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1 Chapter 0

Skipped for triviality: 1–3, 9–12, 14–15, 17, 19–22, 24–29.

4. f1 is homotopy inverse for inclusion i : A ↪→ X.

5. Suppose ft : X → X is deformation retraction. idX
ft' cx0 .

For each neighborhood U 3 x, there exists t0 ∈ (0, 1) s.t. ft(X) ⊆ U for all t ∈ [t0, 1]. Let V = ft0(X).

ht = ft+(1−t)t0 ◦ f
−1
t0 is homotopy from inclusion i : V ↪→ U to constant map V → {x0}.

6. (a) First deformation retracts to the bottom line [0, 1]× {0}, then deformation retracts to a point.

X doesn’t deformation retract to any other point because of Exercise 0.5.

(b)(c) Y deformation retracts in the weak sense to the middle zigzag, so it’s a homotopy equivalence.

The middle zigzag is homeomorphic to R1, which is contractible, so Y is contractible.

There’s no true deformation retraction from Y to the zigzag, otherwise Y will deformation retract to a point.

7. X is union of infinite cones on the Cantor set arranged end-to-end and getting smaller and smaller.

The “baseline” of X is [0, 1). One-point compactification of X × R is obtained by adding the endpoint 1 of [0, 1).

After one-point compactification, {0} × R and additional point {1} × {0} become the boundary of D2.

Y is obtained from one-point compactification of X × R by wrapping one more cone on the Cantor set around the

boundary of D2. Y doesn’t deformation retract to a point because of Exercise 0.5.

X can deformation retract to baseline [0, 1) in the weak sense in the following way:

For n ∈ N, point on [1− 1

2n+1
, 1− 1

2n+2
] moves to [1− 1

2n
, 1− 1

2n+1
] alone [0, 1), and point on [0, 1/2] moves to {0}.

The point on cones moves to [0, 1) in the similar way, so X deformation retract to [0, 1) in the weak sense, and

one-point compactification of X × R deformation retract to D2 in the weak sense.

Y deformation retract to D2 with a cone on the Cantor set around the boundary of D2 in the weak sense.

This space can deformation retract to D2 in the weak sense by moving points on cone and rotating D2 clockwise.

Thus D2 ↪→ Y is homotopy equivalence, D2 is contractible, so Y is contractible.

8. The picture above is the house with three rooms. It’s similar for the general case.

13. The desired rst is given by rst =

{
r0t ◦ r12st 0 ⩽ s ⩽ 1/2

r0t·2(1−s) ◦ r
1
t 1/2 ⩽ s ⩽ 1

16. S∞ := {(x1, x2, . . . , xn, . . . ) | there exists N s.t. xk = 0 for k ⩾ N,
√∑∞

i=1 |xi|2 = 1}.

Let T : S∞ → S∞, (x1, x2, . . .) 7→ (0, x1, x2, . . .), ft = (1− t)idS∞ + tT 6= 0 and f̃t = ft/|ft|.

Let K be constant map S∞ → (1, 0, . . .), gt = (1− t)T + tK 6= 0 and g̃t = gt/|gt|. idS∞
f̃t' T

g̃t' K.
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18. Let π1 : Sm × Sn × {0} → Sm, π2 : Sm × Sn × {1} → Sn.

Sm ∗ Sn = (Sm × Sn × [0, 1/2])/π1 ∪Sm×Sn×{1/2} (S
m × Sn × [1/2, 1])/π2. Sm × Sn × {1/2} ' ∂Dm+1 × ∂Dn+1.

Sm × Sn × [0, 1/2]/π1 ' Sm × CSn ' ∂Dm+1 ×Dn+1, Sm × Sn × [1/2, 1]/π2 ' Sn × CSm ' Dm+1 × ∂Dn+1.

∂Dm+1 ×Dn+1 ∪∂Dm+1×∂Dn+1 Dm+1 × ∂Dn+1 ' ∂(Dm+1 ×Dn+1) ' ∂Dm+n+2 ' Sm+n+1.

23. Suppose X,Y and A = X ∩ Y are contractible. (X,A), (Y,A), (X ∪ Y,A) have HEP.

X ∪ Y ' (X ∪ Y )/A ' (X/A) ∨ (Y/A) ' X ∨ Y ' {∗1} ∨ {∗2} ' {∗}.

2 Section 1.1

Skipped for triviality: 1, 4, 6–8, 10–15, 17–20.

2. Show that h1 ' h2 iff change-of-basepoint homomorphism βh1
= βh2

.

3. (⇒) If π1(X) is abelian, h1, h2 are two paths from x0 to x1, [f ] ∈ π1(X,x1), then [f ][h2 · h1] = [h2 · h1][f ].

(⇐) For [f ], [g] ∈ π1(X,x0), let g = g1 · g2. βg1 = βg2 , [g][f ] = [f ][g]. X is path-connected, so π1(X) is abelian.

5. f : X → Y is nullhomotopic ⇔ f can extend to CX. Let π : X × I → CX.

(⇒) F : X × I → Y , F |X×{0} = f , F (X × {1}) = {y0}. F induces F̃ : CX = X × I/X × {1} → Y . F̃ |X×{0} = f .

(⇐) If F : CX → Y is extension of f : X → Y , then F ◦ π : X × I → Y is the required homotopy.

(a) ⇔ (b) since CS1 ' D2. (a) ⇔ every loop in X is homotopic to constant loop ⇔ (c).

9. For all s ∈ S2 ⊆ R3, there exists unique plane P s1 ⊆ R3 which divide A1 into 2 pieces of equal measure.

Let −→
Os be normal vector of P s1 , then Bs := {v ∈ R3 | for all p ∈ P s1 ,

−→pv ·
−→
Os ⩾ 0} is half of R3.

Map S2 → R2, s 7→ (m(Bs ∩ A2), (m(Bs ∩ A3)) is continuous. From Borsuk-Ulam theorem, there exists s0 ∈ S2 s.t.

m(Bs0 ∩A2) = m(B−s0 ∩A2),m(Bs0 ∩A3) = m(B−s0 ∩A3)). Hence P s01 is the required plane.

16. If r : X → A is retraction, then i∗ : π1(A) → π1(X) induced by A ↪→ X is injection.

(c) i∗ = 0. (f) i∗(1) = 2.
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3 Section 1.2

Skipped for triviality: 1, 7, 16–17, 19.

Skipped for difficulty: 22.

2. Note that convex set is simply-connected, and intersection of two convex sets is still a convex set.

3. For n ⩾ 3, π1(Rn −
⋃k
i=1{xi}) = π1(D

n −
⋃k
i=1{xi}) = π1(

∨k
i=1 S

n−1) = 0. Generalization: Exercise 1.2.6.

4. R3 −X = R3 − {0} −X ' S2 −X = S2 −
⋃2n
i=1{xi} ' R2 −

⋃2n−1
i=1 {xi} '

∨2n−1
i=1 S1, so π1(R3 −X) ∼= ∗2n−1

i=1 Z.

5. From Proposition 1A.1, every connected graph contains a maximal tree, namely a contractible graph which contains

all the vertices of the connected graph. Suppose X contains a maximal tree M .

If X =M , then X doesn’t contain any loops and π1(X,x0) = π1(M,x0) = 0 for any x0 ∈ X.

Now suppose M 6= X, there’re finitely many edges e1, . . . , en of X not in M .

Fix a basepoint x0 in M . Note that each edge ei corresponds to a loop based at x0 in M ∪ ei.

X =
⋃n
i=1(M ∪ ei). Any three intersection (M ∪ ei) ∩ (M ∪ ej) ∩ (M ∪ ek) is path-connected.

For i 6= j, (M ∪ ei) ∩ (M ∪ ej) =M is contractible, so from van-Kampen’s theorem, π1(X) = ∗ni=1π1(M ∪ ei, x0).

For each i, π1(X ∪ ei, x0) is generated by a loop based at x0 and goes around the bounded complementary region form

by X ∪ ei, such loop doesn’t go through any other ej (j 6= i).

6. If A is discrete subspace of X, then for each x ∈ A, there exists an open ball Bx ⊆ Rn s.t. Bx ∩A = {x}.

Rn −A deformation retracts to X := Rn −
⋃
x∈ABx. X is path-connected.

Let Y be space obtained by attaching n-cells to X via ϕα : ∂Dn → ∂Bx for each x ∈ A, then Y = Rn.

Attaching n-cells (n ⩾ 3) doesn’t change fundamental group, so π1(X) = π1(Y ) = 0.

8. Two tori T1, T2. π1(T1) = Z× Z = 〈a〉 × 〈b〉, π1(T2) = Z× Z = 〈c〉 × 〈d〉.

π1(X) ∼= π1(T1) ∗ π1(T2)/N , N = 〈ac−1〉. π1(X) = 〈a, b, c, d | [a, b] = [c, d] = ac−1 = 1〉 ∼= (Z ∗ Z)× Z.

9. (1) π1(M ′
h) = 〈a1, b1, . . . , ah, bh, c | [a1, b1] · · · [ah, bh]c−1 = 1〉 = 〈a1, b1, . . . , ah, bh〉. π1(C) = 〈c〉 ∼= Z.

If M ′
h retracts to C, then i∗ : π1(C) → π1(M

′
h) is injective. i∗(c) = c = [a1, b1] · · · [ah, bh] in π1(M

′
h).

Abelianization preserves injectivity, so (i∗)ab : π1(C) → π1(M
′
h)ab is injective. But (i∗)ab(c) = 0. Contradiction.

In particular, there is no retraction Mg → C, since such restriction would give a retraction M ′
h → C.

(2) CW complex structure on Mg consists of one 0-cell, 2g 1-cells a1, b1, . . . , ag, bg and one 2-cell.

The 1-skeleton is
∨g
i=1(S

1
ai ∨ S

1
bi
), the attachment map of the 2-cell is [a1, b1] · · · [ag, bg].

Collapsing
∨g
i=2(S

1
ai ∨ S

1
bi
) induces quotient map q :Mg →M1 = S1 × S1.

r :M1 = S1 × S1 → S1 × {s0} = C ′, s0 ∈ S1, (x, y) 7→ (x, s0) is retraction, so r ◦ q :Mg → C ′ is a retraction.

10. D2×I−{α, β} ' D2×I−{two parallel lines} ' D2−{x0, y0}. γ is the boundary circle, so it’s not null-homotopic.

11. Suppose X is path-connected, f : X → X fixes basepoint x0 ∈ X.

Bundle X ↪→ Tf → Tf/X = S1 induces split short exact sequence

1 = π2(S
1, 1) → π1(X,x0) → π1(Tf , x0) → π1(S

1, 1) → π0(X,x0) = 1.
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To show how π1(S
1, 1) acts on π1(X,x0), consider [α] ∈ π1(X,x0), β(t) = [x0, t] ∈ Tf . [β] ∈ π1(S

1, 1).

Define homotopy Hs(t) : I → X × [0, 1]:

Hs(t) =


(x0, 3ts), t ∈ [0, 1/3]

(f ◦ α(3t− 1), s), t ∈ [1/3, 2/3]

(x0, 3(1− t)s), t ∈ [2/3, 1]

Let π : X × [0, 1] → Tf , (x, 0) ∼ (f(x), 1), H̃s = π ◦Hs : I → Tf , H̃s(t) = [Hs(t)].

H̃0 ' f(α), H̃1 = βαβ−1, so [β][α][β]−1 = f∗([α]). π1(Tf ) ∼= π1(X)⋊f∗ Z.

12. From Exercise 0.20, X ' S1 ∨ S1 ∨ S2, so π1(X) ∼= Z ∗ Z.

π1(Y ) = 〈a, b, c, d | cbc−1d = 1, aba−1b−1d−1 = 1〉 = 〈a, b, c | aba−1b−1cbc−1 = 1〉, denoted by G.

Replace c by ad, then a, b, d are generators of G and aba−1b−1cbc−1 = 1 becomes a−1bab−1db−1d−1 = 1.

Replace d by c′ and a−1 by a′, then a′, b, c′ are generators of G, a−1bab−1db−1d−1 = 1 becomes a′ba′−1b−1c′b−1c′−1 = 1.

Therefore 〈a, b, c | aba−1b−1cbc−1 = 1〉 ∼= 〈a, b, c | aba−1b−1cb−1c−1 = 1〉.

R3 − Z deformation retracts to Y , so π1(Y ) ∼= π1(R3 − Z).

13. Orientation of circle is represented by + (clockwise) and − (counter clockwise).

In case 1, orientation of circle 1, 2, 3 is (−,−,+), fundamental group is G1 := 〈a, b, c | aba−1bcbc−1〉.

In case 2, orientation of circle 1, 2, 3 is (+,−,+), fundamental group is G2 := 〈a, b, c | aba−1bcb−1c−1〉.

