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前言

这份讲义是根据我在新加坡国立大学(NUS)做博士后期间讲授MA5213-高等偏微分方程 (Ad-
vanced Partial Differential Equations) 这一研究生课程时写的讲稿修订并扩充而成的，在中国科学
技术大学则可用于讲授本研贯通课程“现代偏微分方程”（原“微分方程II”）。预备知识主要有

• 古典偏微分方程(微分方程I)：本课程并不直接用到古典PDE课程内容，但古典PDE可以为
这门课的理论提供一些初等的例子。

• 实变函数：Lebesgue测度与积分理论、Lebesgue微分定理、𝐿𝑝空间和积分收敛定理。
• 线性泛函分析：Hilbert空间的Riesz表示定理、弱收敛/弱-*收敛、紧算子的谱理论。
• 其它（非必需）：𝐿𝑝空间的插值定理、Fourier变换、缓增分布与Sobolev空间。具体可参见

Folland [8]第6、8、9章或 Stein [17]第2、3章的部分内容。

这门课可视作中、高年级本科生以及硕士生的偏微分方程基础课程，旨在让对分析与偏微分

方程感兴趣的同学掌握近代偏微分方程的基本语言和方法，以使得选课的同学具有阅读现代偏微

分方程文献和专著的基本能力。本课程的主体内容仍为线性偏微分方程，但与本科偏微分方程不

同的是，这门课不再讨论古典解的具体计算，而是关注变系数、粗糙的系数和初边值等给定信息

不再具有较好正则性时的情况。此时我们能用的方法仅以能量法为主，再结合实分析、傅立叶分

析中的各类具体估计和线性泛函分析的抽象工具，来求得线性方程正则性较差的解。尽管这些理

论略显枯燥，但仍是研究非线性偏微分方程必需的技术。

讲义的第一章讲述整数阶Sobolev空间𝑊𝑘,𝑝(𝑈)，其中𝑈 ⊂ ℝ𝑑是边界充分光滑（至少是 Lips-
chitz 连续或 𝐶1）的开集。Sobolev空间𝑊𝑘,𝑝(𝑈)的优点之一是它同时刻画了一个局部可积函数的
可积性和（弱）可微性，而Sobolev不等式则刻画了Sobolev函数可积性、可微性、Hölder连续性
之间的定量关系。同时，Sobolev函数可以由光滑函数（通过与磨光函数族作卷积构造）以某些方
式逼近，进而我们可以对Sobolev函数建立链式法则、Leibniz法则等基本运算。

需注意，与Sobolev空间一同引入的一个概念是偏微分方程的“弱解”。事实上这可能是偏微
分方程研究中最重要的概念之一。在研究具体问题时，我们通常需要分析各种非线性偏微分方程

解的行为，而且其系数可能正则性不高或者甚至依赖于解，因此直接证明经典解的存在性通常很

困难。退而求其次，我们可以先寻求弱解（通常在分布意义下），这个过程对正则性的要求较低，

而且可以用性质非常好的函数作为测试函数来刻画弱解的行为。在得到弱解之后，如果方程的系

数和初边值足够正则，我们可以尝试提高弱解的正则性，使其最终与期望的经典解一致。

在第二章和第三章中，我们使用不同的方法研究不同类型的二阶线性偏微分方程的存在性：
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椭圆型偏微分方程和抛物型偏微分方程。椭圆型偏微分方程的存在性定理是通过运用线性泛函分

析中的Lax-Milgram定理和Fredholm二择一定理得到的。第二章末尾我们介绍了经典解的极值原
理、De Giorgi-Moser迭代（弱解的极值原理和 Hölder连续性）以及 Pohozaev恒等式等椭圆方程
经典结论。抛物型方程的存在性则是通过使用 Galerkin 逼近证得的，这种方法在数学上是“分
离变量法”的推广，也常用于数值计算。第一至第三章的主要参考文献是Evans的偏微分方程著
作[6, Chapter 5, 6, 7.1]，椭圆方程补充内容主要来自韩青、林芳华教授的著作 [10,第四章]。我们
还介绍了消失粘性法来求解ℝ𝑑中的线性对称双曲组，参考Evans [6, Chap. 7.3.1]。在第四章我们
介绍双曲守恒律的几种基本波（一维情形）：激波、接触间断和稀疏波，参考[11, Chap. 5].（暂时
鸽置）。

第五章介绍了Fourier分析方法，为第六章讲波动方程和Schröding方程作准备。另一方面，
Fourier变换使我们能够建立关于函数可微性的更为精细的刻画。当𝑈 = ℝ𝑑时，我们利用Fourier变
换可以轻松定义任意非整数阶𝑠 ∈ ℝ的导数。而在具有边界的区域中，分数阶导数通常通过差商
（Sobolev-Slobodeckĭı范数）来刻画，这往往复杂很多。此外我们还引入了 Littlewood-Paley 分解
这一有力的工具将函数的不同的频段进行“局部化”。在证明非整数阶导数的Leibniz法则和链式
法则时，Littlewood-Paley理论至关重要。进一步地，利用 Littlewood-Paley 理论，我们可以建立
更加精细的Sobolev不等式，这在决定一个非线性偏微分方程解的存在空间时尤为重要。这部分主
要参考文献是 Bahouri-Chemin-Danchin [2, Chap. 1]和陶哲轩的色散方程[18, Appendix A]。在第
六章，我们介绍波动方程和 Schröding 方程。我们先讲线性方程的存在性、正则性和有限传播速
度，再证明拟线性波动方程的局部存在性，这部分主要参考 Jonathan (Wing-Hong) Luk的讲义[12,
Chap. 4-6]。然后我们介绍若干实例，以揭示非线性项对解的存在性的巨大影响。本章最后介绍
了 Schröding方程的 Strichartz估计，以及质量临界NLS的小初值整体解和位力恒等式。
讲义的初稿于2025年1月7日完成，在当时并未来得及认真校对。在此，我要致谢如下老师和

同学们，他们指出了讲义初稿的无数谬误，并分享了自己对讲授这门课的经验或是学习心得。

• 中国科学技术大学的赵立丰教授，以及于俊骜、王鼎涵、尹宇辰、周芾、张源意同学。
• 新加坡国立大学的安歆亮教授，以及2025年MA5213班上的严翼勋(EOM Ikhoon)、戚馥麟、
温铠阳(Timothy WAN Kai Yang)、吴笙榕、张力源同学。

• 香港中文大学的罗辰昀教授（我的同门师兄），广州软件学院的杨庭轩老师。

如果您在学习过程中发现了讲义中的错误或是有任何建议，请您尽快告知本人。由于NUS单
学期时间较短，MA5213这门课只上了12周不到（每周4课时），我的课程实际上只涵盖了讲义的
第1–3、5章和第6章的部分内容，并且跳过了不少与PDE本身无关的证明。本讲义仍然有部分章
节的内容待补充，例如双曲守恒律方程、变分法等与非线性偏微分方程相关的内容。

章俊彦

2026年1月31日
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第一章 Sobolev空间

本章讲述整数阶Sobolev空间的基本理论。在过去的几十年里，Sobolev空间已被证明在分析
众多PDE的问题中极其有用。事实上，在物理或其他领域中的许多模型中，解的点态行为很难被
精细刻画。一个例子是水波运动：每个液体粒子或者单个涡旋的运动状态很难被精确描述。因

此，必须找到替代方法来证明PDE解的存在性并分析解的定性和定量性质，例如能量方法、变
分法、Fourier分析等，进而函数的可微性和可积性的刻画变得非常重要。另一方面，Sobolev空间
𝑊𝑘,𝑝的一个主要优势是这类函数空间同时考虑了函数的可积性和可微性，而Hölder连续函数空间
𝐶𝑘,𝛼只考虑点态行为。此外，我们可以“牺牲一定可微性，换取更高的可积性”，并建立Sobolev空
间与 𝐿𝑝 空间和 𝐶𝑘,𝛼 空间之间的定量关系。

在介绍Sobolev空间之前，我们首先介绍函数空间 𝐶𝑘,𝛼。在建立点态估计时，它们实际上比经

典的连续函数空间 𝐶𝑘 更有用，特别是椭圆PDE的Schauder估计。
在整个讲义中我们假设 𝑈 ⊂ ℝ𝑑 是一个开集。设𝛼 ∈ (0, 1]，我们称函数𝑢是𝛼阶Hölder连续

的，是指存在常数 𝐶 > 0使得

|𝑢(𝒙) − 𝑢(𝒚)| ⩽ 𝐶|𝒙 − 𝒚|𝛼 ∀𝒙, 𝒚 ∈ 𝑈.

I特别地，当 𝛼 = 1时，我们称 𝑢在 𝑈 中是 Lipschitz连续的。据此我们引入空间 𝐶𝑘,𝛼 如下。

定义 1.0.1. 给定一个有界连续函数 𝑢 ∶ 𝑈 → ℝ，我们定义

• 一致范数：‖𝑢‖𝐶(𝑈) ∶= sup
𝒙∈𝑈

|𝑢(𝒙)|.

• 𝛼阶Hölder半范数：

[𝑢]𝐶0,𝛼(𝑈) ∶= sup
𝒙≠𝒚
𝒙,𝒚∈𝑈

|𝑢(𝒙) − 𝑢(𝒚)|
|𝒙 − 𝒚|𝛼 .

• 𝛼阶Hölder范数：‖𝑢‖𝐶0,𝛼(𝑈) ∶= ‖𝑢‖𝐶(𝑈) + [𝑢]𝐶0,𝛼(𝑈).
• Hölder空间 𝐶𝑘,𝛼(𝑈) (𝑘 ∈ ℕ):

𝐶𝑘,𝛼(𝑈) =
⎧

⎨
⎩

𝑢 ∈ 𝐶𝑘(𝑈)
|||||||
‖𝑢‖𝐶𝑘,𝛼(𝑈) ∶=

∑

|𝛼|⩽𝑘
‖𝜕𝛼𝑢‖𝐶(𝑈) +

∑

|𝛼|=𝑘
[𝜕𝛼𝑢]𝐶0,𝛼(𝑈) < ∞

⎫

⎬
⎭

.

可以验证，线性空间𝐶𝑘,𝛼(𝑈)在赋予‖ ⋅ ‖𝐶𝑘,𝛼(𝑈)范数时是Banach空间。

1



2 第一章 SOBOLEV空间

1.1 弱导数和Sobolev空间

我们通常无法直接证明某些PDE的解属于 𝐶𝑘,𝛼，因为这需要非常高的点态正则性。为了克服

这种困难，人们发现Sobolev空间是构造“粗糙”解的好选择，并且“弱导数”在构造过程中起着
重要作用。

1.1.1 弱导数

我们从一个简单的例子开始：给定有界区域 𝑈 ⊂ ℝ𝑑 和函数 𝑓 ∈ 𝐿2(𝑈)，我们考虑Poisson方
程

−∆𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

注意源项 𝑓可能是一个非常粗糙的函数，这使得直接证明存在二阶可微的解变得困难。另一方面
如果 𝑢 ∈ 𝐶2(𝑈)，那么由Gauss-Green公式我们得到

∫
𝑈
𝑓𝜑 d𝒙 = ∫

𝑈
∇𝑢 ⋅ ∇𝜑 d𝒙, ∀𝜑 ∈ 𝐶∞

𝑐 (𝑈). (1.1.1)

注意，上述积分等式的成立只需要 𝑢 ∈ 𝐻1
0(𝑈)，即 ∇𝑢 ∈ 𝐿2(𝑈) 且 𝑢|𝜕𝑈 = 0。因此我们可以

将Poisson方程的“弱解”定义为满足恒等式 (1.1.1) 的 𝑢. 这种弱解的存在性可以用Hilbert空间
的Riesz表示定理证明，而这里的∇𝑢实际上是 𝑢的“弱导数”，因为它只属于 𝐿2(𝑈)而不是 𝐶(𝑈).

受上述例子的启发，我们引入“弱导数”的概念。

定义 1.1.1. 设𝑢, 𝑣 ∈ 𝐿1loc(𝑈), 𝛼 = (𝛼1,⋯ , 𝛼𝑑)是多重指标。我们称𝑣是𝑢的𝛼阶弱导数，记作𝜕𝛼𝑢 = 𝑣,
是指下式成立

∫
𝑈
𝑢𝜕𝛼𝜑 d𝒙 = (−1)|𝛼| ∫

𝑈
𝑣𝜑 d𝒙 ∀𝜑 ∈ 𝐶∞

𝑐 (𝑈). (1.1.2)

若这样的 𝑣 不存在，则我们就称𝑢的𝛼阶弱偏导数不存在。
注记 1.1.1. 需注意，上述定义与泛函分析中的分布导数略有不同（参见Folland [8, Chapter 9]），
因为我们的定义要求弱导数是一个局部Lebesgue可积函数，而分布导数只要求属于𝒟′(𝑈) ∶= (𝐶∞

𝑐 (𝑈))′但
不一定是局部可积函数（例如，Dirac delta 𝛿）。
命题 1.1.1 (弱导数的唯一性). 𝑢的𝛼阶弱导数，如果存在，则在相差一个零测集意义下是唯一的。

证明. 设 𝑣1, 𝑣2 ∈ 𝐿1loc(𝑈)是𝑢的两个𝛼阶弱偏导数。据定义，它们满足

∫
𝑈
(𝑣1 − 𝑣2)𝜑 d𝒙 = 0 ∀𝜑 ∈ 𝐶∞

𝑐 .

那么所需结论立即由以下引理得出。
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引理 1.1.2. 若𝑤 ∈ 𝐿1loc(𝑈)满足∫𝑈 𝑤𝜑 d𝒙 = 0对任意𝜑 ∈ 𝐶∞
𝑐 (𝑈)成立, 则𝑤 = 0 在 𝑈 中几乎处处成

立。

引理 1.1.2的证明. 设 {𝜂𝜀}𝜀>0 是附录 C.2中定义的一族磨光核，满足

𝜂 ∈ 𝐶∞
𝑐 (𝐵(𝟎, 1)), 0 ⩽ 𝜂 ⩽ 1, ∫

ℝ𝑑
𝜂 = 1, 𝜂𝜀(𝒙) =

1
𝜀𝑑 𝜂

(𝒙
𝜀
)
.

那么对任意 𝜀 > 0，我们也有 ∫ℝ𝑑 𝜂𝜀 = 1。据此有

𝑤(𝒙) =∫
𝑈
𝑤(𝒙)𝜂𝜀(𝒚 − 𝒙) d𝒚 = ∫

𝑈
(𝑤(𝒙) − 𝑤(𝒚))𝜂𝜀(𝒚 − 𝒙) d𝒚 + ∫

𝑈
𝑤(𝒚)𝜂𝜀(𝒚 − 𝒙) d𝒚

⏟⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⏟
=0 by assumption

=∫
𝑈∩𝐵(𝒙,𝜀)

(𝑤(𝒙) − 𝑤(𝒚))𝜂𝜀(𝒚 − 𝒙) d𝒚.

再利用0 ⩽ 𝜂 ⩽ 1可得

|𝑤(𝒙)| ⩽ 1
𝜀𝑑 ∫𝐵(𝒙,𝜀)

|𝑤(𝒙) − 𝑤(𝒚)|𝜂(𝒚 − 𝒙
𝜀 ) d𝒚 ⩽ 𝛼(𝑑) ⨏

𝐵(𝒙,𝜀)
|𝑤(𝒙) − 𝑤(𝒚)| d𝒚,

其中𝛼(𝑑)是ℝ𝑑中单位球的体积，而 ⨏ 表示积分的体积平均。当 𝜀 → 0 时，右端收敛到0是对几乎
处处的𝒙 ∈ 𝑈成立的，这是Lebesgue微分定理的结论。

接下来，我们介绍两个弱导数的例子。

例 1.1.1. 设𝑑 = 1,𝑈 = (0, 2),考虑函数 𝑢(𝑥) =
⎧

⎨
⎩

𝑥 0 < 𝑥 ⩽ 1
1 1 ⩽ 𝑥 < 2

. 定义 𝑣(𝑥) =
⎧

⎨
⎩

1 0 < 𝑥 ⩽ 1
0 1 ⩽ 𝑥 < 2

. 下面

证明𝑢′ = 𝑣在弱导数意义下成立。任取𝜑 ∈ 𝐶∞
𝑐 (𝑈),我们要证明

∫
2

0
𝑢(𝑥)𝜑′(𝑥) d𝑥 = −∫

2

0
𝑣(𝑥)𝜑(𝑥) d𝑥.

对于左边，我们计算可得

∫
2

0
𝑢(𝑥)𝜑′(𝑥) d𝑥 =∫

1

0
𝑥𝜑′(𝑥) d𝑥 + ∫

2

1
𝜑′(𝑥) d𝑥 = −∫

1

0
𝜑(𝑥) d𝑥 + 𝜑(1) − 𝜑(0) + 𝜑(2) − 𝜑(1)

= − ∫
2

0
𝑣(𝑥)𝜑(𝑥) d𝑥,

这里我们用到了𝜑 ∈ 𝐶∞
𝑐 ⇒ 𝜑(0) = 𝜑(2) = 0.
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例 1.1.2. 设 𝑑 = 1,𝑈 = (−1, 1)以及 𝑢(𝑥) =
⎧

⎨
⎩

0 −1 < 𝑥 ⩽ 0
1 0 ⩽ 𝑥 < 1

. 我们断言弱导数𝑢′ 不存在，即不存

在任何𝑣 ∈ 𝐿1loc(𝑈)满足

∫
1

−1
𝑢(𝑥)𝜑′(𝑥) d𝑥 = −∫

1

−1
𝑣(𝑥)𝜑(𝑥) d𝑥 ∀𝜑 ∈ 𝐶∞

𝑐 (𝑈).

用反证法，假设存在某个 𝑣 ∈ 𝐿1loc(𝑈)满足上述等式。据 𝑢的定义得到

−∫
1

−1
𝑣(𝑥)𝜑(𝑥) d𝑥 = ∫

1

−1
𝑢(𝑥)𝜑′(𝑥) d𝑥 = ∫

1

0
𝜑′(𝑥) d𝑥 = −𝜑(0), ∀𝜑 ∈ 𝐶∞

𝑐 (−1, 1).

现在，我们选取一列 {𝜑𝑚(𝑥)} ⊂ 𝐶∞
𝑐 (−1, 1)满足 0 ⩽ 𝜑𝑚 ⩽ 1, 𝜑𝑚(0) = 1以及当𝑚 → ∞时有𝜑𝑚(𝑥) →

0对任意𝑥 ≠ 0成立。将 𝜑替换为 𝜑𝑚 并令 𝑚 → ∞，我们得到（利用控制收敛定理）

−1 = lim
𝑚→∞

(−𝜑𝑚(0)) = − lim
𝑚→∞

∫
1

−1
𝑣(𝑥)𝜑𝑚(𝑥) d𝑥 = −∫

1

−1
𝑣(𝑥) lim

𝑚→∞
𝜑𝑚(𝑥) d𝑥 = 0,

得到矛盾。

注记 1.1.2. 函数 𝑢被称为Heaviside函数，如果我们将其延拓到ℝ上，满足 𝑢|𝑥<1 = 0和 𝑢|𝑥>1 = 1。
𝑢的分布导数正是原点处的Dirac delta 𝛿0 ∈ 𝒟′，它不是局部可积函数。

1.1.2 Sobolev空间𝑊𝑘,𝑝(𝑈)

接下来我们引入Sobolev空间的定义。

定义 1.1.2 (Sobolev空间). 给定𝑘 ∈ ℕ和1 ⩽ 𝑝 ⩽ ∞，Sobolev空间𝑊𝑘,𝑝(𝑈)定义为

𝑊𝑘,𝑝(𝑈) ∶=
⎧

⎨
⎩

𝑓 ∈ 𝐿𝑝(𝑈)
|||||||
∑

|𝛼|⩽𝑘
‖𝜕𝛼𝑓‖𝐿𝑝(𝑈) < ∞

⎫

⎬
⎭

.

也就是说𝑊𝑘,𝑝(𝑈)空间由全体满足“直到 𝑘 阶弱导数都是 𝐿𝑝(𝑈)函数”的局部可积函数 𝑓 ∶ 𝑈 →
ℝ构成。进一步可以证明(𝑊𝑘,𝑝(𝑈),‖ ⋅ ‖𝑊𝑘,𝑝(𝑈))是Banach空间，其范数定义为

‖𝑓‖𝑊𝑘,𝑝(𝑈) =
∑

|𝛼|⩽𝑘
‖𝜕𝛼𝑓‖𝐿𝑝(𝑈), 1 ⩽ 𝑝 ⩽ ∞.

注记 1.1.3. 由于 𝐿𝑝 范数包含积分的 1∕𝑝次幂，当 1 ⩽ 𝑝 < ∞时，我们有时也使用等价范数（定
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义如下）

‖𝑓‖𝑊𝑘,𝑝(𝑈) =
⎛
⎜
⎝

∑

|𝛼|⩽𝑘
∫
𝑈
|𝜕𝛼𝑓|𝑝 d𝒙

⎞
⎟
⎠

1
𝑝

.

当 𝑝 = 2时，我们记 𝐻𝑘(𝑈) ∶= 𝑊𝑘,2(𝑈).

定义 1.1.3. 设{𝑓𝑚}, 𝑓属于𝑊𝑘,𝑝(𝑈). 我们称𝑓𝑚在𝑊𝑘,𝑝(𝑈)中收敛到𝑓，是指当𝑚 → ∞时成立‖𝑓𝑚 −
𝑓‖𝑊𝑘,𝑝(𝑈) → 0. 我们称𝑓𝑚在𝑊

𝑘,𝑝
loc (𝑈)中收敛到𝑓，是指‖𝑓𝑚 − 𝑓‖𝑊𝑘,𝑝(𝑉) → 0对任意 𝑉 ⋐ 𝑈成立。

定义 1.1.4. 我们用 𝑊𝑘,𝑝
0 (𝑈) 表示 𝐶∞

𝑐 (𝑈) 在 𝑊𝑘,𝑝(𝑈) 中的闭包。因此，𝑓 ∈ 𝑊𝑘,𝑝
0 (𝑈) 当且仅当存

在函数 𝑓𝑚 ∈ 𝐶∞
𝑐 (𝑈)使得 𝑓𝑚在𝑊𝑘,𝑝(𝑈)中收敛到𝑓. 进一步，我们有

𝑓 ∈ 𝑊𝑘,𝑝
0 (𝑈) ⇔ 𝑓 ∈ 𝑊𝑘,𝑝(𝑈)且 𝜕𝛼𝑓 = 0 on 𝜕𝑈 ∀|𝛼| ⩽ 𝑘 − 1.

然而其证明并非易事，具体可参见第1.3节。

例 1.1.3. 令𝑈 = 𝐵(𝟎, 1) ⊂ ℝ𝑑, 𝑢(𝒙) = |𝒙|−𝑎 (𝒙 ≠ 𝟎)。给定 𝑑 ∈ ℕ∗ 和 𝑝 ∈ [1,∞)，我们希望找到
𝑎 > 0使得 𝑢 ∈ 𝑊1,𝑝(𝑈).
首先我们知道 𝑢 在远离原点处光滑，因此可以在非零的𝒙处计算其经典导数 𝜕𝑖𝑢(𝒙) =

−𝑎𝑥𝑖
|𝒙|𝑎+2

.
接下来我们验证这也是 𝑈 中的弱导数。为此固定 𝜀 > 0并选取任意 𝜑 ∈ 𝐶∞

𝑐 ，我们进行如下计算

∫
𝑈∖𝐵(𝟎,𝜀)

𝑢𝜕𝑖𝜑 d𝒙 = −∫
𝑈∖𝐵(𝟎,𝜀)

𝜕𝑖𝑢 𝜑 d𝒙 + ∫
𝜕𝐵(𝟎,𝜀)

𝑢𝜑𝜈𝑖 d𝑆𝒙,

其中 𝜈 = − 𝒙
|𝒙|
是 𝜕𝐵(𝟎, 𝜀)上的单位内法向量。然后，为了验证 𝜕𝑖𝑢也是 𝑈 中 𝑢的弱导数，我们需

要检查边界项在 𝜀 → 0时消失
|||||||||
∫
𝜕𝐵(𝟎,𝜀)

𝑢𝜑𝜈𝑖 d𝑆𝒙
|||||||||
⩽ ‖𝜑‖𝐿∞Area(𝜕𝐵(𝟎, 𝜀))𝜀−𝑎 ⩽ 𝐶𝑑𝜀𝑑−1−𝑎

当 𝑎 + 1 < 𝑑时收敛到 0，这也隐含着要求 𝑑 ⩾ 2.

接下来我们需要 𝑢 ∈ 𝐿𝑝(𝑈)以及全体𝜕𝑖𝑢 ∈ 𝐿𝑝(𝑈) (1 ⩽ 𝑖 ⩽ 𝑑). 由于𝑈是包含原点的有界
区域，所以𝑢 ∈ 𝐿𝑝(𝑈)当且仅当𝑎𝑝 < 𝑑成立；再求导得|∇𝑢(𝒙)| = |𝑎|

|𝒙|𝑎+1
对𝒙 ≠ 0成立，而我们知

道|∇𝑢(𝒙)| ∈ 𝐿𝑝(𝑈)当且仅当(𝑎 +1)𝑝 < 𝑑. 因此我们得出结论：𝑢 ∈ 𝑊1,𝑝(𝑈)当且仅当𝑎 < 𝑑−𝑝
𝑝
成立。

特别地，我们得出𝑝 ⩾ 𝑑时有𝑢 ∉ 𝑊1,𝑝(𝑈).

例 1.1.4. 令𝑈 = ℝ𝑑∖𝐵(𝟎, 1), 以及𝑢(𝒙) = |𝒙|−𝑎 (𝒙 ≠ 𝟎). 给定𝑑 ∈ ℕ∗和𝑝 ∈ [1,∞), 我们希望找到
𝑎 > 0使得 𝑢 ∈ 𝑊1,𝑝(𝑈).
该情况下我们不再需要 𝑎 + 1 < 𝑑来确保经典导数 𝜕𝑖𝑢也是弱导数，因为 𝜕𝑖𝑢的奇点 𝒙 = 𝟎 ∉

𝑈. 至于可积性，|𝒙|−(𝑎+1) ∈ 𝐿𝑝(𝑈)要求 (𝑎 + 1)𝑝 > 𝑑，即 𝑎 > 𝑑−𝑝
𝑝
；而|𝒙|−𝑎 ∈ 𝐿𝑝(𝑈)要求𝑎𝑝 > 𝑑，

即𝑎 > 𝑑∕𝑝. 取交集后即得𝑎 > 𝑑∕𝑝.
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习题 1.1

习题 1.1.1. 设𝑓 ∈ 𝑊1,𝑝(0, 1)，1 ⩽ 𝑝 < +∞. 证明：

(1) 𝑓 几乎处处等于一个绝对连续函数 𝑓∗ ∈ 𝐿𝑝(0, 1).
(2) 当 𝑝 > 1时，我们有 |𝑓(𝑥) − 𝑓(𝑦)| ⩽ |𝑥 − 𝑦|1−

1
𝑝 (∫10 |𝑓′(𝑡)|𝑝 d𝑡)

1
𝑝 .

提示：考虑 𝑓∗(𝑥) = ∫𝑥0 𝑓′(𝑡) d𝑡，这里 𝑓′ 是 𝑓 在 (0, 1)中的弱导数。
习题 1.1.2. 设{𝒙𝑘}𝑘∈ℕ∗ 是 𝑈 = 𝐵(𝟎, 1) ⊂ ℝ𝑑 中的一个可数稠密子集，且

𝑢(𝒙) =
∞∑

𝑘=1

1
2𝑘 |𝒙 − 𝒙𝑘|−𝑎.

求𝑎 ∈ ℝ的范围使得 𝑢 ∈ 𝑊1,𝑝(𝑈).
习题 1.1.3. 设𝜁 ∈ 𝐶∞

𝑐 (𝑈)且 𝑢 ∈ 𝑊𝑘,𝑝(𝑈). 证明：𝜁𝑢 ∈ 𝑊𝑘,𝑝(𝑈)且经典Leibniz公式成立

𝜕𝛼(𝜁𝑢) =
∑

𝛽⩽𝛼

(𝛼
𝛽
)
𝜕𝛽𝜁 𝜕𝛼−𝛽𝑢.

1.2 Sobolev函数的光滑逼近和基本运算

如果继续根据定义来求弱导数，我们会发现这件事情在技术上相当繁琐。于是我们很自然地

会问：是否可以用某种方式用更好的函数（例如光滑函数）逼近Sobolev函数，并将光滑函数的
“良好性质”继承给Sobolev函数。事实上，这可以通过附录 C.2 中介绍的磨光来实现。今固定
𝑘 ∈ ℕ，1 ⩽ 𝑝 ⩽ ∞和开集 𝑈 ⊂ ℝ𝑑. 对𝜀 > 0，我们定义“缩水子集”𝑈𝜀 = {𝒙 ∈ 𝑈|dist(𝒙, 𝜕𝑈) > 𝜀}.

1.2.1 局部光滑逼近

第一个定理表明对任意1 ⩽ 𝑝 < ∞，𝑊1,𝑝(𝑈)函数可以在𝑈内部被光滑函数逼近。
定理 1.2.1 (局部光滑逼近). 设 𝑓 ∈ 𝑊𝑘,𝑝(𝑈) (1 ⩽ 𝑝 < ∞)，在 𝑈𝜀 中定义卷积 𝑓𝜀 = 𝜂𝜀 ∗ 𝑓. 那么对
任意 𝜀 > 0都有𝑓𝜀 ∈ 𝐶∞(𝑈𝜀)，且当𝜀 → 0时，𝑓𝜀在𝑊

𝑘,𝑝
loc (𝑈)中收敛到𝑓.

证明. 光滑性已在定理 C.2.1(1)中证明，此处略过。接下来证明逼近性质，关键步骤是验证

𝜕𝛼𝑓𝜀 = 𝜂𝜀 ∗ 𝜕𝛼𝑓 in 𝑈𝜀, ∀|𝛼| ⩽ 𝑘.

若能证明上式，则据定理C.2.1(4)可得𝜕𝛼𝑓𝜀 → 𝜕𝛼𝑓 in 𝐿𝑝loc对任意|𝛼| ⩽ 𝑘都成立，这正是我们要证
明的结论。
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现在证明关键步骤。今固定 𝜀 > 0和𝒙 ∈ 𝑈𝜀，计算可得

𝜕𝛼𝑓𝜀(𝒙) = 𝜕𝛼 ∫
𝑈
𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚 = ∫

𝑈
𝜕𝛼𝒙𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚 = (−1)|𝛼| ∫

𝑈
𝜕𝛼𝒚𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚.

注意，对每个固定的 𝒙 ∈ 𝑈𝜀，函数 𝜂𝜀(𝒙 − 𝒚)（作为 𝒚的函数）属于 𝐶∞
𝑐 (𝑈).据弱导数的定义可得

∫
𝑈
𝜕𝛼𝒚𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚 = (−1)|𝛼| ∫

𝑈
𝜂𝜀(𝒙 − 𝒚)𝜕𝛼𝒚𝑓(𝒚) d𝒚,

于是

𝜕𝛼𝑓𝜀(𝒙) = (−1)2|𝛼|
⏟ ⏟ ⏟

=1

∫
𝑈
𝜂𝜀(𝒙 − 𝒚)𝜕𝛼𝑓(𝒚) d𝒚 = (𝜂𝜀 ∗ 𝜕𝛼𝑓)(𝒙).

1.2.2 整体光滑逼近

证明定理 1.2.1之后，我们很自然地会问：是否能在整个区域𝑈上逼近给定的Sobolev函数，而
不仅仅是在紧子集上？是否可能将光滑逼近延拓到边界？这两个问题答案都是肯定的，并且这种

逼近可以通过使用单位分解来实现，但我们需要对 𝜕𝑈 的光滑性作进一步假设。
定理 1.2.2 (整体光滑逼近). 假设 𝑈 有界且 𝑓 ∈ 𝑊𝑘,𝑝(𝑈)对某个 1 ⩽ 𝑝 < ∞成立。则存在一列函

数 {𝑓𝑚} ⊂ 𝐶∞(𝑈) ∩𝑊𝑘,𝑝(𝑈)使得 𝑓𝑚
𝑊𝑘,𝑝(𝑈)
,,,,,,→ 𝑓.

证明. 对 𝑖 ∈ ℕ∗定义𝑈𝑖 = 𝑥 ∈ 𝑈|dist (𝒙, 𝜕𝑈) > 1∕𝑖，那么有 𝑈 =
∞⋃
𝑖=1
𝑈𝑖, 即开集 𝑈 被一列开子集

𝑈𝑖 穷竭。在定理1.2.2, 我们已经在每个 𝑈𝑖 中构造了 𝑢 的光滑逼近，现在我们需要将这些逼近函
数“粘合”在一起。问题在于这要对一列光滑函数计算无限求和，求和之后所得函数可能不再光

滑。为确保光滑性，只需使无限和是局部有限的，对每个固定的 𝒙 ∈ 𝑈，在该点的小邻域中只有
有限多个非零项。这可以通过所谓的单位分解来实现。

具体来说，对每个 𝑖 ∈ ℕ∗，我们定义 𝑉𝑖 ∶= 𝑈𝑖+3∖𝑈𝑖+1 和𝑊𝑖 ∶= 𝑈𝑖+4∖𝑈𝑖，如下图。

令 {𝜁𝑖}𝑖∈ℕ∗ 是从属于开集族 𝑉𝑖 的一个光滑单位分解，即
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• 0 ⩽ 𝜁𝑖 ⩽ 1且 𝜁𝑖 ∈ 𝐶∞
𝑐 (𝑉𝑖).

•
∞∑
𝑖=1
𝜁𝑖 = 1 in 𝑈.

据定义知，对任意一点𝒙 ∈ 𝑈，只有有限多个 𝑖 使得 𝜁𝑖(𝒙) ≠ 0. 此外，习题 1.1.3表明，每个𝜁𝑖𝑢 ∈
𝑊𝑘,𝑝(𝑈)且 Spt (𝜁𝑖𝑓) ⊆ 𝑉𝑖.
今定义𝑓𝑖 ∶= 𝜂𝜀𝑖 ∗ (𝜁𝑖𝑓)为𝑓在“薄层”𝑉𝑖中的光滑逼近。固定𝛿 > 0，我们可将参数 𝜀𝑖选取得

充分小使得 |𝑓𝑖 − 𝜁𝑖𝑓|𝑊𝑘,𝑝(𝑈) <
𝛿
2𝑖
成立。同时我们有 Spt𝑓𝑖 ⊆ 𝑊𝑖. 注意引入这样的𝑊𝑖 是必要的，因

为与磨光核做卷积可能会“撑大”给定函数的支集（从 𝑉𝑖 “膨胀”到𝑊𝑖）。

现在定义 𝐹 ∶=
∞∑
𝑖=1
𝑓𝑖。由局部有限性，求和式中只有有限多个非零项，所以 𝐹 ∈ 𝐶∞(𝑈)。另

一方面我们知道 𝑓 =
∞∑
𝑖=1
𝜁𝑖𝑓,因此对任意 𝑉 ⋐ 𝑈有

‖𝐹 − 𝑓‖𝑊𝑘,𝑝(𝑉) ⩽
∑

𝑖
‖𝑓𝑖 − 𝜁𝑖𝑓‖𝑊𝑘,𝑝(𝑈) =

∑

𝑖
‖𝜂𝜀𝑖 ∗ (𝜁𝑖𝑓) − 𝜁𝑖𝑓‖𝑊𝑘,𝑝(𝑈) <

∞∑

𝑖=1
2−𝑖𝛿 = 𝛿.

这个 𝛿 与 𝑉 的选取是无关的，这样我们就得到 |𝐹 − 𝑓|𝑊𝑘,𝑝(𝑈) ⩽ 𝛿。特别地，令 𝛿 = 1, 1
2
, 1
3
,⋯，我

们就得到一列满足要求的 𝑓𝑚。

接下来我们证明Sobolev函数的到边光滑逼近，这需要假设边界 𝜕𝑈 至少是Lipschitz连续的。

定义 1.2.1. 我们称边界 𝜕𝑈是Lipschitz连连连续续续的的的，是指对每个点 𝒙 ∈ 𝜕𝑈，存在 𝑟 > 0和一个Lipschitz连
续映射 𝛾 ∶ ℝ𝑑−1 → ℝ，使得（必要时可旋转和重新定义坐标轴）有

𝑈 ∩ 𝐵(𝒙, 𝑟) = {𝒚|𝑦𝑑 > 𝛾(𝑦1,⋯ , 𝑦𝑑−1)} ∩ 𝐵(𝒙, 𝑟).
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定理 1.2.3 (到边的整体光滑逼近). 设有界开集𝑈 ⊂ ℝ𝑑具有Lipschitz边界。设 𝑓 ∈ 𝑊𝑘,𝑝(𝑈)对某个

1 ⩽ 𝑝 < ∞成立，那么存在函数列 {𝑓𝑚} ⊂ 𝐶∞(𝑈)使得𝑓𝑚
𝑊𝑘,𝑝(𝑈)
,,,,,,→ 𝑓.

证明. 据定理 1.2.2，我们还需在边界𝜕𝑈附近构造𝑓的光滑逼近。注意𝑈的有界性蕴含了𝜕𝑈的紧
性，因此边界𝜕𝑈可以被有限多个开集覆盖，并记这些开集为 𝑉1,⋯ ,𝑉𝑁。在构造了边界的有限覆

盖之后，我们只需用一个开集 𝑉0 ⊂ 𝑈 覆盖剩下的内部部分. 而𝑉0中的逼近已在定理1.2.1中证明
了，因此只需在 𝜕𝑈 的每个开覆盖中构造光滑逼近。

今固定 𝒙0 ∈ 𝜕𝑈，存在 𝑟 > 0和Lipschitz连续函数 𝛾 ∶ ℝ𝑑−1 → ℝ使得

𝑈 ∩ 𝐵(𝒙0, 𝑟) = {𝒙|𝑥𝑑 > 𝛾(𝑥1,⋯ , 𝑥𝑑−1)} ∩ 𝐵(𝒙0, 𝑟).

我们再记 𝑉 = 𝑈 ∩ 𝐵(𝒙0, 𝑟
2
).

给定 𝒙 ∈ 𝑉，我们定义平移点 𝒙𝜀 ∶= 𝒙 + 𝜆𝜀𝑒𝑑 (𝜀 > 0). 对固定且适当大的 𝜆 > 0（例如𝜆 >
Lip(𝛾) + 2），我们知道球 𝐵(𝒙𝜀, 𝜀) ⊆ 𝑈 ∩ 𝐵(𝒙0, 𝑟)对任意𝒙 ∈ 𝑉和充分小的𝜀 > 0总是成立。接下来
我们定义逼近，令𝑓𝜀(𝒙) ∶= 𝑓(𝒙𝜀)，并定义逼近函数 𝐹𝜀 ∶= 𝜂𝜀 ∗ 𝑓𝜀。容易看出 𝐹𝜀 ∈ 𝐶∞(𝑉)，我们
现在作出断言

断言. 𝐹𝜀 → 𝑓 in 𝑊𝑘,𝑝(𝑉).
证明断言之前，我们先说明一下基本想法。

1. 该类逼近的构造.读者可能会问：为什么需要引入“平移点” 𝒙𝜀 并选取充分大的 𝜆 > 0？其
原因是如果任取一点𝒙 ∈ 𝑉，那么它可能非常非常接近边界。若我们直接在这样的𝒙的小邻
域内磨光函数𝑓，那么卷积可能会撑大支集使得𝐵(𝒙, 𝜀)∩𝑈𝑐 ≠ ∅.另一方面，边界的Lipschitz连
续性保证了边界不会“高度振荡”（Lipschitz连续性隐含了边界图像函数一阶导数的一致上
界），因此如果我们选取 𝜆 > Lip(𝛾) + 2，那么大小为 𝑂(𝜆𝜀)的平移一定能保证 𝐵(𝒙, 𝜀) ⊂ 𝑈，
从而为与磨光核的卷积留出足够的空间。

2. 为什么断言可以推出定理结论？ 事实上，若断言成立，那么只需对 𝑈 作单位分解即可完
成定理证明。具体来说我们先固定一个 𝛿 > 0。由于𝜕𝑈紧，我们可以找到有限多个点 𝒙0𝑖 ∈

𝜕𝑈 (1 ⩽ 𝑖 ⩽ 𝑁 和 𝑟𝑖 > 0使得 𝜕𝑈 ⊂
𝑁⋃
𝑖=1
𝐵(𝒙0𝑖 , 𝑟𝑖∕2)。记 𝑉𝑖 ∶= 𝑈 ∩ 𝐵(𝒙0𝑖 , 𝑟𝑖∕2)，那么对每个 𝑖，
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存在光滑函数 𝑓𝑖 ∈ 𝐶∞(𝑉𝑖)使得

‖𝑓𝑖 − 𝑓‖𝑊𝑘,𝑝(𝑉𝑖) < 𝛿, 1 ⩽ 𝑖 ⩽ 𝑁.

