ∇ξ0 · h0,±

0 = 0 in Ω±, h0,± ·

N0|{t=0}×(Σ∪Σ±) = 0, the stability condition

2δ0 ≤

√
R
±,0
0

∣∣∣∣h̄∓,00 ×
�
w̄0

0

�∣∣∣∣ ≤ (1 − 2δ0)|h̄+,0
0 × h̄−,00 | on Σ, (1.45)

where δ0 > 0 is the same constant as in (1.40).

Then it holds that

(ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ)→ (ξ0,w±,0, h±,0,S±,0), (1.46)

weakly-* in L∞([0,T ]; H4.5(Σ)× (H4(Ω±))3) and strongly in C([0,T ]; H4.5−δ
loc (Σ)× (H4−δ

loc (Ω±))3) after possibly
passing to a subsequence. Here T > 0 is the time obtained in Theorem 1.3.

Remark 1.7 (Stability conditions in 2D). When taking the zero-surface-tension limit, the stability condition
for compressible current-vortex sheets in 2D is(

|b+
1 |

a+
+
|b−1 |
a−

)
≥ (1 + δ0)| ~v1� | > 0 on [0,T ] × Σ, (1.47)

which is again propagated by the initial constraint(
|b+

1 |

a+
+
|b−1 |
a−

) ∣∣∣∣∣
t=0
≥ (1 + 2δ0)| ~v01� | > 0 on Σ, . (1.48)

The corresponding stability condition for the incompressible data is |h
+,0
01 |√
R

+,0
0

+
|h−,001 |√
R
−,0
0

 ≥ (1 + 2δ0)
∣∣∣∣�w0

01

�∣∣∣∣ > 0. (1.49)
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1.4.4 Main result 3: Dropping redundant assumptions on initial data for the incompressible limit

The uniform-in-ε estimates obtained in Theorem 1.1 and Theorem 1.3 require ∇ϕ · v0 = O(ε2) and ∂k
t v|t=0 =

O(1) for k ≤ 4. Such assumption is much stronger than the widely used definition of “well-prepared” initial
data (cf. [58, Chap. 2.4] and [62, 69]), that is, ∇ϕ · v0 = O(ε) and ∂tv|t=0 = O(1). When

�
ρ

�
= O(ε) on the

interface Σ, we can still prove the incompressible limit under the assumption ∇ϕ · v0 = O(ε), ∂tv|t=0 = O(1)
without any boundedness assumptions on higher-order time derivatives. However, the energy functional
should also be modified. We define

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t) (1.50)

Ẽ(t) := Ẽ4(t) + Ẽ5(t) + Ẽ6(t) + Ẽ7(t) + Ẽ8(t) (1.51)

where E4(t) is defined as the following

E4(t) =
∑
±

∥∥∥(v±, b±, p±)
∥∥∥2

4,± +
∥∥∥∂t(v±, b±, εp±)

∥∥∥2
3,± +

4∑
k=2

∥∥∥∥∥ε∂k
t

(
v±, b±, (F ±p )

(k−3)+
2 p±

)∥∥∥∥∥2

4−k,±

+
∣∣∣√σψ∣∣∣25 +

∣∣∣√σ∂tψ
∣∣∣2
4 +

4∑
k=2

∣∣∣√σε∂k
tψ

∣∣∣2
5−k ,

(1.52)

and

Ẽ4(t) = E4(t) + |ψ|24.5 + |∂tψ|
2
3.5 +

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣ε∂3
t ψ

∣∣∣2
1.5 +

∣∣∣ε∂4
t ψ

∣∣∣2
0.5 . (1.53)

Theorem 1.5 (Improved uniform estimates). Assume the fluids in Ω± are isentropic and the initial density
functions satisfy |

�
ρ0

�
|1.5 ≤ C0ε on Σ for some C0 > 0. Under the hypothesis of Theorem 1.1, the assumption

E(0) ≤ M′ for some constant M′ > 0, there exists T ′σ > 0 depending only on M′ andσ−1 such that the solution
(v±(t), b±(t), ρ±(t), ψ(t)) to system (1.33) verifies the uniform-in-ε energy estimate

sup
t∈[0,T ′σ]

E(t) ≤ C(σ−1)P(E(0)). (1.54)

Furthermore, under the stability condition (1.40) and Ẽ(0) ≤ M′, there exists T ′ > 0 depending only on M′

such that such that the solution (v±(t), b±(t), ρ±(t), ψ(t)) to system (1.33) verifies the uniform-in-(ε, σ) energy
estimate

sup
t∈[0,T ′]

Ẽ(t) ≤ P(Ẽ(0)). (1.55)

Remark 1.8. Since ∂tv|t=0 = O(1) still remains bounded, the above uniform estimates directly give the
same stronge convergence results as in Theorem 1.2 and Corollary 1.4 with the help of the Aubin-Lions
compactness lemma. We do not repeat the statement of convergence theorems here. The result is also true
for 2D case under the stability condition (1.47).

Remark 1.9 (The smallness assumption on the density jump). The assumption |
�
ρ0

�
|1.5 ≤ C0ε on Σ implies

that |
�
ρ(t)

�
|1.5 ≤ C1ε on [0,T ′]×Σ for some C1 > 0. To achieve the assumption, one may have to assume the

fluids are isentropic and that is why the entropy S is deleted in E and Ẽ. Indeed, taking the incompressible
limit yields ~R� = 0 on Σ for the incompressible density functions R±. If the fluids are non-isentropic, then
R± are not constants and only satisfy (∂t + w̄± · ∇)R± = 0 on Σ. Since the vortex sheet problems require
~w̄� , 0 on Σ, it is not possible to have R+(t) = R−(t) on Σ even if it holds at t = 0.

List of Notations: In the rest of this paper, we sometimes write T k to represent a tangential derivative T α

in Ω± with order 〈α〉 = k when we do not need to specify what the derivative T α contains. We also list all the
notations used in this manuscript.

• Ω± := Td−1 × {0 < ±xd < H}, Σ := Td−1 × {xd = 0} and Σ± := Td−1 × {xd = ±H}, d = 2, 3.
• ‖ · ‖s,±: We denote ‖ f ‖s,± := ‖ f (t, ·)‖Hs(Ω±) for any function f (t, x) on [0,T ] ×Ω±.
• | · |s: We denote | f |s := | f (t, ·)|Hs(Σ) for any function f (t, x′) on [0,T ] × Σ.
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• ‖ · ‖m,∗: For any function f (t, x) on [0,T ] × Ω, ‖ f ‖2m,∗,± :=
∑
〈α〉≤m

‖∂α∗ f (t, ·)‖20,± denotes the m-th order

space-time anisotropic Sobolev norm of f .
• P(· · · ): A generic polynomial with positive coefficients in its arguments;
• [T, f ]g := T ( f g) − f T (g), and [T, f , g] := T ( f g) − T ( f )g − f T (g), where T denotes a differential

operator and f , g are arbitrary functions.
• ∂: ∂ = ∂1, · · · , ∂d−1 denotes the spatial tangential derivative.
• A L

= B: A is equal to B plus some lower-order terms that are easily controlled.

Acknowledgement. The author would like to thank Prof. Zhouping Xin and Prof. Chenyun Luo for helpful
discussions when he visited The Chinese University of Hong Kong during May 2023. The author would also
like to thank Prof. Paolo Secchi for sharing his idea about the trace theorem for anisotropic Sobolev spaces.

2 Strategy of the proof
Before going to the detailed proof, we would like to briefly introduce the strategies to tackle this complicated
problem. We will decompose the problem into the following parts:

1. Uniform-in-ε estimates for one-phase compressible ideal MHD in a fixed domain with boundary.
2. Generalization to the free-boundary setting by using Alinhac good unknowns.
3. Analysis of three crucial terms that contributes to the boundary regularity, shows a cancellation struc-

ture to reach the incompressible limit and exhibits the crucial difficulty caused by the tangential velocity
jump in vortex sheets respectively.

4. The stability conditions ensure the estimates to be uniform in σ.
5. Design an appropriate approximate system to prove the local well-posedness without using Nash-

Moser or tangential smoothing.

Moreover, we will make comparison between the compressible problem and the incompressible problem,
bewteen the Lagrangian coordinates and the “flattened coordinates”, among the vortex sheet problem, the
one-phase problem and the MHD contact discontinuity.

2.1 Uniform estimates for one-phase MHD flows in a fixed domain
First, let us temporarily forget about the free-boundary setting and recall how to derive uniform estimates
in Mach number for the one-phase problem of (1.1) in the fixed domain Ω = T2 × (−H,H) with the slip
conditions u3 = B3 = 0 on ∂Ω in the preparatory work [85] by Wang and the author.

2.1.1 Div-Curl analysis: a hidden structure of Lorentz force

The entropy is easy to control thanks to Dts = 0, so it suffices to analyze the relations between (u, B) and
Q := P + 1

2 |B|
2. Using div-curl decomposition, we shall prove the H3-estimates for the divergence part and

the curl part in order to control ‖u, B‖4. The divergence part is reduced to the tangential derivatives ‖FpDtP‖3.
To control the curl part, we take ∇× in the momentum equation and invoke the evolution equation of B to get

d
dt

∫
Ω

%|∂3(∇ × u)|2 + |∂3(∇ × B)|2 dx = −

∫
Ω

∂3∇ × (B(∇ · u)) · ∂3(∇ × B) dx + controllable terms, (2.1)

where we find that there is a normal derivative loss in the term ∂3∇ × (B(∇ · u)). Indeed, invoking ∇ · u =

−FpDtP, commuting ∇ with Dt and inserting the momentum equation −∇P = %Dtu + B × (∇ × B), we find a
hidden structure of the Lorentz force B × (∇ × B) that eliminates the normal derivative in the curl operator:

FpB × (∂3∇DtP) = −Fp%B × (∂3D2
t u) − FpB × (B × ∂3Dt(∇ × B)) + lower order terms,

in which the second term contributes to an energy term − 1
2

d
dt

∫
Ω
Fp|B × (∂3∇ × B)|2 dx plus controllable

remainder terms. Thus, the vorticity analysis for compressible ideal MHD motivates us to trade one normal
derivative (in curl) for two tangential derivatives together with square weights of Mach number, namely
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ε2D2
t . Furthermore, it can be seen that the anisotropic Sobolev spaces defined in Section 1.4.1 should be

the appropriate function spaces to study compressible ideal MHD with magnetic fields tangential to the
boundary. This structure was first observed by the author and Wang in the recent preparatory work [85] and
gives a definitive explanation on the “mismatch” of fucntion spaces for the well-posedness of incompressible
MHD (Hm) and compressible MHD (H2m

∗ ): the “anisotropic part”, namely the part containing more than m
derivatives, must have weight ε2 or higher power which converges to zero when taking the incompressible
limit. The 2D case is also similarly treated and we refer to Section 6.3 for details.

2.1.2 Reduction of pressure: motivation to design the energy functional

We still need to reduce the normal derivative falling on Q (or P = Q − 1
2 |B|

2). To do this, we just need to use
−∇Q = %Dtu − (B · ∇)B and the fact that Dt and B · ∇ are both tangential. Repeatedly, all normal derivatives
are reduced to tangential derivatives, and the tangential estimates are expected to be parallel to the proof of
L2 energy conservation.

A remaining task is to determine the weights of Mach number assigned on u, B, P when we invoke the
momentum equation to reduce ∇P. One thing we already know from the momentum equation is that ∇(P +
1
2 |B|

2) ∼ (B · ∇)B − Dtu, which suggests that ∂k
t∇P should share the same weights of Mach number as ∂k+1

t u.
Apart from this, we recall that the L2 energy conservation shows that u, B,

√
FpP, s ∈ L2(Ω), which suggest

that ∂k
t (u, B, s) should share the same weights of Mach number as ε∂k

t P when doing tangential estimates.
Thus, we can conclude our reduction scheme as follows

a. Using div-curl analysis to reduce any normal derivatives on u, B. In this process, we have (∇ · u,∇ ·
B) → ε2TP and (∇ × u,∇ × B) → ε2T 2u, where T can be any one of the tangential derivatives
∂t, ∂1, ∂2, ω(x3)∂3.

b. Using the momentum equation to reduce ∇P to T (u, B) and ∇( 1
2 |B|

2) (this term should be further
reduced via div-curl analysis).

c. Tangential estimates: When estimating E4+l(t) (defined in (1.36)), T γ(u, B) is controlled together with√
FpT

γP in the estimates of full tangential derivatives, i.e., when 〈γ〉 = 4 + l.

Based on the above three properties, we design the energy functional E(t) in (1.36) and we expect to
establish uniform-in-ε estimates for this energy functional.

2.2 Analysis in the free-interface setting: Alinhac good unknowns
For the current-vortex sheets problem, one has to take into account of the free-interface motion. The regularity
of free interface is unknown a priori, σ-dependent and determined by the solutions. We only focus on the
uniform a priori estimates of (1.33) in the following 3 subsections and postpone the solvability of the current-
vortex sheets problem to Section 2.4.

2.2.1 The choice of div-curl inequality: different from fixed-domain problems

Compared with the fixed-domain problem, we may not apply the same div-curl inequality which is not appro-
priate for us to derive the uniform estimates for either E(t) or Ẽ(t), because the kinematic boundary condition
v · N = ψt introduces one more time derivative. One may alternatively use the following one:

∀s ≥ 1, ‖X‖2s . C(|ψ|s, |∇ψ|W1,∞ )
(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + ‖∂sX‖2s

)
, (2.2)

Remark 2.1. One may notice that the boundary energy terms in E(t) also depends on σ, which fails when
taking vanishing surface tension limit. Indeed, for 0 ≤ k ≤ 3+l, 0 ≤ l ≤ 4, one can prove ε2l∂k

tψ ∈ H4.5+l−k(Σ)
without σ-weight under the stability conditions (1.40) or (1.47). See Section 2.3.5 for explanations.

2.2.2 Tangential estimates: Alinhac good unknowns

The div-curl analysis converts all normal derivatives falling on v, b to tangential derivatives. According to the
reduction scheme, we need to control ‖ε2lT αT β∂k

t (v, b,
√
Fp p, S )‖20 where T α = (ω(x3)∂3)α4∂α0

t ∂
α1
1 ∂

α2
2 and
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α, β, k, l satisfy the following relations

〈α〉 = 2l, 〈β〉 = 4 − l − k, 0 ≤ k ≤ 4 − l, 0 ≤ l ≤ 4 and β0 = 0. (2.3)

In fact, the ε2lT α-part comes from the vorticity analysis for E4+l and the T β∂k
t -part comes from the interior

tangential derivatives in div-curl inequality (2.2).
When commuting T γ with ∇ϕ, the commutator [T γ, ∂

ϕ
i ] f contains the term (∂3ϕ)−1T γ∂iϕ∂3 f whose

L2(Ω)-norm is controlled by |T γ∇ψ|0. However, the regularity of ψ obtained in T γ-estimate is |
√
σT γ∇ψ|0,

which is σ-dependent. Even if we assume the stability conditions hold when taking the zero-surface-tension
limit, Remark 2.1 shows that we still have a 1/2-order derivative loss. To overcome this difficulty, we intro-
duce the Alinhac good unknown method which reveals that the “essential” leading order term in T γ(∇ϕ f )
is not simply ∇ϕ(T γ f ), but the covariant derivative of the “Alinhac good unknown” F. Namely, the Alinhac
good unknown for a function f with respect to T γ is defined by Fγ := T γ f − T γϕ∂

ϕ
3 f and satisfies

T γ∇
ϕ
i f = ∇

ϕ
i Fγ + C

γ
i ( f ), T γDϕ

t f = Dϕ
t Fγ +Dγ( f ), (2.4)

where ‖Cγi ( f )‖0 and ‖Dγ( f )‖0 can be directly controlled. Therefore, we can reformulate the T γ-differentiated
current-vortex sheets system (1.33) in terms of Vγ,±,Bγ,±,Pγ,±,Qγ,±,Sγ,± (the Alinhac good unknowns of
v±, b±, p±, q±, S ± in Ω±) with boundary conditions�

Qγ�
= σT γH −

�
∂3q

�
T γψ on [0,T ] × Σ, (2.5)

Vγ,± · N = ∂tT
γψ + v̄± · ∇T γψ −Wγ,± on [0,T ] × Σ, (2.6)

b± · N = 0 on [0,T ] × Σ, (2.7)

where the boundary termWγ,± is

Wγ,± := (∂3v± · N)T γψ + [T γ,Ni, v±i ] (2.8)

which will be an important role when proving the uniform-in-ε estimates.
Because of (2.4), the reformulated system of Alinhac good unknowns shares the same structure as the

original MHD system (1.33). We expect to obtain the L2(Ω) estimates of these good unknowns in a similar
manner as L2 energy conservation and then it is easy to obtain the T γ-estimates by using the definition
of Alinhac good unknowns. This fact was first observed by Alinhac [5] in the study of rarefaction waves
and was applied (implicitly) to the study of free-surface fluids by Christodoulou-Lindblad [20]. See also
Masmoudi-Roussét [59] for an explicit formulation that has been widely adopted by related works.

2.3 Crucial terms for boundary regularity, vortex sheets and incompressible limit
Dropping the superscript γ for convenience and applying L2 estimates to the good unknowns, we get the
following equality which includes four major terms∑

±

d
dt

1
2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p |P

±|2 dVt = ST + RT + VS +
∑
±

(Z± + ZB±) + · · · (2.9)

where dVt := ∂3ϕ dx. These four major terms are

ST := ε4l
∫

Σ

T γ(σH)∂tT
γψ dx′, RT := −ε4l

∫
Σ

�
∂3q

�
T γψT γ∂tψ dx′, (2.10)

VS := ε4l
∫

Σ

T γq−(~v̄� · ∇)T γψ dx′, (2.11)

ZB± := ∓ ε4l
∫

Σ

Q±W± dx′, Z± := −ε4l
∫

Ω±
Q±Ci(v±i ) dVt. (2.12)
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2.3.1 Surface tension gives boundary regularity

On the interface Σ, the weight function ω(x3) = 0, so it remains to consider T γ = ∂k+α0
t ∂4−l−k+(α1+α2) =

∂k+α0
t ∂4+l−(k+α0). For simplicity of notations, we replace k + α0 by k. It is easy to see that

ST := ε4l
∫

Σ

∂k
t ∂

4+l−k(σH)∂k+1
t ∂4+l−kψ dx′ = −

σ

2
d
dt

∫
Σ

|ε2l∂k
t ∂

4+l−k∇ψ|2√
1 + |∇ψ|2

3 + · · · (2.13)

gives the
√
σε2l-weighted boundary regularity in E(t). The term RT is supposed to give us boundary regular-

ity |ε2l∂k
tψ|

2
4+l−k without σ-weight provided the Rayleigh-Taylor sign condition

�
∂3q

�
≥ c0 > 0. However, in

the presence of surface tension, we cannot impose the Rayleigh-Taylor sign condition. Thus, we have to use
the
√
σ-weighted boundary energy, contributed by surface tension, to control RT.

2.3.2 A crucial term for vortex sheets

Let us consider the term VS that exhibits an essential difficulty in the study of vortex sheets.

VS := ε4l
∫

Σ

∂k
t ∂

4+l−kq−(~v̄� · ∇)∂k
t ∂

4+l−kψ dx′. (2.14)

The difficulty is that we only have a jump condition for
�
q

�
but no conditions for q± individually. Thus,

when 0 ≤ k ≤ 3 + l, we integrate ∂1/2 by parts and control q± by using Lemma B.4

VS ≤ |ε2l∂k
t ∂

3.5+l−kq−|0|ε2l(~v̄� · ∇)∂k
t ∂

4+l−kψ|1/2 ≤ ‖ε
2l∂k

t ∂
4+l−kq−‖1/20,−‖ε

2l∂k
t ∂

3+l−k∂3q−‖1/20,− |v̄|2|ε
2l∂k

tψ|5.5+l−k.

This indicates us to seek for the control of |ε2l∂k
tψ|5.5+l−k for 0 ≤ k ≤ 3 + l, which is exactly given by the

surface tension. Indeed, the jump conditionH(ψ) = σ−1 �
q

�
and the ellipticity of the mean curvature operator

indicates that we can control |ε2l∂k
tψ|5.5+l−k by |σ−1ε2l∂k

t
�
q

�
|3.5+l−k plus lower-order terms. Thus, surface

tension significantly enhances the regularity of the free interface such that VS is directly controlled.

Remark 2.2 (Comparison with one-phase problems and MHD contact discontinuities). The above es-
timate of VS term is not uniform in σ as the elliptic estimate is completely contributed by surface tension.
This corresponds to the fact that one cannot take the vanishing surface tension limit of vortex sheets for Euler
equations as they are usually violently unstable (except the 2D supersonic case [22, 23]). In the absence
of surface tension, the term VS loses control even if the Rayleigh-Taylor sign condition holds because the
Rayleigh-Taylor sign condition only gives the energy of |ε2l∂k

tψ|4+l−k which is 1.5-order lower than the de-
sired regularity. For one-phase problems, the term VS does not appear because everything in Ω− is assumed
to be vanishing, so the Rayleigh-Taylor sign condition is usually enough to guarantee the well-posedness
[81, 49]. For MHD contact discontinuities, the jump condition ~v� = ~0 also eliminates the term VS and the
transversality of magnetic fields automatically give the bound for |∂k

tψ|4−k (cf. Wang-Xin [87]). However, the
term VS must appear in the vortex sheet problems due to | ~v̄� | > 0 on Σ. Thus, the appearance of the term
VS shows an essential difference from one-phase flow problems and MHD contact discontinuities.

Remark 2.3 (Treatment of full time derivatives). It should be noted that when the tangential derivatives
are the full time derivatives ε2l∂4+l

t , the above analysis is no longer valid as we cannot integrate by part
∂1/2

t . Instead, one has to replace one ∂t by Dϕ,−
t and repeatedly use the Gauss-Green formula, the symmetric

structure, the continuity equation. In fact, this is the most difficult step in the proof of uniform estimates and
we refer to step 2 in Section 3.4.3 for those rather technical computations.

2.3.3 A crucial cancellation structure for incompressible limit

So far, we still have an interior term and a boundary term to control:

Z± + ZB± = −

∫
Ω±

Q±Ci(v±i ) dVt ∓

∫
Σ

Q±W± dx′. (2.15)
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The problem is that we only obtain the regularity for
√
F ±p Q± in tangential estimates, but the first term

contains Q± without ε-weights. When T γ contains at least one spatial derivative (γ0 < 〈γ〉), one can invoke
the momentum equation to replace Tiq (i = 1, 2, 4) by tangential derivatives of v, b. There is no loss of
ε-weight in this process, as only the full time derivatives of q± require one more ε-weight. However, there
may be a loss of ε-weight in this term when T γ only contains time derivatives, e.g., in ε2l∂4+l

t -estimates for
0 ≤ l ≤ 4. To get rid of this, there is a cancellation structure that is observed by comparing the concrete forms
ofW± and Ci(v±i ) (see (3.9))

ZB± = ∓ ε4l
∫

Σ

∂4+l
t q±[∂4+l

t ,Ni, v±i ] dx′ + · · · ,

Z± = − ε4l
∫

Ω±
∂4+l

t q± [∂4+l
t ,Ni, ∂3v±i ] dx + · · ·

Using Gauss-Green formula and integrating by parts in ∂t, it is easy to see that the leading-order part is

ZB± + Z±
∂t
= ε4l d

dt

∫
Ω±
∂3∂

3+l
t q± ∂3+l

t v± · ∂tN dx

− ε4l
∫

Ω±
∂3∂

3+l
t q±∂t(∂3+l

t v± · ∂tN) dx − ε4l
∫

Ω±
∂3+l

t q±∂t(∂3+l
t v± · ∂3∂tN) dx + · · ·

(2.16)

where the first term can be controlled by using Young’s inequality after integrating in time t and the other
two terms can be directly controlled uniformlly in ε because the full time derivatives of q no longer appear.
There are also several other terms involving the full time derivatives of q±, but they can be directly controlled
via delicate calculation and we refer to the author’s previous work (jointly with C. Luo) [55, Section 4.6.2]
for details. Hence, the problematic terms in (2.15) are controlled uniformly in ε.

2.3.4 Notes on calculations in anisotropic Sobolev space

There is also an important technical difficulty in ideal compressible MHD: we use anisotropic Sobolev spaces,
and the normal derivative ∂3 should be considered as a second-order derivative. Such difficulty is mainly
presented in the following two ways: the control of commutators C and D is more subtle in the analysis of
E8(t) (purely tangential regularity), and the standard Sobolev trace lemma is no longer useful. The latter issue
can be resolved by using Lemma B.3 and Lemma B.4, and now we focus on the former one.

For Ci(vi) and C(q) in T γ-estimates for 〈γ〉 = 8, the problematic terms have the form

T γ′ (Ni/∂3ϕ)T γ−γ′∂3 f , f = vi or q, i = 1, 2, 3, 〈γ′〉 = 1.

Such terms are part of the commutator [T γ,Ni/∂3ϕ, ∂3 f ]. Since ∂3 is considered as a 2nd-order derivative
when analyzing E8(t), T γ−γ′∂3 f cannot be directly controlled by E8(t). However, for f = q or v · N, one can
invoke the momentum equation and the continuity equation to convert this ∂3 to a tangential derivative. The
control of the commutator D( f ) is much easier, as the only problematic term is T γ′ (v · N − ∂tϕ)(T γ−γ′∂

ϕ
3 f )

with 〈γ′〉 = 1. Thanks to T γ′ (v · N − ∂tϕ)|Σ=0, we can still view T γ′ (v · N − ∂tϕ)∂ϕ3 as a tangential derivative.
We refer to Section 3.3.2 for detailed reduction procedures.

Remark 2.4 (Comparison with the Lagrangian setting). In the author’s previous paper [49] about the one-
phase MHD without surface tension under the setting of Lagrangian coordinates, the “modified Alinhac good
unknowns” were introduced to avoid the derivative loss in these commutators, that is, lots of modification
terms were added to F such that the corresponding C( f ) is L2-controllable. Those modification terms are
necessary when using Lagrangian coordinates but are redundant in the setting of this paper when the free
interface is a graph. The precise reason is that, in the Lagrangian setting, the boundary regularity we obtain
from tangential estimates has the form |∂rη · N |20 where η represents the flow map of v, which is not enough
to control the top-order derivatives of the co-factor matrix A := [∂η]−1 and the Eulerian normal vector N =

∂η × ∂η. In contrast, the setting in this paper allows us to explicitly express the Eulerian normal vector, the
surface tension, the boundary energy in terms of ∇ψ, and we can also explicitly write the normal derivative
of the “non-characteristic variables” (q, v · N) in terms of tangential derivatives of the other quantities.
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2.3.5 Zero-surface-tension limit under the stability conditions

Now, it remains to discuss the zero-surface-tension limit under the stability condition (1.40) or (1.47) and we
take the 3D case for an example. Roughly speaking, the condition (1.40), namely

|b̄+ × b̄−| ≥ δ0 and a±
∣∣∣b̄∓ × ~v̄�∣∣∣ ≤ (1 − δ0)|b̄+ × b̄−| on [0,T ] × Σ, a± :=

√
ρ±

(
1 +

(
c±A/c

±
s

)2
)
,

brings the following two benefits that Euler equations do not enjoy:

a. Enhance the regularity of the free surface to Hs+ 1
2 (Σ) in ∂s-estimates (possibly with suitable ε-weights).

This gives 1/2-order higher regularity of ψ than the Rayleigh-Taylor sign condition does.
b. Completely eliminates the problematic term VS for vortex sheets problem.

The enhanced regularity in (a) is easy to prove, as the “non-collinearity” allows us to resolve ∇ψ in terms
of b± without any derivative. The benefit (b) is rather important. When taking the vanishing surface tension
limit, the enhanced regularity obtained in (a) is still not enough to control the term VS. Thus, we would like
to completely eliminate the contribution of ~v̄� in the term VS by inserting a suitable term involving the
magnetic fields, that is, we want to insert a term µ±b̄± into VS to get

VS′ :=
∫

Σ

T γq−
(�

v̄ − µb̄
�
· ∇

)
T γψ dx′ (2.17)

and find suitable functions µ± such that
�
v̄ − µb̄

�
= 0 on Σ. Under the stability condition (1.40), the functions

µ± uniquely exist: µ± = (b̄+ × b̄−)−1
3 (b̄∓ × ~v̄�)3. To construct the term VS′ from MHD equations (1.33), we

shall replace the variable v± in the momentum equation by v±−µ±b±. However, this operation makes the MHD
system not symmetric and consequently the energy estimates cannot be closed. To overcome this difficulty,
we introduce the “Friedrichs secondary symmetrization” [30], which was first applied to compressible idea
MHD by Trakhinin [79], to re-symmetrize the MHD system.

The final step is to determine the range for µ± such that the energy estimates for the secondary-symmetrized
MHD system can be closed. Using the Alinhac good unknowns, the energy for V,B,P becomes

1
2

d
dt

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p |P

±|2 − 2µ±ρ±V± · B± − 2µ±ρ±F ±p P±(b± · V±) dVt, (2.18)

where F ±p = 1/(ρ±(c±s )2). Thus, we must guarantee the above quadratic form of (V,B,P) to be positive-
definite, which is equivalent to guarantee the hyperbolicity. This requires µ± to satisfy (µ±)2ρ±(1+(c±A/c

±
s )2) <

1, which gives the range of µ± that exactly coincides with the stability condition (1.40).

Remark 2.5 (Stabilization effects on 2D subsonic vortex sheets). In the 2D case, the non-collinearity property
no longer holds because the interface is 1D. The functions µ± still exist but are not unique. For a rectilinear
piecewise-smooth background solution (±v, 0,±b, 0, p±, S ±)>, condition (1.47) implies that |v|2 < c2

s
c2

A

c2
A+c2

s
<

c2
s , that is, the background solution must be a subsonic flow, whereas the linear stability only holds for

supersonic flow, that is, |v|/cs >
√

2, for 2D vortex sheets of compressible Euler equations. Thus, sufficiently
strong magnetic fields have stabilization effects on 2D subsonic vortex sheets. However, this range is only a
subset of the subsonic zone for the linear neutral stability obtained in Wang-Yu [86]. It still remains open to
justify the nonlinear stability in the whole domain for the linear stability obtained in Wang-Yu [86].

2.4 A robust method to solve the compressible vortex sheets problem
As pointed out in a series of the author’s previous works [54, 91, 92, 35, 55], the local existence for inviscid
fluids is not a direct consequence of the a priori estimates without loss of regularity. There is a loss of
one tangential spatial derivative in ψ arising from the analogues of ST and RT terms when doing the Picard
iteration. Besides, due to the presence of surface tension and compressibility, one has to control the full
time derivatives of v, b, p, S which only belong to L2(Ω±) and their boundary regularity is unknown due to
the failure of trace lemma. The delicate cancellation structures for the original nonlinear problem (1.33) no
longer exist for the linearized problem. Therefore, we shall enhance the regularity of ψ in both tangential
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spatial variables x′ and the time variable t. Our method is to introduce a nonlinear approximate problem
(3.1), indexed by κ > 0, for (1.33) by adding two regularization terms to the jump condition. Namely, the
“regularized” jump condition for q is�

q
�

= σH − κ(1 − ∆)2ψ − κ(1 − ∆)∂tψ, (2.19)

where ∆ := ∂2
1 + ∂2

2 is the tangential Laplacian operator on Σ.
These two regularization terms help us to get

√
κ-weighted enhanced regularity for both ψ and ψt which

is enough for us to compensate the loss of derivatives in the Picard iteration process. So, we can solve the
nonlinear approximate problem for each fixed κ > 0. As for the uniform-in-κ estimates for the nonlinear
approximate problem, the appearance of these two regularization terms will not introduce any uncontrollable
terms with the help of some delicate technical modifications. In particular, the term VS remains the same as
(2.14), and the elliptic estimate for

�
q

�
in Section 2.3.2 is still vaild and uniform in κ for the approximate

problem. Hence, the local existence of (1.33) is proven after passing the limit κ → 0.
There are mainly two methods to prove the existence in previous related works

1. Nash-Moser iteration. Although there may be some derivative loss for the linearized problem, the
order of regularity loss is a fixed number, so one can use Nash-Moser iteration to prove the local
existence of smooth solution or solution in Sobolev spaces with a loss of regularity from initial data to
solution (cf. [23, 80, 72, 13, 81, 82, 84]).

2. Tangential smoothing. This method has been widely used in the study of free-surface inviscid fluids in
Lagrangian coordinate [19, 36, 54, 91, 92, 35]. In the paper [55], Luo and the author first introduced the
tangential smoothing scheme for Euler equations in the “flattened coordinate”. However, the constraint
b · N |Σ = 0 no longer propagates from the initial data after doing tangential smoothing on N.

Remark 2.6. We choose the “flattened coordinate” because of the reasons mentioned in Remark 2.4. It
should be noted that the design of the linearized problem and the Picard iteration process in the “flattened
coordinate” is much more difficult than in the Lagrangian coordinate because one has to “define” the free
surface in each step of the iteration, whereas the free surface is not explicitly computed and the flow map η is
completely determined by the velocity in Lagrangian coordinates.

Compared with these two methods that have been widely used in previous works, none of the above
difficulties appear in our new approximation scheme. The estimates obtained in our paper have no loss of
regularity and are uniform in Mach number, and are also uniform in the surface tension coefficient under
suitable stability conditions. Hence, we believe that the approximation scheme is a robust method to
prove the local existence (and the incompressible limit) for a large class of free-boundary problems
in inviscid fluids, especially the vortex sheets problem with surface tension. Furthermore, taking zero-
surface-tension limit seems to be an alternative way, other than Nash-Moser iteration, to prove the local
existence of compressible vortex sheets problems under certain stability conditions.

2.5 Dropping redundant assumptions on the prepared initial data
As stated in Section 1.4.4, when ε is suitably small, the incompressible limit can be established under the
assumption ∇ϕ ·v0 = O(ε), ∂tv|t=0 = O(1) without any redundant restrictions on higher-order time derivatives.
This is not difficult under the fixed-domain setting by adding ε(k−1)+ to ∂k

t -differentiated variables (cf. [85]),
but for the free-boundary problems, we need to use the energy defined in (1.50)-(1.53) and new essential
difficulties caused by the free-interface motion will appear. Let us consider ∂3∂t-estimate (without ε-weight)
that arises in E4(t). Following (2.9), we analyze ∓

∫
Ω±

Q±Ci(v±i ) dVt and ∓
∫

Ω±
V±i Ci(q±) dVt, in which Ci( f )

contains the term (∂3ϕ)−1(∂2∂t∂3 f )(∂∂iϕ). Thus, we have to control integrals in the following form∫
Ω±

(∂2∂∂tv±)(∂N)(∂2∂∂tq±) dx,

in which the simultaneous appearance of ∂2∂∂tv and ∂2∂∂tq causes a loss of ε-weight. The appearance of
such loss of ε-weight is actually necessary when T γv (γ0 < 〈γ〉) is assigned with a different ε-weight from
that of T γp, because the normal vector N may not necessarily absorb a time derivative when T γ contains both
∂ and ∂t. Also, this difficulty is completely caused by the free-interface motion because the commutators
C( f ) do not appear in the study of fixed-domain problem.
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2.5.1 Improved estimates for double limits: paralinearization of the free-interface motion

According to the setting of E4 and Ẽ4 in (1.52)-(1.53), we only need to re-consider the estimates of ‖vt‖3 and
‖bt‖3. To avoid interior tangential estimates, we apply the div-curl inequality (B.2) to vt, bt and reduce the
control of ‖vt‖3 and ‖bt‖3 to their normal traces |vt · N |2.5 and |bt · N|2.5. In view of the boundary conditions,
we must seek for other ways to control |∂k

tψ|4.5−k for 0 ≤ k ≤ 2 and they must be σ-indepedent when taking
the double limits ε, σ → 0. Consider the time-differentiated kinematic boundary condition, which together
with the momentum equation gives

ρ±ψtt = −N · ∇ϕq± + (b̄±i b̄±j − ρ
±v̄±i v̄±j )∂i∂ jψ + · · ·

Motivated by Shatah-Zeng [73], we try to separate the boundary values of q± from the interior contribution
of q±. Specifically, q± satisfies a two-phase wave equation (we write F ±p = ε2 for convenience)

ε2(Dϕ±
t )2q± − ∆ϕq± = ε2(Dϕ±

t )2(
1
2
|b±|2) + (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ), ∂3q±|Σ± = 0,

�
q

�
|Σ = σH(ψ).

and we introduce the decomposition q± = q±ψ + q±w with

−∆ϕq±ψ = 0 in Ω±, q±ψ = q± on Σ, ∂3q±ψ = 0 on Σ±,

−∆ϕq±w = −ε2(Dϕ±
t )2(q± −

1
2
|b±|2) + (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ), q±w = 0 on Σ, ∂3q±w = 0 on Σ±.

Under this setting, we can write −N · ∇ϕq± = ±N±ψ(q±|Σ) − N · ∇ϕq±w where N±ψ represents the Dirichlet-to-
Neumann (DtN) operators with respect to Ω± and ψ (defined in Section 7.2). The traces of q± on Σ can be
resolved by inverting the DtN operators, which then gives us the following evolution equation

(ρ+ + ρ−)∂2
t ψ =

σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) +

(
b̄+

i b̄+
j − ρ

+v̄+
i v̄+

j + b̄−i b̄−j − ρ
−v̄−i v̄−j

)
∂i∂ jψ

− N · ∇ϕq+
w − N · ∇ϕq−w + · · · (2.20)

Using the paralinearization in Alazard-Burq-Zuily [2, 3] and Alazard-Métivier [4], the principal symbol of the
major term

(
N+
ψ + N−ψ

)
(H(ψ)) is negative and of the third order. Besides, the stability condition (1.40) ensures

the ellipticity of the second term on the right side. The contribution of qw in this equation is completely
reduced to the source term of the wave equation of qw thanks to qw|Σ = 0. Thus, we can simultaneously
obtain the estimates of |ψ|4.5, |

√
σψ|5 and |ψt |3.5 by taking a suitable 3.5-th order paradifferential operator in

(2.20) and we refer to Section 7.3 for details.
For the control of |ψtt |2.5, it suffices to take ∂t in (2.20) and take a suitable 2.5-th order paradifferential

operator. However, the omitted source term in (2.20), after taking ∂t, contains (N+
ψ−N

−
ψ)(N+

ψ +N−ψ)−1(
�
ρ

�
ψttt)

whose H2.5(Σ) norm is bounded by |
�
ρ

�
|1.5|∂

3
t ψ|1.5. In general, we have a loss of ε-weight, as the energy E(t)

only gives ∂3
t ψ = O(ε−1). So, if we additionally require |

�
ρ

�
|1.5 = O(ε), which is mathematically reasonable

according to Remark 1.9, this extra ε-weight could compensate the loss of ε-weight arising in this term.
Hence, under the extra assumption |

�
ρ

�
|1.5 = O(ε), we can control the accelaration of the free interface

uniformly in ε without assuming the boundedness of high-order time derivatives of v.

2.5.2 Comparison with the Syrovatskiı̆ condition for incompressible MHD

The stability condition used in this paper is

a±
∣∣∣b̄∓ × ~v̄�∣∣∣ < |b̄+ × b̄−| on Σ, where a± :=

√
ρ±(1 + (c±A/c

±
s )2).

Taking the formal incompressible limit ρ± → 1, we get |h̄± × ~w̄� | < |h̄+ × h̄−| on Σ. The original Syrovatskiı̆
stability condition (cf. Syrovatskiı̆ [77] or Landau-Lifshitz-Pitaevskiı̆ [44, §71]) for ρ± = 1 is

|h̄+ × ~w̄� |2 + |h̄− × ~w̄� |2 < 2|h̄+ × h̄−|2 on Σ,

which is less restrictive than the above formal incompressible limit of (1.40). We recall that, in the analysis of
equation (2.20), the compressibility introduces an extra term ε2(Dϕ

t )2 p in the source term of qw, so we have to
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prove the interior L2 estimates of full time derivatives. Since we use the Friedrichs secondary symmetrization
to prove the double limits and Ω+,Ω− are disconnected domains, it is reasonable to have restrictions for
solutions in Ω+ and Ω− respectively. Besides, the extra term ε2(Dϕ

t )2 p presents a loss of derivative in standard
Sobolev spaces and again indicates that one should trade a normal derivative for 2 tangential derivatives
together with the square weight of Mach number.

The difference between the two stability conditions is related to the singular nature of incompressible
limit: The pressure function for compressible fluids is a variable of a symmetric hyperbolic system satisfying
a wave equation (so the interior estimates seem to be necessary) and is uniquely determined together with the
fluid density, while the pressure function for incompressible fluids is not uniquely determined by the other
variables without a Dirichlet-type boundary condition (because the equation of state no longer holds).

Remark 2.7. One can further see such difference from the derivation of these stability conditions. The orginal
Syrovatskiı̆ condition is obtained via the normal mode analysis only for the displacement of the interface
which can be explicitly calculated [44, §71]. However, for the compressible case, one has to take into
account of all variables in the interior together with the interface motion. It is also impossible to explicitly
derive a sufficient and necessary condition for the (linear) neutral stability [28, 79]. In spite of this, Fejer [28]
pointed out that the condition for neutral stability is more restrictive than the incompressible counterpart for
some special cases even if the compressiblility has very slightly effect on the fluid motion. Similar situation
also occurs in the case of 2D. That is, the formal incompressible limit of (1.47) is more restrictive than the
stability condition (cf. [7]) for 2D incompressible counterpart.

2.5.3 Comparison with one-phase problems

Finally, we briefly discuss the differences between one-phase problems and vortex sheet problems, which
are mainly reflected in the study of incompressible limit. Without loss of generality, we assume everything
in Ω− is vanishing for one-phase problems and thus the term VS is vanishing. When σ = 0, the Rayleigh-
Taylor sign condition ∂3q+ ≥ c0 > 0 is necessary for the local existence, so the analysis of ST, RT and
Z + ZB is parallel to the study of vortex sheet problems. Our framework is then applicable to one-phase
problems. A slight difference is that, we may have to start adding ε-weight to ∂2

t q instead of ∂tq in order to
control the evolution of the Rayleigh-Taylor sign. We also note that, very recently, Gu-Wang [37] proved the
incompressible limit for free-surface Euler equations with heat conduction under the Rayleigh-Taylor sign
condition, in which L2

t -type bound for ∂tq can be established because the heat conduction contributes to a
parabolic part in the system.

When considering the incompressible limit without boundedness assumptions on higher-order time deriva-
tives, the way to add ε-weights is quite different. The reason is that the bad term (N+

ψ−N
−
ψ)(N+

ψ+N−ψ)−1(
�
ρ

�
∂2

t ψ)
on the right side of (2.20) already contains two time derivative. Without the assumption

�
ρ

�
= O(ε) on

Σ, which actually requires the fluids to be isentropic and the density functions converge to the same con-
stant, there exhibits a loss of ε-weight in the control of ψtt in general. That is to say, under the assumption
∇ϕ0 ·v0 = O(ε), the accelaration of the free interface may be still not uniformly bounded in ε for compressible
vortex sheets.

The above problematic term is produced when we invert the DtN operators to resolve the traces q±|Σ.
For incompressible (current-)vortex sheets, ρ± are constants and

∫
Σ
∂tψ dx′ =

∫
Σ
∂2

t ψ dx′ = 0, so one can
directly apply (N±ψ)−1 to (1/ρ±)N±ψ(q±|Σ) as in [50, 47] and thus

�
ρ

�
∂2

t ψ no longer appears. For the one-phase
problem, the trace of q+ is already equal to the surface tension, so we do not need to take the inverse of
the DtN operators. Such loss of ε-weight never appears in the fixed-domain problems [1, 85], one-phase
problems [92, 55] or the incompressible (current-)vortex sheets [75, 50, 47].
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3 Uniform estimates of the nonlinear approximate system
Now we introduce the approximate system of (1.33) indexed by κ > 0.

ρ±Dϕ±
t v± − (b± · ∇ϕ)b± + ∇ϕq± = 0, q± = p± + 1

2 |b
±|2 in [0,T ] ×Ω±,

FpDϕ±
t p± + ∇ϕ · v± = 0 in [0,T ] ×Ω±,

p± = p±(ρ±, S ±), F ± = log ρ±, F ±p > 0, ρ± ≥ ρ̄0 > 0 in [0,T ] ×Ω±,

Dϕ±
t b± − (b± · ∇ϕ)v± + b±∇ϕ · v± = 0 in [0,T ] ×Ω±,

∇ϕ · b± = 0 in [0,T ] ×Ω±,

Dϕ±
t S ± = 0 in [0,T ] ×Ω±,�

q
�

= σ∇ ·

(
∇ψ

√
1+|∇ψ|2

)
− κ(1 − ∆)2ψ − κ(1 − ∆)∂tψ on [0,T ] × Σ,

∂tψ = v± · N on [0,T ] × Σ,

b± · N = 0 on [0,T ] × Σ,

v±3 = b±3 = 0 on [0,T ] × Σ±,

(v±, b±, ρ±, S ±, ψ)|t=0 = (vκ,±0 , bκ,±0 , ρκ,±0 , S κ,±
0 , ψκ0).

(3.1)

Note that this system is not over-determined: the continuity equation, the evolution equation of b± and the
kinematic boundary condition stay unchanged, so one can still prove ∇ϕ · b± = 0, b± · N |Σ = 0 and b±3 |Σ± = 0
propagates from the initial data.

The energy functional associated with system (3.1) is defined by

Eκ(t) := Eκ
4(t) + Eκ

5(t) + Eκ
6(t) + Eκ

7(t) + Eκ
8(t)

Eκ
4+l(t) :=

∑
±

∑
〈α〉=2l

4−l∑
k=0

∥∥∥∥∥(ε2lT α∂k
t

(
v±, b±, S ±, (F ±p )

(k+α0−l−3)+
2 p±

))∥∥∥∥∥2

4−k−l,±

+

4+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5+k−l +

∣∣∣√κε2l∂k
tψ

∣∣∣2
6+k−l +

∫ t

0

∣∣∣√κε2l∂k+1
t ψ(τ)

∣∣∣2
5+k−l dτ,

(3.2)

where 0 ≤ l ≤ 4 and we denote T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 to be a tangential derivative for the multi-index

α = (α0, α1, α2, 0, α4) with length 〈α〉 = α0 + α1 + α2 + 2 × 0 + α4. The quantity (k + α0 − l − 3)+ = 1 only
when α0 = 2l and k = 4 − l and it is equal to 0 otherwise.

We aim to establish the a priori estimates of system (3.1) that is uniform in κ > 0, which allows us
taking the limit κ → 0+ to construct the local-in-time solution to the original system (1.33) for fixed σ > 0.
Spefically, we want to prove the following proposition

Proposition 3.1. There exists some Tσ > 0 independent of κ, ε such that

sup
0≤t≤Tσ

Eκ(t) ≤ C(σ−1)P(Eκ(0)). (3.3)

Remark 3.1. The initial data of the approximate system (3.1) is not the same as the initial data of the
original system (1.33) because of the different compatibility conditions. The compatibility conditions (up to
7-th order) for system (3.1) are�

∂
j
t q

� ∣∣∣
t=0 = ∂

j
t

(
σH − κ(1 − ∆)2ψ − κ(1 − ∆)∂tψ

) ∣∣∣
t=0 on Σ, 0 ≤ j ≤ 7,

∂
j+1
t ψ|t=0 = ∂

j
t (v
± · N)|t=0 on Σ, 0 ≤ j ≤ 7,

∂
j
t v
±
3 |t=0 = 0 on Σ±, 0 ≤ j ≤ 7.

(3.4)

In Appendix D, we construct the initial data of (3.1) satisfying the compatibility conditions (3.4) that is
uniformly bounded in κ and converges to a given initial data of (1.33) satisfying the compatibility conditions
(1.34) up to 7-th order.
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3.1 L2 energy conservation
Proposition 3.2. The approximate system (3.1) admits the following conserved quantity: Let

Eκ
0(t) :=

∑
±

1
2

∫
Ω±
ρ±|v±|2 + |b±|2 + 2P(ρ±, S ±) + ρ±|S ±|2 dVt

+
1
2

∫
Σ

σ

√
1 + |∇ψ|2 + κ|(1 − ∆)ψ|2 dx′ +

∫ t

0

∫
Σ

κ|〈∂〉ψt |
2 dx′ dτ.

(3.5)

Then d
dt E

κ
0(t) = 0 with in the lifespan of the solution to (3.1). Here 〈∂〉 :=

√
1 − ∆, that is, 〈̂∂〉 f (ξ) =√

1 + |ξ|2 f̂ (ξ) in T2 and dVt := ∂3ϕ dx.

Proof. The proof of L2 estimate is straightforward. Taking L2(Ω±)-inner product of v and the first equation
in (3.1) and using Reynolds transport formula (A.3), we get∑

±

d
dt

1
2

∫
Ω±
ρ±|v±|2 dVt =

∑
±

∫
Ω±

(ρ±Dϕ±
t v±) · v± dVt

=

∫
Σ

�
q

�
∂tψ dx′ +

∑
±

∫
Ω±

p±(∇ϕ · v±) dVt −

∫
Ω±

(b± · ∇ϕ)v± · b± dVt +

∫
Ω±

1
2
|b±|2(∇ϕ · v±) dVt,

(3.6)

where the integral on Σ± vanishes thanks to the slip conditions. Let P(ρ±, S ±) =
∫ ρ±

ρ̄0

p±(z,S ±)
z2 dz. Then the first

integral above together with Dϕ±
t S ± = 0 gives∫

Ω±
p±(∇ϕ · v±) dVt = −

∫
Ω±

p±

(ρ±)2 Dϕ±
t ρ± dVt = −

d
dt

∫
Ω±
ρ±P(ρ±) dVt.

The boundary term gives
√
σ-weighted and

√
κ-weighted regularity of ψ and ψt. One has∫

Σ

�
q

�
∂tψ dx′ = −

d
dt

1
2

∫
Σ

σ

√
1 + |∇ψ|2 + κ|(1 − ∆)ψ|2 dx′ −

∫
Σ

κ|〈∂〉ψt |
2 dx′.

Then we insert the evolution equation of b± in the third term in (3.6) to get the energy of b±.

