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1 Groups of order 8

For |G| =8 = 23
1. GG is abelian. (1) G = ZS [8, 1} (2) G = Zz @ Z4 [8./ 2] (3) G = Zz @ Zz @ Z2 [8/ 5]
2. G is non-abelian. There exists a € G and o(a) =4, (a) <G. Let b € G\ (a), o(b) = 2 or o(b) = 4.

Let bab~! = a' € (a), then o(a’) = o(bab™1) = o(a) =4, i =1 or i = 3. G is non-abelian, so i = 3.

IIZ

(
(1) o(b) =2. G = {a,b|a* =b*=1,bab~! = a3) = D4 [8,3]. This is the dihedral group of order 8.
)

(2) o(b) =4. G ={a,b|a* =b* =1,bab~! = a3) = Qg [8,4]. This is the quaternion group.

Qs ={£1,+(§ %), (% 8),£(91)} The isomorphism in 2(2) is given by a — (§ %), b (9 7').

elementin Dy | 1 | a|a® | a® | b ]| ab| a?b | a3 element in Qs | 1 | a | a® | a® | b| ab| a®b | a®b

order 114 2 4 12| 2 2 2 order 114] 2 4 14| 4 4 4

In summary, 1(1), 1(2), 1(3), 2(1), 2(2) give all 5 non-isomorphic groups of order 8.

2 Groups of order 12

For |G| =12 =223, N(2) =2k + 1|3, N(3) =31+ 1 4, hence N(2) =3, N(3) = 1 or N(2) = 1, N(3) = 4.

1. N(2) =3, N(3) = 1. GG is a semidirect product of the Sylow 3-subgroup Zs and a Sylow 2-subgroup of order 4.
(1) Sylow 2-subgroup is Z4. We have homomorphism ¢ : Zy — Aut(Z3) = Zs.

(i) p is trivial. G =2 Zs @ Z4 =2 Z12 [12, 2].

(ii) ¢ is non-trivial. Let Zs = (), Zy = (y). G = (z,y | 23 = y* = 1,yzy~! = 22) [12,1].

(2) Sylow 2-subgroup is Zg @ Zs. We have homomorphism ¢ : Zo & Zo — Aut(Zs) = Zo.

(i) ¢ is trivial. G 2 Z3 X (Lo ®Zo) Z 7o P Lo ® Zs = Lo ® Zg [12,5].

(ii) ¢ is non-trivial. G = (Zs X Zy) @ Zo = S5 @ Z2 =2 D3 @ Za =2 Dg [12,4].

2. N(2) =1, N(3) = 4. Let P be a Sylow 3-subgroup. Action of G on G/P induces homomorphism ¢ : G — Sj.
ker ¢ = ﬂGng’l < P. If kerp = P, then P<G, N(3) =1, back to case 1.

If ker ¢ gzel, then ¢ is injective, [Sy : p(G)] = 2. The only subgroup of Sy of order 12 is A4, so G = A4 [12,3].
Alternative method:

G is a semidirect product of the Sylow 2-subgroup of order 4 and a Sylow 3-subgroup Zs.

(1) Sylow 2-subgroup is Z4. We have trivial homomorphism Zs — Aut(Z4) = Zo. G = Z3 ® Ly = Zo.

(2) Sylow 2-subgroup is Zs ® Zs = () ® (y). Consider the nontrivial homomorphism ¢ : Zs — Aut(Zs & Zs) = Ss.
Let Z3 = (2). o(2) maps 1,z,y,xy to 1,y,zy, z, and ©(z?) maps 1,z,y,zy to 1,xy, z,y respectively.

G2 (z,y,z |22 =y* =22 =1 za2 =y, zyz7t =y, zayz ™t = o, 2220272 = 2y, 22y2 2 = 1, 222y2"2 = y)

It can be reduced to G = (z,2 | 22 = 22 = 1, (22)® = 1) = A, with isomorphism z +— (123) and x — (12)(34).

In summary, 1(1)(i), 1(1)(ii), 1(2)(i), 1(2)(ii), 2(2) give all 5 non-isomorphic groups of order 12.