在此之后，我们可以找到开集𝑉0 ⋐ 𝑈使得

𝑈 ⊂
𝑁⋃

𝑖=0
𝑉𝑖, 且 ∃𝑓0 ∈ 𝐶∞(𝑉0), 使得 ‖𝑓0 − 𝑓‖𝑊𝑘,𝑝(𝑈) < 𝛿.

至此，我们已经构造了一个由𝑉0, 𝐵(𝒙01, 𝑟1∕2),⋯ , 𝐵(𝒙0𝑁, 𝑟𝑁∕2)组成的𝑈的有限开覆盖。记{𝜁𝑖}𝑁𝑖=0
是从属于这个开覆盖的 𝑈 的一个单位分解，并令 𝐹 ∶=

𝑁∑
𝑖=0
𝜁𝑖𝑓𝑖 ∈ 𝐶∞(𝑈)。据单位分解的定

义有 𝑓 =
𝑁∑
𝑖=0
𝜁𝑖𝑓，所以对任何|𝛼| ⩽ 𝑘可计算

‖𝜕𝛼𝑓 − 𝜕𝛼𝐹‖𝐿𝑝(𝑈) ⩽
𝑁∑

𝑖=0
‖𝜕𝛼(𝜁𝑖(𝑓𝑖 − 𝑓))‖𝐿𝑝(𝑉𝑖) ⩽ 𝐶

𝑁∑

𝑖=0
‖𝑓𝑖 − 𝑓‖𝑊𝑘,𝑝(𝑉𝑖) ⩽ 𝐶(𝑁 + 1)𝛿.

最后我们只需证明断言。回忆 𝐹𝜀 是 𝑓 平移之后再磨光所得，因此我们应该将 𝐹𝜀 − 𝑓 拆分为
𝐹𝜀 −𝑓𝜀 和 𝑓𝜀 −𝑓来控制误差。简单起见，我们只证明𝐿𝑝(𝑈)收敛，𝑊𝑘,𝑝范数的收敛同理可得。我

们有

‖𝐹𝜀 − 𝑓‖𝐿𝑝(𝑉) ⩽ ‖𝐹𝜀 − 𝑓𝜀‖𝐿𝑝(𝑉) + ‖𝑓𝜀 − 𝑓‖𝐿𝑝(𝑉).

第二项的收敛性即由𝐿𝑝范数的平移连续性得出，因此只需证明第一项收敛到0。据定义有

𝐹𝜀(𝒙) − 𝑓𝜀(𝒙) = 𝐹𝜀(𝒙) − 𝑓(𝒙𝜀) = 1
𝜀𝑑 ∫𝐵(𝟎,𝜀)

𝜂(𝐰𝜀 )(𝑓(𝒙 + 𝜆𝜀𝑒𝑑 −𝐰) − 𝑓(𝒙 + 𝜆𝜀𝑒𝑑)) d𝐰

𝒛∶=𝐰
𝜀===∫

𝐵(𝟎,1)
𝜂(𝒛)(𝑓(𝒙 + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(𝒙 + 𝜆𝜀𝑒𝑑)) d𝒛.

这个积分的 𝐿𝑝𝒙 范数可以通过积分的Minkowski不等式来控制

‖𝐹𝜀 − 𝑓𝜀‖𝐿𝑝(𝑉) = ‖𝐹𝜀 − 𝑓𝜀‖𝐿𝑝𝒙(𝑈∩𝐵(𝒙0, 𝑟2 ))
=‖‖‖‖‖𝜂(𝒛)(𝑓(𝒙 + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(𝒙 + 𝜆𝜀𝑒𝑑))‖𝐿1𝒛(𝐵(𝟎,1))

‖‖‖‖𝐿𝑝𝒙(𝑈∩𝐵(𝒙0, 𝑟2 ))

(积分Minkowski不等式) ⩽
‖‖‖‖‖‖‖𝜂(𝒛)(𝑓(𝒙 + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(𝒙 + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑈∩𝐵(𝒙0, 𝑟2 ))

‖‖‖‖‖‖𝐿1𝒛(𝐵(𝟎,1))

=∫
𝐵(𝟎,1)

|𝜂(𝒛)|‖𝑓(⋅ + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(⋅ + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑉) d𝒛.
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当 𝜀 → 0时，据𝐿𝑝范数的平移连续性可得被积函数 ‖𝑓(⋅ + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(⋅ + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑉) 收敛到0.
同时我们有

|𝜂(𝒛)|‖𝑓(⋅ + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(⋅ + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑉) ⩽ 2‖𝑓‖𝐿𝑝(𝑈) ∈ 𝐿1𝒛(𝐵(𝟎, 1)),

而控制函数不依赖于 𝒛。据控制收敛定理，我们得到

lim
𝜀→0

∫
𝐵(𝟎,1)

|𝜂(𝒛)|‖𝑓(⋅ + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(⋅ + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑉) d𝒛

=∫
𝐵(𝟎,1)

|𝜂(𝒛)| lim
𝜀→0

‖𝑓(⋅ + 𝜆𝜀𝑒𝑑 − 𝜀𝒛) − 𝑓(⋅ + 𝜆𝜀𝑒𝑑))‖𝐿𝑝𝒙(𝑉) d𝒛 = 0.

1.2.3 Sobolev函数的基本运算法则

有了光滑逼近定理之后，我们希望为Sobolev函数建立基本运算法则。

命题 1.2.4 (Sobolev函数的运算法则). 设1 ⩽ 𝑝 < ∞.

(1) 若 𝑓, 𝑔 ∈ 𝑊1,𝑝(𝑈)∩𝐿∞(𝑈),则 𝑓𝑔 ∈ 𝑊1,𝑝(𝑈)∩𝐿∞(𝑈),且 𝜕𝑖(𝑓𝑔) = (𝜕𝑖𝑓)𝑔+𝑓(𝜕𝑖𝑔)对 𝑖 = 1,⋯ , 𝑑
在 𝑈 中几乎处处成立.

(2) 若 𝑓 ∈ 𝑊1,𝑝(𝑈), 𝐹 ∈ 𝐶1(ℝ), 𝐹′ ∈ 𝐿∞(ℝ), 𝐹(0) = 0, 则 𝐹(𝑓) ∈ 𝑊1,𝑝(𝑈), 且 𝜕𝑖(𝐹(𝑓)) =
𝐹′(𝑓)𝜕𝑖𝑓对𝑖 = 1,⋯ , 𝑑在𝑈中几乎处处成立。若𝑈在ℝ𝑑中的Lebesgue测度有限，则𝐹(0) = 0不
是必要的。

(3) 若𝑓 ∈ 𝑊1,𝑝(𝑈),则𝑓+, 𝑓−, |𝑓| ∈ 𝑊1,𝑝(𝑈)，并且有

𝜕𝑓+ =
⎧

⎨
⎩

𝜕𝑓 a.e. on {𝑓 > 0}
0 a.e. on {𝑓 ⩽ 0},

𝜕𝑓− =
⎧

⎨
⎩

0 a.e. on {𝑓 ⩾ 0}
−𝜕𝑓 a.e. on {𝑓 < 0},

𝜕|𝑓| =

⎧
⎪
⎨
⎪
⎩

𝜕𝑓 a.e. on {𝑓 > 0}
0 a.e. on {𝑓 = 0}
−𝜕𝑓 a.e. on {𝑓 < 0}.

特别地，𝜕𝑓 = 0在 {𝑓 = 0}上几乎处处成立。

证明. 我们只证明 (1)和 (3)中的第一个等式。(2)的证明留作练习。
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对(1)，我们选取𝜑 ∈ 𝐶∞
𝑐 (𝑈)以及满足Spt𝜑 ⊂ 𝑉 ⋐ 𝑈的开集𝑉. Let 𝑓𝜀 ∶= 𝜂𝜀 ∗ 𝑓，并定义

𝑔𝜀 ∶= 𝜂𝜀 ∗ 𝑔. 那么我们首先有

∫
𝑈
𝑓𝑔(𝜕𝑖𝜑) d𝒙 = ∫

𝑉
𝑓𝑔(𝜕𝑖𝜑) d𝒙 = lim

𝜀→0
∫
𝑉
𝑓𝜀𝑔𝜀(𝜕𝑖𝜑) d𝒙.

这里我们可以直接验证如何交换极限与积分。事实上，使用Hölder不等式

∫
𝑉
𝑓𝜀𝑔𝜀(𝜕𝑖𝜑) d𝒙 − ∫

𝑉
𝑓𝑔(𝜕𝑖𝜑) d𝒙 = ∫

𝑉
𝑓𝜀(𝑔𝜀 − 𝑔)(𝜕𝑖𝜑) d𝒙 + ∫

𝑉
(𝑓𝜀 − 𝑓)𝑔𝜕𝑖𝜑 d𝒙

⩽ ‖𝑔𝜀 − 𝑔‖𝐿𝑝(𝑉) ‖𝑓𝜀‖𝐿∞(𝑉)
⏟⎴⏟⎴⏟
⩽‖𝑓‖𝐿∞(𝑉)

‖𝜕𝑖𝜑‖𝐿𝑝′ (𝑉) + ‖𝑔‖𝐿∞‖𝑓𝜀 − 𝑓‖𝐿𝑝(𝑉)‖𝜕𝑖𝜑‖𝐿𝑝′ (𝑉)

→ 0 as 𝜀 → 0.

这里请注意：假设 𝑓, 𝑔 ∈ 𝐿∞ 是必要的，且 𝑓𝜀, 𝑔𝜀 的收敛性是定理 C.2.1给出的。
(3) 的证明稍微有点技巧性。给定 𝜀 > 0,我们定义 𝐹𝜀(𝑟) = (

√
𝑟2 + 𝜀2 − 𝜀)𝜒𝑟⩾0，则可以直接验

证𝐹𝜀 ∈ 𝐶1(ℝ)且 𝐹′
𝜀 ∈ 𝐿∞(ℝ)在 𝜀上一致有界。现在我们将 (2)应用于这里的 𝐹𝜀 并分部积分得到

∫
𝑈
𝐹𝜀(𝑓)𝜕𝑖𝜑 d𝒙 = −∫

𝑈
𝐹′
𝜀(𝑓)𝜕𝑖𝑓𝜑 d𝒙, ∀𝜑 ∈ 𝐶∞

𝑐 (𝑈).

由于 𝑓 ∈ 𝑊1,𝑝 且 𝐹𝜀(𝑓)
𝑎.𝑒.
,,,→ 𝑓+. 故当 𝜀 → 0时，据控制收敛定理有

− lim
𝜀→0

∫
𝑈
𝐹′
𝜀(𝑓)𝜕𝑖𝑓𝜑 d𝒙 = −∫

𝑈
lim
𝜀→0

𝐹′
𝜀(𝑓)𝜕𝑖𝑓𝜑 d𝒙 = −∫

𝑈∩{𝑓>0}
𝜕𝑖𝑓𝜑.

因此我们得到 𝜕𝑓+ 的表达式，然后使用 𝑓− = (−𝑓)+ 和 |𝑓| = 𝑓+ + 𝑓− 得到其余结论。

习题 1.2

习题 1.2.1. 设 𝑈,𝑉 是开集，𝑉 ⋐ 𝑈. 证明：存在 𝜁 ∈ 𝐶∞(𝑈)使得 𝜁|𝑉 = 1且 𝜁 在 𝜕𝑈 附近为零。
提示：取 𝑉 ⋐ 𝑊 ⋐ 𝑈 并磨光 𝜒𝑊。

习题 1.2.2. 假设 𝑈 ⊂ ℝ𝑑 有界且 𝑈 ⋐
𝑁⋃
𝑖=1
𝑉𝑖。证明：存在 𝜁𝑖 ∈ 𝐶∞(𝑈)，𝑖 = 1,⋯ ,𝑁，使得

0 ⩽ 𝜁𝑖 ⩽ 1, Spt 𝜁𝑖 ⊂ 𝑉𝑖,
𝑁∑

𝑖=1
𝜁𝑖 = 1 in 𝑈.

提示：对每个 𝑖，用习题 1.2.1 的结论构造 𝜑𝑖 ∈ 𝐶∞(𝑈) 满足 𝜑𝑖 = 1 在 𝑊𝑖，𝑊𝑖 ⋐ 𝑉𝑖 且

Spt𝜑𝑖 ⊂ 𝑉𝑖。然后令 𝜁1 = 𝜑1，𝜁2 = 𝜑2(1 − 𝜑1),⋯ , 𝜁𝑁 = 𝜑𝑁(1 − 𝜑1)⋯ (1 − 𝜑𝑁−1). 注意这不是唯一
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的选择。

习题 1.2.3. 证明命题 1.2.4(2).

习题 1.2.4. 证明：‖∇𝑢‖2𝐿2(𝑈) ⩽ 𝐶‖𝑢‖𝐿2(𝑈)‖𝜕2𝑢‖𝐿2(𝑈)对任何 𝑢 ∈ 𝐶∞
𝑐 (𝑈)成立。然后将此结论推广到

𝑢 ∈ 𝐻1
0(𝑈) ∩ 𝐻2(𝑈)，这里需假设 𝑈 有界且 𝜕𝑈 光滑。

习题 1.2.5. 设 𝑢 ∈ 𝐶∞
𝑐 (𝑈)，证明如下两个不等式。

(1) ‖∇𝑢‖𝐿𝑝(𝑈) ⩽ 𝐶‖𝑢‖
1
2
𝐿𝑝(𝑈)‖𝜕

2𝑢‖
1
2
𝐿𝑝(𝑈) for 2 ⩽ 𝑝 < ∞.

(2) ‖∇𝑢‖𝐿2𝑝(𝑈) ⩽ 𝐶‖𝑢‖
1
2
𝐿∞(𝑈)‖𝜕

2𝑢‖
1
2
𝐿𝑝(𝑈) for 1 ⩽ 𝑝 < ∞.

提示：对指标为 (𝑝, 𝑝, 𝑝
𝑝−2

)使用三元Hölder不等式。

习题 1.2.6. 设 𝑈 ⊂ ℝ𝑑 是连连连通通通开集且 𝑓 ∈ 𝑊1,𝑝(𝑈)满足 ∇𝑓 = 𝟎在 𝑈 中几乎处处成立。证明：𝑓
几乎处处等于一个常值函数。

提示：本题不不不能能能使使使用用用Poincaré不不不等等等式式式来证明，因为该题结论在Poincaré不等式的证明中要用
到。在 𝑉 ⋐ 𝑈 中考虑 𝑓𝜀 ∶= 𝜂𝜀 ∗ 𝑓，并证明对充分小的 𝜀 > 0，𝑓𝜀 = 𝐶𝜀 在 𝑉 中几乎处处成立。然
后使用定理 C.2.1来证明 ‖𝑓𝜀‖𝐿𝑝 在 𝜀 上一致有界，因此 {𝐶𝜀}也一致有界，进而{𝑓𝜀}的一个子列收
敛到一个常数。

1.3 迹定理和延拓定理

若 𝑢 ∈ 𝐶(𝑈)，那么我们可以明确定义 𝑢在边界 𝜕𝑈 上的逐点取值。然而如果 𝑢 ∈ 𝑊1,𝑝(𝑈)仅
仅是一个Sobolev函数，那么我们可以修改它在零测集上的值。特别地，边界𝜕𝑈的𝑑维Lebesgue测
度是零，因此我们需要讨论如何“指定”Sobolev函数的边值。本节我们假设 1 ⩽ 𝑝 < ∞.

定理 1.3.1 (迹定理). 设1 ⩽ 𝑝 < ∞, 𝑈 ⊂ ℝ𝑑 是有界开集，且 𝜕𝑈 是Lipschitz连续的。那么

(1) 存在有界线性算子 Tr ∶ 𝑊1,𝑝(𝑈) → 𝐿𝑝(𝜕𝑈; d𝑆)使得在 𝜕𝑈上 Tr𝑓 = 𝑓对所有 𝑓 ∈ 𝑊1,𝑝(𝑈)∩
𝐶(𝑈)成立，且

‖Tr𝑓‖𝐿𝑝(𝜕𝑈) ⩽ 𝐶‖𝑓‖𝑊1,𝑝(𝑈)

对每个 𝑓 ∈ 𝑊1,𝑝(𝑈)成立。其中常数 𝐶 > 0仅依赖于 𝑝,𝑈. 这里 d𝑆 = ℋ𝑑−1|𝜕𝑈 是 𝜕𝑈 上的
(𝑑 − 1)维Hausdorff测度（也解释为曲面测度）。

(2) （分部积分）对任意 𝝓 ∈ 𝐶1(ℝ𝑑 → ℝ𝑑)和 𝑓 ∈ 𝑊1,𝑝(𝑈)，有

∫
𝑈
𝑓div 𝝓 d𝒙 = −∫

𝑈
∇𝑓 ⋅ 𝝓 d𝒙 + ∫

𝜕𝑈
(𝝓 ⋅ 𝑁)Tr𝑓 d𝑆𝒙,

其中 𝑁 表示 𝜕𝑈 的单位外法向量。

注记 1.3.1. 函数 Tr𝑓 称为 𝑓 在 𝜕𝑈 上的迹迹迹，它在 ℋ𝑑−1|𝜕𝑈 零测集意义下是唯一确定的，Tr𝑓即
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可认为是 𝑓 在 𝜕𝑈 上的“边值”。事实上它进一步满足

lim
𝑟→0

⨏
𝑈∩𝐵(𝒙,𝑟)

|𝑓(𝒚) − Tr𝑓(𝒙)| d𝒚 = 0, ℋ𝑑−1-a.e. 𝒙 ∈ 𝜕𝑈.

进而

Tr𝑓(𝒙) = lim
𝑟→0

⨏
𝑈∩𝐵(𝒙,𝑟)

𝑓(𝒚) d𝒚.

证明. 首先，我们假设 𝑓 ∈ 𝐶1(𝑈) 并先考虑 𝑝 = 1 的情况，即证明 ∫𝜕𝑈 |𝑓| d𝑆𝒙 ⩽ 𝐶 ∫𝑈 |∇𝑓| d𝒙.
由于 𝜕𝑈 是Lipschitz连续的，对任意 𝒙0 ∈ 𝜕𝑈，我们可以找到 𝑟 > 0 和一个Lipschitz连续函数
𝛾 ∶ ℝ𝑑−1 → ℝ，使得（在必要时旋转以及重新定义坐标轴后）

𝑈 ∩ 𝐵(𝒙0, 𝑟) = {𝒙|𝑥𝑑 > 𝛾(𝑥1,⋯ , 𝑥𝑑−1)} ∩ 𝐵(𝒙0, 𝑟).

记𝐵 ∶= 𝐵(𝒙0, 𝑟) 并暂时假设 𝑓 在 𝑈∖𝐵 中恒为零，即我们先把𝑓在 𝜕𝑈 和 𝐵 的交集附近作“ 局部
化”。此时𝜕𝑈 的单位外法向量 𝑁满足

−𝑒𝑑 ⋅ 𝑁 = cos⟨−𝑒𝑑, 𝑁⟩ =
1

√
1 + tan2⟨−𝑒𝑑, 𝑁⟩

⩾ 1
√
1 + (Lip 𝛾)2

ℋ𝑑−1-a.e. on 𝐵 ∩ 𝜕𝑈.

现在固定 𝜀 > 0并定义 𝛽𝜀(𝑡) =
√
𝑡2 + 𝜀2 − 𝜀. 据Gauss-Green定理，我们有

∫
𝜕𝑈
𝛽𝜀(𝑓) d𝑆𝒙 =∫

𝐵∩𝜕𝑈
𝛽𝜀(𝑓) d𝑆𝒙 ⩽ 𝐶 ∫

𝐵∩𝜕𝑈
𝛽𝜀(𝑓)(−𝑒𝑑 ⋅ 𝑁) d𝑆𝒙

⩽ − 𝐶 ∫
𝐵∩𝑈

𝜕𝑥𝑑(𝛽𝜀(𝑓)) d𝒙 ⩽ 𝐶 ∫
𝐵∩𝑈

|𝛽′𝜀(𝑓)||∇𝑓(𝒙)| d𝒙 ⩽ 𝐶 ∫
𝑈
|∇𝑓| d𝒙.

这里 𝐶 > 0 是由 (−𝑒𝑑 ⋅ 𝑁) 的估计产生的正常数，并且我们也使用了 |𝛽′𝜀| ⩽ 1 这一事实。现在令
𝜀 → 0并使用命题 1.2.4(2)得

∫
𝜕𝑈
|𝑓| d𝑆𝒙 ⩽ 𝐶 ∫

𝑈
|∇𝑓| d𝒙. (1.3.1)

注意，引进𝛽𝜀(𝑓) → |𝑓|的逼近过程是必要的，因为 𝑓 ∈ 𝐶1 并不意味着 |𝑓| 处处连续可微，而
𝛽𝜀(𝑓)恰是 |𝑓|的 𝐶1 逼近。

接下来我们想将(1.3.1)推广到𝑓在𝑈∖𝐵中不恒为零的情况。事实上我们可以用有限多个这样
的球 𝐵(𝒙0𝑖 , 𝑟𝑖), 𝑖 = 1,⋯ ,𝑚覆盖𝜕𝑈（注意𝜕𝑈是紧的），然后用定理 1.2.3 证明中的单位分解来实
现，从而得到

∫
𝜕𝑈
|𝑓| d𝑆𝒙 ⩽ 𝐶 ∫

𝑈
|∇𝑓| + |𝑓| d𝒙, ∀𝑓 ∈ 𝐶1(𝑈). (1.3.2)
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具体来说，对 1 ⩽ 𝑖 ⩽ 𝑚我们记 𝐵𝑖 ∶= 𝐵(𝒙0𝑖 , 𝑟𝑖)，定义𝐶𝑖 =
√
1 + (Lip 𝛾𝑖)2，并记𝐶 = max{𝐶𝑖}. 设

𝑉, 𝐵1,⋯ , 𝐵𝑚 是 𝑈 的一个有限开覆盖，其单位分解为 𝜁0, 𝜁1,⋯ 𝜁𝑚. 模仿上述证明可得

∫
𝜕𝑈
𝛽𝜀(𝑓) d𝑆𝒙 ⩽ 𝐶

𝑚∑

𝑖=1
∫
𝐵𝑖∩𝜕𝑈

𝜁𝑖𝛽𝜀(𝑓)(−𝑒𝑑 ⋅ 𝑁) d𝑆𝒙

= 𝐶
𝑚∑

𝑖=1
∫
𝐵𝑖∩𝑈

𝜕𝑥𝑑(𝜁𝑖𝛽𝜀(𝑓)) d𝒙

= 𝐶
𝑚∑

𝑖=1
∫
𝐵𝑖∩𝑈

(𝜕𝑥𝑑𝜁𝑖)𝛽𝜀(𝑓) d𝒙 + ∫
𝐵𝑖∩𝑈

𝜁𝑖𝜕𝑥𝑑(𝛽𝜀(𝑓)) d𝒙

⩽ 𝐶′ ∫
𝑈
|𝛽𝜀(𝑓)| + |𝛽′𝜀(𝑓)||∇𝑓| d𝒙 ∃𝐶′ > 0.

然后令 𝜀 → 0即可导出 (1.3.2).
接下来我们将此结论推广到一般的 𝑝 ∈ (1,∞). 对给定的𝑝 > 1，我们在 (1.3.2) 中用|𝑓|𝑝替

换|𝑓|，同理可得

∫
𝜕𝑈
|𝑓|𝑝 d𝑆𝒙 ⩽ 𝐶 ∫

𝑈
|𝑓|𝑝 + |∇𝑓||𝑓|𝑝−1 d𝒙.

在Young不等式𝑎𝑏 ⩽ 𝑎𝑝

𝑝
+ 𝑏𝑝′

𝑝′
, 𝑝−1 + (𝑝′)−1 = 1中取𝑎 = |∇𝑓|, 𝑏 = |𝑓|𝑝−1 可得

∫
𝜕𝑈
|𝑓|𝑝 d𝑆𝒙 ⩽ 𝐶′ ∫

𝑈
|𝑓|𝑝 + |∇𝑓|𝑝 d𝒙 ∀𝑓 ∈ 𝐶1(𝑈),

其中这个 𝐶′ > 0 依赖 𝑝. 因此如果我们记 Tr𝑓 ∶= 𝑓|𝜕𝑈，那么存在依赖于𝑝的常数𝐶 > 0使
得|Tr𝑓|𝐿𝑝(𝜕𝑈) ⩽ 𝐶|𝑓|𝑊1,𝑝(𝑈) 对全体 𝑓 ∈ 𝐶1(𝑈) 成立。同样容易验证 𝑓 ∈ 𝐶1(𝑈) 时分部积分公式
(2)成立。

最后证明对 𝑓 ∈ 𝑊1,𝑝(𝑈) 有相同的结论。给定这样一个𝑓，据定理 1.2.3知存在函数 𝑓𝑛 ∈
𝐶∞(𝑈)在𝑊1,𝑝(𝑈)中收敛到 𝑓。那么我们有

‖Tr𝑓𝑘 − Tr𝑓𝑙‖𝐿𝑝(𝜕𝑈) ⩽ 𝐶‖𝑓𝑘 − 𝑓𝑙‖𝑊1,𝑝(𝑈)

这表明 {Tr𝑓𝑛} 是 𝐿𝑝(𝜕𝑈) 中的Cauchy列，从而存在极限 Tr𝑓 ∈ 𝐿𝑝(𝜕𝑈)，定义为 lim
𝑛→∞

Tr𝑓𝑛. 而且

这个极限不依赖于 𝑓 的光滑逼近的选取。现在给定一个 𝑓 ∈ 𝑊1,𝑝(𝑈) ∩ 𝐶(𝑈)，我们也可以使用到
边全的整体光滑逼近来定义 Tr𝑓 = 𝑓|𝜕𝑈. 由于𝑊1,𝑝(𝑈) ∩ 𝐶(𝑈)在𝑊1,𝑝(𝑈)中稠密，我们可以将算
子 Tr（通过B.L.T.定理）延拓为一个从𝑊1,𝑝(𝑈) → 𝐿𝑝(𝜕𝑈)的有界线性算子。至于分部积分公式，
我们也可以使用到边的整体光滑逼近定理来完成证明，此处不再重复。

接下来我们证明一个关于迹为零函数的进一步结果。这个结论相当重要，但证明的技巧性过
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强，初学者可以跳过。

定理 1.3.2 (零迹定理). 设 𝑈 ⊂ ℝ𝑑 是有界开集，𝜕𝑈 是Lipschitz连续的，且 𝑓 ∈ 𝑊1,𝑝(𝑈)。则

𝑓 ∈ 𝑊1,𝑝
0 (𝑈)当且仅当 Tr𝑓 = 0 on 𝜕𝑈.

证明. “仅当”部分容易证明，实际上它只是光滑逼近的一个简单推论。给定 𝑓 ∈ 𝑊1,𝑝
0 (𝑈)，存

在一列 {𝑓𝑛} ⊂ 𝐶∞
𝑐 (𝑈)使得 𝑓𝑛

𝑊1,𝑝(𝑈)
,,,,,,→ 𝑓. 由于 Tr𝑓𝑛 = 0且 Tr ∶ 𝑊1,𝑝(𝑈) → 𝐿𝑝(𝜕𝑈)是有界线性算

子，我们得到Tr𝑓在𝜕𝑈上恒为零。

反之则非常困难。给定 𝑓 ∈ 𝑊1,𝑝(𝑈) 且 Tr𝑓|𝜕𝑈 = 0，我们需要构造一列 {𝑓𝑛} ⊂ 𝐶∞
𝑐 (𝑈) 使

得 ‖𝑓𝑛 − 𝑓‖𝑊𝑘,𝑝(𝑈) → 0. 据附录 C.2 的光滑逼近知，构造一列 𝐶∞
𝑐 函数在 𝐿𝑝(𝑈)范数下逼近一

个Sobolev函数是容易的。然而我们还需要确保一阶导数的收敛性，这步并非平凡：因为整体光
滑逼近定理并不保证光滑逼近函数的边值为零。为了同时得到逼近的收敛性和光滑逼近的零边值

失，我们可以在边界附近的一个正的距离里面把𝑓“截断”（但截断距离最终收敛到0），然后磨光
截断后的逼近函数。

为了技术上的简便，我们假设 𝑓 ∈ 𝑊1,𝑝(ℝ𝑑
+)具有紧支集，且Tr𝑓|𝜕ℝ𝑑

+
= 0. 这可以通过对 𝜕𝑈

作单位分解并拉直 𝛾的图像来实现，这个步骤只要求𝜕𝑈的Lipschitz连续性。

第一步：截断的构造. 我们定义一个光滑截断函数 𝜁 ∈ 𝐶∞(ℝ+)：

𝜁(𝑥𝑑) =

⎧
⎪
⎨
⎪
⎩

1 𝑥𝑑 ∈ [0, 1],
递减,取值于[0, 1] 𝑥𝑑 ∈ [1, 2],
0 𝑥𝑑 ∈ [2,∞).

然后对每个 𝑚 ∈ ℕ∗，我们在𝒙 ∈ ℝ𝑑
+处定义 𝜁𝑚(𝒙𝑑) ∶= 𝜁(𝑚𝑥𝑑)以及

𝑤𝑚(𝒙) ∶= 𝑓(𝒙)(1 − 𝜁𝑚(𝒙)).

换言之，𝑤𝑚是𝑓在ℝ𝑑−1 × [ 1
𝑚
,∞)上的光滑截断，并在 ℝ𝑑−1 × [ 2

𝑚
,∞)上与𝑓相等，而且容易看出

‖𝑤𝑚 − 𝑓‖𝐿𝑝(𝑈) → 0.

第二步：一阶导数的收敛性.直接计算可得

𝜕𝑥𝑑𝑤𝑚 = 𝜕𝑥𝑑𝑓(1 − 𝜁𝑚(𝒙)) − 𝑚𝑓(𝒙)𝜁′(𝑥𝑑) and 𝜕𝑥𝑖𝑤𝑚 = 𝜕𝑥𝑖𝑓(𝒙)(1 − 𝜁𝑚(𝒙)) 1 ⩽ 𝑖 ⩽ 𝑑 − 1.

因此可算得

∫
ℝ𝑑
+

|∇𝑤𝑚 − ∇𝑓|𝑝 d𝒙 ⩽ 𝐶 ∫
ℝ𝑑
+

|𝜁𝑚|𝑝|∇𝑓|𝑝 d𝒙 + 𝐶𝑚𝑝 ∫
2
𝑚

0
∫
ℝ𝑑−1

|𝑓(𝒙′, 𝑥𝑑)|𝑝 d𝒙′ d𝑥𝑑. (1.3.3)
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再据 𝜁𝑚 的定义和控制收敛定理，容易看出第一项积分收敛到0

∫
ℝ𝑑
+

|𝜁𝑚|𝑝|∇𝑓|𝑝 d𝒙 → 0 as 𝑚 → ∞. (1.3.4)

关于第二项，注意到法向分量 𝑥𝑑 ∈ [0, 2
𝑚
] 非常接近边界，所以我们应该将 𝑓(𝒙′, 𝑥𝑑) 表示为 𝑓

的边界值与 𝜕𝑥𝑑𝑓 的积分之和，即类似于微积分基本定理的形式。然而这里我们只知道 𝑓 是一
个Sobolev函数，而微积分基本定理只对绝对连续函数有效，所以我们必须对𝑓构造一个合适的逼

近。因为Tr𝑓|𝜕ℝ𝑑
+
= 0，所以存在一列函数 {𝑢𝑘} ⊂ 𝐶∞(ℝ𝑑

+) 使得 𝑢𝑘
𝑊1,𝑝(ℝ𝑑

+),,,,,,,→ 𝑓，从而由迹定理得

Tr𝑢𝑘 = 𝑢𝑘|𝑥𝑑=0
𝐿𝑝(ℝ𝑑−1)
,,,,,,,→ 0. 对每个 𝑢𝑘我们有 𝑢𝑘(𝒙′, 𝑥𝑑) = 𝑢𝑘(𝒙′, 0) + ∫𝑥𝑑0 𝜕𝑥𝑑𝑢𝑘(𝒙′, 𝑡) d𝑡。因此便有

∫
ℝ𝑑−1

|𝑢𝑘(𝒙′, 𝑥𝑑)|𝑝 d𝒙′ ⩽∫
ℝ𝑑−1

|𝑢𝑘(𝒙′, 0)|𝑝 d𝒙′ + ∫
ℝ𝑑−1

(∫
𝑥𝑑

0
1 ⋅ |𝜕𝑥𝑑𝑢𝑘(𝒙′, 𝑡)| d𝑥)

𝑝

d𝑡,

i其中第一项当 𝑘 → ∞时收敛到0，这是因为 Tr𝑢𝑘 = 𝑢𝑘|𝑥𝑑=0
𝐿𝑝(ℝ𝑑−1)
,,,,,,,→ 0. 对于第二项，我们使用积

分Minkowski不等式和Hölder不等式得到

∫
ℝ𝑑−1

(∫
𝑥𝑑

0
1 ⋅ |𝜕𝑥𝑑𝑢𝑘(𝒙′, 𝑡)| d𝒙′)

𝑝

d𝑡 = ‖‖‖‖‖‖𝜕𝑥𝑑𝑢𝑘‖𝐿1𝑥𝑑 (0,𝑥𝑚)
‖‖‖‖‖
𝑝

𝐿𝑝𝒙′ (ℝ
𝑑−1)

⩽‖‖‖‖‖‖𝜕𝑥𝑑𝑢𝑘‖𝐿𝑝𝒙′ (ℝ𝑑−1)
‖‖‖‖‖
𝑝

𝐿1𝑥𝑑 (0,𝑥𝑚)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫
𝑥𝑑

0
1 ⋅ (∫

ℝ𝑑−1
|𝜕𝑥𝑑𝑢𝑘(𝒙′, 𝑡)|𝑝 d𝒙′)

1
𝑝

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
作为 𝑡 的函数

d𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑝

⩽

⎡
⎢
⎢
⎢
⎢
⎣

(∫
𝑥𝑑

0
1𝑝′)

1
𝑝′

⋅
⎛
⎜
⎜
⎝

∫
𝑥𝑑

0
(∫

ℝ𝑑−1
|𝜕𝑥𝑑𝑢𝑘(𝒙′, 𝑡)|𝑝 d𝒙′)

1
𝑝
⋅𝑝

d𝑡
⎞
⎟
⎟
⎠

1
𝑝⎤
⎥
⎥
⎥
⎥
⎦

𝑝

⩽ 𝐶𝑥𝑝−1𝑑 ∫
𝑥𝑑

0
∫
ℝ𝑑−1

|∇𝑢𝑘(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡.

然后取𝑘 → ∞，我们得到一个类似于微积分基本定理的估计

∫
ℝ𝑑−1

|𝑓(𝒙′, 𝑥𝑑)|𝑝 d𝒙′ ⩽ 𝐶𝑥𝑝−1𝑑 ∫
𝑥𝑑

0
∫
ℝ𝑑−1

|∇𝑓(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡, a.e. 𝑥𝑑 > 0. (1.3.5)
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现在将 (1.3.5)代入 (1.3.3)的第二项就可得到

𝑚𝑝 ∫
2
𝑚

0
∫
ℝ𝑑−1

|𝑓(𝒙′, 𝑥𝑑)|𝑝 d𝒙′ d𝑥𝑑

⩽ 𝐶𝑚𝑝 ∫
2
𝑚

0
𝑥𝑝−1𝑑 (∫

𝑥𝑑

0
∫
ℝ𝑑−1

|∇𝑓(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡) d𝑥𝑑

⩽ 𝐶𝑚𝑝
⎛
⎜
⎝
∫

2
𝑚

0
𝑥𝑝−1𝑑 d𝑥𝑑

⎞
⎟
⎠
⋅ sup
𝑥𝑑∈[0,

2
𝑚

∫
𝑥𝑑

0
∫
ℝ𝑑−1

|∇𝑓(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡

= 𝐶𝑚𝑝 ⋅ 2𝑝
𝑚𝑝𝑝 ⋅ ∫

2
𝑚

0
∫
ℝ𝑑−1

|∇𝑓(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡 = 𝐶𝑝 ∫
2
𝑚

0
∫
ℝ𝑑−1

|∇𝑓(𝒙′, 𝑡)|𝑝 d𝒙′ d𝑡. (1.3.6)

当𝑚 → ∞时右边收敛到0，所以(1.3.3) 的右边收敛到0，即 ∇𝑤𝑚
𝐿𝑝(ℝ𝑑

+),,,,,,→ ∇𝑓. 这样我们就证明

了𝑤𝑚
𝑊1,𝑝(ℝ𝑑

+),,,,,,,→ 𝑓.
第三步：截断逼近函数的磨光. 序列 {𝑤𝑚} 可以在 𝑊1,𝑝(ℝ𝑑

+) 范数下逼近 𝑓，但这些函数可能
不属于 𝐶∞

𝑐 (ℝ+
𝑑 ). 此时注意到 𝑤𝑚 在 ℝ𝑑−1 ∈ [0, 1

𝑚
]中恒为零，因此我们有足够的空间在 𝑥𝑑 方向磨

光每个 𝑤𝑚，并通过对角线法取一个子列。具体来说，对给定的 𝑘 ∈ ℕ∗，第二步表明存在一个子

列 𝑤𝑚𝑘 满足

‖𝑤𝑚𝑘 − 𝑓‖𝑊1,𝑝(𝑈) <
1
𝑘 .

于是对每个𝑘我们可以定义𝑤𝑛
𝑚𝑘 ∶= 𝜂 1

2𝑚𝑛
∗ 𝑤𝑚𝑘，其中𝜂(𝑥𝑑) 是 𝑥𝑑分量的卷积光滑子。我们知道

𝑤𝑛
𝑚𝑘紧支于ℝ𝑑−1 × [ 1

𝑚
(1 − 1

2𝑛
),∞)中。据定理 1.2.1可知，对每个𝑗 ∈ ℕ∗我们都可以找到 𝑛𝑗（递增到

∞）使得
‖𝑤𝑛𝑗

𝑚𝑘 − 𝑤𝑚𝑘‖𝑊1,𝑝(ℝ𝑑
+) <

1
𝑗 .

因此，令 𝑓𝑘 ∶= 𝑤𝑛𝑘
𝑚𝑘 ∈ 𝐶∞

𝑐 (ℝ𝑑
+)，我们得到如下收敛结果

‖𝑓𝑘 − 𝑓‖𝑊1,𝑝(ℝ𝑑
+) → 0 as 𝑘 → ∞.

我们以Sobolev延拓定理结束本节。它的结论很容易理解，但证明技术相当复杂。特别地，对
于不同的可微性指标 𝑘 ∈ ℕ∗，证明过程中的构造不同。因此我们只列出结论并省略证明。

定理 1.3.3 (Sobolev延拓定理). 设 1 ⩽ 𝑝 ⩽ ∞，𝑈 ⊂ ℝ𝑑 是有界开集，且 𝜕𝑈 ∈ 𝐶𝑘 (𝑘 ∈ ℕ∗).
设 𝐺 ⊂ ℝ𝑑 是开集且满足 𝑈 ⋐ 𝐺，那么存在依赖于 𝑑, 𝑘,𝑈, 𝐺的常数 𝐶 > 0以及有界线性映射
𝐄 ∶ 𝑊𝑘,𝑝(𝑈) → 𝑊𝑘,𝑝(ℝ𝑑)，使得对任何 𝑓 ∈ 𝑊𝑘,𝑝(𝑈)，有

(1) 𝐄𝑓 = 𝑓 a.e. in 𝑈.
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(2) Spt𝐄𝑓 ⋐ 𝐺.
(3) ‖𝐄𝑓‖𝑊𝑘,𝑝(𝐺) ⩽ 𝐶‖𝑓‖𝑊𝑘,𝑝(𝑈).

习题 1.3

习题 1.3.1. 设𝑈 ⊂ ℝ𝑑是具有Lipschitz边界的有界开集。证明：不存在有界线性算子Tr ∶ 𝐿𝑝(𝑈) →
𝐿𝑝(𝜕𝑈)使得Tr𝑓 = 𝑓|𝜕𝑈对全体𝑓 ∈ 𝐶(𝑈) ∩ 𝐿𝑝(𝑈)都成立。

提示：构造序列{𝑓𝑚}满足‖𝑓𝑚‖𝐿𝑝(𝑈) → 0，但在边界𝜕𝑈上恒有Tr𝑓𝑚 ≡ 1.

