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1 Automorphism groups of small groups

1. Aut(Zn) ∼= Z×
n . In particular, for Zp where p is prime, Aut(Zp) ∼= Fp.

2. If G and H have no common direct factor, then

Aut(G×H) ∼=
{(

α β
γ δ

)
: α ∈ Aut(G), β ∈ Hom(H,Z(G)), γ ∈ Hom(G,Z(H)), δ ∈ Aut(H)

}
.

If Gi are all abelian, then Aut(
⊕n

i=1Gi) is the group of all invertible n × n matrices with (i, j) entries in

Hom(Gi, Gj).

In particular, for Zp where p is prime, Aut(
⊕n

i=1 Zp) ∼= GLn(Fp). Aut(Z2 × Z2) ∼= GL2(F2) ∼= S3.

3. Aut(An) ∼= Sn for n ⩾ 4, n 6= 6. Aut(Sn) ∼= Sn for n 6= 2, 6.

Aut(A1) = Aut(A2) = Aut(S2) = 1. Aut(A3) ∼= Z2. Aut(A6) = Aut(S6) ∼= S6 ⋊ Z2.

4. Aut(Z8) ∼= Z2 × Z2.

Let Z8 = 〈a〉. Aut(Z8) is generated by a 7→ 3a and a 7→ 5a.

5. Aut(Z2 × Z4) ∼= D4.

Let Z2 × Z4 = 〈a〉 ⊕ 〈b〉, o(a) = 2, o(b) = 4. We have

element 1 a b 2b 3b a+ b a+ 2b a+ 3b

order 1 2 4 2 4 4 2 4

Automorphisms are given by

image of a a a a a a+ 2b a+ 2b a+ 2b a+ 2b

image of b b a+ b a+ 3b 3b b a+ b a+ 3b 3b

order 1 2 2 2 2 4 4 2

element id ψ ρ2ψ ρ2 ψρ = ρ3ψ ρ ρ3 ρψ

Therefore, Aut(Z2 × Z4) ∼= D4.

6. Aut(Z9) ∼= Z6.

Let Z9 = 〈a〉. Aut(Z9) ∼= Z6 is generated by a 7→ 2a.

1



2 Automorphism groups of dihedral Groups Dn

k For finite dihedral group Dn := 〈a, b | an = b2 = 1, (ab)2 = 1〉, Aut(Dn) ∼= Zn ⋊Aut(Zn) ∼= Zn ⋊ Z×
n .

In Zn ⋊Aut(Zn), (m1, f1) · (m2, f2) = (m1 · f1(m2), f1 ◦ f2) where m1,m2 ∈ Zn and f1, f2 ∈ Aut(Zn).

q Proof:

If Zn is generated by c, then each element in Aut(Zn) maps c to ck for some k ∈ {0, . . . , n− 1} with (k, n) = 1.

Denote this element by γk ∈ Aut(Zn). Dn := 〈a, b | an = b2 = 1, (ab)2 = 1〉 = {1, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b}.

For each ψ ∈ Aut(Dn), ψ is uniquely determined by ψ(a) and ψ(b).

We have ψ(a) = ar, ψ(b) = asb for some r ∈ {0, . . . , n− 1} with (r, n) = 1 and s ∈ {0, . . . , n− 1}.

Denote this automorphism by ψr,s ∈ Aut(Dn). φ : Aut(Dn) → Zn ⋊Aut(Zn), ψr,s 7→ (cs, γr) is isomorphism. □

For n = 3, 4, 6, Aut(Zn) = Z2. Aut(D3) ∼= D3, Aut(D4) ∼= D4, Aut(D6) ∼= D6, Aut(D2) = Aut(Z2 × Z2) ∼= S3
∼= D3.

k For infinite dihedral group D∞ := 〈a, b | a2 = b2 = 1〉 = Z2 ∗ Z2, Aut(D∞) ∼= D∞.

q Proof:

〈ab〉 is cyclic group of infinite order and is subgroup of index 2 in D∞. D∞ = 〈ab〉 t b〈ab〉.