−

∫
Ω±

(b± · ∇ϕ)v± · b± dVt = −

∫
Ω±

Dϕ±
t b± · b± dVt −

∫
Ω±
|b±|2(∇ϕ · v±) dVt

= −
d
dt

1
2

∫
Ω±
|b±|2 dVt +

1
2

∫
Ω±
|b±|2(∇ϕ · v±) dVt −

∫
Ω±
|b±|2(∇ϕ · v±) dVt,

where the last two terms exactly cancels with the last term in (3.6). Finally, Dϕ±
t S ± = 0 and the Reynolds

transport theorem shows that d
dt

1
2

∫
Ω±
ρ±|S ±|2 dVt = 0. Therefore, we conclude that system (3.1) admits the

following conserved quantity

Eκ
0(t) :=

∑
±

1
2

∫
Ω±
ρ±|v±|2 + |b±|2 + 2P(ρ±, S ±) + ρ±|S ±|2 dVt

+
1
2

∫
Σ

σ

√
1 + |∇ψ|2 + κ|(1 − ∆)ψ|2 dx′ +

∫ t

0

∫
Σ

κ|〈∂〉ψt |
2 dx′ dτ,

(3.7)

which can also be inherited to the original current-vortex sheet system (1.33) after taking κ → 0+. �

3.2 Reformulations in Alinhac good unknowns
Let T γ := (ω(x3)∂3)γ4∂

γ0
t ∂

γ1
1 ∂

γ2
2 be a tangential derivative with 〈γ〉 = γ0 + γ1 + γ2 + γ4. We define the Alinhac

good unknown of a given function f with respect to T γ by Fγ := T γ f − T γϕ∂
ϕ
3 f . The good unknown F

satisfies
T γ∇

ϕ
i f = ∇

ϕ
i Fγ + C

γ
i ( f ), T γDϕ

t f = Dϕ
t Fγ +Dγ( f ), (3.8)
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where the commutators Cγi ( f ) and Dγ( f ) are defined by

C
γ
i ( f ) = (∂ϕ3∂

ϕ
i f )T γϕ +

[
T γ,

Ni

∂3ϕ
, ∂3 f

]
+ ∂3 f

[
T γ,Ni,

1
∂3ϕ

]
+ Ni∂3 f

[
T γ−γ′ ,

1
(∂3ϕ)2

]
T γ′∂3ϕ

+
Ni

∂3ϕ
[T γ, ∂3] f −

Ni

(∂3ϕ)2 ∂3 f [T γ, ∂3]ϕ, i = 1, 2, 3, (3.9)

and

D
γ( f ) = (Dϕ

t ∂
ϕ
3 f )T γϕ + [T γ, v̄] · ∂ f +

[
T γ,

1
∂3ϕ

(v · N − ∂tϕ), ∂3 f
]

+

[
T γ, v · N − ∂tϕ,

1
∂3ϕ

]
∂3 f

+
1
∂3ϕ

[T γ, v] · N∂3 f − (v · N − ∂tϕ)∂3 f
[
T γ−γ′ ,

1
(∂3ϕ)2

]
T γ′∂3ϕ

+
1
∂3ϕ

(v · N − ∂tϕ)[T γ, ∂3] f + (v · N − ∂tϕ)
∂3 f

(∂3ϕ)2 [T γ, ∂3]ϕ (3.10)

with 〈γ′〉 = 1. Here N := (−∂1ϕ,−∂2ϕ, 1)> is the extension of normal vector N in Ω±. The third term on the
right side of (3.9) is zero when i = 3 because N3 = 1 is a constant.

Therefore, we can reformulate the T γ-differentiated current-vortex sheets system (3.1) in terms of Vγ,±,
Bγ,±, Pγ,±, Sγ,± (the Alinhac good unknowns of v±, b±, p±, S ± in Ω±) as follows

ρ±Dϕ±
t Vγ,± − (b± · ∇ϕ)Bγ,± + ∇ϕQγ,± = R

γ,±
v − Cγ(q±) in [0,T ] ×Ω±, (3.11)

FpDϕ±
t Pγ,± + ∇ϕ · Vγ,± = R

γ,±
p − C

γ
i (v±i ) in [0,T ] ×Ω±, (3.12)

Dϕ±
t Bγ,± − (b± · ∇ϕ)Vγ,± + b±(∇ϕ · Vγ,±) = R

γ,±
b − b±Cγi (v±i ) in [0,T ] ×Ω±, (3.13)
∇ϕ · b± = 0 in [0,T ] ×Ω±, (3.14)

Dϕ±
t S±,α = Dγ(S ±) in [0,T ] ×Ω±, (3.15)

with boundary conditions�
Qγ�

= σT γH − κT γ(1 − ∆)2ψ − κT γ(1 − ∆)∂tψ −
�
∂3q

�
T γψ on [0,T ] × Σ, (3.16)

Vγ,± · N = ∂tT
γψ + v̄± · ∇T γψ −Wγ,± on [0,T ] × Σ, (3.17)

b± · N = 0 on [0,T ] × Σ, (3.18)
b±3 = v±3 = B±3 = V±3 = 0 on [0,T ] × Σ±, (3.19)

where Rv,Rp,Rb terms consist of the following commutators

R
γ,±
v := [T γ, b±] · ∇ϕb± − [T γ, ρ±]Dϕ±

t v± − ρ±Dγ(v±) (3.20)

R
γ,±
p := − [T γ,F ±p ]Dϕ±

t p± − F ±p D
γ(p±) (3.21)

R
γ,±
b := [T γ, b±] · ∇ϕv± −Dγ(b±), (3.22)

and the boundary termWγ,± is

Wγ,± := (∂3v± · N)T γψ + [T γ,Ni, v±i ], (3.23)

Note that ω(x3) = 0 on Σ ∪ Σ±, so all boundary conditions are vanishing when γ4 > 0. Thus, T γ can be
written as ∂k+α0

t ∂(4+l)−(k+α0) on Σ. We can replace k + α0 by k (0 ≤ k ≤ 4 + l) in the boundary energy terms.
In the rest of Section 3, we aim to prove the following tangential estimates

Proposition 3.3 (Tangential estimates for the approximate system). For fixed l ∈ {0, 1, 2, 3, 4} and any δ ∈
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(0, 1), the following uniform-in-(κ, ε) energy inequalities hold:∑
±

∑
〈α〉=2l

∑
0≤k≤4−l

k+α0<4+l

∥∥∥∥(ε2l∂4−k−lT α∂k
t (v±, b±, S ±, p±)

)∥∥∥∥2

0,±

+

3+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5−k−l +

∣∣∣√κε2l∂k
tψ

∣∣∣2
6+k−l +

∫ t

0

∣∣∣√κε2l∂k+1
t ψ(τ)

∣∣∣2
5+k−l dτ

. δEκ
4+l(t) +

3+l∑
k=0

∣∣∣ε2l∂k
tψ(0)

∣∣∣2
5.5+l−k + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + P

 l∑
j=0

Eκ
4+ j(t)

 ∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ

(3.24)

and

∑
±

4−l∑
k=0

∥∥∥∥(ε2l∂4+l
t (v±, b±, S ±, (Fp)

1
2 p±)

)∥∥∥∥2

4−k−l,±
+

∣∣∣√σε2l∂4+l
t ψ

∣∣∣2
1 +

∣∣∣√κε2l∂4+l
t ψ

∣∣∣2
2 +

∫ t

0

∣∣∣√κε2l∂5+l
t ψ(τ)

∣∣∣2
1 dτ

. δEκ
4+l(t) +

∣∣∣ε2l∂3+l
t ψ(0)

∣∣∣2
2.5 + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + P

 l∑
j=0

Eκ
4+ j(t)

 ∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ. (3.25)

Here the first inequality represents the case when there are at least one spatial tangential derivatives and the
second inequality represents the case of full time derivatives. Moreover, the term

∣∣∣ε2l∂k
tψ(0)

∣∣∣2
5.5+l−k on the

right side does not appear when κ = 0.

3.3 Tangential estimates: full spatial derivatives

We first study the case when all tangential derivatives are spatial derivatives ∂1 and ∂2, namely γ0 = γ4 = 0
in T γ := (ω(x3)∂3)γ4∂

γ0
t ∂

γ1
1 ∂

γ2
2 . In view of the definition of E(t) and the div-curl decomposition, we need to

prove the L2 estimates for the ε2l∂4+l-differentiated system (0 ≤ l ≤ 4). We now consider the case l = 0, that
is, the ∂4-estimate for the approximate system (3.1) and aim to prove the following estimate

Proposition 3.4. Fix l ∈ {0, 1, 2, 3, 4}. For the tangential derivativeT γ = ∂4+l, (γ0+γ4 = 0, γ1+γ2 = 4+l), the
ε2l∂4+l-differentiated approximate system admits the following uniform-in-(κ, ε) estimate: For any 0 < δ < 1∥∥∥∥∥ε2l

(
Vγ,±,Bγ,±,Sγ,±,

√
F ±p Pγ,±

)
(t)

∥∥∥∥∥2

0
+

∣∣∣∣√σε2l∂4+lψ(t)
∣∣∣∣2
1

+
∣∣∣∣√κε2l∂4+lψ(t)

∣∣∣∣2
2

+

∫ t

0

∣∣∣∣√κε2l∂4+l∂tψ(τ)
∣∣∣∣2
1

dτ

. δEκ
4+l(t) +

∣∣∣ε2lψ0
∣∣∣2
5.5+l +

l∑
j=0

∫ t

0
P(σ−1, Eκ

4+ j(τ)) dτ, 0 ≤ l ≤ 4.

(3.26)

3.3.1 The case l = 0: ∂4-estimates

As stated in Section 2.2, we introduce the Alinhac good unknowns for T γ = ∂4 and drop the script γ for
simplicity of notations

V± := ∂4v± − ∂4ϕ∂
ϕ
3v±, B± := ∂4b± − ∂4ϕ∂

ϕ
3b±, P± := ∂4 p± − ∂4ϕ∂

ϕ
3 p±, Q± := ∂4q± − ∂4ϕ∂

ϕ
3q±.

Note that we have

Q± = P± + b · B± +

3∑
k=1

ck∂
kb± · ∂4−kb±︸                  ︷︷                  ︸
=:Rγ,±q

for some constants ck ∈ N
∗.
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Step 1: Interior energy structure.

We test the equation (3.11) by V± in Ω± and integrate by parts to get one boundary term and several interior
terms

1
2

d
dt

∫
Ω±
ρ±|V±|2 dVt =

∫
Ω±
ρ±Dϕ±

t V± · V± dVt

=

∫
Ω±

(b± · ∇ϕ)B± · V± dVt −

∫
Ω±

V± · ∇ϕQ± dVt +

∫
Ω±

V± · (R±v − C(q±)) dVt︸                             ︷︷                             ︸
=:R±1

= −

∫
Ω±

B± · (b± · ∇ϕ)V± dVt +

∫
Ω±

b± · B±(∇ϕ · V±) dVt +

∫
Ω±

P±(∇ϕ · V±) dVt

±

∫
Σ

Q±(V± · N) dx′ + R±1 +

∫
Ω±
R±q (∇ϕ · V±) dVt.

(3.27)

Invoking the equation (3.13) for the evolution of B in the first integral above, the energy of B± is produced.

−

∫
Ω±

B± · (b± · ∇ϕ)V± dVt

= −

∫
Ω±

B± · Dϕ±
t B± dVt −

∫
Ω±

(B± · b±)(∇ϕ · V±) dVt +

∫
Ω±

B± · R±b dVt −

∫
Ω±

(B± · b±)Ci(v±i ) dVt

= −
1
2

d
dt

∫
Ω±
|B±|2 dVt −

1
2

∫
Ω±

(∇ϕ · v±)|B±|2 dVt +

∫
Ω±

B± · R±b dVt︸                                                      ︷︷                                                      ︸
R±2

−

∫
Ω±

(B± · b±)(∇ϕ · V±) dVt −

∫
Ω±

(B± · b±)Ci(v±i ) dVt,

(3.28)

where the first term in the last line is cancelled with the second integral in (3.27), and the analysis of the
second term in the last line will be postponed.

The third term in (3.27) produces the energy of (F ±p )
1
2 P± with the help of equation (3.12).∫

Ω±
P±(∇ϕ · V±) dVt

= −
1
2

d
dt

∫
Ω±
F ±p (P±)2 dVt −

1
2

∫
Ω±

(Dϕ±
t F

±
p + F ±p ∇

ϕ · v±)|P±|2 dVt +

∫
Ω±

P±R±p dVt︸                                                                      ︷︷                                                                      ︸
R±3

−

∫
Ω±

P±Ci(v±i ) dVt.

(3.29)
The last term in (3.27) can be controlled by inserting again the continuity equation and integrating Dϕ±

t
by parts. We have∫

Ω±
R±q (∇ϕ · V±) dVt = −

∫
Ω±
F ±p R

±
q Dϕ±

t P± dVt +

∫
Ω±
R±qR

±
p dVt −

∫
Ω±
R±qCi(v±i ) dVt

= −
d
dt

∫
Ω±

(√
F ±p R

±
q

) (√
F ±p P±

)
dVt +

∫
Ω±

(√
F ±p Dϕ±

t R
±
q

) (√
F ±p P±

)
dVt +

∫
Ω±
R±qR

±
p dVt

−

∫
Ω±
R±qCi(v±i ) dVt,

(3.30)

where the first term on the right side is controlled under time integral by

δ

∥∥∥∥∥√
F ±p P±(t)

∥∥∥∥∥2

0
+ P(Eκ

4(0)) +

∫ t

0
P(Eκ

4(τ)) dτ, ∀0 < δ � 1

and the second term, the third term on the right side can be both controlled by P(E4(t)) via direct computation
because Rq only contains 3-rd order tangential derivative of b.

The entropy is directly bounded by testing the transport equation of S± with S± itself

d
dt

1
2

∫
Ω±
ρ±(S±)2 dVt =

∫
Ω±
ρ±D(S ±) S± dVt ≤ ‖S±‖0‖ρ±‖L∞

√
Eκ

4(t). (3.31)
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The remainder terms are controlled by direct computation. For the commutator C,D, we have ‖C( f ±)‖0,± .
C(|ψ|4)‖ f ±‖0,± and ‖D( f ±)‖0,± . C(|ψ|4, |∂tψ|L∞ |)‖ f ±‖0,± when T γ = ∂4 by straightforward computation. Note
that the initial data is well-prepared in the sense that ∂tv|t=0 = O(1) with respect to Mach number, so there is
no loss of ε-weight in Rv term. We have

R±1 + R±2 + R±3 ≤ P(Eκ
4(t)). (3.32)

Step 2: The boundary regularity contributed by surface tension.

We denote Z± := −
∫

Ω±
(P± + b± · B± + R±q )Ci(v±i ) dVt = −

∫
Ω±

Q±Ci(v±i ) dVt to be the remaining interior
terms presented above which should be controlled together with some boundary terms involvingW±. Now
we analyze the boundary integral in (3.27). The sum of two boundary integrals can be written as∫

Σ

Q+(V+ · N) dx′ −
∫

Σ

Q−(V− · N) dx′

=

∫
Σ

(∂4q+ − ∂4ψ∂3q+)(∂t∂
4ψ + (v̄+ · ∇)∂4ψ −W+) dx′

−

∫
Σ

(∂4q− − ∂4ψ∂3q−)(∂t∂
4ψ + (v̄− · ∇)∂4ψ −W−) dx′

=

∫
Σ

∂4 �
q

�
∂4∂tψ dx′ +

∫
Σ

∂4 �
q

�
(v̄+ · ∇)∂4ψ dx′ +

∫
Σ

∂4q−(~v̄� · ∇)∂4ψ dx′

−

∫
Σ

�
∂3q

�
∂4ψ∂t∂

4ψ dx′ −
∫

Σ

∂3q+∂4ψ(v̄+ · ∇)∂4ψ dx′ +
∫

Σ

∂3q−∂4ψ(v̄− · ∇)∂4ψ dx′

−

∫
Σ

Q+W+ dx′ +
∫

Σ

Q−W− dx′

=: ST + ST′ + VS + RT + RT+ + RT− + ZB+ + ZB−.

(3.33)

We will see that the term ST gives the
√
σ-weighted boundary regularity (contributed by surface tension) and

the
√
κ-weighted boundary regularity (contributed by the two regularization terms) which help us control the

terms ST′, VS, RT, RT±. The terms ZB± will be controlled together with Z± by using Gauss-Green formula.
Do note that the slip conditions imply V±3 = B±3 = ∂ψ = 0 on Σ±, which eliminates all integrals on Σ±.

Inserting the jump condition
�
q

�
= σH − κ(1 − ∆)2ψ − κ(1 − ∆)ψt into the term ST, we get

ST = σ

∫
Σ

∂4∇ ·

 ∇ψ√
1 + |∇ψ|2

 ∂4∂tψ dx′ −
∫

Σ

κ(1 − ∆)2∂4ψ∂4∂tψ dx′ −
∫

Σ

κ(1 − ∆)∂4∂tψ∂
4∂tψ dx′

= σ

∫
Σ

∂4∇ ·

 ∇ψ√
1 + |∇ψ|2

 ∂4∂tψ dx′ −
1
2

d
dt

∫
Σ

∣∣∣∣√κ〈∂〉2∂4ψ
∣∣∣∣2 dx′ −

∫
Σ

∣∣∣∣√κ∂4〈∂〉ψt

∣∣∣∣2 dx′.

(3.34)

Integrating by parts in the mean curvature term and using

∂

(
1
|N |

)
=
∇ψ · ∇∂ψ

|N |3
, |N | =

√
1 + |∇ψ|2,

we get

σ

∫
Σ

∂4∇ ·

 ∇ψ√
1 + |∇ψ|2

 ∂4∂tψ dx′

= − σ

∫
Σ

∂4∇ψ

|N |
· ∂t∇∂

4ψ dx′ + σ

∫
Σ

∂ψ · ∇∂4ψ

|N |3
∇ψ · ∂t∇∂

4ψ dx′

−σ

∫
Σ

([
∂3,

1
|N |

]
∂∇iψ +

[
∂3,

1
|N |3

]
(∇kψ · ∂∇kψ∇iψ) −

1
|N |3

[∂3,∇iψ∇kψ]∂∇kψ

)
· ∂t∇i∂

4ψ dx′︸                                                                                                                      ︷︷                                                                                                                      ︸
=: STR

1

(3.35)
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which is further equal to

−
σ

2
d
dt

∫
Σ

|∂4∇ψ|2√
1 + |∇ψ|2

−
|∇ψ · ∂4∇ψ|2√

1 + |∇ψ|2
3 dx′

+
σ

2

∫
Σ

∂t

(
1
|N |

) ∣∣∣∣∂4∇ψ
∣∣∣∣2 − ∂t

(
1
|N |3

) ∣∣∣∣∇ψ · ∇∂4ψ
∣∣∣∣2 dx′︸                                                             ︷︷                                                             ︸

=: STR
2

+ STR
1

(3.36)

The control of STR
1 , STR

2 is straightforward which has been analyzed in the author’s previous paper [55,
(4.77)-(4.78)], so we only record the result here

STR
1 + STR

2 . P(|∇ψ|L∞ )|∇ψ|W1,∞

∣∣∣∣√σ∂4∇ψ
∣∣∣∣
0

∣∣∣∣√σ∂t∂
4ψ

∣∣∣∣
0
≤ P(Eκ

4(t)).

Using Cauchy’s inequality

∀a ∈ R2,
|a|2√

1 + |∇ψ|2
−
|∇ψ · a|2√
1 + |∇ψ|2

3 ≥
|a|2√

1 + |∇ψ|2
3 , (3.37)

we obtain the
√
σ-weighted boundary regularity∫ t

0
ST dτ +

σ

2

∫
Σ

|∇∂4ψ|2√
1 + |∇ψ|2

3 dx′ +
∫

Σ

∣∣∣∣√κ〈∂〉2∂4ψ
∣∣∣∣2 dx′ +

∫ t

0

∫
Σ

∣∣∣∣√κ∂4〈∂〉ψt

∣∣∣∣2 dx′ dτ

≤

∫ t

0
STR

1 + STR
2 dx′ ≤

∫ t

0
P(Eκ

4(τ)) dτ.

(3.38)

So far, we already obtain the boundary regularity
√
σψ ∈ H5(Σ),

√
κψ ∈ H6(Σ) and

√
κψt ∈ L2

t H5
x′ ([0,T ]×Σ).

Using this, we can easily control ST′ term in (3.33). Invoking again the boundary condition for
�
q

�
, we get

ST′ =

∫
Σ

σH(v̄+ · ∇)∂4ψ dx′ − κ
∫

Σ

(1 − ∆)2∂4ψ (v̄+ · ∇)∂4ψ dx′ − κ
∫

Σ

(1 − ∆)∂4ψt(v̄+ · ∇)∂4ψ dx′. (3.39)

Integrating by parts 1−∆ in the second term and 〈∂〉 =
√

1 − ∆ in the third term above, we can easily use the
√
κ-weighted energy to control the last two terms.

− κ

∫
Σ

(1 − ∆)2∂4ψ (v̄+ · ∇)∂4ψ dx′

= − κ

∫
Σ

(
(1 − ∆)∂4ψ

)
(v̄+ · ∇)(1 − ∆)∂4ψ dx′ − κ

∫
Σ

(
(1 − ∆)∂4ψ

)
[1 − ∆, v̄+ · ∇]∂4ψ dx′,

(3.40)

where the first term is controlled by |v̄+|W1,∞ |
√
κ(1 − ∆)∂4ψ|20 after integrating v̄+ · ∇ by parts and using the

symmetry, and the second term is directly controlled by |v̄+|W2,∞ |
√
κ(1−∆)∂4ψ|0|

√
κ∂4ψ|2. Similarly, we have

for any δ ∈ (0, 1)

− κ

∫ t

0

∫
Σ

(1 − ∆)∂4ψt(v̄+ · ∇)∂4ψ dx′ dτ = −κ

∫ t

0

∫
Σ

〈∂〉∂4ψt 〈∂〉((v̄+ · ∇)∂4ψ) dx′ dτ

≤ δ
∣∣∣∣√κ〈∂〉∂4ψt

∣∣∣∣2
L2

t L2
x′

+
1
4δ

∫ t

0

∫
Σ

|v̄+|2W1,∞

∣∣∣∣√κ∂4ψ
∣∣∣∣2
2

dx′ dτ ≤ δEκ
4(t) +

∫ t

0
P(Eκ

4(τ)) dτ.
(3.41)

Picking δ > 0 to be sufficiently small, the δ-term can be absorbed by Eκ
4(t). The first term in ST′ is controlled

in the same way if we integrating ∇· by parts. Here we only list the result and refer the details to [55,
(4.87)-(4.89)] ∫

Σ

σH(v̄+ · ∇)∂4ψ dx′ ≤ P(|∇ψ|W1,∞ )|v̄+|W1,∞

∣∣∣∣√σ∇∂4ψ
∣∣∣∣2
0
≤ P(Eκ

4(t)). (3.42)
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Next we control the terms RT and RT± in (3.33). Note that we do not have the Rayleight-Taylor sign
condition

�
∂3q

�
|Σ ≥ c0 > 0, so we have to use the

√
σ-weighted energy to control these terms, we have

RT ≤ |∂3q|L∞ |ψ|4|ψt |4 ≤ σ
−1P(Eκ

4(t)). (3.43)

Similarly, integrating v̄± · ∇ by parts in RT± and using symmetry, the terms RT± can be directly controlled

RT± ≤ |v̄±∂3q|W1,∞ |ψ|24 ≤ σ
−1P(Eκ

4(t)). (3.44)

Step 3: The crucial term for vortex sheets problem.

Now we study the term VS in (3.33) which appears to be the most problematic term for the vortex sheets
problem. Note that we do not have any boundary condition for q± individually. Thus, we may alternatively
integrate ∂1/2 by parts and use (B.5) to control VS.

VS =

∫
Σ

∂4q−(~v̄� · ∇)∂4ψ dx′ . ‖∂4q−‖
1
2
0,−‖∂3∂

3q−‖
1
2
0,−‖v̄

±‖2,±|∇∂
4ψ|1/2 ≤ P(Eκ

4(t))|ψ|5.5, (3.45)

where we have used the Kato-Ponce inequality (cf. Lemma B.6) for s = 1/2, p1 = 2, p2 = ∞, q1 = q2 = 4
and Sobolev embedding H1/2(T2) ↪→ L4(T2). Now we need to control |ψ|5.5 via the jump condition of

�
q

�
.

Without the κ-regularization terms, we may use the ellipticity of the mean curvature operator to control |ψ|5.5
by σ−1|

�
q

�
|3.5. Now, we can still prove analogous result for the κ-regularized jump condition.

Lemma 3.5 (Elliptic estimate for the free interface). For any s ≥ 0.5 and κ > 0, we have the uniform-in-κ
estimate

|ψ|s+1.5 ≤ |ψ0|s+1.5 + σ−1
(
P(|∇ψ|L∞ )|∇ψ|W1,∞ |∂ψ|s−0.5 + |

�
q

�
|s−0.5

)
.

Moreover, when κ = 0, |ψ0|s+1.5 is not needed

|σψ|s+1.5 ≤ P(|∇ψ|L∞ )|∇ψ|W1,∞ |σ∂ψ|s−0.5 + |
�
q

�
|s−0.5. (3.46)

Proof. We take 〈∂〉s+0.5 in the jump condition to get

−〈∂〉s+0.5 �
q

�
= −σ〈∂〉s+0.5∇ ·

 ∇ψ√
1 + |∇ψ|2

 + κ(1 − ∆)2〈∂〉s+0.5ψ + κ(1 − ∆)〈∂〉s+0.5ψt.

Testing this equation with 〈∂〉s+0.5ψ in L2(Σ), we get

−

∫
Σ

〈∂〉s+0.5 �
q

�
〈∂〉s+0.5ψ dx′ ≤ |〈∂〉s−0.5 �

q
�
|0|〈∂〉

s+1.5ψ|0.

For the right side, we can mimic the treatment of ST term to obtain the boundary regularity. The two regu-
larization terms can be directly controlled∫

Σ

κ(1 − ∆)2〈∂〉s+0.5ψ 〈∂〉s+0.5ψ dx′ =

∫
Σ

κ(1 − ∆)〈∂〉s+0.5ψ (1 − ∆)〈∂〉s+0.5ψ dx′ =
∣∣∣√κψ∣∣∣2s+2.5 ,∫

Σ

κ(1 − ∆)〈∂〉s+0.5ψt 〈∂〉
s+0.5ψ dx′

〈∂〉
=

d
dt

∣∣∣√κψ∣∣∣2s+1.5 .

The term involving surface tension is controlled as follows

− σ

∫
Σ

〈∂〉s+0.5∇ ·

 ∇ψ√
1 + |∇ψ|2

 〈∂〉s+0.5ψ dx′ = σ

∫
Σ

〈∂〉s+0.5

 ∇ψ√
1 + |∇ψ|2

 · 〈∂〉s+0.5∇ψ dx′

= σ

∫
Σ

|〈∂〉s+0.5∇ψ|2√
1 + |∇ψ|2

−
|∇ψ · 〈∂〉s+0.5∇ψ|2√

1 + |∇ψ|2
3 dx′

+ σ

∫
Σ

([
〈∂〉s−0.5,

1
|N |

]
〈∂〉∇iψ +

[
〈∂〉s−0.5,

1
|N |3

]
(∇kψ · 〈∂〉∇kψ∇iψ) −

1
|N |3

[〈∂〉s−0.5,∇ψ]〈∂〉∇iψ

)
· ∇i〈∂〉

s+0.5ψ dx′
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Using Kato-Ponce commutator estimate (cf. (B.8) in Lemma B.6), the commutators in the last line of the
above identity are controlled by P(|∇ψ|L∞ )|∇ψ|W1,∞ |∂ψ|s−0.5. Using again Cauchy’s inequality (3.37), we con-
clude the elliptic estimate by

σ|ψ|2s+1.5 + κ |ψ|2s+2.5 + κ
d
dt
|ψ|2s+1.5 ≤

(
P(|∇ψ|L∞ )|∇ψ|W1,∞ |σ∂ψ|s−0.5 + |

�
q

�
|s−0.5

)
|ψ|s+1.5.

In particular, Lemma B.7 suggests that we have

|ψ|s+1.5 ≤ |ψ0|s+1.5 + σ−1
(
P(|∇ψ|L∞ )|∇ψ|W1,∞ |σ∂ψ|s−0.5 + |

�
q

�
|s−0.5

)
.

Moreover, when κ = 0, |ψ0|s+1.5 no longer appears as we do not need Lemma B.7

|σψ|s+1.5 ≤ P(|∇ψ|L∞ )|∇ψ|W1,∞ |σ∂ψ|s−0.5 + |
�
q

�
|s−0.5. (3.47)

�

Now we can easily obtain the control for the problematic term VS by setting s = 4 in Lemma 3.5

VS . |ψ0|5.5 + σ−1P(Eκ
4(t)). (3.48)

Step 4: A cancellation structure for the incompressible limit.

It remains to control the term Z± and ZB±. In ∂4-estimates, each of these terms can be directly controlled.
However, in the control of Eκ

8(t) and the control of full time derivatives, there will be extra technical difficulties
due to the loss of Mach number or the anisotropy of the function spaces. Thus, we would like to present a
robust approach to control these terms. We take Z− + ZB− as an example and the “+” case is controlled in the
same way by reversing the sign when integrating by parts. Recall that Q− = ∂4q− − ∂4ϕ∂

ϕ
3q−, so we have

ZB− =

∫
Σ

∂4q−(∂3v− · N)∂4ψ dx′ −
∫

Σ

∂4ψ∂3q−(∂3v− · N)∂4ψ dx′

+

3∑
k=1

∫
Σ

(
4
k

)
Q−∂4−kv− · ∂kN dx′.

(3.49)

The first two terms in ZB− can be directly controlled∫
Σ

∂4q−(∂3v− · N)∂4ψ dx′ −
∫

Σ

∂4ψ∂3q−(∂3v− · N)∂4ψ dx′

≤
(
|∂7/2q−|0|ψ|4.5 + |ψ|24

)
|∂3v · N |1.5 ≤

(
‖q−‖4,−|ψ|4.5 + |ψ|24

)
‖∂v−‖2,−|ψ|2.5 ≤ P(σ−1, Eκ

4(t)).

The last term in ZB− is controlled together with Z− := −
∫

Ω−
Q−Ci(v−i ) dVt. Recall that

Ci(v−i ) = (∂ϕ3∂
ϕ
i v−i )∂4ϕ −

[
∂4,

∂iϕ

∂3ϕ
, ∂3v−i

]
− ∂3v−i

[
∂4, ∂iϕ,

1
∂3ϕ

]
+ ∂iϕ∂3v−i

[
∂3,

1
(∂3ϕ)2

]
∂∂3ϕ, i = 1, 2

and

C3( f ) = (∂ϕ3)2v−3∂
4ϕ +

[
∂4,

1
∂3ϕ

, ∂3v−3

]
− ∂3v−3

[
∂3,

1
(∂3ϕ)2

]
∂∂3ϕ.

Note that Ni = −∂iϕ for i = 1, 2, so we have

−

[
∂4,

∂iϕ

∂3ϕ
, ∂3v−i

]
=

[
∂4,

Ni

∂3ϕ
, ∂3v−i

]
=

3∑
k=1

(
4
k

)
∂k

(
Ni

∂3ϕ

)
∂4−k∂3v−i

=

3∑
k=1

(
4
k

)
∂kNi∂

ϕ
3∂

4−kv−i −
(
4
k

) [
∂k,

1
∂3ϕ

]
∂iϕ∂3∂

4−kv−i ,
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where the contribution of the first term above gives us (using Gauss-Green formula)

ZB− −
3∑

k=1

∫
Ω−

(
4
k

)
Q−∂kNi∂

ϕ
3∂

4−kv−i dVt

=

3∑
k=1

(
4
k

) (∫
Σ

Q−∂4−kv− · ∂kN dx′ −
∫

Ω−
Q−∂kNi∂3∂

4−kv−i dx
)

=

3∑
k=1

(
4
k

) (∫
Ω−
∂3Q−∂kNi∂

4−kv−i dx +

∫
Ω−

Q−∂kNi∂3∂
4−kv−i dx −

∫
Ω−

Q−∂kNi∂3∂
4−kv−i dx

)

=

3∑
k=1

(
4
k

) ∫
Ω−
∂3Q−∂kNi∂

4−kv−i dx.

(3.50)

Now invoking Q− = ∂4q− − ∂4ϕ∂
ϕ
3q− and integrating one ∂ by parts, we find that

3∑
k=1

(
4
k

) ∫
Ω−
∂3Q−∂kNi∂

4−kv−i dx . (‖∂3∂3q−‖0,− + |ψ|4‖∂3q−‖L∞(Ω−))|ψ|4‖v−i ‖4,−. (3.51)

Among other terms in Ci(v−i ), we shall focus on the case when there are 4 derivatives falling on v−i and ϕ, and
the control of these terms (lised below) appears to be easier.

−

∫
Ω−

Q−∂4ϕ∂
ϕ
3(∇ϕ · v−) dVt from the first term in Ci(v−i )

4
3∑

i=1

∫
Ω−

Q−∂3∂ϕ ∂
ϕ
3∂

3v− · N dx from the second term in Ci(v−i ) when ∂3 falls on ∂3v−i .
(3.52)

Note that ∂ϕ3v− · N = ∇ϕ · v− − ∇ · v̄−, we have

−

∫
Ω−

Q−∂4ϕ∂
ϕ
3(∇ϕ · v) dVt .

∥∥∥∥∥√
F −p Q−

∥∥∥∥∥
0,−

∥∥∥∥∥√
F −p ∂3Dϕ,−

t p−
∥∥∥∥∥

0,−
|ψ|4 , (3.53)

and

4
∫

Ω−
Q−∂3∂ϕ ∂

ϕ
3∂

3v− · N dx L
= 4

∫
Ω−

Q−∂3∂ϕ ∂
3(∇ϕ · v−) dx − 4

∫
Ω−

Q−∂3∂ϕ ∂
3(∇ · v̄−) dx

. |∂ψ|L∞

(∥∥∥∥∥√
F −p Q−

∥∥∥∥∥
0,−

∥∥∥∥∥√
F −p ∂

3Dϕ,−
t p−

∥∥∥∥∥
0,−

+ ‖∇∂3Q−‖0,−‖∂4v−‖0,−

)
.

(3.54)

Thus, combining the estimates in the above four steps, we conclude the ∂4-estimate by: For the tangential
derivative T γ = ∂4 (γ0 = γ4 = 0, γ1 + γ2 = 4) and for any 0 < δ < 1, we have∥∥∥∥∥(Vγ,±,Bγ,±,Sγ,±,

√
F ±p Pγ,±

)
(t)

∥∥∥∥∥2

0
+

∣∣∣∣√σε2l∂4+l∇ψ(t)
∣∣∣∣2
0

+
∣∣∣∣√κε2l∂4+lψ(t)

∣∣∣∣2
2

+

∫ t

0

∣∣∣∣√κε2l∂4+l∂tψ(τ)
∣∣∣∣2
1

dτ

. δEκ
4+l(t) +

∣∣∣ε2lψ0
∣∣∣2
5.5+l +

l∑
j=0

∫ t

0
P(σ−1, Eκ

4+ j(τ)) dτ, 0 ≤ l ≤ 4.

(3.55)

Remark 3.2. It should be noted that we only have the L2 control of V,B,S and (Fp)
1
2 P in the tangential

estimates, but the term Q without Fp-weight does appear in tangential estimates. When T γ contains at least
one spatial derivative, that is, γ0 < 〈γ〉, one can invoke the momentum equation to replace T q by Dϕ

t v and
(b·∇ϕ)b to avoid the loss of Mach number. This also suggests that we can actually control ‖P‖0 instead of only
‖F

1/2
p P‖0 when there is at least one spatial derivatives. However, when T γ only consists of time derivatives,

we cannot do such substitution any longer. Thus, we have to use the above cancellation structure between ZB
and Z to control these two terms together.
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3.3.2 The case l > 0: No loss of regularity or weights of Mach number

Next we consider the tangential estimates for ε-weighted spatial derivatives, namely ε2l∂4+l for 1 ≤ l ≤ 4.
The proof is parallel to the case T γ = ∂4, but we have to check the following aspects

a. We have to guarantee that there is no loss of Fp-weight in various commutators, especially those
involving q.

b. When l = 4, we only have tangential regularity for 8 derivatives. Due to the anisotropy of the function
space H8

∗ , we have to put extra efforts to reduce the terms involving the derivative ∂7∂3.

We only show the detailed modifications for the case l = 4, that is, the ε8∂8-estimate. When 1 ≤ l ≤ 3, similar
modifications can be made in the same way.

Commutators of type ε8[∂8, f ]T g for T = ∂ or Dϕ
t

This type of commutator includes the following terms

−[T γ, ρ]Dϕ
t v in Rv, − [T γ,Fp]Dϕ

t p in Rp,

[T γ, v̄] · ∂ f and ∂ϕ3 f [T γ, v] · N in Dγ( f )

It is controlled directly by expanding the commutator. We have

ε8[∂8, f ]T g = (ε8∂8 f )T g + 8(ε6∂7 f )(ε2∂T g) + 28(ε6∂6 f )(ε2∂2T g) + 56(ε6∂5 f )(ε2∂3T g)

+ 70(ε2∂4 f )(ε6∂4T g) + 56(ε2∂3 f )(ε6∂5T g) + 28(ε2∂2 f )(ε6∂6T g) + 8(∂ f )(ε8∂7T g),

whose L2(Ω) norm is controlled by

‖ε8∂8 f ‖0‖T g‖L∞ + 8ε2‖ε6∂7 f ‖0‖∂T g‖L∞ + 28‖ε6∂6 f ‖L6‖ε2∂2T g‖L3 + 56‖ε6∂5 f ‖L6‖ε2∂3T g‖L3

+ 70‖ε2∂4 f ‖L3‖ε6∂4T g‖L6 + 56‖ε6∂3 f ‖L3‖ε2∂5T g‖L6 + 28‖ε6∂6g‖L6‖ε2∂2T f ‖L3 + 8ε2‖ε6∂7g‖0‖∂T f ‖L∞

. (1 + ε2)
(√

Eκ
8(t)Eκ

4(t) +
√

Eκ
7(t)Eκ

4(t) +
√

Eκ
7(t)Eκ

5(t)
)
,

where we use the Sobolev embedding H1 ↪→ L6 and H1 ↪→ H1/2 ↪→ L3 in 3D. In 2D case, we can replace
(L6, L3) by (L4, L4) and use Ladyženskaya’s inequality ‖ f ‖2L4 ≤ ‖ f ‖L2‖∂ f ‖L2 ≤ ‖ f ‖21 to obtain the same bound.

Commutator ε8[∂8, b] · ∇ϕ f for f = b, v

This term appears when we commute T γ with (b · ∇ϕ). Note that we can rewrite the directional derivative
to be (b · ∇ϕ) = b̄ · ∇ + (∂3ϕ)−1(b · N)∂3. When commuting ∂8 with b̄ · ∇, the estimate is exactly the same
as ε8[∂8, f ]T g. For the commutator [∂8, (∂3ϕ)−1(b · N)]∂3 f , we just need to put extra effort on the term
8∂((∂3ϕ)−1(b · N))∂7∂3 f because the length of the multi-index exceeds 8 when |x3| . 1. (Recall that the
weight function ω(x3) is comparable to |x3| when x3 . 1 and is comparable to 1 when |x3| � 1.) In this case,
we notice that b ·N|Σ = 0, and thus its interior value can be expressed via the fundamental theorem of calculus

(∂3ϕ)−1(b · N)(x′, x3) = 0 +

∫ x3

0
∂3

(
(∂3ϕ)−1(b · N)(x′, ξ3)

)
dξ3,

whose L∞(Ω) norm is controlled by Cω(x3)‖∂3(b · N)‖L∞(Ω).

Commutator D( f ) for f = v, p, b, S

Among all terms in (3.10), we need to further analyze the third term, that is, the commutator ε8
[
∂8, 1

∂3ϕ
(v · N − ∂tϕ), ∂3 f

]
for f = v, b, p. The problem is the same as above, that is, ∂7 may fall on ∂3 f which is not directly control-
lable. Again, we notice that there is only one ∂ falling on 1

∂3ϕ
(v · N − ∂tϕ) and (v · N − ∂tϕ)|Σ = 0, so we can

use the same method (as in the control of ε8[∂8, b] · ∇ϕ f ) to control this commutator.
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Commutator C(q)

The problematic term is −8(∂3ϕ)−1(∂Ni)(∂7∂3q) arising from [T γ,Ni/∂3ϕ, ∂3q]. To control this term, we
can invoke the third component of the momentum equation to convert ∂3q to tangential derivatives of other
quantities

−∂3q = (∂3ϕ)
(
ρDϕ

t v3 − (b · ∇ϕ)b3

)
,

where Dϕ
t = ∂t + v̄ · ∇ + (∂3ϕ)−1(v · N − ∂tϕ)∂3 and (b · ∇ϕ) = b̄ · ∇ + (∂3ϕ)−1(b · N)∂3 are both tangential

derivatives. Also, there is no loss of weight of Mach number in this term because one can always replace ∂q
by Dϕ

t v and (b · ∇ϕ)b.

Commutator Ci(vi)

The problematic term is −8(∂3ϕ)−1(∂Ni)(∂7∂3vi) arising from [T γ,Ni/∂3ϕ, ∂3vi]. In fact, this term may not
be controlled independently, but its contribution only appears in −

∫
Ω

QCi(vi) dVt which has been analyzed
in step 4 of Section 3.3.1. Specifically, its contribution in the term Z, after combining it with ZB term, is

8ε16
∫

Ω

∂3(∂8q − ∂8ϕ∂
ϕ
3q) ∂Ni ∂

7vi dx,

which is controlled by (‖ε8∂7∂3q‖0 + |ε8∂8ψ|0‖∂q‖L∞ )|∂ψ|W1,∞‖ε8∂8v‖0 after integrating one ∂ by parts. Then
we convert ∂3q to tangential derivatives of other quantities via the momentum equation, which has been
presented in the control of C(q).

Based on the above analysis, we can follow the same method as in ∂4-estimate to prove the following
inequality for ε2l∂4+l-estimates (1 ≤ l ≤ 4) for the nonlinear κ-approximate problem (3.1): For any 0 < δ < 1
and fixed l ∈ {1, 2, 3, 4}.∥∥∥∥∥ε2l

(
Vγ,±,Bγ,±,Sγ,±,

√
F ±p Pγ,±

)
(t)

∥∥∥∥∥2

0,±
+

∣∣∣∣√σε2l∂4+l∇ψ(t)
∣∣∣∣2
0

+
∣∣∣∣√κε2l∂4+lψ(t)

∣∣∣∣2
2

+

∫ t

0

∣∣∣∣√κε2l∂4+l∂tψ(τ)
∣∣∣∣2
1

dτ

. δEκ
4+l(t) +

∣∣∣ε2lψ0
∣∣∣2
5.5+l +

l∑
j=0

∫ t

0
P(σ−1, Eκ

4+ j(τ)) dτ,

(3.56)
where (Vγ,±,Bγ,±,Sγ,±,Pγ,±) represent that Alinhac good unknowns of (v±, b±, S ±, p±) with respect to ∂4+l.

3.4 Tangential estimates: full time derivatives
Now we control the full time derivatives, that is, the ε2l∂4+l

t estimates for 0 ≤ l ≤ 4. We will take the most
difficult case l = 4 for an example, that is, the ε8∂8

t -estimate. The other cases (0 ≤ l ≤ 3) can be treated in the
same way.

3.4.1 Replacing one time derivative by a material derivative

Following the analysis in Section 3.3.1 and Section 3.3.2, we expect to control the following norms∥∥∥∥∥ε8
(
V±,B±,

√
F ±p P±,S±

)∥∥∥∥∥2

0,±
+

∣∣∣ε8 √σ∂8
t ψ

∣∣∣2
1 +

∣∣∣ε8 √κ∂8
t ψ

∣∣∣2
2 +

∣∣∣ε8 √κ∂9
t ψ

∣∣∣2
L2

t H1
x′
,

which further gives the control of
∥∥∥∥∥ε8∂8

t (v±, b±,
√
F ±p p±, S ±)

∥∥∥∥∥2

0
. However, there are several extra difficulties

that may make our previous method invalid.

a. We cannot substitute ∂q by T (v, b) because there is no spatial derivative.
b. ∂4+l

t p has weight
√
F ±p ε

2l = O(ε1+2l) instead of ε2l. There might be a loss of ε-weight.

c.
√
F ±p ε

2l∂4+l
t q only has L2(Ω) regularity, so the trace lemma is no longer valid.
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d. We cannot integrate by parts for “half-order time derivative” ∂1/2
t . Thus, the control of VS term will be

rather different.

To overcome the abovementioned difficulties, especially (c) and (d) in the control of the crucial boundary
term VS, we would like to replace the full-time derivative ∂4+l

t by Dϕ,−
t ∂3+l

t where Dϕ,−
t = ∂t + v̄− · ∇ +

(∂3ϕ)−1(v− · N − ∂tϕ)∂3 and v−|Ω+ is defined to be the Sobolev extension of v− in Ω+. We aim to prove the
following estimates.

Proposition 3.6. Fix l ∈ {0, 1, 2, 3, 4}. For ε2lDϕ,−
t ∂3+l

t -differentiated approximate system (0 ≤ l ≤ 4), we
have the following uniform-in-(κ, ε) estimate for any 0 < δ < 1∥∥∥∥ε2l

(
V∗,γ,±,B∗,γ,±,S∗,γ,±, (F ±p )1/2P∗,γ,±

)
(t)

∥∥∥∥2

0
+

∣∣∣∣√σε2lDϕ,−
t ∂3+l

t ∇ψ(t)
∣∣∣∣2
0

+
∣∣∣√κε2lDϕ,−

t ∂3+l
t ψ(t)

∣∣∣2
2 +

∫ t

0

∣∣∣√κε2lDϕ,−
t ∂3+l

t ∂tψ(τ)
∣∣∣2
1 dτ

. δEκ
4+l(t) +

l∑
j=0

P(Eκ
4+ j(0)) +

∫ t

0
P(σ−1, Eκ

4+ j(τ)) dτ, 0 ≤ l ≤ 4,

(3.57)

where
(
V∗,γ,±,B∗,γ,±,S∗,γ,±, (F ±p )1/2P∗,γ,±

)
represent the Alinhac good unknowns of (v±, b±, S ±, p±) with re-

spect to Dϕ,−
t ∂3+l

t , that is, F∗,γ,± = Dϕ,−
t ∂3+l

t f ± − (Dϕ,−
t ∂3+l

t ϕ)∂ϕ3 f ±.

For the case l = 4, we introduce the Alinhac good unknowns with respect to Dϕ,−
t ∂7

t

(V∗,±,B∗,±,P∗,±,Q∗,±,S∗,±) := Dϕ,−
t ∂7

t (v±, b±, p±, q±, S ±) − (Dϕ,−
t ∂7

t ϕ)∂ϕ3(v±, b±, p±, q±, S ±).

They satisfy
Dϕ,−

t ∂7
t ∂

ϕ
i f ± = ∂

ϕ
i F∗,± + C∗i ( f ±), Dϕ,−

t ∂7
t Dϕ,−

t f ± = Dϕ,−
t F∗,± +D∗i ( f ±) f ,

where C∗( f ),D∗( f ) are defined in the same way as (3.9)-(3.10) by replacing T γ with Dϕ,−
t ∂7

t . The boundary
conditions of these good unknowns are�

Q∗
�

= σD−t ∂
7
tH − κD−t ∂

7
t (1 − ∆)2ψ − κD−t ∂

7
t (1 − ∆)∂tψ −

�
∂3q

�
D−t ∂

7
t ψ (3.58)

V∗,± · N = ∂tD−t ∂
7
t ψ + (v̄± · ∇)D−t ∂

7
t ψ − D±t v̄− · ∇∂7

t ψ −W
∗,±, (3.59)

with

W∗± = (∂3v± · N)D−t ∂
7
t ψ + [Dϕ,−

t ∂7
t ,Ni, v±i ], (3.60)

where we use the fact that Dϕ±
t |Σ = D±t = ∂t + v̄± · ∇. Note that D−t does not directly commute with ∂t or ∂i,

so there is an extra term −D±t v̄− · ∇∂7
t ψ in the expression of V±,∗ · N.

3.4.2 Analysis of the interior commutators

Since we replaced ∂8
t with Dϕ,−

t ∂7
t and Dϕ,−

t does not directly commute with ∂3, we need to further analyze
the commutators Ci( f ) for f = q and vi and D( f ) for f = v, b, p, S . The problematic thing is that ∂3 may fall
on (∂3ϕ)−1(v− ·N− ∂tϕ) (in Dϕ,−

t ) and produce a normal derivative without a weight function that vanishes on
Σ, which may introduce a second-order derivative in the setting of anisotropic Sobolev space. This problem
does not appear in D( f ), as we find that such commutator has the form (∂3ϕ)−1(v · N − ∂tϕ)[Dϕ,−

t ∂7
t , ∂3] f

which already includes a weight (v ·N− ∂tϕ) that vanishes on Σ. In Ci( f ), according (3.9), we need to further
analyze the term Ni(∂3ϕ)−1[Dϕ,−

t ∂7
t , ∂3] f for f = q, vi. Using Dϕ,−

t = ∂t + v̄− · ∇ + (∂3ϕ)−1(v− ·N − ∂tϕ)∂3, we
have

Ni(∂3ϕ)−1[Dϕ,−
t ∂7

t , ∂3] f = Ni(∂3ϕ)−1[Dϕ,−
t , ∂3]∂7

t f

= − Ni(∂3ϕ)−1∂3v̄− · ∇∂7
t f + Ni∂3

(
(∂3ϕ)−1(v− · N − ∂tϕ)

)
∂
ϕ
3∂

7
t f .

The first term above can be directly controlled in L2 because only tangential derivative falls on ∂7
t f . For

the second term, we can invoke the momentum equation and the continuity equation to convert this normal
derivative to a tangential derivative.
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• When f = q, we use −∂ϕ3q = ρDϕ
t v3 − (b · ∇ϕ)b3.

• When f = vi, using ∇ϕ · v = ∇ · v̄ + ∂
ϕ
3v ·N, the continuity equation becomes ∂ϕ3v ·N = −ε2Dϕ

t p −∇ · v̄.
Thus we have ∂7

t ∂
ϕ
3v · N = −∂7

t (ε2Dϕ
t p + ∇ · v̄) + [∂7

t ,N] · ∂3v in which both terms can be directly
controlled in ‖ · ‖8,∗ norm.

Also note that there is no extra loss of Mach number even if ∂8
t p requires one more ε-weight. In fact,

the only term in the commutators C,D that contains ∂8
t p is Rp, but there is an extra weight Fp = O(ε2)

multiplying on it. Therefore, we can follow the same strategy presented in Section 3.3.1 and Section 3.3.2 to
analyze the interior part. We can prove the following energy identity∑

±

d
dt
ε16

2

∫
Ω±
ρ±|V∗,±|2 + |B∗,±|2 + F ±p (P∗,±)2 + ρ±(S∗,±)2 dVt

= ST∗ + ST∗′ + VS∗ + RT∗ +
∑
±

RT∗,± + ZB∗,± + Z∗,± + R∗,±
Σ

+ R∗,±
Ω
,

(3.61)

where

ST∗ := ε16
∫

Σ

D−t ∂
7
t

�
q

�
∂tD−t ∂

7
t ψ dx′, (3.62)

ST∗′ := ε16
∫

Σ

D−t ∂
7
t

�
q

�
(v̄+ · ∇)D−t ∂

7
t ψ dx′, (3.63)

VS∗ := ε16
∫

Σ

D−t ∂
7
t q− (~v̄� · ∇)D−t ∂

7
t ψ dx′, (3.64)

RT∗ := − ε16
∫

Σ

�
∂3q

�
D−t ∂

7
t ψ∂tD−t ∂

7
t ψ dx′, (3.65)

RT∗,± := ∓ ε16
∫

Σ

∂3q± D−t ∂
7
t ψ (v̄± · ∇)D−t ∂

7
t ψ dx′, (3.66)

R∗,±
Σ

:= ± ε16
∫

Σ

Q∗,±D±t v̄− · ∇∂7
t ψ dx′, (3.67)

ZB∗,± := ∓ ε16
∫

Σ

Q∗,±W∗,± dx′, Z∗,± = −

∫
Ω±
ε16Q±,∗C∗i (v±i ) dVt, (3.68)

and R∗,±
Ω

represents the controllable terms in the interior containing the analogues of R±1 ,R
±
2 ,R

±
3 . Specifically,

we have

ε−16R∗,±
Ω

=

∫
Ω±

V∗,± · (R∗,±v − C
∗(q±)) dVt +

∫
Ω±
R∗,±q (∇ϕ · V∗,±) dVt +

∫
Ω±

B∗,± · R∗,±b dVt +

∫
Ω±

P∗,±R∗,±p dVt

−
1
2

∫
Ω±

(∇ϕ · v±)|B∗,±|2 dVt −
1
2

∫
Ω±

(Dϕ±
t F

±
p + F ±p ∇

ϕ · v±)|P∗,±|2 dVt +

∫
Ω±
ρ±D∗(S ±) S∗,± dVt

(3.69)

where

R∗,±v := [Dϕ,−
t ∂7

t , b
±] · ∇ϕb± − [Dϕ,−

t ∂7
t , ρ
±]Dϕ±

t v± − ρ±D∗(v±),

R∗,±p := − [Dϕ,−
t ∂7

t ,F
±
p ]Dϕ±

t p± − F ±p D
∗(p±),

R
∗,±
b := [Dϕ,−

t ∂7
t , b
±] · ∇ϕv± −D∗(b±), R∗,±q := Q∗,± − P∗,± − b± · B∗,±.