3 Groups of order 18

For |G| =18 =32 -2, N(3) = 1. Sylow 3-subgroup is normal.

G is a semidirect product of the Sylow 3-subgroup of order 9 and a Sylow 2-subgroup Z.
1. Sylow 3-subgroup is Zg. We have homomorphism ¢ : Zs — Aut(Zg) = Zg.

(1) p is trivial. G = Zo @ Zg =2 Z1g [18,2]. This is an abelian group.

(2) ¢ is non-trivial. Let Zg = (x), Zo = (y). ¢(y) is of order 2, so ¢(y)(z) = 28 = 2~ L.

G {(z,yla®=y*=1,yzy ! =27!) = Dy [18,1]. This is an non-abelian group.

2. Sylow 3-subgroup is Zs ® Z3. We have homomorphism ¢ : Zs — Aut(Zs ® Z3) = GLy(F3).

Consider Zy = {0,1,+}. ¢(1) is of order 1 or 2 and can always be diagonalized. The same diagonalization yields the

same homomorphism since it’s equivalent to represent homomorphism ¢ with another basis of Zgz & Zs.

(1) (1) can be diagonalized to ( ?), ie. pis trivial. G 2 Zo @ Zs B Zs =2 Zs D Ze [18,5].

(2) ¢(1) can be diagonalized to (%%) = ( G 2Ly P (L3 )7o) 2 SsPZs = D3 P Zs [18,3].

(3) ¢(1) can be diagonalized to (?%)

N|O] N

(=} N el

I
~/~ oI+l

). Let Zs @ Zs = (z) @ (y), Zo = ().

G2 (z,y,z |23 =y> =22 =1, zy =yz,ze2"t = a1, 2yz=1 =y~ 1) [18,4].

Groups in 1 and groups in 2 have different Sylow 3-subgroup.

Group in 1(1) is abelian while group in 1(2) is non-abelian.

Group in 2(1) is abelian while groups in 2(2) and 2(3) are non-abelian.

Group in 2(2) has 3 elements of order 2, while group in 2(3) has 9 (zPy%z, p =0,1,2, ¢ =0, 1,2) such elements.

In summary, 1(1), 1(2), 2(1), 2(2), 2(3) give all 5 non-isomorphic groups of order 18.

4 Groups of order 20

For |G| =20 = 22 .5, N(5) = 1.

G is a semidirect product of the Sylow 5-subgroup Zs = (z) and a Sylow 2-subgroup H of order 4.

1. H =174 = (y). We have homomorphism ¢ : H = Z4 — Aut(Zs) = Z,4.

(1) p(H) = 1. G2 Zy x s = Za ® Zs = T 20, 2].

(2) p(H) =Zz. G=(y,xz | 2® =y* =1L, yzy~ " =2*) [20,1].

(3) p(H) =Z4. G (y,x | 2° = y* = 1,yzy~! = 2?) [20,3].

Note that for group in 1(2), zy? = y2x, (z,y?) = Z1o. For group in 1(3), if it has a subgroup K of order 10, then K
is normal and K N H = (y?). D5 = (z,9°?) < K, so K 2 D5 and groups in 1(2) and 1(3) are not isomorphic.
2. H = Zy ® Z3. We have homomorphism ¢ : H = Zs & Zoy — Aut(Zs) = Zy.

(V) YH) = 1. G (Lo ® To) X L = Lo ® Lo ® Tos = Ty D Zong [20, 5],

(2) Y(H) =Zs. G= (Zs X Z2) B Zs = D5 @ Za = Dqg [20,4].

In summary, 1(1), 1(2), 1(3), 2(1), 2(2) give all 5 non-isomorphic groups of order 20.



5 Groups of order 24

For |G| =24 =233
1. N(2) = 1. G is a semidirect product of the Sylow 2-subgroup N of order 8 and a Sylow 3-subgroup Zs.

(1) N = Zg. We have trivial homomorphism Zz — Aut(Zs) & Zo ® Zo. G 2 Zg X Lg = 73 B Zsg = Zayg [24,2].
(2) N =Zs ® Z4. We have trivial homomorphism Zz — Aut(Zq ® Z4) = Dy.