In case 3, orientation of circle 1, 2, 3 is (−,−,−), fundamental group is G3 := 〈a, b, c | aba−1b−1cbc−1〉.

In case 4, orientation of circle 1, 2, 3 is (+,−,−), fundamental group is G4 := 〈a, b, c | aba−1b−1cb−1c−1〉.

From Exercise 1.2.12, G3
∼= G4, case 3 and case 4 are equivalent.

In G2 := 〈a, b, c | aba−1bcb−1c−1〉, replace a by c′ and c by a′, then a′, b, c′ are generators of G2 and

aba−1bcb−1c−1 = 1 becomes a′ba′−1b−1c′b−1c′−1 = 1. G2
∼= 〈a′, b, c′ | a′ba′−1b−1c′b−1c′−1 = 1〉 ∼= G4.

G1 has abelianization Z3 ⊕ Z⊕ Z while G2, G3, G4 have abelianization Z⊕ Z, so cases 2, 3, 4 are equivalent.
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14. Suppose the quotient space is X. It has two 0-cells, four 1-cells, three 2-cells and one 3-cell.

X1 '
∨3
i=1 S

1, π1(X1) is generated by α = ad, β = b−1d, γ = cd.

Attaching 2-cells gives the following relations

abcd = αβ−1γ = 1, ac−1d−1b = αγ−1β−1 = 1, adb−1c−1 = αβγ−1 = 1.

Attaching 3-cells doesn’t change fundamental group, so

π1(X) = 〈α, β, γ | αβ−1γ = αγ−1β−1 = αβγ−1 = 1〉.

π1(X) ∼= 〈α, β | αβα = β, α = βαβ〉 ∼= 〈α, β | α4 = 1, β2 = α2, βαβ−1 = α3〉 ∼= Q8.

15. Triangles in L(X) is just triangulation of 2-cells in X, and this doesn’t change homotopy type.

18. (a) X =

{
0, 1,

1

2
,
1

3
, · · ·

}
, SX in fig(1) is homeomorphic to wedge sum of circles of radius 1

π

√(
n

n+ 1

)2

+

(
1

2

)2

for n = 1, 2, · · · and circle of radius 1

π

√
12 +

(
1

2

)2

in fig(3).

Note that fig(3) is also reduced suspension obtained from SX by collapsing segment {1} × I, which indicates reduced

suspension depends on the choice of basepoint.

(b) Region containing “· · · ” means there’re countably many circles in it.

From outside to inside, circles in SX and ΣX are denoted by An and Bn with basepoint x0 and y0.

Retraction ri : SX → Ai mapping Aj ’s to the left yellow segment for j 6= i induces homomorphism φ : π1(SX, x0) →∏∞
i=1 π1(Ai, x0) =

∏
∞ Z, φ(a) = ((r1)∗(a), (r2)∗(a), . . .). imφ =

⊕
∞ Z.

Retraction si : ΣX → Bi mapping Bj ’s to y0 for j 6= i induces homomorphism ψ : π1(ΣX, y0) →
∏∞
i=1 π1(Bi, y0) =∏

∞ Z, ψ(b) = ((s1)∗(b), (s2)∗(b), . . .). ψ is surjective.

For quotient map q : SX → ΣX, ψ ◦ q∗ = φ. Mapping cone C = C(SX) t ΣX/ ∼, (x, 1) ∼ q(x) for x ∈ SX.

Write C = U1 ∪ U2, where U1 is space after removing the tip of mapping cone in C, and U2 is C(SX).

U1 = SX × (0, 1] t ΣX/ ∼, (x, 1) ∼ q(x) for x ∈ SX. U1 deformation retracts to ΣX. U2 is contractible.

U1 and U2 are open in C. U1 ∩ U2 ' SX × (0, 1] ' SX so U1 ∩ U2 is path-connected.

From van Kampen’s theorem, π1(C) ∼= π1(U1) ∗ π1(U2)/N , N is normal subgroup generated by words of form

(i1)∗(w)(i2)∗(w
−1) where ik : U1 ∩ U2 ↪→ Uk, k = 1, 2 is inclusion and w ∈ π1(U1 ∩ U2). π1(U2) = 0, (i2)∗ = 0.

U1 ∩ U2 ' SX, U1 ' ΣX,so (i1)∗ : π1(U1 ∩ U2) → π1(U1) corresponds to q∗ : π1(SX) → π1(ΣX).

Hence π1(C) ∼= π1(ΣX)/N ′ where N ′ is normal subgroup generated by im q∗.

For surjective homomorphism ψ′ : π1(ΣX)
ψ→

∏
∞ Z →

∏
∞ Z/

⊕
∞ Z, ψ′ ◦ q∗ = 0, im q∗ ⊆ kerψ′.

kerψ′ is normal, so N ′ ⊆ kerψ′ and ψ′ induces surjective homomorphism π1(C) ∼= π1(ΣX)/N ′ →
∏

∞ Z/
⊕

∞ Z.
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20. X =
⋃∞
n=1 Cn. Denote n-th circle in

∨
∞ S1 by Dn and common point by x0.

On each Cn and Dn, we can define a coordinate θ representing a from 0 to 2π.

Define f :
∨

∞ S1 → X, f maps point in Dn of coordinate θ to point in Cn of coordinate θ.

Define g : X →
∨

∞ S1, g maps point in Cn of coordinate θ to point in Dn of coordinate θ.

f ◦ g = idX , g ◦ f = id∨
∞ S1 , so X =

⋃∞
n=1 Cn '

∨
∞ S1. X is closed subset in R2, so it’s first countable.∨

∞ S1 is not first countable,so it can’t be embedded in any first countable space, especially R2.

Let {Bi}∞i=1 be countable neighborhoods of x0 in
∨

∞ S1. Let Vi ⊆ Di be neighborhood of x0 s.t. Vi ⊊ Bi ∩ Di.∨∞
i=1 Vi is a neighborhood of x0 and doesn’t contain any Bi, so

∨
∞ S1 is not first countable.

21. Let Y be path-connected. X ∗ Y := (X × Y × [0, 1])/ ∼, where (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1).

Consider U := (X × Y × [0, 1))/ ∼ ' X × CY and V := (X × Y × (0, 1])/ ∼ ' CX × Y .

π1(U ∩ V ) ∼= π1(X × Y × (0, 1)) ∼= π1(X)⊕ π1(Y ). π1(U) ∼= π1(X). π1(V ) ∼= π1(Y ).

Inclusion i1 : U ∩ V ↪→ U , i2 : U ∩ V ↪→ U induces (i1)∗ : π1(X)⊕ π1(Y ) → π1(X), (i2)∗ : π1(X)⊕ π1(Y ) → π1(Y ).

From van Kampen’s theorem, π1(X ∗ Y ) ∼= π1(X) ∗ π1(Y )/N , N is generated by (i1)∗(a, b)(i2)∗(a, b)
−1 = ab−1 for all

(a, b) ∈ π1(X)⊕ π1(Y ), so N = π1(X) ∗ π1(Y ), π1(X ∗ Y ) = 0, X ∗ Y is simply-connected.

Alternative proof: Let (x1, y1, z1), (x2, y2, z2) be two points in X ∗ Y , and α : [0, 1] → X be a path from x1 to x2.

β(t) =


(x1, y1, (1− 3t)z1) 0 ⩽ t ⩽ 1/3

(x1, y2, (3t− 1)z2) 1/3 ⩽ t ⩽ 2/3

(α(3t− 2), y2, z2) 2/3 ⩽ t ⩽ 1

is a path from (x1, y1, z1) to (x2, y2, z2). X ∗ Y is path-connected.

WLOG, let γ : [0, 1] → X ∗ Y be a loop with endpoint γ(0) = γ(1) = (x, y, 0). Write γ(t) = (x(t), y(t), z(t)).

Fs(t) := (x(t), y(t), sz(t)), s ∈ [0, 1] is a homotopy between γ(t) and γ1(t) = (x(t), y, 0).

Gs(t) :=


(x, y, 2t), 0 ⩽ t ⩽ s/2

(x(
t− s/2

1− s
), y, s), s/2 ⩽ t ⩽ 1− s/2

(x, y, 2− 2t), 1− s/2 ⩽ t ⩽ 1

is a homotopy between γ1(t) and γ2(t) =
{
(x, y, 2t), 0 ⩽ t ⩽ 1/2

(x, y, 2− 2t), 1/2 ⩽ t ⩽ 1
.

γ2 is null-homotopic, so γ ' γ1 ' γ2 is null-homotopic, hence X ∗ Y is simply-connected.
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4 Section 1.3

Skipped for triviality: 1-3, 5, 16, 22, 28.

Skipped for difficulty: 33.

4.

6. Let p : Y → X̃ → X, x0 be the common point of shrinking wedge of circles X.

For any neighborhood U of x0 in X, there exist a connected component Ũ of p−1(U) which contains two points in

p−1(x0), so p|Ũ : Ũ → U can’t be homeomorphism.

7. Y = {(x, sin(1/x) | 0 < x < 1} ∪ [−1, 1]× {0} ∪ C is quasi-circle circle, C is arc connecting (0, 0) and (1, sin 1).

Let L be the segment [−1, 1]× {0} on the y-axis. S1 = {z ∈ C | |z| = 1}. Covering map p : R → S1, p(t) = e2πit.

(1) WLOG suppose f(L) = {1}. Let f̃ : Y → R be the lift of f : Y → S1.

f̃(Y − L) is connected and f̃(Y − L) ⊆ p−1(f(Y − L)) = R− 2πZ. WLOG suppose f̃(Y − L) ⊆ (0, 2π).

By surjectivity of f , f̃(Y − L) = (0, 2π). Y is compact, [0, 2π] = f̃(Y − L) ⊆ f̃(Y ) = f̃(Y ), so {0, 2π} ⊆ f̃(L).

f̃(L) ⊆ p−1(f(L)) = p−1(1) = 2πZ, so f̃(L) is not connected. Contradiction.

This also shows quasi-circle Y is not contractible because f is not nullhomotopic.

Otherwise from homotopy lifting property f will have a lift, since any constant map Y → S1 has a lift Y → R.

(2) Note that there exists an open set V ⊆ Y containing L with two path-components, V1 ⊇ L and V2.

Let g : I → Y be a path. If g(x) ∈ L, then there’s a path-connected open neighborhood I0 3 x s.t. g(I0) ⊆ V1.

Thus g−1(L) ⊆ U for some open set U s.t. g(U) ⊆ V1. g(I − U) is compact set in Y − L, so it must be contained in

C ∪ {(x, sin(1/x) | ε < x < 1} for some ε > 0, and g(I) is contained in L ∪ C ∪ {(x, sin(1/x) | ε < x < 1}, which is

contractible. Hence g : I → Y is nullhomotopic and π1(Y ) = 0.

8. For covering space p : X̃ → X and q : Ỹ → Y of locally path-connected space X and Y , X̃ and Ỹ are locally

path-connected. Let X
f

⇄
g
Y be a homotopy equivalence.

From lifting criterion, f ◦ p : X̃ → Y has a lift F : X̃ → Ỹ w.r.t. q : Ỹ → Y , i.e. q ◦ F = f ◦ p.

g ◦ q : Ỹ → X has a lift G : Ỹ → X̃ w.r.t. p : X̃ → X, i.e. p ◦G = g ◦ q. p ◦G ◦ F ' p, q ◦ F ◦G ' q.

p : X̃ → X has a lift idX̃ and q : Ỹ → Y has a lift idỸ , so G ◦ F ' idX̃ and F ◦G ' idỸ .
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9. f∗ : π1(X) → π1(S
1) ∼= Z induced by f : X → S1 is trivial, so it has a lift f̃ : X → R.

R is contractible, so f̃ : X → R is nullhomotopic, f = p ◦ f̃ is also nullhomotopic.

10.

11. X1 and X2 have 2 points and 3 edges, they can’t be covering spaces of other space. X̃1 = X̃2.

12. Let N be normal subgroup generated by a2, b2, (ab)4, p : X̃ → S1 ∨ S1 be covering space.

N ⊆ π1(X̃, x0). X̃ is normal, so p∗(π1(X̃, x0)) is normal.

p∗ is injective, so π1(X̃, x0) is normal and N = π1(X̃, x0).

13. Let N be subgroup of Z ∗ Z generated by the cubes of elements. N is normal subgroup and Z ∗ Z/N is Burnside

group B(2, 3) of order 27, so covering space of S1 ∨ S1 corresponding to N is normal and 27-sheeted.

14. Let X1 and X2 denote the first and second copy of RP 2, π1(X1) = Z2 = 〈a〉, π1(X2) = Z2 = 〈b〉.

Covering map maps blue S2 to X1 and red S2 to X2. Consider subgroups of π1(X1 ∨X2) = Z2 ∗ Z2 = 〈a〉 ∗ 〈b〉

(1) For trivial subgroup 1, it corresponds to the the universal cover, i.e. the infinite chain of S2.