Elements in 〈ab〉 have infinite order, and elements in b〈ab〉 have order 2. ψ ∈ Aut(D∞) preserves order of elements.

Suppose ψ(ab) = (ab)p and ab = ψ((ab)q) for p, q ∈ Z, then (ab) = (ab)pq, p = q = 1 or p = q = −1.

1. ψ(ab) = ab. ψ has form ψ1,m(a) = (ba)m · a and ψ1,m(b) = (ba)m · b for some m ∈ Z.

ψ1,m(a · (ba)m) = a, ψ1,m(b · (ba)m) = b, so ψ1,m is indeed an automorphism of D∞.

Define σ ∈ Aut(D∞) by σ(x) = axa−1 = axa. σ(a) = a, σ(b) = aba, σ2 = id.

Define ω ∈ Aut(D∞) by ω(a) = b, ω(b) = a. ω2 = id. Then we have ψ1,m = (ω ◦ σ)m.

2. ψ(ab) = ba. ψ has form ψ2,m(a) = (ba)m · b and ψ2,m(b) = (ba)m · a for some m ∈ Z.

ψ2,n(b · (ba)n) = a, ψ2,n(a · (ba)n) = b, so ψ2,n is indeed an automorphism of D∞, and ψ2,n = ω ◦ (σ ◦ ω)n.

Combining 1 and 2, we have Aut(D∞) = {ψ1,m, ψ2,n | m,n ∈ Z} is generated by σ and ω with σ2 = ω2 = id.

Therefore, Aut(D∞) = 〈σ, ω | σ2 = ω2 = id〉 ∼= D∞. □
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3 Automorphism group of quaternion group Q8

k For Q8 = {−1, i, j, k | i2 = j2 = k2 = ijk = −1}, Aut(Q8) ∼= S4.

q Geometric interpretation:

1. Decorate six faces of a cube as follows. Choose a vertex v, look at the vertex and mark 3 sides counterclockwise

around v as i, j, k. Mark i, j, k on the opposite faces respectively.

2. The multiplication in Q8 is represented by the cube as follows.

(1) If x and y have a unique vertex s.t. x and y are counterclockwise, then product xy is the third face at the vertex,

e.g. ij = k. Otherwise x = y (where xy = −1) or x = −y (where xy = 1).

(2) If we x and y are clockwise in a vertex, then xy = −z where z is the third face.

3. For ψ ∈ Aut(Q8), ψ fixes ±1, so ψ is uniquely determined by ψ(i) and ψ(j).

4. Rotation of this cube is determined by where it sends each of four main diagonals to, so the rotation group is S4.

5. Aut(Q8) is isomorphic to the rotation group of this cube.

Algebraic proof:

Aut(Q8) fixes 〈i〉, 〈j〉, 〈k〉. Action of Aut(Q8) on 〈i〉, 〈j〉, 〈k〉 induces a homomorphism Φ : Aut(Q8) → S3.

Define ψ1, ψ2 ∈ Aut(Q8) by ψ1(i) = j, ψ1(j) = i and ψ2(i) = k, ψ2(k) = i. Φ(ψ1) = (12),Φ(ψ2) = (13), Φ is surjective.

kerΦ = {φ ∈ Aut(Q8) | φ(〈i〉) = (〈i〉), φ(〈j〉) = (〈j〉)} ∼= Z2 × Z2. 〈ψ1, ψ2〉 ∼= Z3, kerΦ ∩ 〈ψ1, ψ2〉 = 1.

Aut(Q8) ∼= (Z2 × Z2)⋊ S3. Element in S3 doesn’t commute with any element in Z2 × Z2, so action of S3 on Z2 × Z2

by conjugation is faithful. Therefore Aut(Q8) ∼= S4. □
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4 Automorphism groups of permutation group Sn

k Aut(Sn) ∼= Sn (n 6= 2, 6)

q Proof:

1. Prerequisites: (1) Z(Sn) = 1 (n 6= 2). (2) Sn is generated by transpositions {(1, i) : i > 1}.

2. For 1 ⩽ k ⩽ n

2
, the number of products of k disjoint transpositions in Sn is n!