习题 1.3.2. 设𝑓± ∈ 𝐻1(ℝ𝑑
±)满足Tr𝑓− = Tr𝑓+在ℝ𝑑−1 × {𝑥𝑑 = 0}上成立。定义𝑓 ∈ 𝐿2(ℝ𝑑)为

𝑓 =
⎧

⎨
⎩

𝑓+ 𝑥𝑑 > 0
𝑓− 𝑥𝑑 < 0

.

证明：𝑓 ∈ 𝐻1(ℝ𝑑).
习题 1.3.3. 设𝑓 ∈ 𝐻1

0(ℝ𝑑
+) ∩ 𝐻2(ℝ𝑑

+). 证明：对任意1 ⩽ 𝑖 ⩽ 𝑑 − 1,偏导数𝜕𝑥𝑖𝑓也属于𝐻
1
0(ℝ𝑑

+).

1.4 Sobolev嵌入定理

本节讨论Sobolev空间与常见函数空间的包含关系，尤其是讨论 𝐿𝑝空间和 𝐶𝑘,𝛼空间。特别地，

我们主要考虑𝑊1,𝑝(𝑈)的嵌入，因为如果𝑘 ⩾ 2，我们就可对𝑘归纳来找到正确的嵌入空间。

1.4.1 Gagliardo-Nirenberg-Sobolev不等式

第一种情况是1 ⩽ 𝑝 < 𝑑。我们想问是否可以建立如下形式的估计：

是否存在𝐶 > 0, 𝑞 ⩾ 1使得‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑), ∀𝑓 ∈ 𝐶∞
𝑐 (ℝ𝑑)?

关键之处在于这个常数𝐶不应依赖函数𝑢，所以我们可以从该不等式的伸缩不变性 (scaling invari-
ance)出发来考虑。也就是说给定𝑓 ∈ 𝐶∞

𝑐 (ℝ𝑑), 𝜆 > 0，我们定义伸缩后的函数𝑓𝜆(𝒙) ∶= 𝑓(𝜆𝒙).
对𝑓𝜆，我们仍然希望它满足类似的不等式，且不等式的常数𝐶不依赖伸缩系数𝜆. 直接计算得

∫
ℝ𝑑
|𝑓𝜆(𝒙)|𝑞 d𝒙 = ∫

ℝ𝑑
|𝑓(𝜆𝒙)|𝑞 d𝒙 = 𝜆−𝑑 ∫

ℝ𝑑
|𝑓(𝒚)|𝑞 d𝒚

以及

∫
ℝ𝑑
|∇𝑓𝜆|𝑝 d𝒙 = 𝜆𝑝 ∫

ℝ𝑑
|∇𝑓(𝜆𝒙)|𝑝 d𝒙 = 𝜆𝑝−𝑑 ∫

ℝ𝑑
|∇𝑓(𝒚)|𝑝 d𝒚.
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把它们代回𝑓𝜆的不等式可得
‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶𝜆1−𝑑(

1
𝑝
− 1
𝑞
)‖∇𝑓‖𝐿𝑝(ℝ𝑑).

因此我们要求1 − 𝑑( 1
𝑝
− 1

𝑞
) = 0, 否则令𝜆 → 0或∞就会得到矛盾。这个指标𝑞满足 1

𝑞
= 1

𝑝
− 1

𝑑
,

即𝑞 = 𝑑𝑝
𝑑−𝑝

. 现在我们记它为

𝑝∗ ∶= 𝑑𝑝
𝑑 − 𝑝.

定理 1.4.1 (Gagliardo-Nirenberg-Sobolev不等式). 设 1 ⩽ 𝑝 < 𝑑，则存在仅依赖𝑝, 𝑑的常数𝐶 > 0使
得

‖𝑓‖𝐿𝑝∗ (ℝ𝑑) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑), ∀𝑓 ∈ 𝑊1,𝑝(ℝ𝑑).

证明. 据定理1.2.1, 我们不妨设𝑓 ∈ 𝐶1
𝑐 (ℝ𝑑) (需注意的是此时常数 𝐶 不应当依赖 Spt𝑓 的大小). 而

要证的结论相当于是用𝑓的导数控制𝑓自身，那么一个自然的想法就是利用微积分基本定理去计
算𝑓. 为了简便，我们首先考虑𝑝 = 1的情况，此时1∗ = 𝑑

𝑑−1
.

∀𝑖 = 1,⋯ , 𝑑, 𝑓(𝒙) = ∫
𝑥𝑖

−∞
𝜕𝑥𝑖𝑓(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑡𝑖,

于是

|𝑓(𝒙)| ⩽ ∫
+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑡𝑖.

然后有

|𝑓(𝒙)|
𝑑
𝑑−1 = (|𝑓(𝒙)|𝑑)

1
𝑑−1 ⩽

𝑑∏

𝑖=1
(∫

+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑡𝑖)

1
𝑑−1

.

注意乘积中的第 𝑖 项不依赖于 𝑥𝑖. 现在对 𝑥1 积分得到

∫
+∞

−∞
|𝑓|1∗ d𝑥1

⩽(∫
+∞

−∞
|∇𝑓|(𝑡1, 𝑥2⋯,𝑥𝑑) d𝑡𝑖.)

1
𝑑−1

⋅ ∫
+∞

−∞

𝑑∏

𝑖=2
(∫

+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑡𝑖)

1
𝑑−1

d𝑥1.

用(𝑑 − 1)元的Hölder不等式可得

∫
+∞

−∞
|𝑓|1∗ d𝑥1

⩽(∫
+∞

−∞
|∇𝑓|(𝑡1, 𝑥2⋯,𝑥𝑑) d𝑡𝑖)

1
𝑑−1

⋅
⎛
⎜
⎝

𝑑∏

𝑖=2
∫
+∞

−∞
∫
+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑥1 d𝑡𝑖

⎞
⎟
⎠

1
𝑑−1

.
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接下来，对 𝑥2 积分并使用Hölder不等式得到

∫
+∞

−∞
∫
+∞

−∞
|𝑓|1∗ d𝑥1 d𝑥2

⩽(∫
+∞

−∞
∫
+∞

−∞
|∇𝑓|(𝑥1, 𝑡2,⋯ , 𝑥𝑑) d𝑥1 d𝑡2)

1
𝑑−1

× (∫
+∞

−∞
∫
+∞

−∞
|∇𝑓|(𝑡1, 𝑥2,⋯ , 𝑥𝑑) d𝑡1 d𝑥2)

1
𝑑−1

×
𝑑∏

𝑖=3
(∫

+∞

−∞
∫
+∞

−∞
∫
+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑥1 d𝑥2 d𝑡𝑖)

1
𝑑−1

.

重复此步骤，最终得到

∫
ℝ𝑑
|𝑓|1∗ d𝒙 ⩽

𝑑∏

𝑖=1
(∫

+∞

−∞
⋯∫

+∞

−∞
|∇𝑓|(𝑥1,⋯ , 𝑡𝑖,⋯ , 𝑥𝑑) d𝑥1⋯ d𝑡𝑖⋯ d𝑥𝑑)

1
𝑑−1

=(∫
ℝ𝑑
|∇𝑓| d𝒙)

𝑑
𝑑−1

,

这正是 𝑝 = 1时的GNS不等式
‖𝑓‖𝐿1∗ (ℝ𝑑) ⩽ ‖∇𝑓‖𝐿1(ℝ𝑑).

对于 1 < 𝑝 < 𝑑,我们用 𝑔 = |𝑓|𝛾 代替 𝑓，其中 𝛾 > 1待定。此时我们得到

(∫
ℝ𝑑
|𝑓|

𝛾𝑑
𝑑−1 d𝒙)

𝑑−1
𝑑

⩽ 𝛾 ∫
ℝ𝑑
|𝑓|𝛾−1|∇𝑓| d𝒙

⩽ 𝛾‖∇𝑓‖𝐿𝑝(ℝ𝑑) (∫
ℝ𝑑
|𝑓|(𝛾−1)𝑝′)

1
𝑝′

, 𝑝′ = 𝑝
𝑝 − 1.

为了“凑出”消去结构，我们选取 𝛾使得它满足

𝛾𝑑
𝑑 − 1 =

(𝛾 − 1)𝑝
𝑝 − 1 ⇒ 𝛾 = 𝑝(𝑑 − 1)

𝑑 − 𝑝 ⇒ 𝛾𝑑
𝑑 − 1 = 𝑝∗ = (𝛾 − 1)𝑝

𝑝 − 1 .

这样我们就得到了最终要证的结论

(∫
ℝ𝑑
|𝑓|𝑝∗ d𝒙)

𝑑−1
𝑑

⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑) (∫
ℝ𝑑
|𝑓|𝑝∗)

1
𝑝′

⇒ ‖𝑓‖𝐿𝑝∗ (ℝ𝑑) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑).

定理 1.4.2 (Sobolev嵌入定理). 设 𝑈 ⊂ ℝ𝑑 是具有Lipschitz边界的有界开集，且 1 ⩽ 𝑝 < 𝑑.
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(1) 任意𝑓 ∈ 𝑊1,𝑝(𝑈) 都属于 𝐿𝑝∗(𝑈)，并有估计 ‖𝑓‖𝐿𝑝∗ (𝑈) ⩽ 𝐶‖𝑓‖𝑊1,𝑝(𝑈), 其中常数𝐶 > 0仅依
赖𝑑, 𝑝,𝑈.

(2) 任意𝑓 ∈ 𝑊1,𝑝
0 (𝑈)都满足估计‖𝑓‖𝐿𝑞(𝑈) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(𝑈)对全体𝑞 ∈ [1, 𝑝∗]成立，其中常数𝐶 > 0仅

依赖𝑑, 𝑝, 𝑞,𝑈.

根据第二个估计，在 𝑈 有界时，𝑊1,𝑝
0 (𝑈)上的范数 ‖∇𝑓‖𝐿𝑝(𝑈) 等价于 ‖𝑓‖𝑊1,𝑝(𝑈).

证明. 由于 𝜕𝑈 是Lipschitz的，我们可以将 𝑓 ∈ 𝑊1,𝑝(𝑈) 延拓为 𝑓 ∈ 𝑊1,𝑝(ℝ𝑑)，它满足𝑓 = 𝑓在
𝑈中几乎处处成立，Spt𝑓 是紧的，以及不等式 ‖𝑓‖𝑊1,𝑝(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝑊1,𝑝(𝑈). 由于 𝑓 紧支，故存在一

列函数 {𝑢𝑚} ⊂ 𝐶∞
𝑐 (ℝ𝑑)使得 𝑢𝑚

𝑊1,𝑝(ℝ𝑑)
,,,,,,,→ 𝑓. 据定理 1.4.1，我们得到

‖𝑢𝑘 − 𝑢𝑙‖𝐿𝑝∗ (ℝ𝑑) ⩽ 𝐶‖∇𝑢𝑘 − ∇𝑢𝑙‖𝐿𝑝(ℝ𝑑) ⇒ 𝑢𝑚 → 𝑓 in 𝐿𝑝∗(ℝ𝑑).

又由GNS不等式可得 ‖𝑢𝑚‖𝐿𝑝∗ (ℝ𝑑) ⩽ 𝐶‖∇𝑢𝑚‖𝐿𝑝(ℝ𝑑). 令𝑚 → ∞即得

‖𝑓‖𝐿𝑝∗ (ℝ𝑑) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑).

这给出了(1)的证明。对(2), 我们可以类似地将𝑓在 ℝ𝑑∖𝑈作零延拓，再利用𝑈的有界性和Hölder’s
不等式推出 ‖𝑓‖𝐿𝑞(𝑈) ⩽ ‖1‖𝐿𝑟(𝑈)‖𝑓‖𝐿𝑝∗ (𝑈),其中

1
𝑞
= 1

𝑟
+ 1

𝑞∗
.

注记 1.4.1. 当 𝑝单调上升地趋近于 𝑑时，Sobolev共轭指标 𝑝∗ = 𝑑𝑝
𝑑−𝑝

→ +∞. 我们期望𝑊1,𝑑 函数

属于 𝐿∞，但当 𝑑 ⩾ 2时这不成立。取而代之的是𝑊1,𝑑 嵌入到一个 BMO型空间，见习题 1.4.10.

定理 1.4.2(2)的结论也表明：对任意 1 ⩽ 𝑝 ⩽ ∞，𝑊1,𝑝
0 函数满足如下 Poincaré不等式。

推论 1.4.3. 设 𝑈 ⊂ ℝ𝑑 有界且 1 ⩽ 𝑝 ⩽ ∞，则存在常数 𝐶 > 0使得

‖𝑓‖𝐿𝑝(𝑈) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(𝑈)

对所有 𝑓 ∈ 𝑊1,𝑝
0 (𝑈)成立。

1.4.2 紧嵌入

我们已经看到 GNS不等式表明对 1 ⩽ 𝑝 < 𝑑 和 𝑝∗ = 𝑑𝑝
𝑑−𝑝
有嵌入关系𝑊1,𝑝(𝑈) → 𝐿𝑝∗(𝑈). 然

而有界性仅意味着弱-*收敛（自反空间中是弱收敛）。若要得到强收敛，我们就得要求嵌入映射
是紧算子。本节将证明：当1 ⩽ 𝑞 < 𝑝∗时，函数空间𝑊1,𝑝(𝑈)紧嵌入到 𝐿𝑞(𝑈)中。
定义 1.4.1 (紧嵌入). 设 𝑋,𝑌是两个 Banach空间，且满足 𝑋 ⊂ 𝑌。我们称 𝑋紧紧紧嵌嵌嵌入入入到到到 (compactly
embedded into) 𝑌 中，记为 𝑋 →→ 𝑌，是指它们满足如下条件

• (有界性)存在常数 𝐶 > 0使得 |𝑓|𝑌 ⩽ 𝐶|𝑓|𝑋对任意𝑓 ∈ 𝑋成立。
• (紧性) 𝑋 中的每个有界序列在 𝑌 中是预紧的，即在 𝑌 中具有收收收敛敛敛子子子列列列。
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定理 1.4.4 (Rellich-Kondrachov). 设 𝑈 ⊂ ℝ𝑑 是具有 Lipschitz边界 𝜕𝑈的有界开集。设 1 ⩽ 𝑝 < 𝑑，
则对全体 1 ⩽ 𝑞 < 𝑝∗有𝑊1,𝑝(𝑈) →→ 𝐿𝑞(𝑈).

证明. 嵌入关系由 GNS不等式和 ℒ𝑑(𝑈) < ∞保证，只需证明紧性。设{𝑓𝑚}在 𝑊1,𝑝(𝑈)中一致有
界，即sup

𝑚
‖𝑓𝑚‖𝑊1,𝑝(𝑈) ⩽ 𝑀. 此时我们需要构造一个在 𝐿𝑞(𝑈) 中收敛的子序列 {𝑓𝑚𝑘 }. 而“构造紧

性”的一个直接途径是用 Arzelà-Ascoli 引理，它表明当 𝑈 有界时，一致有界且等度连续的函数
列在 𝐿∞(𝑈) 范数下必有收敛子列。由于 ℒ𝑑(𝑈) < ∞ 时 𝐿∞(𝑈) ⊂ 𝐿𝑞(𝑈)，我们期望得到在 𝐿𝑞(𝑈)
中的强收敛。

第一步：光滑化. 我们需要磨光𝑓𝑚才能使用 Arzelà-Ascoli 引理。据 Sobolev 延拓定理（定理
1.3.3），我们可以假设 𝑓𝑚 ∈ 𝑊1,𝑝(ℝ𝑑) 且在某个有界开集 𝑉 ⊂ ℝ𝑑 中具有紧支集。同时我们假设

sup
𝑚
‖𝑓𝑚‖𝑊1,𝑝(𝑉) < ∞.

今给定 𝜀 > 0并定义 𝑓𝜀𝑚 = 𝜂𝜀 ∗ 𝑓𝑚. 我们希望证明 ‖𝑓𝜀𝑚 − 𝑓𝑚‖𝐿𝑞(𝑉) → 0关于𝑚一致地成立。事
实上，若𝑓𝑚 是 𝐶1 的，则据微积分基本定理有

|𝑓𝜀𝑚 − 𝑓𝑚| ⩽ ∫
𝐵(𝟎,𝜀)

𝜂𝜀(𝒚)|𝑓𝑚(𝒙 − 𝒚) − 𝑓𝑚(𝒙)| d𝒚

⩽∫
𝐵(𝟎,𝜀)

𝜂𝜀(𝒚)
|||||||||
∫
1

0

d
d𝑡𝑓𝑚(𝒙 − 𝑡𝒚)

|||||||||
d𝒚

⩽∫
1

0
∫
𝐵(𝟎,𝜀)

|𝜂𝜀(𝒚)| ⋅ |𝒚| ⋅ |∇𝑓𝑚(𝒙 − 𝑡𝒚)| d𝒚 d𝑡.

取 𝐿1(𝑉)范数并利用 Tonelli引理，我们得到

‖𝑓𝜀𝑚 − 𝑓𝑚‖𝐿1(𝑉) ⩽∫
1

0
∫
𝐵(𝟎,𝜀)

|𝜂𝜀(𝒚)| ⋅ |𝒚| ⋅ ‖∇𝑓𝑚(⋅ − 𝑡𝒚)‖𝐿1(𝑉) d𝒚d𝑡

⩽ ‖∇𝑓𝑚‖𝐿1(𝑉) ∫
𝐵(0,𝜀)

|𝜂𝜀(𝒚)| ⋅ |𝒚| d𝒚 = 𝜀‖∇𝑓𝑚‖𝐿1(𝑉)

⩽ 𝜀‖1‖𝐿𝑝′ (𝑉)‖∇𝑓𝑚‖𝐿𝑝(𝑉) = 𝐶𝜀‖∇𝑓𝑚‖𝐿𝑝(𝑉) ⩽ 𝐶𝑀𝜀.

利用光滑逼近（定理 1.2.1），该不等式对 𝑓𝑚 ∈ 𝑊1,𝑝(ℝ𝑑) 也成立。现在我们将 𝐿1(𝑉) 替换为
𝐿𝑞(𝑉)，并设 𝜃 ∈ (0, 1)满足 𝜃

1
+ 1−𝜃

𝑝∗
= 1

𝑞
，则由 Hölder不等式有

‖𝑓𝜀𝑚 − 𝑓𝑚‖𝐿𝑞(𝑉) ⩽ ‖𝑓𝜀𝑚 − 𝑓𝑚‖𝜃𝐿1(𝑉)‖𝑓
𝜀
𝑚 − 𝑓𝑚‖1−𝜃𝐿𝑝∗ (𝑉) ⩽ 𝐶(𝑀𝜀)𝜃‖𝑓𝜀𝑚 − 𝑓𝑚‖1−𝜃𝐿𝑝∗ (𝑉)

⩽ 𝐶(𝑀𝜀)𝜃(‖𝑓𝜀𝑚‖𝐿𝑝∗ (𝑉) + ‖𝑓𝑚‖𝐿𝑝∗ (𝑉))1−𝜃 ⩽ 𝐶′𝜀𝜃,

其中我们利用了由GNS不等式得到的 sup
𝑚
‖𝑓𝑚‖𝐿𝑝∗ (𝑉) < ∞. 因此给定任意 𝛿 > 0，当 𝜀 → 0时，我

们有（关于 𝑚一致的）收敛 ‖𝑓𝜀𝑚 − 𝑓𝑚‖𝐿𝑞(𝑉) < 𝛿.
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第二步：对于固定的 𝜀 > 0，证明{𝑓𝜀𝑚}的（关于 𝑚 一致，但不关于 𝜀一致！）有界性.这可直
接由Hölder不等式和卷积光滑化的定义证得

|𝑓𝜀𝑚(𝒙)| ⩽ ∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)|𝑓𝑚(𝒚)| d𝒚 ⩽ ‖𝜂𝜀‖𝐿∞‖𝑓𝑚‖𝐿1(𝑉)

⩽ 𝐶𝜀−𝑑‖𝑓𝑚‖𝐿𝑞(𝑉) ⩽ 𝐶′𝜀−𝑑 < ∞.

第三步：对固定的𝜀 > 0证明{𝑓𝜀𝑚}的等度连续性. 再次由定义得到

|∇𝑓𝜀𝑚(𝒙)| ⩽ ‖∇𝜂𝜀‖𝐿∞‖𝑓𝑚‖𝐿1(𝑉) ⩽ 𝐶𝜀−𝑑−1 < ∞.

现在据 Arzelà-Ascoli引理，对于每个固定的 𝜀 > 0都存在一个子序列 {𝑓𝜀𝑚𝑘 }在 𝐿∞(𝑉)范数下收敛，
因此

lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 − 𝑓𝜀𝑚𝑙‖𝐿𝑞(𝑉) ⩽ lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 − 𝑓𝜀𝑚𝑙‖𝐿∞(𝑉)‖1‖𝐿𝑞(𝑉) = 0.

第四步：原序列的强收敛。现在我们需要结合第一步和 {𝑓𝜀𝑚}的收敛性来构造 {𝑓𝑚}的一个收
敛子列，这可通过标准的对角线法完成。给定 𝛿 > 0和充分大的 𝑘, 𝑙 ∈ ℕ∗，我们有

‖𝑓𝑚𝑘 − 𝑓𝑚𝑙‖𝐿𝑞(𝑉) ⩽ ‖𝑓𝑚𝑘 − 𝑓𝜀𝑚𝑘‖𝐿𝑞(𝑉) + ‖𝑓𝜀𝑚𝑘 − 𝑓𝜀𝑚𝑙‖𝐿𝑞(𝑉) + ‖𝑓𝜀𝑚𝑙 − 𝑓𝑚𝑙‖𝐿𝑞(𝑉)
⩽ 2𝛿 + ‖𝑓𝜀𝑚𝑘 − 𝑓𝜀𝑚𝑙‖𝐿𝑞(𝑉).

注意我们不能直接对 𝛿 → 0 和lim sup
𝑘,𝑙

同时取极限，这是因为第三步中子列的选取可能随着𝜀 >

0取值的变化而变化。因此，我们必须在这里使用对角线法。具体地，取 𝛿1 = 1，由第一步和第
三步知我们可以找到一个小的 𝜀1 > 0和一个子序列 {𝑓𝑚𝑘 ,(1)}使得

∀0 < 𝜀 < 𝜀1, lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 ,(1)
− 𝑓𝜀𝑚𝑙 ,(1)

‖𝐿𝑞(𝑉) = 0,

于是

lim sup
𝑘,𝑙→∞

‖𝑓𝑚𝑘 ,(1) − 𝑓𝑚𝑙 ,(1)‖𝐿𝑞(𝑉) ⩽ 2.

接下来再取𝛿2 =
1
2
，我们可找到𝜀2 ∈ (0, 𝜀1)以及子列的子列 {𝑓𝑚𝑘 ,(2)} ⊂ {𝑓𝑚𝑘 ,(1)}使得

∀0 < 𝜀 < 𝜀2, lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 ,(2)
− 𝑓𝜀𝑚𝑙 ,(2)

‖𝐿𝑞(𝑉) = 0 ⇒ lim sup
𝑘,𝑙→∞

‖𝑓𝑚𝑘 ,(2) − 𝑓𝑚𝑙 ,(2)‖𝐿𝑞(𝑉) ⩽ 1.

归纳地重复如上过程，对 𝑛 ∈ ℕ∗取𝛿𝑛 =
1
𝑛
,则存在𝜀𝑛 ∈ (0, 𝜀𝑛−1)以及 {𝑓𝑚𝑘 ,(𝑛)} ⊂ {𝑓𝑚𝑘 ,(𝑛−1)}使得下式
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成立

∀0 < 𝜀 < 𝜀𝑛, lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 ,(𝑛)
− 𝑓𝜀𝑚𝑙 ,(𝑛)

‖𝐿𝑞(𝑉) = 0 ⇒ lim sup
𝑘,𝑙→∞

‖𝑓𝑚𝑘 ,(𝑛) − 𝑓𝑚𝑙 ,(𝑛)‖𝐿𝑞(𝑉) ⩽
1

2𝑛−1 .

最后，对任意 𝑘 ∈ ℕ∗，将𝑔𝑚𝑘 ∶= 𝑓𝑚𝑘 ,(𝑘)定为我们期望构造的子列的第 𝑘 项，则我们得到

lim sup
𝑘,𝑙→∞

‖𝑔𝜀𝑚𝑘 − 𝑔𝜀𝑚𝑙‖𝐿𝑞(𝑉) = lim sup
𝑘,𝑙→∞

‖𝑓𝜀𝑚𝑘 ,(𝑘)
− 𝑓𝜀𝑚𝑙 ,(𝑙)

‖𝐿𝑞(𝑉) = 0.

注记 1.4.2. 回忆当 𝑝 → 𝑑 时有 𝑝∗ = 𝑑𝑝
𝑑−𝑝

→ +∞，于是我们期望当 𝑈 有界时𝑊1,𝑝(𝑈) →→ 𝐿𝑝(𝑈)
对所所所有有有 1 ⩽ 𝑝 ⩽ ∞成立。事实上当 𝑝 > 𝑑 时，证明需要 Morrey不等式和 Arzelà-Ascoli引理。我
们将证明留作习题 1.4.1。还需注意，即使边界不是 Lipschitz的，𝑊1,𝑝

0 (𝑈) →→ 𝐿𝑝(𝑈)也成立。

注记 1.4.3 (𝑈 的有界性). 应当特别注意 𝑈 的有界性假设是相当重要的。若𝑈 是无界，例如 𝑈 是
一个带状区域 ℝ𝑑−1 × (−𝜀, 𝜀) ⊂ ℝ𝑑, 𝑑 ⩾ 2，我们可以考虑对给定的 𝑓 ∈ 𝑊1,𝑝(𝑈) 定义 𝑓𝑚(𝒙) =
𝑓(𝒙 + 𝑚𝑒1)，并且可以证明在 𝐿𝑝 中有弱收敛 𝑓𝑚 ⇀ 0，但其 𝐿𝑞 范数总是等于 ‖𝑓‖𝐿𝑞 . 另外还要注
意 𝑈 的有界性假设通常不不不能能能被 ℒ𝑑(𝑈) < ∞替代。虽然确实存在一些体积有限的无界区域使得该
区域内的紧嵌入仍然成立，但这需要对区域的形状有额外要求，详情请参阅 Adams-Fournier的著
作 [1, Chapter 6].

1.4.3 Poincaré不等式

我们现在以Poincaré不等式为例来说明如何利用紧性证明新的不等式。

记号 1.4.1. 给定 𝑓 ∶ 𝑈 → ℝ，当 ℒ𝑑(𝑈) < ∞ 时，我们定义积分平均 (𝑓)𝑈 ∶= ⨏𝑈 𝑓 d𝒚 =
1

ℒ𝑑(𝑈)
∫𝑈 𝑓(𝒚) d𝒚.

以下定理，又称作 Poincaré不等式，是偏微分方程研究中最重要结论之一。它断言具有零均
值的 Sobolev函数的导数必控制函数本身。

定理 1.4.5 (Poincaré’s inequality). 设 𝑈 ⊂ ℝ𝑑 是一个有有有界界界连连连通通通开开开集集集且具有 Lipschitz 边界 𝜕𝑈. 设
1 ⩽ 𝑝 ⩽ ∞，则存在仅依赖 𝑑, 𝑝,𝑈 的常数 𝐶 > 0，使得

‖𝑓 − (𝑓)𝑈‖𝐿𝑝(𝑈) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(𝑈), ∀𝑓 ∈ 𝑊1,𝑝(𝑈). (1.4.1)

证明. 我们用反证法证明该不等式。若该不等式不成立，则对每个 𝑘 ∈ ℕ∗，我们可以找到函数

𝑓𝑘 ∈ 𝑊1,𝑝(𝑈)使得
‖𝑓𝑘 − (𝑓𝑘)𝑈‖𝐿𝑝(𝑈) > 𝑘‖∇𝑓𝑘‖𝐿𝑝(𝑈).
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接下来我们在 𝐿𝑝(𝑈)中对 𝑓𝑘 − (𝑓𝑘)𝑈 进行重新归一化，定义

𝑔𝑘 ∶=
𝑓𝑘 − (𝑓𝑘)𝑈

‖𝑓𝑘 − (𝑓𝑘)𝑈‖𝐿𝑝(𝑈)
⇒ (𝑔𝑘)𝑈 = 0, ‖𝑔𝑘‖𝐿𝑝(𝑈) = 1 ⇒ ‖∇𝑔𝑘‖𝐿𝑝(𝑈) <

1
𝑘 .

据习题 1.4.1, 我们知道𝑊1,𝑝(𝑈) →→ 𝐿𝑝(𝑈), ，所以存在子列 {𝑔𝑘𝑗 } 和属于 𝐿𝑝(𝑈) 的函数 𝑔，使得
‖𝑔𝑘𝑗−𝑔‖𝐿𝑝(𝑈) → 0. 据𝑔𝑘的定义可得 (𝑔)𝑈 = 0, ‖𝑔‖𝐿𝑝(𝑈) = 1. 但另一方面，我们可以证明∇𝑔 = 𝟎几乎
处处成立，再结合𝑈的连通性和习题1.2.6可知𝑔在𝑈中几乎处处等于一个常数，而积分均值(𝑔)𝑈 =
0迫使这个常数只能是零，即𝑔 = 0在𝑈中几乎处处成立，这与‖𝑔‖𝐿𝑝(𝑈) = 1矛盾。

余下只需验证 ∇𝑔 = 𝟎在 𝑈 中几乎处处成立。事实上对任意 𝜑 ∈ 𝐶∞
𝑐 (𝑈)，我们有

∫
𝑈
𝑔𝜕𝑖𝜑 d𝒙 = lim

𝑗→∞
∫
𝑈
𝑔𝑘𝑗𝜕𝑖𝜑 d𝒙 = − lim

𝑗→∞
∫
𝑈
𝜕𝑖𝑔𝑘𝑗𝜑 d𝒙 = 0,

据此推出 ∇𝑔 = 𝟎在 𝑈 中几乎处处成立

注记 1.4.4. 该Poincaré 不等式与定理 1.4.2 中的有所不同。这里我们放弃了边界条件 𝑓|𝜕𝑈 = 0，
但必须要求 𝑈 有界（否则紧嵌入不再有效）。当 𝑢 ∈ 𝑊1,𝑝

0 (𝑈)时，不等式 ‖𝑢‖𝐿𝑝(𝑈) ⩽ 𝐶‖∇𝑢‖𝐿𝑝(𝑈)
（同样以 Poincaré命名）在一些无界区域中仍然成立（实际只需要 𝑈 在一个方向上有界，例如带
状区域 ℝ𝑑−1 × (−1, 1)）。

1.4.4 Morrey嵌入定理

Sobolev 嵌入定理给出了当 𝑝 < 𝑑 时 𝑊1,𝑝(𝑈) 可以嵌入到具有更高可积性的 𝐿𝑞(𝑈) 空间，其
中𝑞 ⩽ 𝑝∗ ∶= 𝑑𝑝

𝑑−𝑝
. 在习题1.4.10中，我们将看到 𝑊1,𝑑(ℝ𝑑) ∩ 𝐿1(ℝ𝑑) 嵌入到一个 BMO 型空间。当

𝑝 > 𝑑 且 𝑈 有界时，我们将在本节看到𝑊1,𝑝(𝑈) 中的 Sobolev 函数 𝑓 几乎处处等于一个 𝐶0,𝛼(𝑈)-
Hölder连续函数，其中 𝛼 = 1 − 𝑑

𝑝
. 当 𝑝 = ∞时，𝐶0,𝛼 被 Lipschitz连续性取代。进一步地，与给

定Sobolev函数𝑓几乎处处相等的Hölder 连续函数必由 𝑓∗(𝒙) ∶= lim
𝑟→0

(𝑓)𝒙,𝑟 给出，这称作函数 𝑓 的
精细表示 (precise representative)，这可借助绝对连续性给出证明。

我们首先证明Morrey不等式

定理 1.4.6. 设𝑑 < 𝑝 < ∞，令𝛼 ∶= 1 − 𝑑
𝑝
. 则存在依赖于 𝑝, 𝑑的常数 𝐶 > 0使得

‖𝑓‖𝐶0,𝛼(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝑊1,𝑝(ℝ𝑑), ∀𝑓 ∈ 𝐶1
𝑐 (ℝ𝑑).

证明. 我们需要证明两个不等式

|𝑓(𝒙) − 𝑓(𝒚)| ⩽ 𝐶|𝒙 − 𝒚|𝛼‖𝑓‖𝑊1,𝑝(ℝ𝑑),
|𝑓(𝒙)| ⩽ 𝐶‖𝑓‖𝑊1,𝑝(ℝ𝑑).
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我们先证明第一个不等式，第二个的处理本质上类似。固定𝒙, 𝒚 ∈ ℝ𝑑, 记 𝑟 ∶= |𝒙 − 𝒚| 和 𝑊 ∶=
𝐵(𝒙, 𝑟) ∩ 𝐵(𝒚, 𝑟)，则我们有

|𝑓(𝒙) − 𝑓(𝒚)| = ⨏
𝑊
|𝑓(𝒙) − 𝑓(𝒚)| d𝒛 ⩽ ⨏

𝑊
|𝑓(𝒙) − 𝑓(𝒛)| d𝒛 + ⨏

𝑊
|𝑓(𝒙) − 𝑓(𝒛)| d𝒛.

而𝒛 ∈ 𝐵(𝒙, 𝑟)，所以我们可以在第一个积分中作变量替换 𝒛 = 𝒙 + 𝑡𝐰，其中 𝐰 ∈ 𝜕𝐵(𝟎, 1) 且
0 ⩽ 𝑡 < 𝑟，于是得到

⨏
𝑊
|𝑓(𝒙) − 𝑓(𝒛)| d𝒛 = ℒ𝑑(𝐵(𝒙, 𝑟))

ℒ𝑑(𝑊)
1

ℒ𝑑(𝐵(𝒙, 𝑟))
∫
𝐵(𝒙,𝑟)

|𝑓(𝒙) − 𝑓(𝒛)| d𝒛

⩽ 𝐶
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝐵(𝒙,𝑟)

|𝑓(𝒙) − 𝑓(𝒛)| d𝒛

= 𝐶
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝑟

0
∫
𝜕𝐵(𝟎,1)

|𝑓(𝒙) − 𝑓(𝒙 + 𝑡𝐰)|𝑡𝑑−1 d𝑆𝐰 d𝑡

= 𝐶
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝑟

0
∫
𝜕𝐵(𝟎,1)

|||||||||
∫
𝑡

0

d
d𝑠𝑓(𝒙 + 𝑠𝐰) d𝑠

|||||||||
𝑡𝑑−1 d𝑆𝐰 d𝑡.

然后我们将 𝑡 放大为 𝑟并将变量 𝐰 替换回到 𝒛 ∶= 𝒙 + 𝑠𝐰 得到：

⨏
𝑊
|𝑓(𝒙) − 𝑓(𝒛)| d𝒛 ⩽ 𝐶

ℒ𝑑(𝐵(𝒙, 𝑟))
∫
𝑟

0
(∫

𝜕𝐵(𝟎,1)
∫
𝑟

0

|∇𝑓(𝒙 + 𝑠𝐰)|
𝑠𝑑−1 𝑠𝑑−1 d𝑠 d𝑆𝐰)𝑡𝑑−1 d𝑡

⩽ 𝐶
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝑟

0
∫
𝐵(𝒙,𝑟)

|∇𝑓(𝒛)|
|𝒙 − 𝒛|𝑑−1 d𝒛 𝑡

𝑑−1 d𝑡

= 𝐶𝑟𝑑
𝑑ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝐵(𝒙,𝑟)

|∇𝑓(𝒛)|
|𝒙 − 𝒛|𝑑−1 d𝒛

⩽ 𝐶′ ∫
𝐵(𝒙,𝑟)

|∇𝑓(𝒛)|
|𝒙 − 𝒛|𝑑−1 d𝒛 ⩽ 𝐶′‖∇𝑓‖𝐿𝑝(𝐵(𝒙,𝑟))

‖‖‖‖|𝒙 − ⋅|1−𝑑‖‖‖‖𝐿𝑝′ (𝐵(𝒙,𝑟)) .

最后一项可以通过极坐标直接计算：

‖‖‖‖|𝒙 − ⋅|1−𝑑‖‖‖‖𝐿𝑝′ (𝐵(𝒙,𝑟)) = (∫
𝑟

0
∫
𝜕𝐵(𝟎,1)

𝜌𝑑−1 1
𝜌(𝑑−1)𝑝′

d𝑆 d𝜌)

1
𝑝′

该不等式右边是有限数当且仅当 (𝑑 − 1)(𝑝′ − 1) < 1，而这等价于 𝑝 > 𝑑. 当 𝑝 > 𝑑 时，不等式右
端等于 𝐶𝑑𝑟

1− 𝑑
𝑝 . 类似的估计在把 𝒙替换为 𝒚时也成立。因此我们有

⨏
𝑊
|𝑓(𝒙) − 𝑓(𝒚)| d𝒛 ⩽ 𝐶′′𝑟1−

𝑑
𝑝 ‖∇𝑓‖𝐿𝑝(ℝ𝑑).
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接下来，我们证明 |𝑓(𝒙)|的估计。

|𝑓(𝒙)| = ⨏
𝐵(𝒙,1)

|𝑓(𝒙)| d𝒚 ⩽ 𝐶 (∫
𝐵(𝒙,1)

|𝑓(𝒙) − 𝑓(𝒛)| d𝒛 + ∫
𝐵(𝒙,1)

|𝑓(𝒛)| d𝒛) .

第一个积分的控制方式与上面相同：

∫
𝐵(𝒙,1)

|𝑓(𝒙) − 𝑓(𝒛)| d𝒛 ⩽ 𝐶 ∫
𝐵(𝒙,1)

|∇𝑓(𝒚)|
|𝒙 − 𝒛|𝑑−1 d𝒛 ⩽ 𝐶‖∇𝑓‖𝐿𝑝(ℝ𝑑).

用 Hölder不等式即可看出第二个不等式是有界的

∫
𝐵(𝒙,1)

|𝑓(𝒛)| d𝒛 ⩽ ‖1‖𝐿𝑝′ (𝐵(𝒙,𝑟))‖𝑓‖𝐿𝑝(𝐵(𝒙,𝑟)) ⩽ 𝐶‖𝑓‖𝐿𝑝(𝐵(𝒙,𝑟)).

结合上述估计，我们得到Morrey不等式的结论。

我们现在得出如下嵌入定理。

定理 1.4.7 (Morrey嵌入定理). 设 𝑈 ⊂ ℝ𝑑 是一个具有 Lipschitz 边界的有界开集。设 𝑑 < 𝑝 < ∞
且 𝑓 ∈ 𝑊1,𝑝(𝑈)，则 𝑓 在 𝑈 中几乎处处等于其精精精细细细表表表示示示 𝑓∗(𝒙) ∶= lim

𝑟→0
(𝑓)𝒙,𝑟，并且 𝑓∗ ∈ 𝐶0,𝛼(𝑈)，

其中 𝛼 = 1 − 𝑑
𝑝
.

证明. 据定理 1.3.3 (Sobolev 延拓定理)，我们可以假设 𝑓 ∈ 𝑊1,𝑝(ℝ𝑑) 且紧支。由于 𝑑 < 𝑝 < ∞，

我们可以找到一列函数 {𝑓𝑚} ⊂ 𝐶∞
𝑐 (ℝ𝑑) 使得 𝑓𝑚

𝑊1,𝑝(ℝ𝑑)
,,,,,,,→ 𝑓. 利用 Morrey 不等式我们知道 {𝑓𝑚} 也

是 𝐶0,𝛼(ℝ𝑑)中的 Cauchy列。因此存在函数 𝑓 ∈ 𝐶0,𝛼(ℝ𝑑)使得

𝑓𝑚 → 𝑓 in 𝐶0,𝛼(ℝ𝑑).

由 𝑓𝑚 的定义，我们知道极限函数 𝑓 在 𝑈 中几乎处处与 𝑓 相等。同样对 𝑓𝑚 用 Morrey不等式并
取极限 𝑚 → ∞可得到 𝑓 ∈ 𝐶0,𝛼(ℝ𝑑)以及

‖𝑓‖𝐶0,𝛼(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝑊1,𝑝(ℝ𝑑).

最后，这个 𝑓 必在 𝑈 中处处与精细表示 𝑓∗相等。事实上我们有

𝑓∗(𝒙) = lim
𝑟→0

1
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝐵(𝒙,𝑟)

𝑓(𝒚) d𝒚 𝑓=𝑓 a.e.⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ lim
𝑟→0

1
ℒ𝑑(𝐵(𝒙, 𝑟))

∫
𝐵(𝒙,𝑟)

𝑓(𝒚) d𝒚.