(2) For subgroup isomorphic to infinite cyclic group Z, it is generated by (ab)n or (ba)n of index 2n (n ⩾ 1).

It corresponds to a “necklace” of 2n copies of S2.

(3) For subgroup isomorphic to Z2, it’s generated by (ab)m · a or (ba)m · b (k ⩾ 0).

It corresponds to RP 2 attached to an infinite chain of S2.
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(4) For subgroup isomorphic to the infinite dihedral group Z2 ∗ Z2, it’s generated by (ab)n and (ab)m · a (m ⩽ n).

It corresponds to a finite chain of S2’s with both ends attached an RP 2.
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15. Choose basepoint x0 ∈ A with x̃0 ∈ Ã. Let i : A ↪→ X, i : Ã ↪→ X̃ be inclusions. p|Ã : Ã→ A, p : X̃ → X.

For [f ] ∈ ker q∗, [f ] = 0 in π1(X,x0) so f lifts to a loop f̃ in X̃ (also in Ã), [f ] = (p|Ã)∗([f̃ ]), ker q∗ ⊆ im(p|Ã)∗.

i ◦ p|Ã = p ◦ i, i∗ ◦ (p|Ã)∗ = p∗ ◦ i∗ = 0, im(p|Ã)∗ ⊆ ker q∗. Thus im(p|Ã)∗ = ker q∗.

17. There’s a 2-dimensional cell complex X s.t. π1(X) = G and a normal covering space p : X̃ → X s.t. p∗(π1(X̃)) ∼=

N , G(X̃) ∼= G/N . p∗ is injective, so π1(X̃) ∼= p∗(π1(X̃)) ∼= N .

18. Suppose π1(X) = G. G′ = [G,G]/G, there exists normal covering space p : X̃ → X s.t. p∗(π1(X̃)) ∼= π1(X̃) ∼= G′.

G(X̃) = G/G′ is abelian, so p : X̃ → X is abelian covering space.

Suppose q : X̃ ′ → X is another abelian covering space, q∗(π1(X̃ ′)) ∼= N / G and G(X̃ ′) = G/N is abelian, then

G′ ⊆ ker(G→ G/N) = N , p : X̃ → X has a lift p̃ : X̃ → X̃ ′ s.t. q ◦ p̃ = p.

p : X̃ → X, q : X̃ ′ → X are covering spaces. From Exercise 1.3.16, p̃ : X̃ → X̃ ′ is a covering space.

Use unique lifting property, the ‘universal’ abelian covering is unique up to isomorphism.

For X = S1 ∨ S1, its universal abelian covering space is {(x, y) ∈ R2, x ∈ Z or y ∈ Z}.

For X = S1 ∨ S1 ∨ S1, its universal abelian covering space is {(x, y, z) ∈ R3, x ∈ Z or y ∈ Z or z ∈ Z}.

19. Let G = π1(Mg) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉.

Let X̃ be universal abelian covering space, G′ = π1(X̃) = [G,G], G(X̃) ∼= π1(Mg)ab ∼= Z2g.

For normal covering space X with G(X) ∼= Zn, let N ′ = π1(X). G′ ⊆ N ′, G(X) ∼= G/N ′ ∼=
G/G′

N ′/G′
∼=

Z2g

N ′/G′
∼= Zn.

The picture below is the case for n = 3 and g = 3. It’s similar for g ⩾ 3.

If such a covering space Y →Mg exists, we have an embedding Y → R3 with G(Y ) = Z3.

Taking the quotient yields embedding Mg → T 3, which induces a surjection π1(Mg) → π1(T
3).

Suppose there’s an embedding i :Mg → T 3, let Y be covering space corresponding to ker(π1(Mg) → π1(T
3)).

Then Y →Mg → T 3 has a lift Φ : Y → R3 via covering map R3 → T 3, and Φ is injective.

Y →Mg and R3 → T 3 are local homeomorphisms, Mg → T 3 is embedding, so Φ : Y → R3 is an embedding.

20. Fundamental group of Klein bottle is 〈x, y | xyxy−1 = 1〉.

Non-normal covering space by a Klein bottle is corresponding to subgroup 〈x3, y〉. x3 · y · x3 · y−1 = 1.

Non-normal covering space by a torus is corresponding to subgroup 〈x3, xy2〉. x3 · xy2 · (x3)−1 · (xy2)−1 = 1.
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21. (1) Let M be Möbius band. π1(S1 × S1) = 〈a, b | ab = ba〉, π1(M) = 〈c〉. π1(X) = 〈a, b, c | ab = ba, a = c2〉.

π1(S
1 × S1) → π1(X) and π1(M) → π1(X) induced by inclusions are injective, so universal cover R2 of S1 × S1 and

universal cover R× [0, 1] of Möbius band embed into universal cover of X.

The construction is an example in Bass-Serre theory:

The universal cover of X is product T × R where T is an infinite tree in which every vertex has valence 3.

The union of adjacent red edges crossed with R depicts R2,

and the blue edge crossed with R depicts R× [0, 1].

π1(X) = 〈a, b, c | ab = ba, a = c2〉 = 〈b, c | bc2 = c2b〉.

b acts on T × R by translating T along the red direction by 1 unit.

c acts on T × R by flipping T over a midpoint of a selected blue edge and translating along the R factor 1 unit.

(2) Let e2 be 2-cell of RP 2 and D be closed unit disk in R2.

Shrinking Möbius band to its central circle induces a homotopy from X to S1 ∪f e2, f : ∂e2 = S1 → S1, z 7→ z4.

Universal cover of S1 ∪f e2 is homeomorphic to D × {1, 2, 3, 4}/ ∼, where (x, i) ∼ (y, j) iff x = y ∈ ∂D.

The universal cover of X is homeomorphic to the quotient of D × {a, b, c, d} ∪ S1 × [−1, 1]/ ∼, where

(x, a) ∼ (x, c) ∼ (x, 1) for x ∈ ∂D = S1, (x, b) ∼ (x, d) ∼ (x,−1) for x ∈ ∂D = S1.

π1(Y ) = 〈x, y | x2 = 1, y2 = x〉 = Z4 acts as follows:

(re2πiθ, a) 7→ (re2πi(θ+1/4), b) 7→ (re2πi(θ+1/2), c) 7→ (re2πi(θ+3/4), d) 7→ (re2πiθ, a) for points in disks D × {a, b, c, d},

(e2πiθ, t) 7→ (e2πi(θ+1/4),−t) 7→ (e2πi(θ+1/2), t) 7→ (e2πi(θ+3/4),−t) 7→ (e2πiθ, t) for points in S1 × [−1, 1].

Covering map X̃ → X maps the disks to RP 2 and the cylinder to the Möbius band.

23. Fix x ∈ X and neighborhood U of x s.t. H = {g ∈ G | U ∩ g(U)} is finite.

Let Vg be disjoint open sets of gx for g ∈ H, then V =
⋂
g∈H g

−1(Vg) is the desired neighborhood of x.

24. (a) For covering space X π−→ Y → X/G, let H = {g ∈ G | π(x) = π(gx), for all x ∈ X}.

Y is isomorphic to X/H via f1 : Y → X/H, y 7→ Hx, x ∈ π−1(y) and f2 : X/H → Y , Hx 7→ π(x).

(b) (i) Suppose X p1−→ X/H1
q1−→ X/G, X p2−→ X/H2

q2−→ X/G. Let N1 = (q1)∗(π1(X/H1)), N2 = (q2)∗(π1(X/H1)).

If X/H1
q1−→ X/G, X/H2

q2−→ X/G are isomorphic, then gN1g
−1 = N2 for some g ∈ π1(X/G).

Let Φ : π1(X/G) → G be surjection given by deck transformations on X → X/G, then Φ(Ni) = Hi, i = 1, 2.

For [α] ∈ π1(X/H1), α has a lift α in X from x̃0 to x̃1, with x̃1 = h1x̃0 for some h1 ∈ H1 and Φ((q1)∗([α])) = h1.

For h′1 ∈ H1, fix x0 ∈ X, let β be path from x0 to h′1x0, then [p1(β)] ∈ π1(X/H1) and Φ((q1)∗([p1(β)])) = h′1.

From gN1g
−1 = N2 for g ∈ π1(X/G) and Φ(Ni) = Hi, i = 1, 2, H2 = Φ(g) ·H1 · Φ(g−1).

(ii) If H2 = gH1g
−1 for some g ∈ G, then X/H1 is isomorphic to X/H2 via f1 : X/H1 → X/H2, H1x 7→ H2gx and

f2 : X/H2 → X/H1, H2x 7→ H1g
−1x.

(c) Let p : X/H → X/G be covering space.

(i) If H / G, then for Hx,Hgx ∈ p−1(Gx), Hgx = gHx where g ∈ G is a deck transformation on X → X/G.

This descends to deck transformation X/H → X/G, so p : X/H → X/G is normal.
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(ii) If p : X/H → X/G is normal, then p∗(π1(X/H)) is normal in π1(X/G).

Let Φ : π1(X/G) → G be surjection in (b), then Φ(p∗(π1(X/H))) = H is normal in G.

25. Non-Hausdorff: Orbit of (0, 1) contains (0, 2−n) and orbit of (0,−1) contains (0,−2−n).

Let p : X → X/Z. Exact sequence 0 → π1(X)
p∗−→ π1(X/Z) → Z → 0 right splits, so π1(X/Z) ∼= π1(X)⊕ Z = Z2.

26. (a) Let C be connected components of X̃ and π : p−1(x0) → C, x̃ 7→ connected component C̃(x̃) 3 x̃.

For [α] ∈ π1(X,x0), [α] · x̃ is the endpoint of lift of α starting at x̃. π̃ : p−1(x0)/π1(X,x0) → C is injective.

For C ∈ C, π̃−1(C) = C ∩ p−1(x0). Thus π̃ is 1-1.

(b) Suppose C is component of X̃ containing a given lift x̃0 of x0. p̃ : C → X is connected covering space.

Let H be stabilizer of x̃0 for the action of π1(X,x0), i.e. the subgroup of all [γ] ∈ π1(X,x0) s.t. [γ] · x̃0 = x̃0.

Let N = p̃∗(π1(C, x̃0)). We have N = H by definition.

27. (Revised) For [γ] ∈ π1(X,x0), x0 ∈ X, x̃0 ∈ p−1(x0), suppose γ has lift γ1 from x̃1 to x̃0, γ1 from x̃0 to x̃2.

For universal cover p : X̃ → X, π1(X) ∼= G(X̃). [γ] corresponds to deck transformation φ[γ] taking x̃0 to x̃2.

Action of π1(X,x0) on p−1(x0) means a homomorphism π1(X,x0) → Sp−1(x0), where Sp−1(x0) is the permutation

group of p−1(x0).

π1(X,x0) acts on p−1(x0) by lifting loops at x0 (monodromy action) means Φ1([γ])(x̃0) = x̃1.

π1(X,x0) acts on p−1(x0) by restricting deck transformations to the fiber means Φ2([γ])(x̃0) = φ[γ](x̃0) = x̃2.

These two actions are the same when π1(X) = Z2.

29. Let π1 : Y → Y/G1, Y → Y/G2 be covering spaces.

If ϕ : Y/G1 → Y/G2 is homeomorphism, there’s a lift ϕ̃ : Y → Y s.t. π2ϕ̃ = ϕπ2 and ϕ̃G1ϕ̃
−1 = G2.

If hG1g
−1 = G2, then h : Y → Y induces a homeomorphism h̄ : Y/G1 → Y/G2, G1y 7→ G2h(y).

30.

31. Suppose X =
∨n
i=1 S

1. Let p : X̃ → X be a normal cover and N = p∗(π1(X̃)). N / Fn = ∗nZ.

We want to show X̃ is the Cayley graph of G = Fn/N . Denote Cayley Graph of G by C(G). G(X̃) = G.

Fix basepoint x̃ ∈ X̃, there’s a bijection Φ from the vertex set of C(G) to vertex set of X̃ given by Φ(g) = g · x̃.

If (v, w) is an edge in C(G), there exists a generator g ∈ G s.t. w = gv. Φ(w) = w · x̃ = g · (v · x̃) = g · Φ(v).

The edge (Φ(v),Φ(w)) is in X̃, so Φ can extend to Φ̃ : C(G) → X̃.

For vertex v ∈ X̃, path γ from x̃ to v defines a word in Fn. For another path η from x̃ to v, η̄ · γ defines a word in N .

Hence we get an map X̃ → G = Fn/N → C(G), which is the inverse of φ̃.