2k · k!(n− 2k)!
.

Product of k disjoint transpositions in Sn has form (a1, b1) · · · (ak, bk).

Note that the order of (ai, bi) doesn’t matter, so the number of choices is

1

k!

(
n

2

)(
n− 2

2

)
· · ·

(
n− 2k + 2

2

)
=

n!

2k · k!(n− 2k)!

3. For φ ∈ Aut(Sn), if φ maps transpositions to transpositions, then φ ∈ Inn(Sn).

Suppose φ(1, r) = (ar, br) for each r, then φ((1, 2)(1, r)) = (a2, b2)(ar, br).

If n ⩾ 3, (1, 2)(1, r) = (1, r, 2) is of order 3, so ar ∈ {a2, b2} or br ∈ {a2, b2}. WLOG we can assume ar ∈ {a2, b2}.

Claim: ar = a2 for all r or ar = b2 for all r.

Otherwise there exists s 6= t s.t. as = a2, at = b2. Note that (1, s, 2)(1, t, 2) = (1, s)(2, t) has order 2, but

φ((1, s, 2)(1, t, 2)) = φ((1, 2)(1, s)(1, 2)(1, t)) = (a2, b2)(a2, bs)(a2, b2)(b2, bt) = (b2, bt, bs) has order 3. Contradiction.

WLOG assume ar = a2 for all r, then φ(1, r) = (a2, br). Since φ is 1-1, br 6= bs for r 6= s.

Define σ ∈ Aut(Sn) by σ(1) = a2, σ(r) = br for r ≥ 3. φ(1, r) = (a2, br) = σ(1, r)σ−1, therefore φ ∈ Inn(Sn).

4. If n 6= 2, 6, then every automorphism of Sn is inner.

For φ ∈ Aut(Sn) and transposition σ ∈ Sn, there’re
(
n
2

)
transpositions in Sn.

φ(σ) has order 2, it’s product of k disjoint transpositions for some k ⩾ 1.

φ maps conjugacy class to conjugacy class, so it maps transpositions to products of k disjoint transpositions.

From 2, we have n(n− 1)

2
=

n!

2k · k! · (n− 2k)!
, i.e. (n− 2)! = 2k−1 · k! · (n− 2k)!.

Set p = n− 2, q = k − 1, we have
(
p
2q

)
=

q + 1

(2q − 1)!!
. The only solution of this is p = 4, q = 2.

Besides, n(n− 1)

2
=

n!

2k · k!(n− 2k)!
only holds when k = 1 or n = 6, k = 3.

Therefore, for n 6= 2, 6, every automorphism of Sn is inner, and Aut(Sn) ∼= Inn(Sn) ∼= Sn/Z(Sn) = Sn. □
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5 Automorphism groups of alternating groups An

k Aut(An) ∼= Sn (n ⩾ 4 and n 6= 6)

q Proof:

1. Prerequisites:

(1) Z(An) = 1 (n 6= 3). (2) An is generated by 3-cycles.

(3) Four possibilities for products of 3-cycles:

(i) (abc)(abd) = (ab)(bc). (ii) (abc)(adb) = (bcd). (iii) (abc)(ade) = (abcde). (iv) (abc)(def).

2. For 1 ⩽ k ⩽ n

3
, the number of products of k disjoint 3-cycles in Sn is n!

2k · k!(n− 2k)!
.

Product of k disjoint 3-cycles in An has form (a1, b1, c1) · · · (ak, bk, ck).

Note that the order of (ai, bi, ci) doesn’t matter, so the number of choices is

1

k!
× n(n− 1)(n− 2)

3
× · · · × (n− 3k + 3)(n− 3k + 2)(n− 3k + 1)

3
=

n!

3kk!(n− 3k)!

3. If φ ∈ Aut(An) maps 3-cycles to 3-cycles, then φ is an inner automorphism of Sn restricted on An.

For i ⩾ 3, let ui = (1, 2, i) and vi = φ(ui). uiuj = (1i)(2j) is of order 2 for i 6= j, and φ(uiuj) = vivj also has order 2.

v3, v4 is product of two 3-cycles, from 1(3), there exist a1, a2 s.t. v3, v4 have form v3 = (a1, a2, c) and v4 = (a1, a2, d).