These terms can be directly controlled in the same way as presented in Section 3.3.1, so we omit the details∫ t

0
R∗,±

Ω
dτ . P(Eκ(0)) +

∫ t

0
P(Eκ

4(t))Eκ
8(t) dτ. (3.70)

3.4.3 Analysis of the boundary integrals

Similarly as in Section 3.3.1, we can decompose the control of these terms in the following steps.
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Step 1: Boundary regularity of full time derivatives given by surface tension.

Invoking the boundary condition (3.58) for ~Q∗�, the term ST becomes

ST∗ = σε16
∫

Σ

D−t ∂
7
t ∇ ·

 ∇ψ√
1 + |∇ψ|2

 ∂tD−t ∂
7
t ψ dx′

− κε16
∫

Σ

D−t ∂
7
t (1 − ∆)2ψ∂tD−t ∂

7
t ψ dx′ − κε16

∫
Σ

D−t ∂
7
t (1 − ∆)∂tψ∂tD−t ∂

7
t ψ dx′

=: ST∗0 + ST∗1,κ + ST∗2,κ.

(3.71)

Commuting ∇· with D−t , we have

ST∗0 = σε16
∫

Σ

∇ · D−t ∂
7
t (∇ψ/|N |) ∂tD−t ∂

7
t ψ dx′ + σε16

∫
Σ

∂iv̄−j ∂ j∂
7
t (∂iψ/|N |)∂tD−t ∂

7
t ψ dx′︸                                             ︷︷                                             ︸

ST∗,R0

(3.72)

Integrating ∇· by parts in the mean curvature term, we get an analogous energy term contributed by
surface tension as in Section 3.3.1

σε16
∫

Σ

∇ · D−t ∂
7
t

 ∇ψ√
1 + |∇ψ|2

 ∂tD−t ∂
7
t ψ dx′

= − σε16
∫

Σ

D−t ∂
7
t ∇ψ

|N |
· ∂tD−t ∂

7
t ∇ψ dx′ + σε16

∫
Σ

∇ψ · D−t ∂
7
t ∇ψ

|N|3
∇ψ · ∂tD−t ∂

7
t ∇ψ dx′

−σε16
∫

Σ

D−t ∂
7
t ∂iψ

|N |
· ∂t(∂iv̄−j ∂ j∂

7
t ψ) dx′ − σε16

∫
Σ

∇ψ · D−t ∂
7
t ∂iψ

|N |3
∇ψ∂t(∂iv̄−j ∂ j∂

7
t ψ) dx′︸                                                                                                             ︷︷                                                                                                             ︸

=: ST∗,R1

−σε16
∫

Σ

([
D−t ∂

6
t ,

1
|N |

]
∂t∇ψ +

[
D−t ∂

6
t ,

1
|N |3

]
((∇ψ · ∂t∇ψ)∇ψ) −

1
|N |3

[D−t ∂
6
t ,∇ψ]∂t∇ψ

)
· ∂t∇D−t ∂

7
t ψ dx′︸                                                                                                                                    ︷︷                                                                                                                                    ︸

=: ST∗,R2

(3.73)
where the right side is further equal to

−
σε16

2
d
dt

∫
Σ

|D−t ∂
7
t ∇ψ|

2√
1 + |∇ψ|2

−
|∇ψ · D−t ∂

7
t ∇ψ|

2√
1 + |∇ψ|2

3 dx′

+
σε16

2

∫
Σ

∂t

(
1
|N |

) ∣∣∣∣D−t ∂7
t ∇ψ

∣∣∣∣2 − ∂t

(
1
|N|3

) ∣∣∣∣∇ψ · D−t ∂7
t ∇ψ

∣∣∣∣2 dx′︸                                                                          ︷︷                                                                          ︸
=: ST∗,R3

+ ST∗,R1 + ST∗,R2 .
(3.74)

The first line above together with the inequality (3.37) gives the
√
σ-weighted boundary regularity as in step

2 in Section 3.3.1. The term ST∗,R1 is generated by commuting D−t with ∇ (the one falling on ∂7
t ψ) and is

directly controlled by the energy. The term ST∗,R3 is controlled in the same way as STR
2 in step 2 of Section

3.3. The term ST∗,R2 is controlled by integrating ∂t by parts under time integral, which was also analyzed in
[55, Section 4.6]. The term ST∗,R0 is controlled by integrating by parts in ∂t and then in ∂ j under time integral
(which is similar to ST∗,R2 ). Thus, we conclude their estimates by∫ t

0
ST∗,R0 + ST∗,R1 + ST∗,R2 + ST∗,R3 dτ . P(Eκ(0)) +

∫ t

0
P(Eκ(τ)) dτ. (3.75)
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Next we analyze the terms ST∗1,κ, ST∗2,κ involving the κ-regularization terms. Note that we have to com-

mute D−t with 1 − ∆ or 〈∂〉 =
√

1 − ∆ when deriving the
√
κ-weighte terms. Integrating 1 − ∆ by parts

in ST∗1,κ

ST∗1,κ = −κε16
∫

Σ

D−t ∂
7
t (1 − ∆)2ψ∂tD−t ∂

7
t ψ dx′

= − κε16
∫

Σ

Dϕ,−
t ∂7

t (1 − ∆)ψ∂t

(
D−t ∂

7
t (1 − ∆)ψ

)
dx′

− κε16
∫

Σ

[D−t , 1 − ∆]
(
∂7

t (1 − ∆)ψ
)
∂tD−t ∂

7
t ψ dx′ − κε16

∫
Σ

D−t ∂
7
t (1 − ∆)ψ∂t

(
[1 − ∆,D−t ]∂7

t ψ
)

dx′

=: −
d
dt

1
2

∣∣∣∣√κε8D−t ∂
7
t (1 − ∆)ψ

∣∣∣∣2
0

+ ST∗,R11,κ + ST∗,R12,κ

(3.76)

On Σ, the material derivative Dϕ,−
t = D−t = ∂t + v̄− · ∇, so the commutator is

[D−t , 1 − ∆] f = [∆, v̄− · ∇] f = ∆v̄− · ∇ f + 2∂iv̄−j ∂ j∂i f .

Then ST∗,R11,κ is controlled under time integral by integrating ∂ j by parts in the second term∫ t

0
ST∗,R11,κ dτ = − κε16

∫ t

0

∫
Σ

∆v̄−j ∂ j

(
∂7

t (1 − ∆)ψ
)
∂tD−t ∂

7
t ψ dx′ dτ

+ 2κε16
∫ t

0

∫
Σ

∂iv̄−j ∂i

(
∂7

t (1 − ∆)ψ
)
∂ j∂tD−t ∂

7
t ψ dx′ dτ + lower order terms

. δ
∣∣∣∣√κε8D−t ∂

8
t ψ

∣∣∣∣2
1

+
1
4δ

∫ t

0

∣∣∣∣√κε8∂∂7
t ψ

∣∣∣∣2
2
|∂v̄−|2W1,∞ dτ ≤ δEκ

8(t) +

∫ t

0
P(Eκ

8(τ), Eκ
4(τ)) dτ.

(3.77)

The control of ST∗,R12,κ is easier because there is no term containing 9 time derivatives of ψ. It is directly
controlled by using the

√
κ-weighted boundary energy obtained above.

ST∗,R12,κ .
∣∣∣∣√κε8D−t ∂

7
t (1 − ∆)ψ

∣∣∣∣
0

(∣∣∣√κε8∂8
t ψ

∣∣∣
2 +

∣∣∣√κε8∂7
t ψ

∣∣∣
2

) √
Eκ

4(t) ≤ Eκ
8(t)

√
Eκ

4(t).

The control of ST∗2,κ is similar to ST∗1,κ. Using 〈∂〉2 = 1 − ∆, we have

ST∗2,κ = −

∫
Σ

∣∣∣∣√κε8Dϕ,−
t ∂8

t 〈∂〉ψ
∣∣∣∣2 dx′

+ κε16
∫

Σ

[D−t , ∂i]
(
∂8

t ∂iψ
)
∂tD−t ∂

7
t ψ dx′ + κε16

∫
Σ

D−t ∂
8
t ∂iψ

(
[∂i∂t,D−t ]∂7

t ψ
)

dx′

=: −
∫

Σ

∣∣∣∣√κε8Dϕ,−
t ∂8

t 〈∂〉ψ
∣∣∣∣2 dx′ + ST∗,R21,κ + ST∗,R22,κ,

(3.78)

where we use the concrete form of the commutators

[D−t , ∂i] = −∂iv̄−j ∂ j f , [∂i∂t,D−t ] f = ∂t

(
∂iv̄−j ∂ jD−t f

)
+ ∂tv̄−j ∂ j∂i f

to get estimates similar to ST∗,R11,κ and ST∗,R12,κ∫ t

0
ST∗,R21,κ + ST∗,R22,κ dτ . δEκ

8(t) +

∫ t

0
P(Eκ

8(τ), Eκ
4(τ)) dτ.
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Hence, the control of ST∗ in (3.61) is concluded by∫ t

0
ST dτ +

1
2

∫
Σ

|
√
σε8D−t ∂

7
t ∇ψ|

2√
1 + |∇ψ|2

3 dx′

+

∫
Σ

∣∣∣∣√κε8D−t ∂
7
t (1 − ∆)ψ

∣∣∣∣2 dx′ +
∫ t

0

∫
Σ

∣∣∣∣√κε8D−t ∂
8
t 〈∂〉ψ

∣∣∣∣2 dx′ dτ

≤ δEκ
8(t) + P(Eκ(0)) +

∫ t

0
P(Eκ(τ)) dτ.

(3.79)

The term ST∗′ is controlled in the same way as ST∗ by replacing ∂tD−t ∂
7
t ψ with (v̄+ · ∇)D−t ∂

7
t ψ. We no

longer get energy terms, but we can integrate (v̄+ · ∇) by parts and use symmetry and the above boundary
regularity to control them. Invoking the jump condition, we have

ST∗′ = σε16D−t ∂
7
tH (v̄+ · ∇)D−t ∂

7
t ψ dx′

− κε16
∫

Σ

D−t ∂
7
t (1 − ∆)2ψ (v̄+ · ∇)D−t ∂

7
t ψ dx′ − κε16

∫
Σ

D−t ∂
7
t (1 − ∆)∂tψ (v̄+ · ∇)D−t ∂

7
t ψ dx′

=: ST∗0
′
+ ST∗1,κ

′
+ ST∗2,κ

′. (3.80)

Following the analysis (3.72)-(3.75), the first term is controlled thanks to the boundary regularity and sym-
metric structure after integrating (v̄+ · ∇) by parts.

ST∗0
′ L

=
1
2
σε16

∫
Σ

(∇ · v̄+)

 |D−t ∂7
t ψ|

2

|N |
−
|∇ψ · ∇D−t ∂

7
t ψ|

2

|N|3

 dx′ ≤ P(|∇ψ|L∞ )|v̄+|W1,∞

∣∣∣∣√σε8∇D−t ∂
7
t ψ

∣∣∣∣2
0
. (3.81)

Similarly, we can use the symmetric structure to control ST∗1,κ
′ + ST∗2,κ

′. We only check the commutators
arising in the control of ST∗1,κ

′ as an example.

ST∗,R1,κ
′

:= − κε16
∫

Σ

[D−t , 1 − ∆]
(
∂7

t (1 − ∆)ψ
)

(v̄+ · ∇)
(
D−t ∂

7
t ψ

)
dx′

− κε16
∫

Σ

(
D−t ∂

7
t (1 − ∆)ψ

)
(v̄+ · ∇)

(
[1 − ∆,D−t ]∂7

t ψ
)

dx′

− κε16
∫

Σ

D−t
(
∂7

t (1 − ∆)ψ
)

[1 − ∆, (v̄+ · ∇)]
(
D−t ∂

7
t ψ

)
dx′

=: ST∗,R11,κ
′
+ ST∗,R12,κ

′
+ ST∗,R13,κ

′
. (3.82)

The control of ST∗,R11,κ
′
+ ST∗,R12,κ

′
is similar to ST∗,R11,κ + ST∗,R12,κ. We have

ST∗,R11,κ
′ L

= − κε16
∫

Σ

∆v̄−j ∂ j

(
∂7

t (1 − ∆)ψ
)

(v̄+ · ∇)
(
D−t ∂

7
t ψ

)
dx′

+ 2κε16
∫

Σ

∂ jv̄−j ∂i

(
∂7

t (1 − ∆)ψ
)
∂ j(v̄+ · ∇)

(
D−t ∂

7
t ψ

)
dx′

. |v̄−|W2,∞ |v̄+|L∞
∣∣∣√κε8∂7

t ψ
∣∣∣
3

(∣∣∣√κε8∂7
t ψ

∣∣∣
3 +

∣∣∣√κε8∂8
t ψ

∣∣∣
2

)
. Eκ

4(t)Eκ
8(t), (3.83)

and

ST∗,R12,κ
′
. |v̄−|W2,∞ |v̄+|L∞

(∣∣∣√κε8∂8
t ψ

∣∣∣
2 +

∣∣∣√κε8∂7
t ψ

∣∣∣
3

)2
. Eκ

4(t)Eκ
8(t). (3.84)

The extra term ST∗,R13,κ
′

is also directly controlled

ST∗,R13,κ
′

= κε16
∫

Σ

D−t
(
∂7

t (1 − ∆)ψ
) (

∆v̄+
j ∂ j + 2∂iv̄+

j ∂ j∂i

) (
D−t ∂

7
t ψ

)
dx′

. |v̄+|W2,∞ |v̄−|L∞
(∣∣∣√κε8∂8

t ψ
∣∣∣
2 +

∣∣∣√κε8∂7
t ψ

∣∣∣
3

)2
. Eκ

4(t)Eκ
8(t). (3.85)
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Thus we have

ST∗1,κ
′ .

1
2

∫
Σ

(∇ · v̄+)
∣∣∣∣√κε8D−t ∂

7
t (1 − ∆)ψ

∣∣∣∣2 + Eκ
4(t)Eκ

8(t). (3.86)

Similarly, we have∫ t

0
ST∗2,κ

′ dτ = κε16
∫ t

0

∫
Σ

[D−t , ∂i](∂8
t ∂iψ) (v̄+ · ∇)D−t ∂

7
t ψ dx′ dτ

− κε16
∫ t

0

∫
Σ

(D−t ∂
8
t ∂iψ) ∂i

(
(v̄+ · ∇)D−t ∂

7
t ψ

)
dx′ dτ

− κε16
∫ t

0

∫
Σ

D−t ∂
7
t ∂tψ (v̄+ · ∇)D−t ∂

7
t ψ dx′

. δ
∣∣∣∣√κε8D−t ∂

8
t 〈∂〉ψ

∣∣∣∣2
0

+

∫ t

0
|v̄±|2W1,∞

(∣∣∣√κε8∂7
t ψ

∣∣∣2
3 +

∣∣∣√κε8∂8
t ψ

∣∣∣2
2

)
dτ. (3.87)

Hence, we have the estimate of ST∗′:∫ t

0
ST∗′ dτ . δEκ

8(t) +

∫ t

0
Eκ

8(τ)Eκ
4(τ) dτ. (3.88)

What’s more, we can also control the remainder term R∗,±
Σ

:= ±ε16
∫

Σ
Q∗,±D±t v̄− · ∇∂7

t ψ dx′. Indeed, we use
Gauss-Green formula to write it to be an interior intergral.

R∗,±
Σ

L
= −ε16

∫
Ω±
∂3Q∗,± D±t v̄− · ∇∂7

t ϕ dx (3.89)

Recall that Q∗,± = Dϕ,−
t ∂7

t q± − Dϕ,−
t ∂7

t ψ∂3q±. Note that [∂ϕ3 ,D
ϕ,−
t ]∂7

t q = ∂
ϕ
3v−j ∂

ϕ
j q = (∂ϕ3 v̄− · ∇)∂7

t q + (∂ϕ3v− ·

N)∂7
t ∂3q, so one can still convert ∂q to a tangential derivative of v, b. We now integrate by parts D−t to get∫ t

0
R∗,±

Σ
dτ L

= ε16
∫ t

0

∫
Ω±
∂3(∂7

t q± − ∂7
t ϕ∂3q±)D±t v̄− · Dϕ,−

t ∇∂
7
t ϕ dx dτ

− ε16
∫ t

0

∫
Ω±
∂3(∂7

t q± − ∂7
t ϕ∂3q±)D±t v̄− · ∇∂7

t ϕ dx. (3.90)

Using the reduction for ∂3q again, we can control the above integral by∫ t

0
R∗,±

Σ
dτ . δ‖ε8∂3∂

7
t q±‖20,± +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ . δEκ

8(t) +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ. (3.91)

Step 2: Control of VS term.

Now we start to analyze the most difficult boundary term

VS∗ := ε16
∫

Σ

D−t ∂
7
t q− (~v̄� · ∇)D−t ∂

7
t ψ dx′. (3.92)

Note that there is no spatial derivative ∂ in VS∗, so we cannot integrate ∂1/2 by parts as in step 3 in Section
3.3.1. To overcome this difficulty, we try to rewrite the term D−t ∂

7
t ψ by invoking the kinematic boundary

condition

D−t ∂
7
t ψ = ∂8

t ψ + v̄− · ∇∂7
t ψ = ∂7

t (v− · N) − v− · ∂7
t N

= ∂7
t v− · N + [∂7

t ,Ni, v−i ],
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and thus

VS∗ = ε16
∫

Σ

D−t ∂
7
t q− (~v̄� · ∇)∂7

t v− · N dx′

+ ε16
∫

Σ

D−t ∂
7
t q− ∂7

t v− · (~v̄� · ∇)N dx′ + ε16
∫

Σ

D−t ∂
7
t q− (~v̄� · ∇)[∂7

t ,Ni, v−i ] dx′

=: VS∗0 + VS∗,ZB
1 + VS∗,ZB

2 (3.93)

Using divergence theorem, we convert VS∗0 to an interior integral in Ω−

VS∗0 = ε16
∫

Ω−
Dϕ,−

t ∂7
t q− ∇ϕ ·

(
(~v̄� · ∇)∂7

t v−
)

dVt + ε16
∫

Ω−
∂
ϕ
i Dϕ,−

t ∂7
t q− (~v̄� · ∇)∂7

t v−i dVt

= : VS∗01 + VS∗02, (3.94)

where ~v̄� = v̄+ − v̄− is defined via Sobolev extension in Ω−. In VS∗01, we want to commute ∇ϕ· with (~v̄� · ∇)
in order to get a similar cancellation structure as in ZB + Z. The commutator is

[∂ϕi , ~v̄� · ∇] f = ∂i(~v̄� · ∇ f ) −
∂iϕ

∂3ϕ
∂3(~v̄� · ∇ f ) − (~v̄� · ∇)

∂i f −
∂iϕ

∂3ϕ
∂3 f


= (∂i ~v̄� j)(∂ j f ) −

∂iϕ

∂3ϕ
(∂3 ~v̄� j)(∂ j f ) + ~v̄� j ∂ j

 ∂iϕ

∂3ϕ

 ∂3 f

= ∂
ϕ
i ~v̄� · ∇ f − (~v̄� · ∇)Ni∂

ϕ
3 f + Ni

(~v̄� · ∇)∂3ϕ

∂3ϕ
∂
ϕ
3 f , i = 1, 2,

[∂ϕ3 , ~v̄� · ∇] f = ∂
ϕ
3 ~v̄� · ∇ f +

(~v̄� · ∇)∂3ϕ

∂3ϕ
∂
ϕ
3 f .

Commuting ∇ϕ· with (~v̄� · ∇), we get

VS∗01 = ε16
∫

Ω−
Dϕ,−

t ∂7
t q− ∇ϕ ·

(
(~v̄� · ∇)∂7

t v−
)

dVt

= ε16
∫

Ω−
Dϕ,−

t ∂7
t q− (~v̄� · ∇)

(
∇ϕ · ∂7

t v−
)

dVt − ε
16

∫
Ω−

Dϕ,−
t ∂7

t q− ∂3∂
7
t v− · (~v̄� · ∇)N dx

+ ε16
∫

Ω−
Dϕ,−

t ∂7
t q− ∂ϕi ~v̄� · ∇∂

7
t v−i dVt + ε16

∫
Ω−

Dϕ,−
t ∂7

t q− (~v̄� · ∇)∂3ϕ ∂
ϕ
3∂

7
t v− · N dx

=: VS∗011 + VS∗,Z011 + VS∗,R011 + VS∗,R012 (3.95)

Next we introduce F] := ∂7
t f − ∂7

t ψ∂
ϕ
3 f to be the Alinhac good unknown of f with respect to ∂7

t in order
to commute ∇ϕ with ∂7

t . Namely, we have

∂7
t ∂

ϕ
i f = ∂

ϕ
i F] + C

]
i ( f ), ∂7

t Dϕ
t f = Dϕ

t F] +D]( f ),

where C],D] are defined in the same way as (3.9)-(3.10) with T γ = ∂7
t . With this formulation, we have

∇ϕ · ∂7
t v− = ∇ϕ · V],− + ∂

ϕ
i (∂7

t ϕ∂
ϕ
3v−i ) = ∂7

t (∇ϕ · v−) − C]i (v
−
i ) + ∂

ϕ
i (∂7

t ϕ∂
ϕ
3v−i ).

Now we insert the good unknowns in VS∗011 to get

VS∗011 = ε16
∫

Ω−
Dϕ,−

t ∂7
t q− (~v̄� · ∇)∂7

t (∇ϕ · v−) dVt −ε
16

∫
Ω−

Dϕ,−
t ∂7

t q− (~v̄� · ∇)
(
C
]
i (v
−
i ) − ∂ϕi (∂7

t ϕ∂
ϕ
3v−i )

)
dVt︸                                                                      ︷︷                                                                      ︸

VS∗,Z012

= − ε16
∫

Ω−
F ±p Dϕ,−

t ∂7
t p− (~v̄� · ∇)∂7

t Dϕ,−
t p− dVt + ε16

∫
Ω−

Dϕ,−
t ∂7

t (
1
2
|b−|2) (~v̄� · ∇)∂7

t (∇ϕ · v−) dVt + VS∗,Z012

=: VS∗0111 + VS∗,B0111 + VS∗,Z012. (3.96)
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By the definition of P],−

Dϕ,−
t ∂7

t p− = Dϕ,−
t P],− + Dϕ,−

t (∂7
t ϕ∂

ϕ
3 p−), ∂7

t Dϕ,−
t p− = Dϕ,−

t P] +D](p−).

Then we integrate (~v̄� · ∇) by parts and use symmetry to find

VS∗0111 = − ε16
∫

Ω−
F ±p Dϕ,−

t P],− (~v̄� · ∇)Dϕ,−
t P],− dVt

+ε16
∫

Ω−
F ±p Dϕ,−

t P],−
(
(∇ · ~v̄�)Dϕ,−

t (∂7
t ϕ∂

ϕ
3 p−) − (~v̄� · ∇)

(
D
](p−) − Dϕ,−

t (∂7
t ϕ∂

ϕ
3 p−)

))
dVt︸                                                                                                                     ︷︷                                                                                                                     ︸

VS∗,R0111

−ε16
∫

Ω−
F ±p Dϕ,−

t (∂7
t ϕ∂

ϕ
3 p−) (~v̄� · ∇)D](p−) dVt︸                                                           ︷︷                                                           ︸

VS∗,R0112

~v̄�·∇
=== −

1
2

∫
Ω−

(∇ · ~v̄�)(
√
F ±p ε

8Dϕ,−
t P],−)2 dVt + VS∗,R0111 + VS∗,R0112, (3.97)

where the first term on the right side is controlled by
∥∥∥∥(F ±p )

1
2 ε8P∗,−

∥∥∥∥2

0
‖∇ ~v̄� ‖2L∞ . Next we adapt the analysis

for Z± + ZB± term to the control of VS∗,ZB
1 + VS∗,Z011 and VS∗,ZB

2 + VS∗,Z012. Using Gauss-Green formula, we
have

VS∗,ZB
1 + VS∗,Z011 = ε16

∫
Ω−

(Dϕ,−
t ∂

ϕ
3∂

7
t q−) (~v̄� · ∇)N · ∂7

t v− dVt

+ ε16
∫

Ω−
[∂ϕ3 ,D

ϕ,−
t ](∂7

t q−) (~v̄� · ∇)N · ∂7
t v− + Dϕ,−

t ∂7
t q− ∂ϕ3

(
(~v̄� · ∇)N

)
· ∂7

t v− dVt

=: ε16
∫

Ω−
(Dϕ,−

t ∂
ϕ
3∂

7
t q−) (~v̄� · ∇)N · ∂7

t v− dVt + VS∗,ZR
1 . (3.98)

The main term is controlled by integrating Dϕ,−
t by parts under time integral and invoking the momentum

equation to replace ∂ϕ3q− by tangential derivatives of v−, b−:

ε16
∫ t

0

∫
Ω−

(Dϕ,−
t ∂

ϕ
3∂

7
t q−) (~v̄� · ∇)N · ∂7

t v− dVt dτ

L
= − ε16

∫ t

0

∫
Ω−

(∂ϕ3∂
7
t q−) Dϕ,−

t

(
(~v̄� · ∇)N · ∂7

t v−
)

dVt dτ + ε16
∫

Ω−
(∂ϕ3∂

7
t q−) (~v̄� · ∇)N · ∂7

t v− dVt

∣∣∣∣∣t
0

. δ‖ε8∂
ϕ
3∂

7
t q−‖20,− + P(Eκ

4(0))Eκ
8(0) +

∫ t

0
‖ε8∂

ϕ
3∂

7
t q−‖0,−‖ε8(∂∂7

t v−, ∂8
t v−)‖0P(Eκ

4(τ)) dτ

≤ δEκ
8(t) + P(Eκ

4(0))Eκ
8(0) +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ, ∀δ ∈ (0, 1). (3.99)

For VS∗,ZB
2 + VS∗,Z012, we recall that the term C]i (v

−
i ) in VS∗,Z012 includes a term [∂7

t ,Ni/∂3ϕ, v−i ] which also
appears in VS∗,ZB

2 . Thus we can again use the Gauss-Green formula to analyze this term. Let us first compute
the commutator in VS∗,Z012:

C
]
i (v
−
i ) − ∂ϕi (∂7

t ϕ∂
ϕ
3v−i ) = − ∂

ϕ
i ∂

7
t ϕ∂

ϕ
3vi +

[
∂7

t ,
Ni

∂3ϕ
, ∂3v−i

]
− ∂3v−i

[
∂7

t Ni,
1
∂3ϕ

]
− Ni∂3v−i

[
∂6

t ,
1

(∂3ϕ)2

]
∂t∂3ϕ

= − ∂
ϕ
i ∂

7
t ϕ∂

ϕ
3vi +

[
∂7

t ,Ni, ∂3v−i
]

+

6∑
k=1

(
7
k

)
[∂k

t , (∂3ϕ)−1]Ni ∂
7−k
t ∂3v−i

− ∂3v−i

[
∂7

t ,Ni,
1
∂3ϕ

]
− Ni∂3v−i

[
∂6

t ,
1

(∂3ϕ)2

]
∂t∂3ϕ

=:
1
∂3ϕ

[
∂7

t ,Ni, ∂3v−i
]

+ C
],R
i (v−i )
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Then

VS∗,ZB
2 + VS∗,Z012 = ε16

∫
Σ

Dϕ,−
t ∂7

t q− (~v̄� · ∇)[∂7
t ,Ni, v−i ] dx′ − ε16

∫
Ω−

Dϕ,−
t ∂7

t q− (~v̄� · ∇)
(

1
∂3ϕ

[
∂7

t ,Ni, ∂3v−i
])

dVt

−ε16
∫

Ω−
Dϕ,−

t ∂7
t q− (~v̄� · ∇)C],Ri (v−i ) dVt︸                                               ︷︷                                               ︸

VS∗,ZR
2

= ε16
∫

Ω−
∂
ϕ
3

(
Dϕ,−

t ∂7
t q−

)
(~v̄� · ∇)[∂7

t ,Ni, v−i ] dx + VS∗,ZR
2 + lower order terms, (3.100)

where the first term on the right side is again controlled by integrating Dϕ,−
t by parts under time integral. We

omit the details and just list the result∫ t

0

∫
Ω−
ε16∂

ϕ
3

(
Dϕ,−

t ∂7
t q−

)
(~v̄�·∇)[∂7

t ,Ni, v−i ] dx dτ ≤ δEκ
8(t)+P(Eκ

4(0))Eκ
8(0)+

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ, ∀δ ∈ (0, 1).

Now the term VS∗1 is controlled except for those remainder terms VS∗,R011, VS∗,R012, VS∗,B0111, VS∗,R0111, VS∗,R0112,
VS∗,ZR

1 and VS∗,ZR
2 . In fact, apart from VS∗,B0111, the other remainder terms can be directly controlled by

counting the number of derivatives and invoking the reduction for ∂ϕ3∂
7
t v− ·N and ∂ϕ3∂

7
t q−. There is no loss of

Mach number in these remainder terms. In fact, when ∂8
t p− appears in the remainder terms, either we have

ε16F ±p -weight to control it directly, or we can integrate by parts Dϕ,−
t and (~v̄� ·∇) under time integral to move

one time derivative to v−i . Besides, the control of ∂7
t ϕ, ∂

8
t ϕ depends on the boundary regularity contributed by

surface tension and so depends on σ−1. Therefore, we can conclude the estimates of VS∗1 by

VS∗01+ VS∗,ZB
1 + VS∗,ZB

2 ≤ VS∗,B0111+δEκ
8(t)+P(Eκ

4(0))Eκ
8(0)+

∫ t

0
P(σ−1, Eκ(τ))Eκ

8(τ) dτ ∀δ ∈ (0, 1). (3.101)

Next we control VS∗02 = ε16
∫

Ω−
∂
ϕ
i Dϕ,−

t ∂7
t q− (~v̄� · ∇)∂7

t v−i dVt. First, we commute Dϕ,−
t with ∂ϕi to get

VS∗02 = ε16
∫

Ω−
Dϕ,−

t ∂
ϕ
i ∂

7
t q− (~v̄� · ∇)∂7

t v−i dVt + ε16
∫

Ω−
∂
ϕ
i v−j ∂

ϕ
j∂

7
t q− (~v̄� · ∇)∂7

t v−i dVt

=: VS∗021 + VS∗,R021. (3.102)

In the first term, we integrate by parts Dϕ,−
t under time integral and commute Dϕ,−

t with (~v̄� · ∇) to get∫ t

0
VS∗021 dτ L

= − ε16
∫ t

0

∫
Ω−
∂
ϕ
i ∂

7
t q− (~v̄� · ∇)Dϕ,−

t ∂7
t v−i dVt dτ + ε16

∫
Ω−
∂
ϕ
i ∂

7
t q− (~v̄� · ∇)∂7

t v−i dVt

∣∣∣∣∣t
0

− ε16
∫ t

0

∫
Ω−
∂
ϕ
i ∂

7
t q− [Dϕ,−

t , (~v̄� · ∇)]∂7
t v−i dVt dτ

=:
∫ t

0
VS∗0211 dτ + VS∗,R022 +

∫ t

0
VS∗,R023 dτ. (3.103)

Next we insert the good unknowns Q],− and V],− and invoke again the momentum equation ρ−Dϕ,−
t V],−− (b− ·

∇ϕ)B],− = −∇ϕQ],− + R
],−
v − C

](q−) to get

VS∗0211 = − ε16
∫

Ω−
∂
ϕ
i (Q],− − ∂7

t ϕ∂
ϕ
3q−) (~v̄� · ∇)Dϕ,−

t (V],− − ∂7
t ϕ∂

ϕ
3vi) dVt

= ε16
∫

Ω−
ρ−Dϕ,−

t V],− · (~v̄� · ∇)Dϕ,−
t V],− dVt − ε

16
∫

Ω−
(b− · ∇ϕ)B],− · (~v̄� · ∇)Dϕ,−

t V],− dVt

+ ε16
∫

Ω−

(
C
](q−) − R],−v

)
· (~v̄� · ∇)Dϕ,−

t V],− dVt + ε16
∫

Ω−
∂
ϕ
i (∂7

t ϕ∂
ϕ
3q−) (~v̄� · ∇)Dϕ,−

t ∂7
t v−i dVt

=: ε16
∫

Ω−
ρ−Dϕ,−

t V],− (~v̄� · ∇)Dϕ,−
t V],− dVt + VS∗,B0211 + VS∗,R0211 + VS∗,R0212, (3.104)
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where the first term is again controlled by integrating by parts in (~v̄� · ∇) and using symmetry

ε16
∫

Ω−
ρ−Dϕ,−

t V],− (~v̄� · ∇)Dϕ,−
t V],− dVt =

ε16

2

∫
Ω−

(
∇ · (ρ− ~v̄�)

) ∣∣∣Dϕ,−
t V],−

∣∣∣2 dVt ≤ P(Eκ
4(t))Eκ

8(t).

(3.105)

Next we wish to combine VS∗,B0211 with VS∗,B0111 := ε16
∫

Ω−
Dϕ,−

t ∂7
t ( 1

2 |b
−|2) (~v̄� · ∇)∂7

t (∇ϕ · v−) dVt to get a
cancellation structure. In VS∗,B0111, we invoke the evolution equation Dϕ,−

t b−j = (b− · ∇ϕ)v− − b−(∇ϕ · v−) to get

VS∗,B0111
L
= ε16

∫
Ω−

Dϕ,−
t B],−

j b−j (~v̄� · ∇)∂7
t (∇ϕ · v−) dVt

= ε16
∫

Ω−
Dϕ,−

t B],−
j (~v̄� · ∇)∂7

t

(
b−j (∇ϕ · v−)

)
dVt + ε16

∫
Ω−

Dϕ,−
t B],−

j

[
b j, (~v̄� · ∇)∂7

t

]
(∇ϕ · v−) dVt︸                                                        ︷︷                                                        ︸

VS∗,BR
0111

= − ε16
∫

Ω−
Dϕ,−

t B],−
j (~v̄� · ∇)Dϕ,−

t B],−
j dVt + ε16

∫
Ω−

Dϕ,−
t B],−

j (~v̄� · ∇)∂7
t ((b− · ∇ϕ)v−j ) dVt

− ε16
∫

Ω−
Dϕ,−

t B],−
j (~v̄� · ∇)D](b−j ) dVt + VS∗,BR

0111, (3.106)

where the first term on the right side is again controlled by integrating by parts in (~v̄�·∇) and using symmetry,
and the third term on the right side is controlled directly after inserting the expression of D](b). We denote

VS∗,B0112 := ε16
∫

Ω−
Dϕ,−

t B],−
j (~v̄� · ∇)∂7

t ((b− · ∇ϕ)v−j ) dVt

to be the second term on the right side above. Inserting the good unknown V],−, the term VS∗,B0112 is equal to

ε16
∫

Ω−
Dϕ,−

t B],−
i (~v̄� · ∇)

(
(b− · ∇ϕ)V],−

i

)
dVt + ε16

∫
Ω−

Dϕ,−
t B],−

i (~v̄� · ∇)
(
[∂7

t , b
−
j ]∂ϕj v

−
i + b−j C

]
j(v
−
i )

)
dVt︸                                                                      ︷︷                                                                      ︸

VS∗,BR
0112

= ε16
∫

Ω−
Dϕ,−

t B],−
i (b− · ∇ϕ)

(
(~v̄� · ∇)V],−

i

)
dVt + ε16

∫
Ω−

Dϕ,−
t B],−

i

[
(b− · ∇ϕ), (~v̄� · ∇)

]
V],−

i dVt + VS∗,BR
0112

=: VS∗,B0113 + VS∗,BR
0113 + VS∗,BR

0112. (3.107)

Now we can integrate by parts (b− · ∇ϕ) and then Dϕ,−
t in VS∗,B0113 in order to produce the cancellation

with VS∗,B0211. Under time integral,
∫ t

0 VS∗,B0113 dτ is equal to∫ t

0
ε16

∫
Ω−

(b− · ∇ϕ)B],−
i (~v̄� · ∇)Dϕ,−

t V],−
i dVt︸                                                  ︷︷                                                  ︸

=− VS∗,B0211

dτ + ε16
∫

Ω−
(b− · ∇ϕ)B],−

i (~v̄� · ∇)V],−
i dVt

∣∣∣∣∣t
0

+ ε16
∫ t

0

∫
Ω−

[(b− · ∇ϕ),Dϕ,−
t ]B],−

i (~v̄� · ∇)V],−
i dVt dτ + ε16

∫ t

0

∫
Ω−

(b− · ∇ϕ)B],−
i [Dϕ,−

t , (~v̄� · ∇)]V],−
i dVt dτ

=: −
∫ t

0
VS∗,B0211 dτ + VS∗,BR

0211 +

∫ t

0
VS∗,BR

0212 + VS∗,BR
0213 dτ. (3.108)

Note that [Dϕ,−
t , (b− · ∇ϕ)] = −(∇ϕ · v−)(b− · ∇ϕ) f and when we commute (~v̄� · ∇) with either Dϕ,−

t or
(b− · ∇ϕ),, no normal derivative will be generated because the weight functions in front of ∂3 (namely, b− · N
and (v− · N − ∂tϕ)) are still vanishing on the interface Σ after taking (~v̄� · ∇). Therefore, the commutators
above are all controllable in ‖ · ‖8,∗,− norm and no loss of Mach number occurs. The following remainder
terms are controlled directly

VS∗,R022 + VS∗,BR
0211 +

∫ t

0
VS∗,R021 + VS∗,R023 + VS∗,BR

0111 + VS∗,BR
0112 + VS∗,BR

0212 + VS∗,BR
0213 dτ

≤ δEκ
8(t) + P(Eκ(0)) +

∫ t

0
P(Eκ(τ)) dτ. (3.109)
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In the terms VS∗,R0211 + VS∗,R0212, we can integrate (~v̄� · ∇) by parts to get to get the desired control thanks to
the
√
σ-weighted boundary regularity of ψ

VS∗,R0211 + VS∗,R0212 .σ−1

(
|ε8∂7

t ψ|2 + |ε8∂8
t ψ|1

)
‖ε8Dϕ,−

t ∂7
t v‖0,−P(Eκ

4(t)). (3.110)

Thus, the control of VS∗02 term is concluded by∫ t

0
VS∗02 + VS∗,B0111 dτ ≤ δEκ

8(t) + P(Eκ(0)) +

∫ t

0
P(σ−1, Eκ(τ)) dτ. (3.111)

Finally, combining (3.92), (3.93), (3.101) and (3.111), we get the estimate of VS∗ term∫ t

0
VS∗ dτ ≤ δEκ

8(t) + P(Eκ(0)) +

∫ t

0
P(σ−1, Eκ(τ)) dτ. (3.112)

Step 3: Control of RT term.

In step 3, we control the terms RT∗ and RT∗,± defined in (3.65)-(3.66), The latter one can be directly con-
trolled by using symmetry

RT∗,± = ∓
1
2

∫
Σ

(∇ · (∂3q± v±))
∣∣∣∣D−t ∂7

t ψ
∣∣∣∣2 dx′ ≤ σ−1Eκ

4(t)Eκ
8(t). (3.113)

The term RT∗ = −ε16
∫

Σ

�
∂3q

�
D−t ∂

7
t ψ∂tD−t ∂

7
t ψ dx′ cannot be controlled in the same way as in the estimates of

spatial derivatives because we do not have L2(Σ)-control for ∂tD−t ∂
7
t ψ without κ-weight nor can we integrate

by parts ∂1/2
t . To overcome this difficulty, we need to invoke the kinematic boundary condition to reduce the

number of time derivatives. We have

D−t ∂
7
t ψ = ∂7

t v− · N + [∂7
t , v
−,N], ∂tD−t ∂

7
t ψ = ∂8

t v− · N + 8∂7
t v− · ∂tN + lower order terms.

Plugging it to RT∗, we find

RT∗ L
= −ε16

∫
Σ

�
∂3q

�
∂7

t v− · N ∂8
t v− · N dx′ − 8ε16

∫
Σ

�
∂3q

�
∂7

t v− · N ∂7
t v− · ∂tN dx′ =: RT∗1 + RT∗2. (3.114)

The term RT∗2 can be controlled by using Gauss-Green formula

RT∗2
L
= − 8ε16

∫
Ω−

�
∂3q

�
(∂ϕ3∂

7
t v− · N)(∂7

t v− · ∂tN) dVt − 8ε16
∫

Ω−

�
∂3q

�
(∂7

t v− · N)(∂3∂
7
t v− · ∂tN) dx,

(3.115)

where
�
∂3q

�
is defined via Sobolev extension. The first term above is directly controlled after invoking the

reduction ∂ϕ3∂
7
t v− · N L

= −∂7
t (ε2Dϕ,−

t p− + ∇ · v̄−). For the second term, it suffices to integrate ∂t by parts under
time integral

− 8ε16
∫ t

0

∫
Ω−

�
∂3q

�
(∂7

t v± · N)(∂3∂
7
t v− · ∂tN) dx dτ

L
= − 8ε16

∫
Ω−

�
∂3q

�
(∂7

t v− · N)(∂3∂
6
t v− · ∂tN) dx

∣∣∣∣∣t
0

+ 8
∫ t

0

∫
Ω−

�
∂3q

�
(∂8

t v− · N)(∂3∂
6
t v− · ∂tN) dx

. δ‖ε8∂3∂
6
t v−‖20,− + P(Eκ(0)) +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ (3.116)

Using the same trick as above, the term RT∗1 is directly controlled by repeated invoking ∂
ϕ
3∂

7
t v− · N L

=
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−∂7
t (ε2Dϕ,−

t p− + ∇ · v̄−)∫ t

0
RT∗1 dτ L

= − ε16
∫ t

0

∫
Ω−

�
∂3q

� (
(∂ϕ3∂

7
t v− · N)(∂8

t v− · N) + (∂7
t v− · N)(∂ϕ3∂

8
t v− · N)

)
dVt dτ

∂t , L
===

∫ t

0

∫
Ω−

�
∂3q

� (
(∂ϕ3∂

7
t v− · N)(∂8

t v− · N) − ∂t(∂7
t v− · N)(∂ϕ3∂

7
t v− · N)

)
dVt dτ

− ε16
∫

Ω−

�
∂3q

�
(∂7

t v− · N)(∂ϕ3∂
7
t v− · N) dVt

∣∣∣∣∣t
0

. δEκ
8(t) + P(Eκ(0)) +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ. (3.117)

Hence, we conclude the estimate of RT∗ by∫ t

0
RT∗ dτ . δEκ

8(t) + P(Eκ(0)) +

∫ t

0
P(Eκ

4(τ))Eκ
8(τ) dτ. (3.118)

Step 4: The cancellation structure between ZB∗ and Z∗.

Now we control the term ZB∗,± + Z∗,±. Note that we cannot integrate by parts ∂1/2 due to the lack of spatial
derivatives. First, ZB∗,± can be written as

ZB∗,± = ∓ ε16
∫

Σ

D−t ∂
7
t q±(∂3v± · N)D−t ∂

7
t ψ dx′ ± ε16

∫
Σ

D−t ∂
7
t ψ∂3q±(∂3v± · N)D−t ∂

7
t ψ dx′

∓ ε16
∫

Σ

Q∗,±
[
Dϕ,−

t ∂7
t ,Ni, v±i

]
dx′

=: ZB∗,R,±1 + ZB∗,R,±2 + ZB∗,±0 . (3.119)

The second term on the right side can be directly controlled. We have

ZB∗,R,±2 ≤
∣∣∣Dϕ,−

t ∂7
t ψ

∣∣∣2
0

∣∣∣∂3q± (∂3v± · N)
∣∣∣
L∞ ≤ P(σ−1, Eκ

4(t))Eκ
8(t). (3.120)

For the first term, using again D−t ∂
7
t ψ = ∂7

t v · N+lower order terms, we can convert it to an interior integral.∫ t

0
ZB∗,R,±1 dτ L

= ε16
∫ t

0

∫
Ω±

(∂3v± · N)
(
∂
ϕ
3 Dϕ,−

t ∂7
t q± ∂7

t v± · N + Dϕ,−
t ∂7

t q± ∂ϕ3∂
7
t v± · N

)
dVt

Dϕ,−
t

== ε16
∫

Ω±
(∂3v± · N)∂ϕ3∂

7
t q± ∂7

t v± · N dVt

∣∣∣∣∣t
0

+ ε16
∫ t

0

∫
Ω±

(∂3v± · N)
(
[∂ϕ3 ,D

ϕ,−
t ]∂7

t q±
)
∂7

t v± · N dVt dτ

+ ε16
∫ t

0

∫
Ω±

(∂3v± · N)
(
∂
ϕ
3∂

7
t q± Dϕ,−

t ∂7
t v± · N + Dϕ,−

t ∂7
t q± ∂ϕ3∂

7
t v± · N

)
dVt + l.o.t

(3.121)
Now we can invoke the reduction for ∂ϕ3q and ∂ϕ3v · N to convert ∂ϕ3 to a tangential derivative

∂
ϕ
3∂

7
t q L

= ∂7
t (ρDϕ

t v − (b · ∇ϕ)b), ∂ϕ3∂
7
t v · N L

= −∂7
t (FpDϕ

t p + ∇ · v̄).

Note that the second equation above produces an extra Fp = O(ε2) weight, so there is no loss of Mach number
when Dϕ,−

t ∂7
t q appears. When Dϕ,−

t ∂7
t q is multiplied by ∂7

t ∇· v̄, we can further integrate by parts in ∂t and then
in ∇· to move one time derivative to v. Hence, ZB∗,R,±1 is controlled in ‖ · ‖8,∗ norm without loss of ε-weights∫ t

0
ZB∗,R,±1 dτ . δEκ

8(t) + P(Eκ(0)) +

∫ t

0
P(Eκ(τ)) dτ. (3.122)

Next we will see again the cancellation structure in ZB∗,±0 + Z∗,±. From (3.9), we have

3∑
i=1

C
∗
i (vi) = ∂

ϕ
3(∇ϕ · v)Dϕ,−

t ∂7
t ϕ +

[
Dϕ,−

t ∂7
t ,

Ni

∂3ϕ
, ∂3vi

]
+ ∂3vi

[
Dϕ,−

t ∂7
t ,Ni, (∂3ϕ)−1

]
+ (∂3v · N)

[
Dϕ,−

t ∂6
t ,

1
(∂3ϕ)2

]
∂t∂3ϕ + (∂3ϕ)−1N · [Dϕ,−

t ∂7
t , ∂3]v + (∂3ϕ)−1(∂ϕ3v · N)[Dϕ,−

t ∂7
t , ∂3]ϕ,
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where we have further analysis on the second term and the fifth term[
Dϕ,−

t ∂7
t ,

Ni

∂3ϕ
, ∂3vi

]
L
= (∂3ϕ)−1

[
Dϕ,−

t ∂7
t ,Ni, ∂3vi

]
− ∂

ϕ
3∂tϕ∂

ϕ
3 Dϕ,−

t ∂6
t v · N, (3.123)

(∂3ϕ)−1N · [Dϕ,−
t ∂7

t , ∂3]v =
(
∂
ϕ
3 v̄− · ∇

)
∂7

t v · N + ∂3

(
(∂3ϕ)−1(v− · N − ∂tϕ)

)
∂
ϕ
3∂

7
t v · N. (3.124)

Thus, we find that, apart from the term (∂3ϕ)−1
[
Dϕ,−

t ∂7
t ,Ni, ∂3vi

]
, all the other terms in C∗i (vi) include either a

tangential derivative falling on the leading order term or the term ∂
ϕ
3v·N (possibly with some derivatives) such

that FpDϕ
t p and ∇ · v̄ are produced by invoking the continuity equation. Thus, when Q∗ is multiplied with

these terms, its contribution in Z∗,± can be directly controlled without any loss of weights of Mach number.
It now remains to control ZB∗,±0 + Z∗,± with Z∗,±0 := ε16

∫
Ω±

Q∗,±(∂3ϕ)−1
[
Dϕ,−

t ∂7
t ,Ni, ∂3vi

]
dVt. Using

dVt = ∂3ϕ dx and Gauss-Green formula, we have

ZB∗,±0 + Z∗,±0 = ∓ε16
∫

Σ

Q∗,±
[
Dϕ,−

t ∂7
t ,Ni, v±i

]
dx′ + ε16

∫
Ω±

Q∗,±
[
Dϕ,−

t ∂7
t ,Ni, ∂3v±i

]
dx

=

1∑
j=0

6∑
k=1

ε16
(
7
k

) (
±

∫
Σ

Q∗,±(Dϕ,−
t ) j∂k

t v±i (Dϕ,−
t )1− j∂6−k

t Ni dx′ +
∫

Ω±
Q∗,±(Dϕ,−

t ) j∂k
t ∂3v±i (Dϕ,−

t )1− j∂6−k
t Ni dx

)
L
= −

1∑
j=0

6∑
k=1

ε16
(
7
k

) ∫
Ω±
∂
ϕ
3Q∗,±(Dϕ,−

t ) j∂k
t v±i (Dϕ,−

t )1− j∂6−k
t Ni dVt. (3.125)

Recall that Q∗ = Dϕ,−
t ∂7

t q− − Dϕ,−
t ∂7

t ϕ∂
ϕ
3q, we can integrate by parts this Dϕ,−

t under time integral and invoke
the momentum equation to reduce ∂ϕ3Q∗ to −ρDϕ

t V∗+(b ·∇ϕ)B∗+lower order terms. Note that [∂ϕ3 ,D
ϕ,−
t ]∂7

t q =

∂
ϕ
3v−j ∂

ϕ
j q = (∂ϕ3 v̄− · ∇)∂7

t q + (∂ϕ3v− · N)∂7
t ∂3q, so one can still convert the normal derivative ∂q to a tangential

derivative of v, b. Thus, we have∫ t

0
ZB∗,±0 + Z∗,±0 dτ L

=

1∑
j=0

6∑
k=1

ε16
(
7
k

) ∫ t

0

∫
Ω±
∂
ϕ
3Q],±Dϕ,−

t

(
(Dϕ,−

t ) j∂k
t v±i ·, (D

ϕ,−
t )1− j∂6−k

t N
)

dVt dτ

+ ε16
(
7
k

) ∫ t

0

∫
Ω±
∂
ϕ
3Q],±

(
(Dϕ,−

t ) j∂k
t v±i ·, (D

ϕ,−
t )1− j∂6−k

t N
)

dVt

∣∣∣∣∣t
0

. δ‖∂ϕ3Q],±‖20 + P(Eκ(0)) +

∫ t

0
P(σ−1, Eκ(τ)) dτ, ∀δ ∈ (0, 1). (3.126)

Combining this with the control of remainder terms and commutators, we can easily obtain that∫ t

0
ZB∗,± + Z∗,± dτ . δEκ

8(0) + P(Eκ(0)) +

∫ t

0
P(σ−1, Eκ(τ)) dτ, ∀δ ∈ (0, 1). (3.127)

3.5 Tangential estimates: general cases and summary

Let T γ = (ω(x3)∂3)γ4∂
γ0
t ∂

γ1
1 ∂

γ2
2 be a tangential derivative with length of the multi-index 〈γ〉 := γ0 + γ1 + γ2 +

2 × 0 + γ4. Section 3.3.1-Section 3.4 are devoted to the control of full spatial derivatives (γ1 + γ2 = 〈γ〉) and
full time derivatives (γ0 = 〈γ〉). Now we analyze how to handle the general case.