12



32. Let p1 : X̃1 → X and p2 : X̃2 → X be covering spaces where X̃1, X̃2, X are CW complexes.

(a) If ϕ : X̃1 → X̃2 is covering space isomorphism, then ϕ(X̃1
1 ) = X̃1

2 , ϕ|X̃1
1
: X̃1

2 → X̃1
2 is isomorphism.

Conversely, suppose p1|X̃1
1
: X̃1

1 → X1
1 , p2|X̃1

2
: X̃1

2 → X1
2 are isomorphic via isomorphism ϕ : X̃1

1 → X̃1
2 .

Suppose ϕ is defined on X̃k−1
1 and φ : ∂ek → Xk−1 is attaching map for X, we want to extend ϕ over p−1(ek).

p−1
1 (ek) and p−1

2 (ek) are disjoint unions of k-cells mapping to ek homeomorphically.

For every e ∈ p−1
1 (ek), there’s some e′ ∈ p−1

2 (ek) s.t. ϕ(∂e) = ∂e′, so we can define ϕ|e = (p2|e′)−1 ◦ p1|e.

(b) Deck transformation of X̃ → X restricting on X̃1 is deck transformation of X̃1 → X1.

Conversely, suppose by induction X̃k → Xk is normal cover, x ∈ (k + 1)-cell e ⊆ X and x̃0, x̃1 ∈ p−1(x0).

Let e0, e1 be (k + 1)-cells in X̃ containing x̃0 and x̃1 respectively.

For y ∈ ∂e, there’s a path γ ⊆ e from x to y. γ has lifts γi ⊆ ei in X̃k+1 from x̃i to yi ∈ ∂ei ⊆ X̃k for i = 0, 1.

Deck transformation over X̃k sending y0 to → y1 extends to deck transformation on X̃k+1 sending x̃0 to x̃1.

Hence X̃k+1 → Xk+1 is a normal covering space and X̃ → X is normal.

(c) Deck transformation of X̃ → X restricting on X̃1 is deck transformation of X̃1 → X1, and a deck transformation

of X̃1 → X1 extends uniquely to a deck transformation of X̃ → X from (b).
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5 Section 1.A

Skipped for triviality: 6.

Skipped for difficulty: 11–13.

1. Note that a basis for weak topology of X consists of open intervals in the edges together with the path-connected

neighborhood of the vertices. A neighborhood of the latter sort at vertex v is the union of connected open neighbor-

hoods Uα of v in ēα for all ēα containing v. Such eα is finite, so such Uα is open in canonical metric of R2.

Open interval is open in canonical metric of R2. Thus weak topology on X is a metric topology.

2. Denote the connected graph by X and its connected subgraph by Y .

If X is a tree, then Y is also a tree, and retraction maps X − Y to vertices in X ∩ Y .

If X contains a loop, then the retraction can be given via the following operation.

3. (1) A tree can be obtained from a vertex by attaching a vertex with an edge finite times, so χ(X) = 1 for X a tree.

(2) Suppose T is maximal tree in X. Note that χ(T )− χ(X) = 1− χ(X) is number of edges in X − T .

4. For any edge e ⊆ Y , Y − e is a tree and contained in a maximal tree T .

π1(X,x0) has a basis with one generator corresponding to e ⊆ X − T .

5. g : S1 ↪→ S1 ∨ S1, f : S1 ∨ S1 ↠ S1 s.t. f ◦ g = 1.

7. Let F be free group of n generators, X =
∨n
i=1 S

1 with wedge point x0 and π1(X,x0) = F .

Let p : X̃ → X be covering space corresponding to N /X and T be a maximal tree in X̃.

SupposeN is finitely generated, then X̃−T contains finitely many edges and V0 = {vertex x | x ∈ eα for some edge eα ⊆

X̃ − T} is finite. Let Vi be set of vertices of distance at most i from some vertex in V0.

Each vertex intersects at most 2n closure of edges, so Vi is finite for each i.

If N is of infinite index, then X̃ contains infinitely many vertices. N is normal, so for any vertex v ∈ X̃, p∗(π1(X̃, v)) =

N .

Let γ be a non-trivial loop in X based at x0 corresponding to an element in N , which is a reduced word of length k.

Choose vertex v ∈ X̃ − Vk+1. Lift of γ at v, say γ̃, is a path of length k in X̃ and by definition γ̃ ⊆ T , [γ̃] = 0.

[γ] = p∗[γ̃] = 0. Contradiction.

8. First prove the case of free groups, the general case follows since every group is a quotient group of a free group.

For finitely generated free group, its subgroup of finite index corresponds to a graph of finite vertices and edges, and

there’re finitely many possibilities for such graph and such subgroup.
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9. (1) For given group G, there exist a 2-dimensional cell complex X s.t. π1(X,x0) = G for some x0 ∈ X.

Note that X is path-connected, locally path-connected and semilocally simply-connected, for subgroup H ⊆= G, there

exists a covering space p : XH → X s.t. p∗(π1(XH , x̃0)) = H for some basepoint x̃0 ∈ p−1(x0).

Change basepoint x̃0 within p−1(x0) corresponds to changing H to its conjugate subgroup in G.

Since [G : H] = #{p−1(x0)} = n, H has at most n conjugate subgroups in G.

(2) Consider homomorphism induced by group action ρ : G→ SG/H , ρ(g)(g′H) = (gg′)H.

ker ρ =
⋂
g∈G gHg

−1 ⊆ H and is normal in G of index |SG/H | = |Sn| = n!.

10. This is Marshall Hall’s Theorem in Stallings’ article Topology of finite graphs.

See also: Projection between graphs extends to a covering space.

11. Why are free groups residually finite.

12. Exercise 1.A.12 in Hatcher’s Algebraic Topology.

14. The following proof comes from “Infinite combinatorics: from finite to infinite”, Horizons of combinatorics. Section

2.2 Spanning trees. Page 192 – 193.

(⇒) Let G = (V,E) be a graph and T be the family of subtrees of G. For T, T ′ ∈ T , write T ≺ T ′ if T ⊆ T ′.

Since T is closed under increasing union, 〈T ,≺〉 has a maximal element T = (V ′, E′) by Zorn’s Lemma.

Since there is no edge between V ′ and V − V ′, we have V = V ′. Hence T is a maximal tree.

(⇐) Let A = {Ai : i ∈ I} be a family of non-empty sets. We want to find a choice function.

First assume the elements of A are pairwise disjoint. Construct a graph G = (V,E) as follows:

Let V = {x} ∪ {yi, zi : i ∈ I} ∪
⋃
{Ai : i ∈ I}, where {x} ∪ {yi, zi : i ∈ I are new, pairwise different vertices.

Let E = {xyi : i ∈ I} ∪
⋃
i∈I{zia, ayi : a ∈ Ai}. G is connected and by assumption has a maximal tree T = (V, F ).

Then we have

(1) {xyi : i ∈ I} ⊆ F .

(2) For each i ∈ I, there is exactly one ai ∈ Ai s.t. ziai, aiyi ∈ F .

(3) For each a ∈ Ai − {ai}, we have zia ∈ F iff ayi 6∈ F .

Thus f(i) = ai is a choice function for A and f is definable using T .
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6 Section 2.1

Skipped for triviality: 11, 13, 15, 22, 30.

Skipped for difficulty: 10, 21, 23–25, 28.

1. Möbius band.

2. Let S = [012] ∪ [123] ⊆ ∆3 = [0123], [01] ∼ [13] and [02] ∼ [23]. S/ ∼ is Klein bottle.

Deformation retraction F : ∆3×I → S induces continuous quotient map F̄ : ∆3/ ∼ ×I → S/ ∼.

[01] ∼ [23], [02] ∼ [13] produces ∆-complex deformation retracting onto a torus T 2.

[01] ∼ [02], [13] ∼ [23] produces ∆-complex deformation retracting onto a 2-sphere S2.

[01] ∼ −[23], [02] ∼ −[13] produces ∆-complex deformation retracting onto RP 2.

3.

4. Denote this space by X. H∆
0 (X) = Z. H∆

1 (X) = Z⊕ Z. H∆
n (X) = 0 for n ⩾ 2.

5. Denote Klein bottle by K. H∆
0 (X) = Z. H∆

1 (X) = Z⊕ Z2. H∆
n (X) = 0 for n ⩾ 2.

6. Denote this space by X. ∆0(X) = 〈v〉 = Z.

∆1(X) = 〈e0, . . . , cn〉 = Zn+1. ∆2(X) = 〈X0, . . . Xn〉 = Zn+1.

∂2X0 = e0, ∂2Xi = 2ei − ei−1 for i = 1, . . . , n. ker ∂1 = ∆1(X).

H∆
0 (X) = Z. H∆

1 (X) = 〈en | 2nen〉 = Z2n . H∆
n (X) = 0 for n ⩾ 2.

7. ∆3 = [0123] = A ∪B. ∂[0123] = [123]− [023] + [013]− [012]. Let [123] ∼ [023], [013] ∼ [012].

A/ ∼ = ∂D2×D2, B/ ∼ = D2× ∂D2. S3 = ∂D4 = ∂(D2×D2) = ∂D2×D2 ∪D2× ∂D2 = A/ ∼ ∪ B/ ∼ = ∆3/ ∼.

8. ∆0(X) = 〈x, y〉. ∆1(X) = 〈s1, . . . , sn, v, h〉. ∆2(X) = 〈W1, . . . ,Wn, R1, . . . , Rn〉. ∆3(X) = 〈T1, . . . , Tn〉.

∂3Ti =Wi −Wi−1 +Ri −Ri+1. ∂2Ri = si − si−1 + h, ∂2Wi = v − si + si+1. ∂1si = y − x, ∂1h = 0, ∂1v = 0.

Note that ∂2R1 = s1−sn+h = h+(s1−s2)+ · · ·+(sn−1−sn), ∂2Wn = v−sn+s1 = v+(s1−s2)+ · · ·+(sn−1−sn).
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ker ∂1 = 〈s1 − s2, . . . , sn−1 − sn, h, v〉. ker ∂2 = im ∂3. ker ∂3 = 〈T1 + · · ·+ Tn〉.

H∆
0 (X) = ker ∂0/ im ∂1 = 〈x, y〉/〈y− x〉 = Z. H∆

1 (X) = ker ∂1/ im ∂2 = 〈h | nh = 0〉 = Zn. H∆
2 (X) = 0. H∆

3 (X) = Z.

9. ∆k(X) = 〈ak〉 = Z for k ⩽ n. ∂ak =
∑k
i=0(−1)iak−1 = ak−1 for k even and 0 for k odd.

12. For f, g : X → Y and chain maps f#, g# : Cn(X) → Cn(Y ), f# and g# are chain homotopic means there exists

prism operators P : Cn(X) → Cn+1(Y ) s.t. ∂P + P∂ = g# − f#.

14. (0) Prerequisites: In Abelian category A, suppose b : B → D is morphism, and g : C → D is epimorphism, then

the followings are equivalent:

(i) A
f //

a

��

B

b

��
C

g // D

is pull-back.

(ii) 0 // E // A
f //

a

��

B //

b

��

0

0 // E // C
g // D // 0

is commutative diagram with exact rows.

(iii) 0 → A
( fa )−−−→ B ⊕ C

(b,−g)−−−−→ D → 0 is exact.

(1) For abelian group A, 0 → Zpm
f−→ A

π1−→ Zpn → 0 is exact ⇔ A ∼= Zpk × Zpm+n−k where 0 ⩽ k ⩽ min{m,n}.

(⇒) Suppose π2(a) = 1̄ for some a ∈ A. Define g : Zpm × Z → A by g(x, y) = f(x) + y · a for x ∈ Zpm , y ∈ Z.

The key point is there’s a multiplication of elements in Z and A, which requires A to be a Z-mod/abelian group.

Claim: (Zpm × Z, p, g) is pull-back of π1 : A→ Zpn and π2 : Z → Zpn , where p : Zpm × Z → Z is projection.

Pull-back of π1 : A→ Zpn and π2 : Z → Zpn is (P, ψ1, ψ2), where P = {(m,n) ∈ A× Z | π1(m) = π2(n)}, ψ1 : P → A

is projection A× Z → Z restricted on P , ψ2 : P → Z is projection A× Z → Z restricted on P .

h : Zpm × Z → P is defined by h(x, y) = (g(x, y), y), x ∈ Zpm , y ∈ Z.

k : P → Zpm × Z is defined by k(m,n) = (f−1(m− n · a), n), m ∈ A,n ∈ Z.

Note that m − n · a ∈ kerπ1 = im f and f is injective, we have commutative diagram (I) and enlarged commutative

diagram (II) with exact rows and columns.

(I)

P

Zpm × Z Z

A Zp

ψ2

ψ1

k

g

p

h

π2

π1

(II)

0 0

Z Z

0 Zpm Zpm × Z Z 0

0 Zpm A Zpn 0

0 0

i p

g π2

f π1

The middle column is short exact sequence of form 0 −→ Z
(
r
pn )−−−→ Zpm × Z −→ A −→ 0 for some r ∈ N.