Consider vi for i ⩾ 5. If vi fixes a1, then we must have vi = (a2, c, ∗) and vi = (a2, d, ∗). Contradiction.

Therefore, vi permutes a1, and this requires vi = (a1, a2, ai) for i ⩾ 3.

Define x ∈ Sn by x(i) = ai, then xuix
−1 = vi = φ(ui). Since CSn

(An) = 1, this x ∈ Sn is unique.

Thus for all φ ∈ Aut(An), φ maps 3-cycles to 3-cycles, there exists unique x ∈ Sn s.t. φ = cx|An , where cx(σ) = xσx−1

for σ ∈ Sn.

4. For γ ∈ An, let ClSn
(γ) be its conjugacy class in Sn and ClAn

(γ) be its conjugacy class in An.

|ClSn(γ)| = [Sn : CSn(γ)], |ClAn(γ)| = [An : CAn(γ)], and CAn(γ) = An ∩ CSn(γ). |An · CSn(γ)| =
|An| · |CSn(γ)|

|CAn
(γ)|

.

If CSn
(γ) 6⊆ An, then An · CSn

(γ) = Sn, ClSn
(γ) = ClAn

(γ). If CSn
(γ) ⊆ An, then |ClSn

(γ)| = 2|ClAn
(γ)|.

If γ = (abc) is 3-cycle and n ⩾ 5, then (ef) ∈ CSn
(γ) \An, ClSn

(γ) = ClAn
(γ).

If γ = τ1 · · · τk is a product of k ⩾ 2 disjoint 3-cycles, write τ1 = (abc) and τ2 = (def), then

(ad)(be)(cf) ∈ CSn
(γ) \An, ClSn

(γ) = ClAn
(γ).

5. If n ⩾ 4 and n 6= 6, then every automorphism of An maps 3-cycle to 3-cycle.

Let ψ ∈ Aut(An). If σ is a 3-cycle, the φ has order 3 and is product of k ⩾ 1 disjoint 3-cycles.

ψ maps conjugacy class in An of a 3-cycle to conjugacy class of a product of k disjoint 3-cycles.

If n < 6, then k = 1. If n > 6, n(n− 1)(n− 2)

3
=

n!

3kk!(n− 3k)!
, the only solution is k = 1.

6. From 3, if n ⩾ 4 and n 6= 6, then every automorphism of An is the restriction of an inner automorphism of Sn on

An, thus Aut(An) = Inn(Sn) = Aut(Sn) ∼= Sn for n ⩾ 4 and n 6= 6. □
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k Aut(A6) = Aut(S6) ∼= S6 ⋊ Z2

q Proof:

Aut(A6) which maps 3-cycles to 3-cycles is the restriction of a unique inner automorphism of S6 on A6, and any

automorphism of A6 maps 3-cycles to either 3-cycles or product of two disjoint 3-cycles, so [Aut(A6) : Inn(S6)] ⩽ 2.

For 3, fix 1 6= σ ∈ An, cσ ∈ Inn(An) is action by conjugation of σ.

Define φ : Aut(Sn) → Aut(An), φ(ρ) = ρcσρ
−1 for ρ ∈ Aut(Sn). φ is monomorphism, so Aut(Sn) ⩽ Aut(An)

Since [Aut(S6) : Inn(Sn)] = 2, we have Aut(A6) = Aut(S6) ∼= S6 ⋊ Z2. □

k Out(A6) ∼= Z2 × Z2.

q Proof:

|Out(A6)| = |Aut(A6)|/| Inn(A6)| = 4.

For all σ, ρ ∈ Aut(A6), σρ maps 3-cycle to 3-cycle and is an inner automorphism of Sn restricted on An.

(σρ)2 is an inner automorphism of An, so Out(A6) ∼= Z2 × Z2. □

k Aut(A6) is not split extension of A6.

q Proof:

1 Inn(A6) Aut(A6) Out(A6) 1

1 A6 S6 ⋊ Z2 Z2 × Z2 1

∼= ∼= ∼=

1. Prerequisites:

(1) Element in Aut(A6) \ Inn(A6) swaps conjugate classes (abc) and (abc)(def) in A6.