Space-time mixed derivatives: γ0 > 0 and γ1 + γ2 > 0

Let us temporarily assume γ4 = 0. In this case, the tangential derivatives that we need to consider have the
form ∂4−l−k∂k

tT
α with 〈α〉 = 2l, α4 = 0 and weights of Mach number ε2l. That is, we need to consider

ε2l∂k+α0
t ∂4+l−k−α0 -estimates. Following the previous paper [55] by Luo and the author, the control of space-

time mixed tangential derivatives (0 < k + α0 < 4 + l) is the same as the control of purely spatial tangential
derivatives. In particular, compared with the one-phase fluid problem [55], we only need one spatial derivative
to do integration by parts in order for the control of the extra problematic term

VS := ε4l
∫

Σ

∂k+α0
t ∂4+l−k−α0 q− (~v̄� · ∇)∂k+α0

t ∂4+l−k−α0ψ dx′
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in which we need to integrate by parts ∂1/2 and seek for the control of ε2l
∣∣∣∣∂k+α0

t ∂4+l−k−α0

∣∣∣∣
1.5

. Mimicing the
proof of Lemma 3.5, we can show that (replacing k + α0 by k)

Lemma 3.7 (Elliptic estimate for the time derivatives of the free interface). Fix l ∈ {0, 1, 2, 3, 4}. For 0 < k <
4 + l, we have the following uniform-in-(ε, κ) inequality, in which the first term on the right side disappears
when κ = 0. ∣∣∣ε2l∂k

tψ
∣∣∣
5.5+l−k ≤

∣∣∣ε2l∂k
tψ(0)

∣∣∣
5.5+l−k + σ−1

∣∣∣ε2l∂k
t

�
q

�∣∣∣
3.5+l−k

+ P

σ−1, |∇ψ|L∞ ,

l∑
j=0

Eκ
4+ j(t)

 (∣∣∣ε2l∂k
tψ

∣∣∣
4.5+l−k +

∣∣∣ε2l∂k−1
t ψ

∣∣∣
5.5+l−k

)
.

Weighted normal derivatives: γ4 > 0

In the most general case, T γ may contain weighted normal derivative ω(x3)∂3, so we have to analyze the
commutator involving [T γ, ∂3] in C( f ) and D( f ) defined in (3.9)-(3.10). The problematic thing is that ∂3
may fall on ω(x3) which converts a “tangential” derivative ω(x3)∂3 (a first-order derivative) to a normal
derivative ∂3 (considered to be second-order under the setting of anisotropic Sobolev spaces). Such terms in
D( f ) are

(∂3ϕ)−1(v · N − ∂tϕ)[T γ, ∂3] f + (v · N − ∂tϕ)
∂3 f

(∂3ϕ)2 [T γ, ∂3]ϕ.

They can be directly controlled because an extra weight (v · N − ∂tϕ), which vanishes on Σ, is automatically
generated to compensate the possible loss of weight function. As for C( f ), we notice that the terms involving
[T γ, ∂3] can be written to be

Ni

∂3ϕ
[T γ, ∂3] f −

Ni

∂3ϕ
∂
ϕ
3 f [T γ, ∂3]ϕ, f = q or vi.

The second term above is easy to control because ϕ(t, x) = x3 + χ(x3)ψ(t, x′) implies the C∞-regularity of ϕ
in x3 direction. For the first term, it may generate a term T β∂3 f Ni with βi = γi(i = 0, 1, 2), β4 = γ4 − 1,
whose L2(Ω) norm may be not directly bounded. Luckily, for f = q or vi, we can again invoke the momentum
equation or the continuity equation to reduce −∂ϕ3q and ∂ϕ3v ·N to tangential derivatives ρDϕ

t v − (b · ∇ϕ)b and
−FpDϕ

t p−∇ · v̄ respectively. Therefore, there is no extra loss of derivative in the commutators C( f ) and D( f )
when γ4 > 0.

Summary of tangential estimates

Finally, we need to recover the estimates of T γ(v, b, S ,
√
Fp p) from the L2-estimates of their Alinhac good

unknowns. By definition, we have∥∥∥T γ f ±
∥∥∥2

0,± ≤
∥∥∥Fγ,±

∥∥∥2
0,± + |T γψ|20 ‖∂

ϕ
3 f ±‖2L∞(Ω±),

in which ‖Fγ,±‖0,± and |T γψ|0 have been controlled by δEκ(t)+
∫ t

0 P(σ−1, Eκ(τ)) dτ. When T γ contains at least
one spatial derivative, we can use −T q ∼ Dϕ

t v + (b · ∇ϕ)b to get the control of T q instead of
√
FpT q. For

the full time derivatives, we use Dϕ,−
t = ∂t + (v̄− · ∇) + (∂3ϕ)−1(v− ·N − ∂tϕ)∂3 to convert the ε2l∂4+l

t -estimate
to ε2lDϕ,−

t ∂3+l
t -estimate, ε2l∂∂3+l

t -estimate and ε2l(ω∂3)∂3+l
t -estimate, in the second part of which the norm

|ε2l∂3+l
t ψ(0)|2.5 is needed to control the VS term. Also, since ω(x3) = 0 on the interface, T γ can be expressed

as ∂4+l−k∂k
t for 0 ≤ k ≤ 4 + l, 0 ≤ l ≤ 4. Hence, we conclude the tangential estimates by the following
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inequalities ∑
±

∑
〈α〉=2l

∑
0≤k≤4−l

k+α0<4+l

∥∥∥∥(ε2l∂4−k−lT α∂k
t (v±, b±, S ±, p±)

)∥∥∥∥2

0,±

+

4+l∑
k=0

∣∣∣√σε2l∂k
tψ

∣∣∣2
5+l−k +

∣∣∣√κε2l∂k
tψ

∣∣∣2
6+l−k +

∫ t

0

∣∣∣√κε2l∂k+1
t ψ(τ)

∣∣∣2
5+l−k dτ

. δEκ
4+l(t) +

3+l∑
k=0

∣∣∣ε2l∂k
tψ(0)

∣∣∣2
5.5+l−k +

l∑
j=0

P
(
σ−1, Eκ

4+ j(0)
)

+ P

 l∑
j=0

Eκ
4+ j(t)

 ∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ (3.128)

and ∑
±

4−l∑
k=0

∥∥∥∥(ε2l∂4+l
t (v±, b±, S ±, (Fp)

1
2 p±)

)∥∥∥∥2

4−k−l,±

+
∣∣∣√σε2l∂4+l

t ψ
∣∣∣2
1 +

∣∣∣√κε2l∂4+l
t ψ

∣∣∣2
2 +

∫ t

0

∣∣∣√κε2l∂5+l
t ψ(τ)

∣∣∣2
1 dτ

. δEκ
4+l(t) +

∣∣∣ε2l∂3+l
t ψ(0)

∣∣∣2
2.5 + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + P

 l∑
j=0

Eκ
4+ j(t)

 ∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ. (3.129)

These are exactly the desired uniform-in-(κ, ε) energy estimates in Proposition 3.3.

3.6 Div-Curl analysis and reduction of pressure
The tangential derivatives of the variables (v, b, p) are analyzed in Section 3.3-Section 3.5. Here we show
the reduction of normal derivatives of pressure and the analysis for the divergence and vorticity. We use the
div-curl decomposition (cf. Lemma B.1) such that the normal derivatives of (v, b) are controlled via their
divergence and curl parts. For 0 ≤ l ≤ 3, 0 ≤ k ≤ 3 − l, 〈α〉 = 2l, α3 = 0, we have∥∥∥ε2l∂k

tT
α(v±, b±)

∥∥∥2
4−k−l,± ≤ C

( ∥∥∥ε2l∂k
tT

α(v±, b±)
∥∥∥2

0,± +
∥∥∥ε2l∇ϕ · ∂k

tT
α(v±, b±)

∥∥∥2
3−k−l,±

+
∥∥∥ε2l∇ϕ × ∂k

tT
α(v±, b±)

∥∥∥2
3−k−l,± +

∥∥∥∥ε2l∂4−k−l∂k
tT

α(v±, b±)
∥∥∥∥2

0,±

)
(3.130)

with

C = C

 l∑
j=0

3+ j∑
k=0

|ε2 j∂
j
tψ|

2
4+l− j, |∇ψ|W1,∞

 > 0

a positive continuious function linear in |ε2 j∂
j
tψ|

2
4+l− j. The conclusion for the div-curl analysis is

Proposition 3.8. Fix l ∈ {0, 1, 2, 3}. For any 0 ≤ k ≤ l − 1, any multi-index α satisfying 〈α〉 = 2l and any
constant δ ∈ (0, 1), we can prove the following estimates for the curl part∥∥∥ε2l∇ϕ × ∂k

tT
αv±

∥∥∥2
3−k−l,± +

∥∥∥ε2l∇ϕ × ∂k
tT

αb±
∥∥∥2

3−k−l,±

. δEκ
4+l(t) + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 + Eκ
l+1(τ) dτ,

(3.131)

and for the divergence part∥∥∥ε2l∇ϕ · ∂k
tT

αv±
∥∥∥2

3−k−l,± +
∥∥∥ε2l∇ϕ · ∂k

tT
αv±

∥∥∥2
3−k−l,±

. δEκ
4+l(t) + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ.
(3.132)
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3.6.1 Reduction of pressure and divergence

Let us start with l = 0. The spatial derivative of q is controlled by invoking the momentum equation:

−∂3q = (∂3ϕ)
(
ρDϕ

t v3 − (b · ∇ϕ)b3

)
; (3.133)

−∂iq = − (∂3ϕ)−1∂iϕ ∂3q + ρDϕ
t vi − (b · ∇ϕ)bi, i = 1, 2. (3.134)

Let T be ∂t or ∂ or ω(x3)∂3. Then we have

‖∂k
t ∂3q‖3−k . ‖∂

k
t (ρT v3)‖3−k + ‖∂k

t (bT b3)‖3−k (3.135)

‖∂k
t ∂iq‖3−k . ‖∂

k
t (∂iϕ∂3q)‖3−k + ‖∂k

t (ρT vi)‖3−k + ‖∂k
t (bT bi)‖3−k, (3.136)

in which the leading order terms are ‖∂k
tT (v, b)‖3−k and |∂k

tψ|4−k. This shows that we can convert the control
of spatial derivative of q to tangential estimates of v and b.

Next we turn to the div-curl analysis for v, b. Let us first analyze E4(t). For 0 ≤ k ≤ 3, we have

‖∂k
t v‖24−k ≤ C(|ψ|4−k, |∇ψ|W1,∞ )

(
‖∂k

t v‖20 + ‖∇ϕ · ∂k
t v‖23−k + ‖∇ϕ × ∂k

t v‖23−k + ‖∂4−k∂k
t v‖20

)
, (3.137)

‖∂k
t b‖24−k ≤ C(|ψ|4−k, |∇ψ|W1,∞ )

(
‖∂k

t b‖20 + ‖∇ϕ · ∂k
t b‖23−k + ‖∇ϕ × ∂k

t b‖23−k + ‖∂4−k∂k
t b‖20

)
. (3.138)

For the divergence, we can directly invoke the continuity equation to convert ∇ϕ · v to time derivative of
p together with square weights of Mach number. When k = 0, we have

‖∇ϕ · v‖23 = ‖FpDϕ
t p‖23, (3.139)

which is further reduced to the tangential derivatives of v and b by using the above reduction of q. Note that
the magnetic tension term 1

2 |b|
2 in the total pressure q does not involve extra normal derivatives thanks to

T ( 1
2 |b|

2) = b · T b. Taking ∂t in the continuity equation and omitting lower order terms, we have

∇ϕ · ∂k
t v L

= −Fp∂
k
t Dϕ

t p + (∂3ϕ)−1∂∂k
t ϕ · ∂3v,

which gives

‖∇ϕ · ∂k
t v±‖23−k,± . C(‖v±‖W1,∞(Ω±))

(∥∥∥F ±p ∂k
tT p±

∥∥∥2
3−k,±

+
∣∣∣∂k

tψ
∣∣∣2
4−k

)
+ lower order terms. (3.140)

Again, this can be reduced to tangential derivatives of v, b until there is no spatial derivative falling on p. As
for the divergence of magnetic fields, we can invoke the div-free constraint to convert it to lower order terms.
Namely, using ∇ϕ · b = 0, we have

∇ϕ · ∂k
t b L

= ∂k
t (∇ϕ · b)︸     ︷︷     ︸

=0

+(∂3ϕ)−1∂∂k
t ϕ · ∂3b

and thus

‖∇ϕ · ∂k
t b±‖23−k,± . C(‖b±‖W1,∞(Ω±))

∣∣∣∂k
tψ

∣∣∣2
4−k + lower order terms. (3.141)

The term
∣∣∣∂k

tψ
∣∣∣2
4−k has been controlled in tangential estimates of Eκ

4(t). Combining the result of tangential
estimates in Proposition 3.3, the control of divergence of time derivatives is concluded by∥∥∥∇ϕ · ∂k

t (v±, b±)
∥∥∥2

3−k,± . C(‖v±‖W1,∞(Ω±))
∥∥∥F ±p ∂k

tT p±
∥∥∥2

3−k,±
+ C(‖v±, b±‖W1,∞(Ω±))

∣∣∣∂k
tψ

∣∣∣2
4−k

. C(‖v±‖W1,∞(Ω±))
∥∥∥F ±p ∂k

tT p±
∥∥∥2

3−k,±
+ δEκ

4(t) + P(Eκ
4(0)) + P(Eκ

4(t))
∫ t

0
P(Eκ

4(τ)) dτ,
(3.142)

where the term involving p± can be further reduced to T (v±, b±) when 3− k > 0 so that one can further apply
the div-curl analysis to it.
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3.6.2 Vorticity analysis for E4

Taking ∇ϕ× in the momentum equation of v and the evolution equation of b, we get the evolution equation
for the vorticity ∇ϕ × v and the current density ∇ϕ × b

ρDϕ
t (∇ϕ × v) − (b · ∇ϕ)(∇ϕ × b) = − (∇ϕρ) × (Dϕ

t v) − ρ(∇ϕv j) × (∂ϕj v) + (∇ϕb j) × (∂ϕj b),
(3.143)

Dϕ
t (∇ϕ × b) − (b · ∇ϕ)(∇ϕ × v) − b × ∇ϕ(∇ϕ · v) = − (∇ϕ × b)(∇ϕ · v) − (∇ϕv j) × (∂ϕj b) + (∇ϕb j) × (∂ϕj v),

(3.144)

and taking ∂3 gives

ρDϕ
t (∂3∇ϕ × v) − (b · ∇ϕ)(∂3∇ϕ × b) = RKv, (3.145)

Dϕ
t (∂3∇ϕ × b) − (b · ∇ϕ)(∂3∇ϕ × v) − b × ∂3∇ϕ(∇ϕ · v) = RKb, (3.146)

where

RKv := − [∂3, ρDϕ
t ](∇ϕ × v) + [∂3, (b · ∇ϕ)](∇ϕ × b) + ∂3(right side of (3.143)),

RKb := − [∂3,Dϕ
t ](∇ϕ × b) + [∂3, (b · ∇ϕ)](∇ϕ × v) + ∂3(right side of (3.144)).

Direct computation shows that the highest-order terms in RKv, RKb only have 4 spatial derivatives and do
not contain time derivative of q. Therefore, we can prove the H3-control of the voriticity and current density
by standard energy estimates.

1
2

d
dt

∫
Ω±
ρ±

∣∣∣∂3(∇ϕ × v±)
∣∣∣2 dVt =

∫
Ω±
ρ±Dϕ±

t (∂3∇ϕ × v±) · (∂3∇ϕ × v±) dVt

=

∫
Ω±

(b± · ∇ϕ)(∂3∇ϕ × b±) · (∂3∇ϕ × v±) dVt +

∫
Ω±

RK±v · (∂
3∇ϕ × v±) dVt︸                             ︷︷                             ︸

=:L±1

(b±·∇ϕ)
=== −

∫
Ω±

(∂3∇ϕ × b±) · Dϕ±
t (∂3∇ϕ × b±) dVt +

∫
Ω±

(∂3∇ϕ × b±) ·
(
b± × (∂3∇ϕ(∇ϕ · v±))

)
dVt︸                                                      ︷︷                                                      ︸

=:K±1

+

∫
Ω±

(∂3∇ϕ × b±) · RK±b dVt︸                             ︷︷                             ︸
L±2

+L±1 ,

(3.147)

where L±1 , L±2 are directly controlled

L±1 + L±2 ≤ P(‖(v±, b±)‖4,±, |ψ|4). (3.148)

It remains to analyze the term K±1 in which there is a key observation for the energy structure of compressible
MHD system. We invoke the continuity equation ∇ϕ · v± = F ±p Dϕ±

t p± and commute Dϕ±
t with ∇ϕ to get

∇ϕ(∇ϕ · v±) = −F ±p Dϕ±
t ∇

ϕp± + F ±p (∇ϕv±j )(∂ϕj p±).

Next, we rewrite the momentum equation to be ρ±Dϕ±
t v± + b± × (∇ϕ × b±) = −∇ϕp± and plug it into the

highest-order term −F ±p Dϕ±
t ∇

ϕp± to get

−F ±p Dϕ±
t ∇

ϕp± = F ±p Dϕ±
t (ρ±Dϕ±

t v±) + F ±p Dϕ±
t (b± × (∇ϕ × b±))

= F ±p ρ
±(Dϕ±

t )2v± + F ±p Dϕ±
t (b± × (∇ϕ × b±)) + F ±p (Dϕ±

t ρ±)(Dϕ±
t v±).

Thus, the term K±1 becomes

K±1 =

∫
Ω±

(∂3∇ϕ × b±) ·
(
b± × (F ±p ρ

±∂3(Dϕ±
t )2v±)

)
dVt

−

∫
Ω±
F ±p

(
b± × (∂3∇ϕ × b±)

)
· Dϕ±

t

(
b± × (∂3∇ϕ × b±)

)
dVt

+

∫
Ω±

(∂3∇ϕ × b±) · RK±p dVt,

(3.149)
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where

RK±p := F ±p ∂
3
(
(∇ϕv±j )(∂ϕj p±) + (Dϕ±

t ρ±)(Dϕ±
t v±)

)
+ [∂3,F ±p ρ

±](Dϕ±
t )2v±

+ F ±p [∂3,Dϕ±
t ](b± × (∇ϕ × b±)) + F ±p Dϕ±

t

(
[∂3, b±×](∇ϕ × b±)

)
consists of ≤ 4 derivatives in each term and its contribution can be directly controlled

L±3 :=
∫

Ω±
(∂3∇ϕ × b±) · RK±p dVt ≤ P(‖b±, v±,F ±p p±‖4,±, ‖F ±p Dϕ±

t (v±, b±, p±)‖3,±) (3.150)

Note that the second term on the right side of K±1 is obtained by using the vector identity a·(b×c) = −c·(b×a):

(∂3∇ϕ × b±) ·
(
b± × Dϕ±

t

(
b± × (∂3∇ϕ × b±)

))
= −Dϕ±

t

(
b± × (∂3∇ϕ × b±)

)
·
(
b± × (∂3∇ϕ × b±)

)
.

Therefore, we have

1
2

d
dt

∫
Ω±
ρ±

∣∣∣∂3(∇ϕ × v±)
∣∣∣2 dVt

= −

∫
Ω±

(∂3∇ϕ × b±) · Dϕ±
t (∂3∇ϕ × b±) dVt −

∫
Ω±
F ±p

(
b± × (∂3∇ϕ × b±)

)
· Dϕ±

t

(
b± × (∂3∇ϕ × b±)

)
dVt

+

∫
Ω±

(∂3∇ϕ × b±) ·
(
b± × (Fpρ

±∂3(Dϕ±
t )2v±)

)
dVt︸                                                          ︷︷                                                          ︸

K±

+L±1 + L±2 + L±3

= −
1
2

d
dt

∫
Ω±

∣∣∣∂3(∇ϕ × b±)
∣∣∣2 + F ±p

∣∣∣b± × ∂3(∇ϕ × b±)
∣∣∣2 dVt

+
1
2

∫
Ω±

(∇ϕ · v±)
(∣∣∣∂3(∇ϕ × b±)

∣∣∣2 + F ±p

∣∣∣b± × ∂3(∇ϕ × b±)
∣∣∣2) dVt + K± + L±1 + L±2 + L±3 ,

(3.151)
which further gives the control of vorticity and current density simultaneously

1
2

d
dt

∫
Ω±
ρ±

∣∣∣∂3(∇ϕ × v±)
∣∣∣2 +

∣∣∣∂3(∇ϕ × b±)
∣∣∣2 + F ±p

∣∣∣b± × ∂3(∇ϕ × b±)
∣∣∣2 dVt

. P(Eκ
4(t)) + P(|ψ|4)‖b±‖4,±‖b±ρ±‖L∞(Ω±)

∥∥∥ε2(Dϕ±
t )2v±

∥∥∥
3 ≤ P(Eκ

4(t)) + Eκ
5(t).

(3.152)

Hence, the vorticity analysis for compressible ideal MHD cannot be closed in standard Sobolev space because
of the term ε2∂3(Dϕ±

t )2v± in K±. Instead, the appearance of this term indicates us to trade one normal
derivative (in the curl operator) for two tangential derivatives (Dϕ±

t )2 together with square weights of
Mach number ε2. Besides, the normal derivative part involving ∂3Dϕ±

t (∇ϕ×b±) contributes to the energy
of current density thanks to the special structure of Lorentz force −b± × (∇ϕ × b±). This is exactly the
motivation for us to define the energy functional E(t) under the setting the anisotropic Sobolev spaces
instead of standard Sobolev spaces.

Similarly, the curl estimates for the time derivatives (in E4(t)) can be proven in the same way by replacing
∂3 with ∂3−k∂k

t (1 ≤ k ≤ 3). We omit the details and list the conclusion

1
2

d
dt

∫
Ω±
ρ±

∣∣∣∂3−k∂k
t (∇ϕ × v±)

∣∣∣2 +
∣∣∣∂3−k∂k

t (∇ϕ × b±)
∣∣∣2 + F ±p

∣∣∣b± × ∂3−k∂k
t (∇ϕ × b±)

∣∣∣2 dVt

. P(Eκ
4(t)) +

∥∥∥ε2∂k
t (Dϕ±

t )2v±
∥∥∥2

3−k,± ≤ P(Eκ
4(t)) + Eκ

5(t).
(3.153)

Finally, we need to commute ∂k
t with ∇ϕ× when k ≥ 1. We have

(∇ϕ × ∂k
t v)i

L
= ∂k

t (∇ϕ × v)i + εi jl(∂3ϕ)−1(∂ j∂
k
t ϕ)(∂3vl),

where εi jl is the sign of permutation (i jl) ∈ S 3. This gives

‖∇ϕ × ∂k
t v±‖23−k,± . C(‖v±‖W1,∞(Ω±))

(∥∥∥∂k
t (∇ϕ × v±)

∥∥∥2
3−k,± +

∣∣∣∂k
tψ

∣∣∣2
4−k

)
+ lower order terms, (3.154)
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where both leading order terms have been controlled in tangential estimates of Eκ
4(t). The same result holds

for b±. Using the result of tangential estimates of Eκ
4(t), we have: for any k ∈ {0, 1, 2, 3} and any δ ∈ (0, 1)∥∥∥∇ϕ × ∂k

t v±
∥∥∥2

3−k,± +
∥∥∥∇ϕ × ∂k

t b±
∥∥∥2

3−k,±

. P(Eκ
4(0)) +

∫ t

0
P(Eκ

4(τ)) + Eκ
5(τ) dτ + P(‖v±, b±‖W1,∞(Ω±))

∣∣∣∂k
tψ

∣∣∣2
4−k

. δEκ
4(t) + P(σ−1, Eκ

4(0)) + P(Eκ
4(t))

∫ t

0
P(σ−1, Eκ

4(τ)) + Eκ
5(τ) dτ,

(3.155)

3.6.3 Further div-curl analysis for E5 ∼ E7

The vorticity analysis for E4(t) requires the control of
∥∥∥ε2∂k

t (Dϕ±
t )2v±

∥∥∥2
3−k for 0 ≤ k ≤ 3. When 0 ≤ k ≤ 2,

there are still normal derivatives in this term. Thus, we shall do further div-curl analysis on
∥∥∥ε2∂k

t (Dϕ±
t )2v±

∥∥∥2
3−k

for 0 ≤ k ≤ 2. Let T α = ∂α0
t ∂

α1
1 ∂

α2
2 (ω(x3)∂3)α4 with 〈α〉 = 2. The divergence part can be reduced in the same

way as in Section 3.6.1. We take ∂k
tT

α in the continuity equation and omit the lower order terms to get

∇ϕ · ∂k
tT

αv L
= −ε2∂k

tT
αDϕ

t p + (∂3ϕ)−1∂∂k
tT

αϕ · ∂3v,

which gives

‖ε2∇ϕ · ∂k
tT

αv±‖22−k . C(‖v‖W1,∞ )
(∥∥∥ε4∂k

tT
αT p±

∥∥∥2
2−k,± +

∣∣∣ε2∂k
tT

αψ
∣∣∣2
2−k

)
+ lower order terms. (3.156)

Remark 3.3. The term generated when commuting T α with ∇ϕ is actually of lower order. One can check
that (see also [85, (3.24)-(3.25)])

[(ω∂3)m, ∂3] f = (ω∂3)m∂3 f − ∂3((ω∂3)m f )︸                            ︷︷                            ︸
both are (m+1)-th order terms

=
∑

k≤m−1

cm,k(ω∂3)k∂3 f =
∑

k≤m−1

dm,k∂3(ω∂3)k f

for some smooth functions cm,k, dm,k depending on m, k and the derivatives (up to order m) of ω, and the right
side only contains ≤ m-th order terms.

Similarly, using ∇ϕ · b = 0, we have

∇ϕ · ∂k
tT

αb L
= ∂k

tT
α(∇ϕ · b)︸         ︷︷         ︸

=0

+(∂3ϕ)−1∂∂k
tT

αϕ · ∂3b

and thus

‖ε2∇ϕ · ∂k
t b±‖22−k,± . C(‖b±‖W1,∞(Ω±))

∣∣∣ε2∂k
tT

αψ
∣∣∣2
2−k + lower order terms. (3.157)

The control of divergence part in the analysis of Eκ
5(t) is concluded by the following energy inequality. For

any k ∈ {0, 1, 2}, any multi-index α with 〈α〉 = 2 and any δ ∈ (0, 1)∥∥∥ε2∇ϕ · ∂k
tT

α(v±, b±)
∥∥∥2

2−k,± . C(‖v±‖W1,∞(Ω±))
∥∥∥ε4∂k

tT
αT p±

∥∥∥2
2−k,± + C(‖v±, b±‖W1,∞(Ω±))

∣∣∣∂k
tT

αψ
∣∣∣2
3−k

. C(‖v±‖W1,∞(Ω±))
∥∥∥ε4∂k

tT
αT p±

∥∥∥2
2−k,± + δEκ

5(t) + P(Eκ
4(0), Eκ

5(0)) + P(Eκ
4(t))

∫ t

0
P(Eκ

4(τ), Eκ
5(τ)) dτ,

(3.158)

where the term involving T p± can be further reduced to T (v±, b±) when 2 − k > 0 so that one can further
apply the div-curl analysis to it.

As for the curl part, we can still mimic the proof in Section 3.6.2 to get the control of
∥∥∥ε2∂k

tT
α(∇ϕ × (v, b))

∥∥∥
2−k

for 0 ≤ k ≤ 2 and 〈α〉 = 2 with α3 = 0

1
2

d
dt

∫
Ω±
ρ±

∣∣∣ε2∂2−k∂k
tT

α(∇ϕ × v±)
∣∣∣2 +

∣∣∣ε2∂2−k∂k
tT

α(∇ϕ × b±)
∣∣∣2 + F ±p

∣∣∣ε2b± × ∂2−k∂k
tT

α(∇ϕ × b±)
∣∣∣2 dVt

. P(Eκ
4(t), Eκ

5(t)) +
∥∥∥ε4∂k

tT
α(Dϕ±

t )2v±
∥∥∥2

2−k ≤ P(Eκ
4(t), Eκ

5(t)) + Eκ
6(t).

(3.159)
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Then we commute ∂2−k∂k
tT

α with ∇ϕ× to get: for any k ∈ {0, 1, 2}, any multi-index α with 〈α〉 = 2 and
α3 = 0, and any δ ∈ (0, 1)∥∥∥∇ϕ × ∂k

tT
αv±

∥∥∥2
2−k,± +

∥∥∥∇ϕ × ∂k
tT

αb±
∥∥∥2

2−k,±

. P(Eκ
4(0), Eκ

5(0)) +

∫ t

0
P(Eκ

4(τ), Eκ
5(τ)) + Eκ

6(τ) dτ + P(‖v±, b±‖W1,∞(Ω±))
∣∣∣ε2∂k

tT
αψ

∣∣∣2
2−k

. δEκ
5(t) + P(σ−1, Eκ

4(0), Eκ
5(0)) + P(Eκ

4(t))
∫ t

0
P(σ−1, Eκ

4(τ), Eκ
5(τ)) + Eκ

6(τ) dτ,

(3.160)

where we use the result of tangential estimates to control
∣∣∣ε2∂k

tT
αψ

∣∣∣
2−k. When k ≤ 1 in the above energy

estimate, we shall continue to apply the div-curl analysis to
∥∥∥ε4∂k

tT
α(Dϕ±

t )2v±
∥∥∥2

2−k.
For Eκ

6 and Eκ
7, we have analogous div-curl inequalities. For l = 2, 3, we continue to analyze the di-

vergence and the curl according to (3.130). Similarly as above, we have the following estimates for any
k ∈ {0, 1}, any multi-index α with 〈α〉 = 4, α3 = 0 and any δ ∈ (0, 1)∥∥∥ε4∇ϕ × ∂k

tT
αv±

∥∥∥2
1−k,± +

∥∥∥ε4∇ϕ × ∂k
tT

αb±
∥∥∥2

1−k,±

. δEκ
6(t) + P

σ−1,

2∑
l=0

Eκ
4+l(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

2∑
l=0

Eκ
4+l(τ)

 + Eκ
7(τ) dτ,

(3.161)

where this Eκ
7 term is contributed by

∥∥∥ε6∂k
tT

α(Dϕ±
t )2v±

∥∥∥
1−k,±. When k = 0 in this term, we again apply the

div-curl analysis to it in order to eliminate all normal derivatives falling on v, b. For any multi-index α with
〈α〉 = 6 and α3 = 0 and any δ ∈ (0, 1), we have∥∥∥ε6∇ϕ × T αv±

∥∥∥2
0,± +

∥∥∥ε6∇ϕ × T αb±
∥∥∥2

0,±

. δEκ
7(t) + P

σ−1,

3∑
l=0

Eκ
4+l(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

3∑
l=0

Eκ
4+l(τ)

 + Eκ
8(τ) dτ.

(3.162)

The control of divergence part for Eκ
6(t), Eκ

7(t) also follows the same way as Eκ
4(t), Eκ

5(t). For any k ∈ {0, 1},
any multi-index α with 〈α〉 = 4, α3 = 0, we have∥∥∥ε4∇ϕ · ∂k

tT
α(v±, b±)

∥∥∥2
1−k,± . C(‖v±‖W1,∞(Ω±))

∥∥∥ε6∂k
tT

αT p±
∥∥∥2

1−k,± + C(‖v±, b±‖W1,∞(Ω±))
∣∣∣∂k

tT
αψ

∣∣∣2
2−k

. δEκ
6(t) + P

σ−1,

2∑
l=0

Eκ
4+l(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

2∑
l=0

Eκ
4+l(τ)

 dτ,
(3.163)

where the term
∥∥∥ε6∂k

tT
αT p±

∥∥∥2
1−k,± does not appear because it can be converted to full tangential derivatives

(part of Eκ
6(t)) which has been controlled in Section 3.3-Section 3.5. For any multi-index αwith 〈α〉 = 6, α3 =

0, we have∥∥∥ε6∇ϕ · ∂k
tT

α(v±, b±)
∥∥∥2

0,± . C(‖v±‖W1,∞(Ω±))
∥∥∥ε8∂k

tT
αT p±

∥∥∥2
0,± + C(‖v±, b±‖W1,∞(Ω±))

∣∣∣ε6T αψ
∣∣∣2
1

. δEκ
7(t) + P

σ−1,

3∑
l=0

Eκ
4+l(0)

 + P(Eκ
4(t))

∫ t

0
P

σ−1,

3∑
l=0

Eκ
4+l(τ)

 dτ,
(3.164)

where the term
∥∥∥ε8T αT p±

∥∥∥2
0,± does not appear because it has been included in tangential estimates for Eκ

7(t).

3.7 Uniform estimates for the nonlinear approximate system
3.7.1 Control of the entropy

It remains to control the full (anisotropic) Sobolev norms of the entropy functions S ±. This can be easily
proven thanks to Dϕ±

t S ± = 0. In the control of Eκ
4+l(t) for fixed 0 ≤ l ≤ 4, we need to take the derivative
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∂α∗ := ∂4−l−k∂k
tT

γ = ∂
γ′3
3 (ω∂3)γ4∂

k+γ0
t ∂

γ1+γ′1
1 ∂

γ2+γ′2
2 with γ0 + γ1 + γ2 + γ4 = 2l, γ′1 + γ′2 + γ′3 = 4 − k − l and

0 ≤ k ≤ 4 − l and also multiply the weight ε2l. Then we can introduce the Alinhac good unknown S∂ with
respect to this general derivative ∂α∗ by

S∂,± := ∂α∗S
± − ∂α∗ϕ∂

ϕ
3S ±,

which satisfies the evolution equation Dϕ±
t S∂,± = D∂(S ±) in Ω± where D∂(S ±) is defined by (3.10) after

replacing T γ with ∂α∗ . We will get∥∥∥ε2l∂k
tT

γS ±
∥∥∥2

4−k−l,± .
∥∥∥ε2lS∂,±

∥∥∥2
0,± +

∣∣∣∂α∗ψ∣∣∣20 ‖∂3S ±‖2L∞(Ω±)

. δEκ
4+l(t) + P

σ−1,

l∑
j=0

Eκ
4+ j(0)

 + Eκ
4(t)

∫ t

0
P

σ−1,

l∑
j=0

Eκ
4+ j(τ)

 dτ, (3.165)

where we again invoke the estimate of
∣∣∣∂α∗ψ∣∣∣0 that has been proven in Section 3.3-Section 3.5.

3.7.2 Uniform-in-κ estimates for the nonlinear approximate system

Summarizing Proposition 3.2 (L2-energy conservation), Proposition 3.3 (tangential estimates), Proposition
3.8 (div-curl estimates) and (3.165) (entropy estimates), we conclude the estimates of the energy functional
Eκ(t) for the nonlinear approximate system (3.1) by

Eκ(t) . δEκ(t) + P(Eκ(0)) + P(Eκ(t))
∫ t

0
P(σ−1, Eκ(τ)) dτ, ∀δ ∈ (0, 1) (3.166)

Thus, choosing δ suitably small such that δEκ(t) can be absorbed by the left side and then using Gronwall-type
argument, we find that there exists a time Tσ > 0 that depends on σ and the initial data and is independent of
κ and ε, such that

sup
0≤t≤Tσ

Eκ(t) ≤ C(σ−1)P(Eκ(0)), (3.167)

which is exactly the conclusion of Proposition 3.1.

4 Well-posedness of the nonlinear approximate system
We already prove the uniform-in-κ estimates for the nonlinear approximate problem (3.1). If we can prove
the well-posedness of (3.1) for each fixed κ > 0, then the uniform estimates allow us to take the limit κ → 0+

and prove the local existence of system (1.33) for the compressible current-vortex sheets with surface tension.
Since there is no loss of regularity in the estimate of Eκ(t), we would like to use Picard iteration to construct
the solution to (3.1) for each fixed κ.

4.1 Construction of the linearized problem

We start with ψ[−1] = ψ[0] = 0 and (v[0],±, b[0],±, ρ[0],±, S [0],±) = (~0, ~0, ρ±, 0) for some constants ρ± ≥ ρ̄0. Then
for any n ≥ 0, n ∈ N, given {(v[k],±, b[k],±, ρ[k],±, S [k],±)}k≤n, we define (v[n+1],±, b[n+1],±, q[n+1],±, S [n+1],±, ψ[n+1])
by the following linear system with variable coefficients only depending on (v[n],±, b[n],±, q[n],±, S [n],±, ψ[n], ψ[n−1])

ρ[n],±Dϕ[n],±
t v[n+1],± − (b[n],± · ∇ϕ

[n],±)b[n+1],± + ∇ϕ
[n],±q[n+1],± = 0 in [0,T ] ×Ω±,

(F ±p )[n]Dϕ[n],±
t q[n+1],± − (F ±p )[n]Dϕ[n],±

t b[n+1],± · b[n],± + ∇ϕ
[n],± · v[n+1],± = 0 in [0,T ] ×Ω±,

Dϕ[n],±
t b[n+1],± − (b[n],± · ∇ϕ

[n],±)v[n+1],± + b[n],±∇ϕ
[n],± · v[n+1],± = 0 in [0,T ] ×Ω±,

Dϕ[n],±
t S [n+1],± = 0 in [0,T ] ×Ω±,�

q[n+1]
�

= σH(ψ[n]) − κ(1 − ∆)2ψ[n+1] − κ(1 − ∆)∂tψ
[n+1] on [0,T ] × Σ,

∂tψ
[n+1] = v[n+1],± · N[n] on [0,T ] × Σ,

v[n+1],±
3 = 0, on [0,T ] × Σ±,

(v[n+1],±, b[n+1],±, q[n+1],±, S [n+1],±, ψ±)|t=0 = (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0),

(4.1)

56



where b[n],±
i := b[n],±

i for i = 1, 2 and b[n],±
3 is defined by

b[n],±
3 := b[n],±

3 + R±T

(
b[n],±

1 ∂1ψ
[n] + b[n],±

2 ∂2ψ
[n] − b[n],±

3

) ∣∣∣
Σ

(4.2)

where R±T is the lifting operator defined in Lemma B.3. The initial data (vκ,±0 , bκ,±0 , ρκ,±0 , S κ,±
0 , ψκ0) is the same

as (3.1). The basic state (v[n],±, b[n],±, ρ[n],±, S [n],±, ψ[n], ψ[n−1]) satisfies

1. (The hyperbolicity assumption) ρ[n],± > 0 is determined by the equation of state (1.18) where p[n],± is
defined by p[n],± := q[n],±− 1

2 |b
[n],±|2. Then defineF [n] = log ρ[n], F [n],±

p := ∂F [n],±

∂p (p[n+1],±, S [n+1],±) > 0.

2. (Tangential magnetic fields) b[n],± · N[n] = 0 on Σ, and b[n],±
3 = 0 on Σ±.

3. (Linearized material derivatives and covariant derivatives)

Dϕ[n],±
t := ∂t + v̄[n] · ∇ +

1
∂3ϕ[n] (v[n] · N[n−1] − ∂tϕ

[n])∂3, (4.3)

∂
ϕ[n]

t := ∂t −
∂tϕ

[n]

∂3ϕ[n] ∂3, ∇
ϕ[n]

a = ∂
ϕ[n]

a := ∂a −
∂aϕ

[n]

∂3ϕ[n] ∂3, a = 1, 2, ∇
ϕ[n]

a = ∂
ϕ[n]

3 :=
1

∂3ϕ[n] ∂3 (4.4)

where N[n] := (−∂1ψ
[n],−∂2ψ

[n], 1)> and N[n] is the extension of N[n] with ϕ[n] = x3 + χ(x3)ψ[n](t, x′).

After solving the linear problem (4.1), we define p[n+1],± = q[n+1],± − 1
2 |b

[n+1],±|2 and use the equation of
state p[n+1] = p[n+1](ρ[n+1], S [n+1]) to determine the density ρ[n+1] > 0. We shall also define the “modified
magnteic fields” b[n+1],± as follows in order to guarantee b[n+1],± · N[n+1] = 0 on Σ and Σ±:

b[n+1],±
1 = b[n+1],±

1 , b[n+1],±
2 = b[n+1],±

2 ,

b[n+1],±
3 = b[n+1],±

3 + R±T

(
b[n+1],±

1 ∂1ψ
[n+1] + b[n+1],±

2 ∂2ψ
[n+1] − b[n+1],±

3

) ∣∣∣
Σ
. (4.5)

Remark 4.1 (The boundary constraint of magnetic fields). The modified basic state b̊ is necessary here,
because the quantity b[n+1] solved from (4.1) may not be tangential on Σ and so integrating (b · ∇ϕ) by parts
produces uncontrollable boundary terms. When taking the limit n → ∞, we can show that the limit function
b[∞] also satisfy the boundary constraint b[∞] · N[∞]|Σ = 0 which then indicates that b[∞]

3 = b[∞]
3 in order to

recover the nonlinear approximate system (3.1). We refer to Section 4.4.1 for details.

Remark 4.2 (The divergence constraint of magnetic fields). Notice that the divergence-free condition for b±

no longer propagates from the initial data for the linear problem, but we will show that the contribution of the
divergence of part of b± is still controllable and does not introduce extra substantial difficulty. After solving
the nonlinear problem (3.1) for each fixed κ > 0, ∇ϕ · b± = 0 in (3.1) is automatically recovered from the
initial constraint ∇ϕ · bκ,±0 = 0.

For simplicity of notations, given any n ∈ N, we denote (v[n+1],±, b[n+1],±, q[n+1],±, p[n+1],±, ρ[n+1],±, S [n+1],±, ψ[n+1]),
(v[n],±, b[n],±, b[n],±, q[n],±, ρ[n],±, p[n],±, S [n],±, ψ[n]), ψ[n−1] respectively by (v±, b±, q±, p±, ρ±, S ±), (v̊±, b̊±, b̊±, q̊±, ρ̊±, p̊±, S̊ ±, ψ̊)
and ψ̇. Also, we denote Dϕ[n],±

t and ∂ϕ
[n]

i , ∇
ϕ[n]

i by Dϕ̊±
t and ∂ϕ̊i , ∇

ϕ̊. Thus, the linear problem above becomes

ρ̊Dϕ̊±
t v± − (b̊ · ∇ϕ̊)b± + ∇ϕ̊q± = 0 in [0,T ] ×Ω±,

F̊ ±p Dϕ̊±
t q± − F̊ ±p Dϕ̊±

t b± · b̊± + ∇ϕ̊ · v± = 0 in [0,T ] ×Ω±,

Dϕ̊±
t b± − (b̊± · ∇ϕ̊)v± + b̊±∇ϕ̊ · v± = 0 in [0,T ] ×Ω±,

Dϕ̊±
t S ± = 0 in [0,T ] ×Ω±,�

q
�

= σH(ψ̊) − κ(1 − ∆)2ψ − κ(1 − ∆)∂tψ on [0,T ] × Σ,

∂tψ = v± · N̊ on [0,T ] × Σ,

v±3 = 0 on [0,T ] × Σ±,

(v±, b±, q±, S ±, ψ)|t=0 = (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0),

(4.6)

where Dϕ̊±
t = ∂t + ˚̄v · ∇ + 1

∂3ϕ̊
(v̊ · Ṅ − ∂tϕ̊)∂3 andH(ψ̊) = ∇ · (∇ψ̊/|N̊|).
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4.2 Well-posedness of the linearized approximate problem
Although (4.6) is a first-order linear symmetric hyperbolic system with characteristic boundary conditions,
it is still not easy to apply the duality argument in Lax-Phillips [46] to prove the well-posedness of (4.6) in
L2([0,T ] ×Ω±) because the boundary condition for the dual system of (4.6) may not be explicitly calculated
due to the appearance of the regularization term κ(1−∆)2ψ. Instead, we apply the classical Galerkin’s method
to construct the weak solution in L2([0,T ] ×Ω±) to the linearized problem (4.6). Once this is done, the weak
solution is actually a strong solution by the argument in [60, Chapter 2.2.3].

We assume the basic state (v̊, b̊, q̊, ρ̊, p̊, S̊ , ψ̊) and ψ̇ satisfy the following bounds: There exists some K̊0 > 0
and a time Tκ > 0 (depending on κ > 0) such that

sup
0≤t≤Tκ

4∑
l=0

(∑
±

∑
〈α〉=2l

4−l∑
k=0

∥∥∥∥∥(ε2lT α∂k
t (v̊±, b̊±, S̊ ±, (F̊ ±p )

(k+α0−l−3)+
2 q̊±)

)∥∥∥∥∥2

4−k−l,±

+

4+l∑
k=0

∣∣∣√κε2l∂k
t ψ̊

∣∣∣2
6+l−k +

∫ t

0

∣∣∣√κε2l∂5+l
t ψ̊

∣∣∣2
1 dτ

)
≤ K̊0,

(4.7)

where T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 with the multi-index α = (α0, α1, α2, 0, α4), 〈α〉 = α0 +α1 +α2 +2×0+α4.

Moreover, we have

∀0 ≤ T ≤ Tκ,
∫ T

0

∥∥∥∥ε2lT α∂k
t b̊
±
∥∥∥∥2

4−k−l,±
dt ≤ C(K̊0).

Remark 4.3. The L2
t -type bound of b̊ is obtained by using the second part of Lemma B.3 and the

√
κ-

weighted enhanced regularity for the free interface. Indeed, the modification termR±T
(
b̊±1∂1ψ̊ + b̊±2∂2ψ̊ − b̊±3

) ∣∣∣
Σ

has vanishing initial value thank to bκ,±0 ·N
κ
0 = 0 on Σ. Thus, one can extend this function to (−∞,T ]×Ω± and

then apply the trace lemma for anisotropic Sobolev spaces (cf. Trakhinin-Wang [81, Lemma 3.4] or Lemma
B.3 in this paper) to show that∫ T

0

∥∥∥∥T α∂k
t (b̊± − b̊±)

∥∥∥∥2

4−k−l,±
dt ≤

∥∥∥∥b̊± − b̊±
∥∥∥∥2

8,∗,T,±
.

∣∣∣∣b̊±1∂1ψ̊ + b̊±2∂2ψ̊ − b̊±3
∣∣∣∣2
7,T

.
∥∥∥∥b̊±1∂1ϕ̊ + b̊±2∂2ϕ̊ − b̊±3

∥∥∥∥2

8,∗,T,±
=

∫ T

0

∥∥∥∥b̊±1∂1ϕ̊ + b̊±2∂2ϕ̊ − b̊±3
∥∥∥∥2

8,∗,±
dt . T K̊0, ∀T ∈ [0,Tκ],

where ‖ · ‖m,∗,T,±, | · |m,T norms are defined in Appendix B. Notice that this
√
κ-weighted enhanced regularity

is necessary here, otherwise we lose the control of |∂ψ(t)|8 and a loss of tangential derivative occurs as in lots
of previous works [12, 80, 81, 82] and references therein.

4.2.1 Construction of Galerkin sequence

Since our domain Ω := T2×(−H,H) is bounded, there exists an orthonormal basis {e j}
∞
j=1 ⊂ C∞(Ω) for L2(Ω)

which is also an orthogonal basis of H1
0(Ω). To construct the Galerkin sequence, we first write the linearized

system (4.6) into a symmetric hyperbolic system of U± := (q±, v±, b±, S ±)> ∈ R8:

A0(Ů±)∂tU± + A1(Ů±)∂1U± + A2(Ů±)∂2U± + A3(Ů±)∂3U± = 0 in Ω± (4.8)

where the coefficient matrices are

A0(Ů) :=


F̊p ~0> −F̊pb̊

> 0
~0 ρ̊I3 O3 ~0
−F̊pb̊ O3 I3 + F̊pb̊ ⊗ b̊ ~0

0 ~0> ~0> 1

 , Ai(Ů) :=


F̊p ˚̄vi ~ei

>
−F̊p ˚̄vib̊

> 0
~ei ρ̊ ˚̄viI3 − ˚̄biI3 ~0

−F̊p ˚̄vib̊ − ˚̄biI3 ˚̄viI3 + F̊p ˚̄vi(b̊ ⊗ b̊) ~0
0 ~0> ~0> ˚̄vi

 (i = 1, 2),

A3(Ů) :=
1
∂3ϕ̊


F̊p(v̊ · Ṅ − ∂tϕ̊) N̊> −F̊p(v̊ · Ṅ − ∂tϕ̊)b̊> 0

N̊ ρ̊(v̊ · Ṅ − ∂tϕ̊)I3 −(b̊ · N̊)I3 ~0
−F̊p(v̊ · Ṅ − ∂tϕ̊)b̊ −(b̊ · N̊)I3 (v̊ · Ṅ − ∂tϕ̊)I3 + F̊p(v̊ · Ṅ − ∂tϕ̊)(b̊ ⊗ b̊) ~0

0 ~0> ~0> v̊ · Ṅ − ∂tϕ̊

 .
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Also notice that the matrix A3(Ů) is equal to the following matrix on the boundary

A3(Ů)|Σ,Σ± :=

 0 N̊> 0>4
N̊ O3
04 O4

 ,
which has constant rank 2 and has one negative eigenvalue and one positive eigenvalue, so the correct number
of boundary conditions to solve U± in (4.8) is 1 + 1 = 2 (the jump conditions for q and v · N̊), and we need
one more equation, namely ∂tψ = v± · N̊, to determine the free interface.

Given 2 ≤ m ∈ N∗, we introduce the Galerkin sequence {Um,±(t, x), ψm(t, x′)} by

Um,±
j (t, x) :=

m∑
l=1

Um,±
l j (t)el(x) 1 ≤ j ≤ 8, (4.9)

ψm(t, x′) :=
m∑

l=1

ψm
l (t)el(x′, 0). (4.10)

The Galerkin sequence is assumed to satisfy the boundary conditions

∂tψ
m = Um,±

4 − Um,±
2 ∂1ψ̊ − Um,±

3 ∂2ψ̊ (4.11)�
Um

1

�
= σH(ψ̊) − κ(1 − ∆)2ψm − κ(1 − ∆)∂tψ

m (4.12)

Now we introduce an ODE system as the “truncated version” of (4.8) in Span{e1, · · · , em} by testing the
Galerkin sequence by a vector field φ := (φ1, · · · , φ8)> with

φi :=
m∑

l=1

φil(t)el(x) ∈ Span{e1, · · · , em}.