G2 (Lo DTy X Ly 2Ty D Ty B Log X Ly ® Lo [24, 9]

(3) N = D4. We have trivial homomorphism Zz — Aut(Dy) = Dy. G = Dy x Z3 = D4 @ Z3 [24,10].
(4) N =Zo ® Zo ® Zo. We have homomorphism ¢ : Zg — Aut(Zo ® Zs ® Zs) = GL3(Fy).

(i) p is trivial. G = (Zo @ Zo B 7o) X L3 2 Zg B Lo B Lo B Lz =2 Za B Za B Ze [24,15].

( )

Or equivalently, note that Zs @ Zs @ Zs has 7 non-trivial elements and ¢(1) is of order 3, so it must have a non-trivial

ii) ¢ is non-trivial. Using rational canonical form, (1) can be quasi-diagonalized to (

olol =
==l
== ol

fixed point and therefore fix one Zg in Zo @ Zo ® Zo. G = (Lo ©Z2) X 73) B 7Ly =2 Ay B Zo [24,13].
(5) N = Qg. We have homomorphism 1 : Zz — Aut(Qg) = Sy.
(i) v is trivial. G = Qg X Z3 = Qs ® Z3 [24,11].
(ii) 4 is non-trivial. Subgroups of order 3 in Sy are conjugate, which corresponds to rename the generators of Qs,
so there’s only one non-trivial action of Zs on Qg, given by i +— j— k—i. G = Qg x Zz = SLa(Z3) [24,3].
2. N(3) = 1. G is a semidirect product of the Sylow 3-subgroup Zs = (z) and a Sylow 2-subgroup H of order 8.
We only need to consider the non-trivial cases.
1)H=2Zs=(y). G={z,y | 2> =y® =1,yzy~! = x?) [24,1].
(2) H=12Z2®7Zy = (y) ® (z). We have epimorphism ¢ : Zo ® Zy — Aut(Z3) = Zs.
(i) ker p = Zy = (2). Z4 = (z) acts on Zs trivially, and Zs = (y) acts on Z3 non-trivially.
G = (Zy % L) B Ly = S5 D Za = D3 ® Zy [24, 5.
(ii) ker p = Zo © Zo = (y) ® (22). Zy = (y) acts on Zj3 trivially, and ¢(z) is of order 2 in Aut(Zs).
G2 (z,y,z |3 =y =2t =1Lyz=z2y,yay L =, 2227 =22) 2 (z,2 |23 = 2% = 1, zax271 = 22) P Z [24,7].
(3) H= Dy = (y,z | y*> = 2 =1, (y2)? = 1). We have epimorphism 1 : Dy — Aut(Z3) = Zs.
(i) kerv = Zy = (z). Z4 = (z) acts on Zs trivially, and Zo = (y) acts on Zs non-trivially.
G (z,y,z |23 =y*=21=1,(y2)? = L,yzy ! = 2%, 20271 = ). Note that (z,2) = Zs.
Let x = w?*, z = w?, then it can be reduced to G = (y,w | y? = w'? = 1, (yw)? = 1) = Dy, [24,6].
(i) kertp = Zo @ Zo = (y) @ (22). Zy = (y) acts on Zs trivially, and (z) is of order 2 in Aut(Zs).
G2 {z,y,z |22 =9y? =24 =1,(y2)? = l,yzy ! =z, 222~1 = 22) [24,8].
W) H=200Z &L G=(Zy X L) DLy ® L= S5 D Zo®Zy ™ D3 ® Ly D Lo X D Lo [24,14].
(5) H=Qs = (y,z | y* = 2* =1, 2y2~! = 3*). We have epimorphism v : Qg — Aut(Zs3) = Zs.

Subgroups of order 4 in Qg are all isomorphic to Z,4, so there’s only one Zgz x Qg under isomorphism.



1 1

Let ker o = (y), then Z3 x Qg = (z,y,z | 2® =y* =22 =1, 2927 = 3, yzy~ ' = 2, 20271 = 22). (2,9) = Z1o.