It’s equivalent to short exact sequence 0 −→ Z× Z

(
pm r
0 pn

)
−−−−−−−→ Zpm × Z −→ A −→ 0.

The integer matrix
(
pm r
0 pn

)
is equivalent to

(
pk 0

0 pm+n−k

)
where (pk) = (pm, pn, r).
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Thus A ∼= Zpk × Zpm+n−k for 0 ⩽ k ⩽ min{m,n}.

(⇐) For m,n ∈ N, let k ∈ N s.t. 0 ⩽ k ⩽ min{m,n}, then k ⩽ m ⩽ m+ n− k.

We have epimorphism α : Zpm → Zpk and monomorphism β : Zpm → Zpm+n−k . Zpm
(α,β)−−−→ Zpk ×Zpm+n−k is injective.

coker(α, β) = 〈a, b | apk = bp
m+n−k

= 1, ab = ba, abp
n−k

= 1〉 = 〈b | bpn = 1〉 = Zpn .

Thus we have short exact sequence 0 → Zpm
(α,β)−−−→ Zpk × Zpm+n−k −→ Zpn → 0.

(2) For abelian group A, 0 −→ Z −→ A −→ Zn −→ 0 is exact ⇔ A ∼= Zd × Z where d | n.

(⇒) We have short exact sequence of form 0 −→ Z
( rn )−−−→ Z× Z −→ A −→ 0 for some r ∈ Z.

The integer matrix ( rn ) is equivalent to ( d0 ), where d = (r, n). Thus A ∼= Zd × Z.

(⇐) If d | n, then 0 −→ Z

(
1
n/d

)
−−−−→ Zd × Z −→ Zn −→ 0 is exact.

16. (a) H0(X,A) = 0 ⇔ H0(A) → H0(X) is surjective iff A meets each path-component of X.

(b) H1(X,A) = 0 ⇔ H1(A) → H1(X) is surjective and H0(A) → H0(X) is injective.

H0(A) → H0(X) is injective iff X each path-component of X contains at most one path-component of A.

17. Suppose A is k points in path-connected space X, then X ∪ CA ' X ∨ (
∨k−1
i=1 S

1).

Hn(X,A) ∼= H̃n(X ∪ CA) ∼= H̃n(X ∨ (
∨k−1
i=1 S

1)) ∼= H̃n(X)⊕ (
⊕k−1

i=1 H̃n(S
1)).

(a) H̃2(S
2) = Z, H̃n(S

2) = 0 for n 6= 2. H̃1(S
1 × S1) = Z⊕ Z, H̃2(S

1 × S1) = Z, H̃n(S
1 × S1) = 0 for n ⩾ 3.

H1(S
2, A) = Zk−1, H2(S

2, A) = Z, Hn(S
2, A) = for n ⩾ 3.

H1(S
1 × S1, A) = Zk+1, H2(S

1 × S1, A) = Z, Hn(S
1 × S1, A) = 0 for n ⩾ 3.

(b) X/A ' T 2 ∨ T 2. Hn(X,A) ∼= H̃n(X/A) = H̃n(T
2 ∨ T 2) ∼= H̃n(T

2)⊕ H̃n(T
2).

X/B ' T 2/{∗1, ∗2} ' T 2 ∨ S1. Hn(X,B) ∼= H̃n(X/B) = H̃n(T
2 ∨ S1) ∼= H̃n(T

2)⊕ H̃n(S
1).

18. H̃1(R) → H̃1(R,Q) → H̃0(Q) → H̃0(R) is exact. H̃1(R) = 0 = H̃0(R), H̃1(R,Q) ∼= H̃0(Q).

0 → H̃0(Q) → H0(Q)
φ→ Z → 0 is exact, where ϕ : H0(Q) → Z is induced by ε : C0(Q) → Z, ε(

∑
i niσi) =

∑
i ni.

For σq : ∆0 → q ∈ Q in C0(Q), {σq − σ0 | q ∈ Q} is a basis for ker ε, {[σq − σ0] | q ∈ Q} is a basis for kerϕ = H̃0(Q).

19. Denote this space by X. H0(X) = Z. H1(X) =
⊕

∞ Z. Hn(X) = 0 for n ⩾ 2.

20. Long exact sequence of triple (CX,X, ∗) gives Hn+1(CX,X) ∼= Hn(X, ∗), thus H̃n+1(SX) ∼= H̃n(X).

H̃n+1(
⋃k
i=1 CX) = H̃n+1(

⋃k−1
i=1 CX∪CX) ∼= Hn+1(

⋃k−1
i=1 CX,X) = H̃n+1(

∨k−1
i=1 SX) =

⊕k−1
i=1 H̃n+1(SX) =

⊕k−1
i=1 H̃n(X).

21. Explicit isomorphism H̃n(X) ∼= H̃n+1(SX).

26. From section 2.A, for X path-connected, H̃1(X) = H1(X) ∼= π1(X)ab.

Note H1(X,A) ∼= H̃1(X ∪ CA). X ∪ CA is homotopic to
∨

∞ S1, while X/A is homeomorphic to Hawaiian Earring.

H1(X,A) ∼=
⊕

∞ Z. The singular homology of the Hawaiian Earring.

27. (a) By naturality, we have commutative diagram
Hn(A) Hn(X) Hn(X,A) Hn−1(A) Hn−1(X)

Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) Hn−1(Y )

f∗ f∗ f∗ f∗ f∗

f : X → Y and f |A : A→ B are homotopy equivalences, so from 5-lemma, Hn(X,A) ∼= Hn(Y,B).

(b) For any be continuous map g : (Dn, Dn − {0}) → (Dn, Sn−1), g(0) ⊆ Sn−1, so g : Dn → Sn−1 is nullhomotopic
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29. H0(S
1×S1) = H0(S

1∨S1∨S2) = Z, H1(S
1×S1) = H1(S

1∨S1∨S2) = Z2, H2(S
1×S1) = H2(S

1∨S1∨S2) = Z,

Hn(S
1 × S1) = Hn(S

1 ∨ S1 ∨ S2) = 0 for n ⩾ 3.

Universal cover of S1 × S1 is R2. It’s contractible hence has homology group 0.

Universal cover of S1 ∨ S1 ∨ S2 is universal cover of S1 ∨ S1 with a S2 attached at each vertex, denoted by X.

X = X2, X1 = S1 ∨ S1 is contractible, so H2(X) = H2(X
2) ∼= H2(X

2, X1) ∼= H̃2(X
2/X1) = H̃2(

∨
S2) 6= 0.

31. 0 / /

α

��

0 //

β

��

Z //

γ

��

Z //

δ

��

0

ε

��
0 // Z // Z // 0 // 0
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7 Section 2.2

Skipped for triviality: 7, 15, 22, 37.

Skipped for difficulty: 16.

Note: Exercise 34 is deleted by the author — see the errata for comments.

1. For f : Dn → Dn, f̃ : Dn
+ ∪Dn

− = Sn → Dn
− ⊆ Sn is not surjective, deg f̃ = 0. f̃ has fixed point in Dn

−.

2. (1) For f : S2n → S2n, if f has no fixed points, then deg f = −1. If −f has no fixed points, then deg f = 1.

Thus either f or −f must have a fixed point, i.e. there’s some point x ∈ S2n s.t. f(x) = x or f(x) = −x.

(2) For g : RP 2n → RP 2n, quotient map π : S2n → RP 2n, g ◦ π has a lift g̃ : S2n → S2n s.t. g ◦ π = π ◦ g̃.

For g̃ : S2n → S2n, there exists point x ∈ S2n s.t. g̃(x) = x or g̃(x) = −x, so g(π(x)) = π(g̃(x)) = π(x).

(3) Consider linear transformation T : R2n → R2n, (x1, x2, . . . , x2n) 7→ (−x2n, x1, x2, . . . , x2n−1). T 2n = −id2n.

x2n + 1 is characteristic polynomial of T and has no real roots, so T has no real eigenvalues or eigenvectors.

Thus T : R2n → R2n induces a map RP 2n−1 → RP 2n−1 without eigenvectors.

3. (1) deg f = 0, so f and −f have fixed point(s).

(2) For non-vanishing vector field F , let G =
F (x)

‖F (x)‖
: Dn → Sn−1 and i : ∂Dn = Sn−1 ↪→ Dn be inclusion.

G|∂Dn = G ◦ i : Sn−1 → Sn−1 satisfies (G|∂Dn)∗ = 0, so degG|∂Dn = 0.

4. Sn π−→ Dn q−→ Dn/∂Dn = Sn. π : Sn → Dn given by (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn) is projection.

5. Let fk be reflection of Sn across n-dimensional hyperplane with unit normal vector k. Treat k as a point on Sn.

For x ∈ Sn, we have fk(x) = x− 2〈x, k〉k. For different reflections fa and fb, let γ : [0, 1] → Sn be a path from a to b.

Then F : Sn × [0, 1], F (x, t) = fγ(t)(x) is the desired homotopy from fa to fb.

6. (1) Method 1: Suppose f : Sn → Sn, deg f = k. g : S1 → S1, z 7→ zk is of degree k and has fixed point x0.

Suspension Sg : S2 → S2 and Sg|S1 = g, so Sg(x0) = g(x0) = x0 and degSg = deg g.

By induction, Sn−1g : Sn → Sn and Sn−1g|S1 = g, x0 is fixed point of Sn−1g. degSn−1g = k = deg f , Sn−1g ' f .

(2) Method 2: WLOG suppose f : Sn → Sn has no fixed points, then f is homotopic to antipodal map.

When n is odd, the antipodal map is homotopic to identity map on Sn, so f is homotopic to identity map.

When n is even, let n = 2m. Consider homotopy H(x, t) : S2m × [0, π] → S2m given by

((x1, x2, . . . , x2m+1), t) 7→ (x1 cos t−x2 sin t, x2 cos t+x1 sin t, . . . , x2m−1 cos t−x2m sin t, x2m cos t+x2m−1 sin t,−x2m+1).

H(x, t) is homotopy from g : S2m → S2m, (x1, x2, . . . , x2m+1) 7→ (x1, x2, . . . ,−x2m+1) to antipodal map on S2m.

Thus f is homotopic to g, which has fixed points (x1, x2, . . . , x2m, 0) ∈ S2m.

8. First, ∞ is not a zero. Suppose z1, . . . , zk are the roots of f with multiplicities n1, . . . , nk, then deg f =
k∑
i=1

ni.

For appropriate local coordinate chart near zi, f has form w = znih(z), where h(z) is a non-vanishing homomorphic

function, thus deg f̂ |zi = ni. deg f̂ =
∑
i

deg f̂ |zi =
k∑
i=1

ni = deg f .
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9. (a) Let X1 = S2/{{N}, {S}} ' S1 ∨ S2. Hn(X1) = Z for n = 0, 1, 2 or 0 for n ⩾ 3.

(b) Let X2 = S1 × (S1 ∨ S1). 0 → Z〈U,L〉 d2−→ Z〈a, b, c〉 d1−→ Z〈v〉 → 0. d1 = 0, d2 = 0.

H0(X2) = Z, H1(X2) = Z3, H2(X2) = Z2, Hn(X2) = 0 for n ⩾ 3.

(c) Let the space be X3. Attachment map of 2-cell U is ca−1c−1ba−1b−1a. 0 → Z〈U〉 d2−→ Z〈a, b, c〉 d1−→ Z〈v〉 → 0.

d1 = 0, d2(U) = −a. H0(X3) = Z, H1(X3) = Z2, Hn(X3) = 0 for n ⩾ 2.

(d) Let the space be X4. Attachment map of 2-cell U is anbma−nb−m. 0 → Z〈U〉 d2−→ Z〈a, b〉 d1−→ Z〈v〉 → 0.

d1 = 0, d2 = 0. H0(X4) = Z, H1(X4) = Z2, H2(X4) = Z, Hn(X4) = 0 for n ⩾ 3.

10. Let αn : Sn → Sn be antipodal map. degαn = (−1)n+1.

(1) X has one 0-cell v, one 1-cell e, two 2-cells D+, D−. 0 → Z〈D+, D−〉
d2−→ Z〈e〉 d1−→ Z〈v〉 → 0.

d2(D±) = (1 + degα1)e = 2e, d1e = 0. H0(X) = H2(X)Z, H1(X) = Z2, Hn(X) = 0 for n ⩾ 3.

(2) Y = S3/ ∼ has one 0-cell v, one 1-cell e1, one 2-cell e2 and two 3-cells D+, D−. d3(D±) = (1 + degα2)e = 0.