∫
Ω±

Ai j
0 (Ů±)(∂tU

m,±
j )φi dV̊t +

2∑
k=1

Ai j
k (Ů±)(∂kUm,±

j )φi dV̊t +

∫
Ω±

Ai j
3 (Ů±)(∂3Um,±

j )φi dV̊t = 0 (4.13)

where dV̊t := ∂3ϕ̊ dx Integrating by parts in ∂k and ∂3, we get∫
Ω±

Ai j
0 (Ů±)(∂tU

m,±
j )φi −

3∑
k=1

Um,±
j ∂k(Ai j

k (Ů±)φi) dV̊t ∓

∫
Σ

Ai j
3 (Ů±)Um,±

j φi dx′ = 0. (4.14)

Plugging the Galerkin sequence into the above identity, we get∫
Ω±

Ai j
0 (Ů±)el(x)φi(Um,±

l j )′(t) −
3∑

k=1

∂k(Ai j
k (Ů±)φi)el(x)Um,±

l j (t) dVt = ±

∫
Σ

Ai j
3 (Ů±)Um,±

j φi dx′. (4.15)

Taking sum for the two parts in Ω±, setting φi(x) = ei(x) and using the jump condition for
�
q

�
and v± · N̊, we

obtain a first-order linear ODE system for {U±l j(t)}∑
±

(∫
Ω±

Ai j
0 (Ů±)el(x)ei(x) dV̊t

)
(Um,±

l j )′(t) −
(∫

Ω±
∂k(Ai j

k (Ů±)ei(x))el(x) dV̊t

)
Um,±

l j (t)

=

∫
Σ

�
q

� (
−e2(x′, 0)∂1ψ̊(t, x′) − e3(x′, 0)∂2ψ̊(t, x′) + e4(x′, 0)

)︸                                                                ︷︷                                                                ︸
=:φv·N̊

dx′

= − σ

∫
Σ

(∇ψ̊/|N̊ |) · ∇
(
φv · N̊

)
dx′ − κ

∫
Σ

(1 − ∆)ψm (1 − ∆)
(
φv · N̊

)
dx′

− κ

∫
Σ

∂tψ
m
(
φv · N̊

)
dx′ − κ

∫
Σ

∇∂tψ
m · ∇

(
φv · N̊

)
dx′. (4.16)

Since the basis {el} are smooth and the coefficients (Ům,±, ψ̊) are sufficiently regular, standard ODE theory
guarantees the local existence and uniqueness of the above ODE system (4.16) with initial data

Um,±
l j (0) :=

∫
Ω±

Um,±
j (0, x)ek(x)∂3ϕ̊0 dx.
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4.2.2 Existence of solutions to the linearized problem

The existence of weak solution is guaranteed by uniform-in-m estimates for the Galerkin sequence {Um,±(t, x), ψm(t, x′)}.
Now we let the test function φ = Um,± in Ω± respectively to obtain the standard L2-type energy estimates
thanks to the symmetric property of the coefficient matrices and the concrete form of A3(Ů) on the boundary∑

±

d
dt

1
2

∫
Ω±

(Um,±)> · A0(Ů±)Um,± dVt

=
∑
±

1
2

∫
Ω±

(Um,±)> · ∂t(A0(Ů±))Um,± dVt +
1
2

∫
Ω±

(Um,±)> · ∂k(Ak(Ů±))Um,± dVt

+

∫
Σ

�
Um

1

�
(Um,±

4 − Um,±
2 ∂1ψ̊ − Um,±

3 ∂2ψ̊) dx′ (4.17)

where the interior term can be controlled directly by C(K̊0)‖Um,±‖20,±. For the boundary term, using the
boundary conditions (4.11)-(4.12), we get the energy bounds under time integral∫ t

0

∫
Σ

�
Um

1

�
(Um,±

4 − Um,±
2 ∂1ψ̊ − Um,±

3 ∂2ψ̊) dx′ dτ

=

∫ t

0

∫
Σ

(
σH(ψ̊) − κ(1 − ∆)2ψm − κ(1 − ∆)∂tψ

m
)
∂tψ

m dx′ dτ

= − σ

∫ t

0

∫
Σ

(∇ψ̊/|N̊|) · ∇∂tψ
m dx′ dτ − κ

∫ t

0

∫
Σ

(1 − ∆)ψm (1 − ∆)∂tψm dx′ dτ

− κ

∫ t

0

∫
Σ

∂tψ
m∂tψm dx′ dτ − κ

∫ t

0

∫
Σ

∇∂tψ
m · ∇∂tψm dx′ dτ

.
σ
√
κ

∫ t

0
P(|∇ψ̊|L∞ )|∇ψ̊|20 dτ + δ|

√
κψm|2L2

t H1
x′
−

1
2

∣∣∣√κψm
∣∣∣2
2

∣∣∣∣∣t
0
−

∫ t

0

∣∣∣√κ∂tψ
m
∣∣∣2
1 dτ. (4.18)

We define

Nm(t) :=
∑
±

∥∥∥∥∥∥
(√
F̊ ±p Um,±

1 ,Um,±
2 , · · · ,Um,±

8

)∥∥∥∥∥∥2

0,±
+

∣∣∣√κψm
∣∣∣2
2 +

∫ t

0

∣∣∣√κ∂tψ
m
∣∣∣2
1 dτ. (4.19)

Since A0(Ů±) > 0, we obtain the uniform-in-m estimate for the Galerkin sequence {Um,±(t, x), ψm(t, x′)}.

Nm(t) ≤Nm(0) +

∫ t

0
C(K̊0, κ

−1)Nm(τ) dτ, (4.20)

and thus there exists a time TN > 0 (depending on κ andNm(0), independent of m) such that

sup
0≤t≤TN

Nm(t) ≤ C′(K̊0, κ
−1)Nm(0).

Because L∞([0,TN ]; L2(Ω±)) is not reflexive, we alternatively consider the weak convergence in L2([0,TN ]; L2(Ω±)).
By Eberlein-Šmulian theorem and the uniqueness of expansion in Galerkin basis {el}

∞
l=1, there exists a subse-

quence {Umk ,±(t, x), ψmk (t, x′)}∞k=1 such that(√
F̊ ±p Umk ,±

1 ,Umk ,±
2 , · · · ,Umk ,±

8

)
⇀

(√
F̊ ±p q±, v±, · · · , b±, S ±

)
in L2([0,TN ]; L2(Ω±)) (4.21)

ψmk ⇀ ψ in L2([0,TN ]; H2(Σ)), ∂tψ
mk ⇀ ∂tψ in L2([0,TN ]; H1(Σ)). (4.22)

This proves the existence of weak solution to (4.8) (and equivalently (4.6)). The uniqueness easily follows
from the estimate ofN (t) and the linearity of (4.8). The weak solution is actually a strong solution according
to the argument in [60, Chapter 2.2.3].
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4.3 Higher-order estimates of the linearized approximate problem
To proceed the Picard iteration, we shall prove that the bounds (4.7) for the coefficients (Ů, ψ̊, ψ̇) can be
preserved by the solution to (4.6). Fix κ > 0, we define the energy functional for (4.6) to be

E̊κ(t) := E̊κ
4(t) + · · · + E̊κ

8(t)

E̊κ
4+l(t) :=

∑
±

∑
〈α〉=2l

4−l∑
k=0

∥∥∥∥∥(ε2lT α∂k
t (v±, b±, S ±, (F̊ ±p )

(k+α0−l−3)+
2 q±)

)∥∥∥∥∥2

4−k−l,±

+

4+l∑
k=0

∣∣∣√κε2l∂k
tψ

∣∣∣2
6+l−k +

∫ t

0

∣∣∣√κε2l∂5+l
t ψ

∣∣∣2
1 dτ

(4.23)

where T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 with the multi-index α = (α0, α1, α2, 0, α4), 〈α〉 = α0 +α1 +α2 +2×0+α4.

We aim to prove that

Proposition 4.1. There exists some Tκ > 0 depending on κ and K̊0, such that

sup
0≤t≤Tκ

E̊κ(t) ≤ C(κ−1, K̊0)E̊κ(0).

A large part of the proof of proposition (4.1) is similar to the analysis in Section 3. Moreover, since
κ > 0 is fixed, we obtain higher boundary regularity for the free interface ψ, which allows us to avoid some
technical steps (such as the analysis in Section 3.4). We will skip some details for the part substantially
similar to Section 3 and emphasize the different part. Now we start with div-curl analysis.

4.3.1 Div-Curl analysis

We start with E̊4(t). Using (B.1) and the boundary conditions for v, b, we get∥∥∥v±, b±
∥∥∥2

4,± . C(|ψ̊|4, |∇ψ̊|W1,∞ )
(
‖(v±, b±)‖20,± + ‖∇ϕ̊ · (v±, b±)‖23,± + ‖∇ϕ̊ × (v±, b±)‖23,± + ‖∂4(v±, b±)‖20

)
.

(4.24)

Remark 4.4. Here we cannot use the div-curl inequality (B.2) to estimate the normal traces because the
boundary constraint b · N̊ = 0 no longer holds for the linearized problem.

The L2-estimates are already proven in the uniform estimates of Galerkin sequence, so we no longer
repeat it. The treatment of ∇ϕ̊ · v is also the same as in Section 3.3.1, that is, invoking the continuity equation.
For ∇ϕ̊ · b, we no longer have the div-free constraint. Instead, we can take ∇ϕ̊· in the linearized evolution
equation of b to get

Dϕ̊±
t (∇ϕ̊ · b±) = ∂

ϕ̊
i (b̊±j ∂

ϕ̊
j v
±
i ) − ∂ϕ̊i (b̊±i ∂

ϕ̊
j v
±
j ) + [Dϕ̊±

t ,∇ϕ̊·]b± (4.25)

= (∂ϕ̊i b̊
±
j )(∂ϕ̊j v

±
i ) − (∇ϕ̊ · b±)(∇ϕ̊ · v±) + [Dϕ̊±

t ,∇ϕ̊·]b±. (4.26)

Direct calculation shows that [Dϕ̊±
t , ∂

ϕ̊
i ](·) = −(∂ϕ̊i v̊ j)∂

ϕ̊
j (·) − (∂ϕ̊i ∂t(ϕ̊ − ϕ̇))∂ϕ̊3(·). On the other hand, the κ-

regularization term provides extra regularity for ϕt, ϕ̊t, ϕ̇t. Thus, standard H3 estimates give the control of
divergence

1
2

d
dt

∥∥∥∇ϕ̊ · b±∥∥∥2
3,± . C(K̊0, κ

−1)
(
‖b±‖4,±‖v±‖4,±

)
≤ C(K̊0, κ

−1)E̊κ
4(t). (4.27)

The vorticity part is analyzed in a similar way as in Section 3.6. The evolution equations are

ρ̊Dϕ̊
t (∇ϕ̊ × v) − (b̊ · ∇ϕ̊)(∇ϕ̊ × b) = (∇ϕ̊ρ̊) × (Dϕ̊

t v) − (∇ϕ̊b̊ j) × (∂ϕ̊j b)

− ρ̊
(
(∇ϕ̊v̊ j) × (∂ϕ̊j v) + ∇ϕ(∂tϕ̊ − ∂tϕ̇) × ∂ϕ̊3v

)
,

Dϕ̊
t (∇ϕ̊ × b) − (b̊ · ∇ϕ̊)(∇ϕ̊ × v) − b̊ × ∇ϕ̊(∇ϕ̊ · v) = − (∇ϕ̊ × b̊)(∇ϕ̊ · v) − (∇ϕ̊b̊ j) × (∂ϕ̊j v)

− (∇ϕ̊v̊ j) × (∂ϕ̊j b) − ∇ϕ(∂tϕ̊ − ∂tϕ̇) × ∂ϕ̊3b,
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on the right side of which the highest-order derivative is 1 (except the mismatch term). Thus, we can still
follow the analysis in Section 3.6.2 to get

d
dt

1
2

∫
Ω±
ρ̊±

∣∣∣∂3∇ϕ̊ × v±
∣∣∣2 +

∣∣∣∂3∇ϕ̊ × b±
∣∣∣2 dV̊t ≤ P(E̊κ

4(t), K̊0) + K̊±1 , (4.28)

where

K̊±1 :=
∫

Ω±
(∂3∇ϕ̊ × b±) ·

(
b̊± × (∂3∇ϕ̊(∇ϕ̊ · v±))

)
dV̊t. (4.29)

Again, we invoke the continuity equation and the momentum equation to get

b̊ × (∂3∇ϕ̊(∇ϕ̊ · v)) L
= − F̊pb̊ × (∂3∇ϕ̊Dϕ̊

t q) + F̊pb̊ × ((∂3∇ϕ̊Dϕ̊
t b j)b̊ j)

L
= F̊pρ̊b̊ × (∂3(Dϕ̊

t )2v) − F̊pb̊ × Dϕ̊
t (b̊ j∂

3∂
ϕ̊
j b) + F̊pb̊ × Dϕ̊

t ((∂3∇ϕ̊b j)b̊ j)
L
= F̊pρ̊b̊ × (∂3(Dϕ̊

t )2v) + F̊pb̊ × Dϕ̊
t (b̊ × (∂3∇ϕ̊ × b))

where we use the vector identity (a × (∇ϕ̊ × b))i = (∂ϕ̊i b j)a j − a j∂
ϕ̊
j bi, and the omitted terms are directly

controlled by P(E̊κ
4(t), K̊0). Thus, we have

K̊±1
L
=

∫
Ω±
F̊ ±p ρ̊(∂3∇ϕ̊ × b) ·

(
b̊ × (∂3(Dϕ̊

t )2v)
)

dV̊t +

∫
Ω±
F̊ ±p (∂3∇ϕ̊ × b) ·

(
b̊ × Dϕ̊

t (b̊ × (∂3∇ϕ̊b))
)

dVt

=

∫
Ω±
F̊ ±p ρ̊(∂3∇ϕ̊ × b) ·

(
b̊ × (∂3(Dϕ̊

t )2v)
)

dV̊t −

∫
Ω±
F̊ ±p Dϕ̊

t

(
b̊ × (∂3∇ϕ̊ × b)

)
·
(
b̊ × (∂3∇ϕ̊ × b)

)
dVt

. −
1
2

d
dt

∫
Ω±
F̊ ±p

∣∣∣∣b̊ × (∂3∇ϕ̊ × b)
∣∣∣∣2
0

+ P(K̊0)E̊κ
4(t) + E̊κ

5(t).

So, we have

1
2

d
dt

∫
Ω±
ρ̊±

∣∣∣∂3∇ϕ̊ × v±
∣∣∣2 +

∣∣∣∂3∇ϕ̊ × b±
∣∣∣2 + F ±p

∣∣∣∣b̊± × (∂3∇ϕ̊ × b±)
∣∣∣∣2
0

dV̊t

. P(K̊0)E̊κ
4(t) + E̊κ

5(t). (4.30)

Similarly as in Section 3.6.2 and Section 3.6.3, we can prove the div-curl estimates for time-differentiated
system and T α-differentiated system. For 0 ≤ l ≤ 3, 0 ≤ k ≤ 3 − l, 〈α〉 = 2l, α3 = 0, we have∥∥∥ε2l∂k

tT
α(v±, b±)

∥∥∥2
4−l−k,± ≤ C(|ψ̊|3)

( ∥∥∥ε2l∂k
tT

α(v±, b±)
∥∥∥2

0,± +
∥∥∥ε2l∇ϕ̊ · ∂k

tT
α(v±, b±)

∥∥∥2
3−k−l,±

+
∥∥∥ε2l∇ϕ̊ × ∂k

tT
α(v±, b±)

∥∥∥2
3−k−l,± +

∥∥∥∥ε2l∂4−k−l∂k
tT

α(v±, b±)
∥∥∥∥2

0,±

)
. (4.31)

Then the curl part has the following control∥∥∥ε2l∇ϕ̊ × ∂k
tT

αv±
∥∥∥2

3−l−k,± +
∥∥∥ε2l∇ϕ̊ × ∂k

tT
αb±

∥∥∥2
3−l−k,± +

∥∥∥∥ε2lF̊ ±p b̊ × (∂k
tT

αb±)
∥∥∥∥2

3−l−k,±

. P(K̊0)

 l∑
j=0

Eκ
4+ j(0)

 + P(K̊0)
∫ t

0

l∑
j=0

E̊κ
4+ j(τ) + E̊κ

4+l+1(τ) dτ.
(4.32)

Similarly, the divergence part is controlled by∥∥∥ε2l∇ϕ̊ · ∂k
tT

αv±
∥∥∥2

3−l−k,± +
∥∥∥ε2l∇ϕ̊ · ∂k

tT
αb±

∥∥∥2
3−l−k,±

.
∥∥∥∥ε2lF̊ ±p ∂

k
tT

αDϕ̊±
t (q±, b±)

∥∥∥∥2

3−l−k,±
+ C(K̊0)

 l∑
j=0

Eκ
4+ j(0)

 + P(K̊0)
∫ t

0

l∑
j=0

E̊κ
4+ j(τ) dτ,

(4.33)

in which the first term will be controlled via tangential estimates.
For the pressure q, we still use the linearized momentum equation to convert it to tangential derivatives

of v and b. This step is exactly the same as Section 3.6.1, so we do not repeat the details here.
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4.3.2 Tangential estimates

The tangential estimates are also proved in the same way as Section 3.3-Section 3.5. What’s more, the rather
technical part in the estimates of full time derivatives can be simplified a lot thanks to the

√
κ-weighted extra

regularity of the free interface. For T γ-differentiated linearize system (4.6), we introduce the corresponding
Alinhac good unknown F̊γ := T γ f − T γϕ̊∂

ϕ̊
3 f which satisfies

T γ(∂ϕ̊i f ) = ∂
ϕ̊
i F̊γ + C̊

γ
i ( f ), T γ(Dϕ̊

t f ) = Dϕ̊
t F̊γ + D̊γ( f ),

where

C̊
γ
i ( f ) = (∂ϕ̊3∂

ϕ̊
i f )T γϕ̊ +

T γ,
N̊i

∂3ϕ̊
, ∂3 f

 + ∂3 f
[
T γ, N̊i,

1
∂3ϕ̊

]
+ N̊i∂3 f

[
T γ−γ′ ,

1
(∂3ϕ̊)2

]
T γ′∂3ϕ̊

+
N̊i

∂3ϕ̊
[T γ, ∂3] f −

N̊i

(∂3ϕ̊)2 ∂3 f [T γ, ∂3]ϕ̊, (4.34)

and

D̊
γ( f ) = (Dϕ̊

t ∂
ϕ̊
3 f )T γϕ + [T γ, ˚̄v] · ∂ f +

[
T γ,

1
∂3ϕ̊

(v̊ · Ṅ − ∂tϕ̊), ∂3 f
]

+

[
T γ, (v̊ · Ṅ − ∂tϕ̊),

1
∂3ϕ̊

]
∂3 f

+
1
∂3ϕ

[T γ, v̊] · Ṅ∂3 f − (v̊ · Ṅ − ∂tϕ̊)∂3 f
[
T γ−γ′ ,

1
(∂3ϕ̊)2

]
T γ′∂3ϕ̊

+
1
∂3ϕ̊

(v̊ · Ṅ − ∂tϕ̊)[T γ, ∂3] f + (v̊ · Ṅ − ∂tϕ̊)
∂3 f

(∂3ϕ̊)2 [T γ, ∂3]ϕ̊ + T γ∂t(ϕ̇ − ϕ̊)∂ϕ̊3 f (4.35)

with 〈γ′〉 = 1. Since N̊3 = 1, the third term in C̊γi ( f ) does not appear when i = 3. Under this setting, the
T γ-differentiated linearized system is reformulated as follows

ρ̊±Dϕ̊±
t V̊γ,± − (b̊± · ∇ϕ̊)B̊γ,± + ∇ϕ̊Q̊γ,± = R̊

γ,±
v − C̊γ(q±) in [0,T ] ×Ω±, (4.36)

F̊ ±p Dϕ̊±
t Q̊γ,± − F̊ ±p Dϕ̊±

t Bγ,± · b̊± + ∇ϕ̊ · V̊γ,± = R̊
γ,±
p − C̊

γ
i (v±i ) in [0,T ] ×Ω±, (4.37)

Dϕ̊±
t B̊γ,± − (b̊± · ∇ϕ̊)V̊γ,± + b̊±(∇ϕ̊ · V̊γ,±) = R̊

γ,±
b − b̊±C̊γi (v±i ) in [0,T ] ×Ω±, (4.38)

Dϕ̊±
t S̊±,α = D̊γ(S ±) in [0,T ] ×Ω±, (4.39)

with boundary conditions�
Q̊γ

�
= σT γH(ψ̊) − κT γ(1 − ∆)2ψ − κT γ(1 − ∆)∂tψ −

�
∂3q

�
T γψ̊ on [0,T ] × Σ, (4.40)

V̊γ,± · N̊ = ∂tT
γψ + v̄± · ∇T γψ̊ −Wγ,± on [0,T ] × Σ, (4.41)

where R̊v, R̊p, R̊b terms consist of the following commutators

R̊
γ,±
v := [T γ, b̊±] · ∇ϕ̊b± − [T γ, ρ̊±]Dϕ̊±

t v± − ρ̊±D̊γ(v±) (4.42)

R̊
γ,±
p := − [T γ, F̊ ±p ]Dϕ̊±

t q± − F̊ ±p D̊
γ(q±)

+ [T γ, F̊ ±p ]Dϕ̊±
t b± · b̊± + F̊ ±p D̊

γ(b±) · b̊± + [T γ, F̊ ±p b̊
±] · Dϕ̊±

t b± (4.43)

R̊
γ,±
b := [T γ, b̊±] · ∇ϕ̊v± − D̊γ(b±), (4.44)

and the boundary termWγ,± is

W̊γ,± := (∂3v± · N̊)T γψ̊ + [T γ, N̊i, v±i ]. (4.45)

Given 0 ≤ l ≤ 4, we shall consider the tangential estimates for ∂4−k−l∂k
tT

α for 0 ≤ k ≤ 4 − l and
〈α〉 = 2l, α3 = 0. Following the analysis in Section 3.3-Section 3.5, using the linearized Reynolds transport
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theorem (Lemma A.7), dropping γ for simplicity of notations, we get

d
dt

1
2

∫
Ω±
ρ̊|ε2lV̊±|2 dV̊t =

∫
Ω±
ε4l(b̊± · ∇ϕ̊)B̊± · V̊± dV̊t −

∫
Ω±
ε4lV̊± · ∇ϕ̊Q̊± dV̊t

−

∫
Ω±
ε4l(R̊±v − C̊(q±)) · V̊± dV̊t

+
1
2

∫
Ω±
ε4l

(
Dϕ̊±

t ρ̊ + ρ̊∇ϕ̊ · v̊± + ρ̊∂
ϕ̊
3(˚̄v · ∇)(ϕ̊ − ϕ̇)

)
|V̊±|2 dV̊t, (4.46)

where the last two terms can be directly controlled by C(K̊0)E̊κ(t). In the rest of this section, we will use the
notation L

= to skip some of these remainder terms. We then analyze the first line. Integrating (b̊± · ∇ϕ̊) and ∇ϕ̊

by parts and using b̊ · N̊ |Σ = 0, we get∫
Ω±
ε4l(b̊± · ∇ϕ̊)B̊± · V̊± dV̊t = −

∫
Ω±
ε4lB̊± · (b̊± · ∇ϕ̊)V̊± dV̊t −

∫
Ω±
ε4l(∇ϕ̊ · b̊±)B̊± · V̊± dV̊t

= −

∫
Ω±
ε4lB̊± · Dϕ̊±

t B̊± dV̊t −

∫
Ω±
ε4l(B̊± · b̊±)(∇ϕ̊ · V̊±) dV̊t −

∫
Ω±
ε4l(∇ϕ̊ · b̊±)B̊± · V̊± dV̊t

L
= −

1
2

d
dt

∫
Ω±
|ε2lB̊±|2 dV̊t −

1
2

d
dt

∫
Ω±
F̊ ±p (ε2lB̊± · b̊±)2 dVt +

∫
Ω±
ε4lF̊ ±p (B̊± · b̊±)Dϕ̊±

t Q̊± dV̊t (4.47)

and

−

∫
Ω±
ε4lV̊± · ∇ϕ̊Q̊± dV̊t = ±

∫
Σ

ε4l(V̊± · N̊)Q̊± dx′︸                        ︷︷                        ︸
=:I̊±

+

∫
Ω±
ε4lQ̊±(∇ϕ̊ · V̊±) dV̊t

L
= I̊± −

1
2

d
dt

∫
Ω±
F̊ ±p (ε2lQ̊±)2 dV̊t +

∫
Ω±
F̊ ±p ε

4lQ̊±Dϕ̊±
t (B̊± · b̊±) dV̊t −

∫
Ω±
ε4lQ̊±C̊i(v±i ) dV̊t︸                       ︷︷                       ︸

=:Z̊±

. (4.48)

Notice that∫
Ω±
ε4lF̊ ±p (B̊± · b̊±)Dϕ̊±

t Q̊± dV̊t +

∫
Ω±
ε4lF̊ ±p Q̊±Dϕ̊±

t (B̊± · b̊±) dV̊t
L
=

d
dt

∫
Ω±
ε4lF̊ ±p Q̊±(B̊± · b̊±) dV̊t, (4.49)

we find that ∫
Ω±
ε4l(b̊± · ∇ϕ̊)B̊± · V̊± dV̊t −

∫
Ω±
ε4lV̊± · ∇ϕ̊Q̊± dV̊t

L
= I̊± + Z̊± −

1
2

d
dt

∫
Ω±
|ε2lB̊±|2 dV̊t −

1
2

d
dt

∫
Ω±
F̊ ±p

∣∣∣∣ε2l
(
Q̊± − B̊± · b̊±

)∣∣∣∣2 dV̊t. (4.50)

Thus, we already get the energy terms for V̊, B̊ and Q̊, and it remains to analyze the boundary term I̊±. Again,
following the analysis in Section 3.3-Section 3.5, we have

I̊+ + I̊− = S̊T + S̊T
′
+ V̊S + R̊T + R̊T

+
+ R̊T

−
+ Z̊B

+
+ Z̊B

−
(4.51)

where

S̊T := ε4l
∫

Σ

T γ �
q

�
∂tT

γψ dx′, (4.52)

S̊T
′

:= ε4l
∫

Σ

T γ �
q

�
(v̄+ · ∇)T γψ̊ dx′, (4.53)

V̊S := ε4l
∫

Σ

T γq− (~v̄� · ∇)T γψ̊ dx′, (4.54)

R̊T := − ε4l
∫

Σ

�
∂3q

�
T γψ̊ ∂tT

γψ dx′, (4.55)

R̊T
±

:= ∓ ε4l
∫

Σ

∂3q± T γψ̊ (v̄± · ∇)T γψ̊ dx′, (4.56)

Z̊B
±

:= ∓ ε4l
∫

Σ

Q̊±W̊± dx′, Z̊± = −

∫
Ω±
ε4lQ̊±C̊i(v±i ) dV̊t. (4.57)

64



4.3.3 Analysis of the boundary integrals

Since the weight function ω(x3) vanishes on Σ, we can alternatively write T α = ∂α0
t ∂

2l−α0 and T γ =

∂k+α0
t ∂4+l−(k+α0). Replacing k+α0 by k, it suffices to analyze the caseT γ = ∂k

t ∂
4+l−k for 0 ≤ k ≤ 4+l, 0 ≤ l ≤ 4.

First, there is no need to analyze R̊T and R̊T
±

because they can be directly controlled by using the energy
bounds (4.7) for the basic state. For the term S̊T, the boundary regularity is given by the κ-regularization
terms instead of the surface tension because we do not need a uniform-in-κ estimate for the linearized prob-
lem. Using the jump conditions for

�
q

�
and integrating by parts, we have

∫ t

0
S̊T dτ = σ

∫ t

0

∫
Σ

ε4l∂k
t ∂

4+l−k

 ∇ψ̊√
1 + |∇ψ̊|2

 · ∇∂k+1
t ∂4+l−kψ dx′ dτ

− κ

∫ t

0

∫
Σ

ε4l∂k
t ∂

4+l−k(1 − ∆)ψ∂k+1
t ∂4+l−k(1 − ∆)ψ dx′ dτ − κ

∫ t

0

∫
Σ

∣∣∣∣ε2l∂k+1
t ∂4+l−k〈∂〉ψ

∣∣∣∣2 dx′ dτ

. −
∣∣∣∣√κε2l∂k

t ∂
4+l−kψ

∣∣∣∣2
2

∣∣∣∣∣t
0
−

∣∣∣∣√κε2l∂k+1
t ∂4+l−kψ

∣∣∣∣2
L2

t H1
x′

+ δ
∣∣∣∣√κε2l∂k+1

t ∂4+l−kψ
∣∣∣∣2
L2

t H1
x′

+
σ

κ

∫ t

0
C(K̊0) dτ.

(4.58)

For the term S̊T
′
, we have

∫ t

0
S̊T
′
dτ = σ

∫ t

0

∫
Σ

ε4l∂k
t ∂

4+l−k

 ∇ψ̊√
1 + |∇ψ̊|2

 · ∇ (
(v̄+ · ∇)∂k

t ∂
4+l−kψ̊

)
dx′ dτ

− κ

∫ t

0

∫
Σ

ε4l∂k
t ∂

4+l−k(1 − ∆)ψ (1 − ∆)
(
(v̄+ · ∇)∂k

t ∂
4+l−kψ̊

)
dx′ dτ

− κ

∫ t

0

∫
Σ

ε4l∂k+1
t ∂4+l−k〈∂〉ψ 〈∂〉

(
(v̄+ · ∇)∂k

t ∂
4+l−kψ̊

)
dx′ dτ

. σC(K̊0, κ
−1)t + C(K̊0)

∫ t

0

∣∣∣∣√κε2l∂k
t ∂

4+l−kψ
∣∣∣∣
2
‖v+‖4,± dτ

+ δ
∣∣∣∣√κε2l∂k+1

t ∂4+l−kψ
∣∣∣∣2
L2

t H1
x′

+ C(K̊0)
∫ t

0
‖v+‖24,± dτ

. σC(K̊0, κ
−1)t + C(K̊0)

∫ t

0
E̊κ

4+l(τ) + E̊κ
4(τ) dτ. (4.59)

The term V̊S can also be directly controlled even if T γ only contains time derivatives. When k < 4 + l, we
can use the κ-weighted energy to control it after integrating ∂

1
2 by parts and using Lemma B.4

V̊S =

∫
Σ

ε4l∂k
t ∂

3.5+l−kq− ∂
1
2

(
(~v̄� · ∇)∂k

t ∂
4+l−kψ̊

)
dx′

. ‖ε2l∂k
t ∂

4+l−kq−‖
1
2
0,−‖ε

2l∂k
t ∂

3+l−k∂3q−‖
1
2
0,−|v̄

±|
W

1
2 ,∞

∣∣∣ε2l∂k
t ψ̊

∣∣∣
5.5+l−k

. (E̊κ
4(t) + E̊κ

4+l(t))C(K̊0). (4.60)

When k = 4 + l, we can first integrate ∂t by parts and then integrate ∂
1
2 by parts∫ t

0
V̊S dτ L

=

∫ t

0

∫
Σ

ε4l∂
1
2 (~v̄� ∂3+l

t q−) ∂
1
2 ∂5+l

t ψ̊ dx′ dτ +

∫
Σ

ε4l∂3+l
t q− (~v̄� · ∇)∂4+l

t ψ̊ dx′
∣∣∣∣∣t
0

.

∫ t

0
‖ε2l∂∂3+l

t q−‖
1
2
0,−‖ε

2l∂3+l
t ∂3q−‖

1
2
0,−|v̄

±|
W

1
2 ,∞

∣∣∣ε2l∂5+l
t ψ̊

∣∣∣
0.5 dτ

+ δ‖ε2l∂3+l
t q−‖21,− + |v̄±|2L∞

∣∣∣ε2l∂4
t ψ̊

∣∣∣2
1 + C(K̊0)E̊κ(0)

. δE̊κ
4+l(t) + C(K̊0, κ

−1)
(
E̊κ(0) +

∫ t

0
E̊κ(τ) dτ

)
. (4.61)

65



For Z̊B+ Z̊, the cancellation structure obtained in Section 3.3.1 and Section 3.4 still holds. Following step
4 in Section 3.4, we have

Z̊B
±

+ Z̊± = ∓

∫
Σ

ε4l(∂k
t ∂

4+l−kq± − ∂k
t ∂

4+l−kψ̊∂3q±)(∂3v± · N̊) ∂k
t ∂

4+l−kψ̊ dx′

∓

∫
Σ

ε4lQ̊±
[
∂k

t ∂
4+l−k, N̊i, v±i

]
dx′ −

∫
Ω±
ε4lQ̊±C̊i(v±i ) dV̊t, (4.62)

where the first line is controlled in the same way as V̊S. Mimicing the proof in step 4 in Section 3.4, we have

∓

∫
Σ

ε4lQ̊±
[
∂k

t ∂
4+l−k, N̊i, v±i

]
dx′ −

∫
Ω±
ε4lQ̊±C̊i(v±i ) dV̊t

L
=

∫
Ω±
ε4l∂

ϕ̊
3Q̊±

[
∂k

t ∂
4+l−k, N̊i, v±i

]
dV̊t, (4.63)

whose time integral can be directly controlled by

δE̊κ
4+l(t) + C(K̊0, κ

−1)
(
E̊κ(0) +

∫ t

0
E̊κ(τ) dτ

)
after integrating by parts one tangential derivative in ∂k

t ∂
4+l−k.

4.3.4 Uniform-in-n estimates for the linearized approximate system

Summarizing the estimates obtained in Section 4.3.1-Section 4.3.3, we prove that for any δ ∈ (0, 1),

E̊κ(t) . δE̊κ(t) + C(K̊0, κ
−1)

(
E̊κ(0) +

∫ t

0
E̊κ(τ) dτ

)
.

Choosing δ > 0 suitably small such that the δ-term can be absorbed by the left side and using Grönwall’s
inequality, we find that there exists a time Tκ > 0 (independent of ε and n), such that

sup
0≤t≤Tκ

E̊κ(t) ≤ C′(K̊0, κ
−1)E̊κ(0)

for some positive function C′ continuous in its arguments. Following the argument in remark 4.3, it is
straightforward to show that

∑
±

4∑
l=0

∑
〈α〉=2l

4−l∑
k=0

∫ t

0

∥∥∥ε2lT α∂k
t b
±
∥∥∥2

4−k−l,± dτ < P(E̊κ(t)) ∀t ∈ [0,Tκ].

4.4 Picard iteration: well-posedness of the nonlinear approximate problem
We already establish the local existence of the linear system (4.1) for each n and the uniform-in-n estimates
for the solution to (4.1). It suffices to prove {(v[n],±, b[n],±, b[n],±, q[n],±, ψ[n])} has a strongly convergent subse-
quence (in certain anisotropic Sobolev norms).

4.4.1 The way to recover the nonlinear approximate system

Let us first see how to construct the solution to the nonlinear system (3.1) for fixed κ > 0 if the strong conver-
gence result has been proven. We assume that the expected limit is denoted by (v[∞],±, b[∞],±, b[∞],±, q[∞],±, ψ[∞]).
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Then the limit functions satisfy the following system

ρ[∞],±Dϕ[∞],±
t v[∞],± − (b[∞],± · ∇ϕ

[∞]
)b[∞],± + ∇ϕ

[∞]
q[∞],± = 0 in [0,T ] ×Ω±,

(F ±p )[∞]Dϕ[∞],±
t q[∞],± − (F ±p )[∞]Dϕ[∞],±

t b[∞],± · b[∞],± + ∇ϕ
[∞]
· v[∞],± = 0 in [0,T ] ×Ω±,

Dϕ[∞],±
t b[∞],± − (b[∞],± · ∇ϕ

[∞]
)v[∞],± + b[∞],±∇ϕ

[∞]
· v[∞],± = 0 in [0,T ] ×Ω±,

Dϕ[∞],±
t S [∞],± = 0 in [0,T ] ×Ω±,�

q[∞]
�

= σH(ψ[∞]) − κ(1 − ∆)2ψ[∞] − κ(1 − ∆)∂tψ
[∞] on [0,T ] × Σ,

∂tψ
[∞] = v[∞],± · N[∞] on [0,T ] × Σ,

v[∞],±
3 = 0 on [0,T ] × Σ±,

(v[∞],±, b[∞],±, q[∞],±, S [∞],±, ψ[∞])|t=0 = (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0),

(4.64)

where ρ[∞] is defined via the equation of state ρ = ρ(p, S ) and p[∞] := q[∞] − 1
2 |b

[∞]|2. Also we have

Dϕ[∞],±
t = ∂t + v̄[∞],± · ∇ +

1
∂3ϕ[∞] (v[∞],± · N[∞] − ∂tϕ

[∞])∂3,

b[∞],± · ∇ϕ
[∞]

= b̄[∞],± · ∇ +
1

∂3ϕ[∞] (b[∞],± · N[∞])∂3.

We must prove that b[∞],±
3 = b[∞],±

3 in Ω±. According to the definition of b[n], the limit function satisfies

b[∞],±
3 = b[∞],±

3 + R±T

(
b[∞],±

1 ∂1ψ
[∞] + b[∞],±

2 ∂2ψ
[∞] − b[∞],±

3

) ∣∣∣
Σ
⇒ b[∞],±

3 · N[∞]|Σ = 0.

Since Lemma B.3 implies that R±T (0) = 0, then the remaining step is to show b[∞],± · N[∞]|Σ = 0 holds with in
the lifespan of the solution to (4.64) provided b[∞],± · N[∞]|t=0 = 0 on Σ. On Σ, we compute that

Dϕ[∞],±
t (b[∞],± · N[∞]) = Dϕ[∞],±

t b[∞],± · N[∞] + b[∞],± · Dϕ[∞],±
t N[∞]

= (b̄[∞],± · ∇)︸      ︷︷      ︸
=b̄[∞],±·∇

v[∞],± · N[∞] + (b[∞],± · N[∞])︸           ︷︷           ︸
=0 on Σ

∂3v[∞],± · N[∞] + (b[∞],± · N[∞])︸           ︷︷           ︸
=0 on Σ

(∇ϕ
[∞]
· v[∞],±)

− b̄[∞],±
i ∂i∂tψ

[∞] − b̄[∞],±
i v̄[∞],±

j ∂ j∂iψ
[∞]

= (b̄[∞],± · ∇)
(
v[∞],±

3 − v̄[∞],±
j ∂ jψ

[∞]
)︸                      ︷︷                      ︸

=∂tψ[∞]

+b̄[∞],±
i v̄[∞],±

j ∂ j∂iψ
[∞] − b̄[∞],±

i ∂i∂tψ
[∞] − b̄[∞],±

i v̄[∞],±
j ∂ j∂iψ

[∞] = 0.

Thus standard L2 energy estimate shows that

d
dt

∫
Σ

∣∣∣b[∞],± · N[∞]
∣∣∣2 dx′ =

∫
Σ

(∇ · v̄[∞],±)
∣∣∣b[∞],± · N[∞]

∣∣∣2 dx′ ≤ |∂v[∞],±|L∞
∣∣∣b[∞],± · N[∞]

∣∣∣2
0 . (4.65)

Since b[∞],± · N[∞]|t=0 = 0 on Σ, we conclude that b[∞],± · N[∞] = 0 always holds on Σ by using Grönwall’s
inequality. Plugging it back to the expression of b[∞],±

3 , we find b[∞],±
3 = b[∞],±

3 in Ω± as desired. Then we can
replace b by b in the limit system (4.64)

ρ[∞],±Dϕ[∞],±
t v[∞],± − (b[∞],± · ∇ϕ

[∞]
)b[∞],± + ∇ϕ

[∞]
q[∞],± = 0 in [0,T ] ×Ω±,

(F ±p )[∞]Dϕ[∞],±
t q[∞],± − (F ±p )[∞]Dϕ[∞],±

t b[∞],± · b[∞],± + ∇ϕ
[∞]
· v[∞],± = 0 in [0,T ] ×Ω±,

Dϕ[∞],±
t b[∞],± − (b[∞],± · ∇ϕ

[∞]
)v[∞],± + b[∞],±∇ϕ

[∞]
· v[∞],± = 0 in [0,T ] ×Ω±,

Dϕ[∞],±
t S [∞],± = 0 in [0,T ] ×Ω±,�

q[∞]
�

= σH(ψ[∞]) − κ(1 − ∆)2ψ[∞] − κ(1 − ∆)∂tψ
[∞] on [0,T ] × Σ,

∂tψ
[∞] = v[∞],± · N[∞], b[∞],± · N[∞] = 0 on [0,T ] × Σ,

v[∞],±
3 = b[∞],±

3 = 0 on [0,T ] × Σ±,

(v[∞],±, b[∞],±, q[∞],±, S [∞],±, ψ[∞])|t=0 = (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0),

(4.66)

in which (v[∞],±, b[∞],±, q[∞],±, ψ[∞]) exactly gives the solution to the nonlinear approximate system (3.1).
Finally, the divergence constraint ∇ϕ

[∞]
· b[∞],± = 0 in Ω± automatically holds thanks to the second equation,

the fourth equation in (4.66) and ∇ϕ
κ
0 · bκ,±0 = 0 in Ω±.
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4.4.2 Proof of strong convergence

For a function sequence { f [n],±}, we define [ f ][n],± := f [n+1],± − f [n],±. Then we can write the linear system of
{([v][n],±, [b][n],±, [q][n],±, [ψ][n])} as follows

ρ[n],±Dϕ[n]

t [v][n],± − (b[n],± · ∇ϕ
[n]

)[b][n],± + ∇ϕ
[n]

[q][n],± + ∇[ϕ][n−1]
q[n],± = − f̊ [n],±

v in [0,T ] ×Ω±

F
[n],±
p Dϕ[n]

t [q][n],± − F
[n],±
p Dϕ[n]

t [b][n],± · b[n],± + ∇ϕ
[n]
· [v][n],± + ∇[ϕ][n−1]

· v[n],± = − f̊ [n],±
p in [0,T ] ×Ω±

Dϕ[n]

t [b][n],± − (b[n],± · ∇ϕ
[n]

)[v][n],± + b[n],±(∇ϕ
[n]
· [v][n],± + ∇[ϕ][n−1]

· v[n],±) = − f̊ [n],±
b in [0,T ] ×Ω±

Dϕ[n]

t [S ][n],± = − f̊ [n],±
S in [0,T ] ×Ω±�

[q][n],±
�

= σ(H(ψ[n]) −H(ψ[n−1])) − κ(1 − ∆)2[ψ][n] − κ(1 − ∆)∂t[ψ][n] on [0,T ] × Σ

∂t[ψ][n] = [v][n],± · N[n] + v[n],± · [N][n−1] on [0,T ] × Σ

v[n],±
3 = v[n−1],±

3 = b[n],±
3 = b[n−1],±

3 = 0 on [0,T ] × Σ±

([v][n], [b][n], [q][n], [ψ][n])|t=0 = (~0, ~0, 0, 0),
(4.67)

where the source terms are defined by

f̊ [n],±
v := [ρ][n−1],±∂tv[n],± + [ρv̄][n−1],± · ∇v[n],± + [ρVN][n−1],±∂3v[n],±

− [b][n−1],± · ∇b[n],± − [BN][n−1],±∂3b[n],±, (4.68)

f̊ [n],±
q := [Fp][n−1],±∂tq[n],± + [Fpv̄][n−1],± · ∇q[n],± + [FpVN][n−1],±∂3q[n],±

− ([Fp][n−1],±∂tb[n],± + [Fpv̄][n−1],± · ∇b[n],± + [FpVN][n−1],±∂3b[n],±) · b[n],±

− (F ±p )[n−1]Dϕ[n−1]

t b[n],± · [b][n−1],±, (4.69)

f̊ [n],±
p := [v̄][n−1],± · ∇b[n],± + [VN][n−1],±∂3b[n],± − [b][n−1],± · ∇v[n],± − [BN][n−1],±∂3v[n],±

+ [b][n−1],±(∇ϕ
[n−1]
· v[n],±), (4.70)

f̊ [n],±
S := [v̄][n−1],± · ∇S [n],± + [VN][n−1],±∂3S [n],±, (4.71)

with

V [n]
N :=

1
∂3ϕ[n] (v[n] · N[n−1] − ∂tϕ

[n]), B[n]
N :=

1
∂3ϕ[n] (b[n] · N[n]), ∇[ϕ][n−1]

f [n] := −[N/∂3ϕ][n−1]∂3 f [n]

For 1 ≤ n ∈ N∗, we define the energy for the linear system (4.67) as follows

[E̊κ][n](t) := [E̊κ][n]
3 (t) + · · · + [E̊κ][n]

6 (t),

[E̊κ][n]
3+l(t) :=

∑
±

3∑
k=0

∑
〈α〉=2l

∥∥∥ε2l∂k
tT

α([v][n],±, [b][n],±, [q][n],±, [S ][n],±)
∥∥∥2

3−k−l

+

3+l∑
k=0

∣∣∣√κε2l∂k
t [ψ][n]

∣∣∣2
5+l−k +

∫ t

0

∣∣∣√κε2l∂4+l
t [ψ][n]

∣∣∣2
1 dτ, 0 ≤ l ≤ 3, (4.72)

where T α := (ω(x3)∂3)α4∂α0
t ∂

α1
1 ∂

α2
2 with the multi-index α = (α0, α1, α2, 0, α4), 〈α〉 = α0 +α1 +α2 +2×0+α4.

It should be noted that the initial value of [E̊κ][n]. Thus, we shall prove the following proposition in order for
the strong convergence.

Proposition 4.2. There exists a time T ′κ > 0 depending on κ and K̊0, such that

∀2 ≤ n ∈ N∗, sup
0≤t≤T ′κ

[E̊κ][n](t) ≤
1
4

 sup
0≤t≤T ′κ

[E̊κ][n−1](t) + sup
0≤t≤T ′κ

[E̊κ][n−2](t)
 . (4.73)

The proof of proposition is substantially similar to the estimates of E̊(t) in Section 4.3, so we will not go
into every detail but only write the sketch of the proof.
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Step 1: Div-Curl analysis and reduction of pressure

The reduction of pressure follows in the same way as in Section 3.6.1. Invoking the momentum equation, we
have

−(∂3ϕ
[n])−1∂3[q][n],± = ρ[n],±Dϕ[n]

t [v][n],± − (b[n],± · ∇ϕ
[n]

)[b][n],± + f̊ [n],±
v + (∂3ϕ

[n])−1∂3q[n],±.

Then using ∂ϕ̊i = ∂i − ∂iϕ̊∂
ϕ̊
3 , we can convert ∂q to a spatial derivative of v and b plus the given term ∂3q[n],±.

For the div-curl analysis, using (B.1), we have for 0 ≤ l ≤ 2, 0 ≤ k ≤ 2 − l∥∥∥ε2l∂k
tT

α([v][n],±, [b][n],±)
∥∥∥2

3−k−l,±

≤ C(K̊0)
(
‖ε2l∂k

tT
α([v][n],±, [b][n],±)‖20,± +

∥∥∥∥ε2l∇ϕ
[n]
× ∂k

tT
α([v][n],±, [b][n],±)

∥∥∥∥2

2−k−l,±

+
∥∥∥∥ε2l∇ϕ

[n]
· ∂k

tT
α([v][n],±, [b][n],±)

∥∥∥∥2

2−k−l,±
+

∥∥∥∥∂3−k−l∂k
tT

α([v][n],±, [b][n],±)
∥∥∥∥2

0,±

)
. (4.74)

The L2 estimate is straightforward, so we skip the proof. For the curl part, we again analyze the evolution
equations of vorticity and current

ρ[n]Dϕ[n]

t (∇ϕ
[n]
× [v][n]) − (b[n] · ∇ϕ

[n]
)(∇ϕ

[n]
× [b][n])

= − ∇ϕ
[n]
× f̊ [n]

v − ∇
ϕ[n]
ρ[n] × Dϕ[n]

t [v][n] + (∇ϕ
[n]
b[n]

j ) × (∂ϕ
[n]

j [b][n]) + ρ[n][Dϕ[n]

t ,∇ϕ
[n]
×][v][n], (4.75)

Dϕ[n]

t (∇ϕ
[n]
× [b][n]) − (b[n] · ∇ϕ

[n]
)(∇ϕ

[n]
× [v][n]) − b[n] × (∇ϕ

[n]
(∇ϕ

[n]
· [v][n]))

= − ∇ϕ
[n]
× f̊ [n]

b + [Dϕ[n]

t ,∇ϕ
[n]
×][b][n] + (∇ϕ

[n]
b[n]

j ) × (∂ϕ
[n]

j [v][n])

− ∇ϕ
[n]
× (b[n]∇[ϕ][n−1]

· v[n],±) − (∇ϕ
[n]
× b[n])(∇ϕ

[n]
· [v][n]). (4.76)

Mimicing the proof in Section 4.3.1 and using the vanishing initial value of system (4.67), we can prove∥∥∥∥ε2l∇ϕ
[n]
× ∂k

tT
α[v][n],±

∥∥∥∥2

2−k−l,±
+

∥∥∥∥ε2l∇ϕ
[n]
× ∂k

tT
α[b][n],±

∥∥∥∥2

2−k−l,±
+

∥∥∥∥∥ε2l
√

(F ±p )[n]b[n],± × (∂k
tT

α[b]±)
∥∥∥∥∥2

2−l−k,±

. C(K̊0)
∫ t

0

l∑
j=0

[E][n]
3+ j(τ) + [E][n]

3+l+1(τ) dτ.

(4.77)
Similarly, the divergence of [v][n] can be converted to tangential derivatives of [q][n] and [b][n] by invoking
the continuity equation, and the evolution equation of ∇ϕ̊ · [b][n] is

Dϕ[n]

t (∇ϕ
[n]
· [b][n]) = (∂ϕ

[n]

i b[n]
j )(∂ϕ

[n]

j [v][n]
i ) − (∇ϕ

[n]
· b[n])(∇ϕ

[n]
· [v][n]) + [Dϕ[n]

t ,∇ϕ̊·][b][n]

− ∇ϕ
[n]
· ( f̊ [n]

b + b[n]∇[ϕ][n−1]
· v[n],±), (4.78)

so the divergence part is controlled by∥∥∥∥ε2l∇ϕ
[n]
· ∂k

tT
α[v][n],±

∥∥∥∥2

2−k−l,±
+

∥∥∥∥ε2l∇ϕ
[n]
· ∂k

tT
α[b][n],±

∥∥∥∥2

2−k−l,±

.
∥∥∥∥ε2l(F ±p )[n]∂k

tT
αDϕ[n]

t ([q]±, [b]±)
∥∥∥∥2

2−l−k,±
+ C(K̊0)

∫ t

0

l∑
j=0

[E][n]
3+ j(τ) dτ,

(4.79)

in which the first term will be reduced to tangential estimates.

Step 2: Tangential estimates

It remains to prove the tangential estimates for T γ-differentiated system where T γ = ∂3−l−k∂k
tT

α satisfies
α3 = 0, 〈α〉 = 2l, 0 ≤ k ≤ 3 − l, 0 ≤ l ≤ 3. We shall introduce the Alinhac good unknowns ([V], [B], [Q]) as
below instead of directly taking tangential derivatives in (4.67).

[F][n] := F̊[n+1] − F̊[n] = T γ[ f ][n] − T γϕ[n]∂
ϕ[n]

3 [ f ][n] − T γϕ[n]∂
[ϕ][n−1]

3 q[n] − T γ[ϕ][n−1]∂
ϕ[n−1]

3 q[n]
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and it satisfies

T γ(∂ϕ
[n]

i [ f ][n] + ∂
[ϕ][n−1]

i f [n]) = ∂
ϕ[n]

i [F][n] + [C][n]
i ( f ), T γ(Dϕ[n]

t [ f ][n] + D[ϕ][n−1]

t f [n]) = Dϕ[n]

t [F][n] + [D][n]( f )

with

[C][n]
i ( f ) = C

[n]
i ( f [n+1]) − C[n−1]

i ( f [n]) + lower-order controllable terms

[D][n]( f ) = D[n]( f [n+1]) −D[n−1]( f [n]) + lower-order controllable terms

where C[n]
i ( f [m]),D[n]( f [m]) are defined by setting ϕ̊ = ϕ[n], ϕ̇ = ϕ[n−1], f [n+1] = f , f [n] = f̊ in (4.34)-(4.35).