1 6

Let r =wy=w? G=(w,z|w?=2=1z2wz"! =w!!) 2 (w,z | wl? =1,22 = w8, z2wz"1 =w™1) [24,4].
This is the dicyclic group of order 24, also binary von Dyck group or binary triangle group with parameters (6,2, 2).
3. N(2) =3,N(3) =4. G has 4 Sylow 3-subgroups P, P, Ps, Py, |[Ng(P;)| = 24/4 = 6.

Action of G on P; by conjugation induces homomorphism ¢ : G — Sy, ker p = ﬂ?:l N(P;) € Ng(Py).

(1) kero = Ng(P1). Ng(P1) = N(P2), P, = P,. Contradiction.

(2) kero = P;. P; <«G. Contradiction.

(3) kerp=1. G= S, [24,12].

(4) ker p 2 Zy. Zo <G and Zy C Z(G). G has 3 Sylow 2-subgroups Q1,Q2, Q3 of order 8.

Action of G on @; by conjugation induces homomorphism ¢ : G — Ss. |[Ng(Q;)| =24/3 =8, Q; = N (Q:).

Thus im 4 contains all transpositions and is an epimorphism, ker ¢ < G and | ker¢| = 4. Zs C Z(G) C ker 1.

|p(ker ¢)] = 2 and @(ker 1)) <im ¢ = Ay, but A4 has no normal subgroup of order 2. Contradiction.

In summary, 1(1), 1(2), 1(3), 1(4)(i), 1(4)(ii), 1(5)(1), 1(5)(ii), 2(1), 2(2)(Q), 2(2)(ii), 2(3)(i), 2(3)(ii), 2(4), 2(5), 3(3)

give all 15 non-isomorphic groups of order 24.

@ Qg X Zg = SLQ(Zg)

7 Proof:

(

Action of G on P; yields homomorphism ¢ : G — Sy, ker ¢ = ﬂ?:l Ng(P;). Z(G) < kerp < Ng(Py).

il

) and (%?) are of order 3, so G has 4 Sylow 3-subgroups, denoted by Pi, Py, P3, Py. |[Nq(P;)| =24/4 =6.

=l

If ker ¢ = Ng(P1), then Ng(Py) = Ng(P2), P; = P». Contradiction. Therefore ker p = Z(G) & Zg and G/Zy = Ay.
Zo ®Za<d Ay, [Ay: Zo ® Zs] = 3 and Zy & Zsy has 3 subgroups of index 2.

By the correspondence theorem, there exists N < G with the same property. [G : N] =3, so |[N| = 8.

(%g) € @ is the unique element of order 2, so N has only one element of order 2. N & Zg or N = Qs.

N has 3 subgroups of index 2, so N 2 Qg. Qs NG, Z3 2P <G, PPNN=1,G=P/N,soGZN x P,.

Therefore SLQ(Zg) = Qg X Zg. (Il

zo=((31)) @ = ((35). (3%))

& (ZQ EBZQ) X S3 =2 Sy since S5 < Sy and Ky = Zo @ Z3<54.



6 Groups of order 28

For |G| =28 =2%2.7, N(7) = 1.

G is a semidirect product of the Sylow 7-subgroup Z; = (z) and a Sylow 2-subgroup H of order 4.
1. H =174 = (y). We have homomorphism ¢ : H = Zy — Aut(Z;) = Z¢ = Zo & Zs.

(D) o(H)=1. GEZy x Ly 274D Ly =2 Zag [28,2].

(2) p(H) =Zz. G=(zyy | 2" =y* = 1,yzy~ " =2°) [28,1].

2. H = Zy ® Zs. We have homomorphism ¢ : H = Zo & Zg — Aut(Zy) = Ze = Zo @ Zs.
WMY(H)=1. G (Lo ®ZLo) X Ly 2l D Lo B Ly = Za ® Z14 [28,4].

(2) Y(H) =Zs. G (Zy X Z2) B 7o = Dy @ 7o = D14 28, 3].

In summary, 1(1), 1(2), 2(1), 2(2) give all 4 non-isomorphic groups of order 28.

7 Groups of order 30

For |G| =30=2-3-5, N(3) =1 or N(5) = 1. Z3 and Z; generate Zz ® Zs = Z15 < G.
G is a semidirect product of the normal subgroup Z;5 and a Sylow 2-subgroup Zs.