0 → Z〈D+, D−〉
d3−→ Z〈e2〉

d2−→ Z〈e1〉
d1−→ Z〈v〉 → 0︸ ︷︷ ︸

cellular chain complex of RP 2

. d3 = 0, d2 = 2, d1 = 0.

H0(Y ) = Z, H1(Y ) = Z2, H2(Y ) = 0, H3(Y ) = Z2, Hn(Y ) = 0 for n ⩾ 3.

11. Related: Exercise 1.2.14

Suppose the quotient space is X. It has two 0-cells x, y, four 1-cells a, b, c, d, three 2-cells A,B,C and one 3-cell.

Faces of the 3-cell is identified via a twist, so d3 = 0. d2(A) = a+ b− c−d, d2(B) = a+ b+ c+d, d2(C) = a− b− c+d.

Let α = a+ d, β = −b+ d, γ = c+ d. d2(A) = α− β − γ, d2(B) = α− β + γ, d2(C) = α+ β − γ.

C1(X) = Z〈a, b, c, d〉 = Z〈α, β, γ, d〉 = Z〈α− β − γ, β, γ, d〉. C2(X) = Z〈A,B,C〉 = Z〈A,B −A,C −A〉.

d2(A) = α− β − γ, d2(B −A) = 2γ, d2(C −A) = 2β. d1(α) = 0, d1(β) = 0, d1(γ) = 0, d1(d) = x− y.

Cellular chain complex is 0 → Z d3−→ Z〈A,B −A,C −A〉 d2−→ Z〈α− β − γ, β, γ, d〉 d1−→ Z〈x, y〉 → 0.

H0(X) = Z〈x, y〉/Z〈x− y〉 ∼= Z, H1(X) = Z〈α− β − γ, β, γ〉/Z〈α− β − γ, 2β, 2γ〉 = Z2 ⊕ Z2.

ker d2 = 0, H2(X) = 0. d3 = 0, H3(X) = Z. Hn(X) = 0 for n ⩾ 4.
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12. H2(S
1 ∨ S1) → H2(S

1 × S1) → H2(S
1 × S1, S1 ∨ S1) → H1(S

1 ∨ S1) → H1(S
1 × S1) → H1(S

1 × S1, S1 ∨ S1).

H2(S
1 ∨S1) = 0 = H1(S

1×S1, S1 ∨S1), H2(S
1×S1) = Z = H2(S

1×S1, S1 ∨S1), H1(S
1 ∨S1) = Z2 = H1(S

1×S1).

For f : S2 → S1 × S1 and universal cover π : R2 → S1 × S1, π1(S2) = 0, so f has a lift f̃ : S2 → R2 s.t. π ◦ f̃ = f .

R2 is contractible, so f̃ is nullhomotopic, hence f is nullhomotopic.

13. Let 2, 3 : S1 → S1 denote the attachment maps of degree 2 and 3 of 2-cells e21 and e22.

(a) X = S1 ∪2 e
2
1 ∪3 e

2
2 = e0 ∪ e1 ∪2 e

2
1 ∪3 e

2
2. Subcomplexes are e0, S1, S1 ∪2 e

2
1, S

1 ∪3 e
2
2 and X.

H0(e0) = Z, Hn(e0) = 0 for n ⩾ 1. X/e0 = X. H0(S
1) = H1(S

1) = Z, Hn(S
1) = 0 for n ⩾ 2. X/S1 = S2 ∨ S2.

H0(S
1 ∪2 e

2
1) = Z, H1(S

1 ∪2 e
2
1) = Z2, Hn(S

1 ∪2 e
2
1) = 0 for n ⩾ 2. X/(S1 ∪2 e

2
1) = S2.

H0(S
1 ∪3 e

2
2) = Z, H1(S

1 ∪3 e
2
2) = Z3, Hn(S

1 ∪3 e
2
2) = 0 for n ⩾ 2. X/(S1 ∪3 e

2
2) = S2.

H0(X) = Z, H1(X) = 0, H2(X) = Z, Hn(X) = 0 for n ⩾ 3. X/X = {∗}.

(b) (1) π1(S1 ∪2 e
2
1, e

0) = 〈e1 | (e1)2〉. Attachment map 3 : S1 → S1 ⊆ S1 ∪2 e
2
1 is an element in π1(S

1 ∪2 e
2
1).

[3] = (e1)3 = e1, so attachment map 3 is homotopic to attachment map 1 : S1 → S1 ⊆ S1 ∪2 e
2
1 of degree 1.

Note that 2 : S1 → S1 ⊆ D2 is nullhomotopic, so it’s homotopic to constant map 0 : S1 → S1, S1 7→ e0.

X = S1 ∪2 e
2
1 ∪3 e

2
2 ' S1 ∪2 e

2
1 ∪1 e

2
2 = (S1 ∪1 e

2
2) ∪2 e

2
1 = D2 ∪2 e

2
1 ' D2 ∪0 e

2
1 = D2 ∨ S2 ' S2.

(2) X → X/e0 = X is a homotopy equivalence.

X → X/S1 = S2 ∨ S2 is not a homotopy equivalence since H2(X) = Z and H2(S
2 ∨ S2) = Z2.

Consider quotient map q : X → X/(S1 ∪2 e
2
1) = e0 ∪ e22 = S2. q is cellular and induces a cellular chain map.

0 // Z〈e21, e22〉
d2 //

q#

��

Z〈e1〉 d1 //

q#

��

Z〈e0〉 //

q#

� �

0

0 // Z〈e22〉 // 0 // Z〈e0〉 // 0

. H2(X) = Z〈3e21 − 2e22〉. q∗(3e21 − 2e22) = −2e22.

q∗ : H2(X) → H2(S
2) is not isomorphism, so q : X → X/(S1 ∪2 e

2
1) = S2 is not a homotopy equivalence.

Similar argument shows quotient map X → X/(S1 ∪2 e
2
2) = S2 is not a homotopy equivalence.

14. (1) Let αn : Sn → Sn be antipodal map. If f : Sn → Sn is even, then f = f ◦ αn, deg f = deg f · (−1)n+1.

If n is even, then deg f = 0. Assume n is odd in the followings. Let π : Sn → RPn be quotient map.

For even map f : Sn → Sn, define g : RPn → Sn by [x] 7→ f(x), then f = g ◦ π.

Consider quotient map q : RPn → RPn/RPn−1 = Sn, q ◦ π : Sn → Sn, deg(q ◦ π) = 2.

Hn(RPn−1) → Hn(RPn)
q∗→ Hn(RPn/RPn−1) → Hn−1(RPn−1). n is odd, Hn(RPn−1) = 0 = Hn−1(RPn−1).

q∗ is isomorphism, deg(q ◦ π) = 2, so π∗(1) = 2, f∗(1) = g∗ ◦ π∗(1) = g∗(2) = 2g∗(1). f is even.

(2) For any even 2k, by Example 2.31 there exists map g : Sn → Sn of degree k, then g ◦ q ◦ π is of degree 2k.
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17. Let X, Y be CW complexes and f : X → Y be cellular map.

By naturality of singular homology (boundary map ∂n), we have the following commutative diagram, where f∗ is

induced by singular homology by f .

Hn(X
n, Xn−1) Hn−1(X

n−1) Hn−1(X
n−1, Xn−2)

Hn(Y
n, Y n−1) Hn(Y

n−1) Hn−1(Y
n−1, Y n−2)

∂n

f∗

dn

jn−1

f∗ f∗

∂n

dn

jn−1

f induces a chain map f# between cellular chain complexes of X and Y , i.e. the following diagram commutes:

· · · Hn+1(X
n+1, Xn) Hn(X

n, Xn−1) Hn−1(X
n−1, Xn−2) · · ·

· · · Hn+1(Y
n+1, Y n) Hn(Y

n, Y n−1) Hn−1(Y
n−1, Y n−2) · · ·

dn+1

f#

dn

f# f#

dn+1 dn

f# induces a map fCW∗ : HCW
n (X) → HCW

n (Y ).
0

0

''PP
PPP

PPP
PPP

PPP Hn(X
n+1)

∼= //

66mmmmmmmmmmmmmmm
Hn(X)

Hn(X
n)

jn

''OO
OOO

OOO
OOO

77ooooooooooo

· · · // Hn+1(X
n+1, Xn)

∂n+1

77nnnnnnnnnnnn
dn+1 // Hn(X

n, Xn−1)

∂n ((QQ
QQQ

QQQ
QQQ

Q
dn // Hn−1(X

n−1, Xn−2) // · · ·

Hn−1(X
n−1)

jn−1

55lllllllllllll

0

66mmmmmmmmmmmmmmm

jn is injective, im ∂n+1
∼= jn(im ∂n+1) = im dn+1, Hn(X

n) ∼= jn(Hn(X
n)) = im jn = ker ∂n = ker dn.

0 im ∂n+1 Hn(X
n) Hn(X) 0

0 im dn+1 ker dn HCW
n (X) 0

jn∼= jn∼= φX∼=

Isomorphism ϕX : Hn(X) → HCW
n (X) is induced by jn.

The front, back, top, bottom and the left cube of this diagram commute, so the right cube must commute, i.e. the

isomorphism between singular and cellular homology is natural.
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18. Consider long exact sequences for good pairs (Xn ∪An+1, Xn−1 ∪An) and note that

Hn(X
n ∪An+1, Xn−1 ∪An) ∼= H̃n(X

n ∪An+1/Xn−1 ∪An) ∼= H̃n(X
n/Xn−1 ∪An) = H̃n(X

n, Xn−1 ∪An).

Hn−1(X
n−1 ∪An)

· · · Hn(X
n ∪An+1, Xn−1 ∪An) Hn−1(X

n−1 ∪An, Xn−2 ∪An−1) · · ·

· · · Hn(X
n, Xn−1 ∪An) Hn−1(X

n−1, Xn−2 ∪An−1) · · ·

jn−1

dn+1

∂n

dn dn−1

dn+1

∼=

dn

∼=
dn−1

19. The standard CW structure of RPn/RPm consists one k-cell for m+ 1 ⩽ k ⩽ n and one 0-cell.

0 → Z dn−→ · · · dm+2−→ Z︸ ︷︷ ︸
n−m

dm+1−→ 0
dm−→ 0 → · · · → 0︸ ︷︷ ︸

m

d1−→ Z → 0.

dk = 2 for k even and m+ 1 ⩽ k ⩽ n, dk = 0 otherwise.

Hi(RPn/RPm) = Z2 for i odd and m+ 1 ⩽ i < n, Hi(RPn/RPm) = Z for i = 0, n (n odd) and m+ 1 (m odd).

Hi(RPn/RPm) = 0 otherwise.

20. Let bXi , bYj , ck be Betti numbers of X, Y and X × Y respectively.

Note that each k-cell in X × Y is the product of an i-cell in X and j-cell in Y with i+ j = k, so ck =
∑
i+j=k b

X
i b

Y
j .

χ(X × Y ) =
∑
k(−1)kck =

∑
k(−1)k

∑
i+j=k b

X
i b

Y
j =

∑
i,j(−1)i+jbXi b

Y
j =

∑
i(−1)ibXi ·

∑
j(−1)jbYj = χ(X)χ(Y ).

21. Let bXn , bAn , bBn , bA∩B
n be Betti numbers of X, A, B and A ∩B respectively, then bXn = bAn + bBn − bA∩B

n .

χ(X) =
∑
n
(−1)nbXn =

∑
n
(−1)nbAn +

∑
n
(−1)nbBn −

∑
n
(−1)nbA∩B

n = χ(A) + χ(B)− χ(A ∩B).

23. Mg is compact, so Mg →Mh is finite sheeted. Let Mg →Mh be n-sheeted. χ(Mg) = 2− 2g, χ(Mh) = 2− 2h.

χ(Mg) = nχ(Mh), 2− 2g = n(2− 2h), so g = n(h− 1) + 1.

24. (1) The first graph is K5 with 5 vertices and 10 edges. χ(K5) = −5.

If K5 is 1-skeleton of S2, then from χ(S2) = 2, S2 has 7 polygons with 20 edges in total.

Let n1, . . . , n7 be the number of edges of polygons, n1 + · · ·+ n7 = 20.

We must have ni = 2 for some i, which means two of vertices of K5 are connected by two edges. Contradiction.

(2) The second graph is K3,3 with 6 vertices and 9 edges. χ(K3,3) = −3.

If K3,3 is 1-skeleton of S2, then S2 has 5 polygons with 18 edges in total. Notice that a circle in K3,3 contains at least

4 edges, so we need at least 4 edges to bound a polygon, and 5 polygons need 20 edges. Contradiction.

25. Existence: ϕn(X) = n · (χ(X)− 1) has the desired properties.

Let ϕn denote the function ϕ for n ∈ Z. For CW complex A and B, (A ∨B)/A = B, ϕn(A ∨B) = ϕn(A) + ϕn(B).