This can be seen by substracting the corresponding identities of F̊ with superscript [n − 1] from the ones with
superscript [n]. The evolution equations of the good unknowns are (with ± dropped)

ρ[n]Dϕ[n]

t [V][n] − (b[n] · ∇ϕ
[n]

)[B][n] + ∇ϕ
[n]

[Q][n] = −C[n](q[n+1]) + C[n−1](q[n]) + [R]v in Ω (4.80)

F [n]
p Dϕ[n]

t [Q][n] − F [n]
p Dϕ[n]

t [B][n] · b[n] + ∇ϕ
[n]
· [V][n] = −C

[n]
i (v[n+1]

i ) + C
[n−1]
i (v[n]

i ) + [R]q in Ω (4.81)

Dϕ[n]

t [B][n] − (b[n] · ∇ϕ
[n]

)[V][n] + b[n](∇ϕ
[n]
· [V][n]) = −b[n]

(
C

[n]
i (v[n+1]

i ) − C[n−1]
i (v[n]

i )
)

+ [R]b in Ω (4.82)

where [R] terms are controllable in L2(Ω) by

‖[R]‖20 ≤ C(K̊0)([E̊κ][n](t) + [E̊κ][n−1](t) + [E̊κ][n−2](t)).

The boundary conditions of these good unknowns on the interface Σ are

[Q][n] := σT γ
(
H(ψ[n]) −H(ψ[n−1])

)
− κ(1 − ∆)2T γ[ψ][n] − κ(1 − ∆)∂tT

γ[ψ][n]

− T γψ[n]
�
∂3[q][n]

�
− T γ[ψ][n−1]

�
∂3q[n]

�
(4.83)

[V][n] · N[n] := T γ∂t[ψ][n] + [v̄][n] · ∇T γψ[n] + (v̄[n] · ∇)T γ[ψ][n−1] + T γv̄[n] · ∇[ψ][n−1] − [W][n] (4.84)

[W][n] := (∂3[v][n] · N[n])T γψ[n] + (∂3v[n] · N[n])T γ[ψ][n−1] +
[
T γ,N[n]

i , v[n+1]
i

]
−

[
T γ,N[n−1]

i , v[n]
i

]
(4.85)

Given 0 ≤ l ≤ 3, following Section 4.3.2, we can similarly prove that∑
±

d
dt

1
2

∫
Ω±
ε2lρ[n]|[V][n],±|2 + |[B][n],±|2 + (F ±p )[n],±([Q][n],± − [B][n],± · b[n],±)2 dV[n]

t

= [ ST][n] + [ ST′][n] + [ VS][n] + [ RT][n] +
∑
±

[ RT][n],± + ([ZB][n],± + [Z][n],±) (4.86)

+ C(K̊0)([E̊κ][n](t) + [E̊κ][n−1](t) + [E̊κ][n−2](t))

where the term [E̊κ][n−1] + [E̊κ][n−2] is produced from the estimates of [ϕ][n−1], [ϕ][n−2]. The above terms on
the right side are defined by

[ ST][n] := ε4l
∫

Σ

T γ
�
[q][n]

�
∂tT

γ[ψ][n] dx′, (4.87)

[ ST′][n] := ε4l
∫

Σ

T γ
�
[q][n]

�
([v̄+][n] · ∇)T γψ[n] dx′ + ε4l

∫
Σ

T γ
�
[q][n]

�
(v̄[n],+ · ∇)T γ[ψ][n−1] dx′, (4.88)

[ VS][n] := ε4l
∫

Σ

T γ[q][n],− (~v̄�[n] · ∇)T γψ[n] dx′ + ε4l
∫

Σ

T γ[q][n],−
(�

v̄[n]
�
· ∇

)
T γ[ψ][n−1] dx′, (4.89)

[ RT][n] := − ε4l
∫

Σ

(�
∂3[q][n]

�
T γψ[n] + T γ[ψ][n−1]

�
∂3q[n]

�)
∂tT

γψ dx′, (4.90)

[ RT][n],± := ∓ ε4l
∫

Σ

(
∂3[q][n],± T γψ[n] + T γ[ψ][n−1]∂3q[n],±

) (
(v̄± · ∇)T γψ̊ + (v̄[n],± · ∇)T γ[ψ][n−1]

)
dx′,

(4.91)

[ZB][n],± := ∓ ε4l
∫

Σ

[Q][n],±[W][n],± dx′, [Z][n],± = −

∫
Ω±
ε4l[Q][n],±(C[n]

i (v[n+1],±
i ) − C[n−1]

i (v[n],±
i )) dV[n]

t .

(4.92)
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Step 3: Boundary regularity of [ψ]

The analysis of the boundary integrals is still similar to Section 4.3.3. Since ω(x3) = 0 on Σ, we can rewrite
∂k

tT
α to be ∂k

t ∂
3+l−k for 0 ≤ k ≤ 3 + l, 0 ≤ l ≤ 3. Then the term [ ST][n] gives the regularity of [ψ][n] after

inserting the jump condition for [q][n]∫ t

0
[ ST][n] dτ . −

∣∣∣√κε2l∂k
t [ψ][n]

∣∣∣2
5+l−k

∣∣∣∣∣t
0
−

∫ t

0

∣∣∣√κε2l∂k+1
t [ψ][n]

∣∣∣2
4+l−k +

σ

κ
C(K̊0)

∫ t

0
[E̊κ][n](τ) + [E̊κ][n−1](τ) dτ.

(4.93)

The term [ ST′][n] can be controlled by inserting the jump condition for [q][n] and then integrating by parts

∇·, 1 − ∆,
√

1 − ∆ in the three terms in [q][n] respectively. This is essentially the same as shown in Section
4.3.3, so we only list the result∫ t

0
[ ST][n] dτ . σC(K̊0, κ

−1)t + C(K̊0)
∫ t

0
[E̊κ][n](τ) + [E̊κ][n−1](τ) dτ (4.94)

The terms [ RT][n], [ RT][n],± are also controlled directly with the help of κ-weighted enhanced regularity. The
term [ VS][n] is also controlled directly by integrating by parts for one tangential derivative in ∂k

t ∂
3+l−k as

in Section 4.3.3. Finally, for the term ([ZB][n],± + [Z][n],±), we still have the previously-used cancellation
structure

[ZB][n],± + [Z][n],± L
= ∓

∫
Σ

ε4l[Q][n],±
[
∂k

t ∂
3+l−k,N[n]

i , v[n],±
i

]
dx′ −

∫
Ω±
ε4l[Q]±C[n]

i (v[n],±
i ) dV[n]

t

±

∫
Σ

ε4l[Q][n],±
[
∂k

t ∂
3+l−k,N[n−1]

i , v[n+1],±
i

]
dx′ +

∫
Ω±
ε4l[Q][n],±

C
[n−1]
i (v[n],±

i ) dV[n]
t

(4.95)

where the omitted terms are controlled in the same way as [ VS][n]. Mimicing the proof in step 4 in Section
3.4, we have

∓

∫
Σ

ε4l[Q][n],±
[
∂k

t ∂
3+l−k,N[n]

i , v[n],±
i

]
dx′ −

∫
Ω±
ε4l[Q]±C[n]

i (v[n],±
i ) dV[n]

t

L
=

∫
Ω±
ε4l∂

ϕ[n]

3 [Q][n],±
[
∂k

t ∂
3+l−k,N[n]

i , v[n+1],±
i

]
dV̊t, (4.96)

whose time integral can be directly controlled by

δ[E̊κ][n](t) + C(K̊0, κ
−1)

∫ t

0
[E̊κ][n](τ) + [E̊κ][n−1](τ) dτ

after integrating by parts for one tangential derivative in ∂k
t ∂

3+l−k. Similar estimate applies to the second line
of [ZB][n],± + [Z][n],±:∫ t

0

(
±

∫
Σ

ε4l[Q][n],±
[
∂k

t ∂
3+l−k,N[n−1]

i , v[n+1],±
i

]
dx′ +

∫
Ω±
ε4l[Q][n],±

C
[n−1]
i (v[n],±

i ) dV[n]
t

)
dτ

. δ[E̊κ][n](t) + C(K̊0, κ
−1)

∫ t

0
[E̊κ][n](τ) + [E̊κ][n−1](τ) + [E̊κ][n−2](τ) dτ

Step 4: Convergence

Summarizing the above estimates and using [E̊κ][n](0) = 0, we obtain the energy inequality

[E̊κ][n](t) . δ[E̊κ][n](t) + C(K̊0, κ
−1)

∫ t

0
[E̊κ][n](τ) + [E̊κ][n−1](τ) + [E̊κ][n−2](τ) dτ.

71



Choosing 0 < δ � 1 suitably small, the δ-term can be absorbed by the left side. Thus, there exists a time
T ′κ > 0 depending on κ, K̊0 and independent of n, such that

sup
0≤t≤T ′κ

[E̊κ][n](t) ≤
1
4

 sup
0≤t≤T ′κ

[E̊κ][n−1](t) + sup
0≤t≤T ′κ

[E̊κ][n−2](t)
 , (4.97)

and thus we know by induction that

sup
0≤t≤T ′κ

[E̊κ][n](t) ≤ C(K̊0, κ
−1)/2n−1 → 0 as n→ +∞. (4.98)

Hence, for any fixed κ > 0, the sequence of approximate solutions {(v[n],±, b[n],±, b[n],±, q[n],±, ψ[n])}n∈N∗ has a
strongly convergent subsequence. We write the limit function to be {(v[∞],±, b[∞],±, b[∞],±q[∞],±, ψ[∞])}n∈N∗ to
keep consistent with the notations in Section 4.4.1.

4.4.3 Well-posedness of the nonlinear approximate problem for each fixed κ

According to the argument about the limiting process in Section 4.4.1, we know the limit of b[n],± coincides
with the limit of b[n],±. Thus, the limit functions {(v[∞],±, b[∞],±, q[∞],±, ψ[∞])}n∈N∗ introduced in Section 4.4.1
exactly give the solution to the nonlinear κ-problem (3.1) in the time interval [0,T ′κ] for each fixed κ > 0. The
uniqueness follows from a parallel argument.

5 Well-posedness of current-vortex sheets with surface tension
We are ready to prove the local well-posedness of the original system (1.33) for 3D compressible current-
vortex sheets with fixed surface tension coefficient σ > 0. Recall that we introduce the nonlinear approximate
system (3.1) indexed by κ > 0. In Section 4, we use Galerkin approximation and Picard iteration to prove
the well-posedness of (3.1) for each fixed κ > 0. The lifespan for (3.1) may rely on κ > 0. Then we prove
the uniform-in-κ estimates for (3.1) without loss of regularity so that we can extend the solution of (3.1) to
a κ-independent lifespan [0,T ]. In Appendix D, we construct the initial data of (3.1) that converges to the
given initial data of (1.33) as κ → 0. Thus, by taking κ → 0, we obtain the local existence of the original
system (1.33) and the energy estimates for E(t) defined in (1.36) without loss of regularity.

It remains to prove the uniqueness. Namely, we assume (v[1],±, b[1],±, q[1],±, ψ[1]) and (v[2],±, b[2],±, q[2],±, ψ[2])
are two solutions to (1.33) with the same initial data. Define [ f ] := f [1] − f [2], and we need to prove
([v]±, [b]±, [q]±, [ψ]) are identically zero. In fact, the argument for uniqueness is quite similar to the analysis
in Section 4.4.2. The only difference is that the boundary regularity is now given by the surface tension
instead of the κ-regularization terms. This has been studied in the previous paper [55, Section 6] by Luo and
the author, so we refer to [55, Section 6] and omit the details here.

6 Incompressible and zero-surface-tension limits
This section is devoted to the justification of incompressible limit and zero-surface-tension limit under certain
stability conditions, that is the limiting behavior of the local-in-time solution of (1.33) as ε → 0 and σ → 0.
Given σ ≥ 0, we introduce the equations of (ξσ,w±,σ, h±,σ) incompressible current-vortex sheets together
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with a transport equation of entropy Sσ

R±,σ(∂t + w±,σ · ∇Ξσ

)w±,σ − (h±,σ · ∇Ξσ

)h±,σ + ∇Ξσ

Π±,σ = 0 in [0,T ] ×Ω±,

∇Ξσ

· w±,σ = 0 in [0,T ] ×Ω±,

(∂t + w±,σ · ∇Ξσ

)h±,σ = (h±,σ · ∇Ξσ

)w±,σ in [0,T ] ×Ω±,

∇Ξσ

· h±,σ = 0 in [0,T ] ×Ω±,

(∂t + w±,σ · ∇Ξσ

)S±,σ = 0 in [0,T ] ×Ω±,

~Πσ� = σ∇ ·

(
∇ξσ

√
1+|∇ξσ |2

)
on [0,T ] × Σ,

∂tξ
σ = w±,σ · Nσ on [0,T ] × Σ,

h±,σ · Nσ = 0 on [0,T ] × Σ,

(w±,σ, h±,σ,S±,σ, ξσ)|t=0 = (w±,σ0 , h±,σ0 ,S±,σ0 , ξσ0 ),

(6.1)

where Ξσ(t, x) = x3 + χ(x3)ξσ(t, x′) to be the extension of ξσ in Ω and Nσ := (−∂1ξ
σ,−∂2ξ

σ, 1)>. The
quantity Π± := Π̄± + 1

2 |h
±|2 represent the total pressure for the incompressible equations with Π̄± the fluid

pressure functions. The quantity R± satisfies the evolution equation (∂t + w± · ∇ϕ)R± = 0 with initial data
R±0 := ρ±(0,S±0 ).

Denote (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ) to be the solution of (1.33) (indexed by σ and ε) with initial
data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ). We want to show the convergence from the solutions to (1.33) to the
solution to (6.1) as ε → 0 provided the convergence of initial datum. Furthermore, we want to consider the
limit process as both ε and σ→ 0 under certain stability conditions in order for a comprehensive study about
the local-in-time solutions of current-vortex sheets.

6.1 Incompressible limit for fixed σ > 0

We now consider the incompressible limit problem for fixed surface tension coefficient σ > 0. We assume

1. (Surface tension is not neglected) σ > 0.
2. (Constraints for compressible initial data) The sequence of initial datum (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) ∈

H9.5(Σ)× (H8
∗ (Ω

±))4 of (1.33) satisfy the constraints ∇ϕ · b±,ε,σ0 = 0 in Ω±, b±,ε,σ ·Nσ|t=0 = 0 on Σ∪Σ±,
the compatibility conditions (1.34) up to 7-th order, |ψε,σ0 | ≤ 1 and | ~v̄0� | > 0.

3. (Convergence of initial data) (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 )→ (ξσ0 ,w
±,σ
0 , h±,σ0 ,R±,σ0 ,S±,σ0 ) in H5.5(Σ)×

(H4(Ω±))4.
4. (Constraints for incompressible initial data) The incompressible data (ξσ0 ,w

±,σ
0 , h±,σ0 ,R±,σ0 ,S±,σ0 ) ∈

H5(Σ) × (H4(Ω±))4 satisfies the constraints ∇ξ
σ
0 · h±0 = 0 in Ω±, h±,σ · Nσ|t=0 = 0 on Σ ∪ Σ±, |ξε,σ0 | ≤ 2

and ~w̄0� > 0.

Under these assumptions, we can prove that there exists a time Tσ > 0 that depends on σ and initial data and
is independent of Mach number ε, such that the corresponding solutions to (1.33) converge to the solution to
(6.1) as the Mach number ε→ 0

(ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ)→ (ξσ,w±,σ, h±,σ,R±,σ,S±,σ)

strongly in C([0,Tσ]; H5.5−δ
loc (Σ) × (H4−δ

loc (Ω±))4), and weakly-* in L∞([0,Tσ]; H5.5(Σ) × (H4(Ω±))4).

In fact, according to estimates obtained in Theorem 1.1, we already have the uniform-in-ε boundedness for
ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ as well as their first-order time derivatives. Thus, using Aubin-Lions compactness
lemma, the above convergence is a straightforward result of uniform-in-ε estimates. Theorem 1.2 is proven.

6.2 Double limits in 3D: non-collinearity condition
We want to further study the limit process as both σ, ε→ 0. The difficulty in taking the zero-surface-tension
limit is that we need to seek for the control of ψ (and its time derivatives) without σ-weight to avoid the
dependence on 1/σ. Let us first recall what quantities in the estimates of E(t) depend on 1/σ.

a. All the commutators C( f ),D( f ) and the modification terms T γϕ∂
ϕ
3 f in the Alinhac good unknowns;
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b. The commutators between ∇ϕ· (or ∇ϕ×) and ∂k
tT

α in the div-curl analysis (Note that this commutator
appears without time integral!);

c. The boundary terms RT, RT±;
d. The cancellation structure ZB± + Z±;
e. The most difficult boundary integral VS.

Recall that, when controlling E4+l(t) (0 ≤ l ≤ 4), we analyze the ε2l-weighted ∂4−k−l∂k
tT

α-differentiated
tangential estimates for 0 ≤ k ≤ 4 − l, 〈α〉 = 2l, α3 = 0 and ∂3−k−l∂k

tT
α-differentiated divergence equations

and vorticity equations for 0 ≤ k ≤ 3 − l, 〈α〉 = 2l, α3 = 0. To get rid of the dependence on 1/σ, the above
quantities (a)-(e) should be controlled in the following way

• Quantities (a), (d) can be controlled if we have the estimates of |ε2l∂k
tT

αψ|4−k−l (under time integral)
for 0 ≤ k ≤ 4 − l, 〈α〉 = 2l, α3 = 0;
• Quantity (c) can be controlled if we have the estimates of |ε2l∂k

tT
αψ|4.5−k−l (under time integral) for

0 ≤ k ≤ 4 − l, k + l ≥ 1, 〈α〉 = 2l, α3 = 0;
• Quantity (b) can be controlled if we have the estimates of |ε2l∂k

tT
αψ|4−k−l (NOT under time integral)

for 0 ≤ k ≤ 4 − l, 〈α〉 = 2l, α3 = 0;
• Quantity (e) must be completely eliminated.

It is easy to see that merely invoking the kinematic boundary condition and using trace lemma does not
solve any issue apart from the first bullet above. In order to seek for σ-independent estimates for ψ and its
time derivatives, we require the stability condition (1.40) when the space dimension is 3, that is, for some
δ0 ∈ (0, 1

8 ),

0 < δ0 ≤ a±
∣∣∣b̄∓ × ~v̄�∣∣∣ ≤ (1 − δ0)

∣∣∣b̄+ × b̄−
∣∣∣ on [0,T ] × Σ, (6.2)

where we view b̄± = (b±1 , b
±
2 , 0)>, ~v̄� = (~v1� , ~v2� , 0)> as vectors lying on the plane T2 × {x3 = 0} ⊂ R3 to

define the exterior product. The quantity a± is defined by

a± :=

√√
ρ±

1 +

(
c±A
c±s

)2
and c±A := |b±|/

√
ρ± represents the Alfvén speed, c±s :=

√
∂p±/∂ρ± represents the sound speed. This condition

implies the following two important features:

1. Magnetics fields are not collinear on Σ, which allows us to gain 1/2-order regularity of the free interface.
2. Quantitative relations between b± and ~v̄� on Σ are given, which allows us to completely eliminate the

problematic term VS.

We define the following energy functional Ẽ(t) for the compressible current-vortex sheet system (1.33) in
order to prove uniform-in-(ε, σ) estimates.

Ẽ(t) :=
4∑

l=0

Ẽ4+l(t), Ẽ4+l(t) := E4+l(t) +

4+l∑
k=0

∣∣∣ε2l∂k
tψ

∣∣∣2
4.5+l−k , (6.3)

where term added to E4+l(t) is exactly the enhanced regularity for the free interface contributed by the non-
collinearity stability condition (6.2).

6.2.1 Enhanced regularity of the interface: non-collinearity of magnetic fields

Recall that the magnetic fields satisfy the constraint b± · N = 0 on Σ, that is, b±3 = b±1∂1ψ + b±2∂2ψ. So, we
can solve ∂ψ in terms of b± without any derivatives thanks to b̄+ × b̄− , 0. However, due to the anisotropy
of the function spaces, we have to take derivatives on the constraint before we use trace lemma. We have the
following estimates for the interface function ψ.

Lemma 6.1. For s ≥ 3, one has

|∂ψ|2
s− 1

2
≤ P(‖b±‖s−1,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )

(
‖∂3〈∂〉

s−2b±‖0,±‖〈∂〉sb±‖0,± + |∂ψ|2s−1 + ‖〈∂〉sb±‖20,±
)

(6.4)
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Proof. Taking ∂s− 1
2 in the constraint b± · N = 0 for s ≥ 3, we get

 b+
1∂1〈∂〉

s− 1
2ψ + b+

2∂2〈∂〉
s− 1

2ψ = f +
b

b−1∂1〈∂〉
s− 1

2ψ + b−2∂2〈∂〉
s− 1

2ψ = f −b

b+∦b−
=====⇒


∂1〈∂〉

s− 1
2ψ =

−b+
2 f −b + b−2 f +

b

b+
1 b−2 − b−1 b+

2

∂2〈∂〉
s− 1

2ψ =
b+

1 f −b − b−1 f +
b

b+
1 b−2 − b−1 b+

2

with f ±b := 〈∂〉
1
2 (〈∂〉s−1b± · N) + 〈∂〉

1
2 ([〈∂〉s−1, b±,N]) + [〈∂〉

1
2 , b±·]〈∂〉s−1N. The L2(Σ) norms of the last two

terms in f ±b can be directly controlled via Kato-Ponce type inequality (Lemma B.6)∣∣∣∣[〈∂〉s−1, b±,N]
∣∣∣∣ 1

2

. |b±|s− 3
2
|∂ψ|W1,∞ + |b±|W1,∞ |∂ψ|s− 3

2
. ‖∂3〈∂〉

s−2b±‖
1
2
0,±‖〈∂〉

s−1b±‖
1
2
0,±|∂ψ|W1,∞ + ‖b±‖3,±|∂ψ|s− 3

2∣∣∣∣[〈∂〉 1
2 , b±·]〈∂〉s−1N

∣∣∣∣
0
. |〈∂〉

1
2 b±|L∞ |∂ψ|s−1 . ‖b±‖2.5,±|∂ψ|s−1

Then the regularity of the free interface is given by b±

|∂ψ|s− 1
2
≤ P(|b̄±|L∞ )| f ±b |0 ≤ P(‖b±‖3,±, |∂ψ|W1,∞ )

(
‖b±‖

1
2
Hs
∗(Ω±)‖b

±‖
1
2

Hs−1
∗ (Ω±)

+ |∂ψ|s−1 +
∣∣∣∣〈∂〉 1

2

(
∂s−1b± · N

)∣∣∣∣
0

)
.

To control the boundary norm of 〈∂〉s−
1
2 b± ·N, we again convert it to an interior integral and use the divergence

constraint 0 = ∇ϕ · b± = ∇ · b̄± + ∂
ϕ
3b± · N in Ω±.∣∣∣∣〈∂〉 1

2

(
〈∂〉s−1b± · N

)∣∣∣∣2
0

= ∓ 2
∫

Ω±
〈∂〉

1
2 ∂3

(
〈∂〉s−1b± · N

)
〈∂〉

1
2

(
〈∂〉s−1b± · N

)
dx

〈∂〉
1
2

== ∓ 2
∫

Ω±
∂3

(
〈∂〉s−1b± · N

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

= ∓ 2
∫

Ω±
〈∂〉s−1(∂3b± · N) 〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

∓ 2
∫

Ω±

(
〈∂〉s−1b± · ∂3N −

[
〈∂〉s−1,N·

]
∂3b±

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

= ± 2
∫

Ω±
〈∂〉s−1

(
∂3ϕ(∇ · b̄±)

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

∓ 2
∫

Ω±

(
〈∂〉s−1b± · ∂3N −

[
〈∂〉s−1,N·

]
∂3b±

)
〈∂〉

(
〈∂〉s−

1
2 b± · N

)
dx

. P(|∂ψ|W1,∞ )
(
‖〈∂〉sb±‖0,± + ‖〈∂〉s−1b±‖0,± + ‖〈∂〉s−2∂3b±‖0,±

)
‖〈∂〉sb±‖0,±.

�

Lemma 6.1 shows that the Hs+ 1
2 (Σ) norm of the free interface ψ can be converted to lower-order terms and

Hs
∗(Ω

±) norms of b±. Thus, the “non-collinearity” of b+ and b− on Σ brings the gain of 1/2-order regularity
for the interface. Given l ∈ {0, 1, 2, 3, 4}, the definition of E4+l(t) suggests that ε2l〈∂〉2lb± ∈ H4−l(Ω±), thus
letting s = 4 + l in Lemma 6.1, we can get∣∣∣∣ε2l∂ψ

∣∣∣∣2
3.5+l
≤ P(‖b±‖3,±, |∂ψ|W1,∞ )

(
‖ε2lb±‖H4+l

∗ (Ω±)‖ε
2lb±‖H3+l

∗ (Ω±) + |ε2l∂ψ|23+l + ‖ε2lb±‖2H4+l
∗ (Ω±)

)
.

Similarly, we can show the enhanced regularity for the time derivatives of ψ after replacing 〈∂〉s−
1
2 by

〈∂〉s−k− 1
2 ∂k

t

Lemma 6.2. For 3 ≤ s ∈ N∗ and 1 ≤ k ≤ s − 1, k ∈ N∗, one has

|∂∂k
tψ|

2
s−k− 1

2
≤ P

(
‖b±‖s−1,∗,±, |∇ψ|W1,∞

)( k−1∑
j=1

|∂
j
t ∂ψ|

2
s− j− 3

2
+ |∂s−k∂k

tψ|
2
0

+ ‖〈∂〉s−k∂k
t b±‖0,±‖∂3〈∂〉

s−k−2∂k
t b±‖0,± + ‖〈∂〉s−k∂k

t b±‖20,±
)
, (6.5)
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where the number of time derivatives in ‖b±‖s,∗,± appearing on the right side does not exceed k. The term
∂3〈∂〉

s−k−2∂k
t b± does not appear when s − k = 1.

In the study of E4+l(t) for 0 ≤ l ≤ 4, we have ε2l∂k
tT

αb ∈ L2(Ω±) for 0 ≤ k ≤ l, 〈α〉 = 2l, α3 = 0. It
should also be noted that there is no loss of Mach number in the estimates of ∂k

tψ because the number of time
derivatives appearing on the right side of (6.5) does not exceed that on the left side. Thus, the above estimates
directly help us to control the quantities mentioned in (a), (c), (d).

Apart from the term VS in (e), we still need to control the commutators mentioned in (d), namely∥∥∥ε2l[∂k
tT

α,∇ϕ·] f
∥∥∥2

3−k−l and
∥∥∥ε2l[∂k

tT
α,∇ϕ×] f

∥∥∥2
3−k−l for f = v, b and 0 ≤ l ≤ 4, k + l ≥ 1, 〈α〉 = 2l, α3 = 0,

in which the highest order terms have the form ε2l(∂3ϕ)−1(∂∂k
tT

αϕ)(∂3 f ) whose estimate requires the bound
for |ε2l∂∂k

tT
αψ|23−k−l. We can also assume α4 = 0 because ϕ has C∞-regularity in x3-direction. Such terms

appear without time integral, so we have control them by P(Ẽ(0)) + P(Ẽ(t))
∫ t

0 P(Ẽ(τ)) dτ. Letting s = 3.5 + l
in Lemma 6.1 for 0 ≤ l ≤ 4, using interpolation and Young’s inequality, we get

|∂ψ|23+l ≤ P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )
(
‖∂3〈∂〉

1.5+lb±‖0,±‖〈∂〉3.5+lb±‖0,± + |∂ψ|22.5+l + ‖〈∂〉3.5+lb±‖20,±
)

. P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ )(
‖∂3〈∂〉

1+lb±‖
1
2
0,±‖∂3〈∂〉

2+lb±‖
1
2
0,±‖〈∂〉

3+lb±‖
1
2
0,±‖〈∂〉

4+lb±‖
1
2
0,± + |∂ψ|22.5+l + ‖〈∂〉3+lb±‖0,±‖〈∂〉4+lb±‖0,±

)
. δ

(
‖∂3〈∂〉

2+lb±‖20,± + ‖〈∂〉4+lb±‖20,±
)

+ P(‖b±‖2+l,∗,±, ‖b±‖3,±, |∂ψ|W1,∞ , δ−1)
(
‖〈∂〉3+lb±‖20,± + ‖〈∂〉3+lb±‖0,± + |∂ψ|22.5+l

)
. δ‖b±‖24+l,∗,± + P(‖b±0 ‖3+l,∗,±, |∂ψ0|2.5+l) +

∫ t

0
P

(
‖∂tb±(τ)‖3+l,∗,±, |∂t∂ψ(τ)|2.5+l

)
dτ.

Similarly, we can show that for 0 ≤ l ≤ 4, k + l ≥ 1, 〈α〉 = α0 + α1 + α2 = 2l (α3 = α4 = 0)

∣∣∣∣∂∂k
tT

αψ
∣∣∣∣2
3−k−l

=
∣∣∣∣∂1+2l−α0∂k+α0

t ψ
∣∣∣∣2
3−k−l
. δ‖b±‖24+l,∗,± +

k∑
j=0

P
(
‖b±‖3+l,∗,±, |∂∂

j+α0
t ψ|2.5+l− j−α0

) ∣∣∣
t=0

+

∫ t

0
P

(
‖∂tb±(τ)‖3+l,∗,±, |∂∂

j+α0+1
t ψ(τ)|2.5+l− j−α0

)
dτ.

Since there is no loss of weights of Mach number when applying Lemma 6.1-Lemma 6.2 to the esti-
mates of compressible current-vortex sheet system (1.33), we can conclude the enhanced regularity, which is
uniform in (ε, σ), of the free interface by the following proposition.

Proposition 6.3. For l ∈ {0, 1, 2, 3, 4} and k ≤ 4 + l, k ∈ N, we have

1. When 0 ≤ k ≤ 3 + l:

∣∣∣∣ε2l∂∂k
tψ(t)

∣∣∣∣2
3.5+l−k

≤ P

(l−1)+∑
j=0

Ẽ4+ j(0)

 + P

(l−1)+∑
j=0

Ẽ4+ j(t)


∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ +
∥∥∥b±(t)

∥∥∥2
4+l,∗,±

 .
(6.6)

2. When k = 4 + l:∣∣∣ε2l∂4+l
t ψ(t)

∣∣∣2
0.5 ≤ P(|∇ψ|W1,∞ )

(∥∥∥∥ε2l〈∂〉∂3+l
t v±

∥∥∥∥2

0,±
+

∥∥∥∥ε2l+2〈∂〉∂3+l
t Dϕ±

t p±
∥∥∥∥2

0,±

)
+ |v̄|L∞

∣∣∣∣ε2l∂∂3+l
t ψ(t)

∣∣∣∣
0.5

+ P

(l−1)+∑
j=0

Ẽ4+ j(0)

 +

∫ t

0
P

 l∑
j=0

Ẽ4+ j(τ)

 dτ. (6.7)

Proof. When k ≤ 3 + l, the inequality (6.6) is a direct consequence of Lemma 6.1 and Lemma 6.2. Indeed,
we just need to write the ψ term to be P(Ẽ(0)) + P(Ẽ(t))

∫ t
0 P(Ẽ(τ)) dτ. This can be done by applying again
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6.1 and Lemma 6.2 to the ψ term appearing on the right side of (6.4) and (6.5) by replacing s = 4 + l− k with
s = 3.5 + l − k. When k = 4 + l, we just differentiate the kinematic boundary condition ∂tψ = v± · N to get

∂4+l
t ψ = ∂3+l

t v± · N + v̄± · ∇∂3+l
t ψ + [∂3+l

t , v±·,N],

where the second term contributes to the second term on the right side of (6.7) and the last term contributes
to the second line of (6.7). For ∂3+l

t v± · N, we again use Gauss-Green formula to covert its boundary norm to
an interior integral and use ∂ϕ3v± · N = ∇ϕ · v± − ∇ · v̄± = −ε2Dϕ±

t p± − ∇ · v̄± to replace the normal derivative
by tangential derivative. �

6.2.2 Elimination of VS term: Friedrichs secondary symmetrization

With the new energy functional (6.3), quantities (a)-(d) mentioned at the beginning of Section 6.2 are all
controlled by P(Ẽ(0)) + P(Ẽ(t))

∫ t
0 P(Ẽ(τ)) dτ thanks to Proposition 6.3. The terms that appear without time

integral on the right side of (6.6) and (6.7) can also be converted to the form P(Ẽ(0)) + P(Ẽ(t))
∫ t

0 P(Ẽ(τ)) dτ
via div-curl analysis or tangential estimates. In other words, we have reached the following energy inequality
for Ẽ(t)

Ẽ(t) . δE(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ + VS, (6.8)

so it remains to control or eliminate the term VS arising from the estimates of E(t), such that we can close
the energy estimates for Ẽ(t) and also get rid of the dependence on 1/σ.

Motivation for Friedrichs secondary symmetrization

The regularity for the free interface needed in the control of VS is higher than the one we obtain in Proposition
6.3. So, we alternatively try to completely eliminate the term VS by utilizing the jump of tangential magnetic
field. Recall that the term VS is generated due to the discontinuity in tangential velocity

VS =

∫
Σ

T γq− (~v̄� · ∇)T γψ dx′,

in which we may try to insert a term
�
µb̄

�
into ~v̄� such that

�
v̄ − µ̄b̄

�
= 0 on Σ for some function µ̄±. Such

functions µ̄± do exist and are unique thanks to the non-collinearity b̄+ ∦ b̄− on Σ: ~v1� = µ̄+b+
1 − µ̄

−b−1
~v2� = µ̄+b+

2 − µ̄
−b−2

b+∦b−
=====⇒ µ̄± =

b∓1 ~v2� − b∓2 ~v1�

b+
1 b−2 − b−1 b+

2
=

(b̄∓ × ~v̄�)3

(b̄+ × b̄−)3
. (6.9)

Next, a natural question is how to produce such
�
µ̄b̄

�
-terms in the tangential estimates. Recall that

the discontinuity term (~v̄� · ∇)T γψ is produced by taking substraction bewteen the equations of Vγ,± · N
which originates from 1

2

∫
Ω±
ρ±|Vγ,±|2 dVt. That is, we need to replace the variable v± by v± − µ̄±b± in the

momentum equation in order to create the elimination
�
v̄ − µ̄b̄

�
= 0. However, such replacement in the

momentum equation will make the compressible ideal MHD system (1.33) no longer symmetric, which will
further lead to the failure of L2 energy conservation. Hence, we must re-symmetrize the hyperbolic system
after replacing v by v − µb for suitable function µ.

The technique we use is the so-called Friedrichs secondary symmetrization [30]. For compressible ideal
MHD system, the symmetrizer was explicitly calculated in Trakhinin [79]. Let µ(t, x) = µ̄(t, x′)η(x3) where
η(x3) ∈ C∞c (R) is a smooth, non-negative, even function satisfying η(0) = 1 and η(x3) = 0 when |x3| > δ1 for
some sufficiently small constant δ1 > 0. Inserting this η is to localise the function µ± near the interface Σ.
The new system takes the form

ρDϕ
t v − (b · ∇ϕ)b + ∇ϕ(p + 1

2 |b|
2) − µρ

(
Dϕ

t b − (b · ∇ϕ)v + b(∇ϕ · v)
)

= 0,
FpDϕ

t p + ∇ϕ · v + µFp

(
ρDϕ

t v · b + b · ∇ϕp
)

= 0
Dϕ

t b − (b · ∇ϕ)v + b(∇ϕ · v) − µ
(
ρDϕ

t v − (b · ∇ϕ)b + ∇ϕ(p + 1
2 |b|

2)
)

= 0,
(6.10)
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where these equations are obtained by

new momentum equation = momentum equation − µρ(evolution equation of b),
new continuity equation = continuity equation + µFp(momentum equation) · b,

new evolution equation of b = momentum equation − µ(momentum equation).

Note that in the second equation we use the fact that
(
∇ϕ(1/2|b|2) − (b · ∇ϕ)b

)
· b = (b × (∇ϕ × b)) · b = 0.

Now we need to re-consider the tangential estimates in order to avoid the appearance of the term VS. Given
a tangential derivative T γ (γ3 = 0), the T γ-differentiated current-vortex sheet system is reformulated in the
corresponding Alinhac good unknowns (V±,B±,P±,Q±,S±) as follows

ρ±Dϕ±
t V± − (b± · ∇ϕ)B± + ∇ϕQ± − µ±ρ±(Dϕ±

t B± − (b · ∇ϕ)V± + b±(∇ϕ · V±)) = R
±,µ
v − C(q±) + µ±ρ±b±Ci(v±i ),

(6.11)

F ±p Dϕ±
t P± + ∇ϕ · V± + µ±F ±p (ρ±Dϕ±

t V± · b± + b± · ∇ϕP±) = R
±,µ
p − Ci(v±i ) − µ±F ±p b± · C(q±),

(6.12)

Dϕ±
t B± − (b± · ∇ϕ)V± + b±(∇ϕ · V±) − µ(ρ±Dϕ±

t V± − (b± · ∇ϕ)B± + ∇ϕQ±) = R
±,µ
b − b±Ci(v±i ) + µ±C(q±)

(6.13)

Dϕ±
t S± = D(S ±), (6.14)

where Rµv ,R
µ
p,R

µ
b terms consist of the following commutators

R
±,µ
v := R±v − µ

±ρ±R±b + [T γ, µ±ρ±]
(
Dϕ±

t b± − (b± · ∇ϕ)v± + b±(∇ϕ · v±)
)

(6.15)

R
±,µ
p := R±p + µ±F ±p b± · R±v − [T γ, µ±F ±p ]

(
ρ±Dϕ±

t v± · b± − (b± · ∇ϕ)p±
)

(6.16)

R
±,µ
b := R±b − µ

±ρ±R±v + [T γ, µ±]
(
Dϕ±

t v± − (b± · ∇ϕ)b± + ∇ϕq±
)
, (6.17)

with R±v ,R
±
b ,R

±
b defined in (3.11)-(3.13). The boundary conditions on the interface Σ are

~Q� = σT γH(ψ) −
�
∂3q

�
T γψ on [0,T ] × Σ, (6.18)

V± · N = ∂tT
γψ + v̄± · ∇T γψ −W±

v on [0,T ] × Σ, (6.19)

b± · N = 0⇒ B± · N = b̄± · ∇T γψ −W±
b on [0,T ] × Σ, (6.20)

and the boundary termWγ,± is

W±
f := (∂3 f ± · N)T γψ + [T γ,Ni, f ±i ], f = v, b. (6.21)

Note that ω(x3)|Σ = 0, so all boundary conditions are vanishing when γ4 > 0.

Analysis in the interior

Recall that the term VS originates from the tangential estimates. After doing Friedrichs secondary symmtri-
sation, we shall consider the tangential estimates for the following functional

G±,µ(t) :=
1
2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±) dVt (6.22)

instead of the one used in Section 3

G±(t) :=
1
2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 dVt.

Using Reynolds’s transport theorem, we have

d
dt

G±,µ(t) =

∫
Ω±
ρ±Dϕ±

t V± · (V± − µ±B± + µ±F ±p P±b±) dVt +

∫
Ω±

Dϕ±
t B± · (B± − µ±ρ±V±) dVt

+

∫
Ω±
F ±p Dϕ±

t P±(P± + µ±ρ±b± · V±) dVt + R±1,µ

=: G±,µ1 + G±,µ2 + G±,µ3 + R±,µ1

(6.23)
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where

R±,µ1 :=
1
2

∫
Ω±

(∇ϕ · v±)
(
|B±|2 + (

√
F ±p P±)2

)
dVt +

∫
Ω±
µ±F ±p P±(Dϕ±

t (ρ±b±) · V±) dVt

−

∫
Ω±

Dϕ±
t µ

(
ρ±V± · B± + ρ±F ±p P±(b± · V±)

)
dVt. (6.24)

Invoking the evolution equations of good unknowns (3.11)-(3.13) (NOT (6.11)-(6.13)!), we get

G±,µ1 =

∫
Ω±

(b± · ∇ϕ)B± ·
(
V± − µ±B±

)
dVt −

∫
Ω±
∇ϕQ± ·

(
V± − µ±B±

)
dVt

+

∫
Ω±
F ±p µ

±(ρ±Dϕ±
t V± · b±)P± dVt −

∫
Ω±
C(q±) ·

(
V± − µ±B±

)
dVt +

∫
Ω±
R±v ·

(
V± − µ±B±

)
dVt

=: G±,µ11 + G±,µ12 + G±,µ13 + R±,µ2 + R±,µ3 . (6.25)

In G±,µ11 and G±,µ12 , we integrate by parts to get

G±,µ11 = −

∫
Ω±

B± · (b± · ∇ϕ)V± dVt −
1
2

∫
Ω±
∇ϕ · (µ±b±)|B±|2 dVt

=: G±,µ111 + R±,µ4 (6.26)

and use ∇ϕ · B± = −Ci(bi) to get

G±,µ12 = ±

∫
Σ

Q±(V± − µ±B±) · N dx′ +
∫

Ω±
Q±(∇ϕ · V±) dVt +

∫
Ω±
µ±Q± Ci(b±i ) dVt

=: G±,µ0 + G±,µ121 + G±,µ122. (6.27)

In G±,µ13 , we notice that

(−(b± · ∇ϕ)B± + ∇ϕB±j b±j ) · b± = −b±j (∂ϕj B
±
i )b±i + (∂ϕi B±j )b±j b±i = 0,

so it becomes the following controllable quantities by using symmetry

G±,µ13 = −

∫
Ω±
F ±p µ

±ρ±((b± · ∇ϕ)P±) P± dVt +

∫
Ω±
F ±p µ

±(R±v − C(q±)) · b±P± dVt

= −
1
2

∫
Ω±
∇ϕ · (F ±p µ

±ρ±b±)(P±)2 dVt +

∫
Ω±
F ±p µ

±(R±v − C(q±)) · b±P± dVt =: R±,µ5 + R±,µ6 . (6.28)

Note that the terms G±,µ111 and G±,µ122 already appear in the previous analysis for (1.33) (cf. Section 3), so we no
longer need to put extra effort on it. Next we analyze G±,µ2 ∼ G±,µ3 . Invoking (3.12) and (3.13), we get

G±,µ2 =

∫
Ω±

((b± · ∇ϕ)V±) · B± dVt︸                            ︷︷                            ︸
=−G±,µ111

−

∫
Ω±

b±(∇ϕ · V±) · B± dVt −

∫
Ω±

B± · b±Ci(vi) dVt

+

∫
Ω±
µ±ρ±V± · b±(∇ϕ · V±) dVt +

∫
Ω±
µ±ρ±V± · b±Ci(v±i ) dVt −

∫
Ω±
µ±ρ±(b± · ∇ϕ)V± · V± dVt

=: −G±,µ111 + G±,µ21 + G±,µ22 + G±,µ23 + R±,µ7 + R±,µ8 , (6.29)

and

G±,µ3 = −

∫
Ω±

(∇ϕ · V±)P± dVt −

∫
Ω±

P±Ci(v±i ) dVt −

∫
Ω±
ρ±µ±b±(∇ϕ · V±) · V± dVt︸                                     ︷︷                                     ︸

=−G±,µ23

+

∫
Ω±

P±R±p + µ±(R±p − Ci(v±i ))(ρ±b± · V±) dVt

=: G±,µ31 + G±,µ32 −G±,µ23 + R±,µ9 . (6.30)
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Now we can see a lot of cancellation structures among these interior integrals. First, using

Q± = P± + b± · B± + R±q , R±q =
∑

1≤〈γ′〉≤〈γ〉−1

T γb±j · T
γ−γ′b±j ,

we have

G±,µ121 + G±,µ21 + G±,µ31 =

∫
Ω±

(∇ϕ · V±)R±q dVt =: R±,µ10 , (6.31)

G±,µ122 + G±,µ22 + G±,µ32 = −

∫
Ω±

Q±(Ci(vi) − µCi(bi)) dVt +

∫
Ω±
R±q (Ci(vi) − µCi(bi)) dVt

=: Z±,µ + R±,µ11 . (6.32)

The terms R±,µj (1 ≤ j ≤ 11) can be directly controlled using the same method in Section 3, so we omit the
details. ∫ t

0

11∑
j=1

R±,µj ≤ δP(Ẽ(t)) + P(Ẽ(0)) +

∫ t

0
P(Ẽ(τ)) dτ, ∀δ ∈ (0, 1). (6.33)

Thus, it again remains to analyze the boundary integral G±,µ0 and the commutator term Z±,µ.

Elimination of the term VS

The boundary integral G±,µ0 can be decomposed as follows

G+,µ
0 + G−,µ0 =

∫
Σ

Q+(V+ − µ+B+) · N dx′ −
∫

Σ

Q−(V− − µ−B−) · N dx′

= STµ + STµ′ + VSµ + RTµ + RT±,µ + ZB±,µ (6.34)

where

STµ :=
∫

Σ

T γ �
q

�
∂tT

γψ dx′, (6.35)

STµ′ :=
∫

Σ

T γ �
q

� (
(v̄+ − µ̄+b̄+) · ∇

)
T γψ dx′, (6.36)

VSµ :=
∫

Σ

T γq−
(�

v̄ − µ̄b̄
�
· ∇

)
T γψ dx′, (6.37)

RTµ := −
∫

Σ

�
∂3q

�
T γψ∂tT

γψ dx′, (6.38)

RT±,µ := ∓
∫

Σ

∂3q± T γψ
(
(v̄± − µ̄±b̄±) · ∇

)
T γψ dx′, (6.39)

ZB±,µ := ∓
∫

Σ

Q±(W±
v − µ

±W±
b ) dx′ (6.40)

Among the terms (6.35)-(6.40), STµ, STµ′, RTµ, RT±,µ can be analyzed in the same way as in Section
3.3-Section 3.5, so we omit the details. Also, the control of these terms do not depend on 1/σ thanks to
the enhanced regularity of ψ obtained in Section 6.2.1. With the unique choice of µ± in (6.9), the quantity
v̄ − µb̄ has NO jump across the interface Σ and so VSµ = 0. Finally, there is a cancellation structure in
ZB±,µ + Z±,µ which is similar to the one observed in Section 3.3-Section 3.5. It suffices to replace v± (in
Section 3.3-Section 3.5) by v± − µ±b± and use ∇ϕ · b± = 0 in Ω± in order for the same result.
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The stability condition ensures the hyperbolicity

So far, we can prove the following estimates for G±,µ(t) in tangential estimates:∑
±

1
2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±) dVt +

σ

2

∫
Σ

|T γ∇ψ|2√
1 + |∇ψ|2

3 dx′

. δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ.

(6.41)
To replace the tangential estimates in Section 3.3-Section 3.5, we must guarantee the positive-definiteness

of

|
√
ρ±V±|2 + |B±|2 + F ±p (P±)2 − 2µ±ρ±V± · B± + 2µ±ρ±F ±p P±(b± · V±)

≥ |
√
ρ±V±|2 + |B±|2 + F ±p (P±)2 − 2

∣∣∣∣µ±√
ρ±

∣∣∣∣ ∣∣∣∣ √ρ±V±
∣∣∣∣ ∣∣∣B±∣∣∣ − 2

∣∣∣∣µ±√
ρ±

∣∣∣∣ c±A
c±s

∣∣∣∣∣ √F ±p P±
∣∣∣∣∣ ∣∣∣∣ √ρ±V±

∣∣∣∣
as a quadratic form of (

√
ρ±V±,B±,

√
F ±p P±) in Ω±, respectively. Here we use the fact that Fp = 1/(ρc2

s) and

cA := |b|/
√
ρ. This is equivalent to show that the following matrix only has strictly positive eigenvalues

1 −|µ±|
√
ρ± −|µ±|

√
ρ±

c±A
c±s

−|µ±|
√
ρ± 1 0

−|µ±|
√
ρ±

c±A
c±s

0 1

 ,
which is further converted to the following inequalities

(µ±)2ρ±
1 +

(
c±A
c±s

)2 < 1 in Ω± ⇒ |b̄+ × b̄−| > |b̄∓ × ~v̄� |

√√
ρ±

1 +

(
c±A
c±s

)2 on Σ.

Thus, we find that the stability condition (1.40), that is, for some δ0 ∈ (0, 1
8 ) there holds

(1 − δ0)|b̄+ × b̄−| ≥ |b̄∓ × ~v̄� |

√√
ρ±

1 +

(
c±A
c±s

)2 > 0 on Σ,

exactly ensures the positive-definiteness of G±,µ(t). Plugging this into the energy inequality (6.42), we find
that there exists some constant δ0 ∈ (0, 1

8 ), such that∑
±

δ0

2

∫
Ω±
ρ±|V±|2 + |B±|2 + F ±p (P±)2 dVt +

σ

2

∫
Σ

|T γ∇ψ|2√
1 + |∇ψ|2

3 dx′

. δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ, ∀δ ∈ (0, δ0/100).

(6.42)

6.2.3 Incompressible and zero-surface-tension-limits under the stability condition

Combining the tangential estimates (6.42), the enhanced regularity for ψ obtained in Section 6.2.1 and the
div-curl analysis in Section 3.6, we conclude the uniform-in-(ε, σ) estimates of Ẽ(t) by

∀δ ∈ (0,
δ0

100
), Ẽ(t) . δẼ(t) + P(Ẽ(0)) + P(Ẽ(t))

∫ t

0
P(Ẽ(τ)) dτ. (6.43)

Using Gronwall-type argument, we know there exists some T > 0 independent of (ε, σ) such that

sup
0≤t≤T

Ẽ(t) ≤ P(Ẽ(0)). (6.44)
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With the uniform-in-(ε, σ) estimates, we can pass the limit ε, σ → 0+ to the incompressible current-vortex
sheets problem without surface tension under the non-collinearity condition. Given ε, σ > 0, let (ψε,σ, v±,ε,σ, b±,ε,σ, ρ±,ε,σ, S ±,ε,σ)
be the solution to (1.33) with initial data (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , ρ±,ε,σ0 , S ±,ε,σ0 ) and let (ξ0,w±,0, h±,0,S±,0) be the
solution to (6.1) with σ = 0 with initial data (ξ0

0 ,w
±,0
0 , h±,00 ,S±,00 ). We assume

a. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 ) ∈ H9.5(Σ)×H8
∗ (Ω

±)×H8
∗ (Ω

±)×H8
∗ (Ω

±) satisfies the compatibility conditions
(1.34) up to 7-th order, the stability condition (1.42) and |ψε,σ0 |∞ ≤ 1.

b. (ψε,σ0 , v±,ε,σ0 , b±,ε,σ0 , S ±,ε,σ0 )→ (ξ0
0 ,w

±,0
0 , h±,00 ,S±,00 ) in H4.5(Σ)×H4(Ω±)×H4(Ω±)×H4(Ω±) as ε, σ→ 0.

c. The incompressible initial data satisfies the constraints ∇ξ0 · h±0 = 0 in Ω±, h± · N0|{t=0}×Σ = 0, the
stability condition

2δ0 ≤

√
R±0

∣∣∣h̄∓0 × [w̄0]
∣∣∣ ≤ (1 − 2δ0)|h̄+

0 × h̄−0 | on Σ, (6.45)

where δ0 > 0 is the same constant as in (1.42).

Then, by the Aubin-Lions compactness lemma, it holds that

(ψε,σ, v±,ε,σ, b±,ε,σ, S ±,ε,σ)→ (ξ0,w±,0, h±,0,S±,0), (6.46)

weakly-* in L∞([0,T ]; H4.5(Σ)× (H4(Ω±))3) and strongly in C([0,T ]; H4.5−δ
loc (Σ)× (H4−δ

loc (Ω±))3) after possibly
passing to a subsequence. Theorem 1.3 is proven.