We have homomorphism ¢ : Zo — Aut(Z15) = Aut(Z3) x Aut(Zs) = Zo & Zy.

1. ¢(1) = (0,0). Zs acts on Zz and Zs trivially. G = Zo @ Zs @ Zs = Zso [30,4].

2. ¢(1) = (1,0). Zy acts on Z3 non-trivially and acts on Zjs trivially. G = (Zz x Zs) ® Zs = Ss @ Zs [30, 1].
3. ¢(1) = (0,2). Zy acts on Zg trivially and acts on Zs non-trivially. G = (Zs x Za) & Zs = D5 & Z3 [30, 2].
4. o(1) = (1,2). Zs acts on Zg and Zs non-trivially. G = (Z5 @ Z3) x Za = D15 [30,4].

In summary, 1, 2, 3, 4 give all 4 non-isomorphic groups of order 30.



8 Groups of order 40

For |G| = 40 = 23 . 5, N(5) = 1.
G is a semidirect product of the Sylow 5-subgroup Zs = (z) and a Sylow 5-subgroup H of order 8.
1. H =Zg = (y). We have homomorphism ¢ : Zg — Aut(Zs) = Zy.
(1) p(H)=1. G=7Zs x Ls 2 7Ls ® Zg =2 Ly [40,2].
(2) p(H) =Zz. G=(z,y | 2® =y® = 1L, yzy~ ' =2*) [40,1].
(3) o(H) =Z4. G = {(z,y | x® =y® = 1,yzy~ ! = z2?) [40,3].
2. H=7®7Z4 = (y) ® (z). We have homomorphism ¢ : Zs ® Zy — Aut(Zs5) = Z,.
Do(H)=1 G2Zs X (Lo ®Zy) 270 ® 7y D75 = 7o D Zao [40,9].
2) p(H

(
( ) = Zs.

(i) ker o = Zy = (2). Z4 acts trivially on Zs, and Zs acts non-trivially on Zs. G = (Z5 X Zo) X Z4 = D5 @ Z4 [40,5].
(i) ker p = Zo ® Zo = (2) ® (y?). G 2z, 2z | 2% = 2% =1, zx27! = x*) @ Z5 [40,7].

(3) o(H) =Zy, ker o = Zo = (y). G2 (xyz | x® = 2% =1, 22271 = x?) @ Zy [40,12].

3. H="75®Zs® Zs. We have homomorphism ¢ : Zy @® Zo ® Zo — Aut(Zs) = Zs.

(1) o(H) =1. G2 Zs x (Lo ® Lo ® L) = Ly ® Ly ® Ly @ L = Loy ® Lo ® Lo [40, 14].

(2) @(H) = L. G = (L5 % Lo) ® Ly ® L = Dy D Ly ® Lz = Do  Zo 40, 13].

4. H=Dy = (y,z | y* = 22 = 1,(y2)? = 1). We have homomorphism ¢ : Dy — Aut(Zs) = Zy.

(1) p(H) =1. G275 x Dy = Dy & Zs [40, 10].

(2) w(H) = Zs.

(D kero=74={(y). G2 (n,y,z|2®=y* =22 =1,(y2)? = Lyay ! =z, 2227 = 2%). (x,y) = Zs.

Let # = w*, y = w®. It can be reduced to G = (w, z | w?" = 22 = 1, (2w)? = 1) = Dyq [40,6].

(i) ker p = Zo ® Zo = (y?) ® (2). G = (z,y,z | x® =y* =22 =1, (y2)? = L,yzy~ ! =z, zxz! = z) [40,8].
5. H = Qs. We have homomorphism ¢ : Qs — Aut(Zs) = Zy.

(1) (H)=1. G=7Z5 x Qs = Qs & Zs [40,11].

(2) ¢(H) = Zy. We have a unique non-trivial semidirect product G = Zs x Qg [40, 4].

In summary, 1(1), 1(2), 1(3), 2(1), 2(2)(i), 2(2)(ii), 2(3), 3(1), 3(2), 4(1), 4(2)(i), 4(2)(ii), 5(1), 5(2) give all 14

non-isomorphic groups of order 40.