(2) Element in Aut(S6) \ Inn(S6) swaps conjugate classes (ab) and (ab)(cd)(ef), (abc) and (abc)(def) in S6.

2. Suppose the sequence right splits and Out(A6) ∼= Z2 × Z2
∼= 〈σ〉〈ρ〉 ⩽ Aut(A6) where σ, ρ ∈ Aut(A6) \ Inn(A6),

then 〈σ〉〈ρ〉 ∩ Inn(A6) = 1. Aut(A6) ∼= Aut(S6), so ρ and σ can be considered as elements in Aut(S6) \ Inn(A6).

If σ, ρ ∈ Inn(S6) \ Inn(A6), then σρ ∈ Inn(A6). Contradiction.

If ρ ∈ Aut(S6) \ Inn(S6), σ ∈ Inn(S6) \ Inn(A6), then σρ ∈ Aut(S6) \ Inn(S6) and 〈σ〉〈ρ〉 ∼= 〈σρ〉〈ρ〉.

Therefore, we can always assume Out(A6) ∼= Z2 × Z2
∼= 〈σ〉〈ρ〉 ⩽ Aut(A6) where σ, ρ ∈ Aut(S6) \ Inn(S6).

3. [Aut(S6) : Inn(S6)] = 2, σ Inn(S6) = ρ Inn(S6), ρ−1σ = cγ ∈ Inn(S6) for some γ ∈ S6, where cγ is action of

conjugation by γ. Since 〈σ〉〈ρ〉 ∩ Inn(A6) = 1, γ ∈ S6 \A6 is an odd permutation.

4. (ρ−1σ)2 = c2γ = 1 gives γ2 = 1, γ is transposition or product of three disjoint transpositions.

σρ = ρσ gives ρ(γ) = γ. But ρ ∈ Aut(S6)\ Inn(S6) swaps conjugate classes (ab) and (ab)(cd)(ef). Contradiction. □
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6 Automorphism group of permutation group S6

Existence of outer automorphism of S6

1. Key step: Construct a subgroup H ◁ S6 which acts transitively on {1, 2, 3, 4, 5, 6} and [S6 : H] = 6.

2. S6 acts by left translation on S6/H induces isomorphism φ : S6 → S6, φ ∈ Aut(S6).

3. Note that φ(H) = S5, since H fixes coset H and permutes all other cosets.

4. H is transitive on {1, 2, 3, 4, 5, 6} while S5 is not, so preimage of S5 is not conjugacy to S5. φ is not inner.

Construction 1:

S5 acts by conjugation on its six Sylow 5-subgroups.

From Sylow’s theorem, this action is transitive and induces homomorphism f : S5 → S6.

This action is transitive, im(f) ⩾ 6, so ker(f) = 1. im(f) is transitive 120-element subgroup of S6.

Construction 2:

PGL2(F5) acts on P1(F5)

Definition: K is a field, K× are its nonzero elements.

(1) GL2(K) is the set of 2× 2 invertible matrices, whose elements are in field K.

(2) PGL2(K) is the quotient group GL2(K)/K×

(3) P1(K) is the set of one-dimensional vector spaces (lines) in K2.

There’s a natural action of GL2(K) on P1(K), i.e. permuting the lines through origin of K2.

Matrices of form ( a 0
0 a ) (a ∈ K×) fix lines, so we have action of PGL2(K) on P1(K).

For (x, y) ∈ K2 represented by ( xy ), (x, y) is on a line of K2 through origin, namely [x : y].

If y 6= 0, then [x : y] = [
x

y
: 1] corresponds to x

y
∈ K. If y = 0, then [x : y] = [1 : 0] corresponds to the infinity point.

GL2(K) acts on P1(K): For
(
a b
c d

)
GL2(K), ( xy ) ∈ P1(K),

(
a b
c d

)
( xy ) =

(
ax+by
cx+dy

)
=

(
a x

y+b

c x
y+d

)
.