6.3 Double limits in 2D: a subsonic zone
When the space dimension d = 2, the substantial part of the proof for well-posedness, uniform estimates and
limit process remains unchanged. In fact, we shall only re-consider the following aspects

• The curl operator now becomes ∇ϕ,⊥· := (−∂ϕ2 , ∂
ϕ
1)·, so we need to check the special structure given by

Lorentz force in the vorticity analysis .
• The interface is now a 1D curve instead of a 2D surface, thus it is impossible to have “non-parallel”

magnetic fields b± on Σ. The functions µ± are no longer uniquely determined by b±1 .

6.3.1 Modifications in vorticity analysis

In the case of 2D, the equations of vorticity ∇ϕ,⊥ · v and current density ∇ϕ,⊥ · b are

ρDϕ
t (∇ϕ,⊥ · v) − (b · ∇ϕ)(∇ϕ,⊥ · b) = − (∇ϕ,⊥ρ) · (Dϕ

t v) − ρ(∇ϕ,⊥v j) · (∇
ϕ
j v) + (∇ϕ,⊥b j) · (∇

ϕ
j b),

(6.47)

Dϕ
t (∇ϕ,⊥ · b) − (b · ∇ϕ)(∇ϕ,⊥ · v) − b · ∇ϕ,⊥(∇ϕ · v) = − (∇ϕ,⊥ · b)(∇ϕ · v) − (∇ϕ,⊥v j) · (∇

ϕ
j b) + (∇ϕ,⊥b j) · (∇

ϕ
j v),

(6.48)

which has the same structure as (3.143)-(3.144). Thus, we expect to adopt the strategy in Section 3.6 to prove
the div-curl estimates. The only slight difference is the structure of Lorentz force. Let us take the ∂3-estimate
of ∇ϕ,⊥ · (v, b) for an example. In this case, the problematic term (in the analogue of K±1 in (3.147)) becomes

K±1
′

=

∫
Ω±

(∂3∇ϕ,⊥ · b±)
(
b± · ∇ϕ,⊥(∂3∇ϕ · v±)

)
dVt.

Again, we invoke the continuity equation, commute ∇ϕ with Dϕ±
t to get

b± · ∇ϕ,⊥(∂3∇ϕ · v±) L
= ε2(b±1∂

3∂
ϕ
2 Dϕ±

t p± − b±2∂
3∂

ϕ
1 Dϕ±

t p±) L
= ε2(b±1∂

3Dϕ±
t (∂ϕ2 p±) − b±2∂

3Dϕ±
t (∂ϕ1 p±)).

Then we plug the momentum equation

−∂
ϕ
1 p = ρDϕ

t v1 − b1∂
ϕ
1b1 − b2∂

ϕ
2b1 + b1∂

ϕ
1b1 + b2∂

ϕ
1b2 = ρDϕ

t v1 + b2(∇ϕ,⊥ · b)
−∂

ϕ
2 p = ρDϕ

t v2 − b1∂
ϕ
1b2 − b2∂

ϕ
2b2 + b1∂

ϕ
2b1 + b2∂

ϕ
2b2 = ρDϕ

t v2 − b1(∇ϕ,⊥ · b)
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to get

b± · ∇ϕ,⊥(∂3∇ϕ · v±) L
= F ±p ρ

±(b±,⊥ · ∂3(Dϕ±
t )2v±) − F ±p

(
(b±1 )2 + (b±2 )2

)
∂3Dϕ±

t (∇ϕ,⊥ · b), b⊥ := (−b2, b1).

Thus, the term K±1
′ can be controlled in a similar manner as in Section 3.6

K±1
′ L

=

∫
Ω±

(∂3∇ϕ,⊥ · b±)
(
F ±p ρ

±b±,⊥ · ∂3(Dϕ±
t )2v±

)
dVt

−

∫
Ω±
F ±p |b

±|2(∂3∇ϕ,⊥ · b±) (Dϕ±
t ∂3∇ϕ,⊥ · b±) dVt

=

∫
Ω±

(∂3∇ϕ,⊥ · b±)
(
F ±p ρ

±b±,⊥ · ∂3(Dϕ±
t )2v±

)
dVt −

1
2

∫
Ω±

(∇ϕ · v±)F ±p
∣∣∣b±∣∣∣2 ∣∣∣∂3∇ϕ,⊥ · b±

∣∣∣2 dVt

−
1
2

d
dt

∫
Ω±
F ±p

∣∣∣b±∣∣∣2 ∣∣∣∂3∇ϕ,⊥ · b±
∣∣∣2 dVt.

Hence, the curl estimate (3.152) should be modified to be

1
2

d
dt

∫
Ω±
ρ±

∣∣∣∂3(∇ϕ,⊥ · v±)
∣∣∣2 + (1 + F ±p |b

±|2)
∣∣∣∂3(∇ϕ,⊥ · b±)

∣∣∣2 dVt . P(Ẽ4(t)) + Ẽ5(t). (6.49)

6.3.2 Different choice of µ± and stability condition

Since the non-collinearity of b± no longer holds, we need to re-consider the choice of µ̄± used in Fredriches
secondary symmetrization. We prove the following lemma, which is analogous to Morando-Trebeschi-
Secchi-Yuan [65, Lemma 5.1] for the constant rectilinear background solution of the linearized problem.

Lemma 6.4. There exist functions µ̄±(t, x1) satisfying

�
v1 − µ̄b1

�
= 0 and |µ̄±| < 1/a± on [0,T ] × Σ, a± :=

√
ρ±

(
1 + (c±A/c

±
s )2

)
if and only if the following inequality holds

| ~v1� | <
|b+

1 |

a+
+
|b−1 |
a−

on [0,T ] × Σ. (6.50)

Under (6.50), the functions µ̄± are chosen to be

µ̄± = ±
sgn(b±1 ) a∓ ~v1�

a−|b+
1 | + a+|b−1 |

. (6.51)

Proof. First, we shall exclude the possibility for b±1 = 0 at some point (x1, 0) ∈ Σ because of ~v1� , 0
everywhere on Σ.

Case 1: One of the two magnetic fields is vanishing on Σ, e.g., we assume |b+
1 | > 0 = |b−1 | on Σ, then�

v1 − µ̄b1
�

= 0 directly gives us µ̄+ = ~v1� /b+
1 and µ̄− can be any function satisfying the hyperbolicity

constraint |µ̄−| < 1/a−. For simplicity, we may choose µ̄− = 0. Solving the constraint |µ̄+| < 1/a+ gives
us | ~v1� | < |b+

1 |/a
+ as a special case of (6.50). Similarly, when |b−1 | > 0 = |b+

1 | on Σ, we can choose
µ̄− = − ~v1� /b−1 and µ̄+ can be any function satisfying the hyperbolicity constraint |µ̄+| < 1/a+ and we may
choose µ̄+ = 0 for simplicity.

Remark 6.1. One can verify that if b0 = 0 on Σ, then b must be identically zero on Σ. In fact, restricting the
equation of b onto Σ and doing L2 estimate shows that d

dt |b
±|20 ≤ C|∂v|L∞ |b±|20. Using Gronwall’s inequality

and b0|Σ = 0 yields the result.

Case 2: b±1 are not identically zero on Σ. In this case, we may assume |b±1 | > 0 on Σ as well. In fact, if b−1
vanishes at some point (x1, 0) ∈ Σ, then we can follow the choice of µ̄± as in case 1 to determine the function
µ̄± at this point. Note that the functions µ̄+ = ~v1� /b+

1 , µ̄
− = 0 still satisfies (6.51), so they do not break the
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continuity and differentiability of (6.51) at the points where one of b±1 vanishes. Thus, making the assumption
|b±1 | > 0 on Σ is reasonable.

The “if” part is easy to prove. Indeed, when the stability condition (6.50) holds on Σ, we can set µ̄± as in
(6.51). The direct computation shows that such µ̄± satisfy

�
v1 − µ̄b1

�
= 0 on Σ and |µ̄±| < 1/a±. Let us prove

the “only if” part. When |b±1 | > 0 on Σ, we can write

µ̄+ =
~v1� + µ̄−b−1

b+
1

.

Using |µ̄+| < 1/a+, we can solve the inequality by

−
1
a+
−
~v1�

b+
1

<
b−1
b+

1
µ̄− <

1
a+
−
~v1�

b+
1
,

where µ̄− should also satisfy |µ̄−| < 1/a−. Assume b±1 < 0 for simplicity (that is, the horizontal directions of
b± on Σ are the same). Combining these two requirements, we find that the following inequality is necessary

| ~v1� | < −
b+

1

a+
−

b−1
a−

=
|b+

1 |

a+
+
|b−1 |
a−

. (6.52)

Similar calculation for the case b±1 > 0 and the case b+
1 b−1 < 0 also leads to the same inequality as above. �

7 Improved incompressible limit for well-prepared initial data
In this final section, we aim to drop the redundant assumptions on the well-prepared initial data, namely
∂k

t v|t=0 = O(1) for 2 ≤ k ≤ 4, when taking the incompressible limit. Compared with the energy E(t) that we
use to prove the local existence, there is a new difficulty in the control of the “weaker” energy E(t): There
exhibits a loss of weight of Mach number in ∂3∂t-tangential estimates when analyzing E4(t). In particular, we
have to control the following quantity in the cancellation structure in Z± + ZB±,∫

Ω

(∂2∂3∂tvi)(∂Ni)(∂2∂3∂tq) dx,

in which ∂tq has to be uniformly bounded with respect to Mach number. However, now we only have
∇ϕ · v = O(ε) and ∂tq = O(1/ε), which leads to a loss of ε-weight. Besides, similar difficulty also appears
in the control of −

∫
Ω±

V± · C(q±) dVt. Indeed, such loss of ε-weight necessarily happens in ∂3∂t-tangential
estimates because of the following two reasons

1. ∂3∂tq needs one more ε-weight than ∂3∂tv;
2. The (extension of) normal vector N, which arises from the commutator [∂3∂t,Ni/∂3ϕ, ∂3 f ] in Ci( f ),

may NOT absorb a time derivative.

As we can see, this type of difficulty never appears in the fixed-domain setting because the commutator
terms C( f ) are contributed by the free-interface motion. To get rid of the loss of Mach number, we have to
find a new way to control vt, bt and also avoid the appearance of |

√
σ∇∂tψ|3 without ε-weight.

7.1 The weaker energy for the improved incompressible limit
As in (1.50)-(1.51), we consider the new energy functional

E(t) := E4(t) + E5(t) + E6(t) + E7(t) + E8(t)

Ẽ(t) := Ẽ4(t) + Ẽ5(t) + Ẽ6(t) + Ẽ7(t) + Ẽ8(t)

where

E4(t) =
∑
±

∥∥∥(v±, b±, S ±, p±)
∥∥∥2

4,± +
∣∣∣√σψ∣∣∣25 +

∥∥∥∥∂t(v±, b±, S ±, (F ±p )
1
2 p±)

∥∥∥∥2

3,±
+

∣∣∣√σ∂tψ
∣∣∣2
4

+

4∑
k=2

∥∥∥∥ε∂k
t (v±, b±, S ±, (F ±p )

(k−3)+
2 p±)

∥∥∥∥2

4−k,±
+

∣∣∣√σε∂k
tψ

∣∣∣2
5−k (7.1)
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and

Ẽ4(t) = E4(t) + |ψ|24.5 + |∂tψ|
2
3.5 +

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣ε∂3
t ψ

∣∣∣2
1.5 +

∣∣∣ε∂4
t ψ

∣∣∣2
0.5 . (7.2)

We aim to prove uniform-in-ε estimates for E(t) for each σ > 0 and prove uniform-in-(ε, σ) estimates for
Ẽ(t) under the stability condition (1.40) (replaced with (1.47) in the 2D case). Let us analyze the estimates
for different k in E4(t) and Ẽ4(t).

The case k = 0

When k = 0, the reduction of v, b is the same as in Section 3. That is, we use the div-curl analysis to convert
normal derivatives to tangential derivatives

‖(v±, b±)‖24,± ≤ C(|ψ|4, |∇ψ|W1,∞ )
(
‖v±, b±‖20,± +

∥∥∥∇ϕ · v±,∇ϕ × (v±, b±)
∥∥∥2

3,± +
∥∥∥∥∂4(v±, b±)

∥∥∥∥2

0,±

)
, (7.3)∥∥∥∇ϕ · v±∥∥∥2

3,± .
∥∥∥F ±p Dϕ±

t p±
∥∥∥2

3,±
,

∥∥∥∇ϕ × (v±, b±)
∥∥∥2

3,± . δE4(t) +

∫ t

0
P(E4(τ)) + E5(τ) dτ, (7.4)

‖∇q‖23,± .
∥∥∥ρDϕ±

t v±
∥∥∥2

3,± +
∥∥∥(b± · ∇ϕ)b±

∥∥∥2
3,± . (7.5)

The ∂4-control is proved in almost the same way as in Section 3.3.1 which gives the control of
∣∣∣∣√σ∇ψ∣∣∣∣2

4
. The

only difference is the treatment of RT defined in (3.33) because we need to avoid using
√
σ-weight enenrgy

when taking the limit σ→ 0. Using Kato-Ponce type porduct estimate (B.7) in Lemma B.6, we have

RT =

∫
Σ

�
∂3q

�
∂4ψ∂4ψt ≤

∣∣∣∣�∂3q
�
∂4ψ

∣∣∣∣ 1
2

|ψt |3.5 ≤ ‖q±‖3,±|ψ|4.5|ψt |3.5. (7.6)

So, we need to find (ε, σ)-independent control of |ψ|24.5 and |∂tψ|
2
3.5.

The case k = 1

When k = 1, we cannot use the above div-curl inequality because we must avoid ∂3∂t-estimate. Instead, we
use the div-curl inequality (B.2) to get

‖(∂tv±, ∂tb±)‖23,± ≤ C(|ψ|3.5, |∇ψ|W1,∞ )
(
‖∂tv±, ∂tb±‖20,± +

∥∥∥∇ϕ · (∂tv±, ∂tb±),∇ϕ × (∂tv±, ∂tb±)
∥∥∥2

2,±

+
∣∣∣∂tv± · N, ∂tb± · N

∣∣∣2
2.5

)
. (7.7)

The divergence part and the curl part are controlled in the same way as Section 3.6, so we do not repeat the
analysis here. The boundary normal trace for bt is easy to control. Using b± · N = 0, we have bt · N = b̄ · ∇ψt

and thus ∣∣∣∂tb± · N
∣∣∣2
2.5 =

∣∣∣∣b̄± · ∇ψt

∣∣∣∣2
2.5
. ‖b±‖23,±|ψt |

2
3.5. (7.8)

For the normal trace |∂tv± · N |
2
2.5, we invoke the kinematic boundary condition ∂tψ = v± · N to get∣∣∣∂tv± · N

∣∣∣2
2.5 ≤

∣∣∣∂2
t ψ

∣∣∣2
2.5 +

∣∣∣∣v̄± · ∇ψt

∣∣∣∣2
2.5
.

∣∣∣∂2
t ψ

∣∣∣2
2.5 + ‖v±‖23,±|ψt |

2
3.5. (7.9)

Since we avoid ∂3∂t-tangential estimates, we must seek for another way to find ε-independent estimates for∣∣∣∂2
t ψ

∣∣∣2
2.5 and

∣∣∣√σ∂tψ
∣∣∣2
4. Also, under the stability condition (1.40), we need to find (ε, σ)-independent control

of |ψ|24.5 , |∂tψ|
2
3.5 ,

∣∣∣∂2
t ψ

∣∣∣2
2.5 and

∣∣∣√σ∂tψ
∣∣∣2
4.

The case 2 ≤ k ≤ 4

When k = 2, 3, 4, the reduction stays the same as in Section 3. The reason is that ∂k
t q share the same weight

of Mach number as ∂k
t v which helps us avoid the loss of ε-weight in C(q).
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7.2 The evolution equation of the free interface and its paralinearization

To prove the uniform-in-ε estimates for E(t) and the uniform-in-(ε, σ) estimates for Ẽ(t) under the stabil-
ity condition (1.40), it remains to prove the ε-indenpedent control of |ψ|4.5, |ψt |3.5, |ψtt |2.5 and |

√
σψt |4 by

P(E(0)) + P(E(t))
∫ t

0 P(E(τ)) dτ and (ε, σ)-indenpedent control of them by P(Ẽ(0)) + P(Ẽ(t))
∫ t

0 P(Ẽ(τ)) dτ.
Since we already avoid ∂3∂t-tangential estimates, we shall further analyze the evolution equation of the free
interface.

7.2.1 Derivation of the equation

We take ∂t in the kinematic boundary condition to get ∂2
t ψ = ∂tv± · N − v̄± · ∇∂tψ. Plugging the momentum

equation of (1.33) into the term ∂tv± · N, we get

∂tv± · N = −
1
ρ±

N · ∇ϕq± − (v̄± · ∇)v± · N +
1
ρ±

(b̄± · ∇)b± · N on Σ.

Using ∂tψ = v± · N and b± · N = 0 on Σ, we have

−(v̄± · ∇)v± · N = − (v̄± · ∇)∂tψ + v± · (v̄± · ∇)N = −v̄±j ∂ j∂tψ − v̄±i v̄±j ∂i∂ jψ,

(b̄± · ∇)b± · N = b̄±i b̄±j ∂i∂ jψ,

and thus

∂2
t ψ = −

1
ρ±

N · ∇ϕq± +

(
1
ρ±

b̄±i b̄±j − v̄±i v̄±j

)
∂i∂ jψ − 2(v̄± · ∇)∂tψ. (7.10)

Next we want to separate the boundary value of q± from its interior contribution in order to create an energy
term involving the surface tension. First, taking ∇ϕ· in the momentum equation and invoking the continuity
equation in (1.33), we derive a wave-type equation

F ±p (Dϕ±
t )2 p± − ∆ϕq± = (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ),

which can be written as a wave equation of q± thanks to q± = p± + 1
2 |b
±|2

F ±p (Dϕ±
t )2q± − ∆ϕq± = ε2(Dϕ±

t )2
(

1
2
|b±|2

)
+ (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in [0,T ] ×Ω±, (7.11)

with a jump condition
�
q

�
= σH(ψ) on Σ and a Neumann-type boundary condition ∂3q± = 0 on Σ± (got by

restricting the momentum equations on Σ±), where we omit the terms in which Dϕ±
t falls on F ±p .

Definition 7.1. For a function f : Σ → R, we now define the Dirichlet-to-Neumann operator with respect to
(ψ,Ω±) by

N
±
ψ f := ∓N · ∇ϕ(E±ψ f ), (7.12)

where E±ψ f is defined to be the harmonic extension of f into Ω±, namely

− ∆ϕ(E±ψ f ) = 0 in Ω±, E±ψ f = f on Σ, ∂3(E±ψ f ) = 0 on Σ±. (7.13)

Thus, we can define a decomposition q± = q±ψ + q±w satisfying

q±ψ := E±ψ(q±|Σ) in Ω± (7.14)

and

− ∆ϕq±w = −F ±p (Dϕ±
t )2q± + F ±p (Dϕ±

t )2
(

1
2
|b±|2

)
+ (∂ϕi v±j )(∂ϕj v

±
i ) − (∂ϕi b±j )(∂ϕj b

±
i ) in Ω± (7.15)
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with boundary conditions q±w = 0 on Σ and N · ∇ϕq±w = ∂3q±w = 0 on Σ±. The second boundary conditions
holds thanks to the slip condition for v3, b3 on Σ. Thus, the evolution equation of ψ can be written as

ρ±∂2
t ψ = ± N±ψ(q±|Σ) − N · ∇ϕq±w +

(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ. (7.16)

We now want to resolve q±|Σ in terms of ρ± and F±ψ by inverting the Dirichlet-to-Neumann operators N±ψ.
However, we no longer have

∫
Σ
ρ∂tψ dx′ =

∫
Σ
ρ∂2

t ψ dx′ = 0 due to the compressibility of fluids. Thus, we
have to eliminate the zero-frequency part in ρ±∂2

t ψ before inverting the Dirichlet-to-Neumann operators. For
a function f : Σ = T2 → R, we define the Littlewood-Paley projection

P,0 f := f − ( f )Σ, ( f )Σ :=
∫
T2

f dx′.

Under this setting, we have
ρ±∂2

t ψ = P,0(ρ±∂2
t ψ) + (ρ±∂2

t ψ)Σ (7.17)

and we insert it back to the evolution equation to get

P,0(ρ±∂2
t ψ) = ± N±ψ(q±|Σ) − (ρ±∂2

t ψ)Σ − N · ∇ϕq±w +
(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ (7.18)

= : ±N±ψ(q±|Σ) + F±ψ . (7.19)

Note that the zero-frequency modes of both P,0(ρ±∂2
t ψ) and ±N±ψ(q±|Σ) are vanishing on the interface Σ, so

we deduce that
∫

Σ
F±ψ = 0 and then (N±ψ)−1(F±ψ) is well-defined. Now we can resolve the traces q±|Σ from the

evolution equations of ψ. We have

N
+
ψ(q+|Σ) + N−ψ(q−|Σ) = P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

⇒∓ N∓ψ(
�
q

�
|Σ) +

(
N

+
ψ + N−ψ

)
(q±|Σ) = P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

⇒ q±|Σ = Ñ−1
(
±N∓ψ(σH(ψ)) + P,0(

�
ρ

�
∂2

t ψ) −
�

Fψ

�)
, (7.20)

where Ñ := N+
ψ + N−ψ (and equivalently we have N±ψ = 1

2 (Ñ ± (N+
ψ − N

−
ψ)) represents the mixed Dirichlet-to-

Neumann operator and
�

Fψ

�
:= F+

ψ − F−ψ .
Plugging (7.20) back into the evolution equation of the free interface, we get

P,0(ρ+∂2
t ψ) = N+

ψ(q+|Σ) + F+
ψ = N+

ψÑ
−1

(
N
−
ψ(σH(ψ)) + P,0(

�
ρ

�
∂2

t ψ) − F+
ψ + F−ψ

)
+ F+

ψ

= σN+
ψÑ
−1
N
−
ψ(H(ψ)) + N+

ψÑ
−1F−ψ − N

+
ψÑ
−1F+

ψ + F+
ψ + N+

ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)

= σN+
ψÑ
−1
N
−
ψ(H(ψ)) + N−ψÑ

−1F+
ψ + N+

ψÑ
−1F−ψ + N+

ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (7.21)

Similarly, we have

P,0(ρ−∂2
t ψ) = σN−ψÑ

−1
N

+
ψ(H(ψ)) + N−ψÑ

−1F+
ψ + N+

ψÑ
−1F−ψ − N

−
ψÑ
−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (7.22)

Now, using the expressions of N±ψ in terms of Ñ and N+
ψ − N

−
ψ, we have

N
+
ψÑ
−1
N
−
ψ f =

1
2
N

+
ψÑ
−1(Ñ f + (N+

ψ − N
−
ψ) f ) =

1
2
N

+
ψ f +

1
2
N

+
ψÑ
−1(N+

ψ − N
−
ψ) f , (7.23)

N
−
ψÑ
−1
N

+
ψ f =

1
2
N
−
ψÑ
−1(Ñ f − (N+

ψ − N
−
ψ) f ) =

1
2
N
−
ψ f −

1
2
N
−
ψÑ
−1(N+

ψ − N
−
ψ) f , (7.24)

and also for g± : Σ→ R with
∫

Σ
g± dx′ = 0, we have

N
−
ψÑ
−1g+ + N+

ψÑ
−1g− =

1
2

(Ñ − (N+
ψ − N

−
ψ))Ñ−1g+ +

1
2

(Ñ + (N+
ψ − N

−
ψ))Ñ−1g−

=
g+ + g−

2
−

1
2

(N+
ψ − N

−
ψ)Ñ−1 �

g
�
. (7.25)
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Let f = H(ψ) and g± = F±ψ in (7.23)-(7.25). We find that (7.21) + (7.22) can be written as

P,0(ρ+∂2
t ψ) + P,0(ρ−∂2

t ψ) =
σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) + F+

ψ + F−ψ

+
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ))

− (N+
ψ − N

−
ψ)Ñ−1(F+

ψ − F−ψ) + (N+
ψ − N

−
ψ)Ñ−1

(
P,0(

�
ρ

�
∂2

t ψ)
)
. (7.26)

Recall that F±ψ = F±ψ − (ρ±∂2
t ψ)Σ and ρ±∂2

t ψ = P,0(ρ±∂2
t ψ) + (ρ±∂2

t ψ)Σ where

F
±
ψ := −N · ∇ϕq±w +

(
b̄±i b̄±j − ρ

±v̄±i v̄±j
)
∂i∂ jψ − 2(ρ±v̄± · ∇)∂tψ.

Thus, the evolution equation of the free interface becomes

(ρ+ + ρ−)∂2
t ψ =

σ

2

(
N

+
ψ + N−ψ

)
(H(ψ)) +

(
b̄+

i b̄+
j − ρ

+v̄+
i v̄+

j + b̄−i b̄−j − ρ
−v̄−i v̄−j

)
∂i∂ jψ − 2(ρ+v̄+

i + ρ−v̄−i )∂i∂tψ

− N · ∇ϕq+
w − N · ∇ϕq−w

+
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
, (7.27)

where the first line is expected to give the
√
σ-weighted regularity (contributed by surface tension) and the

non-weighted regularity (provided that stability condition (1.40)) for the free interface, the second line will
be converted to the interior estimate of the right side of (7.15), and the last line consists of remainder terms
that can be directly controlled by using paradifferential calculus.

7.2.2 Preliminaries on paradifferential calculus

In the equation (7.27), the term
(
N+
ψ + N−ψ

)
(H(ψ)) is a fully nonlinear term. Although it is well-known

that the Dirichlet-to-Neumann operator is a first-order elliptic operator and the mean-curvature operator is a
second-order elliptic operator, it is still necessary for us to find out their concrete forms and “symmetrize”
the paradifferential formulations in order for an explicit energy estimate. In the remaining part of this pa-
per, we will introduce several preliminary lemmas about paradifferential calculus that have been proven in
Alazard-Burq-Zuily [2]. Following the notations in Métivier [61], we first introduce the basic definition of a
paradifferential operator. Note that the dimension d below is not the same as the one in Section 1.

Definition 7.2 (Symbols). Given r ≥ 0, m ∈ R, we denote Γm
r (Td) to be the space of locally bounded

functions a(x′, ξ) on Td × (Rd\{0}), which are C∞ with respect to ξ(ξ , 0), such that for any α ∈ Nd, ξ , 0,
the function x′ 7→ ∂αξ a(x′, ξ) belongs to Wr,∞(Td) and there exists a constant Cα such that∣∣∣∂αξ a(·, ξ)

∣∣∣
Wr,∞(Td)

≤ Cα(1 + |ξ|)m−|α|, ∀|ξ| ≥ 1/2.

Definition 7.3 (Paradifferential operator). Given a symbol a, we shall define the paradifferential operator
Ta by

T̂au(ξ) := (2π)−d
∫
Rd
χ̃(ξ − η, η)â(ξ − η, η)φ(η)û(η) dη (7.28)

where â(θ, ξ) =
∫
Td exp(−ix′ · θ)a(x′, ξ) dx′ is the Fourier transform of a in variable x′. Here χ̃ and φ are two

given cut-off functions such that

φ(η) = 0 for |η| ≤ 1, φ(η) = 1 for |η| ≥ 2,

and χ̃(θ, η) is homogeneous of degree 0 and satisfies that for 0 < ε1 < ε2 � 1, χ̃(θ, η) = 1 if |θ| ≤ ε1|η| and
χ̃(θ, η) = 0 if |θ| ≥ ε2|η|. We also introduce the semi-norm

Ma
r (a) := sup

|α|≤ d
2 +1+r

sup
|ξ|≥1/2

∣∣∣(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∣∣∣
Wr,∞(Td)

. (7.29)
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For m ∈ R, we say T is of order m if for all s ∈ R, T is bounded from Hs to Hs−m.

Proposition 7.1. Let m ∈ R. If a ∈ Γm
0 (Td), then Ta is of order m. Moreover, for any s ∈ R, there exists a

constant K such that ‖Ta‖Hs→Hs−m ≤ KMm
0 (a).

Proposition 7.2 (Composition, [2, Theorem 3.7]). Let m ∈ R and r > 0. If a ∈ Γm
r (Td), b ∈ Γm′

r (Td), then
TaTb − Ta#b is of order m + m′ − r where

a#b :=
∑
|α|<r

1
i|α|α!

∂αξ a∂αx′b.

Moreover, for all s ∈ R, there exists a constant K such that

‖TaTb − Ta#b‖Hs→Hs−m−m′+r ≤ KMm
r (a)Mm′

r (b). (7.30)

Proposition 7.3 (Adjoint, [2, Theorem 3.10]). Let m ∈ R, r > 0 and a ∈ Γm
r (Td). We denote by (Ta)∗ the

adjoint operator of Ta. Then (Ta)∗ − Ta∗ is of order m − r where

a∗ :=
∑
|α|<r

1
iαα!

∂αξ ∂
α
x′ ā.

Moreover, for any s ∈ R, there exists a constant K such that ‖(Ta)∗ − Ta∗‖Hs→Hs−m+r ≤ KMm
r (a).

The symbolic calculus adopted in this paper is not of C∞-regularity. We shall introduce the following class
of symbols. Here and thereafter in this section, ψ ∈ C([0,T ]; Hs+ 1

2 (Td)) is a given function with s > 2 + d
2 .

Definition 7.4. Given m ∈ R, we denote Σm to be the class of symbols a of the form a = a(m) + a(m−1) with

a(m)(t, x′, ξ) = F(∇x′ψ(t, x′), ξ), a(m−1)(t, x′, ξ) =
∑
|α|2

Gα(∇x′ψ(t, x′), ξ)∂αx′ψ(t, x′)

such that

i. Ta maps real-valued functions to real-valued functions;
ii. F is a C∞ real-valued functions of (ζ, ξ) ∈ Rd×(Rd\{0}), homogeneous of degree m in ξ, such that there

exists a continuous function K = K(ζ) > 0 such that F(ζ, ξ) ≥ K(ζ)|ξ|m for all (ζ, ξ) ∈ Rd × (Rd\{0});
iii. Gα is a C∞ complex-valued function of (ζ, ξ) ∈ Rd × (Rd\{0}), homogeneous of degree m − 1 in ξ.

Definition 7.5 (“Equivalence” of operators). Given m ∈ R and consider two families of operators of order m:
{A(t) : t ∈ [0,T ]} and {B(t) : t ∈ [0,T ]}, We say A ∼ B if A − B is of order m − 1.5 and satisfies the estimate:
for all r ∈ R there exists a continuous function C(·) such that

∀t ∈ [0,T ], ‖A(t) − B(t)‖Hr→Hr−(m−1.5) ≤ C(|ψ(t)|s+ 1
2
).

From now on, we use the notation | · |s1→s2 to represent the operator norm ‖ · ‖Hs1→Hs2 , and use the notation
| · |s to represent ‖ · ‖Hs(Td), as we only apply paradifferential calculus on the free interface Σ. With this
definition, we have

Proposition 7.4 ([2, Prop. 4.3]). Let m,m′ ∈ R. Then

1. If a ∈ Σm, b ∈ Σm′ , then TaTb ∼ Ta#b where a#b is given by

a#b = a(m)b(m′) + a(m−1)b(m′) + a(m)b(m′−1) +
1
i
∂ξa(m) · ∂x′b(m′).

2. If a ∈ Σm, then (Ta)∗ ∼ Tb where b ∈ Σm is given by

b = a(m) + a(m−1) +
1
i

(∂x′ · ∂ξ)a(m).

As a corollary, we have
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Corollary 7.5 ([2, Prop. 4.3(2)]). If a ∈ Σm satisfies Ima(m−1) = −0.5(∂ξ · ∂x′ )a(m), then (Ta)∗ ∼ Ta.

The next proposition is significant for the estimate of Sobolev norms via paradifferential calculus.

Proposition 7.6 ([2, Prop. 4.4 and 4.6]). Let m ∈ R, r ∈ R. Then for all symbol a ∈ Σm and t ∈ [0,T ], the
following estimate holds.

|Ta(t)u|r−m ≤ C(|ψ(t)|s−1)|u|r, (7.31)
|u|r+m ≤ C(|ψ(t)|s−1)

(
|Ta(t)u|r + |u|0

)
. (7.32)

7.2.3 Paralinearization of the nonlinear terms

Now we can start to paralinearize the term
(
N+
ψ + N−ψ

)
(H(ψ)) in (7.27).

Lemma 7.7 (Paralinearization of the Dirichlet-to-Neumann operator, [4, Section 4.4]). For f , ψ ∈ Hs+ 1
2 (Td),

we have

N
±
ψ f = TΛ±ψ + R±Λ,1(ψ, f ) + R±Λ,2(ψ, f ), (7.33)

with the symbols λ± = λ(1),± + λ(0),± give by

Λ(1),± =

√
(1 + |∇ψ|2)|ξ|2 − (∇ψ · ξ)2, (7.34)

Λ(0),− = −Λ(0),+ =
1 + |∇ψ|2|

2Λ(1),−

(
∇ · (α(1)∇ψ) + i∂ξΛ(1),− · ∇α(1)

)
, (7.35)

and α(1) := (Λ(1),− + i∇ψ · ξ)/(1 + |∇ψ|2). The remainder terms satisfy the following estimates

|R±Λ,1(ψ, f )|s− 1
2
≤ C(|ψ|C2 , | f |3)| f |s+ 1

2
, |R±Λ,2(ψ, f )|s− 1

2
≤ C(|ψ|s− 1

2
)|∂ f |s−2. (7.36)

Lemma 7.8 (Paralinearization of the mean curvature operator, [2, Lemma 3.25]). There holds H(ψ) =

−TH f + RH where H = H(2) + H(1) is defined by

H
(2) =

1√
1 + |∇ψ|2

|ξ|2 − (∇ψ · ξ)2

1 + |∇ψ|2

 , (7.37)

H
(1) = −

i
2

(∇x′ · ∂ξ)H(2), (7.38)

and the remainder term RH satisfies

|RH|2s−3 ≤ C(|ψ|s+ 1
2
). (7.39)

With the paralinearization of operators N±ψ andH(ψ), the term
(
N+
ψ + N−ψ

)
(H(ψ)) in (7.27) becomes

σ
(
N

+
ψ + N−ψ

)
(H(ψ)) = −σTΛTHψ + σRσψ , (7.40)

where −Λ(0),+ = Λ(0),− shows that Re(Λ(0),+) + Re(Λ(0),−) = 0, Im(Λ(0),+) = Im(Λ(0),+) and thus

Λ := (Λ(1),+ + Λ(1),−)︸             ︷︷             ︸
=:Λ(1)

+ (Λ(0),+ + Λ(0),−)︸             ︷︷             ︸
=:Λ(0)

= 2Λ(1),− + 2iIm(Λ(0),−) (7.41)

Rσψ :=
∑
±

TΛ±RH + R±Λ,1(ψ,H(ψ)) + R±Λ,2(ψ,H(ψ)) and |Rσψ |s− 1
2
≤ C(|ψ|s+ 1

2
)|ψ|s+1. (7.42)

In order for an explicit energy estimate for ψ and ψt, we shall symmetrize the 3-rd order paradifferential
operator TΛTH. That is, find suitable symbols m ∈ Σ1.5 and n ∈ Σ0 such that TnTΛTH ∼ TmTmTn and
Tm ∼ (Tm)∗.
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Proposition 7.9 (Symmetrisation of the composition). Let n ∈ Σ0 and m ∈ Σ1.5 be defined by

n :=
1

3√2
4
√

1 + |∇ψ|2
= 2−

1
3 |N |−

1
2 , (7.43)

m :=
√
H(2)Λ(1)︸      ︷︷      ︸
=:m(1.5)

+
1
2i

(∂ξ · ∂x′ )
√
H(2)Λ(1)︸                     ︷︷                     ︸

=:m(0.5)

. (7.44)

Then TnTλTH ∼ TmTmTn and Tm ∼ (Tm)∗ are both fulfilled.

Proof. Given the symbol Λ and H, we shall find suitable symbols n ∈ Σ0,m ∈ Σ1.5 such that n(x′, ξ) is
independent of ξ and n#(Λ#H) = (m#m)#n, i.e.,

n
(0)(Λ#H) + n(−1)Λ(1)

H
(2) +

1
i
∂ξn

(0) · ∂x′ (Λ(1)
H

(2))

= (m#m)n(0) + (m(1.5))2
n

(−1) +
1
i
∂ξ((m(1.5))2) · ∂x′n

(0).

Recall that

(Λ#H) = Λ(1)
H

(2) + Λ(0)
H

(2) + Λ(1)
H

(1) +
1
i
∂ξH

(2) · ∂x′Λ
(1),

(m#m) = (m(1.5))2 + 2(m(1.5))(m(0.5)) +
1
i
∂ξ(m(1.5)) · ∂x′ (m(1.5)).

We choose the principal symbol m(1.5) :=
√

Λ(1)H(2) in order for cancelling the leading-order symbols. Since
we require (Tm)∗ ∼ Tm∗ , we must have Im(m(0.5)) = −0.5(∂x′ · ∂ξ)m(1.5) (cf. [2, Prop. 4.3]). With this choice
for m, it remains to solve the symbolic equation

n
(0)(Λ#H −m#m) =

1
i
∂ξ((Λ(1)

H
(2)) · ∂x′n

(0) −
1
i
∂x′ (Λ(1)

H
(2)) · ∂ξn(0), (7.45)

with

Λ#H −m#m = Λ(0)
H

(2) + Λ(1)
H

(1) − 2(m(1.5))(m(0.5)) +
1
i
∂ξH

(2) · ∂x′Λ
(1) −

1
i
∂ξ(m(1.5)) · ∂x′ (m(1.5)).

The sub-principle n(−1) does not appear, so we can choose n(−1) = 0. Since the principal symbols of Λ and H
are real-valued, we now just need to solve

Re(Λ#H −m#m) = 0, n(0)Im(Λ#H −m#m) = −∂ξ((Λ(1)
H

(2)) · ∂x′n
(0) + ∂x′ (Λ(1)

H
(2)) · ∂ξn(0).

The condition for the real part is fulfilled if we have

Re(Λ(0))︸   ︷︷   ︸
=0

H
(2) = 2m(1.5)Re(m(0.5))⇒ Re(m(0.5)) = 0.

For the imaginary part, inserting the symbols H(1), Im(Λ(0)), m(1.5) and Im(m(0.5)), we get

Im(Λ#H −m#m) =
1
2
∂ξH

(2) · ∂x′Λ
(1) −

1
2
∂x′H

(2) · ∂ξΛ
(1),

and thus we need to solve

n
(0)

(
1
2
∂ξH

(2) · ∂x′Λ
(1) −

1
2
∂x′H

(2) · ∂ξΛ
(1)

)
= −∂ξ((Λ(1)

H
(2)) · ∂x′n

(0) + ∂x′ (Λ(1)
H

(2)) · ∂ξn(0). (7.46)

Notice that H(2) = (cΛ(1))2 with c = 1
2 (1+ |∇ψ|2)−

3
4 . Plugging it to the above equation, after a long and tedious

calculation, we get the following relation

n
(0)

(
c2∂x′Λ

(1)(Λ(1)) − (∂x′c)c(Λ(1))2 − c2∂x′ (Λ(1))Λ(1)
)

= −3c2(Λ(1))2∂x′n
(0),
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that is,
∂x′n

(0)

n(0) =
−(∂x′c)c(Λ(1))2

−3c2(Λ(1))2 =
1
3
∂x′c

c
⇒ n(0) = c

1
3 = 2−

1
3 (1 + |∇ψ|2)−

1
4 .

�

We expect to take (s − 1
2 )-th order derivatives in (7.27). In view of the paradifferential formulation, we

shall alternatively take TM with

M := (m(1.5))
2s−1

3 = 2
2s−1

6 |ξ|s−
1
2

(
1 −

∣∣∣∣∣ N
|N |
·
ξ

|ξ|

∣∣∣∣∣2)
s
2−

1
4

∈ Σs− 1
2 (7.47)

for sake of simplicity. Below, we list several commutator estimates for the paradifferential operators.

Lemma 7.10. For any r ∈ R, s > 2 + d
2 , any functions a and f , the following commutator estimates hold

|[TM,Tm]|r+s−1→r ≤ C (|ψ|s+0.5) ,

|[Tn,Ta] f |s− 1
2
≤ C(|∇ψ|W1,∞ )|a|W1,∞ | f |s−1.5,

|[TM, a] Tn f |0 + |TM [Tn, a] f |0 ≤ C(|∇ψ|W1,∞ )|a|s−0.5| f |s−1.5,

|[Tm, a] f |0 ≤ C(|∇ψ|W1,∞ )|a|s−0.5| f |0.5.

We also need to commute ∂t with paradifferential operators. These steps will generate paradifferential
operators whose symbols are spatial or time derivatives.

Lemma 7.11. For any r ∈ R, the following estimates hold

|T∂tn|r→r + |T∂tM|r→r−(s−0.5) ≤ C(|ψ|W1,∞ , |∂tψ|W1,∞ ),

|T∂2
t n
|r→r + |T∂2

tM
|r→r−(s−0.5) ≤ C

(∣∣∣∣∇ψ, ∂tψ, ∂
2
t ψ

∣∣∣∣
W1,∞

)
,

|T∂n|r→r + |T∂M|r→r−(s−0.5) ≤ C(|∇ψ|W1,∞ ),

|T∂tm|r→r−1.5 + |T∂m|r→r−1.5 ≤ C(|∇ψ|W1,∞ , |∇∂tψ|W1,∞ ).

7.3 Uniform estimates for the free interface
With the symmetrized paralinearization of (N+

ψ + N−ψ)H(ψ) derived in Section 7.2.2, we can now prove the
uniform-in-(ε, σ) estimates of ψ under the stability condition (1.40). The equation (7.27) can be written as

(ρ+ + ρ−)∂2
t ψ = −

σ

2
TΛTHψ − (ρ+ + ρ−)(w̄iw̄ j)∂i∂ jψ − 2(ρ+ + ρ−)w̄i∂i∂tψ

+
(
ρ+(b̄+

i b̄+
j − ūiū j) + ρ−(b̄−i b̄−j − ūiū j)

)
∂i∂ jψ

− (N · ∇ϕq+
w + N · ∇ϕq−w) + ΨR, (7.48)

where TΛ,TH are the paradifferential operators defined in Proposition 7.7 and Proposition 7.8, the quantities
w,u,b are defined by

w :=
ρ+v+ + ρ−v−

ρ+ + ρ−
, u :=

√
ρ+ρ−

ρ+ + ρ−
~v� , b± :=

b±
√
ρ±
, (7.49)

and ΨR is defined by

ΨR :=
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
+
σ

2
Rσψ . (7.50)

We pick s = 4 in the paradifferential operator TM, that is, M = (m(1.5))
7
3 ∈ Σ3.5 and then consider the

energy functionals

E(t) :=
1
2

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′ +
1
4

∫
Σ

∣∣∣√σTmTMTnψ
∣∣∣2
0 dx′, (7.51)

Ẽ(t) :=
1
2

∫
Σ

ρ+
(∣∣∣∣b̄+ · ∇TMTnψ

∣∣∣∣2 − ∣∣∣∣ū · ∇TMTnψ
∣∣∣∣2) + ρ−

(∣∣∣∣b̄− · ∇TMTnψ
∣∣∣∣2 − ∣∣∣∣ū · ∇TMTnψ

∣∣∣∣2) dx′. (7.52)
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Lemma 7.12 (Comparison between E, Ẽ and Sobolev norms). For any fixed σ > 0, we have the following
relations between E, Ẽ and standard Sobolev norms.∣∣∣√σψ∣∣∣25 ≤ C(|∇ψ|W1,∞ )

(
E(t) + |

√
σψ|20

)
,

|ψ|24.5 . |
√
σψ|25 + σ−1|ψ|20,

|ψt |
2
3.5 ≤ C(|∇ψ,∇ψt, v̄±, ρ±|W1,∞ )

(
E(t) + |ψ|24.5 + |ψt |

2
0

)
where C(·) represents a generic positive continuous function in its arguments. Moreover, when the stability
condition (1.40) holds, there exist positive continuous functions C1,C′1,C

′′
1 depending on |∇ψ, v̄±, b̄±, ρ±|W1,∞

and independent of σ, such that

C1

(
|∇ψ, v̄±, b̄±, ρ±|W1,∞

)
|ψ|24.5 ≤ Ẽ(t) + C′1|ψ|

2
0, Ẽ(t) ≤ C′′1

(
|∇ψ, v̄±, b̄±, ρ±|W1,∞

)
|ψ|24.5 .

Proof. Recall that TM and Tm are paradifferential operators of order 3.5 and 1.5 respectively, thus the first
inequality is a direct consequence of Proposition 7.6. The second inequality is a directly consequence of
Sobolev interpolation and Young’s inequality

|ψ|24.5 ≤ |
√
σψ|1.85 |σ

− 1
2ψ|0.20 ≤

|
√
σψ|25

10/9
+
|ψ|20
10σ

.

To prove the third inequality, we again use Proposition 7.6 to get

|ψt |
2
3.5 ≤ C(|∇ψ|W1,∞ )

(
|TMTnψt |

2
0 + |ψt |

2
0

)
≤ C(|∇ψ, v̄±, ρ±|W1,∞ )

(
E(t) + |TMT∂tnψ|

2
0 + |T∂tMTnψ|20 + |ψt |

2
0

)
≤ C(|∇ψ,∇ψt, v̄±, ρ±|W1,∞ )

(
E(t) + |ψ|23.5 + |ψt |

2
0

)
.

For the last inequality, the right side is trivial. When the stability condition (1.40) holds, it suffices to
prove that Ẽ(t) is a positive-definite energy, then the left side automatically holds. Multiplying (ρ+ρ−)−

1
2 in

(1.40), the stability condition becomes

∃δ0 ∈ (0,
1
8

), |b̄+ × b̄−| ≥ (1 − δ0)−1|b̄± × ~v̄� |
√

1 + (c±A/c
±
s )2 > (1 − δ0)−1|b̄± × ~v̄� |. (7.53)

Since ~v� · N = 0 and b± are nonzero and not collinear, we may assume ~v� = c1b+ + c2b−. Plugging this
into the stability condition, we get c1, c2 ≤ 1 − δ0. Using Cauchy-Schwarz inequality, we derive that

inf
z∈R2

|z|=1

(1 − δ0)2
(
(b̄+ · z)2 + 2(b̄+ · z)(b̄− · z) + (b̄− · z)2

)
− (~v̄� · z)2 ≥ 0

Invoking ū =
√
ρ+ρ−

ρ++ρ−
~v̄� and using the non-collinearity, the above inequality implies that

inf
z∈R2

|z|=1

(
ρ+ρ−

ρ+ + ρ−
(b̄+ · z)2 + 2

ρ+ρ−

ρ+ + ρ−
(b̄+ · z)(b̄− · z) +

ρ+ρ−

ρ+ + ρ−
(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
> 0.

Notice that

ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 −

(
ρ+ρ−

ρ+ + ρ−
(b̄+ · z)2 + 2

ρ+ρ−

ρ+ + ρ−
(b̄+ · z)(b̄− · z) +

ρ+ρ−

ρ+ + ρ−
(b̄− · z)2

)
=

1
ρ+ + ρ−

(
(ρ+)2(b̄+ · z)2 − 2ρ+ρ−(b̄+ · z)(b̄− · z) + (ρ−)2(b̄− · z)2

)
≥ 0.

Thus, it implies that

inf
z∈R2

|z|=1

(
ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
> 0, (7.54)
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or equivalently, there exists some δ′0 > 0 such that

inf
z∈R2

(
ρ+(b̄+ · z)2 + ρ−(b̄− · z)2 − (ρ+ + ρ−) (ū · z)2

)
≥ 2δ′0|z|

2. (7.55)

Now let z = ∇TMTnψ, the above inequality shows that Ẽ(t) ≥ δ′0|∇TMTnψ|20 & |ψ|
2
4.5 − |ψ|

2
0. �

Remark 7.1 (The 2D case). When the space dimension d = 2, we no longer have the non-collinearity, but
the stability condition (1.47) still guarantees the ellipticity of the corresponding second-order differential
operator, i.e.,

∃δ′0 > 0, ρ+
(
(b+

1 )2 − u2
1

)
+ ρ−

(
(b−1 )2 − u2

1

)
≥ δ′0.

In fact, the stability condition (1.47) implies |b+
1 | + |b

−
1 | ≥ (1 + δ0)| ~v1� |. Taking square and invoking

u :=
√
ρ+ρ−

ρ++ρ−
~v�, we get

ρ+ρ−

ρ+ + ρ−

(
(b+

1 )2 + 2b+
1 b−1 + (b−1 )2

)
≥ (1 + δ0)(ρ+ + ρ−)u2

1,

in which we find that the left side does not exceed (ρ+ + ρ−)−1
(
ρ+(b+

1 )2 + ρ−(b−1 )2
)

by direct calculation. The
desired result immediately follows thanks to |u1| > 0 (otherwise the interface is not a vortex sheet).

In view of Lemma 7.12, it suffices to prove energy estimates for E(t) and Ẽ(t) under the stability condition
(1.40). We start with the estimate of |ψt |3.5.

d
dt

1
2

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′

=

∫
Σ

(ρ+ + ρ−)(∂2
t TMTnψ)

(
(∂t + w̄ · ∇)TMTnψ

)
dx′ +

∫
Σ

(ρ+ + ρ−)(w̄ · ∇∂tTMTnψ)
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

+

∫
Σ

(ρ+ + ρ−)(∂tw̄ · ∇TMTnψ)
(
(∂t + w̄ · ∇)TMTnψ

)
dx′ +

1
2

∫
Σ

∂t(ρ+ + ρ−)
∣∣∣∣(∂t + w̄ · ∇)TMTnψ

∣∣∣∣2 dx′

=: I0 + I1 + IR
1 + IR

2 . (7.56)

The remainder terms are easy to control. Using Proposition 7.6, we have

IR
1 + IR

2 ≤ C
(∣∣∣ρ±, ∂tρ

±, v̄±, ∂tv̄±
∣∣∣
L∞ , |ψ|3

) (
|ψt |

2
3.5 + |ψ|24.5

)
. (7.57)

For the main term I0, we first commute (ρ+ + ρ−)∂2
t with TMTn

(ρ+ + ρ−)∂2
t TMTnψ = (ρ+ + ρ−)

(
TMTn∂2

t ψ + (T∂2
tM

Tn + TMT∂2
t n

)ψ + 2(T∂tMTn + TMT∂tn)∂tψ
)

= TMTn
(
(ρ+ + ρ−)∂2

t ψ
)
−

(
[TM, ρ+ + ρ−]Tn∂2

t ψ + TM([Tn, ρ+ + ρ−]∂2
t ψ)

)
+ (ρ+ + ρ−)

(
(T∂2

tM
Tn + TMT∂2

t n
)ψ + 2(T∂tMTn + TMT∂tn)∂tψ

)
.

The commutators can be controlled straightforwardly thanks to Lemma 7.10 and Lemma 7.11:∣∣∣[TM, ρ+ + ρ−]Tn∂2
t ψ

∣∣∣
0 +

∣∣∣TM([Tn, ρ+ + ρ−]∂2
t ψ)

∣∣∣
0 ≤ C(|∇ψ|W1,∞ )

(
|ρ+ + ρ−|3.5|∂

2
t ψ|2.5

)
,∣∣∣(T∂2

tM
Tn + TMT∂2

t n
)ψ

∣∣∣
0

+
∣∣∣(T∂tMTn + TMT∂tn)∂tψ

∣∣∣
0 ≤ C(|ψtt, ψt,∇ψ|W1,∞ ) (|ψ|3.5 + |ψt |3.5) .