由于 𝑓 连续，据 Lebesgue微分定理可知 𝑓∗ = 𝑓 在 𝑈 中点点成立。
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1.4.5 Lipschitz连续性和可微性

如上定理实际上对 𝑝 = ∞也成立，但证明方法并不相同，这是因为 𝐶∞
𝑐 在 𝐿∞ 中不稠密。本

节我们证明 𝑓 在 𝑈 中局部 Lipschitz连续（不一定有界）当且仅当 𝑓 ∈ 𝑊1,∞
loc (𝑈).

定理 1.4.8 (Lipschitz连续性与𝑊1,∞). 设 𝑈 ⊂ ℝ𝑑 为开集，𝑓 ∶ 𝑈 → ℝ给定。则

𝑓在 𝑈 中局部 Lipschitz连续 当且仅当 𝑓 ∈ 𝑊1,∞
loc (𝑈).

这里𝑓在𝑈中局部 Lipschitz连续是指 𝑓在𝑈的任何紧子集上 Lipschitz连续。

证明. 我们首先证明必要性。设 𝑓 在 𝑈 中局部 Lipschitz 连续，我们要证明对每个 𝑖 ∈ 1,⋯ , 𝑑，
𝑓的弱𝜕𝑖-导数存在且在 𝑈 的任何紧子集上几乎处处有界。对任意 𝑉 ⋐ 𝑊 ⋐ 𝑈，我们选取 0 < ℎ <
dist (𝑉, 𝜕𝑊)充分小并定义差商

∀𝒙 ∈ 𝑉, 𝐷ℎ
𝑖 (𝑓)(𝒙) ∶=

𝑓(𝒙 + ℎ𝑒𝑖) − 𝑓(𝒙)
ℎ .

注意现在有 sup
ℎ>0

|𝐷−ℎ
𝑖 (𝑓)| ⩽ Lip(𝑓|𝑊) < ∞，据此并结合“𝐿∞ 函数必属于任意 𝐿𝑝loc (1 ⩽ 𝑝 < ∞)”

这一事实，我们知道存在子列 ℎ𝑗 → 0和函数 𝑣𝑖 ∈ 𝐿∞loc(𝑈)使得如下弱收敛成立

𝐷−ℎ𝑗
𝑖 (𝑓)

𝐿𝑝loc(𝑈),,,,,⇀ 𝑣𝑖 1 < 𝑝 < ∞.

这里我们需指出 𝑣𝑖 ∈ 𝐿∞loc(𝑈)并不是 𝐿𝑝loc-弱收敛的直接推论，而是可以通过使用 𝐿∞(𝑊)范数的定
义（𝑊 ⋐ 𝑈）和 ‖𝐷−ℎ

𝑖 (𝑓)‖𝐿𝑝(𝑊) 关于𝑝的一致有界性来证明。具体而言，记 𝐿 ∶= Lip(𝑓|𝑊)，并对
任意固定的 𝜀 > 0定义𝐴 ∶= 𝒙 ∈ 𝑊 ∶ 𝑣𝑖(𝒙) ⩾ 𝐿 + 𝜀. 由于 1𝐴 ∈ 𝐿2(𝑊)，由弱收敛可得

∫
𝐴
𝐷−ℎ𝑗
𝑖 (𝑓) d𝒙 = ∫

𝑊
𝐷−ℎ𝑗
𝑖 (𝑓)1𝐴 d𝒙 → ∫

𝐴
𝑣𝑖 d𝒙.

因为‖𝐷−ℎ𝑗
𝑖 (𝑓)‖𝐿∞(𝑊) ⩽ 𝐿,我们便得到 ∫𝐴 𝐷

−ℎ𝑗
𝑖 (𝑓) d𝒙 ⩽ 𝐿 ⋅ ℒ𝑑(𝐴). 另一方面，𝑣𝑖 ⩾ 𝐿 + 𝜀在 𝐴中意味

着 ∫𝐴 𝑣𝑖 d𝒙 ⩾ (𝐿 + 𝜀) ⋅ ℒ𝑑(𝐴)，这迫使 ℒ𝑑(𝐴) = 0,也就是说 𝑣𝑖 ⩽ 𝐿在𝑊 中几乎处处成立。类似地，
我们可证明 𝑣𝑖 ⩾ −𝐿在𝑊中几乎处处成立。因此我们实际上证明了对任意𝑊 ⋐ 𝑈有 𝑣𝑖 ∈ 𝐿∞(𝑊).

现在我们证明这个 𝑣𝑖 就是 𝜕𝑖-弱导数。任取 𝜑 ∈ 𝐶∞
𝑐 (𝑉)，我们有

∫
𝑈
𝑓(𝒙)𝜑(𝒙 + ℎ𝑒𝑖) − 𝜑(𝒙)

ℎ d𝒙 = −∫
𝑈
𝐷−ℎ
𝑖 (𝑓)(𝒙)𝜑(𝒙) d𝒙.

令 ℎ = ℎ𝑗 且取极限 𝑗 → ∞，我们推出

∫
𝑈
𝑓𝜕𝑖𝜑 d𝒙 = −∫

𝑈
𝑣𝑖𝜑 d𝒙.
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接下来证明充分性。给定 𝑓 ∈ 𝑊1,∞
loc (𝑈) 和 𝜀0 > 0，我们可以找到有界子集 𝑉 ⋐ 𝑊 ⋐ 𝑈 使

得 𝑓 ∈ 𝑊1,∞(𝑊) 且 dist (𝑊, 𝜕𝑈), dist (𝑉, 𝜕𝑊) > 𝜀0. 第一步是磨光 𝑓，定义 𝑓𝜀 ∶= 𝑓 ∗ 𝜂𝜀，其中
0 < 𝜀 < 𝜀0.

断言. 以下陈述成立。

• 当 𝜀 → 0时，{𝑓𝜀}在 𝑉 中一致收敛。
• 记极限函数为 𝐹，则 𝐹 在 𝑉 中 Lipschitz连续。

• 在任何有界 𝑉 ⋐ 𝑈 中，𝐹 = 𝑓 几乎处处成立（因此 𝐹 是 𝑓 的精细表示）。

该断言的证明有点“绕弯子”，这是因为光滑逼近在 𝐿∞中不成立。在这一步我们不知道一致
收敛的极限函数到底是什么，因此我们应该去证明 𝑓𝜀 是 𝐿∞(𝑉)中的 Cauchy列。对 𝜀, 𝛿 ∈ (0, 𝜀0)
和 𝒙 ∈ 𝑉，我们有

|𝑓𝜀(𝒙) − 𝑓𝛿(𝒙)| =
|||||||||

1
𝜀𝑑 ∫𝐵(𝟎,𝜀)

𝜂 (𝒚𝜀 ) 𝑓(𝒙 − 𝒚) d𝒚 − 1
𝛿𝑑 ∫𝐵(𝟎,𝛿)

𝜂 (𝒚𝛿 ) 𝑓(𝒙 − 𝒚) d𝒚
|||||||||

=
|||||||||
∫
𝐵(𝟎,1)

𝜂(𝒚)(𝑓(𝒙 − 𝜀𝒚) − 𝑓(𝒙 − 𝛿𝒚)) d𝒚
|||||||||
⩽ ∫

𝐵(𝟎,1)
𝜂(𝒚)|𝑓(𝒙 − 𝜀𝒚) − 𝑓(𝒙 − 𝛿𝒚)| d𝒚.

在这一步我们不能直接将 lim
𝜀,𝛿→0

与 ∫𝐵(𝟎,1) 交换，这是因为 𝐿∞ 函数可能不是几乎处处连续的。实际

上我们应该利用 𝑓 ∈ 𝑊1,∞(𝑊) ⊂ 𝑊1,𝑝(𝑊)（对 1 < 𝑝 < ∞而言）推出存在 𝑓∗ ∈ 𝐶0,𝛼(𝑊)在𝑊 中
与 𝑓 几乎处处相等，这样我们就可以在积分下将 𝑓 替换为 𝑓∗.

|𝑓𝜀(𝒙) − 𝑓𝛿(𝒙)| ⩽ ∫
𝐵(𝟎,1)

𝜂(𝒚)|𝑓∗(𝒙 − 𝜀𝒚) − 𝑓∗(𝒙 − 𝛿𝒚)| d𝒚.

现在我们用控制收敛定理（控制函数为 2𝜂(𝒚)‖𝑓‖𝐿∞(𝑊)）得到

lim sup
𝜀,𝛿→0

|𝑓𝜀(𝒙) − 𝑓𝛿(𝒙)| ⩽ ∫
𝐵(𝟎,1)

lim sup
𝜀,𝛿→0

𝜂(𝒚)|𝑓∗(𝒙 − 𝜀𝒚) − 𝑓∗(𝒙 − 𝛿𝒚)| d𝒚 = 0.

记极限函数为 𝐹(𝒙). 由于在 𝑉 中有一致收敛 𝑓𝜀 ⇉ 𝐹，我们知道 𝐹 ∈ 𝐶(𝑉). 现在来验证它的
Lipschitz连续性。事实上对任意 𝒙, 𝒚 ∈ 𝑉 且 𝒙 ≠ 𝒚，我们有

|𝐹(𝒙) − 𝐹(𝒚)| ⩽ |𝐹(𝒙) − 𝑓𝜀(𝒙)| + |𝑓𝜀(𝒙) − 𝑓𝜀(𝒚)| + |𝑓𝜀(𝒚) − 𝐹(𝒚)|.

现在只需证明对每个𝜀 > 0，函数 𝑓𝜀在𝑉中Lipschitz连续，且Lipschitz常数有不依赖𝜀的上界。我们
作计算如下

|𝑓𝜀(𝒙) − 𝑓𝜀(𝒚)| =
|||||||||
∫
1

0
∇𝑓𝜀(𝑡𝒙 + (1 − 𝑡)𝒚) ⋅ (𝒙 − 𝒚) d𝑡

|||||||||
⩽ ‖∇𝑓𝜀‖𝐿∞(𝑉)|𝒙 − 𝒚|.
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由于 ‖∇𝑓𝜀‖𝐿∞(𝑉) ⩽ ‖𝜂𝜀‖𝐿1‖∇𝑓‖𝐿∞ = ‖∇𝑓‖𝐿∞，我们得到 𝑓𝜀 在 𝑉 中 Lipschitz 连续，且其 Lipschitz
常数有与 𝜀无关的上界。因此对任意 𝒙, 𝒚 ∈ 𝑉，我们也得到 |𝐹(𝒙) − 𝐹(𝒚)| ⩽ ‖∇𝑓‖𝐿∞(𝑉)|𝒙 − 𝒚|. 最
后由连续性可知在 𝑉 中有 𝐹 = 𝑓∗逐点成立。

注记 1.4.5. 需注意，我们不能断言“𝑓在 𝑈中 Lipschitz连续当且仅当 𝑓与 𝑈中的一个 Lipschitz
连续函数相等”。即使𝑈有界，“局部”一词也不能去掉。反例参见习题 1.4.10。事实上𝑊1,∞(𝑈) =
𝐶0,1(𝑈) 对任何拟拟拟凸凸凸 (quasi-convex)区域 𝑈 成立，即任意两点 𝑎, 𝑏 ∈ 𝑈 都可由一条长度至多为
𝑀|𝑎 − 𝑏|的曲线 𝛾连接，其中 𝑀 > 0与 𝑎, 𝑏无关。

习题 1.4

习题 1.4.1. 证明对任意 1 ⩽ 𝑝 ⩽ ∞，𝑊1,𝑝(𝑈)紧嵌入到 𝐿𝑝(𝑈)中。

习题 1.4.2. 设 𝑑 ⩾ 2。证明 𝑢(𝒙) ∶= ln ln(1 + 1
|𝒙|
)属于𝑊1,𝑑(𝐵)，其中 𝐵为单位球，但这个 𝑢显然

是无界的。

习题 1.4.3. 设 𝑈 ⊂ ℝ𝑑 是有界区域，函数 𝑢 ∈ 𝐻1(𝑈) 满足：存在𝛼 ∈ (0, 1)使得集合 𝑍 ∶= {𝒙 ∈
𝑈|𝑢(𝒙) = 0}满足 ℒ𝑑(𝑍) ⩾ 𝛼ℒ𝑑(𝑈). 证明：存在仅依赖于 𝑑, 𝛼 的常数 𝐶 > 0，使得

∫
𝑈
𝑢2 d𝒙 ⩽ 𝐶 ∫

𝑈
|∇𝑢|2 d𝒙.

提示：在 𝑈∖𝑍 中，将 𝑢2写为 (𝑢 − (𝑢)𝑈 + (𝑢)𝑈)2并对 (𝑢 − (𝑢)𝑈)2应用 Poincaré不等式。(𝑢)2𝑈
的贡献将被所需不等式的左边吸收，这是因为 𝑈∖𝑍 的测度严格小于 𝑈 的测度。该不等式可被用
于证明 De Giorgi密度定理（定理2.7.7）。

习题 1.4.4. 设 𝑑 ⩾ 3且 𝑟 > 0, 𝐵𝑟 ∶= 𝐵(𝟎, 𝑟)。设 𝑢 ∈ 𝐻1(𝐵𝑟)，证明：
𝑢
|𝒙|

∈ 𝐿2(𝐵𝑟)并满足估计

∫
𝐵𝑟

𝑢2
|𝒙|2 d𝒙 ⩽ 𝐶 ∫

𝐵𝑟
|∇𝑢|2 + 𝑢2

𝑟2 d𝒙.

提示：首先利用 ∇(|𝒙|−1) = − 𝒙
|𝒙|3
并分部积分，然后利用 𝑟 ∫𝜕𝐵𝑟 𝑢

2 d𝑆 = ∫𝐵𝑟 ∇ ⋅ (𝒙𝑢2) d𝒙来控制
分部积分产生的边界项。

习题 1.4.5. 证明如下形式的 Hardy不等式。

(1) 设 𝑢 ∈ 𝐶∞
𝑐 (ℝ𝑑)，𝐅 ∶ ℝ𝑑 → ℝ𝑑 是一个向量场，且在ℝ𝑑∖{𝟎}是𝐶1的。证明

∫
ℝ𝑑
𝑢2div 𝐅d𝒙 = −2∫

ℝ𝑑
∇𝑢 ⋅ (𝑢𝐅) d𝒙.
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(2) 设 𝑑 ⩾ 3，𝐹(𝒙) = 𝒙
|𝒙|2
且 𝑓 ∈ 𝐻1(ℝ𝑑). 证明

(𝑑 − 2)2
4 ∫

ℝ𝑑

𝑓2
|𝒙|2 d𝒙 ⩽ ∫

ℝ𝑑
|∇𝑓|2 d𝒙.

习题 1.4.6. 设 Ω ∶= (𝑥, 𝑦) ∈ ℝ2|0 < 𝑥 < 1, 0 < 𝑦 < 𝑥4. 证明函数 𝑓(𝑥, 𝑦) = 1
𝑥
属于 𝐻1(Ω)但不属于

𝐿5(Ω)。这与 Sobolev嵌入定理的结论是否矛盾？

习题 1.4.7. 设 𝑈 ⊂ ℝ𝑑是边界光滑的有界区域。证明：𝐻2(𝑈)紧嵌入到𝐻1(𝑈)，且对任意 𝜀 > 0存
在常数 𝐶𝜀 > 0使得

‖∇𝑢‖𝐿2(𝑈) ⩽ 𝜀‖𝑢‖𝐻2(𝑈) + 𝐶𝜀‖𝑢‖𝐿2(𝑈), ∀𝑢 ∈ 𝐻2(𝑈).

习题 1.4.8. 设 1 ⩽ 𝑝 ⩽ ∞，给定 𝑓 ∈ 𝐿1loc(ℝ
𝑑)，定义 (𝑓)𝒙,𝑟 ∶= ⨏𝐵(𝒙,𝑟) 𝑓。证明：存在依赖于 𝑑, 𝑝的

常数 𝐶 > 0，使得对任意球 𝐵(𝒙, 𝑟) ⊂ ℝ𝑑 和 𝑓 ∈ 𝑊1,𝑝(𝐵(𝒙, 𝑟))都有如下不等式成立

‖𝑓 − (𝑓)𝒙,𝑟‖𝐿𝑝(𝐵(𝒙,𝑟)) ⩽ 𝐶𝑟‖∇𝑢‖𝐿𝑝(𝐵(𝒙,𝑟)).

提示：先对单位球证明结论。对一般的球，考虑 𝑣(𝒚) ∶= 𝑓(𝒙 + 𝑟𝒚)，其中 𝒚 ∈ 𝐵(𝟎, 1).
习题 1.4.9. 设 𝑓 ∈ 𝑊1,𝑑(ℝ𝑑) ∩ 𝐿1(ℝ𝑑). 证明 𝑓 ∈ 𝐵𝑀𝑂(ℝ𝑑)，且满足估计

⨏
𝐵(𝒙,𝑟)

|𝑓 − (𝑓)𝒙,𝑟| d𝒚 ⩽ 𝐶‖∇𝑢‖𝐿𝑑(ℝ𝑑),

其中 𝐵𝑀𝑂(ℝ𝑑)是有界平均振荡空间 (bounded mean oscillation)，并赋予半范数

[𝑢]𝐵𝑀𝑂(ℝ𝑑) ∶= sup
𝐵(𝒙,𝑟)

⨏
𝐵(𝒙,𝑟)

|𝑓 − (𝑓)𝒙,𝑟| d𝒚 < ∞.

习题 1.4.10. 设 𝑈 = 𝐵(𝟎, 1)∖{(𝑥, 𝑦) ∈ (𝟎, 1)|𝑥 ⩾ 0, 𝑦 = 0} 是 ℝ2 中沿𝑥正半轴割开一条缝的开圆
盘。定义 𝑢(𝑥, 𝑦) = (max{0, 𝑥})2max{sgn 𝑦, 0}.证明𝑢 ∈ 𝑊1,∞(𝑈),但在𝑈中不是 Lipschitz连续的。

问题 1.4

问题 1.4.1. 设𝑈 ⊂ ℝ𝑑 是边界光滑的有界区域，开球𝐵 ⋐ 𝑈. 对𝜀 ∈ (0, 1)设𝑢𝜀是如下方程的光滑解

⎧

⎨
⎩

−∆𝑢𝜀 + 𝜀−1(𝑢𝜀 − 𝑓)𝟏𝐵 = 0 in 𝑈,
𝑢𝜀 = 0 on 𝜕𝑈,

(1.4.2)

其中 𝑓 ∈ 𝐻1
0(𝑈)是给定的函数。证明：‖∇𝑢𝜀‖𝐿2(𝑈) 关于 𝜀一致有界，且 𝑢𝜀

𝐿2(𝐵)
,,,,→ 𝑓.

问题 1.4.2. 设 1 ⩽ 𝑝 ⩽ ∞，𝑈 ⊂ ℝ𝑑 是边界Lipschitz 的有界区域，𝑆 ⊂ 𝜕𝑈 是边界的子集，且
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具有正的 (𝑑 − 1)-维Hausdorff测度。证明：存在依赖于 𝑝, 𝑆,𝑈 的常数 𝐶 > 0，使得对所有满足
Tr𝑢|𝑆 = 0的 𝑢 ∈ 𝑊1,𝑝(𝑈)，有 ‖𝑢‖𝐿𝑝(𝑈) ⩽ 𝐶‖∇𝑢‖𝐿𝑝(𝑈).

问题 1.4.3. 考虑 𝑝-Laplace方程的特征值问题

⎧

⎨
⎩

−div (|∇𝑢|𝑝−2∇𝑢) = 𝜆|𝑢|𝑝−2𝑢 𝒙 ∈ 𝑈
𝑢 = 0 𝒙 ∈ 𝜕𝑈.

其中 1 < 𝑝 < ∞, 𝜆 ∈ ℝ是一个参数，𝑈 ⊂ ℝ𝑑是有界区域。证明：若该方程有不恒为零的解𝑢，则
对应的特征值𝜆满足不等式 𝜆 ⩾ 𝐶ℒ𝑑(𝑈)−

𝑝
𝑑 ,其中常数 𝐶 > 0仅依赖 𝑝, 𝑑.

提示：分别讨论三种情况 𝑝 < 𝑑, 𝑝 ⩾ 𝑑 ⩾ 2和 𝑝 ⩾ 𝑑 = 1.

问题 1.4.4 (Strauss径向引理). 设𝑑 ⩾ 2, 𝑢 ∈ 𝐻1
rad(ℝ

𝑑) (即𝑢 ∈ 𝐻1(ℝ𝑑)是径向函数，𝑢(𝒙)取值只依
赖𝑟 ∶= |𝒙|). 本题可默认𝐶∞

𝑐 (ℝ𝑑)在 𝐻1
rad(ℝ

𝑑)中是稠密的，进而你可以直接对 𝐶∞
𝑐 径向函数证明。

(1) 利用微积分基本定理和𝑢(∞) = 0证明：|𝑢(𝑟)|2 ⩽ 2𝑟1−𝑑 ∫∞𝑟 |𝑢(𝑠)||𝑢′(𝑠)|𝑠𝑑−1 d𝑠.
(2) 证明：|𝑢(𝑟)| ⩽ 𝐶𝑟−(𝑑−1)∕2‖𝑢‖1∕2𝐿2(ℝ𝑑)‖∇𝑢‖

1∕2
𝐿2(ℝ𝑑).

提示：对(1)右边的积分用Cauchy-Schwarz不等式，再用积分的极坐标表示凑出 𝑢和 ∇𝑢的 𝐿2

范数。

问题 1.4.5 (径向Sobolev空间的紧嵌入). 设𝑑 ⩾ 2, 2 < 𝑞 < 2∗ ∶= 2𝑑
𝑑−2

,证明：𝐻1
rad(ℝ

𝑑) → 𝐿𝑞(ℝ𝑑)是
紧嵌入。

提示：在|𝒙| = 𝑅处作截断，当|𝒙| > 𝑅时用Strauss径向引理，当|𝒙| ⩽ 𝑅时已经有紧性。

1.5 一般的Sobolev不等式

最后我们介绍一般 𝑊𝑘,𝑝(𝑈) (𝑘 ∈ ℕ∗) 的Sobolev不等式，其证明就是结合定理 1.4.1 或定理
1.4.6的论证方法以及对 𝑘 归纳即得，此处不再叙述。

记号 1.5.1. 对 𝑥 ∈ ℝ定义 [𝑥]为小于等于 𝑥 的最大整数，𝑥 ∶= 𝑥 − [𝑥]为其小数部分。

定理 1.5.1 (一般形式的 Sobolev不等式). 设𝑈 ⊂ ℝ𝑑是边界Lipschitz的有界开集，函数𝑓 ∈ 𝑊𝑘,𝑝(𝑈).

(1) 若 𝑘 < 𝑑
𝑝
，则 𝑓 ∈ 𝐿𝑞(𝑈)，其中 1

𝑞
= 1

𝑝
− 𝑘

𝑑
（等价地，𝑞 = 𝑑𝑝

𝑑−𝑘𝑝
）。同时还有估计 ‖𝑓‖𝐿𝑞(𝑈) ⩽

𝐶(𝑑, 𝑘, 𝑝,𝑈)‖𝑓‖𝑊𝑘,𝑝(𝑈).

(2) 若 𝑘 > 𝑑
𝑝
，则 𝑓 在 𝑈 中几乎处处等于其精细表示 𝑓∗，且 𝑓∗ ∈ 𝐶𝑘−[ 𝑑

𝑝
]−1,𝛼(𝑈)，其中

𝛼 =
⎧

⎨
⎩

1 − { 𝑑
𝑝
} 𝑑

𝑝
∉ ℤ,

(0, 1)中的任意实数 𝑑
𝑝
∈ ℤ.
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并且我们有如下估计 ‖𝑓∗‖
𝐶
𝑘−[ 𝑑𝑝 ]−1,𝛼(𝑈)

⩽ 𝐶(𝑑, 𝑘, 𝑝, 𝛼,𝑈)‖𝑓‖𝑊𝑘,𝑝(𝑈).

需注意(2)的一个特殊情形是 𝐻𝑘(𝑈) ⊂ 𝐿∞(𝑈), 𝑘 > 𝑑
2
，且有不等式

‖𝑓‖𝐿∞(𝑈) ⩽ 𝐶‖𝑓‖𝐻𝑘(𝑈). (1.5.1)

该结论将在后续内容中被反复用到，我们会在第五章证明更精细的结论，同时参见习题 1.5.1。

习题 1.5

习题 1.5.1. 设𝑈 ⊂ ℝ𝑑 是边界Lipschitz的有界开集，正整数𝑘 > 𝑑
2
. 证明：存在依赖于 𝑘, 𝑑,𝑈 的常

数 𝐶 > 0，使得对任意𝑓, 𝑔 ∈ 𝐻𝑘(𝑈)成立如下不等式

‖𝑓𝑔‖𝐻𝑘(𝑈) ⩽ 𝐶‖𝑓‖𝐻𝑘(𝑈)‖𝑔‖𝐻𝑘(𝑈). (1.5.2)

注记 1.5.1. 对于一般的 𝑘 ∈ ℕ和 𝑓, 𝑔 ∈ 𝐻𝑘(𝑈) ∩ 𝐿∞(𝑈)，我们实际上有Moser型不等式（也称为
“分数阶 Leibniz法则”中 Kato-Ponce型不等式的特殊情况）：

‖𝑓𝑔‖𝐻𝑘(𝑈) ⩽ 𝐶
(
‖𝑓‖𝐻𝑘(𝑈)‖𝑔‖𝐿∞(𝑈) + ‖𝑔‖𝐻𝑘(𝑈)‖𝑓‖𝐿∞(𝑈)

)
. (1.5.3)

不等式 (1.5.1)-(1.5.3)在无界区域或 ℝ𝑑 中也成立，且 𝑘 不必是整数，但证明完全依赖 Fourier分
析，我们将在第五章重新讨论此结论。



第二章 线性椭圆方程

本章我们考虑如下边值问题

𝐿𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈. (2.0.1)

这里 𝑈 ⊂ ℝ𝑑 是一个有界开集，𝑢 ∶ 𝑈 → ℝ是未知函数。函数 𝑓 ∶ 𝑈 → ℝ是给定的，𝐿是一个二
阶线性偏微分算子，具有散度形式（多用于证明存在性）

𝐿𝑢 = −
𝑑∑

𝑖,𝑗=1
𝜕𝑗(𝑎𝑖𝑗(𝒙)𝜕𝑖𝑢) +

𝑑∑

𝑖=1
𝑏𝑖(𝒙)𝜕𝑖𝑢 + 𝑐(𝒙)𝑢 (2.0.2)

或者非散度形式（多用于极大值原理）

𝐿𝑢 = −
𝑑∑

𝑖,𝑗=1
𝑎𝑖𝑗(𝒙)𝜕𝑖𝜕𝑗𝑢 +

𝑑∑

𝑖=1
𝑏𝑖(𝒙)𝜕𝑖𝑢 + 𝑐(𝒙)𝑢 (2.0.3)

其中系数函数 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 (1 ⩽ 𝑖, 𝑗 ⩽ 𝑑)是给定的，系数矩阵[𝑎𝑖𝑗]是对称方阵，即 𝑎𝑖𝑗 = 𝑎𝑗𝑖. 边界条件
𝑢 = 0在 𝜕𝑈 上被称为Dirichlet边界条件。

定义 2.0.1. 我们称由(2.0.2)或 (2.0.3)定义的微分算子 𝐿是（（（一一一致致致）））椭椭椭圆圆圆的的的，是指存在常数 𝜃 > 0
使得

𝑑∑

𝑖,𝑗=1
𝑎𝑖𝑗(𝒙)𝜉𝑖𝜉𝑗 ⩾ 𝜃|𝝃 |2 a.e. 𝒙 ∈ 𝑈, ∀𝝃 ∈ ℝ𝑑. (2.0.4)

椭圆性意味着对于每个 𝒙 ∈ 𝑈，矩阵 [𝑎𝑖𝑗(𝒙)] 是正定的，且其最小特征值大于或等于 𝜃. 最
简单的例子就是 𝑎𝑖𝑗 = 𝛿𝑖𝑗 且 𝑏𝑖 = 𝑐 = 0，在这种情况下算子 𝐿 为 −∆；而更具代表性的一个例子
是−∆ + 𝑐𝐼 (𝑐 ⩾ 0). 从现在起，我们使用爱因斯坦求和约定，即重复的指标表示对它们求和。例
如，(2.0.2)-(2.0.3)现在写作

𝐿𝑢 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢) + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢 or 𝐿𝑢 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢.

35
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2.1 线性椭圆方程的弱解和Sobolev空间𝐻−1

2.1.1 弱解的定义

方程 (2.0.1)中，我们只假设了 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈ 𝐿∞(𝑈)且 𝑓 ∈ 𝐿2(𝑈). 正如第一章开头所述，当系数
和源项光滑性很差时，直接证明经典解的存在性通常并不容易。退而求其次地，我们改为在弱意

义下求解方程 (2.0.1). 具体地，令 𝑣 ∈ 𝐶∞
𝑐 (𝑈)且 𝑢是一个光滑解。那么分部积分得到

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 + 𝑏𝑖𝜕𝑖𝑢𝑣 + 𝑐𝑢𝑣 d𝒙 = ∫

𝑈
𝑓𝑣 d𝒙. (2.1.1)

利用光滑逼近，我们可以证明同样的恒等式对任何 𝑣 ∈ 𝐻1
0(𝑈)也成立。此外如果 𝑢 ∈ 𝐻1

0(𝑈)，这
个恒等式也是有意义的。因此我们可以考虑在 𝐻1

0(𝑈)中寻找方程 (2.0.1)的“弱”解。

定义 2.1.1. 我们定义与散度形式的椭圆算子 (2.0.2)相对应的双双双线线线性性性型型型 𝐵[⋅, ⋅]为

𝐵[𝑢, 𝑣] ∶= ∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 + 𝑏𝑖𝜕𝑖𝑢𝑣 + 𝑐𝑢𝑣 d𝒙, ∀𝑢, 𝑣 ∈ 𝐻1

0(𝑈). (2.1.2)

我们称 𝑢 ∈ 𝐻1
0(𝑈)是 (2.0.1)的一个弱解，是指

𝐵[𝑢, 𝑣] = (𝑓, 𝑣)𝐿2(𝑈), ∀𝑣 ∈ 𝐻1
0(𝑈), (2.1.3)

其中 (⋅, ⋅)𝐿2(𝑈) 表示 𝐿2(𝑈)中的内积。
更一般地，我们还会遇到 𝑓 ∈ 𝐻−1(𝑈)（即 𝐻1

0(𝑈) 的对偶空间）的情况。这种情况下我们应
将 (2.1.3)的右侧替换为 ⟨𝑓, 𝑣⟩，其中 ⟨⋅, ⋅⟩是 𝐻−1(𝑈)和 𝐻1

0(𝑈)的配对。

2.1.2 Sobolev空间 𝐻−1(𝑈)

现在我们引入 Sobolev空间 𝐻−1(𝑈).
定义 2.1.2. 我们定义 𝐻−1(𝑈)为 𝐻1

0(𝑈)的对偶空间。也就是说𝑓 ∈ 𝐻−1(𝑈)意味着 𝑓 是 𝐻1
0(𝑈)上

的有界线性泛函，其范数定义为

‖𝑓‖𝐻−1(𝑈) ∶= sup
{
⟨𝑓, 𝑢⟩||||𝑢 ∈ 𝐻1

0(𝑈), ‖𝑢‖𝐻1
0 (𝑈) ⩽ 1

}
.

需要注意的是，我们不像Hilbert空间的Riesz表示定理那样将𝐻1
0(𝑈)与其对偶空间等同。实

际上我们有

𝐻1
0(𝑈) ⊂ 𝐿2(𝑈) ⊂ 𝐻−1(𝑈)

且如果 𝑈 是有界的，第一个包含关系可以被紧嵌入替换。
我们有以下刻画定理。
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定理 2.1.1 (𝐻−1 的刻画). 设 𝑓 ∈ 𝐻−1(𝑈)，则存在一组函数 𝑓0, 𝑓1,⋯ , 𝑓𝑑 ∈ 𝐿2(𝑈)使得下式成立

⟨𝑓, 𝑣⟩ = ∫
𝑈
𝑓0𝑣 + 𝑓𝑖𝜕𝑖𝑣 d𝒙 ∀𝑣 ∈ 𝐻1

0(𝑈). (2.1.4)

如果(2.1.4)成立，我们就记 𝑓 = 𝑓0 −
𝑑∑
𝑖=1
𝜕𝑖𝑓𝑖。此外我们有

‖𝑓‖𝐻−1(𝑈) = inf

⎧
⎪
⎨
⎪
⎩

⎛
⎜
⎝
∫
𝑈

𝑑∑

𝑖=0
|𝑓𝑖|2 d𝒙

⎞
⎟
⎠

1
2 |||||||
𝑓 满足 (2.1.4)

⎫
⎪
⎬
⎪
⎭

.

特别地，如果我们把 𝑣 ∈ 𝐿2(𝑈)视作 𝐻−1(𝑈)中的元素，则对任意的 𝑢 ∈ 𝐻1
0(𝑈)有

(𝑣, 𝑢)𝐿2(𝑈) = ⟨𝑣, 𝑢⟩.

证明. 给定 𝑓 ∈ 𝐻−1(𝑈)，我们来构造满足 (2.1.4) 的 𝑓0, 𝑓1,⋯ , 𝑓𝑑, 这本质上是 Riesz 表示定理的
应用。由于 𝑓 是 𝐻1

0(𝑈)上的有界线性泛函，且 𝐻1
0(𝑈)是 Hilbert空间，我们知道存在 𝑢 ∈ 𝐻1

0(𝑈)
使得 (𝑢, 𝑣)𝐻1

0 (𝑈) = ⟨𝑓, 𝑣⟩对任意的 𝑣 ∈ 𝐻1
0(𝑈)成立。现在回顾 𝐻1

0(𝑈)的内积可以定义为

(𝑢, 𝑣) = ∫
𝑈
∇𝑢 ⋅ ∇𝑣 + 𝑢𝑣 d𝒙.

因此令𝑓0 = 𝑢, 𝑓𝑖 = 𝜕𝑖𝑢 (1 ⩽ 𝑖 ⩽ 𝑑)即可得到所需结果。

接下来证明‖𝑓‖𝐻−1(𝑈) 的等价定义，我们假设 𝑔0, 𝑔1,⋯ , 𝑔𝑑 ∈ 𝐿2(𝑈)满足

⟨𝑓, 𝑣⟩ = ∫
𝑈
𝑔0𝑣 + 𝑔𝑖𝜕𝑖𝑣 d𝒙.

在之前定义的 𝐻1
0(𝑈)内积中令 𝑣 = 𝑢，我们得到

∫
𝑈
|∇𝑢|2 + 𝑢2 d𝒙 ⩽ ∫

𝑈

∑

𝑖
|𝑔𝑖|2 d𝒙,

因此

∫
𝑈

𝑑∑

𝑖=0
|𝑓𝑖|2 d𝒙 ⩽ ∫

𝑈

𝑑∑

𝑖=0
|𝑔𝑖|2 d𝒙.

最后若‖𝑣‖𝐻1
0 (𝑈) ⩽ 1，那么 |⟨𝑓, 𝑣⟩| 被上述最后一个不等式的左边界住，然后再对全体这样的 𝑣 ∈
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𝐻1
0(𝑈)取上确界得到

‖𝑓‖2𝐻−1(𝑈) ⩽
∑

𝑖
∫
𝑈
|𝑓𝑖|2 d𝒙.

另一方面，令𝑣 = 𝑢
‖𝑢‖𝐻10(𝑈)

可以使得等号成立。

习题 2.1

习题 2.1.1. 设有界开集𝑈 ⊂ ℝ𝑑具有Lipschitz边界。

(1) 设 {𝑣𝑛} ⊂ 𝐻1
0(𝑈) 满足 ‖𝑣𝑛‖𝐻1

0 (𝑈) ⩽ 1。证明：存在子列 {𝑣𝑛𝑘 } 和 𝑣 ∈ 𝐻1
0(𝑈) 使得 ‖𝑣𝑛𝑘 −

𝑣‖𝐻−1(𝑈) → 0。
(2) 设 𝑣 ∈ 𝐻1

0(𝑈), ‖𝑣‖𝐻1
0 (𝑈) = 1。证明：𝑣 ∈ 𝐻−1(𝑈)，且对于任何 𝜀 > 0存在一个依赖𝜀 的常数

𝐶(𝜀) > 0使得
‖𝑣‖𝐿2(𝑈) ⩽ 𝜀 + 𝐶(𝜀)‖𝑣‖𝐻−1(𝑈).

习题 2.1.2. 𝐻−1(ℝ𝑑) = (𝐻1(ℝ𝑑))′ 是否成立？这里 𝑋′ 是 Banach空间 𝑋 的对偶空间。

2.2 存在性定理1: Lax-Milgram定理

据定义 2.1.1，给定 𝑓 ∈ 𝐿2(𝑈)，我们证明存在唯一的 𝑢 ∈ 𝐻1
0(𝑈) 使得 (2.1.3) 对所有 𝑣 ∈

𝐻1
0(𝑈)成立。这里我们首先试用Lax-Milgram定理来证明存在性。

定理 2.2.1. 设𝐻 为具有内积 (⋅, ⋅)、范数 ‖ ⋅ ‖ 以及与其对偶空间配对 ⟨⋅, ⋅⟩ 的 Hilbert 空间。设
𝐵 ∶ 𝐻 × 𝐻 → ℝ是一个双线性映射，且存在常数 𝛼, 𝛽 > 0使得

• （有界性）对任意 𝑢, 𝑣 ∈ 𝐻 有 |𝐵[𝑢, 𝑣]| ⩽ 𝛼‖𝑢‖‖𝑣‖,
• （强制性）对任意 𝑢 ∈ 𝐻 有 |𝐵[𝑢, 𝑢]| ⩾ 𝛽‖𝑢‖2.

设𝑓 ∶ 𝐻 → ℝ为 𝐻上的有界线性泛函。那么存在唯一的 𝑢 ∈ 𝐻使得 𝐵[𝑢, 𝑣] = ⟨𝑓, 𝑣⟩对所有 𝑣 ∈ 𝐻
成立。

证明. 大致的思路. 该结论与 Riesz表示定理有些相似。事实上，由于 𝑓是 𝐻上的有界线性泛函，
Riesz表示定理表明存在 𝑤 ∈ 𝐻 使得

⟨𝑓, 𝑣⟩ = (𝑤, 𝑣) ∀𝑣 ∈ 𝐻.

另一方面我们可以定义一个线性算子 𝐴 ∶ 𝐻 → 𝐻 使得 𝐵[𝑢, 𝑣] = (𝐴𝑢, 𝑣). 若能证明 𝐴 ∶ 𝐻 → 𝐻 是
双射，那么对任意给定的 𝑓，我们就可以通过定义 𝑢 = 𝐴−1𝑤 来构造所需的𝑢.

第 1步：定义映射 𝐴. 据有界性假设，我们知道对任何固定的 𝑢 ∈ 𝐻，映射 𝑣 ↦→ 𝐵[𝑢, 𝑣]是
𝐻 上的有界线性泛函。因此利用 Riesz表示定理知，存在唯一的元素 𝑤 ∈ 𝐻 使得 𝐵[𝑢, 𝑣] = (𝑤, 𝑣)
对任何 𝑣 ∈ 𝐻 成立。于是我们定义 𝐴 ∶ 𝐻 → 𝐻 为 𝐴𝑢 ∶= 𝑤，即对 𝑢, 𝑣 ∈ 𝐻 有 𝐵[𝑢, 𝑣] = (𝐴𝑢, 𝑣).
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第 2步：𝐴是有界线性算子。容易看出 𝐴是线性的，其有界性也来自于 𝐵[⋅, ⋅]的有界性：

‖𝐴𝑢‖2 = (𝐴𝑢,𝐴𝑢) = 𝐵[𝑢, 𝐴𝑢] ⩽ 𝛼‖𝑢‖‖𝐴𝑢‖ ⇒ ‖𝐴𝑢‖ ⩽ 𝛼‖𝑢‖ ∀𝑢 ∈ 𝐻.

第 3步：𝐴是双射。据强制性假设，我们有

𝛽‖𝑢‖2 ⩽ 𝐵[𝑢, 𝑢] = (𝐴𝑢, 𝑢) ⩽ ‖𝐴𝑢‖‖𝑢‖ ⇒ 𝛽‖𝑢‖ ⩽ ‖𝐴𝑢‖.