PGL2(K) can be identified with group of linear fractional transformations {f(z) = az + b

cz + d
, a, b, c, d ∈ K, ad− bc 6= 0}.

f(x) =
x− a

x− c
· b− c

b− a
maps arbitrary (a, b, c) to (0, 1,∞), so PGL2(K) acts on P1(K) transitively.

Let K = Fp, |PGL2(K)| = |GL2(K)|
p− 1

. |GL2(K)| = (p2 − 1)(p2 − p). |PGL2(K)| = p3 − p.

For p = 5, |PGL2(F5)| = 120 and PGL2(F5) acts transitively on P1(F5), where |P1(F5)| = 6.
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k Aut(S6) ∼= S6 ⋊ Z2 and Aut(S6) 6∼= S6 × Z2.

q Proof:

1. For n ⩾ 5, proper subgroup of An has index at least n. Consider action by left translation of An on cosets.

2. [Aut(S6) : Inn(S6)] ⩽ 2. Element in Aut(S6) maps conjugacy class (viii) to (viii)(inner) or (ix)(not inner).

3. S5 acts by conjugation on its 6 Sylow 5-subgroups induces homomorphism φ : S5 → S6. φ maps commutators to

commutators, so φ(A5) ⊆ A6. φ(A5) = φ(A5) ∩A6 ⩽ φ(S5) ∩A6 < A6.

From 1, |φ(A5)| =
5!

2
⩽ |φ(S5) ∩A6| ⩽

1

6
· 6!
2
, thus φ(A5) = φ(S5) ∩A6. φ : S5 → S6 preserves parity.

4. S6 acts by left translation on φ(S5) yields an automorphism of S6 which is not inner.

[S6 : φ(S5)] = [S6 : S5] = 6, action of S6 on φ(S5) by left translation yields an isomorphism ψ : S6 → S6.

Suppose ψ((12)) is a transposition, then for some coset xφ(S5), (12)xφ(S5) = xφ(S5), x−1(12)x ∈ φ(S5).

Suppose φ(σ) = x−1(12)x, since x−1(12)x is transposition and φ : S5 → S6 preserves parity, σ is transposition.

For six Sylow 5-subgroups X1, . . . , X6 of S5, σ(Xi)σ
−1 = Xφ(σ)(i). φ(σ) is transposition, ∃Xj s.t. σ(Xj)σ

−1 = Xj .

Suppose Xj = 〈(abcde)〉, σ(abcde)σ−1 = (abcde)k, then σ(abcde)kσ−1 = (abcde)k
2

= (abcde), k = ±1.

WLOG suppose σ fixes a, then σ(abcde)σ−1 = (a, σ(b), σ(c), σ(d), σ(e)) = (abcde)±1, σ = id or σ = (be)(cd).

Contradiction. Thus ψ((12)) is not transposition, ψ ∈ Aut(S6) is not inner. [Aut(S6) : Inn(S6)] = 2.

5. We have short exact sequence of groups: 1 → S6
f→ Aut(S6)

π→ Z2 → 1, Z2 = {±1,×}.

ψ : (12) 7→ (15)(23)(46), (13) 7→ (14)(26)(35), (14) 7→ (13)(24)(56), (15) 7→ (12)(36)(45), (16) 7→ (16)(25)(34).

ψ ∈ Aut(S6) \ Inn(S6) and ψ2 = id. Z2
∼= 〈ψ〉 ⩽ Aut(S6), so Aut(S6) ∼= S6 ⋊ Z2.

6. This sequence right splits, so there exists homomorphism g : Z2 → Aut(S6) s.t. π ◦ g = id.

Let g(−1) = ψ 6∈ Inn(S6), then g(1) = ψ2 = id. f : S6 → Inn(S6), g : Z2 → 〈ψ〉.

Claim: 〈ψ〉 is not a normal subgroup of Aut(S6), so Aut(S6) 6∼= S6 × Z2.

For σ ∈ S6, define γσ ∈ Inn(S6) to be the conjugation of σ. It’s sufficient to prove γσψγ−1
σ 6= ψ for some σ ∈ S6.