9 Groups of order 42

For |G| =42=2-3-7,N(3)=1or N(3)=7. N(7)=1.
1. N(3) = 1. Sylow 3-subgroup Zj3 and Sylow 7-subgroup Z; are normal, so they generate Zs & Zr = 7o, < G.
G is a simidirect product of normal subgroup Zs; and a Sylow 2-subgroup Zs.

We have homomorphism ¢ : Zg — Aut(Zg1) = Aut(Zs) x Aut(Z7) = Zo @ Zs.

(1) ¢(1) = (0,0). Zs acts on Zgz and Zy trivially. G = Zoy X Zo = Zg @ L @ ZLr = 7y [42,6].

(2) ¢(1) = (1,0). Zg acts on Zg non-trivially and acts on Z; trivially. G = (Z3 x Zs) ® Z7 = S5 @ Zr (42, 3].
(3) ©(1) = (0,3). Zg acts on Zg trivially and acts on Z; non-trivially. G = (Zy x Zo) ® Z3 = D7 @ Z3 [42,4].
(4) o(1) = (1,3). Z2 acts on Zz and Z; non-trivially. G = Zay X Zg & Doy [42,5].

2. N(3) = 7. For any Sylow 3-subgroup P = Zs, let H = Ng(P), P < H, |H| =42/7 =6.

G is a semidirect product of Sylow 7-subgroup Z; = (x) and H. We have homomorphism ¢ : H — Aut(Z7) & Zs.
If ¢ (P) = 1, then P 2 Zj3 acts on Zy trivially and we have subgroup Z; x Zs = Zs;. This is case 1.

If (P) # 1, then kert) = 1 or ker ) = Zo, and H = Zg = (y).

(1) kerp =Zy = (y®). G2 (z,y | 2" =y® = 1,yzy~! = 22) = (Zr x Z3) ® Za [42,2].

2 keryp =1. G2 {z,y | 2" =9y° = 1,yzy~! = x3) [42,1].

Group in 2(1) has only 1 element of order 2, while group in 2(2) has 6 elements of order 2.

In summary, 1(1), 1(2), 1(3), 1(4), 2(1), 2(2) give all 6 non-isomorphic groups of order 42.

10 Groups of order 44

For |G| = 44 =22 - 11, N(11) = 1.

G is a simidirect product of Sylow 11-subgroup Z1; = (z) and a Sylow 2-subgroup H of order 4.
We have homomorphism ¢ : H — Aut(Zy1) = Zio = Zo & Zs.

1. H="175®Zs.

(1) o(H) =1. G2 Ty x (Lo ® L) = Ly D Ly ® L1y = Ty D Ly [44, 4].

(2) o(H) =Zs. G=(Z11 X 7)) ®Zo 2 D11 P Za =2 Doys [44, 3].

2. H=74={y).

(1) o(H) = 1. G2 Ty X Ly 2 Ty ® Lyy = Ly 44, 2).

(2) p(H) =Lz, kerp = (y?). G = (z,y | 2™ = y* = 1L, yzy~! = 2'%) [44,1].

In summary, 1(1), 1(2), 2(1), 2(2) give all 4 non-isomorphic groups of order 44.



11 Groups of order 45

For |G| =45 =325, N(3) = N(5) = 1.

G is a semidirect product of the Sylow 3-subgroup of order 9 and the Sylow 5-subgroup Zs.
1. Sylow 3-subgroup is Zz @ Z3. G(Z3 ® Zs3) X Ly == 7s @ Zs D Zs = Zs @ Z15 (45, 2].
2. Sylow 3-subgroup is Zg. G = Zg X Zs = Zs D Lo = Zys [45,1].

In summary, 1,2 gives all 2 non-isomorphic groups of order 45.