因此𝐴是单射，且 𝑅(𝐴)（𝐴的值域）在 𝐻 中是闭的。要证明 𝑅(𝐴) = 𝐻，只需验证 (𝑅(𝐴))⟂ = 0。
事实上，如果存在非零元素 𝑤 ∈ (𝑅(𝐴))⟂，那么我们得到 𝛽‖𝑤‖2 ⩽ 𝐵[𝑤,𝑤] = (𝐴𝑤,𝑤) = 0. 因此我
们证明了𝐴是𝐻上的双射。

第 4 步：𝑢 的存在性。 我们现在回到本定理的证明。给定 𝑓 ∈ 𝐻′，据 Riesz 表示定理，存
在某个 𝑤 ∈ 𝐻 满足 ⟨𝑓, 𝑣⟩ = (𝑤, 𝑣) 对所有 𝑣 ∈ 𝐻 成立。现在我们可以通过定义 𝐴𝑢 = 𝑤（或
𝑢 ∶= 𝐴−1𝑤）来构造所需的 𝑢。然后我们得到

𝐵[𝑢, 𝑣] = (𝐴𝑢, 𝑣) = (𝑤, 𝑣) = ⟨𝑓, 𝑣⟩, ∀𝑣 ∈ 𝐻.

唯一性由于强制性很容易证明，此处略去。

现在我们希望将 Lax-Milgram定理应用于椭圆方程 (2.0.1)，我们可以建立以下能量估计。

定理 2.2.2 (能量估计). 对于椭圆方程 (2.0.1) 及其对应的双线性型 (2.1.2)，成立如下估计：存在
常数 𝛼, 𝛽 > 0和 𝛾 ⩾ 0使得

• |𝐵[𝑢, 𝑣]| ⩽ 𝛼‖𝑢‖𝐻1
0 (𝑈)‖𝑣‖𝐻1

0 (𝑈).

• 𝛽‖𝑢‖2𝐻1
0 (𝑈)

⩽ 𝐵[𝑢, 𝑢] + 𝛾‖𝑢‖2𝐿2(𝑈).

证明. 回顾 𝐵[𝑢, 𝑣]的具体形式

𝐵[𝑢, 𝑣] = ∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 + 𝑏𝑖𝜕𝑖𝑢𝑣 + 𝑐𝑢𝑣 d𝒙, 𝑢, 𝑣 ∈ 𝐻1

0(𝑈).

于是，我们得到

|𝐵[𝑢, 𝑣]| ⩽ ‖𝑎𝑖𝑗‖𝐿∞(𝑈)‖𝜕𝑖𝑢‖𝐿2(𝑈)‖𝜕𝑗𝑣‖𝐿2(𝑈) + ‖𝑏𝑖‖𝐿∞(𝑈)‖𝜕𝑖𝑢‖𝐿2(𝑈)‖𝑣‖𝐿2(𝑈) + ‖𝑐‖𝐿∞(𝑈)‖𝑢‖𝐿2(𝑈)‖𝑣‖𝐿2(𝑈)
⩽ 𝐶(‖𝑢‖𝐿2(𝑈) + ‖∇𝑢‖𝐿2(𝑈))(‖𝑣‖𝐿2(𝑈) + ‖∇𝑣‖𝐿2(𝑈)) ⩽ 𝛼‖𝑢‖𝐻1

0 (𝑈)‖𝑣‖𝐻1
0 (𝑈).
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第二个不等式可以用类似的方式证明

𝐵[𝑢, 𝑢] =∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 𝑢 + 𝑐𝑢2 d𝒙

⩾ 𝜃 ∫
𝑈
|∇𝑢|2 d𝒙 − ‖𝑏𝑖‖𝐿∞‖𝜕𝑖𝑢‖𝐿2(𝑈)‖𝑢‖𝐿2(𝑈) − ‖𝑐‖𝐿∞(𝑈)‖𝑢‖2𝐿2(𝑈)

⩾ 𝜃 ∫
𝑈
|∇𝑢|2 d𝒙 − 𝜀‖∇𝑢‖2𝐿2(𝑈) − (𝐶1𝜀 + 𝐶2) ‖𝑢‖2𝐿2(𝑈).

这里我们使用了一致椭圆性条件和 Young 不等式。取 𝜀 = 𝜃
2
，我们可得：存在𝛽 > 0和𝛾 ⩾ 0使得

下式成立

𝐵[𝑢, 𝑢] ⩾ 𝛽‖𝑢‖2𝐻1
0 (𝑈)

− 𝛾‖𝑢‖2𝐿2(𝑈).

注意 𝛾 = 0确实是可以达到的（例如 𝑏𝑖 = 𝑐 = 0的情况）。

注意，如果 𝛾 > 0，那么 𝐵[⋅, ⋅]不一定满足 Lax-Milgram定理的假设。当我们使用 Lax-Milgram
定理证明方程 (2.0.1)的存在性时，椭圆算子应当施加一些额外的约束。

定理 2.2.3 (弱解第一存在性定理). 存在 𝛾 ⩾ 0（在定理 2.2.2 中得到），使得对于任意 𝜇 ⩾ 𝛾 和
𝑓 ∈ 𝐿2(𝑈)，如下边值问题存在唯一的弱解 𝑢 ∈ 𝐻1

0(𝑈).

𝐿𝑢 + 𝜇𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈. (2.2.1)

证明. 对方程 (2.2.1)，我们定义其双线性型（对应于 𝐿𝜇 ∶= 𝐿 + 𝜇𝐼）为

𝐵𝜇[𝑢, 𝑣] ∶= 𝐵[𝑢, 𝑣] + 𝜇(𝑢, 𝑣)𝐿2(𝑈) ∀𝑢, 𝑣 ∈ 𝐻1
0(𝑈).

据 𝜇 ⩾ 𝛾 和定理 2.2.2 可知 𝐵𝜇[⋅, ⋅] 满足 Lax-Milgram 定理的假设。给定 𝑓 ∈ 𝐿2(𝑈)，我们可将 𝑓
视作 𝐻−1(𝑈)中的一个元素，因此 ⟨𝑓, 𝑣⟩ 等于内积 (𝑓, 𝑣)𝐿2(𝑈). 据 Lax-Milgram 定理，存在唯一的
𝑢 ∈ 𝐻1

0(𝑈)满足 𝐵𝜇[𝑢, 𝑣] = ⟨𝑓, 𝑣⟩对所有 𝑣 ∈ 𝐻1
0(𝑈)成立，也就是说 𝑢是 (2.2.1)的唯一弱解。

注记 2.2.1. 我们可以类似证明对于 𝑓 ∈ 𝐻−1(𝑈)，方程𝐿𝑢 + 𝜇𝑢 = 𝑓（具有 Dirichlet边界条件）弱
解的存在性，这只需注意到 ⟨𝑓, 𝑣⟩ = ∫𝑈 𝑓0𝑣 + 𝑓𝑖𝜕𝑖𝑣 d𝒙是 𝐻1

0(𝑈)上的有界线性泛函。特别地，该
存在性定理表明映射

𝐿𝜇 ∶= 𝐿 + 𝜇𝐼 ∶ 𝐻1
0(𝑈) → 𝐻−1(𝑈) (𝜇 ⩾ 𝛾)

是一个同构。

习题 2.2

本节我们假设 𝑈 ⊂ ℝ𝑑 是边界光滑的有界开集。系数 𝑎𝑖𝑗, 𝑏𝑖, 𝑐是光滑的且满足一致椭圆性。
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习题 2.2.1. 设𝐿𝑢 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢) + 𝑐𝑢. 证明：存在常数 𝜇 > 0，使得只要𝑐(𝒙) ⩾ −𝜇在𝑈中恒成立，
相应的双线性型 𝐵[⋅, ⋅]就满足 Lax-Milgram定理的假设。

习题 2.2.2. 函数 𝑢 ∈ 𝐻2
0(𝑈)是双调和方程

∆2𝑢 = 𝑓 in 𝑈, 𝑢 = 𝜕𝑢
𝜕𝑁 = 0 on 𝜕𝑈

的弱解，是指对任意 𝑣 ∈ 𝐻2
0(𝑈)有∫𝑈 ∆𝑢∆𝑣 d𝒙 = ∫𝑈 𝑓𝑣 d𝒙 成立。给定 𝑓 ∈ 𝐿2(𝑈)，证明弱解的存

在性和唯一性。

习题 2.2.3. 设𝑈连通，我们称函数 𝑢 ∈ 𝐻1(𝑈)是具有 Neumann边界条件的 Poisson方程的弱解

−∆𝑢 = 𝑓 in 𝑈, 𝜕𝑢
𝜕𝑁 = 0 on 𝜕𝑈

是指对任意的𝑣 ∈ 𝐻1(𝑈)有∫𝑈 ∇𝑢 ⋅ ∇𝑣 d𝒙 = ∫𝑈 𝑓𝑣 d𝒙成立。给定 𝑓 ∈ 𝐿2(𝑈)，证明：如上方程存在
弱解当且仅当 ∫𝑈 𝑓 d𝒙 = 0.

习题 2.2.4. 考虑具有 Robin边界条件的 Poisson方程

−∆𝑢 = 𝑓 in 𝑈, 𝑢 + 𝜕𝑢
𝜕𝑁 = 0 on 𝜕𝑈.

请定义该问题的弱解 𝑢 ∈ 𝐻1(𝑈)，并讨论对于给定 𝑓 ∈ 𝐿2(𝑈)时解的存在性和唯一性。
提示：证明双线性型的强制性可以使用类似于定理 1.4.5中 Poincaré不等式证明的技巧。

习题 2.2.5. 设𝑈连通，并设 𝜕𝑈是两个不相交的闭集Γ1, Γ2的并集。考虑具有混合Dirichlet-Neumann
边界条件的 Poisson方程

−∆𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on Γ1,
𝜕𝑢
𝜕𝑁 = 0 on Γ2.

请定义该问题的弱解 𝑢 ∈ 𝐻1(𝑈)，并讨论对于给定 𝑓 ∈ 𝐿2(𝑈)时解的存在性和唯一性。
提示：从 𝐻 ∶= {𝑣 ∈ 𝐻1(𝑈)|Tr 𝑣|Γ1 = 0}中选择测试函数。

习题 2.2.6. 设𝑢 ∈ 𝐻1(𝑈)是 𝑈 中 −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢) = 0的一个有界弱解，𝜙 ∶ ℝ → ℝ是一个光滑的凸
函数，令 𝑤 = 𝜙(𝑢)。证明：𝑤 是一个弱下解，即对于任何 𝑣 ∈ 𝐻1

0(𝑈)且 𝑣 ⩾ 0，有 𝐵[𝑤, 𝑣] ⩽ 0。

问题 2.2

问题 2.2.1. 本题旨在对方程(2.0.1)的弱解存在性给出一个变分证明，其中 𝐿 定义由 (2.0.2)给出，
且假设𝑏𝑖 = 𝑐 = 0以及 𝑔 ∈ 𝐿2(𝜕𝑈). 令

𝐼[𝑤] ∶= ∫
𝑈

1
2𝑎

𝑖𝑗𝜕𝑖𝑤𝜕𝑗𝑤 d𝒙,
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其中 𝑤 ∈ 𝒜 ∶= {𝑤 ∈ 𝐻1(𝑈)|Tr𝑤 = 𝑔 on 𝜕𝑈}.

(1) 设 {𝑢𝑛} ⊂ 𝐻1(𝑈) 在 𝐻1(𝑈) 中弱收敛到 𝑢，且 𝓁 ∶= lim inf
𝑛→∞

𝐼[𝑢𝑛]。证明存在子列 {𝑢𝑛𝑘 } 使得

𝓁 = lim
𝑘→∞

𝐼[𝑢𝑛𝑘]且 𝑢𝑛𝑘
𝐿2(𝑈)
,,,,→ 𝑢.

(2) 给定任意充分小的 𝜀 > 0，证明：存在子集 𝐺𝜀 ⊂ 𝑈 使得 𝑢𝑛𝑘 在 𝐺𝜀 中一致收敛于 𝑢，在 𝐺𝜀 中

有 |𝑢(𝒙)| + |∇𝑢(𝒙)| ⩽ 𝜀−1，且 ℒ𝑑(𝑈∖𝐺𝜀) < 𝜀.
(3) 证明: 𝓁 ⩾ 𝐼[𝑢]。这实际上表明 𝐼[⋅] 在 𝐻1(𝑈) 上是 弱弱弱下下下半半半连连连续续续的的的，也就是说给定任何在

𝐻1(𝑈)中弱收敛到 𝑢的序列 {𝑢𝑛} ⊂ 𝐻1(𝑈)，𝐼 满足 𝐼[𝑢] ⩽ lim inf
𝑘→∞

𝐼[𝑢𝑛].
(4) 令 𝑚 ∶= inf

𝑤∈𝒜
𝐼[𝑤] < ∞，模仿 (1)-(3)来证明存在 𝑢 ∈ 𝒜使得 𝐼[𝑢] = 𝑚.

(5) 证明 𝒜中极小化子 𝑢的唯一性。（提示：如果 𝑢1, 𝑢2 是两个不同的极小化子，那么考虑 𝑢̄ =
(𝑢1 + 𝑢2)∕2并证明 𝐼[𝑢̄] < (𝐼[𝑢1] + 𝐼[𝑢2])∕2.)

(6) 证明极小化子 𝑢恰好是方程(2.0.1)的弱解。

2.3 存在性定理2: Fredholm二择一

证明定理 2.2.3之后，我们自然会问：如果(2.2.1)中不带𝜇𝑢项，我们是否还能证明椭圆方程的
存在性？答案是肯定的，但唯一性取决于齐次方程 𝐿𝑢 = 0（具有 Dirichlet 边界条件）是否具有
非零解。此外我们可以证明：如果齐次方程允许非零解，那么解空间必须是有限维的，且维数等

于相应“对偶问题”解空间的维数。这看上去和 ℝ𝑛 中求解线性方程组 𝐀𝒙 = 𝐛的分类讨论相似。
对于椭圆 PDE，我们用紧算子的 Fredholm理论来证明类似的结论。

2.3.1 紧算子的性质

首先我们回顾紧算子的一些基本性质。

定义 2.3.1. 设𝑋,𝑌Banach空间。我们说一个有界线性算子 𝐾 ∶ 𝑋 → 𝑌 是紧紧紧算算算子子子，是指对于任何
有界集 𝐵 ⊂ 𝑋，𝐾(𝐵)在 𝑌 中是预紧的（即 𝐾(𝐵)在 𝑌 中是紧的），并记 𝐾 ∈ ℭ(𝑋,𝑌).
容易看出，𝐾 是紧算子当且仅当对任何有界序列 {𝑥𝑛} ⊂ 𝑋，{𝐾𝑥𝑛}在 𝑌 中有收敛子列。据此

可得

命题 2.3.1. 设𝑋,𝑌, 𝑍 为 Banach空间。

(1) 若 𝐾 ∈ ℭ(𝑋,𝑌), 𝑥𝑛 ⇀ 𝑥 在 𝑋 中弱收敛，那么 𝐾𝑥𝑛 → 𝐾𝑥 在 𝑌 中（强）收敛。
(2) 若有界线性算子𝐾1 ∶ 𝑋 → 𝑌和𝐾2 ∶ 𝑌 → 𝑍有一个是紧算子，那么复合算子𝐾2◦𝐾1 ∶ 𝑋 → 𝑍
也是紧算子。

(3) 若 𝐾 ∈ ℭ(𝑋,𝑌)，那么其伴随算子 𝐾∗ ∈ ℭ(𝑌′, 𝑋′)，其中 𝑋′, 𝑌′ 分别是 𝑋,𝑌 的对偶空间。

务必注意，(1)意味着恒等算子 𝐼 ∈ ℭ(𝑋)当且仅当 dim𝑋 < ∞.

我们再来回顾 Fredholm二择一（Fredholm Alternative）定理。
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定理 2.3.2 (Fredholm二择一). 设𝑋 为 Banach空间，𝐾 ∈ ℭ(𝑋). 则

(1) dim𝑁(𝐼 − 𝐾) < ∞,其中 𝑁(𝐼 − 𝐾) = {𝑥 ∈ 𝑋|(𝐼 − 𝐾)𝑥 = 0}.
(2) 𝑅(𝐼 − 𝐾)是闭集。
(3) 𝑅(𝐼 − 𝐾) = 𝑁(𝐼 − 𝐾∗)⟂ 且 𝑅(𝐼 − 𝐾∗) = ⟂𝑁(𝐼 − 𝐾).
(4) 𝑁(𝐼 − 𝐾) = {0}当且仅当 𝑅(𝐼 − 𝐾) = 𝑋.
(5) dim𝑁(𝐼 − 𝐾) = dim𝑁(𝐼 − 𝐾∗).

这里对𝑀 ⊂ 𝑋, 𝐹 ⊂ 𝑋′,我们记

⟂𝑀 ∶= {𝑓 ∈ 𝑋′|⟨𝑓, 𝑥⟩ = 0, ∀𝑥 ∈ 𝑀}, 𝐹⟂ ∶= {𝑥 ∈ 𝑋|⟨𝑓, 𝑥⟩ = 0, ∀𝑓 ∈ 𝑋′}.

一个相当特别的例子是考虑 ℝ𝑛 中的线性方程组 𝐀𝒙 = 𝐛. 我们知道这个线性方程组有解 𝒙当
且仅当 𝐛可以写成 𝐴𝑗 ∶= (𝑎1𝑗,⋯ , 𝑎𝑛𝑗)⊤ 的线性组合，即 𝐛 =

𝑛∑
𝑗=1

𝑥𝑗𝐴𝑗. 这也等价于

𝒛 ⟂ 𝐛 ⇔
𝑛∑

𝑖=1
𝑎𝑖𝑗𝑧𝑖 = 0 (𝒛 ⟂ 𝐴𝑗) ∀𝑗 = 1,⋯ , 𝑛.

因此我们知道

• 给定 𝐛 ∈ ℝ𝑛，方程组𝐀𝒙 = 𝐛有解当且仅当对任意 𝒛 ∈ ker𝐀⊤ 有 𝒛 ⟂ 𝐛.
• 只有两种情况：

1. 给定 𝐛 ∈ ℝ𝑛，方程组 𝐀𝒙 = 𝐛有唯一解 𝒙 ∈ ℝ𝑛;
2. 𝐀𝒙 = 𝟎有非零解，且 dimker𝐀 = dimker𝐀∗.

现在令 𝐀 = 𝐼 − 𝐾，其中 𝐾 ∈ ℝ𝑛×𝑛. 那么第一个结论与定理 2.3.2(3) 一致，第二个结论与定理
2.3.2(4)-(5)一致。

我们最后回顾紧算子的谱定理。

定义 2.3.2. 设𝑋 为 Banach空间，𝐴 ∶ 𝑋 → 𝑋 是一个有界线性算子。

• 𝐴的预解集(resolvent set)定义为 𝜌(𝐴) ∶= {𝜂 ∈ ℝ|𝐴 − 𝜂𝐼 是双射}.
• 𝐴的谱(spectrum)定义为 𝜎(𝐴) ∶= ℝ∖𝜌(𝐴).

给定 𝜂 ∈ 𝜌(𝐴)，据闭图像定理知 (𝐴 − 𝜂𝐼)−1 是 𝑋 上的有界线性算子。

• 我们称 𝜆 ∈ 𝜎(𝐴) 是 𝐴 的特征值是指 𝑁(𝐴 − 𝜂𝐼) ≠ {0}. 算子𝐴的全体特征值构成的集合称
为𝐴的点点点谱谱谱(point spctrum)，记作 𝜎𝑝(𝐴).

• 若𝜆是特征值且存在 𝑤 ≠ 0使得 𝐴𝑤 = 𝜆𝑤，那么我们称 𝑤 是 𝐴对应于 𝜆的特征向量。

我们现在有

定理 2.3.3 (Riesz-Schauder). 设𝑋 为 Banach空间且 𝐾 ∈ ℭ(𝑋)，则有

• 除非 dim𝑋 < ∞，否则 0 ∈ 𝜎(𝐾).
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• 𝜎(𝐾)∖{0} = 𝜎𝑝(𝐾)∖{0}.
• 𝜎𝑝(𝐾)的聚点（如果存在）必须是 0.

2.3.2 Fredholm二择一及其在椭圆PDE上的应用

给定散度形式 (2.0.2)的椭圆算子 𝐿并设 𝑏𝑖 ∈ 𝐶1(𝑈)，我们定义其伴随算子 𝐿∗ 为

𝐿∗𝑣 ∶= 𝜕𝑖(𝑎𝑖𝑗𝜕𝑗𝑣) − 𝑏𝑖𝜕𝑖𝑣 + (𝑐 − 𝜕𝑖𝑏𝑖)𝑣.

伴随双线性型 𝐵∗ ∶ 𝐻1
0(𝑈) × 𝐻1

0(𝑈) → ℝ 定义为：对 𝑢, 𝑣 ∈ 𝐻1
0(𝑈)，𝐵∗[𝑣, 𝑢] ∶= 𝐵[𝑢, 𝑣]。我们说

𝑣 ∈ 𝐻1
0(𝑈)是如下伴随问题的弱解

𝐿∗𝑣 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈,

是指对任意𝑢 ∈ 𝐻1
0(𝑈)都有𝐵∗[𝑣, 𝑢] = (𝑓, 𝑢)𝐿2(𝑈) 成立。

注记 2.3.1. 应当指出𝐿∗ 的具体形式是由伴随算子的定义自然推导出来的，即 ⟨𝐿𝑢, 𝑣⟩ = ⟨𝑢, 𝐿∗𝑣⟩.
我们不妨暂时设 𝑢, 𝑣 是光滑函数，将 𝐿的具体形式代入左侧并进行分部积分得到

⟨𝐿𝑢, 𝑣⟩ = ∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 − 𝜕𝑖(𝑏𝑖𝑣)𝑢 + 𝑐𝑢𝑣 d𝒙 = −∫

𝑈
𝜕𝑖(𝑎𝑖𝑗𝜕𝑗𝑣)𝑢 − 𝜕𝑖(𝑏𝑖𝑣)𝑢 + 𝑐𝑢𝑣 d𝒙

=
⟨
𝑢,−𝜕𝑖(𝑎𝑖𝑗𝜕𝑗𝑣) − 𝑏𝑖𝜕𝑖𝑣 + (𝑐 − 𝜕𝑖𝑏𝑖)𝑣

⟩
=∶ ⟨𝑢, 𝐿∗𝑣⟩.

据此我们就可导出 𝐵∗ 的具体形式。

本节我们的目标是用定理 2.3.2（Fredholm二择一）来证明方程 (2.0.1)弱解的存在性定理。

定理 2.3.4 (弱解第二存在性定理). 下列两个结论有且仅有一个成立：

(A) 对任何 𝑓 ∈ 𝐿2(𝑈)，方程(2.0.1)存在唯一的弱解。
(B) 齐次方程（即方程(2.0.1)在𝑓 = 0的情况）存在非零弱解 𝑢 ∈ 𝐻1

0(𝑈).

此外若 (B)成立，则齐次方程的解空间（记作𝑁）是𝐻1
0(𝑈)的有限维子空间，且 dim𝑁 = dim𝑁∗.

这里 𝑁∗ 是齐次伴随方程，即方程𝐿∗𝑣 = 0 in 𝑈，𝑣|𝜕𝑈 = 0的解空间。
最后，方程 (2.0.1)有弱解当且仅当对于任何 𝑣 ∈ 𝑁∗ 都有 (𝑓, 𝑣)𝐿2(𝑈) = 0.

证明. 证明分为四个步骤。
第 1 步：解的形式构造。 我们回忆用Lax-Milgram 定理证得的第一存在性定理表明：给定

𝑔 ∈ 𝐿2(𝑈)，𝑈中带有零边值的方程𝐿𝛾𝑢 = 𝑔在 𝐻1
0(𝑈)中有唯一弱解，其中 𝐿𝛾 ∶= 𝐿 + 𝛾𝐼，𝛾是定理

2.2.3中的常数。此时我们记 𝑢 = 𝐿−1𝛾 𝑔。
接下来我们回到方程 𝐿𝑢 = 𝑓. 对于这个方程，我们知道 𝑢 ∈ 𝐻1

0(𝑈) 是它的弱解当且仅当
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𝑢 ∈ 𝐻1
0(𝑈)是 𝐿𝛾𝑢 = 𝑓 + 𝛾𝑢的弱解，即

𝐵𝛾[𝑢, 𝑣] = ⟨𝛾𝑢 + 𝑓, 𝑣⟩ ∀𝑣 ∈ 𝐻1
0(𝑈),

这进一步等价于

𝑢 = 𝐿−1𝛾 (𝛾𝑢 + 𝑓) ⇔ (𝐼 − 𝛾𝐿−1𝛾 )𝑢 = 𝐿−1𝛾 𝑓.

现在令𝐾𝑢 = 𝛾𝐿−1𝛾 𝑢以及ℎ = 𝐿−1𝛾 𝑓，则有

𝑢是 (2.0.1)的一个弱解 ⇔ (𝐼 − 𝐾)𝑢 = ℎ.

第 2步：证明 𝐾 是 𝐿2(𝑈)上的紧算子。由于 𝐿𝛾 满足 Lax-Milgram定理的假设，据强制性可
知如果存在 𝑣 ∈ 𝐻1

0(𝑈)和 𝑔 ∈ 𝐿2(𝑈)使得 𝐿𝛾𝑣 = 𝑔 在弱意义下成立，即 𝐵𝛾[𝑣, 𝜑] = (𝑔, 𝜑)𝐿2(𝑈) 对所
有 𝜑 ∈ 𝐻1

0(𝑈)成立，那么

𝛽‖𝑣‖2𝐻1
0 (𝑈)

⩽ 𝐵𝛾[𝑣, 𝑣] = (𝑔, 𝑣)𝐿2(𝑈) ⩽ ‖𝑔‖𝐿2(𝑈)‖𝑣‖𝐿2(𝑈) ⩽ ‖𝑔‖𝐿2(𝑈)‖𝑣‖𝐻1
0 (𝑈),

从而给出

‖𝐾𝑔‖𝐻1
0 (𝑈) = 𝛾‖𝑣‖𝐻1

0 (𝑈) ⩽ 𝐶‖𝑔‖𝐿2(𝑈) 对于某个 𝐶 > 0.

因此𝐾 ∶ 𝐿2(𝑈) → 𝐻1
0(𝑈)是一个有界线性算子。另一方面我们有紧嵌入 𝐻1

0(𝑈) →→ 𝐿2(𝑈)，因此
𝐾 作为一个 𝐿2(𝑈) → 𝐿2(𝑈)的有界线性算子，在 𝐿2(𝑈)上也是一个紧算子，这是命题 2.3.1(2)的
结论。

第 3步：Fredholm二择一的应用。现在我们在定理 2.3.2中取 𝑋 = 𝐿2(𝑈), 𝐾 = 𝛾𝐿−1𝛾 ，得到
两种可能性。

• 情况 1：𝑁(𝐼 − 𝐾) = {0}.该情况下给定任何 ℎ ∈ 𝐿2(𝑈)，方程 (𝐼 − 𝐾)𝑢 = ℎ 在 𝐿2(𝑈)中有唯
一解。然后根据第 1步，这个 𝑢也给出了 (2.0.1)的一个弱解。

• 情况 2：𝑁(𝐼 − 𝐾) ≠ {0}.该情况下我们必有 𝛾 ≠ 0. 据定理 2.3.2知道齐次方程 𝑢 − 𝐾𝑢 = 0在
𝐿2(𝑈)中有非零解且 dim𝑁(𝐼 − 𝐾) = dim𝑁(𝐼 − 𝐾∗).

第 4步：验证解的存在性⇔ (𝑓, 𝑣) = 0 ∀𝑣 ∈ 𝑁∗。令 𝑣是 𝑈中（带有零边值的）方程 𝐿∗𝑣 = 0
（或等价地 𝑣 − 𝐾∗𝑣 = 0）的弱解。我们有

(ℎ, 𝑣) = 𝛾−1(𝐾𝑓, 𝑣) = 𝛾−1(𝑓, 𝐾∗𝑣) 𝑣=𝐾∗𝑣=== 𝛾−1(𝑓, 𝑣).

所以(𝐼 − 𝐾)𝑢 = ℎ有唯一解⇔对任意 𝑣 ∈ 𝑁∗ ∶= 𝑁(𝐼 − 𝐾∗)成立 ⟨ℎ, 𝑣⟩ = 0 ⇔ (𝑓, 𝑣) = 0.

现在我们得到如下存在性定理。

定理 2.3.5 (弱解第三存在性定理). 存在一个至多可数的集合 Σ ⊂ ℝ，使得如下边值问题对于每个
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给定的𝑓 ∈ 𝐿2(𝑈)有唯一弱解当且仅当 𝜆 ∉ Σ

𝐿𝑢 = 𝜆𝑢 + 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

若Σ是一个无限集，那么 Σ = {𝜆𝑘}𝑘∈ℕ∗ 是一个单调不减序列，且 𝜆𝑘 → +∞.

我们称 Σ为算子 𝐿的（实）谱。上述定理表明边值问题

𝐿𝑢 = 𝜆𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

具有非平凡解 𝑤 ≢ 0当且仅当 𝜆 ∈ Σ，在这种情况下 𝜆 被称为𝐿的特征值，而 𝑤 被称为对应的特
征函数。定理 2.3.5说明 𝐿的特征值必是一个趋于 +∞的不减序列。

证明. 令 𝛾 为定理 2.2.3中的常数并假设 𝜆 > −𝛾，不失一般性地假设 𝛾 > 0. 据 Fredholm二择一，
边值问题

𝐿𝑢 = 𝜆𝑢 + 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈

对每个给定的 𝑓 ∈ 𝐿2(𝑈)存在唯一弱解，当且仅当如下齐次问题只有零解

𝐿𝑢 = 𝜆𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

这件事情成立当且仅当 𝑢 = 0是如下方程的的唯一弱解:

𝐿𝑢 + 𝛾𝑢 = (𝜆 + 𝛾)𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

最后一个方程恰好在 𝑢 = 𝐿−1𝛾 (𝛾 + 𝜆)𝑢 = 𝛾+𝜆
𝛾
𝐾𝑢 时成立，其中 𝐾𝑢 ∶= 𝛾𝐿−1𝛾 𝑢. 我们知道若 𝑢 = 0是

唯一的弱解，那么
𝛾

𝛾+𝜆
就不是 𝐾的特征值。因此可见如果 𝛾

𝛾+𝜆
不是 𝐾的特征值，那么如下方程就

有唯一解

𝐿𝑢 = 𝜆𝑢 + 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈

因为𝐾 ∈ ℭ(𝐿2(𝑈))，据定理 2.3.3，我们知道 𝐾 的特征值要么是一个有限集，要么是一个趋于 0
的序列。这等价于当特征值有无穷多个时必有 𝜆𝑘 → +∞，因为 𝛾 > 0是给定的且 𝜆仅出现在 𝛾

𝛾+𝜆
的分母中。

习题 2.3

习题 2.3.1. 令Σ是𝐿的全体特征值构成的集合。给定实数 𝜆 ∉ Σ和函数 𝑓 ∈ 𝐿2(𝑈)，设 𝑢 ∈ 𝐻1
0(𝑈)

为如下方程的弱解

𝐿𝑢 = 𝜆𝑢 + 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

证明：存在常数 𝐶 > 0使得 ‖𝑢‖𝐿2(𝑈) ⩽ 𝐶‖𝑓‖𝐿2(𝑈).（提示：反证法。）
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2.4 线性椭圆算子的特征值问题

本节我们考虑椭圆算子的特征值问题

𝐿𝑤 = 𝜆𝑤 in 𝑈, 𝑤 = 0 on 𝜕𝑈. (2.4.1)

这里 𝑈 ⊂ ℝ𝑑 是具有光滑边界 𝜕𝑈的有界区域（这意味着连通性）。为了简单起见，我们只考虑对
称椭圆算子的情况，即假设

𝐿𝑢 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢), 𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝑎𝑖𝑗 ∈ 𝐶∞(𝑈). (2.4.2)

因此相应的双线性型也是对称的：对于任何 𝑢, 𝑣 ∈ 𝐻1
0(𝑈)成立𝐵[𝑢, 𝑣] = 𝐵[𝑣, 𝑢].

2.4.1 特征函数系的正交性

第一个定理给出的对称椭圆算子的特征值和特征函数的初步结论

定理 2.4.1 (对称椭圆算子的特征值). 𝐿的每个特征值都是实数。进一步地，若我们根据每个特征
值的（有限）重数重复列出，我们有 Σ = {𝜆𝑘}𝑘∈ℕ∗，其中

0 < 𝜆1 ⩽ 𝜆2 ⩽ ⋯ , lim
𝑘→∞

𝜆𝑘 = +∞.

最后，存在 𝐿2(𝑈)的一组标准正交基 {𝑤𝑘}𝑘∈ℕ∗，其中 𝑤𝑘 ∈ 𝐻1
0(𝑈)是对应于每个 𝑘 ∈ ℕ∗ 的特征值

𝜆𝑘 的特征函数：
𝐿𝑤𝑘 = 𝜆𝑘𝑤𝑘 in 𝑈, 𝑤𝑘 = 0 on 𝜕𝑈.

注记 2.4.1. 据2.5节中的正则性理论，𝑎𝑖𝑗的光滑性可以推出𝑤𝑘 ∈ 𝐶∞(𝑈)，并且实际上有 𝑤𝑘 ∈
𝐶∞(𝑈)（这要求 𝜕𝑈 也是 𝐶∞ 的）。

在证明这个定理之前，让我们简要回顾一下对称紧算子的谱理论。

对称紧算子的谱理论

设𝐻是复Hilbert空间。

定义 2.4.1. 我们称有界线性算子𝐴 ∶ 𝐻 → 𝐻是对对对称称称的的的，是指对所有 𝑥, 𝑦 ∈ 𝐻有 (𝐴𝑥, 𝑦) = (𝑥, 𝐴𝑦).
这里 (⋅, ⋅)是 𝐻 的内积。容易看出 𝐴是对称的当且仅当 𝐴 = 𝐴∗.

命题 2.4.2. 设𝐴 ∶ 𝐻 → 𝐻 为一个有界线性算子。那么 𝐴 是对称的当且仅当对于任何 𝑥 ∈ 𝐻 有
(𝐴𝑥, 𝑥) ∈ ℝ. 此情况下我们进一步有

(1) 𝜎(𝐴) ⊂ ℝ，且对任意的 𝑥 ∈ 𝐻, 𝜆 ∈ ℂ, Im 𝜆 ≠ 0有 ‖(𝜆𝐼 − 𝐴)−1𝑥‖ ⩽ ‖𝑥‖
|Im 𝜆|

.

(2) 令 𝐻1 ⊂ 𝐻 是 𝐻 的一个 𝐴-不变闭子空间，则 𝐴|𝐻1 在 𝐻1 上也是对称的。
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(3) 对于任何 𝜆, 𝜆′ ∈ 𝜎𝑝(𝐴)且 𝜆 ≠ 𝜆′，有 𝑁(𝜆𝐼 − 𝐴) ⟂ 𝑁(𝜆′𝐼 − 𝐴).
(4) ‖𝐴‖ = sup

‖𝑥‖=1
|(𝐴𝑥, 𝑥)|.

在 Hilbert空间上，对称紧算子的谱和结构与欧氏空间中实对称阵的特征值和结构非常相似。
特别地，我们知道任何实对称方阵都是可对角化的，且对角元恰好是特征值，这也说明实对称矩

阵的特征向量给出了欧氏空间的一组正交（归一化后为标准正交）基；此外二次型的临界值也是

特征值。这些性质对于 Hilbert空间上的对称紧算子也成立。

命题 2.4.3. 设𝐴 ∈ ℭ(𝐻)是对称的，则存在 𝑥0 ∈ 𝐻，‖𝑥0‖ = 1，使得

𝜆 ∶= |(𝐴𝑥0, 𝑥0)| = sup
‖𝑥‖=1

|(𝐴𝑥, 𝑥)|, 𝐴𝑥0 = 𝜆𝑥0.

命题 2.4.4. 设𝐴 ∈ ℭ(𝐻) 是对称的。那么存在一个至多可数的实数列 {𝜆𝑘}𝑘∈ℕ∗，其唯一可能的聚
点（如果存在）是 0，使得 {𝜆𝑘}恰好是 𝐴的特征值。此外存在 𝐻 的一组标准正交基 {𝑒𝑘}使得

𝑥 =
∑

𝑘⩾1
(𝑥, 𝑒𝑘)𝑒𝑘, 𝐴𝑥 =

∑

𝑘
𝜆𝑘(𝑥, 𝑒𝑘)𝑒𝑘.

命题 2.4.5 (Courant极小极大刻画). 设𝐴 ∈ ℭ(𝐻)是对称的，且有特征值 𝜆+1 ⩾ 𝜆+2 ⩾ ⋯ ⩾ 0 > ⋯ ⩾
𝜆−2 ⩾ 𝜆−1 . 那么

𝜆+𝑛 = inf
𝐸𝑛−1

sup
𝑥∈𝐸⟂𝑛−1
𝑥≠0

(𝐴𝑥, 𝑥)
(𝑥, 𝑥)

, 𝜆−𝑛 = sup
𝐸𝑛−1

inf
𝑥∈𝐸⟂𝑛−1
𝑥≠0

(𝐴𝑥, 𝑥)
(𝑥, 𝑥)

.

这里 𝐸𝑛−1 可以是 𝐻 的任何 (𝑛 − 1)维闭子空间。

我们现在证明定理 2.4.1.

定理2.4.1的证明. 设𝑆 = 𝐿−1 ∶ 𝐿2(𝑈) → 𝐿2(𝑈). 在之前的章节中我们已经证明了 𝑆 ∈ ℭ(𝐿2(𝑈))，
故只需验证 𝑆 在 𝐿2(𝑈)上是对称的。事实上，任取𝑓, 𝑔 ∈ 𝐿2(𝑈)并令 𝑢 ∶= 𝑆𝑓, 𝑣 ∶= 𝑆𝑔，则𝑢, 𝑣 ∈
𝐻1
0(𝑈)分别是 𝐿𝑢 = 𝑓 和 𝐿𝑣 = 𝑔（具有 Dirichlet边界条件）的弱解。因此我们有

(𝑆𝑓, 𝑔)𝐿2(𝑈) = (𝑢, 𝑔)𝐿2(𝑈) = 𝐵[𝑣, 𝑢] = 𝐵[𝑢, 𝑣] = (𝑓, 𝑣)𝐿2(𝑈) = (𝑓, 𝑆𝑔)𝐿2(𝑈).

进一步地，对于任何 𝑓 ∈ 𝐿2(𝑈)，我们有 (𝑆𝑓, 𝑓) = (𝑢, 𝑓) = 𝐵[𝑢, 𝑢] ⩾ 0。据命题 2.4.4可知，𝑆 的
特征值全为正实数，且相应的特征函数构成了 𝐿2(𝑈)的一组标准正交基。对 𝑆 的任何特征值（设
为 𝜂 > 0），如果对于某个 0 ≠ 𝑤 ∈ 𝐻1

0(𝑈) 有 𝑆𝑤 = 𝜂𝑤，则这等价于 𝐿𝑤 = 𝜆𝑤，其中 𝜆 = 𝜂−1。

我们在此指出，椭圆算子特征值的分布和特征函数的行为研究在数学物理中极其重要，至今

仍有许多未解决的问题。在以往的研究中， H. Weyl证明了一个里程碑式的结论：在具有光滑边



2.4 线性椭圆算子的特征值问题 49

界的有界区域 𝑈 ⊂ ℝ𝑑 中，(−∆)算子在 𝑈 中（零边值条件）的特征值满足

lim
𝑘→∞

𝜆𝑑∕2𝑘
𝑘 = (2𝜋)𝑑

ℒ𝑑(𝑈)𝛼(𝑑)
.

我们将在下一节中给出 𝐿的最小特征值 𝜆1 的刻画定理。𝜆1 > 0也被称为主特征值。

2.4.2 对称椭圆算子的主特征值变分原理

本节证明对称椭圆算子最小特征值的变分原理。

定理 2.4.6 (主特征值变分原理). 设𝜆1 > 0 为具有Dirichlet零边值的对称椭圆算子 𝐿（如 (2.4.1)-
(2.4.2)所定义）的主特征值。

(1) 主特征值有如下变分刻画

𝜆1 = min{𝐵[𝑢, 𝑢]|𝑢 ∈ 𝐻1
0(𝑈), ‖𝑢‖𝐿2(𝑈) = 1}. (2.4.3)

(2) 上述极小值在𝑢取成 𝑈内一个不变号的光滑函数 𝑤1 时达到，该𝑤1是特征值问题的解

𝐿𝑤1 = 𝜆1𝑤1 in 𝑈, 𝑤1 = 0 on 𝜕𝑈.