For σ = (12), γσψ((12)) = (12)(15)(23)(46)(12) = (13)(25)(46), ψγσ((12)) = ψ((12)) = (15)(23)(46). γσψ 6= ψγσ.

Therefore, Aut(S6) ∼= S6 ⋊ Z2, Aut(S6) 6∼= S6 × Z2. □
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Conjugacy classes in S6:

Conjugacy class cycle type order sign # Conjugacy class cycle type order sign #

(i) (123456) 6 - 120 (ii) (123)(45) 6 - 120

(iii) (12345) 5 + 144 (iv) (1234) 4 - 90

(v) (1234)(56) 4 + 90 (vi) (123) 3 + 40

(vii) (123)(456) 3 + 40 (viii) (12) 2 - 15

(ix) (12)(34)(56) 2 - 15 (x) (12)(34) 2 + 45

(xi) (1) 1 + 1

k For Sylow 5-subgroup P of S5, normalizer N(P ) has 20 elements.

q Proof:

For P = 〈(abcde)〉, 4-cycle (bced) normalizes P . |N(P )| ⩾ |〈(abcde)〉| · |〈(bced)〉| = 20 and N(P ) 6⊆ A5.

If G is proper subgroup of A5, then |G| ⩽ |A5|
5

= 12. If |N(P )| > 20, then |N(P ) ∩A5| > 12. Contradiction. □

n Recall the construction of homomorphism φ : S5 → S6 and isomorphism ψ : S6 → S6 ∈ Aut(S6) \ Inn(S6) before.

S5 has six Sylow 5-subgroups, namely X = {X1, X2, X3, X4, X5, X6}.

S5 acts on X by conjugation and induces φ : S5 → S6. For σ ∈ S5, σXiσ
−1 = Xφ(σ)(i).

φ(S5) is of index 6 in S6, S6/φ(S5) = {y1φ(S5), y2φ(S5), y3φ(S5), y4φ(S5), y5φ(S5), y6φ(S5)}.

S6 acts on S6/φ(S5) by left translation and induces ψ : S6 → S6. For ρ ∈ S6, ρ · yiφ(S5) = yψ(ρ)(i)φ(S5).

Properties of outer automorphism ψ defined before:

k 1. Outer automorphism ψ swaps 3-cycles (vi) and permutations of type (abc)(def) (vii).

q If α, β are 3-cycles and ψ(α) = β, α · yiφ(S5) = yβ(i)φ(S5).

3-cycle β has fixed points, there exists i0 s.t. α · yi0φ(S5) = yi0φ(S5). y−1
i0
αyi0 ∈ φ(S5), γ := φ−1(y−1

i0
αyi0) is 3-cycle.

φ(γ) is 3-cycle and has fixed points, recall γXiγ
−1 = Xφ(γ)(i), there exists j0 s.t. γXj0γ

−1 = Xj0 . 3-cycle γ ∈ N(Xj0).

From claim before, |N(Xj0)| = 20, N(Xj0) doesn’t contain element of order 3. Contradiction.

k 2. Outer automorphism ψ swaps 6-cycles (i) and permutations of type (abc)(de) (ii).

q If ψ maps conjugacy class of permutations of type (abc)(de) to itself, the same reason yields normalizer of a Sylow

5-subgroup of S5 containing an element of order 6. Contradiction.

k 3. Outer automorphism ψ preserves 4-cycles (iv) and permutations of type (abcd)(ef) (v).

q Permutations of type (abcd) are odd while permutations of type (abcd)(ef) are even.

A6 is characteristic subgroup of S6, so ψ ∈ Aut(S6) preserves parity, i.e. ∀τ ∈ S6, τ and ψ(τ) have the same sign.

In conclusion, any outer automorphism of S6 swaps conjugacy classes (i) and (ii), swaps (vi) and (vii) and swaps (viii)

and (ix) and preserves the others, i.e. swaps permutations of type (abcdef) and (abc)(de), (abc) and (abc)(def), (ab)

and (ab)(cd)(ef) while preserving the others.
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