For Sk−1 ⊆ Sk as equator, Sk/Sk−1 = Sk ∨ Sk, ϕn(Sk) = ϕn(S
k−1) + 2ϕn(S

k), ϕn(Sk) = −ϕn(Sk−1) = (−1)k · n.

Suppose finite CW complex X has ci i-cells, ci is nonzero for finitely many i.

ϕn(X
k) = ϕn(X

k−1) + ϕn(
∨
α S

k
α) = ϕn(X

k−1) + ck · ϕn(Sk) = ϕn(X
k−1) + n · (−1)kck. ϕn({∗}) = 0.

By induction, we have ϕn(X) = n · (χ(X)− 1). The uniqueness is guaranteed by property (b)(c) via calculation.
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26. (a) (⇒) If r : X ∪ CA→ X ∪ CA is retraction, then ft(a) = r([a, t]), a ∈ A, t ∈ I is the homotopy.

(⇐) Define r : X ∪ CA→ X ∪ CA by r([a, t]) = ft(a) for a ∈ A, t ∈ I, r(x) = x for x ∈ X.

(b) If A is contractible in X, then we have retraction r : X ∪ CA→ X. H̃n(X ∪ CA) ∼= H̃n(X)⊕ H̃n(X ∪ CA/X).

H̃n(X ∪ CA) ∼= Hn(X,A). (X ∪ CA)/X ' SA, H̃n(X ∪ CA/X) ∼= H̃n(SA) ∼= H̃n−1(A).

27. Given A ⊆ X, Cn(X,A) := Cn(X)/Cn(A). 0 → Cn(A) → Cn(X) → Cn(X,A) → 0 is exact by definition.

0 → Hn(A) → Hn(X) → Hn(X,A) → 0 is exact if boundary homomorphisms ∂ : Hn(X,A) → Hn−1(X) are zero.

Let C ′
n(X,A) be subgroup of Cn(X) generated by singular n-simplices σ : ∆n → X whose image isn’t contained in A.

Every element σ in Cn(X) has a unique decomposition σ = σ1 + σ2, where σ1 ∈ Cn(A) and σ2 ∈ C ′
n(X,A).

Cn(X) ∼= Cn(A)⊕ C ′
n(X,A), C ′

n(X,A)
∼= Cn(X)/Cn(A) and we have isomorphism ϕ : Cn(X,A)

∼=−→ C ′
n(X,A).

However, boundary map ∂ doesn’t take C ′
n(X,A) to C ′

n−1(X,A), since for σ ∈ C ′
n(X,A), ∂σ may have faces in A.

Thus 0 → Cn(A) → Cn(X) → Cn(X,A) → 0 only splits as graded abelian groups, not as a chain complex, which is

not enough to induce a split on homology.

28. Related: Exercise 1.3.21

(a) Let X be the space in question, Y be the Möbius band and N ' S1 be a neighborho od of the identified circle in

X, then A = T 2 ∪N ' T 2, B = Y ∪N ' Y ' S1, A, B are open in X and X = A ∪B.

Consider MV sequence for reduced homology groups:

H̃2(N) H̃2(A)⊕ H̃2(B) H̃2(X) H̃1(N) H̃1(A)⊕ H̃1(B) H̃1(X) 0

H̃2(S
1) H̃2(T

2)⊕ H̃2(S
1) H̃1(S

1) H̃1(T
2)⊕ H̃1(S

1)

0 Z〈a〉 Z〈b〉 Z〈c, d〉 ⊕ Z〈e〉

ϕ ψ φ

∼= ∼= ∼= ∼=

∼= ∼= ∼= ∼=

φ(b) = c+ 2e, φ is injective, so ψ = 0, φ is isomorphism. H̃2(X) ∼= Z.

imϕ = Z〈c+ 2e〉, H̃1(X) ∼= Z〈c, d〉 ⊕ Z〈e〉/Z〈c+ 2e〉 = Z〈c+ 2e, d, e〉/Z〈c+ 2e〉 = Z2.

X is path connected, so H0(X) = Z. H1(X) = Z2, H2(X) = Z, Hn(X) = 0 for n ⩾ 3.

(b) Let X be the space in question, Y be the Möbius band and N ' RP 1 ' S1 be a neighborhood of the identified

circle in X, then A = RP 2 ∪N ' RP 2, B = Y ∪N ' Y ' S1, A, B are open in X and X = A ∪B.

Consider MV sequence for reduced homology groups:

H̃2(N) H̃2(A)⊕ H̃2(B) H̃2(X) H̃1(N) H̃1(A)⊕ H̃1(B) H̃1(X) 0

H̃2(S
1) H2(RP 2)⊕H2(S

1) H̃1(S
1) H̃1(RP 2)⊕H1(S

1)

0 0 Z〈a〉 Z2〈b〉 ⊕ Z〈c〉

ψ φ

∼= ∼= ∼= ∼=

∼= ∼= ∼= ∼=

ϕ(a) = b+ 2c, ϕ is injective, so ψ = 0, H̃2(X) = 0.

H̃1(X) ∼= Z2〈b〉 ⊕ Z〈c〉/Z〈b+ 2c〉 = 〈b, c | b2 = 1, bc = cb, bc2 = 1〉 = 〈c | c4 = 1〉 = Z4.

X is path connected, so H0(X) = Z. H1(X) = Z4, Hn(X) = 0 for n ⩾ 2.

25



29. (1) R deformation retracts to
∨
g S

1. Let two copies of R be R1 and R2. Let A,B be neighborhood of R1 and R2

s.t. A, B are open in X and deformation retract to R1 and R2 respectively. X is path-connected, H0(X) = Z.

A ' R1 '
∨
g S

1, B ' R2 '
∨
g S

1. A ∩B 'Mg, X = A ∪B. We have MV sequence:

0 H̃3(A)⊕ H̃3(B) H̃3(X) H̃2(A ∩B) H̃2(A)⊕ H̃2(B) H̃2(X) · · ·

H̃3(R1)⊕ H̃3(R2) H̃2(Mg) H2(
∨
g S

1)⊕H2(
∨
g S

1)

0 Z 0

φ

∼= ∼= ∼=

∼= ∼= ∼=

ϕ is isomorphism, H̃3(X) ∼= Z.

0 H̃2(X) H̃1(A ∩B) H̃1(A)⊕ H̃1(B) H̃1(X) 0

H̃1(Mg) H̃1(
∨
g S

1)⊕H1(
∨
g S

1)

Z〈a1, b1, . . . , ag, bg〉 Z〈c1, . . . , cg〉 ⊕ Z〈d1, . . . , dg〉

ψ φ γ

∼= ∼=

∼= ∼=

ϕ(ai) = ci + di, ϕ(bi) = 0. H̃2(X) ∼= ψ(H̃2(X)) = imψ = kerϕ = Z〈b1, . . . , bg〉 = Zg.

H̃1(X) ∼= H̃1(A)⊕ H̃1(B)/ ker γ = H̃1(A)⊕ H̃1(B)/ imϕ ∼= Z〈c1, . . . , cg, d1, . . . , dg〉/Z〈c1 + d1, . . . , cg + dg〉 = Zg.

H0(X) = Z, H1(X) = Zg, H2(X) = Zg, H3(X) = Z, Hn(X) = 0 for n ⩾ 4.

(2) Consider long exact sequence for good pair (R,Mg).

H̃3(R) H̃3(R,Mg) H̃2(Mg) H̃2(R) H̃2(R,Mg)

H̃3(
∨
g S

1) ∼= 0 Z H̃2(
∨
g S

1) ∼= 0

∼= ∼= ∼=

H̃2(R,Mg) H̃1(Mg) H̃1(R) H̃1(R,Mg) → 0

Z2g H̃1(
∨
g S

1) ∼= Zg

φ ψ

∼= ∼=

H̃3(R,Mg) ∼= H̃2(Mg) = Z. ψ is surjective, kerψ = Zg, H̃2(R,Mg) ∼= imϕ = kerψ = Zg.

H̃1(R,Mg) ∼= H̃1(R)/ imψ = 0. H0(R,Mg) ∼= H̃0(R/Mg) = 0.

H0(R,Mg) = 0, H1(R,Mg) = 0, H2(R,Mg) = Zg, H3(R,Mg) = Z, Hn(R,Mg) = 0 for n ⩾ 4.
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30. (0) Prerequisites: Suppose we have exact A-modules sequence Mi−2
fi−1−−−→Mi−1

fi−→Mi
fi+1−−−→Mi+1

fi+2−−−→Mi+2.

im fi ∼=Mi−1/ ker fi =Mi−1/ im fi−1 = coker fi−1. Mi/ im fi =Mi/ ker fi+1
∼= im fi+1 = ker fi+2.

0 → im fi ↪→Mi ↠Mi/ im fi → 0 is exact, so 0 → coker fi−1 →Mi → ker fi+2 → 0 is exact.

If in addition Mi’s are Z-modules / abelian groups and ker fi+2 is free, then Mi
∼= coker fi−1 ⊕ ker fi+2.

(1) H0(S
2) = Z, H1(S

2) = 0, H2(S
2) = Z, Hn(S

2) = 0 for n ⩾ 3.

H0(S
1 × S1) = Z, H1(S

1 × S1) = Z2, H2(S
1 × S1) = Z, Hn(S

1 × S1) = 0 for n ⩾ 3.

0 → H3(Tf ) → H2(X)
id−f∗−−−−→ H2(X) → H2(Tf ) → H1(X)

id−f∗−−−−→ H1(X) → H1(Tf ) → H0(X) is exact.

(a) For reflection f : S2 → S2, deg(id− f∗) = 2. H0(Tf ) = Z, H1(Tf ) = Z, H2(Tf ) = Z2, Hn(Tf ) = 0 for n ⩾ 3.

(b) f : S2 → S2 has degree 2. H0(Tf ) = Z, H1(Tf ) = Z, Hn(Tf ) = 0 for n ⩾ 3.

(c) f : S1 × S1 → S1 × S1 is given by matrix
(
1 0
0 −1

)
. detA = −1.

Similar to Exercise 2.2.7, id− f∗ : H2(S
1 × S1) → H2(S

1 × S1) maps 1 to 1− sign(detA) = 2.

H0(Tf ) = Z, H1(Tf ) = Z2 ⊕ Z2, H2(Tf ) = Z2 ⊕ Z, Hn(Tf ) = 0 for n ⩾ 3.

(d) f : S1×S1 → S1×S1 is given by matrix
(−1 0

0 −1

)
. id−f∗ : H2(S

1×S1) → H2(S
1×S1) maps 1 to 1−sign(detA) = 0.

H0(Tf ) = Z, H1(Tf ) = Z2 ⊕ Z2 ⊕ Z, H2(Tf ) = Z, H3(Tf ) = Z, Hn(Tf ) = 0 for n ⩾ 4.

(e) f : S1×S1 → S1×S1 is given by matrix
(

0 1
−1 0

)
. id−f∗ : H2(S

1×S1) → H2(S
1×S1) maps 1 to 1−sign(detA) = 0.

H0(Tf ) = Z, H1(Tf ) = Z2 ⊕ Z, H2(Tf ) = Z, H3(Tf ) = Z, Hn(Tf ) = 0 for n ⩾ 4.

31. Suppose for x0 ∈ U ⊆ X, y0 ∈ V ⊆ Y , X ∨ Y = X
∐
Y/(x0 ∼ y0) and U , V deformation retract to x0 and y0.

Let A = X ∪ V , B = Y ∪ U , then A ' X, B ' Y and A ∪B = X ∨ Y , A ∩B = U ∨ V ' {∗}, H̃n(A ∩B) = 0.

MV sequence H̃n(A ∩B) → H̃n(A)⊕ H̃n(B) → H̃n(A ∪B) → H̃n−1(A ∩B) gives H̃n(X)⊕ H̃n(Y ) ∼= H̃n(X ∨ Y ).

32. Suppose N is a neighborhood of X in SX that deformation retracts to X.

SX = CX ∪ CX, let A be union of the first cone CX with N and B be union of the second cone CX with N .

A ' CX, B ' CX. H̃n(A) = 0, H̃n(B) = 0. A ∪B = SX, A ∩B = N ' X.

MV sequence H̃n(A)⊕ H̃n(B) → H̃n(A ∪B) → H̃n−1(A ∩B) → H̃n−1(A)⊕ H̃n−1(B) gives H̃n(SX) ∼= H̃n−1(X).

33. (1) Let Xk = A1 ∪ · · · ∪Ak, Yk = Ak ∩ · · · ∩An. Define Yn+1 = X.

Prove by induction on k that H̃i(Xk ∩ Yk+1) = 0 for 1 ⩽ k ⩽ n and i ⩾ k − 1.

By assumption, this holds for k = 1. Suppose it holds for k = j − 1, i.e. H̃i(Xj−1 ∩ Yj) = 0 for i ⩾ j − 2.