(3) 最后，若 𝑢 ∈ 𝐻1
0(𝑈)是如下方程的任一弱解

𝐿𝑢 = 𝜆1𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈,

那么 𝑢是𝑤1的常数倍。这表明 𝜆1必须是单特征值。特别地，我们有 0 < 𝜆1 < 𝜆2 ⩽ 𝜆3 ⩽ ⋯

证明. 首先我们知道 𝐿的特征函数（记作{𝑤𝑘}）构成 𝐿2(𝑈)的一组标准正交基，因此有 (𝑤𝑘, 𝑤𝑙)𝐿2(𝑈) =
𝛿𝑘𝑙. 此外注意到

𝐵[𝑤𝑘, 𝑤𝑙] = 𝜆𝑘(𝑤𝑘, 𝑤𝑙) = 𝜆𝑘𝛿𝑘𝑙 𝑘, 𝑙 ∈ ℕ∗,

这表明 {𝑤𝑘} 构成了 𝐻1
0(𝑈) 的一个正交子集（其内积定义为 (⋅, ⋅)𝐻1

0 (𝑈) = 𝐵[⋅, ⋅]）。对(1)只需证明
{𝑤𝑘}也给出了 𝐻1

0(𝑈)的一组正交基。
断言. {𝑤𝑘∕

√
𝜆𝑘}构成了 𝐻1

0(𝑈)的一组标准正交基。
证明该断言，则只需证明对于任意的 𝑘 ∈ ℕ∗，𝐵[𝑤𝑘, 𝑢] = 0能推出 𝑢 = 0. 而这是容易的，因

为任一个 𝑢 ∈ 𝐻1
0(𝑈)也属于 𝐿2(𝑈)，所以𝑢可以展开为

∞∑
𝑗=1

𝑑𝑗𝑤𝑗，于是

𝐵[𝑤𝑘, 𝑢] =
∞∑

𝑗=1
𝐵[𝑤𝑘, 𝑑𝑗𝑤𝑗] = 𝑑𝑘𝜆𝑘(𝑤𝑘, 𝑤𝑘)𝐿2(𝑈) = 0 ⇒ 𝑑𝑘 = 0 ∀𝑘 ∈ ℕ∗.
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今不妨设 ‖𝑢‖𝐿2(𝑈) = 1，于是我们得到
∞∑
𝑗=1

𝑑2𝑗 = 1，进一步可得下式在 𝐻1
0(𝑈)中收敛。

𝑢 =
∞∑

𝑗=1
𝑑𝑗
√
𝜆𝑗

𝑤𝑗
√
𝜆𝑗
,

据此断言很容易就推出：对于任何具有上述 𝐻1
0(𝑈)展开式的 𝑢，我们有

𝐵[𝑢, 𝑢] =
∞∑

𝑗=1
𝑑2𝑗𝜆𝑗 ⩾ 𝜆1

∞∑

𝑗=1
𝑑2𝑗 = 𝜆1,

且等号成立当且仅当 𝑢 = 𝑤1. (1)证毕。
(2)的证明依赖强极大值原理（定理 2.6.6）。首先我们作出如下断言

断言. 若𝑢 ∈ 𝐻1
0(𝑈)满足 ‖𝑢‖𝐿2(𝑈) = 1，则𝑢是如下特征值问题的弱解当且仅当 𝐵[𝑢, 𝑢] = 𝜆1.

𝐿𝑢 = 𝜆1𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

断言的证明. 断言的必要性部分是显然的，用𝐵[𝑢, 𝑣]的定义就能证出。接下来证明充分性，设 𝑢 ∈
𝐻1
0(𝑈)满足 ‖𝑢‖𝐿2(𝑈) = 1且 𝐵[𝑢, 𝑢] = 𝜆1,那么我们可以将 𝑢展开为

∞∑
𝑘=1

𝑑𝑘𝑤𝑘，其中 𝑑𝑘 = (𝑢,𝑤𝑘)𝐿2(𝑈)
且

∑
𝑘 𝑑

2
𝑘 = 1. 现在我们计算 𝐵[𝑢, 𝑢]：

𝜆1
∞∑

𝑘=1
𝑑2𝑘 = 𝜆1 = 𝐵[𝑢, 𝑢] =

∞∑

𝑘=1
𝑑2𝑘𝜆𝑘 ⇒

∞∑

𝑘=1
(𝜆𝑘 − 𝜆1)𝑑2𝑘 = 0,

上式表明对所有满足 𝜆𝑘 > 𝜆1 的 𝑘 必有 𝑑𝑘 = 0，而 𝜆1 的重数有限，故有

存在𝑚 ∈ ℕ∗, 𝑢 =
𝑚∑

𝑘=1
(𝑢, 𝑤𝑘)𝐿2(𝑈)𝑤𝑘, 𝐿𝑤𝑘 = 𝜆1𝑤𝑘 ∀1 ⩽ 𝑘 ⩽ 𝑚.

这说明 𝐿𝑢 = 𝜆1𝑢在弱意义下成立，断言证毕。

据此断言，我们可以证明(2). 现在假设 𝑢是如下特征值问题的一个非零弱解

𝐿𝑢 = 𝜆1𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈,

我们要证明在 𝑈 中要么𝑢 > 0恒成立，要么𝑢 < 0恒成立。不妨设 ‖𝑢‖𝐿2(𝑈) = 1，并令

𝛼 ∶= ∫
𝑈
(𝑢+)2 d𝒙, 𝛽 ∶= ∫

𝑈
(𝑢−)2 d𝒙
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其中 𝑢+ ∶= max{0, 𝑢}且 𝑢− ∶= max{0, −𝑢}满足 𝑢 = 𝑢+ − 𝑢− 和 |𝑢| = 𝑢+ + 𝑢−. 那么 ∫𝑈 𝑢2 d𝒙 = 1
意味着 𝛼 + 𝛽 = 1. 据命题 1.2.4，我们知道 𝑢± 也属于 𝐻1

0(𝑈)，且

𝜕𝑢+ =
⎧

⎨
⎩

𝜕𝑢 a.e. on {𝑢 > 0}
0 a.e. on {𝑢 ⩽ 0},

𝜕𝑢− =
⎧

⎨
⎩

0 a.e. on {𝑢 ⩾ 0}
−𝜕𝑢 a.e. on {𝑢 < 0},

因此有

𝐵[𝑢+, 𝑢−] = ∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢+𝜕𝑗𝑢− d𝒙 = 0 (因为 𝜕𝑢+, 𝜕𝑢− 至少有一个为零).

现在由断言以及𝐵[⋅, ⋅]的双线性可知

𝜆1 = 𝐵[𝑢, 𝑢] = 𝐵[𝑢+ − 𝑢−, 𝑢+ − 𝑢−] = 𝐵[𝑢+, 𝑢+] + 𝐵[𝑢−, 𝑢−] ⩾ 𝜆1𝛼 + 𝜆1𝛽 = 𝜆1.

这里最后一个不等式成立用到了(1)的结论和𝑢± ∈ 𝐻1
0(𝑈). 现在上面的不等式被迫等号成立，即

𝐵[𝑢±, 𝑢±] = 𝜆1‖𝑢±‖2𝐿2(𝑈). 据断言知，𝑢
±也是𝐿的主特征值𝜆1对应的特征函数。 据𝑎𝑖𝑗 ∈ 𝐶∞(𝑈)以及

椭圆正则性定理（见第 2.5 节），我们可证得 𝑢± ∈ 𝐶∞(𝑈). 所以我们在 𝑈 中有 𝐿𝑢+ = 𝜆1𝑢+ ⩾ 0.
（现在这是一个经典解，不仅是弱解！）由于 𝑈 连通，据强极大值原理（定理 2.6.6）有

要么 𝑢+ > 0在 𝑈 中恒成立, 要么 𝑢+ = 0在 𝑈 中恒成立.

接下来我们分别讨论这两种情况

(a) 若在 𝑈 中 𝑢+ > 0，那么结论得证，因为𝑢+ > 0恒成立自然推出𝑢 > 0恒成立。
(b) 若在 𝑈 中 𝑢+ = 0，那么在 𝑈 中有 𝑢 ⩽ 0恒成立。情况(b)中又分为两种不同情况

(b-1) 若在 𝑈 中始终有 𝑢 < 0，那么结论得证。

(b-2) 若存在 𝒙0 ∈ 𝑈 使得 𝑢(𝒙0) = 0，那么这也意味着 𝑢− 在 𝑈 中达到其最小值。而 𝑢− 也
是特征函数，我们在 𝑈 中有 𝐿𝑢− = 𝜆1𝑢− ⩾ 0恒成立。所以现在再用一次强极大值原
理就得到 𝑢− 必须是一个常数，且这个常数必须为零（因为 𝑢−(𝒙0) = 𝑢(𝒙0) = 0）。而
得到该结论的前提是𝑢+ = 0恒成立，结合刚刚证得的𝑢− = 0就迫使𝑢 = 0恒成立，这
与‖𝑢‖𝐿2(𝑈) = 1矛盾。

最后我们证明 (3). 如果 𝑢, 𝑢̃都是如下特征值问题的非零弱解

𝐿𝑢 = 𝜆1𝑢 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

那么据(2)得知 ∫𝑈 𝑢̃ d𝒙 ≠ 0，故存在常数 𝐶 ∈ ℝ使得

∫
𝑈
𝑢 − 𝐶𝑢̃ d𝒙 = 0.
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但 𝑢 − 𝐶𝑢̃也是对应于 𝜆1 的特征函数，若它不恒为零，则据(2)知它在区域内不变号，进而积分不
可能为零，所以我们证明了𝑢 − 𝐶𝑢̃ = 0在𝑈中恒成立。因此𝜆1 > 0必须是一个单特征值。

注记 2.4.2. (1)的结论也可以写成

𝜆1 = min
𝑢∈𝐻1

0 (𝑈)
𝑢≢0

𝐵[𝑢, 𝑢]
‖𝑢‖2𝐿2(𝑈)

.

本节的末尾我们介绍非对称椭圆算子的主特征值的性质，证明略去。假 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈ 𝐶∞(𝑈)，
其中 𝑈 是边界光滑的有界区域，[𝑎𝑖𝑗]是对称的且在 𝑈 中 𝑐 ⩾ 0。
定理 2.4.7 (非对称椭圆算子的主特征值). 定义 𝐿𝑢 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢，其中 𝑎𝑖𝑗, 𝑏𝑖, 𝑐满足上
述条件。则

(1) 算子 𝐿（带Dirichlet边界条件）存在一个实特征值 𝜆1，其满足：如果 𝜆 ∈ ℂ是任何其他特征
值，就必有 Re (𝜆) ⩾ 𝜆1.

(2) 存在一个相应的特征函数 𝑤1，它在 𝑈 内是正的。
(3) 特征值 𝜆1 是单特征值。

习题 2.4

习题 2.4.1 (Courant极小极大原理). 设 𝐿𝑢 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢)是对称椭圆算子。设𝐿(带零边界条件)的
特征值为 0 < 𝜆1 < 𝜆2 ⩽ ⋯证明：对于任意 𝑘 ∈ ℕ∗，有

𝜆𝑘 = max
𝑆∈Σ𝑘−1

min
𝑢∈𝑆⟂

‖𝑢‖𝐿2(𝑈)=1

𝐵[𝑢, 𝑢],

其中 Σ𝑘−1 表示 𝐻1
0(𝑈)全体 (𝑘 − 1)维子空间构成的集合。

习题 2.4.2. 设𝐿𝑢 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢)+ 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢是一致椭圆算子，在零边界条件下其主特征值为 𝜆1 >
0. 证明：对任意正整数𝑘有如下极大极小刻画成立：

𝜆1 = sup
𝑢∈𝐶∞(𝑈)
𝑢>0 in 𝑈
𝑢=0 on 𝜕𝑈

inf
𝒙∈𝑈

𝐿𝑢(𝒙)
𝑢(𝒙)

提示：考虑对应的伴随算子 𝐿∗ 的主特征值 𝜆1 的特征函数 𝑤∗
1，你可能需要用到定理 2.4.7。

习题 2.4.3. 考虑一族边界光滑的有界区域 𝑈(𝜏) ⊂ ℝ𝑑，它光滑地依赖于参数 𝜏 ∈ ℝ。随着 𝜏 的变
化，𝜕𝑈(𝜏)上的每个点以速度 𝐯 移动。对于每个 𝜏，我们考虑由

−∆𝑤 = 𝜆𝑤 in 𝑈(𝜏), 𝑤|𝜕𝑈(𝜏) = 0
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定义的特征值 𝜆 = 𝜆(𝜏)和相应的特征函数 𝑤 = 𝑤(𝒙; 𝜏)，并限制 ‖𝑤‖𝐿2(𝑈(𝜏)) = 1. 设 𝜆,𝑤 是 𝜏, 𝒙的
光滑函数。证明：

d𝜆
d𝜏 = −∫

𝜕𝑈(𝜏)

|||||||
𝜕𝑤
𝜕𝑁(𝒙; 𝜏)

|||||||

2
(𝐯 ⋅ 𝑁) d𝑆𝒙

其中 𝐯 ⋅ 𝑁 是边界 𝜕𝑈(𝜏)的法向速度。
提示：变分原理给出 𝜆(𝜏) = ∫𝑈(𝜏) |∇𝑤(𝒙)|2 d𝒙，然后计算 𝜆′(𝜏)，剩下的就是证明 ∫𝑈(𝜏) 𝜕𝜏|∇𝑤(𝒙; 𝜏)|2 =

2𝜆′(𝜏)，其中要利用 ‖𝑤‖𝐿2(𝑈(𝜏)) ≡ 1来证明 d
d𝜏
‖𝑤‖2𝐿2(𝑈(𝜏)) = 0.

注记 2.4.3. 本题的结论表明随着区域 𝑈 的扩大，(−∆)的主特征值会变小。

问题 2.4

问题 2.4.1. 给出定理 2.4.6 (1)的一个变分证明。定义泛函

𝐼[𝑤] = 1
2 ∫𝑈

|∇𝑤|2 d𝒙, 𝑤 ∈ 𝒜 ∶= {𝑤 ∈ 𝐻1
0(𝑈)|‖𝑤‖𝐿2(𝑈) = 1 in 𝑈}.

(1) 任取序列 {𝑢𝑛} ⊂ 𝒜 使得 𝐼[𝑢𝑛] → 𝑚 ∶= inf
𝑤∈𝒜

𝐼[𝑤]. 证明：存在子列 {𝑢𝑛𝑘 }在𝐻
1
0(𝑈)中弱收敛到

某个𝑢，且𝐼[𝑢] ⩽ 𝑚.
(2) 证明：𝑢 ∈ 𝒜，因此 𝑢 是所求的极小化子且满足 𝐼[𝑢] = 𝑚。（提示：用紧嵌入 𝐻1

0(𝑈) →→
𝐿2(𝑈)。）

(3) 固定 𝑣 ∈ 𝐻1
0(𝑈)并选取𝑤 ∈ 𝐻1

0(𝑈)使得∫𝑈 𝑢𝑤 d𝒙 ≠ 0.考虑由 𝑗(𝜏, 𝜎) ∶= ∫𝑈(𝑢+𝜏𝑣+𝜎𝑤)2 d𝒙−1
定义的扰动。证明：存在 𝜙 ∈ 𝐶1(ℝ)满足𝜙(0) = 0，且对于任意充分小的 |𝜏|有 𝑗(𝜏, 𝜙(𝜏)) = 0.
然后验证

𝜙′(0) = −
∫𝑈 𝑢𝑣 d𝒙
∫𝑈 𝑢𝑤 d𝒙.

(4) 令𝑤(𝜏) ∶= 𝜏𝑣 + 𝜙(𝜏)𝑤，然后对于充分小的 |𝜏|令 𝑖(𝜏) ∶= 𝐼[𝑢 + 𝑤(𝜏)]. 利用𝑖′(0) = 0证明存在
𝜆 ∈ ℝ使得对任意𝑣 ∈ 𝐻1

0(𝑈)都有

∫
𝑈
∇𝑢 ⋅ ∇𝑣 d𝒙 = 𝜆 ∫

𝑈
𝑢𝑣 d𝒙.

(5) 证明 (4)中的 𝜆恰好是 𝜆1，即 𝑈 中具有Dirichlet零边值条件时 (−∆)的主特征值。

2.5 椭圆正则性定理

我们现在来讨论方程 𝐿𝑢 = 𝑓 在 𝑈 中的弱解 𝑢 是否“足够正则”这个问题。设 𝑓 ∈ 𝐿2(𝑈)，
由于 𝐿是一个二阶微分算子，我们期望解 𝑢在某种意义下是二阶可微的。然而我们仍然必须选择
一类合适的函数空间来实现这种二阶可微性。事实上我们有：
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• 𝑓 ∈ 𝐿2(𝑈) ⇒ 𝑢 ∈ 𝐻2(𝑈).
• 𝑓 ∈ 𝐶(𝑈) ⇏ 𝑢 ∈ 𝐶2(𝑈),反例请参考习题 2.5.2.
• 对𝛼 ∈ (0, 1),成立𝑓 ∈ 𝐶0,𝛼(𝑈) ⇒ 𝑢 ∈ 𝐶2,𝛼(𝑈).

本节我们考虑 (2.0.1) 的𝐻1
0(𝑈)-弱解的正则性，其中𝐿的定义如(2.0.2)所述。当𝑓 ∈ 𝐿2(𝑈)时，

首先应设法将𝑢的可微性提高到二阶。事实上，如果我们考虑 ℝ𝑑 中的方程 −∆𝑢 = 𝑓，假设 𝑢 是
一个光滑解且当|𝒙| → ∞时快速衰减到0，则有

∫
ℝ𝑑
𝑓2 d𝒙 = ∫

ℝ𝑑
(∆𝑢)2 d𝒙 =∫

ℝ𝑑
(𝜕𝑖𝜕𝑖𝑢)(𝜕𝑗𝜕𝑗𝑢) d𝒙 = −∫

ℝ𝑑
𝜕𝑗𝜕𝑖𝜕𝑖𝑢 𝜕𝑗𝑢 d𝒙

=∫
ℝ𝑑
(𝜕𝑖𝜕𝑗𝑢)2 = ∫

ℝ𝑑
|∇2𝑢|2 d𝒙.

进一步地，若𝑓 ∈ 𝐻𝑚，则 𝑢 的正则性“应当为” 𝐻𝑚+2。到最后可以证得：如果𝑓 和 𝐿 的系数都
是 𝐶∞的，那么方程的解𝑢也有𝐶∞正则性。这里需指出𝐻1

0(𝑈) 弱解的二阶（弱）导数存在性由下
一节讨论的Sobolev函数差商性质所保证，从某种程度上来说，这与微积分里面证明导数存在时总
是去考虑证明差商的逐点存在性的想法是类似的。

2.5.1 Sobolev函数的差商

在微积分中，当我们想证明一个函数 𝑓(𝒙)具有 𝜕𝑖 导数时，只需验证差商的极限存在，即

lim
ℎ→0

𝑓(𝒙 + ℎ𝑒𝑖) − 𝑓(𝒙)
ℎ 存在.

对于 Sobolev 函数，我们想要模仿该方法得到类似的结论，但该类极限的存在性是通过弱收敛而
不是逐点收敛获得的。设𝑓 ∶ 𝑈 → ℝ是 𝑈 中的局部可积函数，且令 𝑉 ⋐ 𝑈.

定义 2.5.1. 给定𝒙 ∈ 𝑉, ℎ ∈ ℝ充分小使得0 < |ℎ| < dist (𝑉, 𝜕𝑈)，我们定义函数𝑓在第𝑖分量上尺度
为ℎ的差商

𝐷ℎ
𝑖 𝑓(𝒙) ∶=

𝑓(𝒙 + ℎ𝑒𝑖) − 𝑓(𝒙)
ℎ , 1 ⩽ 𝑖 ⩽ 𝑑.

并记 𝐷ℎ𝑓 ∶= (𝐷ℎ
1𝑓,⋯ ,𝐷ℎ

𝑑𝑓).
命题 2.5.1 (差商与弱导数). 如下两个结论成立。

(1) 设 1 ⩽ 𝑝 < ∞ 且 𝑓 ∈ 𝑊1,𝑝(𝑈)。那么存在常数𝐶 > 0使得对任意 𝑉 ⋐ 𝑈 以及任意 0 < |ℎ| <
1
2
dist (𝑉, 𝜕𝑈)都有

‖𝐷ℎ𝑓‖𝐿𝑝(𝑉) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(𝑈).

(2) 设 1 < 𝑝 < ∞，𝑓 ∈ 𝐿𝑝(𝑉)，且存在常数 𝐶 > 0使得

‖𝐷ℎ𝑓‖𝐿𝑝(𝑉) ⩽ 𝐶, ∀0 < |ℎ| < 1
2dist (𝑉, 𝜕𝑈).



2.5 椭圆正则性定理 55

那么

𝑓 ∈ 𝑊1,𝑝(𝑉), ‖∇𝑓‖𝐿𝑝(𝑉) ⩽ 𝐶.

注意，如果我们考虑切切切向向向导导导数数数对应的结论，那么 𝑉 ⋐ 𝑈 是多余的。

证明. (1)由于 𝑝 < ∞，我们不妨假设 𝑓 是光滑的（否则我们使用光滑逼近）。那么对任意𝒙 ∈ 𝑉，
1 ⩽ 𝑖 ⩽ 𝑑以及 0 < |ℎ| < 1

2
dist (𝑉, 𝜕𝑈)，我们有

|𝑓(𝒙 + ℎ𝑒𝑖) − 𝑓(𝒙)| ⩽ |ℎ| ∫
1

0
|∇𝑓(𝒙 + 𝑡ℎ𝑒𝑖)| d𝑡.

于是有

∫
𝑉
|𝐷ℎ𝑓|𝑝 d𝒙 ⩽ 𝐶

𝑑∑

𝑖=1
∫
𝑉
∫
1

0
|∇𝑓(𝒙 + 𝑡ℎ𝑒𝑖)|𝑝 d𝑡 d𝒙 = 𝐶

𝑑∑

𝑖=1
∫
1

0
∫
𝑉
|∇𝑓(𝒙 + 𝑡ℎ𝑒𝑖)|𝑝 d𝒙 d𝑡.

这立即推出 ‖𝐷ℎ𝑓‖𝐿𝑝(𝑉) ⩽ 𝐶‖∇𝑓‖𝐿𝑝(𝑈)。
对 (2)，设𝑓 ∈ 𝐿𝑝(𝑈)，我们只需注意到以下“分部积分”公式对于差商成立（实际上这只是

变量替换的结果）：

∫
𝑉
𝑓(𝐷ℎ

𝑖 𝜑) d𝒙 = −∫
𝑉
(𝐷−ℎ

𝑖 𝑓)𝜑 d𝒙 ∀𝜑 ∈ 𝐶∞
𝑐 (𝑉), 1 ⩽ 𝑖 ⩽ 𝑑. (2.5.1)

由据‖𝐷−ℎ
𝑖 𝑓‖𝐿𝑝(𝑉)关于ℎ一致有界以及1 < 𝑝 < ∞知，存在子列 ℎ𝑘 → 0和 𝑣𝑖 ∈ 𝐿𝑝(𝑉)使得

𝐷−ℎ𝑘
𝑖 𝑓 ⇀ 𝑣𝑖 在 𝐿𝑝(𝑉)中弱收敛.

注意这里 1 < 𝑝 < ∞是必要的，否则 𝐿𝑝 空间不是自反的，进而无法得到弱收敛。将其代回“分
部积分”公式并取极限 ℎ𝑘 → 0，我们得到

∫
𝑈
𝑓𝜕𝑖𝜑 d𝒙 = ∫

𝑉
𝑓𝜕𝑖𝜑 d𝒙 = − lim

ℎ𝑘→0
∫
𝑉
𝐷−ℎ𝑘
𝑖 𝑓𝜑 d𝒙 = −∫

𝑉
𝑣𝑖𝜑 d𝒙 = −∫

𝑈
𝑣𝑖𝜑 d𝒙.

因此𝑣𝑖恰好是𝑓的𝜕𝑖-弱导数，故∇𝑓 ∈ 𝐿𝑝(𝑉), 𝑓 ∈ 𝑊1,𝑝(𝑉).

2.5.2 椭圆内正则性定理

本节证明二阶椭圆方程的内部正则性定理。

定理 2.5.2 (内部椭圆正则性). 设 𝑎𝑖𝑗 ∈ 𝐶1(𝑈), 𝑏𝑖, 𝑐 ∈ 𝐿∞(𝑈)且 𝑓 ∈ 𝐿2(𝑈). 又设 𝑢 ∈ 𝐻1(𝑈)是方程
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𝐿𝑢 = 𝑓 在 𝑈 中的一个弱解。那么 𝑢 ∈ 𝐻2
loc(𝑈)，且对任意开集 𝑉 ⋐ 𝑈，我们有估计

‖𝑢‖𝐻2(𝑉) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈) + ‖𝑢‖𝐿2(𝑈)), (2.5.2)

其中 𝐶 > 0仅依赖 𝑉,𝑈 以及 𝐿的系数。
注意内部正则性与 𝑢的边界值无关，因此不需要假设 𝑢 ∈ 𝐻1

0(𝑈)。此外由于 𝑢 ∈ 𝐻2
loc(𝑈)，我

们实际上证得了𝐿𝑢 = 𝑓在𝑈中几乎处处成立。因此𝑢实际上在𝑈中几乎处处给出了方程的点态解。
通过对 𝑓 和 𝐿系数的可微阶数进行归纳，容易证明以下两个推论，证明略去。

推论 2.5.3 (高阶椭圆内部正则性). 设 𝑚 ∈ ℕ，𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈ 𝐶𝑚+1(𝑈)且 𝑓 ∈ 𝐻𝑚(𝑈). 又设 𝑢 ∈ 𝐻1(𝑈)
是方程 𝐿𝑢 = 𝑓 在 𝑈 中的一个弱解。那么 𝑢 ∈ 𝐻𝑚+2

loc (𝑈)，且对任意开集 𝑉 ⋐ 𝑈，我们有估计

‖𝑢‖𝐻𝑚+2(𝑉) ⩽ 𝐶(‖𝑓‖𝐻𝑚(𝑈) + ‖𝑢‖𝐿2(𝑈)), (2.5.3)

其中 𝐶 > 0仅依赖 𝑚,𝑉,𝑈 以及 𝐿的系数。
推论 2.5.4 (𝐶∞椭圆内部正则性). 设 𝑎𝑖𝑗, 𝑏𝑖, 𝑐, 𝑓 ∈ 𝐶∞(𝑈)，又设𝑢 ∈ 𝐻1(𝑈)是 𝐿𝑢 = 𝑓在 𝑈中的一
个弱解，则 𝑢 ∈ 𝐶∞(𝑈).

定理 2.5.2的证明. 不妨设𝑏𝑖 = 𝑐 = 0，否则将低阶项移到右侧。据𝑢 ∈ 𝐻1
0(𝑈)弱解定义可得

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 d𝒙 = ∫

𝑈
𝑓𝑣 d𝒙, ∀𝑣 ∈ 𝐻1

0(𝑈). (2.5.4)

我们现在需要选取合适的 𝑣 使得：

• 左侧(在分部积分后)给出 𝐷ℎ(∇𝑢)的 𝐿2(𝑈)范数。
• 𝑣 在边界上为零。也就是说我们必须将所有要算的估计“局部化”到远离边界 𝜕𝑈 的地方。

满足第一个要求并不困难，但对第二个要求，我们应考虑在 𝑣 中插入某些截断函数。固定一
个开子集 𝑉 ⋐ 𝑈 并选取𝑊 使得 𝑉 ⋐ 𝑊 ⋐ 𝑈。接着我们选取满足如下条件的光滑截断函数 𝜁：

𝜁 = 1 in 𝑉, 𝜁 = 0 in ℝ𝑑∖𝑊, 0 ⩽ 𝜁 ⩽ 1.

这对于将所有要算的估计“局部化”到远离边界 𝜕𝑈 的地方是必要的。
令 |ℎ| > 0充分小，并对 1 ⩽ 𝑘 ⩽ 𝑑定义 𝑣 ∶= −𝐷−ℎ

𝑘 (𝜁2𝐷ℎ
𝑘𝑢)，我们有

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 d𝒙 = − ∫

𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗(𝐷−ℎ

𝑘 (𝜁2𝐷ℎ
𝑘𝑢)) d𝒙 = −∫

𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝐷−ℎ

𝑘 (𝜕𝑗(𝜁2𝐷ℎ
𝑘𝑢)) d𝒙

利用 (2.5.1) =∫
𝑈
𝐷ℎ
𝑘 (𝑎𝑖𝑗𝜕𝑖𝑢)𝜕𝑗(𝜁2𝐷

ℎ
𝑘𝑢) d𝒙

=∫
𝑈
𝑎𝑖𝑗(𝒙 + ℎ𝑒𝑘) (𝐷ℎ

𝑘𝜕𝑖𝑢)𝜁2(𝐷
ℎ
𝑘𝜕𝑗𝑢) d𝒙 + 𝐴1
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其中

𝐴1 ∶=∫
𝑈
𝑎𝑖𝑗(𝒙 + ℎ𝑒𝑘) 𝜕𝑗(𝜁2) (𝐷ℎ

𝑘𝜕𝑖𝑢)(𝐷
ℎ
𝑘𝑢) + (𝐷ℎ

𝑘𝑎𝑖𝑗)𝜕𝑖𝑢(𝜁2𝐷
ℎ
𝑘𝜕𝑗𝑢 + 𝜕𝑗(𝜁2) 𝐷ℎ

𝑘𝑢) d𝒙.

由于 𝐿是一致椭圆的，我们有

∫
𝑈
𝑎𝑖𝑗(𝒙 + ℎ𝑒𝑘) (𝐷ℎ

𝑘𝜕𝑖𝑢)𝜁2(𝐷
ℎ
𝑘𝜕𝑗𝑢) d𝒙 ⩾ 𝜃 ∫

𝑈
𝜁2|𝐷ℎ

𝑘∇𝑢|2 d𝒙

这给出了我们想要的 ‖𝜁(𝐷ℎ
𝑘∇𝑢)‖𝐿2(𝑈). 而𝐴1直接控制如下：对于任何适当小的 𝜀 > 0有

|𝐴1| ⩽ 𝐶‖𝑎𝑖𝑗‖𝐶1(𝑈)
(
‖𝜁𝐷ℎ

𝑘∇𝑢‖𝐿2(𝑈)‖𝐷
ℎ
𝑘𝑢‖𝐿2(𝑈) + ‖𝐷ℎ

𝑘∇𝑢‖𝐿2(𝑈)‖∇𝑢‖𝐿2(𝑈) + ‖𝐷ℎ
𝑘𝑢‖𝐿2(𝑈)‖∇𝑢‖𝐿2(𝑈)

)

⩽ 𝜀‖𝜁𝐷ℎ
𝑘∇𝑢‖

2
𝐿2(𝑈) +

𝐶′

𝜀
(
‖𝐷ℎ

𝑘𝑢‖
2
𝐿2(𝑈) + ‖∇𝑢‖2𝐿2(𝑈)

)

现在我们选取 𝜀 ∈ (0, 𝜃
2
)使得 𝜀‖𝜁𝐷ℎ

𝑘∇𝑢‖
2
𝐿2(𝑈) 可以被 𝜃‖𝜁𝐷ℎ

𝑘∇𝑢‖
2
𝐿2(𝑈) 吸收

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 d𝒙 ⩾

𝜃
2‖𝜁𝐷

ℎ
𝑘∇𝑢‖

2
𝐿2(𝑈) − 𝐶‖∇𝑢‖2𝐿2(𝑈). (2.5.5)

另一方面，我们有

‖𝐷−ℎ
𝑘 (𝜁2𝐷ℎ

𝑘𝑢)‖
2
𝐿2(𝑈) ⩽ ‖∇(𝜁2𝐷ℎ

𝑘𝑢)‖
2
𝐿2(𝑈) ⩽ 𝐶 (∫

𝑊
|𝜁2∇𝐷ℎ

𝑘𝑢|2 d𝒙 + ∫
𝑊
|∇(𝜁2)||𝐷ℎ

𝑘𝑢|2 d𝒙)

⩽ 𝐶
(
‖∇𝑢‖2𝐿2(𝑈) + ‖𝜁(𝐷ℎ

𝑘∇𝑢)‖
2
𝐿2(𝑈)

)
.

再用带𝜀的 Young不等式可得到

∫
𝑈
𝑓𝑣 d𝒙 ⩽ 𝜀‖𝑣‖2𝐿2(𝑈) +

𝐶
𝜀 ‖𝑓‖

2
𝐿2(𝑈) ⩽ 𝐶𝜀

(
‖∇𝑢‖2𝐿2(𝑈) + ‖𝜁(𝐷ℎ

𝑘∇𝑢)‖
2
𝐿2(𝑈)

)
+ 𝐶′′‖𝑓‖2𝐿2(𝑈).

选取 𝜀 ∈ (0, 𝜃
4𝐶
),我们就得到

∫
𝑈
𝑓𝑣 d𝒙 ⩽ 𝜃

4‖𝜁𝐷
ℎ
𝑘∇𝑢‖

2
𝐿2(𝑈) + 𝐶

(
‖∇𝑢‖2𝐿2(𝑈) + ‖𝑓‖2𝐿2(𝑈)

)
(2.5.6)

结合(2.5.4), (2.5.5)以及 (2.5.6)可得

∫
𝑉
|𝐷ℎ

𝑘∇𝑢|2 d𝒙 ⩽ ∫
𝑈
𝜁2|𝐷ℎ

𝑘∇𝑢|2 d𝒙 ⩽ 𝐶 ∫
𝑈
|𝑓|2 + |∇𝑢|2 d𝒙.
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至此我们证明了∇𝑢 ∈ 𝐻1
loc(𝑈)以及𝑢 ∈ 𝐻2

loc(𝑈)，且有估计

‖𝑢‖𝐻2(𝑉) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈) + ‖𝑢‖𝐻1(𝑈)).

最后一步是用 ‖𝑢‖𝐿2(𝑈)替换 ‖𝑢‖𝐻1(𝑈). 实际上在 (2.5.4)中令𝑣 ∶= 𝜁2𝑢就很容易得到结论。模仿上述
步骤可以证得

‖𝑢‖𝐻1(𝑉) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈) + ‖𝑢‖𝐿2(𝑈)).

因此，我们得出结论

‖𝑢‖𝐻2(𝑉) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈) + ‖𝑢‖𝐿2(𝑈)).

2.5.3 *椭圆整体正则性定理

现在我们将椭圆正则性估计做到整个区域以证明弱解的整体正则性。本节证明以下结论：

定理 2.5.5 (椭圆边界正则性). 设𝑈 是一个具有 𝐶2 边界 𝜕𝑈 的有界开集。设 𝑎𝑖𝑗 ∈ 𝐶1(𝑈), 𝑏𝑖, 𝑐 ∈
𝐿∞(𝑈)且 𝑓 ∈ 𝐿2(𝑈)，又设 𝑢 ∈ 𝐻1

0(𝑈)是 (2.0.1)的弱解：

𝐿𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

那么 𝑢 ∈ 𝐻2(𝑈)，且满足

‖𝑢‖𝐻2(𝑈) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈) + ‖𝑢‖𝐿2(𝑈)). (2.5.7)

这里常数 𝐶 > 0依赖 𝑈 和 𝐿的系数。

注记 2.5.1. 如果 𝑢 ∈ 𝐻1
0(𝑈)是 (2.0.1)的唯一弱解，那么据习题 2.3.1，上述估计可以简化为

‖𝑢‖𝐻2(𝑈) ⩽ 𝐶‖𝑓‖𝐿2(𝑈). (2.5.8)

同样地，如果对 𝑓 和 𝐿系数的可微阶数进行归纳，就很容易证明以下两个推论。

推论 2.5.6 (高阶椭圆整体正则性). 设 𝑚 ∈ ℕ，𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈ 𝐶𝑚+1(𝑈)，𝑓 ∈ 𝐻𝑚(𝑈) 且 𝜕𝑈 ∈ 𝐶𝑚+2。

进一步假设 𝑢 ∈ 𝐻1
0(𝑈)是如下方程的弱解

𝐿𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

那么 𝑢 ∈ 𝐻𝑚+2(𝑈)，且有估计

‖𝑢‖𝐻𝑚+2(𝑈) ⩽ 𝐶(‖𝑓‖𝐻𝑚(𝑈) + ‖𝑢‖𝐿2(𝑈)), (2.5.9)
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其中常数 𝐶 > 0依赖 𝑚,𝑈 和 𝐿的系数。如果 𝑢 ∈ 𝐻1
0(𝑈)是唯一的弱解，上述估计可以简化为

‖𝑢‖𝐻𝑚+2(𝑈) ⩽ 𝐶‖𝑓‖𝐻𝑚(𝑈). (2.5.10)

推论 2.5.7 (𝐶∞ 椭圆整体正则性). 设 𝑎𝑖𝑗, 𝑏𝑖, 𝑐, 𝑓 ∈ 𝐶∞(𝑈)且 𝜕𝑈 ∈ 𝐶∞，又设 𝑢 ∈ 𝐻1
0(𝑈)是如下方

程的弱解

𝐿𝑢 = 𝑓 in 𝑈, 𝑢 = 0 on 𝜕𝑈.

则𝑢 ∈ 𝐶∞(𝑈).

定理 2.5.5的证明. 首先局部正则性（定理 2.5.2）表明 𝐿𝑢 = 𝑓 在 𝑈 中 a.e. 成立，而不仅是
在弱意义下成立。事实上定理 2.5.2 告诉我们：对任意𝜑 ∈ 𝐶∞

𝑐 (𝑈)都有 𝐵[𝑢, 𝜑] = (𝑓, 𝜑)，因此
(𝐿𝑢 − 𝑓, 𝜑)𝐿2(𝑈) = 0，再用引理 1.1.2即得𝐿𝑢 − 𝑓 = 0在𝑈中几乎处处成立。
给定 𝒙0 ∈ 𝜕𝑈，我们知道存在 𝑟 > 0和 𝐶2 函数 𝛾 ∶ ℝ𝑑−1 → ℝ使得

𝑈 ∩ 𝐵(𝒙0, 𝑟) = {𝒙 ∈ 𝐵(𝒙0, 𝑟)|𝑥𝑑 > 𝛾(𝑥1,⋯ , 𝑥𝑑−1)}.

此外存在微分同胚 Φ和足够小的 𝑠 > 0使得 𝒚 = Φ(𝒙)以及

𝑈′ ∶= 𝐵(𝟎, 𝑠) ∩ {𝑦𝑑 > 0} ⊂ Φ(𝑈 ∩ 𝐵(𝒙0, 𝑟)).

由于 𝑈 有界，我们可用有限多个此类开球覆盖住边界 𝜕𝑈，并通过上述微分同胚将每个开集的弯
曲边界拉直。因此为简单起见，我们可假设 𝑈 = 𝐵(𝟎, 1) ∩ ℝ𝑑

+. 该情况下 𝜕1,⋯ , 𝜕𝑑−1 是切向导数，
而切向正则性已经满足定理 2.5.2的结论，所以余下只要计算涉及 𝜕𝑑 的法向导数估计。

令 𝑈 = 𝐵(𝟎, 1) ∩ ℝ𝑑
+, 𝑉 = 𝐵(𝟎, 1

2
) ∩ ℝ𝑑

+. 选取截断函数 𝜁 ∈ 𝐶∞(𝑈)使得

𝜁 = 1 in 𝐵(𝟎, 12), Spt 𝜁 ⊂ 𝐵(𝟎, 1), 0 ⩽ 𝜁 ⩽ 1.