12 Groups of order 50

For |G| = 50 = 2- 52, N(5) = 1.
G is a semidirect product of the Sylow 5-subgroup of order 25 and a Sylow 2-subgroup Zs.
1. Sylow 5-subgroup is Zss. We have homomorphism ¢ : Zo — Aut(Zas).
(1) @ is trivial. G = Zo @ Zas = Zso [50,2].
(2) ¢ is non-trivial. G & Dag [50, 1].
2. Sylow 5-subgroup is Zs @ Zs. We have homomorphism v : Zo — Aut(Zs ® Zs) = GLo(F5).
(1) (1) can be diagonalized to (
(2) ¥(1) can be diagonalized to (%%) GX=75® (Zs X Zs) = Ds @ Zs [50,3].
(3) ¥(1) can be diagonalized to (?%) G = (Zs @® Zs) ¥ Zz [50,4].

g

In summary, 1(1), 1(2), 2(1), 2(2), 2(3) give all 5 non-isomorphic groups of order 50.

13 Groups of order p

Suppose |G| = p and p is an odd prime, then G = Z,,.

For n=p <50, n =2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43, 47.

14 Groups of order 2p

Suppose |G| = 2p and p is an odd prime. N(p) = 1.

G is a semidirect product of the Sylow p-subgroup Z, = (z) and a Sylow 2-subgroup Zs = (y).
We have homomorphism ¢ : Zs — Aut(Z,) = Z,_;.

1. @ is trivial. G = Zg @ Zp.

2. ¢ is non-trivial, p(y)(z) = 2P~ G = (z,y | 2P =y*> = Lyzy ' =27 1) 2 D,,.

For n = 2p < 50, n = 6,10, 14, 22, 26, 34, 38, 46.



15 Groups of order p?

Suppose |G| = p? and p is an odd prime, then G = Z,, @ Z,, or G = L.

For n = p? < 50, n = 4,9,25,49.

16 Groups of order pq

Suppose |G| = pg and p, ¢ are odd primes, p < q. N(q) = 1.

G is a semidirect product of the Sylow g-subgroup Z, = (a) and a Sylow p-subgroup Z, = (b).

We have homomorphism ¢ : Z, — Aut(Z,) = Z,—_1.

1. ¢({a)) =1 and G is abelian. bab™! = p(b)(a) = a. G = (a,b|a? =b? = 1,bab™ ' = a) 2 Z, ® Z,.
2. p((a)) # 1 and G is non-abelian. Let bab~! = ¢(b)(a) = a” for some 7 € {2,...,q — 1}.

o(P)(a) =a™ =a,s0 P =1 mod q. N(p)|qand N(p)=1modp,so N(p) =kp+1=qgandp|q—1.
G={a,b|a?=bP =1,bab~! =a"), where 7P = 1 mod q, r € {2,...,¢q— 1} and p| ¢ — 1.

Let F' = (x,y) and define epimorphism 7 : F' — G by 7(z) = a, 7(y) = b. K = (x9, y?,yzy~ta~") C ker .
G F/kerrw. |F/K|=|F/kern|-|kern/K|=|G|-|kern/K|=1pq-|kern/K]|.

Elements in F//K have form 797, 0<i<q¢—1,0<j<p—1. |[F/K| < pq, so |kern/K| =1, K = ker .
This proof doesn’t guarantee the existence of non-abelian group of order pq.

It only proves if such group exists, it can be characterized in this way.

For n = pg < 50, n = 15,21, 33, 35, 39.

1. For |G| =15=3-5,315. G is abelian and G 2 Z3 @ Zs = Z15 [15,1].

2. For |G| =21 =37, 3| 6.

(1) G is abelian. G = Zg @ Zr = Za1 [21,2].

(2) G is non-abelian. Let G = {(a,b | a” =b® = 1,bab~! = a?), Go = (d/,b' | /T =1 = 1,0/ a'V'~! = a'%).
7: Gy — Ga,m(a) = a’*, 7(b) = b'? is isomporphism. G = (a,b | a” = b% = 1,bab™! = a?) [21.1].

3. For |G| =33=3-11, 3110. G is abelian. G = Z3 @ Z11 = Zs3 [33,1].

4. For |G| =35=5-7,516. G is abelian and G = Zg @ Zy = Zs5 [35,1].

5. For |G| =39 =313, 3| 12.

(1) G is abelian. G = Zs @ Z13 = Zszg [39, 2].