Xj ∩Yj+1 = (Xj−1 ∪Aj)∩Yj+1 = (Xj−1 ∩Yj+1)∪ (Aj ∩Yj+1) = (Xj−1 ∩Yj+1)∪Yj . (Xj−1 ∩Yj+1)∩Yj = Xj−1 ∩Yj .

H̃i(Xj−1∩Yj) → H̃i(Xj−1∩Yj+1)⊕ H̃i(Yj) → H̃i(Xj ∩Yj+1) → H̃i−1(Xj−1∩Yj) is exact. H̃i(Yj) = 0 by assumption.

For i ⩾ j − 1, H̃i(Xj−1 ∩ Yj) = 0, H̃i−1(Xj−1 ∩ Yj) = 0, thus H̃i(Xj ∩ Yj+1) ∼= H̃i(Xj−1 ∩ Yj+1) ∼= · · · ∼= 0.

The procedure above is also valid for j = n, so H̃i(Xk ∩ Yk+1) = 0 for 1 ⩽ k ⩽ n and i ⩾ k − 1.

Especially for k = n, Xn ∩ Yn+1 = X, we have H̃i(X) = 0 for i ⩾ n− 1.

(2) Consider boundary of an (n− 1)-simplex, which is homeomorphic to Sn−2. It has n faces of dimension n− 2.

Let n open sets be small neighborhood of these n faces respectively, then their non-empty intersections will be

neighborhoods of lower dimensional faces which are contractible.
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35. Suppose H1(X) contains torsion and X embeds into R3 s.t. N is a neighborhood of X and N is homeomorphic

to M , where M is the mapping cylinder of Mg → X, Mg is closed orientable surface of genus g.

M deformation retracts to X, so N ' X. Let A = R3 −X, B = N . A∩B = N −X 'Mg × [0, 1) 'Mg, A∪B = R3.

From the following reduced MV sequence, we have H̃n(Mg) ∼= H̃n(R3 −X)⊕ H̃n(X).

H̃n+1(R3) H̃n(A ∩B) H̃n(A)⊕ H̃n(B) H̃n(R3)

0 H̃n(Mg) H̃n(R3 −X)⊕ H̃n(X) 0

∼= ∼= ∼= ∼=

For n = 1, H1(Mg) = Z2g but H1(X) has a torsion. Contradiction.

36. (1) Let x0 ∈ Sn, r : Sn → {x0} be retraction, then id × r : X × Sn → X × {x0} is retraction and we have

Hi(X × Sn) ∼= Hi(X × {x0})⊕Hi(X × Sn, X × {x0}) ∼= Hi(X)⊕Hi(X × Sn, X × {x0}).

(2) Let A = X ×Dn
+, B = X ×Dn

− s.t. x0 ∈ Dn
+ ∩Dn

− = Sn−1. Let C = D = X × {x0}, then C ⊆ A, D ⊆ B.

A ' X, B ' X. A ∩B = X × Sn−1, A ∪B = X × Sn. C ∩D = C ∪D = X × {x0}.

MV sequence Hi(A,C) ⊕ Hi(B,D) → Hi(A ∪ B,C ∪ D) → Hi−1(A ∩ B,C ∩ D) → Hi−1(A,C) ⊕ Hi−1(B,D) gives

Hi(X × Sn, X × {x0}) ∼= Hi−1(X × Sn−1, X × {x0}) ∼= · · · ∼= Hi−n(X × S0, X × {x0}) ∼= Hi−n(X).

38. We have the following commutative diagram:

· · · Cn+1 An Bn Cn An−1 Bn−1 · · ·

· · · En+1 An Dn En An−1 Dn−1 · · ·

f1 f2

g1 g2

f3

h1 h2 h3

This yields exact sequence · · · → En+1
f1◦h1−−−−→ Bn

(f2g1)−−−→ Cn ⊕Dn
(g2,−h2)−−−−−→ En

f3◦h3−−−−→ Bn−1 → · · ·

The exactness of this sequence can be verified via diagram chasing.

39. Let (X,Y ) = (A ∪B,C ∪D) be CW pairs.

(1) For A = B, consider long exact sequences for triples (A,C,C∩D) and (A,C∪D,D). Hi(C,C∩D) ∼= Hi(C∪D,D).

→ Hn+1(A,C) → Hn(C,C ∩D) → Hn(A,C ∩D) → Hn(A,C) → Hn−1(C,C ∩D) → Hn−1(A,C ∩D) →

→ Hn+1(A,C ∪D) → Hn(C ∪D,D) → Hn(A,D) → Hn(A,C ∪D) → Hn−1(C ∪D,D) → Hn−1(C ∪D,D) →

From Exercise 2.2.38, we have the following relative MV sequences for (X,Y ) = (A ∪B,C ∪D) with A = B.

· · · → Hn+1(A,C ∪D) → Hn(A,C ∩D) → Hn(A,C)⊕Hn(A,D) → Hn(A,C ∪D) → Hn−1(C,C ∩D) → · · ·

(2) For C = D, consider long exact sequences for triples (A,A∩B,C) and (A∪B,B,C). Hi(A,A∩B) ∼= Hi(A∪B,B).

→ Hn+1(A,C) → Hn+1(A,A ∩B) → Hn(A ∩B,C) → Hn(A,C) → Hn(A,A ∩B) → Hn−1(A ∩B,C) →

→ Hn+1(A ∪B,C) → Hn+1(A ∪B,B) → Hn(B,C) → Hn(A ∪B,C) → Hn(A ∪B,B) → Hn−1(B,C) →

We have the following relative MV sequences for (X,Y ) = (A ∪B,C ∪D) with C = D.

· · · → Hn+1(A ∪B,C) → Hn(A ∩B,C) → Hn(A,C)⊕Hn(B,C) → Hn(A ∪B,C) → Hn−1(A ∩B,C) → · · ·
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40. (1) From chain complexes 0 → Ci(X)
n−→ Ci(X) −→ Ci(X;Zn) → 0, we have long exact sequence

· · · → Hi(X)
n−→ Hi(X) −→ Hi(X;Zn) −→ Hi−1(X)

n−→ Hi−1(X) → · · ·

From prerequisite in Exercise 2.2.30, 0 → Hi(X)/nHi(X) → Hi(X;Zn) → n-Torsion(Hi−1(X)) → 0 is exact, where

n-Torsion(G) = ker(G
n→ G).

(2) (⇒) If H̃i(X;Zn) = 0 for all i and all primes p, then H̃i(X)
p→ H̃i(X) is isomorphism.

For any x ∈ H̃i(X) and p/q ∈ Q, p, q primes, px ∈ H̃i(X) and these exists unique y ∈ H̃i(X) s.t. qy = px.

Let p/q · x be y. H̃i(X) is abelian group and addition is already defined, thus Hi(X) is vector space over Q.

(⇐) If Hi(X) is vector space over Q for all i, then H̃i(X)
p→ H̃i(X) is isomorphism for all i and all primes p.

Hi(X)/pHi(X) = 0, p-Torsion(Hi−1(X)) = 0, so H̃i(X;Zp) = 0 for all i and all primes p.

41. For finite CW complex X, suppose ci is the number of i-cells in X. We have the following cellular chain complex

0 → Hn(X
n, Xn−1;F ) → Hn−1(X

n−1, Xn−2;F ) → · · · → 0, where Hi(X
i, Xi−1;F ) ∼= F ci .

χ(X) =
∑
i ci =

∑
i dimHi(X

i, Xi−1;F ) =
∑
i dimHCW

i (X;F ) =
∑
i dimHi(X;F ).

Generalization: Suppose X has finite integral homology, i.e. finite number of nonzero homology groups, which are

all finitely generated. Let n be the top dimension of non-vanishing homology, F be a field.

(1) charF = 0. Let bi be the i-th Betti number of X, i.e. Hi(X;Z) = Zbi ⊕ T , where T is the torsion subgroup.

χ(X,Z) =
∑
i

(−1)ibi. From universal coefficient theorem, Hi(X;F ) = (Hi(X;Z)⊗ F )⊕ Tor(Hi−1(X;Z), F ).

charF = 0, so Tor-term vanishes, Hi(X;F ) = F bi . It follows that χ(X,Z) = χ(X,F ).

(2) charF 6= 0. Suppose Hi(X;Z) = Zbi ⊕ (Z/pZ)c
p
i ⊕ T pi , where T pi is the torsion part which is not p-torsion.

The universal coefficient theorem gives: Hi(X;F ) =


F b0 i = 0

F bi+c
p
i +c

p
i−1 1 ⩽ i ⩽ n

F c
p
n i = n+ 1

χ(X;F ) = b0 − (b1 + cp1 + cp0) + · · ·+ (−1)n(bn + cpn + cpn−1) + (−1)n+1cpn.

Each cpi cancels with the one in the next factor, so all is left is χ(X;F ) =
∑
i(−1)ibi = χ(X,Z).

42. (1) H1(X;Z) is of rank n > 1, so X '
∨
n S

1. Consider X =
∨
n S

1 first.

To show φ : G → GLn(Z) is injective, suppose g : X → X is homeomorphism s.t. φ(g) = id, then g maps each S1 to

itself and fixes the wedge point x0. Let f = g|S1 : S1 → S1, then f fixes x0 and f∗ = id, so f preserves the orientation.

G is finite group, so f is of finite order and there exists a smallest positive integer k s.t. fk = id.

Let y ∈ S1, f(y) 6= y, then points y, f(y), f2(y), · · · , fk(y) = y are permuted in S1 clockwise or counterclockwise since

f preserves the orientation. Arc between f i(y) and f i+1(y) is mapped by f to the next one, and such arcs cover S1,

so one of these arcs contains x0, but f fixes x0. Contradiction. Thus f = id : S1 → S1 and g = id :
∨
n S

1 →
∨
n S

1.

(2) For general finite connected graph X '
∨
n S

1 (n ⩾ 2), there exists a vertex x0 of valence ⩾ 3.

x0 belongs to different loops based at x0, and g maps loops to themselves and preserves the orientation, so g fixes x0,

and the followings are the same as the situation for
∨
n S

1.

(3) For coefficient group Zm, φ : G→ GLn(Zm). Suppose g : X → X is homeomorphism s.t. φ(g) = id.

If m > 2, then g preserves the orientation in each loop since −1 = m− 1 6= 1. This doesn’t hold for m = 2.
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43. (a) Suppose C = (· · ·Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → · · · ) is chain complex of free abelian groups.

im ∂n is submodule of free Z-module Cn−1, so it’s free and exact sequence 0 → ker ∂n ↪→ Cn ↠ im ∂n → 0 splits.

Let Kn = ker ∂n, Ln = im ∂n, then Cn ∼= Kn ⊕ Ln and Dn = (0 → Ln+1 → Kn → 0) is subcomplex.

C =
⊕

nDn, i.e. chain complex C splits as a direct sum of subcomplexes Dn.

(b) Suppose groups Cn are finitely generated, then map Ln+1 → Kn is a linear transformation between finite dimen-

sional vector spaces. Note that Ln+1 = im ∂n+1 ⊆ Kn = ker ∂n, write Ln+1 = Zj and Kn = Zk with j ⩽ k.

By change of basis properly, which is equivalent to elementary row and column operations on Ln+1 = Zj → Kn = Zk,

map Ln+1 → Zk takes each basis vector in Zj to a multiple of a basis vector in Zk, which gives splitting of complex

0 → Ln+1 → Kn → 0 into summands 0 → 0 → Z → 0 and 0 → Z m−→ Z → 0.

(c) This is universal coefficient theorem for homology. Cellular chain complex has the following decomposition.

Sequence (1) corresponds to Z summand of Hn(X;Z).

Sequence (2) corresponds to im(Z m−→ Z) = Zm summand of Hn(X;Z).

(3) is irrelevant to Hn(X;Z).

(4) corresponds to ker(Z m−→ Z) = 0 summand of Hn(X;Z) and im(Z m−→ Z) = Zm summand of Hn−1(X;Z).

For Hn(X
n, Xn−1;Z) and Hn(X

n, Xn−1;G) where G is an abelian group, the numbers of summands are equal to the

number of n-cells in X, so summands in Hn(X;Z) and Hn(X;G) are in 1-1 correspondence to each other.

· · · Hn+1(X
n+1, Xn;Z) Hn(X

n, Xn−1;Z) Hn−1(X
n−1, Xn−2;Z) Hn−2(X

n−2, Xn−3;Z) · · ·

0 Ln+1 = im dn+1 Kn = ker dn 0

0 0 Z 0 (1)

0 Z Z 0 (2)

0 Ln = im dn Kn = ker dn−1 0

0 0 Z 0 (3)

0 Z Z 0 (4)

dn+1 dn dn−1

m

m
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