现在 𝑢是 (2.0.1)的一个弱解，据定义我们得到

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑣 d𝒙 = ∫

(
𝑓 − 𝑏𝑖𝜕𝑖𝑢 − 𝑐𝑢

)
𝑣 d𝒙 ∀𝑣 ∈ 𝐻1

0(𝑈). (2.5.11)

对于 1 ⩽ 𝑘 ⩽ 𝑑 − 1，在 (2.5.11)中取 𝑣 = −𝐷ℎ
𝑘 (𝜁2𝐷

ℎ
𝑘𝑢)，模仿定理 2.5.2的证明可得

∫
𝑉
|𝐷ℎ

𝑘∇𝑢|2 d𝒙 ⩽ 𝐶 ∫
𝑈
|𝑓|2 + |𝑢|2 + |∇𝑢|2 d𝒙 ∀1 ⩽ 𝑘 ⩽ 𝑑 − 1. (2.5.12)

这实际上给出法向导数至多1阶时的二阶导数估计

‖𝜕𝑖𝜕𝑗𝑢‖2𝐿2(𝑉) ⩽ 𝐶
(
‖𝑓‖2𝐿2(𝑈) + ‖𝑢‖2𝐿2(𝑈) + ‖∇𝑢‖2𝐿2(𝑈)

)
, ∀𝑖 + 𝑗 < 2𝑑. (2.5.13)
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余下只需控制纯法向导数𝜕2𝑑𝑢，此时我们不必像上面那样计算差商，否则𝒙 + ℎ𝑒𝑘可能跑出这个区
域。实际上，从方程本身可以看出：二阶法向导数𝜕2𝑑𝑢可以直接用各个 𝜕𝑖𝜕𝑗𝑢（𝑖 + 𝑗 < 2𝑑，即至少
有一个切向导数）以及低阶项表示出来，而这些项已经在 (2.5.13) 中得到了控制。具体来说，因
为𝐿𝑢 = 𝑓 在 𝑈 中几乎处处成立（可见这一步是必要的！），所以有

𝑎𝑑𝑑𝜕2𝑑𝑢 = −
∑

𝑖+𝑗<2𝑑
𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢) + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢 − 𝑓 − 𝜕𝑑𝑢𝜕𝑑𝑎𝑑𝑑.

此外一致椭圆性条件意味着 𝑎𝑑𝑑 ⩾ 𝜃，固有

‖𝜕2𝑑𝑢‖
2
𝐿2(𝑉) ⩽ 𝐶

(
‖𝑓‖2𝐿2(𝑈) + ‖𝑢‖2𝐻1(𝑈)

)
. (2.5.14)

模仿定理 2.5.2证明中的最后一步，我们可以改进不等式右边如下：

‖𝜕2𝑑𝑢‖
2
𝐿2(𝑉) ⩽ 𝐶

(
‖𝑓‖2𝐿2(𝑈) + ‖𝑢‖2𝐿2(𝑈)

)
, (2.5.15)

这连同 (2.5.13)就给出了我们想要的估计

‖𝑢‖2𝐻2(𝑉) ⩽ 𝐶
(
‖𝑓‖2𝐿2(𝑈) + ‖𝑢‖2𝐿2(𝑈)

)
. (2.5.16)

习题 2.5

习题 2.5.1. 设𝑢 ∈ 𝐻1(ℝ𝑑) 具有紧支集，且是 ℝ𝑑 中的方程 −∆𝑢 + 𝑐(𝑢) = 𝑓 的一个弱解。这里
𝑓 ∈ 𝐿2(ℝ𝑑)，光滑函数𝑐 ∶ ℝ → ℝ满足 𝑐(0) = 0以及 𝑐′ ⩾ 0.证明: 𝑢 ∈ 𝐻2(ℝ𝑑)。
提示：模仿内部正则性定理的证明，但不需要插入截断函数 𝜁.

习题 2.5.2. 记 𝒙 = (𝑥1, 𝑥2), 𝐵(𝟎, 𝑟) = 𝐵(𝟎, 𝑅) ⊂ ℝ2 并要求 𝑅 < 1. 今考虑方程

∆𝑢 =
𝑥22 − 𝑥21
2|𝒙|2

⎛
⎜
⎝

4
√
− ln |𝒙|

+ 1

2(− ln |𝒙|)
3
2

⎞
⎟
⎠

如果我们将上述方程右端项在原点处的值设为0，则它在 𝐵(𝟎, 𝑟)中是连续的。现在定义

𝑢(𝒙) ∶=
√
− ln |𝒙|(𝑥21 − 𝑥22)Θ

证明：

(1) 𝑢 ∈ 𝐶(𝐵(𝟎, 𝑟)) ∩ 𝐶∞(𝐵(𝟎, 𝑟)∖{𝟎}) 在 𝐵(𝟎, 𝑟)∖{𝟎} 中满足上述方程，且边界条件为𝑢|𝜕𝐵(𝟎,𝑟) =√
− ln𝑅(𝑥21 − 𝑥22).
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(2) lim
|𝒙|→0

𝜕21𝑢 = ∞，这说明 𝑢 ∉ 𝐶2(𝐵(𝟎, 𝑟)).

习题 2.5.3. 给出一个 𝑓 ∈ 𝐿1(𝑈) 的反例，使得对于任意 0 < |ℎ| < 1
2
dist (𝑉, 𝜕𝑈) 有 ‖𝐷ℎ𝑓‖𝐿1(𝑉) ⩽

𝐶成立，但 𝑓 ∉ 𝑊1,1(𝑉).

习题 2.5.4. 本习题旨在补全当 𝑈 ≠ 𝐵(𝟎, 1) ∩ 𝑅𝑑+ 时定理 2.5.5的证明。如证明中所述，给定 𝒙0 ∈
𝜕𝑈，存在 𝑟 > 0和𝐶2 函数 𝛾 ∶ ℝ𝑑−1 → ℝ使得

𝑈 ∩ 𝐵(𝒙0, 𝑟) = {𝒙 ∈ 𝐵(𝒙0, 𝑟)|𝑥𝑑 > 𝛾(𝑥1,⋯ , 𝑥𝑑−1)}.

此外存在微分同胚 Φ和足够小的 𝑠 > 0使得 𝒚 = Φ(𝒙)（或 𝒙 = Ψ(𝒚)）且

𝑈′ ∶= 𝐵(𝟎, 𝑠) ∩ {𝑦𝑑 > 0} ⊂ Φ(𝑈 ∩ 𝐵(𝒙0, 𝑟))Θ

同时也记 𝑉′ ∶= 𝐵(𝟎, 𝑠
2
) ∩ {𝑦𝑑 > 0}.

(1) 证明 | det(∇Φ)| = 1.

(2) 定义 𝑢′(𝒚) ∶= 𝑢(Ψ(𝒚)),证明 𝑢′ ∈ 𝐻1
0(𝑈′)是如下方程的弱解

𝐿′𝑢′ = 𝑓′ in 𝑈′, 𝑢′ = 0 on 𝜕𝑈.

这里 𝑓′(𝒚) ∶= 𝑓(Ψ(𝒚)),算子𝐿′定义如下，

𝐿′𝑢′ ∶= −𝜕𝑦𝑙(𝑎′
𝑘𝑙𝜕𝑦𝑘𝑢′) + 𝑏′𝑘𝜕𝑦𝑘𝑢′ + 𝑐(Ψ(𝒚))𝑢′(Ψ(𝒚))

它仍为是一致椭圆的，其系数为

𝑎′𝑘𝑙 ∶= 𝑎𝑖𝑗(Ψ(𝒚))𝜕Φ
𝑘

𝜕𝑥𝑖
(Ψ(𝒚))𝜕Φ

𝑙

𝜕𝑥𝑗
(Ψ(𝒚)), 𝑏′𝑘 ∶= 𝑏𝑖(Ψ(𝒚))𝜕Φ

𝑘

𝜕𝑥𝑖
(Ψ(𝒚)).

(3) 用 (2)和定理 2.5.5的证明方法推出

‖𝑢′‖2𝐻2(𝑈′) ⩽ 𝐶
(
‖𝑓‖2𝐿2(𝑈) + ‖𝑢‖2𝐿2(𝑈)

)
. (2.5.17)

2.6 极大值原理

本节介绍椭圆 PDE 研究中最重要的工具之一——极大值原理(Maximum Principles). 极大值
原理基于一个简单的观察：如果 𝑢 ∈ 𝐶2 在开集 𝑈 中的一点 𝒙0 ∈ 𝑈 处达到其最大值，那么

∇𝑢(𝒙) = 0, ∇2𝑢(𝒙0) ⩽ 0.
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在此我们指出，极值原理方法不再是前几节那样基于𝐿2型范数估计的“能量法”。实际上，基于
极大值原理得到的推论大多刻画了逐点性质，因此我们必须要求解属于 𝐶2（古典解）。

为了技术上的简便，我们在本节假设椭圆算子具有非散度形式 (2.0.3)，且具有连续系数。人
们可能还会问：对于椭圆 PDE 的弱解，特别是当系数不具有上面所述的较好正则性时，是否可
以证明任何逐点估计？答案是肯定的，但证明和结论都与我们在本节中将要讨论的内容大不相

同。在第 2.7节中，我们将介绍著名的 De Giorgi-Moser迭代，它给出了具有粗糙系数的椭圆 PDE
弱解的 𝐿∞ 估计。

2.6.1 弱极值原理

设Ω ⊂ ℝ𝑑是有界开集（未必连通）。

定理 2.6.1 (弱极大值原理). 设𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω), 𝑐 = 0.

• 若𝐿𝑢 ⩽ 0在Ω内恒成立，则max
Ω

𝑢 = max
𝜕Ω

𝑢. 此时称𝑢是下下下解解解 (subsolution).

• 若𝐿𝑢 ⩾ 0在Ω内恒成立，则min
Ω

𝑢 = min
𝜕Ω

𝑢. 此时称𝑢是上上上解解解 (supersolution).

特别地，若𝐿𝑢 = 0在Ω内恒成立,则max
Ω

|𝑢| = max
𝜕Ω

|𝑢|.

证明. 我们采用扰动法。

断言. 若𝐿𝑢 < 0在Ω内恒成立，则max
Ω

𝑢 = max
𝜕Ω

𝑢.

先假设断言成立来证明(1).现在(1)的假设只有𝐿𝑢 ⩽ 0,所以我们考虑对𝑢作小扰动，定义𝑢𝜀(𝒙) ∶=
𝑢(𝒙) + 𝜀𝑒𝜆𝑥1 ,其中0 < 𝜀 ≪ 1, 𝜆 > 0是一个充分大的待定常数. 直接计算可得：𝐿𝑢𝜀被一个关于𝜆的二
次函数所控制，其二次项系数为负

𝐿𝑢𝜀 = 𝐿𝑢 + 𝜀𝐿(𝑒𝜆𝑥1) ⩽ 0 + 𝜀𝑒𝜆𝑥1(−𝜆2𝑎11 + 𝜆𝑏1) ⩽ 𝜀𝑒𝜆𝑥1(−𝜆2𝜃 + 𝜆‖𝑏‖𝐿∞(Ω)).

所以当𝜆充分大时,就有𝐿𝑢𝜀 < 0在Ω内恒成立。据断言知max
Ω

𝑢𝜀 = max
𝜕Ω

𝑢𝜀. 而𝜀 > 0,所以

max
Ω

𝑢 ⩽ max
Ω
(𝑢 + 𝜀𝑒𝜆𝑥1) = max

Ω
𝑢𝜀 = max

𝜕Ω
𝑢𝜀 ⩽ max

𝜕Ω
𝑢 +max

𝜕Ω
𝜀𝑒𝜆𝑥1 .

令 𝜀 → 0+,我们得到要证的结论max
Ω

𝑢 = max
𝜕Ω

𝑢.

接下来只要证明断言。反证法：若存在内点𝒙0 ∈ Ω使得𝑢(𝒙0) = max
Ω

𝑢. 那么有

𝜕𝑖𝑢(𝒙0) = 0 (1 ⩽ 𝑖 ⩽ 𝑑), Hessian方阵∇2𝑢(𝒙0) ⩽ 0 (半负定) ⇒ 𝜕2𝑖 𝑢(𝒙0) ⩽ 0, 1 ⩽ 𝑖 ⩽ 𝑑.

若𝑎𝑖𝑗是对角阵，则我们已经证得想要的结论：因为此时可以结合𝑎𝑖𝑖 ⩾ 𝜃得到𝐿𝑢(𝒙0) = −𝑎𝑖𝑖𝜕2𝑖 𝑢 ⩾
0, 从而𝐿𝑢 ⩾ 0在Ω内恒成立，与断言的假设矛盾。一般情况下，由于{𝑎𝑖𝑗}是严格正定的实对称方
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阵，那么就存在正交方阵𝐎 = {𝑜𝑖𝑗}使得

𝐎𝐴𝐎⊤ = Λ, Λ = diag (𝜆1,⋯ , 𝜆𝑑), 𝜆𝑖 ⩾ 𝜃, 1 ⩽ 𝑖 ⩽ 𝑑.

同时，我们也作对应的变量替换 𝒚 = 𝒙0 + 𝐎(𝒙 − 𝒙0)得到

𝜕𝑥𝑖𝑢 =
∑

𝑘
𝑜𝑘𝑖𝜕𝑦𝑘𝑢, 𝜕𝑥𝑖𝜕𝑥𝑗𝑢 =

∑

𝑘,𝑙
𝑜𝑘𝑖(𝜕𝑦𝑘𝑦𝑙𝑢)𝑜𝑙𝑗.

所以在𝒙0处，我们算得

𝐿𝑢(𝒙0) = −𝑎𝑖𝑗𝜕𝑥𝑖𝜕𝑥𝑗𝑢 = −(𝑜𝑘𝑖𝑎𝑖𝑗𝑜𝑙𝑗)𝜕𝑦𝑘𝜕𝑦𝑙𝑢 = −
𝑑∑

𝑘=1
𝜆𝑘𝜕2𝑦𝑘𝑢 ⩾ 0,

这又与断言的假设矛盾。

若𝐿的系数满足𝑐 ⩾ 0,我们仍然可以证明类似的结论，方法与定理2.6.1完全一样，此处略去。

定理 2.6.2 (𝑐 ⩾ 0的弱极大值原理). 设𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω), 𝑐 ⩾ 0在Ω内恒成立。

• 若𝐿𝑢 ⩽ 0在Ω内恒成立，则max
Ω

𝑢 ⩽ max
𝜕Ω

𝑢+. 即𝑢的非负最大值在边界上达到。

• 若𝐿𝑢 ⩾ 0在Ω内恒成立，则min
Ω

𝑢 ⩾ −max
𝜕Ω

𝑢−. 即𝑢的非正最小值在边界上达到。

特别地，若𝐿𝑢 = 0在Ω内恒成立，则有max
Ω

|𝑢| = max
𝜕Ω

|𝑢|.

2.6.2 内梯度估计：Bernstein技巧

我们在学习古典偏微分方程时，可以利用平均值原理证明调和函数的梯度估计。但是当Laplace
算子替换成一般系数椭圆算子（例如非散度型椭圆算子(2.0.3)）时，或者欧氏空间换成黎曼流形
时，平均值原理均不再成立。此情况下我们还能用的工具就只有极值原理和Hopf引理了。因此要
估计 |∇𝑢| 的逐点界，只需让 ∆(|∇𝑢|2) 尽量非负，然后用弱极值原理即可（这里考虑模长的平方
是因为它更容易计算）；而如果要证明梯度的内估计（不考虑边界），我们则应该插入合适的截断

函数，以将梯度估计限制在 𝑈 的一个紧子集内。该方法被称作 Bernstein技巧。
设椭圆算子𝐿如(2.0.3)定义，并假设存在常数𝜆, Λ > 0使得 𝜆|𝝃 |2 ⩽ 𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ⩽ Λ|𝝃 |2 对任意

𝝃 ∈ ℝ𝑑 成立。

定理 2.6.3 (内梯度估计). 设𝑢 ∈ 𝐶3(𝑈) ∩ 𝐶1(𝑈) 满足 𝐿𝑢 = 𝑓 in 𝑈, 其中 𝑓 ∈ 𝐿∞(𝑈), 𝑎𝑖𝑗 ∈
𝐶1(𝑈), 𝑏, 𝑐 ∈ 𝐿∞(𝑈),且不妨设原点𝑂 ∈ 𝑈,则对任意球𝐵(𝟎, 𝑅) ⋐ 𝑈,成立梯度估计

sup
𝐵(𝟎,𝑅∕2)

|∇𝑢| ⩽ 𝐶 ( 1𝑅 sup
𝐵(𝟎,𝑅)

|𝑢| + sup
𝐵(𝟎,𝑅)

|𝑓|) .
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为了避免繁琐计算，我们以 𝐿 = −∆, 𝑓 = 0, 𝑅 = 1为例证明调和函数的内梯度估计，但我们
不使用平均值原理等任何调和函数特有的性质。

定理 2.6.4 (调和函数的内梯度估计). 设𝑢 ∈ 𝐶3(𝐵(𝟎, 1)) ∩ 𝐶1(𝐵(𝟎, 1))是单位球𝐵(𝟎, 1)内的调和函
数。不用平均值原理证明：存在常数𝐶 > 0,使得max

𝐵(𝟎, 1
2
)
|∇𝑢| ⩽ 𝐶 max

𝜕𝐵(𝟎,1)
|𝑢|成立。

证明. 首先，直接计算可得

∆(|∇𝑢|2) = 2
𝑑∑

𝑖,𝑗=1
(𝜕𝑖𝜕𝑗𝑢)2 + 2

𝑑∑

𝑖=1
𝜕𝑖𝑢 𝜕𝑖(∆𝑢) = 2|∇2𝑢|2 + 2∇𝑢 ⋅ ∇(∆𝑢). (2.6.1)

该式称作Bôchner公式。把∆𝑢 = 0代入知上式最后一项为零，因此 ∆𝑢 ⩾ 0,进而 |∇𝑢|在边界达到
最大值。但是现在我们需要把梯度估计限制在 𝐵(𝟎, 1∕2)内，因此需要插入合适的截断函数。

对任意非负的截断函数𝜑 ∈ 𝐶∞
𝑐 (𝐵(𝟎, 1)),我们计算可得

∆(𝜑|∇𝑢|2) = (∆𝜑)|∇𝑢|2 + 4(∇𝜑)⊤(∇2𝑢)(∇𝑢) + 2𝜑|∇2𝑢|2.

而据Cauchy-Schwarz不等式可得 4|(∇𝜑)⊤(∇2𝑢)(∇𝑢)| ⩽ 2𝜑|∇2𝑢|2+(2∕𝜑)|∇𝜑|2|∇𝑢|2. 因此我们得到

∆(𝜑|∇𝑢|2) ⩾ (∆𝜑 −
2|∇𝜑|2
𝜑 ) |∇𝑢|2.

但现在注意，|∇𝜑|2∕𝜑 可能分母为零，因此我们需要选取合适的 𝜑 来避免这个情况。今选取 𝜑 =
𝜂2,其中非负截断函数 𝜂 ∈ 𝐶∞

𝑐 (𝐵(𝟎, 1))在 𝐵(𝟎, 1
2
)内恒为1. 代入上式得到

∆(𝜂2|∇𝑢|2) ⩾ (2𝜂∆𝜂 − 6|∇𝜂|2)|∇𝑢|2 ⩾ −𝐶|∇𝑢|2,

其中𝐶 > 0只依赖𝜂, 𝑑. 这个时候我们需要添加一项来补偿右端负项，而此时注意到

∆(𝑢2) = 2|∇𝑢|2 + 2𝑢∆𝑢 = 2|∇𝑢|2,

因此 ∆(𝜂2|∇𝑢|2 + (𝐶∕2)𝑢2) ⩾ 0.据弱极大值原理得

sup
𝐵(𝟎,1)

(𝜂2|∇𝑢|2 + (𝐶∕2)𝑢2) = sup
𝜕𝐵(𝟎,1)

(𝜂2|∇𝑢|2 + (𝐶∕2)𝑢2) = 𝐶
2 sup

𝜕𝐵(𝟎,1)
𝑢2.

而左边⩾ sup
𝐵(𝟎,1)

𝜂2|∇𝑢|2，开根号即得结论。
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2.6.3 Hopf引理和强极值原理

在许多情况下，弱极大值原理已经足够让我们控制椭圆 PDE 的解（或者下解）的逐点界。
本节我们证明：在一个连通开集内的（下）解除非是常数，否则不能在内部达到其（非负）最大

值，从而大大加强了极大值原理的结论。而它的证明依赖于对外法向导数
𝜕𝑢
𝜕𝑁
在边界极大点处的

细致分析。

引理 2.6.5 (Hopf引理). 设𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω), 𝑐 = 0. 假设

• 𝐿𝑢 ⩽ 0在Ω内恒成立；
• 存在边界点𝒙0 ∈ 𝜕Ω使得𝑢(𝒙0) > 𝑢(𝒙)对任意𝒙 ∈ Ω成立；
• Ω在𝒙0处满足内球条件 (interior ball condition),即存在球𝐵 ⊂ Ω使得𝒙0 ∈ 𝜕𝐵.

则
𝜕𝑢
𝜕𝑁
(𝒙0) > 0,其中𝑁是球𝐵在边界点𝒙0处的单位外法向量。若𝑐 ⩾ 0,则再加条件𝑢(𝒙0) ⩾ 0,仍然可

以保证同样的结论成立。

Hopf引理也可以导出强极值原理

定理 2.6.6 (强极大值原理). 设Ω ⊂ ℝ𝑑是有界区域, 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω), 𝑐 = 0.

(1) 若在Ω中恒有𝐿𝑢 ⩽ 0,且存在内点𝒙0 ∈ Ω使得𝑢(𝒙0) = max
Ω

𝑢,则𝑢在Ω内必定是常数。

(2) 若在Ω中恒有𝐿𝑢 ⩾ 0,且存在内点𝒙0 ∈ Ω使得𝑢(𝒙0) = min
Ω

𝑢,则𝑢在Ω内必定是常数。

当𝑐 ⩾ 0时，我们也有类似结论
定理 2.6.7 (𝑐 ⩾ 0的强极大值原理). 设Ω ⊂ ℝ𝑑是有界区域, 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω), 𝑐 ⩾ 0.

(1) 若在Ω中恒有𝐿𝑢 ⩽ 0,且存在内点𝒙0 ∈ Ω使得𝑢在𝒙0处达到非负最大值,则𝑢在Ω内是常数。
(2) 若在Ω中恒有𝐿𝑢 ⩾ 0,且存在内点𝒙0 ∈ Ω使得𝑢在𝒙0处达到非正最小值, ,则𝑢在Ω内是常数。

首先我们在 Hopf引理成立的情况下证明强极值原理（𝑐 = 0）

证明. 设在 𝑈 中有 𝐿𝑢 ⩽ 0，并记 𝑀 ∶= max
𝑈

𝑢 且 𝐶 ∶= {𝒙 ∈ 𝑈|𝑢(𝒙) = 𝑀}. 用反证法：假设集合

𝑉 ∶= {𝒙 ∈ 𝑈|𝑢(𝒙) < 𝑀} ≠ ∅. 现在选取一个满足 dist (𝒚, 𝐶) < dist (𝒚, 𝜕𝑈)的点 𝒚 ∈ 𝑉，并记 𝐵 为
位于 𝑉 中且中心为 𝒚的最大球。那么存在 𝒙0 ∈ 𝐶 （实际上是“切点”）使得 𝒙0 ∈ 𝜕𝐵.
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务必注意这里𝑈的连通性是必要的，否则dist (𝑉, 𝐶)可能严格正，从而𝒙0 ∈ 𝐶可能不存在。现在𝑉
满足内球条件，据Hopf 引理得 𝜕𝑢

𝜕𝑁
(𝒙0) > 0，其中𝑁是𝜕𝐵的外单位法向量。这导致矛盾：𝑢 在 𝒙0

处达到其最大值，这蕴含了 ∇𝑢(𝒙0) = 𝟎，进而 𝜕𝑢
𝜕𝑁
(𝒙0) = 𝑁(𝒙0) ⋅ ∇𝑢(𝒙0) = 0.

关于Hopf引理本身，它的结论并不难理解：如果𝑢在区域边界的某点𝒙0上达到最大值，则在Ω内
部靠近𝒙0的地方，𝑢的取值应当沿着该点处的外法向是递增的（否则𝑢不可能在边界点达到最大
值），这就说明𝒙0处的外法向导数

𝜕𝑢
𝜕𝑁
(𝒙0)不可能是负的。不过若要证明

𝜕𝑢
𝜕𝑁
(𝒙0)是严格正的，还需要

施加合适的扰动并仔细选取辅助函数。在此我们仅考虑 𝑐 ⩾ 0的情况（此时还要假设𝑢(𝒙0) ⩾ 0），
而𝑐 = 0的情况（不要求𝑢(𝒙0) ⩾ 0）可以用同样的方法证明。

Hopf引理的证明. 为了方便显式构造辅助函数，不妨设球𝐵为𝐵(𝟎, 𝑟). 由Hopf引理的假设(2),我们
希望构造辅助函数𝑣使得对任意充分小的0 < 𝜀 ≪ 1成立

i. 𝑢(𝒙0) ⩾ 𝑢(𝒙) + 𝜀𝑣(𝒙)对 𝒙 ∈ 𝜕𝐵(𝟎, 𝑟) ∪ 𝜕𝐵(𝟎, 𝑟∕2)成立.
ii. 𝐿(𝑢 + 𝜀𝑣) ⩽ 0在环形区域𝐴 ∶= 𝐵(𝟎, 𝑟)∖𝐵(𝟎, 𝑟∕2)成立.
iii. 𝑣|𝜕𝐵(𝟎,𝑟) = 0, 𝑣|𝜕𝐵(𝟎,𝑟∕2) ⩾ 0, 𝜕𝑣

𝜕𝑁
(𝒙0) < 0.

如果能构造出这样的函数𝑣, 则由弱极大值原理可得𝑢(𝒙) + 𝜀𝑣(𝒙) − 𝑢(𝒙0) ⩽ 0在𝐴中恒成立, 以
及𝑢(𝒙0) + 𝜀𝑣(𝒙0) − 𝑢(𝒙0) = 0. 所以函数𝑢 + 𝜀𝑣 − 𝑢(𝒙0)在𝒙0处的外法向导数必定是非负的，因
此得到

𝜕𝑢
𝜕𝑁
(𝒙0) ⩾ −𝜀 𝜕𝑣

𝜕𝑁
(𝒙0) > 0.

这样的辅助函数𝑣可以选取为𝑣(𝒙) = 𝑒−𝜆|𝒙|2 − 𝑒−𝜆𝑟2的形式，其中𝒙 ∈ 𝐵(𝟎, 𝑟), 𝜆 > 0是一个待定
的充分大的常数。然后直接计算可得

𝐿𝑣 = − 𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑣 + 𝑏𝑖𝜕𝑖𝑣 + 𝑐𝑣 = 𝑒−𝜆|𝒙|2
(
𝑎𝑖𝑗(−4𝜆2𝑥𝑖𝑥𝑗 + 2𝜆𝛿𝑖𝑗) − 2𝜆𝑏𝑖𝑥𝑖 + 𝑐(1 − 𝑒−𝜆(𝑟2−|𝒙|2))

)

⩽ 𝑒−𝜆|𝒙|2(−4𝜃𝜆2|𝒙|2 + 2𝜆
∑

𝑖
𝑎𝑖𝑖 + 2𝜆|𝑏||𝒙| + 𝑐).

在环形区域𝐴中我们可算得

𝐿𝑣 ⩽ 𝑒−𝜆|𝒙|2(−𝜃𝜆2𝑟2 + 2𝜆
∑

𝑖
𝑎𝑖𝑖 + 2𝜆|𝑏|𝑟 + 𝑐)
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对𝒙 ∈ 𝐴，上式右端在𝜆 > 𝑑
2𝑟2
充分大时必定是⩽ 0的，而其它性质也可以直接验证。

2.6.4 Harnack不等式：对数梯度估计

极大值原理给出了椭圆方程解的极值估计，接下来我们想进一步控制解的振幅。本节证明

Harnack不等式：在远离边界的有界子区域中，𝐿𝑢 = 0的非负解的最小值和最大值是可比较的。

定理 2.6.8 (Harnack不等式). 设0 ⩽ 𝑢 ∈ 𝐶2(Ω)是方程𝐿𝑢 = 0在Ω内的解，其中算子𝐿具有形式(??).
设𝑉 ⋐ Ω是连通自己。则存在常数𝐶 > 0(仅依赖𝑉和𝐿的系数)使得如下不等式成立

sup
𝑉
𝑢 ⩽ 𝐶 inf

𝑉
𝑢.

与调和函数的Harnack不等式相比，我们现在不再有平均值原理这一重要性质，从而“滚球
法”证明（见古典偏微分方程课程）不再奏效。接下来我们介绍证明Harnack不等式的一般方法：
对数梯度估计 (logarithmic gradient estimates).
接下来我们不妨假设𝑢 > 0,否则考虑加上一个常值小扰动𝑢 + 𝜀 > 0. 给定𝑉 ⋐ Ω,我们希望证

明存在 𝐶 > 0使得 𝑢(𝒙) ⩽ 𝐶𝑢(𝒚)对任意𝒙, 𝒚 ∈ 𝑉成立.而这个不等式等价于说| ln 𝑢(𝒙)
𝑢(𝒚)

| ⩽ 𝐶′对某个

常数𝐶′ > 0成立。现在再对函数𝑔(𝑡) ∶= ln 𝑢(𝑡𝒙 + (1 − 𝑡)𝒚))用微积分基本定理和链式法则得到下式
（这种写法以后还会经常用到）

ln 𝑢(𝒙)
𝑢(𝒚)

= ln 𝑢(𝒙) − ln 𝑢(𝒚) = 𝑔(1) − 𝑔(0) = ∫
1

0
𝑔′(𝑡) d𝑡 = (𝒙 − 𝒚) ⋅ ∫

1

0
∇ ln𝑢(𝑡𝒙 + (1 − 𝑡)𝒚) d𝑡,

所以问题就转化为证明存在常数𝐶′′ > 0使得sup
𝑉
|∇ ln 𝑢| ⩽ 𝐶′′. 这也说明了为什么我们将接下来要

展现的证明方法命名为“对数梯度估计”。

有的人也许会问：为什么我们非要将Harnack不等式的证明转化为对数函数的估计呢？事实
上我们可以考虑一个特殊情况，即调和函数的Harnack不等式。若𝑢的调和函数，则𝑣 ∶= ln 𝑢就满
足−∆𝑣 = |∇𝑣|2, 再令𝑤 = |∇𝑣|2可得∆𝑤 + 2∇𝑤 ⋅ ∇𝑣 = 2|∇2𝑣|2. 所以问题就转化为对𝑣作内梯度估
计，从而可以用习题2.6.3的方法来完成证明，这些步骤是完全不依赖平均值原理的。

为了免去不必要的麻烦，接下来我们假设𝑏𝑖 = 𝑐 = 0, 𝑢 > 0来证明Harnack不等式。在证明的
末尾，我们会以调和函数的Harnack不等式为例，稍加解释辅助函数选取的方法。

证明. 设𝑏𝑖 = 𝑐 = 0, 𝑢 > 0. 令𝑣 = ln 𝑢,则直接计算可得

𝑢 = 𝑒𝑣, 𝜕𝑖𝑢 = 𝑒𝑣𝜕𝑖𝑣, 𝜕𝑖𝜕𝑗𝑣 = 𝑒𝑣(𝜕𝑖𝑣𝜕𝑗𝑣 + 𝜕𝑖𝜕𝑗𝑣),

代入 𝐿𝑢 = 0 得到𝑎𝑖𝑗(𝜕𝑖𝜕𝑗𝑣 + 𝜕𝑖𝑣𝜕𝑗𝑣) = 0在Ω中成立。现在令𝑤 ∶= 𝑎𝑖𝑗𝜕𝑖𝑣𝜕𝑗𝑣 , 则上式表明𝑤 =
−𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑣. 接下来我们作出断言
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断言. 令 𝑏𝑘 ∶= −2𝑎𝑘𝑙𝜕𝑙𝑣. 则

−𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 + 𝑏𝑘𝜕𝑘𝑤 ⩽ −𝜃
2

2 |∇
2𝑣|2 + 𝐶|∇𝑣|2. (2.6.2)

断言的证明包含巨量的无聊计算，我们暂时先跳过它来看看断言成立之后能推出什么。

今选取光滑截断函数𝜁 ∈ 𝐶∞
𝑐 (Ω)满足0 ⩽ 𝜁 ⩽ 1, 𝜁|𝑉 = 1,并定义辅助函数𝑧 = 𝜁4𝑤将𝑤的取值局

限在𝑉里面。假设𝑧在某点𝒙0 ∈ Ω取得最大值，从而对1 ⩽ 𝑘 ⩽ 𝑑有𝜕𝑘𝑤(𝒙0) = 0,从而

0 = 𝜕𝑘𝑧 = 𝜁4𝜕𝑘𝑤 + 4𝜁3𝑤𝜕𝑘𝜁 ⇒ 𝜁𝜕𝑘𝑤 + 4(𝜕𝑘𝜁)𝑤 = 0,

以及

𝜕𝑘𝜕𝑙𝑧 = 𝜁4𝜕𝑘𝜕𝑙𝑤 + 4𝜁3𝜕𝑙𝜁𝜕𝑘𝑤 + 12𝜁2𝜕𝑙𝜁 + 𝜕𝑘𝜁𝑤 + 4𝜁3𝜕𝑘𝜕𝑙𝜁𝑤 + 4𝜁3𝜕𝑘𝜁𝜕𝑙𝑤.

接下来计算

− 𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑧 + 𝑏𝑘𝜕𝑘𝑧
=𝜁4

(
−𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 + 𝑏𝑘𝜕𝑘𝑤

)
− 12𝑎𝑘𝑙(𝜁2𝜕𝑙𝜁𝜕𝑘𝜁)𝑤 − 4𝑎𝑘𝑙(𝜁3𝜕𝑘𝜁)𝜕𝑙𝑤 − 4𝑎𝑘𝑙𝜁3𝜕𝑘𝜕𝑙𝜁 𝑤 + 4𝑏𝑘𝜁3𝜕𝑘𝜁 𝑤

=𝜁4
(
−𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 + 𝑏𝑘𝜕𝑘𝑤

)
+ 𝑂

(
𝜁3|∇𝑤| + 𝜁2𝑤 + |∇𝑣|𝜁3𝑤

)

其中最后一项中的 |∇𝑣|是由不等式 |𝑏𝑘| ⩽ 𝐶|∇𝑣|给出的。
在𝒙0 ∈ Ω处，我们有𝜕𝑘𝑧 = 0, −𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑧 ⩾ 0 (因为Hessian矩阵∇2𝑧是半负定的),所以得到

0 ⩽ 𝜁4
(
−𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 + 𝑏𝑘𝜕𝑘𝑤

)
+ 𝐶′ (𝜁3|∇𝑤| + 𝜁2|𝑤| + |∇𝑣|𝜁3|𝑤|

)
. (2.6.3)

据(2.6.2), (2.6.3)以及一致椭圆条件，得到

0 ⩽ 𝜁4(−𝜃
2

2 |∇
2𝑣|2 + 𝐶|∇𝑣|2) + 𝐶′ (𝜁3|∇𝑤| + 𝜁2|𝑤| + |∇𝑣|𝜁3|𝑤|

)
, at 𝒙0.

由于 𝑤 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑣,我们实际上得到

𝜁4𝑤2 ⩽ 𝐶′′ (𝜁4|∇𝑣|2 + 𝜁3|∇𝑤| + 𝜁2𝑤 + 𝜁3|∇𝑣|𝑤
)
, at 𝒙0 (2.6.4)

接下来我们分析如上不等式的右边

• 𝜁3|∇𝑣|𝑤 = (𝜁2|∇𝑣|)𝜁𝑤 ⩽ 𝜀𝑤𝜁4|∇𝑣|2+𝑤𝐶𝜀𝜂2 ⩽
𝜀
𝜃𝜁

4𝑤2+𝐶(𝜀)𝑤𝜁2.此处我们用了带𝜀的Young不

等式,以及𝜃|∇𝑣|2 ⩽ 𝑤,它由𝑤 = 𝑎𝑖𝑗𝜕𝑖𝑣𝜕𝑗𝑣得到.
• 𝜁4|∇𝑤|. 回忆我们有𝜁𝜕𝑘𝑤 + 4𝜕𝑘𝜁𝑤 = 0,它表明|𝜁∇𝑤| ⩽ 𝐶|𝑤|,从而𝜁3|∇𝑤| ⩽ 𝐶𝜁2|𝑤|.

• 𝜁4|∇𝑣|2 ⩽ 𝜁2|∇𝑣|2 ⩽ 𝜁2𝑤
𝜃 .

把上述估计代入 (2.6.4),得到存在常数𝐶1, 𝐶2 > 0, 𝜀 > 0,使得在𝒙0处成立 𝜁4𝑤2 ⩽ 𝐶1𝜀𝜁4𝑤2 + 𝐶2𝜁2𝑤.
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今选取𝜀 < 1
2𝐶1

,得到

𝜁4𝑤2 ⩽ 2𝐶2𝜁2𝑤 ⇒ 𝑧 = 𝜁4𝑤 ⩽ 2𝐶2𝜁2 ⩽ 2𝐶2, at 𝒙0.

由于𝑧 = 𝜁4𝑤在𝒙0达到最大以及𝜁|𝑉 = 1,结合𝑤 ⩾ 𝜃|∇𝑣|2知存在𝐶0 > 0满足|∇𝑣| ⩽ 𝐶0.
接下来只需证明断言成立。直接计算可得

𝜕𝑙𝑤 = 𝜕𝑙𝑎𝑖𝑗(𝜕𝑖𝑣𝜕𝑗𝑣) + 2𝑎𝑖𝑗𝜕𝑙𝜕𝑖𝑣 𝜕𝑗𝑣, 𝜕𝑘𝜕𝑙𝑤 = 2𝑎𝑖𝑗𝜕𝑙𝜕𝑖𝑣𝜕𝑘𝜕𝑗𝑣 + 2𝑎𝑖𝑗𝜕𝑘𝜕𝑙𝜕𝑖𝑣 𝜕𝑗𝑣 + 𝑅

其中𝑅 ∶= 𝜕𝑘𝜕𝑙𝑎𝑖𝑗 𝜕𝑖𝑣 𝜕𝑗𝑣 + 2𝜕𝑙𝑎𝑖𝑗𝜕𝑘𝜕𝑖𝑣 𝜕𝑗𝑣 + 2𝜕𝑘𝑎𝑖𝑗𝜕𝑙𝜕𝑖𝑣𝜕𝑗𝑣,其满足：对𝜀 > 0, 成立|𝑅| ⩽ 𝐶(|∇𝑣|2 +
|∇𝑣||∇2𝑣|) ⩽ 𝜀|∇2𝑣|2 + 𝐶(𝜀)|∇𝑣|2. 因此现在得到

−𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 = −𝑅 − 2𝑎𝑘𝑙𝑎𝑖𝑗(𝜕𝑙𝜕𝑖𝑣)(𝜕𝑗𝜕𝑘𝑣) − 2𝑎𝑘𝑙𝑎𝑖𝑗𝜕𝑘𝜕𝑙𝜕𝑖𝑣 𝜕𝑗𝑣. (2.6.5)

该式的第一项可以由一致椭圆条件控制，因为系数矩阵{𝑎𝑖𝑗}是严格正定的实对称方阵，故存在方
阵𝑃使得{𝑎𝑖𝑗} = 𝑃⊤𝑃,进而有 𝑎𝑘𝑙𝑎𝑖𝑗(𝜕𝑙𝜕𝑖𝑣)(𝜕𝑗𝜕𝑘𝑣) = (∇2𝑣 ⋅ 𝑃) ⋅ (∇2𝑣 ⋅ 𝑃)⊤ ⩾ 𝜃2|∇2𝑣|2. (2.6.5)中的第二
项包含了三阶导数，我们可以利用𝑤 = 𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑣将其降阶：

−𝑎𝑘𝑙𝑎𝑖𝑗𝜕𝑘𝜕𝑙𝜕𝑖𝑣 𝜕𝑗𝑣 = − 𝑎𝑖𝑗𝜕𝑗𝑣𝑎𝑙𝑘𝜕𝑖𝜕𝑘𝜕𝑙𝑣 = −𝑎𝑖𝑗𝜕𝑗𝑣
(
𝜕𝑖(𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑣) − 𝜕𝑖𝑎𝑙𝑘𝜕𝑘𝜕𝑙𝑣

)

= − 𝑎𝑖𝑗𝜕𝑗𝑣(𝜕𝑖𝑤 − 𝜕𝑖𝑎𝑙𝑘𝜕𝑘𝜕𝑙𝑣) = −12𝑏
𝑖𝜕𝑖𝑤 + 𝑎𝑖𝑗𝜕𝑖𝑎𝑙𝑘𝜕𝑗𝑣𝜕𝑘𝜕𝑙𝑣.