In the remaining of this section, we no longer explicitly write the commutators between the paradifferential
operators and functions or ∂t, ∂i, as they can be controlled in the same way as above. Instead, we will again
use the notation L

= to skip these terms and analyze the main terms.
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Then we can plug the equation (7.48) into the integral to get

I00 :=
∫

Σ

(
TMTn((ρ+ + ρ−)∂2

t ψ)
) (

(∂t + w̄ · ∇)TMTnψ
)

dx′

= −
σ

2

∫
Σ

(
TMTnTΛTHψ

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

− 2
∫

Σ

(
TMTn((ρ+ + ρ−)w̄i∂i∂tψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

−

∫
Σ

(
TMTn((ρ+ + ρ−)w̄iw̄ j∂i∂ jψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

+

∫
Σ

(
TMTn

(
ρ+(b̄+

i b̄+
j − ūiū j) + ρ−(b̄−i b̄−j − ūiū j)

)
∂i∂ jψ

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

−

∫
Σ

(
TMTn

(
N · ∇ϕq+

w + N · q−w
)) (

(∂t + w̄ · ∇)TMTnψ
)

dx′

+

∫
Σ

(
TMTnΨR

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′ =: I000 + I001 + I002 + I003 + Iw

0 + IR
0 . (7.58)

Since Proposition 7.9 indicates that TnTΛTH ∼ TmTmTn and (Tm)∗ ∼ Tm, we have

TMTnTΛTHψ
L
= TMTmTmTnψ

= (Tm)∗TmTMTnψ +
(
((Tm)∗ − Tm)TM + Tm[TM,Tm] + [TM,Tm]Tm

)
Tnψ

L
= (Tm)∗TmTMTnψ

and using the duality, we get

I000
L
= −

σ

2

∫
Σ

(TmTMTnψ) Tm(∂t + w̄ · ∇)TMTnψ dx′

= −
σ

4
d
dt

∫
Σ

|TmTMTnψ|2 dx′

+
σ

2

∫
Σ

(TmTMTnψ)
(
T∂tm + w̄iT∂im

+
1
2

(∇ · w̄) − [Tm, w̄i]∂i

)
TMTnψ dx′, (7.59)

where the second term can be directly controlled (uniformly in σ) by E(t)C
(
|∇ψ, ψt, v̄±, ρ±|W1,∞

)
thanks to

Lemma 7.10. Next we analyze I1 + I001 and I002, I003. For a generic function a ∈ H3.5(Σ→ R2) and a generic
ρ ∈ H3.5(Σ→ R+), we have∫

Σ

(
TMTn(ρaia j∂i∂ jψ)

) (
(∂t + w̄ · ∇)TMTnψ

)
dx′

L
=

∫
Σ

ρaia j∂i∂ jTMTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′ L

= −

∫
Σ

ρ(ai∂iTMTnψ) (a j∂ j(∂t + w̄ · ∇)TMTnψ) dx′

L
= −

1
2

d
dt

∫
Σ

ρ
∣∣∣∣ai∂iTMTnψ

∣∣∣∣2 dx′.

Setting a = w̄, ū, b̄ and ρ = ρ± or ρ+ + ρ−, we immediately get

I002
L
= +

1
2

d
dt

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(w̄ · ∇)TMTnψ

∣∣∣∣2 dx, I003
L
= −

d
dt
Ẽ(t).

For I1 + I001, we have

I001
L
= − 2

∫
Σ

(ρ+ + ρ−)(w̄ · ∇)∂tTmTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

⇒ I1 + I001
L
= −

∫
Σ

(ρ+ + ρ−)(w̄ · ∇)∂tTmTnψ
(
(∂t + w̄ · ∇)TMTnψ

)
dx′

L
= −

1
2

d
dt

∫
Σ

(ρ+ + ρ−)
∣∣∣∣(w̄ · ∇)TMTnψ

∣∣∣∣2 dx, (7.60)

95



which cancels with the main term in I002. When σ > 0 is given and the stability condition (1.40) is not
assumed, the quantity Ẽ(t) is not necessarily positive, but its contribution, namely the term I003, can be
controlled by integrating by parts for 1/2-derivative

I003 . P(‖v±, ρ±, b±‖4,±)(|ψ|25 + |ψ|5|ψt |4) . σ−1P(E4(t)).

Now, it remains to control Iw
0 and IR

0 . In view of Proposition 7.6, it suffices to control the H3.5(Σ) norms
of N · ∇ϕq±w and ΨR. For the term q±w, we use trace lemma and div-curl inequality with tangential trace (see
(B.3)) to get

|N · ∇ϕq±w|
2
3.5 ≤ |ψ|

2
4.5‖∇

ϕq±w‖
2
4,±

≤ C(|ψ|4.5)
(
‖∇ϕq±w‖

2
0,± + ‖∆ϕq±w‖

2
3,± + ‖∇ϕ × ∇ϕq±w‖

2
3,± +

∣∣∣N × ∇ϕq±w
∣∣∣2
3.5 +

∣∣∣N · ∇ϕq±w
∣∣∣2
H3,5(Σ±)

)
(7.61)

where the last three terms are zero because of

∇ϕ × ∇ϕq±w = ~0, N · ∇ϕq±w|Σ± = 0, q±w|Σ = 0⇒ N × ∇ϕq±w|Σ = (−∂2q±w, ∂1q±w, ∂2ψ∂1q±w − ∂1ψ∂2q+
w)>|Σ = ~0.

Then invoking the definition of q±w and using F ±p . ε
2, we find

‖∆ϕq±w‖
2
3,± ≤ C(|ψ|4, |ψt |3)

(∥∥∥ε2T 2(b±, p±)
∥∥∥2

3,± + P
(∥∥∥v±, b±

∥∥∥
4,±

))
≤ P(Ẽ4(t))Ẽ5(t). (7.62)

Remark 7.2 (Necessity of anisotropic Sobolev spaces). The term bounded by Ẽ5(t)is contributed exactly by
the extra 1

2 |b
±|2 in the total pressure. From this, we can also see the necessity of the anisotropic Sobolev

spaces when studying ideal compressible MHD. For Euler equations, the source terms for the wave equation
only contain quadratic first-order terms, and one can use the trick in [48, 92] to close the energy bound
by Ẽ4(t). For incompressible MHD, the second-order time derivative term vanishes because q± satisfies an
elliptic equation.

The term |ΨR|3.5 can also be directly controlled. Recall that

ΨR :=
σ

2
(N+

ψ − N
−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ)) − (N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)
+
σ

2
Rσψ .

Using the Sobolev estimates for the Dirichlet-to-Neumann operators, we have∣∣∣∣∣σ2 (N+
ψ − N

−
ψ)Ñ−1(N+

ψ − N
−
ψ)(H(ψ))

∣∣∣∣∣
3.5

+
∣∣∣∣(N+

ψ − N
−
ψ)Ñ−1

(�
Fψ − ρ∂

2
t ψ

�)∣∣∣∣
3.5

. |σH(ψ)|2.5 +
∣∣∣F±ψ − ρ±∂2

t ψ
∣∣∣2
2.5

. ((1 + σ)|ψ|4.5 + |ψt |3.5)
(∥∥∥ε2∂2

t p±
∥∥∥

2,± + P(‖v±, b±‖3,±, |ψ|3)
)
. P(Ẽ4(t)). (7.63)

Setting s = 4 in the remainder estimate (7.42), we have |σRσψ |3.5 ≤ C(|ψ|4.5)|σψ|5 ≤
√
σC(Ẽ(t))

√
E(t) ≤

√
σC(Ẽ4(t)).

Summarizing the estimate above, we get

d
dt
E(t) . σ−1P(E4(t))E5(t), (7.64)

and under the stability condition (1.40), we get

d
dt

(E(t) + Ẽ(t)) . P(Ẽ4(t))Ẽ5(t). (7.65)

Invoking Lemma 7.12, we actually prove the following uniform-in-ε estimate for fixed σ > 0

d
dt

(∣∣∣√σψ∣∣∣25 + |ψt |
2
3.5

)
. σ−1P(E4(t))E5(t), (7.66)
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and the following uniform-in-(ε, σ) estimate under the stability condition (1.40)

d
dt

(∣∣∣√σψ∣∣∣25 + |ψ|24.5 + |ψt |
2
3.5

)
. P(Ẽ4(t))Ẽ5(t). (7.67)

It remains to prove the uniform estimates for |ψtt |
2
2.5. We just need to take one more ∂t in the paralin-

earized evolution equation (7.48). The proof follows in the same way as the above analysis for the TMTn-
differentiated version of (7.48). So, we skip the details and only list the differences. The first difference is
that we should replace TM by TM′ whereM′ ∈ Σ

5
2 is defined by

M
′ := (m(1.5))

5
3 = 2

5
6 |ξ|

5
2

(
1 −

∣∣∣∣∣ N
|N|
·
ξ

|ξ|

∣∣∣∣∣2)
5
4

∈ Σ
5
2 .

The second difference is essential: we notice that the remainder term ΨR already contains second-order
time derivative (N+

ψ − N
−
ψ)Ñ−1(

�
ρ

�
∂2

t ψ). Taking one more time derivative, we are required to control (N+
ψ −

N−ψ)Ñ−1(
�
ρ

�
∂3

t ψ). Using Lemma C.3 and Lemma C.4, we have∣∣∣∣(N+
ψ − N

−
ψ)Ñ−1(

�
ρ

�
∂3

t ψ)
∣∣∣∣
2.5
. |

�
ρ

�
|1.5|∂

3
t ψ|1.5.

Since we require |
�
ρ

�
|1.5 . ε, we can control the right side by |ε∂3

t ψ|1.5. Under the stability condition (1.40),
this term is already a part of Ẽ4(t). For fixed σ > 0, we again invoke the kinematic boundary condition to get

|ε∂3
t ψ|1.5 . ‖ε∂

2
t v±‖2,±|ψ|2.5 + ‖ε∂tv±‖2,±|ψt |2.5 + ‖εv±‖2,±|ψtt |2.5,

where the right side is already controlled by P(E4(t)). As for the fifth-order terms arising from N · ∇ϕq±w, they
now contribute to ‖ε2∂3

t q±‖2,± which is still a part of E5(t). Thus, we can conclude the following uniform-in-ε
estimate for fixed σ > 0

d
dt

(∣∣∣√σψt

∣∣∣2
4 + |ψtt |

2
2.5

)
. σ−1P(E4(t))E5(t), (7.68)

and the following uniform-in-(ε, σ) estimate under the stability condition (1.40)

d
dt

(∣∣∣√σψt

∣∣∣2
4 + |ψ|23.5 + |ψtt |

2
2.5

)
. P(Ẽ4(t))Ẽ5(t). (7.69)

7.4 Double limits without the boundedness of ≥ 2 time derivatives
7.4.1 Incompressible limit for fixed σ > 0

From the analysis in Section 7.3, we can prove the uniform-in-ε estimates for E4(t). For any δ ∈ (0, 1)

E4(t) . δE4(t) + P(E4(0)) + P(E4(t))
∫ t

0
P(σ−1,E4(τ)) + E5(τ) dτ. (7.70)

For 1 ≤ l ≤ 4, since we do not change anything E4+l(t), we still have

l = 1, 2, 3 : E4+l(t) . δE4+l(t) + P(E4+l(0)) + P(E4(t))
∫ t

0
P

σ−1,

l∑
j=0

E4+ j(τ)

 + E4+l+1(τ) dτ; (7.71)

l = 4 : E8(t) . δE8(t) + P(E8(0)) + P(E4(t))
∫ t

0
P(σ−1,E8(τ)) dτ. (7.72)

Therefore, we get the Gronwall-type energy inequality for E(t)

E(t) . δE(t) + P(E(0)) + P(E(t))
∫ t

0
P(σ−1,E(τ)) dτ. (7.73)
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Choosing δ > 0 suitably small, the term δE(t) can be absorbed by the left side. Thus, there exists a time
T ′σ > 0 depending on σ−1 and the initial data, but independent of ε, such that

sup
0≤t≤T ′σ

E(t) . P(σ−1,E(0)). (7.74)

With the uniform-in-ε estimates for E(t), we now take the incompressible limit. Again, since ‖∂t(v, b)‖3
is uniformly bounded with respect to ε and we still have ε-independent bound |ψt |3.5, the Aubin-Lions com-
pactness lemma gives the same strong convergence result as in Section 6.1.

7.4.2 Double limits under the stability conditions

With the estimates (7.67) and (7.69) in Section 7.3, we can get

|vt · N |22.5 + |bt · N|22.5 . P(Ẽ4(0)) + P(Ẽ4(t))
∫ t

0
P(Ẽ4(τ))Ẽ5(τ) dτ.

This finishes the control of Ẽ4(t). Since Ẽ4+l(t) = Ẽ4+l(t) when 1 ≤ l ≤ 4 and the strategies to control them
remain unchanged, we can now close the energy estimates for Ẽ(t), uniformly in ε and σ, under the stability
condition (1.40) (d = 3) or (1.47) (d = 2).

Ẽ(t) ≤ P(Ẽ(0)) + P(Ẽ(t))
∫ t

0
P(Ẽ(τ)) dτ. (7.75)

By Grönwall’s inequality, there exists T ′ > 0 independent of σ and ε such that

sup
t∈[0,T ]

Ẽ(t) ≤ P(Ẽ(0)). (7.76)

Thus, by Aubin-Lions compactness lemma, we can prove the same convergence result as in Theorem 1.3.
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A Reynolds transport theorems
We record the Reynolds transport theorems used in this paper. For the proof, we refer to Luo-Zhang [55,
Appendix A]

Lemma A.1. Let f , g be smooth functions defined on [0,T ] ×Ω. Then:

d
dt

∫
Ω

f g∂3ϕ dx =

∫
Ω

(∂ϕt f )g∂3ϕ dx +

∫
Ω

f (ϕ̃tg)∂3ϕ dx +

∫
x3=0

f g∂tψ dx′, (A.1)

d
dt

∫
Ω

f g∂3ϕ̊ dx =

∫
Ω

(∂ϕ̊t f )g∂3ϕ̊ dx +

∫
Ω

f (∂ϕ̊t g)∂3ϕ̊ dx +

∫
x3=0

f g∂tψ̊ dx′. (A.2)

Lemma A.2 (Integration by parts for covariant derivatives). Let f , g be defined as in Lemma A.1. Then:∫
Ω

(∂ϕi f )g∂3ϕ dx = −

∫
Ω

f (∂ϕi g)∂3ϕ dx +

∫
x3=0

f gNi dx′, (A.3)∫
Ω

(∂ϕ̊i f )g∂3ϕ̊ dx = −

∫
Ω

f (∂ϕ̊i g)∂3ϕ̊ dx +

∫
x3=0

f gN̊i dx′. (A.4)

The following theorem holds.
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Theorem A.3 (Reynolds transport theorem). Let f be a smooth function defined on [0,T ] ×Ω. Then:

d
dt

∫
Ω

ρ| f |2∂3ϕ dx =

∫
Ω

ρ(Dϕ
t f ) f∂3ϕ dx. (A.5)

Theorem A.3 leads to the following two corollaries. The first one records the integration by parts formula
for Dϕ

t .

Corollary A.4 (Reynolds transport theorem - a variant). It holds that

d
dt

∫
Ω

f g∂3ϕ dx =

∫
Ω

(Dϕ
t f )g∂3ϕ dx +

∫
Ω

f (Dϕ
t g)∂3ϕ dx +

∫
Ω

(∇ϕ · v) f g∂3ϕ dx. (A.6)

The second corollary concerns the transport theorem as well as the integration by parts formula for the
linearized material derivative Dϕ̊

t .

Corollary A.5 (Reynolds transport theorem for linearized κ-problem). Let Dϕ̊
t := ∂t + (˚̄v · ∇) + 1

∂3ϕ̊
(v̊ · Ṅ−

∂tϕ̊)∂3 be the linearized material derivative. Then:

1
2

d
dt

∫
Ω

ρ̊| f |2∂3ϕ̊ dx =

∫
Ω

ρ̊(D
˚̃ϕ
t f ) f∂3ϕ̊ dx +

1
2

∫
Ω

(
D

˚̃ϕ
t ρ̊ + ρ̊∇

˚̃ϕ · v̊
)
| f |2∂3ϕ̊ dx (A.7)

+
1
2

∫
Ω

ρ̊| f |2
(
∂3(˚̄v · ∇)(ϕ̊ − ϕ̇)

)
dx.

1
2

d
dt

∫
Ω

| f |2∂3ϕ̊ dx =

∫
Ω

(Dϕ̊
t f ) f∂3ϕ̊ dx +

1
2

∫
Ω

∇ϕ̊ · v̊| f |2∂3ϕ̊ dx (A.8)

+
1
2

∫
Ω

| f |2
(
∂3(˚̄v · ∇)(ϕ̊ − ϕ̇)

)
dx.

B Preliminary lemmas about Sobolev inequalities
Lemma B.1 (Hodge-type elliptic estimates). For any sufficiently smooth vector field X and s ≥ 1, one has

‖X‖2s ≤ C(|ψ|s, |∇ψ|W1,∞ )
(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + ‖∂αX‖20

)
, (B.1)

‖X‖2s ≤ C′(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X · N |2

s− 1
2

)
, (B.2)

‖X‖2s ≤ C′′(|ψ|s+ 1
2
, |∇ψ|W1,∞ )

(
‖X‖20 + ‖∇ϕ · X‖2s−1 + ‖∇ϕ × X‖2s−1 + |X × N |2

s− 1
2

)
, (B.3)

for any multi-index α with |α| = s. The constant C(|ψ|s, |∇ψ|W1,∞ ) > 0 depends linearly on |ψ|2s and the
constants C′(|ψ|s+ 1

2
, |∇ψ|W1,∞ ) > 0 and C′(|ψ|s+ 1

2
, |∇ψ|W1,∞ ) > 0 depend linearly on |ψ|2

s+ 1
2
.

Lemma B.2 (Normal trace lemma). For any sufficiently smooth vector field X and s ≥ 0, one has

|X · N |2s− 1
2
. C′′′(|ψ|s+ 1

2
, |∇ψ|W1,∞ )

(
‖〈∂〉sX‖20 + ‖∇ϕ · X‖2s−1

)
(B.4)

where the constant C′′′(|ψ|s+ 1
2
, |∇ψ|W1,∞ ) > 0 depends linearly on |ψ|2

s+ 1
2
.

We list two lemmas for the estimates of traces in the anisotropic Sobolev spaces. Define

L2
T (Hm

∗ (Ω±)) =

m⋂
k=0

Hk((−∞,T ]; Hm−k
∗ (Ω±))

with the norm ‖u‖m,∗,T,± :=
∫ T
−∞
‖u(t)‖2m,∗,± dt. Similarly, we define

L2
T (Hm(Σ)) =

m⋂
k=0

Hk((−∞,T ]; Hm−k(Σ))

with the norm |u|m,T :=
∫ T
−∞
|u(t)|2m dt.
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Lemma B.3 (Trace lemma for anisotropic Sobolev spaces, [81, Lemma 3.4]). Let m ≥ 1, m ∈ N∗, then we
have the following trace lemma for the anisotropic Sobolev space.

1. If f ∈ L2
T (Hm+1

∗ (Ω±)), then its trace f |Σ belongs to L2
T (Hm(Ω±)) and satisfies

| f |m,T . ‖ f ‖m+1,∗,T,±.

2. There exists a linear continuous operator R±T : L2
T (Hm(Σ))→ L2

T (Hm+1
∗ (Ω±)) such that (R±T g)|Σ = g and

‖R±T g‖m+1,∗,T,± . |g|m,T .

Proof. The proof for the above lemma can be found in [68, Theorem 1] when we replace (−∞,T ) by (−∞,∞).
In our case, we can prove the same result by doing Sobolev extension. Namely, given f ∈ L2

T (Hm+1
∗ (Ω+)), we

can extend it to F(t, x) : R ×Ω+ → R such that

‖ f ‖m+1,∗,T,+ . ‖F(t, x)‖Hm+1
∗ (R×Ω+) . ‖ f ‖m+1,∗,T,+.

We can apply [68, Theorem 1] to F, and then do the truncation in (−∞,T ]

| f |m,T . |F|Hm(R×Σ) . ‖F(t, x)‖Hm+1
∗ (R×Ω+) . ‖ f ‖m+1,∗,T,+.

�

There is one derivative loss in the above trace lemma, which is 1/2-order more than the trace lemma for
standard Sobolev spaces. Indeed, for Ω± defined in this paper, we have the following estimate that will be
applied to control the non-characteristic variables q, v · N and b · N.

Lemma B.4 (An estimate for traces of non-characteristic variables). Let Ω± := Td−1 × {0 ≶ xd ≶ ±H},
Σ = Td−1 × {xd = 0} and Σ± = Td−1 × {±H}. Let T α = (ω(xd)∂d)αd+1∂α0

t ∂
α1
1 · · · ∂

αd−1
d−1 ∂

αd
d with 〈α〉 := α0 + · · · +

αd−1 + 2αd + αd+1 = m − 1, m ∈ N∗. Let q±(t, x) ∈ Hm
∗ (Ω) satisfy ‖q±(t)‖m,∗,± + ‖∂dq±(t)‖m−1,∗,± < ∞ for any

0 ≤ t ≤ T and let f ± ∈ H2
∗ (Ω

±) ∩ H
3
2 (Ω±) be a function vanishing on Σ±. Then we have∫

Σ

(〈∂〉
1
2T γq±) (〈∂〉 f ±) dx′ ≤ (‖∂dq±‖m−1,∗,± + ‖q±‖m,∗,±)‖〈∂〉

1
2 f ±‖1,± (B.5)

In particular, for s ≥ 1, we have the following inequality for any g± ∈ Hs
∗(Ω

±) with g±|Σ± = 0.

|g±|2s−1/2 ≤ ‖〈∂〉
sg±‖0,±‖〈∂〉s−1∂dg±‖0,± ≤ ‖g±‖s,∗,±‖∂dg±‖s−1,∗,±.

Proof. This is a direct consequence of Gauss-Green formula. Note that the unit exterior normal vectors for
Ω± are (0, · · · , 0,∓1)> respectively, so we have∫

Σ

(〈∂〉
1
2T γq±) (〈∂〉 f ±) dx′ = ∓

∫
Ω±

(∂dT
γq±) (〈∂〉

3
2 f ±) + (〈∂〉T γq±) (〈∂〉

1
2 ∂d f ±) dx

≤ (‖∂dq±‖m−1,∗,± + ‖q±‖m,∗,±)‖〈∂〉
1
2 f ±‖1,±

(B.6)

In particular, let q± = g± and f ± = 〈∂〉s−
3
2 g± in (B.5) and we get

|g±|2s−1/2 =

∫
Σ

(〈∂〉s−1/2g±)(〈∂〉s−1/2g±) dx′ = ∓2
∫

Ω±
(∂d〈∂〉

s−1/2g±)(〈∂〉s−1/2g±) dx

〈∂〉1/2

= ∓ 2
∫

Ω±
(∂d〈∂〉

s−1g±)(〈∂〉sg±) dx.

�

The following lemma concerns the Sobolev embeddings.

Lemma B.5 ([81, Lemma 3.3]). We have the following inequalities

Hm(Ω±) ↪→ Hm
∗ (Ω±) ↪→Hbm/2c(Ω±), ∀m ∈ N∗

‖u‖L∞(Ω±) . ‖u‖H3
∗ (Ω±), ‖u‖W1,∞(Ω±) . ‖u‖H5

∗ (Ω±), |u|W1,∞(Ω±) . ‖u‖H5
∗ (Ω±).
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We also need the following Kato-Ponce type multiplicative Sobolev inequality.

Lemma B.6 ([42]). Let J = (1 − ∆)1/2, s ≥ 0. Then the following estimates hold:

‖J s( f g)‖L2 . ‖ f ‖W s,p1 ‖g‖Lp2 + ‖ f ‖Lq1 ‖g‖W s,q2 , (B.7)

where 1/2 = 1/p1 + 1/p2 = 1/q1 + 1/q2 and 2 ≤ p1, q2 < ∞.

‖[J s, f ]g‖Lp . ‖∂ f ‖L∞‖J s−1g‖Lp + ‖J s f ‖Lp‖g‖L∞ (B.8)

where s ≥ 0 and 1 < p < ∞.

We also need the following transport-type estimate in order to close the uniform estimates for the nonlin-
ear approximate system.

Lemma B.7 ([24, Lemma 1]). Let f (t) ∈ W1,1(0,T ) and g ∈ L1(0,T ) and κ > 0. Assume that

f (t) + κ f ′(t) ≤ g(t) a.e. t ∈ (0,T ).

Then for any t ∈ (0,T ),
sup
τ∈[0,t]

f (τ) ≤ f (0) + ess sup
τ∈(0,t)

|g(τ)|.

C Paraproducts and the Dirichlet-to-Neumann operator

C.1 Bony’s paraproduct decomposition
We already introduce the paradifferential operator in Section 7.2.2. Here we present the relations between
paradifferential operators and paraproducts. The cutoff function χ̃(ξ, η) in the definition of Tau is

χ̃(ξ, η) =

∞∑
k=0

Θk−3(ξ)ϑ(η),

where Θ(ξ) = 1 when |ξ| ≤ 1 and Θ(ξ) = 0 when |ξ| ≥ 2 and

Θk(ξ) := Θ(
ξ

2
), k ∈ Z, ϑ0 = Θ, ϑk := Θk − Θk−1, k ≥ 1.

Based on this, we can introduce the Littlewood-Paley projections Pk and P≤k as follows

P̂ku(ξ) := ϑk(ξ)û(ξ), ∀k ≥ 0, Pku := 0 ∀k < 0, P≤ku :=
∑
l≤k

Plu.

When the symbol a(x, ξ) (in the paradifferential operator Ta) does not depend on ξ, we can take ψ(η) ≡ 1 and
then we have

Tau =
∑

k

P≤k−3a(Pku)

which is the usual Bony’s paraproduct. In general, the well-known Bony’s paraproduct decomposition is

au = Tau + Tua + R(u, a), R(u, a) =
∑
|k−l|≤2

(Pka)(Plu).

We have the following estimates for the remainder R(u, a)

Lemma C.1 ([3, Section 2.3]). For s ∈ R, r < d/2, δ > 0, we have

|Tau|Hs . min{|a|L∞ |u|Hs , |a|Hr |u|
Hs+ d

2 −r , |a|H d
2
|u|Hs+δ }

and for any s > 0, s1, s2 ∈ R satisfying s1 + s2 = s + d
2 , we have

|R(u, a)|Hs . |a|Hs1 |u|Hs2 .
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C.2 Basic properties of the Dirichlet-to-Neumann operator
Let the space dimension d = 3 for simplicity. Given a function f : Σ = T2 → R, we define the Dirichlet-to-
Neumann (DtN) operator (with respect to ψ and region Ω±) by

N
±
ψ f := ∓N · ∇ϕ(E±ψ f )|Σ, −∆ϕ(E±ψ f ) = 0 in Ω±, E±ψ f |Σ = f , ∂3(E±ψ f )|Σ± = 0.

Here the Laplacian operator is defined by ∆ϕ := ∇ϕ · ∇ϕ = ∂i(Ei j∂ j) with

E =
1
∂3ϕ


∂3ϕ 0 −∂1ϕ

0 ∂3ϕ −∂2ϕ

−∂1ϕ −∂2ϕ
1+|∇ϕ|2

∂3ϕ

 =
1
∂3ϕ

PP >, P :=


∂3ϕ 0 0
0 ∂3ϕ 0
−∂1ϕ −∂2ϕ 1

 ,
and ϕ(t, x) := x3 +χ(x3)ψ(t, x′) is defined in (1.9) as the extension of ψ into Ω±. The choice of χ(x3) is slightly
different from [2, 3, 4], but it does not introduce any substantial difference because the expression of ∆ϕ is
still written to be ∆ϕ := ∇ϕ · ∇ϕ = ∂i(Ei j∂ j). The DtN operators satisfy the following estimates and we refer
to [75, Appendix A.4] for the proof.

Lemma C.2 (Sobolev estimates for DtN operators). For s > 2 + d
2 , −

1
2 ≤ r ≤ s−1 and ψ ∈ Hs(Td), we have

|N±ψ f |r ≤ C(|ψ|s)| f |r+1.

Lemma C.3 (Remainder estimates for DtN operators). For s > 2 + d
2 and ψ ∈ Hs(Td), we have

N
±
ψ f = TΛ(1),± f + R±1 ( f )

with Λ(1),+ = Λ(1),± defined in Proposition 7.7 and

∀r ∈ [
1
2
, s − 1], |R±1 ( f )|r + |(N+

ψ − N
−
ψ) f |r ≤ C(|ψ|s)| f |r.

Lemma C.4 (Sobolev estimates for the inverse of DtN operators). For s > 2 + d
2 , −

1
2 ≤ r ≤ s − 1 and

ψ ∈ Hs(Td), we have
|(N±ψ)−1 f |r+1 ≤ C(|ψ|s)| f |r.

D Construction of initial data satisfying the compatibility conditions
Given initial data (v±0 , b

±
0 , q

±
0 , S

±
0 , ψ0) of the original current-vortex sheets problem (1.33) satisfying the com-

patibility conditions (1.34) up to 7-th order, we need to construct a sequence of initial data (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0)

to the nonlinear κ-approximate system (3.1) satisfying the compatibility conditions (3.4) up to 7-th order that
converge to the given data as κ → 0+.

D.1 Reformulation of the compatibility conditions
Let us first ignore the κ-regularization terms and consider the compatibility conditions (1.34) for the original
system. Also, let us omit the fixed boundaries Σ±, omit the density functions, consider the isentropic case and
write ε2 = F ±p for convenience. The heuristic idea is that the odd (m = 2r + 1) order compatibility condition
is rewritten to be

−
�
Λr+1
ε,b0

(∆ϕ0 )r(∇ϕ0 · v0)
�

= · · · on Σ

and the even (m = 2r) order compatibility condition is rewritten to be�
Λr
ε,b0

(∆ϕ0 )rq0

�
= · · · on Σ

with Λε,b0 := ε−2 + |b0|
2. Such reformulation is convenient for us to add κ-perturbation terms to construct the

desired data for (3.1). More specifically, let us start with the zero-th order compatibility conditions:�
q0

�
= σH(ψ0), ψt |t=0 = v±0 · N0 = v±03 − v̄±0 · ∂ψ0. (D.1)
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The first-order compatibility conditions are

∂t
�
q

�
|t=0 = σ∂tH(ψ)|t=0, ψtt |t=0 = ∂t(v± · N)|t=0, (D.2)

which are not easy to compute, especially the first one. The left side is equal to

∂tq+ − ∂tq− = D+
t q+ − D−t q− − (v̄+ · ∇)

�
q

�
− (~v̄� · ∇)q−.

Using the continuity equation, the evolution equation of b, we get

Dtq = −ε−2(∇ϕ · v) + Dtb · b = − (ε−2 + |b|2)︸       ︷︷       ︸
=:Λε,b

(∇ϕ · v) + (b̄ · ∇)v · b on Σ,

and thus the time-differentiated jump condition becomes�
Λε,b(∇ϕ0 · v0)

�
=

�
(b̄0 · ∇)v0 · b0

�
− (~v̄0� · ∇)q−0 + D+

t (σH(ψ))|t=0 on Σ.

Here and thereafter, we will repeatedly use D±t ψ = v±3 on Σ and omit lots of redundant terms in order for
simplicity of notations. For example, we will write H(ψ) ∼ ∆ψ, write (1 − ∆) to be −∆, and omit the
commutators between D+

t and H , (1 − ∆), the density function ρ. Indeed, later we will see that the concrete
form of those omitted term is not important, and we just need to find out the major term as in [49, Appendix
A]. Under this setting, we have�

Λε,b(∇ϕ0 · v0)
�
∼

�
(b̄0 · ∇)v0 · b0

�
− (~v̄0� · ∇)q−0 + σ∆v+

03 on Σ. (D.3)

For higher-order compatibility conditions, we invoke the wave equation (7.11) to get (cf. [49, Appendix A.1])

(Dt)2q = Λε,b∆ϕq +M0(v, b) +N0(v, b) on Σ, (D.4)

where
M0(v, b) = −(b̄ · ∇)2q + (b̄ · ∇)2b · b + R0(v, b), N0(v, b) = ∂

ϕ
i v j∂

ϕ
j v

i − ∂
ϕ
i b j∂

ϕ
j b

i

and R0(v, b) only contains the first-order derivatives of b, v with the form

R0(v, b) = P0(b)((∂i1 v)(∂i2 v) + (∂ j1 b)(∂ j2 b))

where P0(b) is a polynomial of b only containing cubic and quadratic terms and (i1, i2, j1, j2) = (0, 0, 1, 1) or
(1, 1, 0, 0). Taking substraction between the equation of q+ and the equation of q−, we get�

(Dt)2q
�
|t=0 =

�
Λε,b0∆

ϕ0 q0
�

+ ~M0(v0, b0) +N0(v0, b0)� on Σ.

Then using D+
t = D−t + (~v̄� · ∇), we get�

(Dt)2q
�
|t=0 = (D+

t )2(σH(ψ))|t=0 + T 2
~v�q

−|t=0,

where each T~v� represents either of D−t and (~v̄� · ∇). So, the second-order compatibility condition is refor-
mulated as�

Λε,b0∆
ϕ0 q0

�
= (D+

t )2(σH(ψ))|t=0 + T 2
~v�q

−|t=0 − ~M0(v0, b0) +N0(v0, b0)�

∼ − σ∆∂3q+
0 + σ∆(b̄+ · ∇)b+

03 + T 2
~v�q

−|t=0 − ~M0(v0, b0) +N0(v0, b0)� on Σ. (D.5)

Taking one more material derivative in the wave equation and again use the continuity equation, we get

(Dt)3q ∼ −Λ2
ε,b∆ϕ(∇ϕ · v) + ε−2(b̄ · ∇)2(∇ϕ · v) +M1(v, b, q) +N1(v, b, q) (D.6)
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where the concrete form ofM1,N1 will be specified later. Recursively, after long and tedious calculations
(cf. [49, (A.4)-(A.7)]), we find that the time-differentiated wave equation (restricted on {t = 0} × Σ) can be
expressed as

m = 2r + 1, − Λr+1
ε,b0

(∆ϕ0 )r(∇ϕ0 · v0) = (Dt)2r+1q +

r∑
j=0

(∆ϕ0 ) j(M2r−1−2 j(v0, b0, q0) +N2r−1−2 j(v0, b0, q0)) on Σ,

(D.7)

m = 2r, Λr
ε,b0

(∆ϕ0 )rq0 = (Dt)2rq +

r−1∑
j=0

(∆ϕ0 ) j(M2r−2−2 j(v0, b0, q0) +N2r−2−2 j(v0, b0, q0)) on Σ, (D.8)

whereM−1(v0, b0) := −(b̄0 · ∇)v0 · b0 and N−1 := 0, and for r ≥ 1 we define

m = 2r − 1, M2r−1(v0, b0, q0) =(b̄0 · ∇)2(∆ϕ0 )r−1(∇ϕ0 · v0) +

r+1∑
l=2

bi1
0 · · · b

i2l
0 (∇2r+1v0)︸                 ︷︷                 ︸

<2l terms

+R2r−1(v0, b0, q0),

(D.9)

m = 2r, M2r(v0, b0, q0) = − (b̄0 · ∇)2(∆ϕ0 )rq0 + R2r(v0, b0, q0),

+

r+1∑
l=2

(b̄0 · ∇)r+2(∇rb0)bi1
0 · · · b

i2l
0 + (b̄0 · ∇)2(∇2rq0)b j1

0 · · · b
j2l
0︸                                                                  ︷︷                                                                  ︸

<2l terms

; (D.10)

and the term Rm, where every top-order term has (m + 1)-th order derivative, has the following form

Rm(v0, b0, q0) = Pk(b0)
(
Cm

i1···ip, j1··· jn,k1···kl
(∇i1 v0) · · · (∇ip v0)(∇ j1 b0) · · · (∇ jn b0)(∇k1 q0) · · · (∇kl q0)

)
,

where ∇ may represent either of ∇ϕ0 or ∂, and Pk(·) is a polynomial of its arguments and the lowest power is
4 and the indices above satisfy

1 ≤ i1, · · · , ip, j1, · · · , jn ≤ k + 1, 0 ≤ k1, · · · , kl ≤ m + 1,
i1 + · · · + ip + j1 + · · · + jn + k1 + · · · + kl = m + 1.

The term Nm(v0, b0, q0) has the following form

Nm(v0, b0, q0) = Pm,1(b0)(∇1+2b m
2 cv0)(∇v0) + Pm,2(b0)(∇2d m

2 eq0)(∇v0) + Pk,0(b0)(∇m+1b0)(∇v0)

+ P′m(b0)Dm
i1···ip, j1··· jn,k1···kl

(
(∇i1 v0) · · · (∇ip v0)(∇ j1 b0) · · · (∇ jn b0)(∇k1 q0) · · · (∇kl q0)

)
, (D.11)

where Pm,1(·), Pm,2(·), P′m(·) are polynomials of their arguments and Pm,0(·) is a polynomial of its arguments
and the lowest power is 2. The indices above satisfy

1 ≤ i1, · · · , ip, j1, · · · , jn ≤ k, 0 ≤ k1, · · · , kl ≤ m,

i1 + · · · + ip + j1 + · · · + jn + k1 + · · · + kl = m + 1.

Next we take the difference between the equations (D.7)-(D.8) in Ω+ and those in Ω− and restrict the equation
on {t = 0} × Σ to get the jump condition in the m-th order compatibility conditions

m = 2r + 1, −
�
Λr+1
ε,b0

(∆ϕ0 )r(∇ϕ0 · v0)
�

=
�
(Dt)2r+1q

�
(D.12)

+

r∑
j=0

�
(∆ϕ0 ) j(M2r−1−2 j(v0, b0, q0) +N2r−1−2 j(v0, b0, q0))

�
on Σ,

m = 2r,
�
Λr
ε,b0

(∆ϕ0 )rq0

�
=

�
(Dt)2rq

�
(D.13)

+

r−1∑
j=0

�
(∆ϕ0 ) j(M2r−2−2 j(v0, b0, q0) +N2r−2−2 j(v0, b0, q0))

�
on Σ.
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Then using D+
t = D−t + (~v̄� · ∇), we get�

(Dt)mq
�

= (D+
t )m �

q
�

+ T m
~v̄�q

−|t=0,

where each T~v̄� represents either (D−t ) or (~v̄� · ∇). Using the jump condition for
�
q

�
, we have

m = 2r : (D+
t )2r �

q
�
∼ σ∆(D+

t )2r−1v+
3 ∼ σΛr−1

ε,b0
∆(∆ϕ0 )r−1∂3q+

0 + σ∆S2r−1(v+
0 , b

+
0 , q

+
0 ) (D.14)

m = 2r + 1 : (D+
t )2r+1 �

q
�
∼ σ∆(D+

t )2rv+
3 ∼ −σΛr

ε,b0
∆(∆ϕ0 )r−1∂3(∇ϕ0 · v+

0 ) + σ∆S2r(v+
0 , b

+
0 , q

+
0 ) (D.15)

where the leading-order terms in Sm are

S2r−1
L
= (Λε,b0 )r−2(b̄0 · ∇)2(∆ϕ0 )r−2∂3q+

0 , S2r
L
= −(Λε,b0 )r−1(b̄0 · ∇)2(∆ϕ0 )r−2∂3(∇ϕ0 · v+

0 ). (D.16)

Thus, the compatibility conditions for the original current-vortex sheets system (1.33) are reformulated as

m = 2r + 1, −
�
Λr+1
ε,b0

(∆ϕ0 )r(∇ϕ0 · v0)
�
∼

r∑
j=0

�
(∆ϕ0 ) j(M2r−1−2 j(v0, b0, q0) +N2r−1−2 j(v0, b0, q0))

�
(D.17)

+ T 2r+1
~v̄� q−|t=0 − σΛr

ε,b0
∆(∆ϕ0 )r−1∂3(∇ϕ0 · v+

0 ) + σ∆S2r(v+
0 , b

+
0 , q

+
0 ) on Σ,

m = 2r,
�
Λr
ε,b0

(∆ϕ0 )rq0

�
∼

r−1∑
j=0

�
(∆ϕ0 ) j(M2r−2−2 j(v0, b0, q0) +N2r−2−2 j(v0, b0, q0))

�
(D.18)

+ T 2r
~v̄�q

−|t=0 + σΛr−1
ε,b0

∆(∆ϕ0 )r−1∂3q+
0 + σ∆S2r−1(v+

0 , b
+
0 , q

+
0 )) on Σ.

Note that the time-differentiated kinematic boundary condition is already implicitly used when deriving the
above compatibility conditions. Similarly, the compatibility conditions for the κ-approximate problem (3.1)
are reformulated as

m = 2r + 1, −
�
Λr+1
ε,b0

(∆ϕ0 )r(∇ϕ0 · vκ0)
�
∼

r∑
j=0

�
(∆ϕ0 ) j(M2r−1−2 j(vκ0, b

κ
0, q

κ
0) +N2r−1−2 j(vκ0, b

κ
0, q

κ
0))

�
+ T 2r+1

~v̄� q−|t=0 − σΛr
ε,b0

∆(∆ϕ0 )r−1∂3(∇ϕ0 · vκ,+0 ) + κΛr
ε,b0

∆2(∆ϕ0 )r−1∂3(∇ϕ0 · vκ,+0 ) + κΛr
ε,b0

∆(∆ϕ0 )r∂3q+
0

+ (σ∆ − κ∆2)S2r(vκ,+0 , bκ,+0 , qκ,+0 ) + κ∆S2r+1(vκ,+0 , bκ,+0 , qκ,+0 ) on Σ, (D.19)

m = 2r,
�
Λr
ε,b0

(∆ϕ0 )rqκ0
�
∼

r−1∑
j=0

�
(∆ϕ0 ) j(M2r−2−2 j(vκ0, b

κ
0, q

κ
0) +N2r−2−2 j(vκ0, b

κ
0, q

κ
0))

�
+ T 2r

~v̄�q
−|t=0 + σΛr−1

ε,b0
∆(∆ϕ0 )r−1∂3q+

0 − κΛ
r−1
ε,b0

∆2(∆ϕ0 )r−1∂3q+
0 − κΛ

r
ε,b0

∆(∆ϕ0 )r−1∂3(∇ϕ0 · v+
0 )

+ (σ∆ − κ∆2)S2r−1(vκ,+0 , bκ,+0 , qκ,+0 ) + κ∆S2r(vκ,+0 , bκ,+0 , qκ,+0 ) on Σ. (D.20)

D.2 Construction of the converging initial data
Given initial data (v±0 , b

±
0 , q

±
0 , S

±
0 , ψ0) of (1.33) satisfying the compatibility conditions (D.17)-(D.18) up to

7-th order, we now construct the initial data (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0) to (3.1) satisfying the compatibility

conditions (D.19)-(D.20) up to 7-th order that converge to the given data as κ → 0+. To do this, we just need
to equally distribute the κ-term to the solution in Ω+ and the solution in Ω−.

D.2.1 Recover the 0-th order and the 1-st order compatibility conditions

First, we pick bκ,±0 = b±0 , ψκ0 = ψ0. We define ∂tψ
κ|t=0 := v±0 · N0 and ∂tb±|t=0 = (b±0 · ∇

ϕ0 )v±0 − b±0 (∇ϕ0 · v±0 ) in
Ω±. Then the constraints for the magnetic field are automatically satisfied. Now, we construct q(0)

0 such that
(v±0 , b

±
0 , q

(0),±
0 , ψ0) satisfies the 0-th order compatibility condition (D.20). The function q(1),±

0 is set to be the
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solution to the poly-harmonic equation
∆2q(0),±

0 = ∆2q±0 in Ω±

q(0),±
0 = q±0 ∓

1
2κ∆

2ψ0 ±
1
2κ∆(v±0 · N0) on Σ

∂3q(0),±
0 = ∂3q±0 on Σ

∂
j
3q(0),±

0 = ∂
j
3q±0 , 0 ≤ j ≤ 1 on Σ±.

(D.21)

Then for s ≥ 4, we have

‖q(0),±
0 − q±0 ‖s,± . κ|∆

2ψ0|s−0.5 + κ|∆(v±0 · N0)|s−0.5 → 0 as κ → 0.

With this q(0)
0 , we define ∂2

t ψ|t=0 = ∂t(v± · N)|t=0 via (v±0 , b
±
0 , q

(0),±
0 , ψ0) on Σ. (Note that ∂tv · N |t=0 already

includes ∂3q0. Only when we have ∂3q(0),±
0 = ∂3q±0 on Σ can we keep the jump condition ~∂t(v · N)� = 0.)

and also define the corresponding ∂2
t b|t=0 in Ω± via the evolution equation of b. Thus, the ∂t-differentiated

boundary constraint for b · N is also satisfied.
Now we introduce v(0),±

0 such that (v(0),±
0 , b±0 , q

(0),±
0 , ψ0) satisfies the 1-st order compatibility condition

(D.19). We define v̄(0),±
0i = v̄±0i for i = 1, 2 and define v(0),±

03 via the following poly-harmonic equation
∆3v(0),±

03 = ∆3v±03 in Ω±

Λε,b0 (∇ϕ0 · v(0),±
03 ) = (∇ϕ0 · Λε,b0 v±03) ∓ 1

2 (~v̄0� · ∇)(q(0),±
0 − q±0 ) ∓ κ

2 ∆2v+
03 ±

κ
2 ∆∂3q(0),+

0 on Σ

v(0),±
03 = v±03, ∂2

3v(0),±
03 = ∂2

3v±03 on Σ

∂
j
3v(0),±

03 = ∂
j
3v±03, 0 ≤ j ≤ 2 on Σ±.

(D.22)

It is also straightforward to see the convergece for s ≥ 6

‖v(0),±
0 − v±0 ‖s,± . |q

(0),±
0 − q±0 |s−0.5 + κ(|v+

03|s+2.5 + |∂3q+
0 |s+0.5).

D.2.2 Higher-order compatibility conditions

For r ≥ 1, we can inductively define q(r),±
0 such that (v(r−1),±

0 , b±0 , q
(r),±
0 , ψ0) satisfies the compatibility condition

up to 2r-th order

∆2r+2q(r),±
0 = ∆2r+2q(r−1),±

0 in Ω±

Λr
ε,b0

(∆ϕ0 )rq(r),±
0 = Λr

ε,b0
(∆ϕ0 )rq(r−1),±

0

+
r−1∑
j=0

(∆ϕ0 ) j
(
(M2r−2−2 j +N2r−2−2 j)(v

(r−1),±
0 , b±0 , q

(r),±
0 ) − (M2r−2−2 j +N2r−2−2 j)(v

(r−2),±
0 , b±0 , q

(r−1),±
0 )

)
± 1

2

(
(T 2r
~v̄(r−1)�

q(r),− − T 2r
~v̄(r−2)�

q(r−1),−) + σΛr−1
ε,b0

∆(∆ϕ0 )r−1∂3(q(r),+
0 − q(r−1),+

0 )︸                              ︷︷                              ︸
=0

+σ∆
(
S2r−1(v(r−1),+

0 , b+
0 , q

(r),+
0 ) − S2r−1(v(r−2),+

0 , b+
0 , q

(r−1),+
0 )

))
∓ κ2

Λr−1
ε,b0

∆2(∆ϕ0 )r−1∂3(q(r),+
0 − q(r−1),+

0 )︸                                ︷︷                                ︸
=0

−∆Λr
ε,b0

(∆ϕ0 )r−1∂3∇
ϕ0 · (v(r−1),+

0 − v(r−2),+
0 )


∓ κ2

(
(∆2S2r−1 − ∆S2r)(v

(r−1),+
0 , b+

0 , q
(r),+
0 ) − (∆2S2r−1 − ∆S2r)(v

(r−2),+
0 , b+

0 , q
(r−1),+
0 )

)
on Σ

∂
j
3q(r),±

0 = ∂
j
3q(r−1),±

0 , 0 ≤ j ≤ 2r + 1, j , 2r on Σ

∂
j
3q(r),±

0 = ∂
j
3q(r−1),±

0 , 0 ≤ j ≤ 2r + 1 on Σ±,
(D.23)

106



and define v̄(r),±
0 = v̄(r−1),±

0 and v(r),±
03 such that (v(r),±

0 , b±0 , q
(r),±
0 , ψ0) satisfies the compatibility condition up to

(2r + 1)-th order

∆2r+3v(r),±
03 = ∆2r+3v(r−1),±

03 in Ω±

−Λr
ε,b0

(∆ϕ0 )r(∇ϕ0 · v(r),±
0 ) = −Λr

ε,b0
(∆ϕ0 )r(∇ϕ0 · v(r−1),±

0 )

+
r∑

j=0
(∆ϕ0 ) j

(
(M2r−1−2 j +N2r−1−2 j)(v

(r),±
0 , b±0 , q

(r),±
0 ) − (M2r−1−2 j +N2r−1−2 j)(v

(r−1),±
0 , b±0 , q

(r−1),±
0 )

)
± 1

2

(
(T 2r+1
~v̄(r)�

q(r),− − T 2r
~v̄(r−1)�

q(r−1),−) − σΛr−1
ε,b0

∆(∆ϕ0 )r−1∂3∇
ϕ0 · (v(r),+

03 − v(r−1),+
03 )︸                                     ︷︷                                     ︸

=0

+σ∆
(
S2r(v

(r),+
0 , b+

0 , q
(r),+
0 ) − S2r(v

(r−1),+
0 , b+

0 , q
(r−1),+
0 )

))
± κ2

∆2Λr−1
ε,b0

(∆ϕ0 )r−1∂3∇
ϕ0 · (v(r),+

0 − v(r−1),+
0 )︸                                   ︷︷                                   ︸

=0

−∆Λr
ε,b0

(∆ϕ0 )r−1∂3(q(r),+
0 − q(r−1),+

0 )


∓ κ2

(
(∆2S2r − ∆S2r+1)(v(r),+

0 , b+
0 , q

(r),+
0 ) − (∆2S2r − ∆S2r+1)(v(r−1),+

0 , b+
0 , q

(r−1),+
0 )

)
on Σ

∂
j
3v(r),±

03 = ∂
j
3v(r−1),±

03 , 0 ≤ j ≤ 2r + 2, j , 2r + 1 on Σ

∂
j
3v(r),±

03 = ∂
j
3v(r−1),±

03 , 0 ≤ j ≤ 2r + 2 on Σ±.
(D.24)

Since we require the compatibility conditions up to 7-th order, we can stop at r = 3 and define (vκ,±0 , bκ,±0 , qκ,±0 , S κ,±
0 , ψκ0)

to be (v(3),±
0 , b±0 , q

(3),±
0 , S ±0 , ψ0). It is also straightforward to see the convergence after long and tedious calcu-

lations: For s ≥ 2 × (2r + 3) = 18, we have the convergence

∥∥∥(vκ,±0 , qκ,±0 ) − (v±0 , q
±
0 )

∥∥∥
s,± . P(‖v±0 , b

±
0 , q

±
0 , S

±
0 ‖s+1,±)

κ|ψ0|s+3.5 +

r∑
j=0

κ|(∆ϕ0 ) jv±0 |s+1.5−2 j + κ|(∆ϕ0 )( j−1)+∂3q±0 |s+0.5−2 j


→ 0 as κ → 0,

provided that the given initial data is sufficiently regular. Specifically, picking s = 18, the given data is
required to satisfy ‖(v±0 , b

±
0 , q

±
0 , S

±
0 )‖20,± + |ψ0|21.5 < +∞. We may assume the given data belongs to C∞-class

for convenience.
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