(2) G is non-abelian. Let G; = {(a,b | a'® = b3 = 1,bab~! = a3), Gy = (a’,V/ | '3 = V3 = 1,Va'b/~1 = ).

7: Gy — G, w(a) = a’?, w(b) = b’? is isomporphism. G = (a,b | a'® = b3 = 1,bab™! = a3) [39,1].



17 Groups of order p3

Suppose |G| = p® and p is an odd prime.

1. G is abelian. G = Zpys or G=7Zp @ Zy2 or G=7p ®ZLp P ZLp.

2. G is non-abelian. If G doesn’t contain element of order p?, then G = (a, b | aP’ =bP = 1,b=lab = altP).
If G contains an element of order p?, then G = {a,b,c | aP = b? = cP = 1,ac = ca, cb = bc,ab = bac).

(1) G doesn’t contain element of order p?.

G is non-abelian, so G/Z(G) is not cyclic and G/Z(G) = Z, ® Z,. Let G/Z(G) = (a) @ (b), a,b € G\ Z(G).
By assumption, o(a) = o(b) = p, hence ¢ == a~'b"tab € Z(G). a,b, Z(G) generate G, so ¢ # 1 and Z(G) = (c).
a, b, c generate G, and a? = b0’ = c? =1, ac = ca, bc = ¢b, ab = bac.

Let F = (z,y, z) and define epimorphism 7 : F' — G by 7(z) = a, 7(y) = b, 7(2) = c.

el yzy= 7t a7y tayz=1) C kerm and G = F/ker 7.

K = (2P, yP, 2P, xza™
|F/K| = |F/kern| - |kert/K| = p? - |ker7/K|. Elements in F/K have form z'y/z* where i,j,k € {0,...,p — 1}.
Therefore, |F/K| < p® and kerm = K. G = {(a,b,c | aP = b? = cP = 1,ac = ca, cb = bc,ab = bac).

(2) a € G and o(a) = p?. |G| = p3, |(a)| = p?, so {a) «G. Let G/{a) = (b). |G/(a)| = p, so b & (a) and b” € (a).

Let bab=t =a", r € {1,...,p*> — 1}. G is a non-abelian group generated by a,b, so r # 1.

b=iab' =a”, a=b"Pab® =a”, sor? =1 (mod p?). (r,p) =1,s0 "1 =1 (mod p). Hence r =1 (mod p).

Let r=1+tp, t € {l,--- ,p—1}. (t,p) = 1, and there exists j s.t. jt=1 (mod p). (4,p) =1, s0 ¥/ ¢ {(a).

biabl = a”’ = a(1FtP) = g1+itr = g1+P_ Replace b/ by b, we have b & (a), b € (a), b='ab = a'*+P.

Let b? = a®. By assumption, o(b) = p or o(b) = p?

, so b? = a® has order 1 or p, and hence p | s.

Let s = pu, b? = a*. From a'b = ba(*P) we have (ba~*)" = pPq—ull+1+p)+(1+p)" +-+(14p)P ]

L+ (1+p)+(1+p)2+ -+ (1+p)p~t = =L = (mod p?), so (ba~")" = bPa~ = 1.

Let ¢ = ba™", then we have ¢” =1, ¢ € (a), and ¢~ 'ac = a" (b~'ab) a™* = o' 7.

G is generated by element a of order p? and ¢ of order p, and ac = caP*?!.

Let F = (x,y) and define epimorphism 7 : F' — G by w(z) = a, 7(y) = ¢. Similarly, we have G = F'/ ker 7.
G (a,b|a?’ =bP =1,b~lab = al+P).

This proof doesn’t guarantee the existence of non-abelian group of order p3.

It only proves if such group exists, it can be characterized in this way.

For |G| = p® < 50 and p is odd prime, |G| = 27.

1. G is abelian. (1) G & Zay [27,1]. (2) G = Zs @ Zo [27,2]. (3) G = Zs ® Zs ® Zs (27, 5].
2. G is non-abelian.

(1) G={a,b|a® =b%>=1,b"tab=a*) [27.4].

(2) G = {a,b,c|a®=b3=c®=1,ac = ca,cb = be,ab = bac) [27,3].
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