我们把上述两项代入(2.6.5),并结合|𝑅|的估计，就得到

− 𝑎𝑘𝑙𝜕𝑘𝜕𝑙𝑤 + 𝑏𝑘𝜕𝑘𝑤 ⩽ |𝑅| − 𝜃2|∇𝑣|2 + |𝑎𝑖𝑗𝜕𝑖𝑎𝑙𝑘𝜕𝑗𝑣𝜕𝑘𝜕𝑙𝑣|
⩽ |𝑅| − 𝜃2|∇2𝑣|2 + 𝐶|∇𝑣||∇2𝑣| ⩽ 𝜀|∇2𝑣|2 + 𝐶(𝜀)|∇𝑣|2 − 𝜃2|∇2𝑣|2

⩽ − 𝜃2
2 |∇

2𝑣|2 + 𝐶(𝜀)|∇𝑣|2,

其中我们用到了带𝜀的Young不等式，并取𝜀 ∈ (0, 𝜃
2

2
)把带𝜀的项吸收掉。断言证毕。

注记 2.6.1 (辅助函数𝜁4𝑤的选取). 读者也许会问为什么在辅助函数里面把𝜁的幂次取成4，而不是
像内梯度估计那样取成2或者是其它幂次？这也许可以从调和函数Harnack不等式的证明里面看出
来。今假设𝐿 = −∆, 𝑈 = 𝐵(𝟎, 1), 𝑉 = 𝐵(𝟎, 1

2
)，设有光滑截断函数𝜑满足0 ⩽ 𝜑 ⩽ 1, 𝜑|𝑉 = 1, 我们

计算∆(𝜑𝑤)得到

∆(𝜑𝑤) + 2∇𝑤 ⋅ ∇(𝜑𝑤) = 2𝜑|∇2𝑣|2 + 2(∇𝜑) ⋅ (∇2𝑣) ⋅ (∇𝑣)⊤ + 2𝑤∇𝜑 ⋅ ∇𝑣 + (∆𝜑)𝑤

⩾ 𝜑|∇2𝑣|2 − 2|∇𝜑||∇𝑣|3 + (∆𝜑 −
4|∇𝜑|2
𝜑 ) |∇𝑣|2.
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若选取𝜑 = 𝜁4并结合不等式 |∇2𝑣|2 ⩾
𝑑∑
𝑖=1
𝜕2𝑖 𝑣 ⩾ 1

𝑑
(∆𝑣)2 = |∇𝑣|4

𝑑
= 𝑤2

𝑑
则可以证明∆(𝜑𝑤) + 2∇𝑤 ⋅

∇(𝜑𝑤)具有不依赖𝑣的下界（因为下式第一行右边诸项皆为𝜁|∇𝑣|的幂次，且是首项系数为正的四
次多项式，故一定有下界）

∆(𝜁4𝑤) + 2∇𝑤 ⋅ ∇(𝜁4𝑤) ⩾ 1
𝑑𝜁

4|∇𝑣|4 − 8𝜁3|∇𝜁||∇𝑣|3 + 4𝜁2(𝜁∆𝜁 − 13|∇𝜁|2)|∇𝑣|2

𝑡=𝜁|∇𝑣|⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 1
2𝑑𝜁

4𝑤2 + 𝑡4
2𝑑 − 8|∇𝜁|𝑡3 + 4(𝜁∆𝜁 − 13|∇𝜁|2)𝑡2 ⩾ −𝐶′ ∀𝑡 ∈ ℝ.

我们现在保留
1
2𝑑
𝜁4𝑤2这项是因为最终我们要估计𝜁4𝑤的最大值。假设𝜁4𝑤在内点𝒙0 ∈ 𝐵(𝟎, 1)取

到最大值，那么有∇(𝜁4𝑤) = 0以及∆(𝜁4𝑤) ⩽ 0在𝒙0处成立，进而得到 𝜁4𝑤2(𝒙0) ⩽ 2𝐶′𝑑. 这个𝐶′现

在依赖于维数𝑑和截断函数𝜁. 若𝑤(𝒙0) ⩾ 1,则 𝜁4𝑤2(𝒙0) ⩽ 2𝐶′𝑑;否则我们有𝜁4𝑤(𝒙0) ⩽ 𝜁4(𝒙0). 所以
无论如何都存在只依赖维数的常数𝐶 > 0使得𝜁4𝑤 ⩽ 𝐶在𝐵(𝟎, 1)中恒成立。
如果我们将𝜑 = 𝜁4换成𝜁2,则会算出

∆(𝜁2𝑤) + 2∇𝑤 ⋅ ∇(𝜁2𝑤) ⩾ 1
𝑑𝜁

2|∇𝑣|4 − 4𝜁|∇𝜁||∇𝑣|3 + 2𝜁∆𝜁|∇𝑣|2−16|∇𝜁|2|∇𝑣|2.

这样的话，上述不等式右边就不再是𝑡′ ∶=
√
𝜁|∇𝑣|的多项式（因为出现了带下划线的项），进而不

能保证不等式右边有不不不依依依赖赖赖𝑣的的的下界估计。

习题 2.6

除特别说明之外，本节习题均假设𝑈 ⊂ ℝ𝑑是边界光滑的有界区域。

习题 2.6.1. 设𝑢是方程−𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 = 0在𝑈内的光滑解，系数𝑎𝑖𝑗 ∈ 𝐶1(𝑈). 证明：

max
𝑈

|∇𝑢| ⩽ 𝐶(max
𝜕𝑈

|∇𝑢| + max
𝜕𝑈

|𝑢|).

提示：令𝑣 = |∇𝑢|2 + 𝜆𝑢2,选取充分大的𝜆使得𝐿𝑣 ⩽ 0在𝑈中恒成立。
习题 2.6.2. 设𝑢是方程−𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 = 𝑓 in 𝑈, 𝑢|𝜕Ω = 0的光滑解，其中𝑓有界。固定𝒙0 ∈ 𝜕𝑈，我们
称𝐶2函数𝑤是𝒙0处的闸闸闸函函函数数数 (barrier function)是指𝑤满足如下条件：

𝐿𝑤 ⩾ 1 in 𝑈, 𝑤(𝒙0) = 0, 𝑤 ⩾ 0 on 𝜕𝑈.

证明：若𝑤是𝒙0处的一个闸函数，则存在常数𝐶 > 0使得|∇𝑢(𝒙0)| ⩽ 𝐶| 𝜕𝑤
𝜕𝑁
(𝒙0)|.

习题 2.6.3. 设𝐿𝑢 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢，且存在 𝑣 ∈ 𝐶2(𝑈) ∩ 𝐶(𝑈) 使得 𝐿𝑣 ⩾ 0在 𝑈 中成立，
在 𝑈上恒有𝑣 > 0. 证明：若𝑢 ∈ 𝐶2(𝑈) ∩ 𝐶(𝑈)在𝑈中满足𝐿𝑢 ⩽ 0且𝑢|𝜕𝑈 ⩽ 0，则𝑢在𝑈中必须是非
正的。（提示：令 𝑤 = 𝑢

𝑣
并考虑 𝐿̃𝑤 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑤 + 𝜕𝑖𝑤(𝑏𝑖 − 𝑎𝑖𝑗𝜕𝑗𝑣 ⋅

2
𝑣
).）
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习题 2.6.4 (调和函数的可去奇点). 设𝑢是去心球𝐵̌(𝟎, 𝑅) ∶= 𝐵(𝟎, 𝑅)∖{𝟎} ⊂ ℝ𝑑 (𝑑 ⩾ 2)内的调和函
数，且满足

𝑢(𝒙) =
⎧

⎨
⎩

𝑜(|𝒙|2−𝑑) 𝑑 ⩾ 3
𝑜(ln |𝒙|) 𝑑 = 2,

as |𝒙| → 0.

证明：𝑢在𝒙 = 𝟎处有定义，即𝑢在球𝐵(𝟎, 𝑅)内是调和函数。

习题 2.6.5 (调和函数的Kelvin变换). 对𝒙 ∈ ℝ𝑑∖{𝟎} (𝑑 ⩾ 2), 我们定义它关于单位球面的反演点
为𝒙∗ ∶= 𝒙

|𝒙|2
. 再定义函数𝑢(𝒙)的Kelvin变换为(𝒦𝑢)(𝒙) = 𝑢(𝒙∗)|𝒙∗|𝑑−2 = 𝑢( 𝒙

|𝒙|2
)|𝒙|2−𝑑. 按照如下步

骤证明：如果𝑢是单位球内的调和函数，则𝒦𝑢是单位球外部的调和函数。

(1) 对任意1 ⩽ 𝑖, 𝑗 ⩽ 𝑑, 证明:
𝜕𝑥∗𝑗
𝜕𝑥𝑖

= 𝛿𝑖𝑗

|𝒙|2
− 2𝑥𝑖𝑥𝑗

|𝒙|4
. 这里的 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. 据此证

明∇𝒙∗(∇𝒙∗)⊤ = |𝒙|−4𝐼𝑑,其中 𝐼𝑑 是𝑑 × 𝑑单位方阵。
(2) 用(1)证明：∆(𝒙∗) = 2(2 − 𝑑) 𝒙

|𝒙|4
.

(3) 证明：∆(𝒦𝑢(𝒙)) = ∆(𝑢( 𝒙
|𝒙|2

)|𝒙|2−𝑑) = 0.

习题 2.6.6. 设Ω = ℝ𝑑∖𝐵(𝟎, 1), 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω)满足

∆𝑢 = 0 in Ω, 𝑢 = 0 on 𝜕𝐵(𝟎, 1).

(1) 若 𝑑 = 2,且 lim
|𝒙|→∞

𝑢(𝒙)∕ ln |𝒙| = 0，证明：𝑢在Ω内恒为零。

(2) 若 𝑑 ⩾ 3,且 lim
|𝒙|→∞

𝑢(𝒙) = 0，证明：𝑢在Ω内恒为零。

(3) 若 𝑑 ⩾ 3,但只假设 lim
|𝒙|→∞

𝑢(𝒙)∕ ln |𝒙| = 0，此时𝑢在Ω内是否还恒等于零？证明你的结论。

提示：用习题 2.6.4和习题 2.6.5(3)的结论。

问题 2.6

问题 2.6.1. 证明：习题2.5.2中的方程没有属于𝐶2(𝐵(𝟎, 𝑟))的古典解。
提示：反证法，若存在这样的古典解𝑣 ∈ 𝐶2(𝐵(𝟎, 𝑟)), 则考虑𝑤 = 𝑢 − 𝑣, 其中𝑢的定义如习

题2.5.2所述。可见𝑤是调和函数，且在去心圆盘𝐵(𝟎, 𝑟)∖{𝟎}上有界，利用习题 2.6.4将其延拓为整
个圆盘上的调和函数，从而属于𝐶2(𝐵(𝟎, 𝑟)). 这与习题2.5.2的结论矛盾。

问题 2.6.2. 设𝑈 ⊂ ℝ𝑑是边界光滑的有界区域，𝜆1 > 0是(−∆)算子(带Dirichlet边值)的主特征值，
𝑤1 ∈ 𝐶∞(𝑈)是对应𝜆1的特征函数。证明：任给𝑔 ∈ 𝐶1(𝑈)，必存在常数𝐴, 𝐵，使得𝐴𝑤1(𝒙) ⩽ 𝑔(𝒙) ⩽
𝐵𝑤1(𝒙)对任意𝒙 ∈ 𝑈成立。
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2.7 *De Giorgi–Nash–Moser迭代

本章我们已经证明了弱解的存在性，而后面讨论的极大值原理则是对经典解建立的。那么我

们能否对弱解直接作出𝐿∞型的估计呢？这就是De Giorgi–Nash–Moser迭代给出的结论。事实上，
他们三个人分别使用了不同的方法，本节我们主要介绍 Moser 给出的𝐿𝑝指标迭代法，然后介绍
De Giorgi 对解的 𝐶0,𝛼 连续性作出的证明。本节最后的问题2.7.1中，我们简介 De Giorgi 的控制
水平集测度的方法，具体可参见韩青、林芳华的著作 [10,第4章].

我们考虑边界光滑的有界区域 𝑈 ⊂ ℝ𝑛 上的散度型椭圆方程：

𝐿𝑢 ∶= −∇ ⋅ (𝑨(𝒙)∇𝑢) = 0, 𝒙 ∈ 𝑈 (2.7.1)

其中系数矩阵𝑨(𝒙) = (𝑎𝑖𝑗(𝒙))满足一致椭圆性条件：存在 0 < 𝜆 ⩽ Λ < ∞，使得 ∀𝝃 ∈ ℝ𝑛, 𝒙 ∈ 𝑈：

𝜆|𝜉|2 ⩽
∑

𝑖,𝑗
𝑎𝑖𝑗(𝒙)𝜉𝑖𝜉𝑗 ⩽ Λ|𝜉|2.

假设 𝑎𝑖𝑗 ∈ 𝐿∞，𝑢 ∈ 𝐻1(𝑈)为弱解。这里我们首先列出接下来要反复用到的 GNS不等式：

引理 2.7.1. 设 𝑑 ⩾ 3，Sobolev 临界指标为 𝜒 = 𝑑
𝑑−2

> 1（若 𝑑 = 2，可取任意大的 𝜒）。对任意
𝑣 ∈ 𝐻1

0(𝐵(𝟎, 𝑟))，有：

(∫
𝐵(𝟎,𝑟)

|𝑣|2𝜒 d𝒙)
1∕𝜒

⩽ 𝐶(𝑑, 𝑟) ∫
𝐵(𝟎,𝑟)

|∇𝑣|2 d𝒙. (2.7.2)

在进入证明之前，我们还要引进弱下解、弱上解的概念。

定义 2.7.1. 我们称𝑢 ∈ 𝐻1(𝑈)是(2.7.1)的弱弱弱下下下解解解 (weak subsolution)/弱弱弱上上上解解解 (weak supersolution)，
是指对任意非非非负负负的的的测试函数 𝜑 ∈ 𝐻1

0(𝑈)都有

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝜑 ⩽ (⩾)0.

2.7.1 Caccioppoli不等式

我们首先证明Caccioppoli不等式，其给出一个比较“反直觉”的结论：椭圆方程的弱下解的
导数可以反过来被函数本身控制。

定理 2.7.2 (Caccioppoli不等式). 设 𝑢是方程(2.7.1)的非非非负负负弱弱弱下下下解解解，则对任意 𝐵(𝟎, 𝑟) ⊂ 𝐵(𝟎, 𝑅) ⋐ 𝑈
，有：

∫
𝐵(𝟎,𝑟)

|∇𝑢|2 d𝒙 ⩽ 4Λ2

𝜆2(𝑅 − 𝑟)2
∫
𝐵(𝟎,𝑟)⧵𝐵(𝟎,𝑟)

𝑢2 d𝒙. (2.7.3)

证明. 取截断函数 𝜂 ∈ 𝐶∞
𝑐 (𝐵(𝟎, 𝑅))，满足 0 ⩽ 𝜂 ⩽ 1，𝜂|𝐵(𝟎,𝑟) ≡ 1，且 |∇𝜂| ⩽ 2

𝑅−𝑟
. 再取测试函数
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𝜑 = 𝜂2𝑢，代入弱解定义得

∫
𝑈
𝑨∇𝑢 ⋅ ∇(𝜂2𝑢) d𝒙 = ∫

𝑈
𝜂2𝑨∇𝑢 ⋅ ∇𝑢 d𝒙 + ∫

𝑈
2𝜂𝑢𝑨∇𝑢 ⋅ ∇𝜂 d𝒙 ⩽ 0

利用椭圆性 𝜆|𝝃 |2 ⩽ 𝑨𝝃 ⋅ 𝝃 和有界性 |𝐴𝝃 ⋅ 𝜼| ⩽ Λ|𝝃 ||𝜼|：

𝜆 ∫
𝑈
𝜂2|∇𝑢|2 d𝒙 ⩽ 2Λ∫

𝑈
𝜂𝑢|∇𝑢||∇𝜂| d𝒙.

利用Young不等式得

2Λ(𝜂|∇𝑢|)(𝑢|∇𝜂|) ⩽ 2Λ( 𝜆4Λ𝜂
2|∇𝑢|2 + Λ

𝜆 𝑢
2|∇𝜂|2) = 𝜆

2𝜂
2|∇𝑢|2 + 2Λ2

𝜆 𝑢2|∇𝜂|2

移项整理得：
𝜆
2 ∫𝑈

𝜂2|∇𝑢|2 d𝒙 ⩽ 2Λ2

𝜆 ∫
𝑈
𝑢2|∇𝜂|2 d𝒙,

除以
𝜆
2
再代入 |∇𝜂|的界即得证。

2.7.2 Moser迭代：𝐿𝑝估计幂次迭代得到𝐿∞估计

现在我们证明Moser迭代得到的关键结论。

定理 2.7.3 (弱解的局部有界性). 若 𝑢 ∈ 𝐻1(𝐵(𝟎, 1))是非负弱下解，则 𝑢 ∈ 𝐿∞loc(𝐵(𝟎, 1))且存在常
数 𝐶 = 𝐶(𝑑, 𝜆, Λ)使得对于 0 < 𝑟 < 𝑅 ⩽ 1：

sup
𝐵(𝟎,𝑟)

𝑢 ⩽ 𝐶
(𝑅 − 𝑟)𝑑∕2

‖𝑢‖𝐿2(𝐵(𝟎,𝑟)) . (2.7.4)

证明. 取测试函数 𝜑 = 𝜂2𝑢𝛽 (𝛽 ⩾ 1)，其中截断函数 𝜂 与 Caccioppoli 不等式证明中的选取相同。
计算得 ∇𝜙 = 𝛽𝜂2𝑢𝛽−1∇𝑢 + 2𝜂𝑢𝛽∇𝜂.

第一步：建立迭代不等式. 代入方程得

𝛽 ∫
𝐵(𝟎,1)

𝜂2𝑢𝛽−1𝑨∇𝑢 ⋅ ∇𝑢 d𝒙 = −2∫
𝐵(𝟎,1)

𝜂𝑢𝛽𝑨∇𝑢 ⋅ ∇𝜂 d𝒙 = 0

利用椭圆性，我们得到

𝜆𝛽 ∫
𝐵(𝟎,1)

𝜂2𝑢𝛽−1|∇𝑢|2 d𝒙 ⩽ 2Λ∫
𝐵(𝟎,1)

𝜂𝑢𝛽|∇𝑢||∇𝜂| d𝒙.



74 第二章 线性椭圆方程

仿照 Caccioppoli不等式的证明，我们将右边的被积函数拆分为：

2Λ(𝜂𝑢
𝛽−1
2 |∇𝑢|) ⋅ (𝑢

𝛽+1
2 |∇𝜂|) ⩽ Λ [𝜀

(
𝜂2𝑢𝛽−1|∇𝑢|2

)
+ 1
𝜀
(
𝑢𝛽+1|∇𝜂|2

)
] .

现在选取𝜀 = 𝜆𝛽∕(2Λ)充分小，使得 Λ𝜀项可以被左边吸收，得到

𝜆𝛽 ∫
𝐵(𝟎,1)

𝜂2𝑢𝛽−1|∇𝑢|2 d𝒙 ⩽ 𝜆𝛽
2 ∫

𝐵(𝟎,1)
𝜂2𝑢𝛽−1|∇𝑢|2 d𝒙 + Λ

( 𝜆𝛽
2Λ
)
∫
𝐵(𝟎,1)

𝑢𝛽+1|∇𝜂|2 d𝒙.

两边同时乘以
2
𝜆𝛽
，得到关于 𝑢的精确估计：

∫
𝐵(𝟎,1)

𝜂2𝑢𝛽−1|∇𝑢|2 d𝒙 ⩽ 4Λ2

𝜆2𝛽2 ∫𝐵(𝟎,1)
𝑢𝛽+1|∇𝜂|2 d𝒙. (2.7.5)

现在令 𝑤 = 𝑢
𝛽+1
2 ，则 |∇𝑤|2 = (𝛽+1

2
)2𝑢𝛽−1|∇𝑢|2. 代入上式并结合|∇𝜂|的界可得 𝑤 的估计：

∫
𝐵(𝟎,1)

𝜂2|∇𝑤|2 d𝒙 ⩽ (𝛽 + 1)2Λ2

𝛽2𝜆2 ∫
𝐵(𝟎,1)

𝑤2|∇𝜂|2 d𝒙 ⩽ 𝐶
(𝑅 − 𝑟)2

∫
𝐵(𝟎,𝑟)

𝑤2 d𝒙,

其中𝐶仅依赖𝜆, Λ. 现在对 𝜂𝑤 用 GNS不等式 (2.7.2)得到

(∫
𝐵(𝟎,𝑟)

𝑤2𝜒 d𝒙)
1∕𝜒

⩽ (∫
𝐵(𝟎,1)

(𝜂𝑤)2𝜒 d𝒙)
1∕𝜒

⩽ 𝐶 ∫
𝐵(𝟎,1)

|∇(𝜂𝑤)|2 d𝒙 ⩽ 𝐶
(𝑅 − 𝑟)2

∫
𝐵(𝟎,𝑟)

𝑤2 d𝒙.

令 𝑝 = 𝛽 + 1 ⩾ 2，把 𝑤 换回 𝑢，两边再开𝑝次方得到

‖𝑢‖𝐿𝑝𝜒(𝐵(𝟎,𝑟)) ⩽ ( 𝐶
(𝑅 − 𝑟)2

)
1∕𝑝

‖𝑢‖𝐿𝑝(𝐵(𝟎,𝑟)) . (2.7.6)

第二步：迭代到𝐿∞范数. 定义序列：

• 指数序列：𝑝𝑘 = 2𝜒𝑘.

• 半径序列：𝑅𝑘 = 𝑟 + 𝑅−𝑟
2𝑘

,则 𝑅0 = 𝑅, 𝑅∞ = 𝑟.

• 间距：𝑅𝑘 − 𝑅𝑘+1 =
𝑅−𝑟
2𝑘+1

.

在(2.7.6)中，我们令 𝑝 = 𝑝𝑘, 𝑅 = 𝑅𝑘, 𝑟 = 𝑅𝑘+1得到

‖𝑢‖𝐿𝑝𝑘+1 (𝐵𝑅𝑘+1 ) ⩽ (𝐶 ⋅ 4𝑘+1
(𝑅 − 𝑟)2)

1
𝑝𝑘

‖𝑢‖𝐿𝑝𝑘 (𝐵𝑅𝑘 ) .
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对 𝑘 = 0, 1, 2,⋯进行迭代累乘：

‖𝑢‖𝐿∞(𝐵(𝟎,𝑟)) ⩽
⎡
⎢
⎣

∞∏

𝑘=0
( 4𝐶
(𝑅 − 𝑟)2

)
1

2𝜒𝑘

⋅ (4
1

2𝜒𝑘 )𝑘
⎤
⎥
⎦
‖𝑢‖𝐿2(𝐵(𝟎,𝑟)) .

又因为
∞∑
𝑘=0

1
𝜒𝑘
= 𝜒

𝜒−1
= 𝑛

2
< ∞,以及

∞∑
𝑘=0

𝑘
𝜒𝑘
< ∞，所以无穷乘积收敛为一个有限常数，最终得到

sup
𝐵(𝟎,𝑟)

𝑢 ⩽ 𝐶̃
(𝑅 − 𝑟)𝑑∕2

‖𝑢‖𝐿2(𝐵(𝟎,𝑟)) .

注记 2.7.1. 除了该局部有界性定理，Moser实际上还证明了弱解满足 Harnack不等式，但证明过
程需要用到BMO空间的John-Nirenberg不等式，因此我们不在讲义中写下细节。具体细节可参见
韩青、林芳华的专著 [10, 4.4节].

2.7.3 De Giorgi迭代：𝐶0,𝛼 连续性

在建立局部有界性(𝐿∞)之后，De Giorgi利用水平集的测度来控制解的振幅，进而将有界解
“升级为”𝐶0,𝛼连续的解。具体来说，本节要证明的结论如下。

定理 2.7.4 (De Giorgi定理). 设𝑢是 𝐿𝑢 = 0在 𝐵(𝟎, 1)中的弱解，那么则有

sup
𝐵(𝟎, 1

2
)
|𝑢(𝒙)| + sup

𝒙,𝒚∈𝐵(𝟎, 1
2
)

|𝑢(𝒙) − 𝑢(𝒚)|
|𝒙 − 𝒚|𝛼 ⩽ 𝐶 (𝑑, Λ𝜆 ) ‖𝑢‖𝐿2(𝐵(𝟎,1)). (2.7.7)

其中 𝛼 = 𝛼(𝑑, Λ
𝜆
) ∈ (0, 1).

证明这个定理的核心思想是：如果解的能量有限，且在大部分区域的取值较小，那么它的局

部振幅不可能大。首先我们介绍两个基本引理。

引理 2.7.5. 设 Φ ∈ 𝐶0,1
𝑙𝑜𝑐(ℝ)为凸函数。那么：

(1) 若 𝑢是下解且 Φ′ ⩾ 0，只要 𝑣 = Φ(𝑢)满足 𝑣 ∈ 𝐻1
𝑙𝑜𝑐(𝐵(𝟎, 1)),那么𝑣也是下解。

(2) 若 𝑢是上解且 Φ′ ⩽ 0，只要 𝑣 = Φ(𝑢)满足 𝑣 ∈ 𝐻1
𝑙𝑜𝑐(𝐵(𝟎, 1)),那么𝑣也是下解。

特别地，若𝑢是下解，则对𝑘 ∈ ℝ有(𝑢 − 𝑘)+ ∶= max{0, 𝑢 − 𝑘}也是下解。

证明. 我们只证明(1), 直接计算即可。首先假设 Φ ∈ 𝐶2
𝑙𝑜𝑐(ℝ)。那么 Φ′(𝑠) ⩾ 0, Φ′′(𝑠) ⩾ 0。去

𝜑 ∈ 𝐶1
𝑐 (𝐵(𝟎, 1))且 𝜑 ⩾ 0。直接计算得出：

∫
𝐵(𝟎,1)

𝑎𝑖𝑗𝜕𝑖𝑣𝜕𝑗𝜑 d𝒙 = ∫
𝐵(𝟎,1)

𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗(Φ′(𝑢)𝜑) d𝒙 − ∫
𝐵(𝟎,1)

(𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢)𝜑Φ′′(𝑢) d𝒙 ⩽ 0,



76 第二章 线性椭圆方程

其中 Φ′(𝑢)𝜑 ∈ 𝐻1
0(𝐵(𝟎, 1))非负。一般情况用Φ和卷积光滑子{𝜂𝜀}作卷积逼近即可。

下一个引理是习题1.4.3的直接结论，我们不再证明。

引理 2.7.6. 设𝜀 > 0, 𝑢 ∈ 𝐻1(𝐵(𝟎, 1)) 满足 |{𝑥 ∈ 𝐵(𝟎, 1); 𝑢 = 0}| ⩾ 𝜀|𝐵(𝟎, 1)|，则存在常数 𝐶 =
𝐶(𝜀, 𝑑)，使得

∫
𝐵(𝟎,1)

𝑢2 ⩽ 𝐶 ∫
𝐵(𝟎,1)

|∇𝑢|2. (2.7.8)

定理 2.7.7 (密度定理). 设 𝑢 > 0是 𝐵2 中的上解，且满足 |{𝑥 ∈ 𝐵(𝟎, 1) ∶ 𝑢 ⩾ 1}| ⩾ 𝜀|𝐵(𝟎, 1)|.则存
在仅依赖于 𝑑和 Λ∕𝜆的常数 𝐶，使得 inf

𝐵(𝟎, 1
2
)
𝑢 ⩾ 𝐶.

证明. 我们可以假设 𝑢 ⩾ 𝛿 > 0，然后令 𝛿 → 0+. 据引理 2.7.5知𝑣 = (log 𝑢)− 是下解，且具有下界
log 𝛿−1. 据定理2.7.3得

sup
𝐵(𝟎, 1

2
)
𝑣 ⩽ 𝐶 (∫

𝐵(𝟎,1)
|𝑣|2)

1
2

. (2.7.9)

注意 |{𝑥 ∈ 𝐵(𝟎, 1); 𝑣 = 0}| = |{𝑥 ∈ 𝐵(𝟎, 1); 𝑢 ⩾ 1}| ⩾ 𝜀|𝐵(𝟎, 1)|，据引理 2.7.6可得

sup
𝐵(𝟎, 1

2
)
𝑣 ⩽ 𝐶 (∫

𝐵(𝟎,1)
|∇𝑣|2)

1
2

(2.7.10)

我们证明右端有界。为此取测试函数 𝜑 = 𝜁2

𝑢
, 𝜁 ∈ 𝐶1

𝑐 (𝐵2). 代入方程可得

0 ⩽ ∫
𝐵2
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗 (

𝜁2
𝑢 ) d𝒙 = −∫

𝐵2
𝜁2
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢

𝑢2 d𝒙 + 2∫
𝐵2

𝜁𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝜁
𝑢 d𝒙.

移项，并注意到∇ log 𝑢 = (∇𝑢)∕𝑢,再用一致椭圆条件和Young不等式得到

∫
𝐵2
𝜁2|∇ log 𝑢|2 d𝒙 ⩽ 𝛿‖𝜁∇ log 𝑢‖2𝐿2(𝐵2) + 𝐶 ∫

𝐵2
|∇𝜁|2 d𝒙

取𝛿 > 0充分小使得该项被左边吸收，这样我们得到 ∫𝐵2 𝜁
2|∇ log 𝑢|2 ⩽ 𝐶 ∫𝐵2 |∇𝜁|

2. 因此对固定的
𝜁 ∈ 𝐶1

𝑐 (𝐵2), 𝜁|𝐵(𝟎,1) ≡ 1，我们有

∫
𝐵(𝟎,1)

|∇ log 𝑢|2 ⩽ 𝐶. (2.7.11)

结合 (2.7.9)我们得到 sup
𝐵(𝟎, 1

2
)
𝑣 = sup

𝐵(𝟎, 1
2
)
(log 𝑢)− ⩽ 𝐶.所以 inf

𝐵(𝟎, 1
2
)
𝑢 ⩾ 𝑒−𝐶 > 0.

接下来我们控制振幅。
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定理 2.7.8 (振幅定理). 设 𝑢是 𝐿𝑢 = 0在 𝐵2 中的有界解，则存在 𝛾 = 𝛾(𝑑, Λ
𝜆
) ∈ (0, 1)使得

osc
𝐵(𝟎, 1

2
)
𝑢 ⩽ 𝛾 osc

𝐵(𝟎,1)
𝑢. (2.7.12)

证明. 局部有界性已在定理2.7.3中得证。现在我们令 𝛼1 = sup
𝐵(𝟎,1)

𝑢, 𝛽1 = inf
𝐵(𝟎,1)

𝑢. 考虑方程的解 𝑢−𝛽1
𝛼1−𝛽1

以及
𝛼1−𝑢
𝛼1−𝛽1

,并注意到如下等价关系：

𝑢 ⩾ 1
2(𝛼1 + 𝛽1) ⇐⇒ 𝑢 − 𝛽1

𝛼1 − 𝛽1
⩾ 1
2, 𝑢 ⩽ 1

2(𝛼1 + 𝛽1) ⇐⇒ 𝛼1 − 𝑢
𝛼1 − 𝛽1

⩾ 1
2.

情形 1. 若有
|||||||
{𝑥 ∈ 𝐵(𝟎, 1); 2(𝑢−𝛽1)

𝛼1−𝛽1
⩾ 1}

|||||||
⩾ 1

2
|𝐵(𝟎, 1)|. 那么在 𝐵(𝟎, 1)中对 𝑢−𝛽1

𝛼1−𝛽1
⩾ 0使用密度定理，

就得到存在 𝐶 > 1使得 inf
𝐵(𝟎, 1

2
)

𝑢−𝛽1
𝛼1−𝛽1

⩾ 1
𝐶

,进而得到 inf
𝐵(𝟎, 1

2
)
𝑢 ⩾ 𝛽1 + 𝐶−1(𝛼1 − 𝛽1).

情形 2. 若有
|||||||
{𝑥 ∈ 𝐵(𝟎, 1); 2(𝛼1−𝑢)

𝛼1−𝛽1
⩾ 1}

|||||||
⩾ 1

2
|𝐵(𝟎, 1)|.同上可得 sup

𝐵(𝟎, 1
2
)
𝑢 ⩽ 𝛼1 − 𝐶−1(𝛼1 − 𝛽1).

现在令 𝛼2 = sup
𝐵(𝟎, 1

2
)
𝑢, 𝛽2 = inf

𝐵(𝟎, 1
2
)
𝑢. 注意到 𝛽2 ⩾ 𝛽1 以及 𝛼2 ⩽ 𝛼1. 无论以上哪种情形成立，我们

都可以得到

𝛼2 − 𝛽2 ⩽ (1 − 1
𝐶) (𝛼1 − 𝛽1) ⇒ osc

𝐵(𝟎, 1
2
)
𝑢 ⩽ (1 − 1

𝐶) osc𝐵(𝟎,1)
𝑢.. (2.7.13)

而De Giorgi定理（定理2.7.4）不难由如上定理推出。

定理2.7.4的证明. 定理2.7.4待证不等式的左边第一项 sup
𝐵(𝟎, 1

2
)
|𝑢|已经在局部有界性定理（定理2.7.3）

中得到估计，因此我们只需要计算第二项，也就是 sup
𝒙,𝒚∈𝐵(𝟎, 1

2
)

|𝑢(𝒙)−𝑢(𝒚)|
|𝒙−𝒚|𝛼

的估计。

第1步：振幅的迭代. 据振幅定理存在常数 𝛾 = 𝛾(𝑑, Λ
𝜆
) ∈ (0, 1)，使得对 𝐵(𝟎, 1) 中的任意球

𝐵(𝒙0, 𝑟) ⊂ 𝐵(𝟎, 1)，只要方程在该球内有定义，就有如下振幅衰减估计（通过缩放不变性）：

osc
𝐵(𝒙0,𝑅∕2)

𝑢 ⩽ 𝛾 osc
𝐵(𝒙0,𝑅)

𝑢. (2.7.14)
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接下来我们进行迭代。首先取𝛼 = − log2 𝛾 > 0,然后固定𝒙0 ∈ 𝐵(𝟎, 1
2
)，令𝑅0 =

1
2
，则球 𝐵(𝒙0, 𝑅0) ⊂

𝐵(𝟎, 1). 考虑半径序列 𝑅𝑘 =
𝑅0
2𝑘
，其中 𝑘 ∈ ℕ. 反复利用 (2.7.14)式，我们得到

osc
𝐵(𝒙0,𝑅𝑘)

𝑢 ⩽ 𝛾 osc
𝐵(𝒙0,𝑅𝑘−1)

𝑢 ⩽ 𝛾𝑘 osc
𝐵(𝒙0,𝑅0)

𝑢.

而 𝛾 = 2−𝛼 和 𝑅𝑘 = 2−𝑘𝑅0，所以 𝛾𝑘 = (2−𝛼)𝑘 = (2−𝑘)𝛼 = (𝑅𝑘
𝑅0
)
𝛼
,进而得到

osc
𝐵(𝒙0,𝑅𝑘)

𝑢 ⩽ (𝑅𝑘𝑅0
)
𝛼

osc
𝐵(𝒙0,𝑅0)

𝑢. (2.7.15)

第2步：任意球上的振幅估计. 今任取 0 < 𝑟 < 𝑅0，则存在 𝑘 ∈ ℕ 使得 𝑅𝑘+1 ⩽ 𝑟 ⩽ 𝑅𝑘. 而
𝐵(𝒙0, 𝑟) ⊂ 𝐵(𝒙0, 𝑅𝑘)，据振幅的单调性知

osc
𝐵(𝒙0,𝑟)

𝑢 ⩽ osc
𝐵(𝒙0,𝑅𝑘)

𝑢 ⩽ (𝑅𝑘𝑅0
)
𝛼

osc
𝐵(𝒙0,𝑅0)

𝑢 (由 2.7.15)

= (
2𝑅𝑘+1
𝑅0

)
𝛼

osc
𝐵(𝒙0,𝑅0)

𝑢 ⩽ 2𝛼 ( 𝑟𝑅0
)
𝛼
osc

𝐵(𝒙0,𝑅0)
𝑢 = 𝐶𝑟𝛼. (2.7.16)

其中 𝐶 = 2𝛼𝑅−𝛼0 osc
𝐵(𝒙0,𝑅0)

𝑢. 因为 𝑢局部有界（定理2.7.3），我们可以用 ‖𝑢‖𝐿2(𝐵(𝟎,1)) 控制 osc
𝐵(𝒙0,𝑅0)

𝑢.

第3步：Hölder差商的控制. 任取 𝒙, 𝒚 ∈ 𝐵(𝟎, 1
2
)，令𝑟 = |𝒙 − 𝒚|. 若 𝑟 ⩾ 1∕6，则直接由局部有界

性定理即可得到 Hölder差商的控制。今考虑 𝑟 < 1∕6的情况，此时𝒚 ∈ 𝐵(𝒙, 3𝑟∕2),进而有

|𝑢(𝒙) − 𝑢(𝒚)| ⩽ sup
𝒛∈𝐵(𝒙,3𝑟∕2)

𝑢(𝒛) − inf
𝒛∈𝐵(𝒙,3𝑟∕2)

𝑢(𝒛) = osc
𝐵(𝒙,3𝑟∕2)

𝑢 (2.7.17)

由(2.7.16)知（注意 𝒙 ∈ 𝐵(𝟎, 1
2
)，且 𝑟 < 1∕6使得 𝐵(𝒙, 3𝑟∕2) ⊂ 𝐵(𝟎, 3

4
) ⊂ 𝐵(𝟎, 1)）

|𝑢(𝒙) − 𝑢(𝒚)| ⩽ 𝐶 (3𝑟2 )
𝛼
= 𝐶′|𝒙 − 𝒚|𝛼 ⇒ |𝑢(𝒙) − 𝑢(𝒚)|

|𝒙 − 𝒚|𝛼 ⩽ 𝐶′. (2.7.18)

这就证明了 𝑢 ∈ 𝐶0,𝛼(𝐵(𝟎, 1
2
)).

注记 2.7.2. 这一小节我们只展现了 De Giorgi 将弱解从 𝐿∞ 提升到 𝐶0,𝛼 的过程，所谓 De Giorgi
切割水平集的方法主要是用于证明局部有界性定理，我们将其主要过程列在问题 2.7.1 供大家参
考，具体细节可参见韩青、林芳华的专著 [10,定理4.1].

注记 2.7.3. 细心的读者会发现，本节标题中的Nash没有出现。实际上他的贡献在于抛物方程 𝜕𝑡𝑢 =
∇ ⋅ (𝑨(𝒙)∇𝑢)，由能量估计我们容易得到 d

d𝑡
∫ 𝑢2 d𝒙 ⩽ −𝐶 ∫ |∇𝑢|2 d𝒙，Nash证明了关键的插值不等
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式 ‖𝑢‖
2+ 4

𝑑
𝐿2 ⩽ 𝐶‖∇𝑢‖2𝐿2‖𝑢‖

4
𝑑
𝐿1 ,将其代入能量估计后可证得热核衰减估计 |𝐾(𝑡, 𝒙, 𝒚)| ≲ 𝑡−𝑑∕2.

但这还不够：想象一个函数图像是一堆“极其细长的针”，虽然它的最大值受控，或者它可

能迅速变得很平，但如果它依然有“锯齿状”的震荡，我们就得不到 (Hölder)连续性。所以Nash
又证明了矩估计 (moment estimates) ∫ℝ𝑑 |𝒙−𝒚|𝐿(𝑡, 𝒙, 𝒚) d𝒚 ≈

√
𝑡以及 |𝐾(𝑡, 𝒙, 𝒚)| ≲ 𝑡−𝑑∕2 exp(−|𝒙−

𝒚|2∕𝐶𝑡). 这说明即使系数矩阵 𝑨可能“很不连续”（可以理解为介质导热性不均匀），热量的传播
依然收到受到类似“高斯分布”的限制。热量被有效地“禁锢”在一个半径约为

√
𝑡的球内。

这些估计是如何用在证明抛物方程解的Hölder连续性上的呢？我们假设初值有界，然后利用
热核可得：对距离很近的两点 𝒙1, 𝒙2,有

|𝑢(𝑡, 𝒙1) − 𝑢(𝑡, 𝒙2)| ≲ ∫
ℝ𝑑
|𝐾(𝑡, 𝒙1, 𝒚) − 𝐾(𝑡, 𝒙2, 𝒚)| d𝒚.

然后Nash证明了当|𝒙1 − 𝒙2| ≪
√
𝑡 时，两个“钟形曲线”𝐾(𝑡, 𝒙1, 𝒚), 𝐾(𝑡, 𝒙2, 𝒚)会“高度重合”

∫
ℝ𝑑
|𝐾(𝑡, 𝒙1, 𝒚) − 𝐾(𝑡, 𝒙2, 𝒚)| d𝒚 ≲ 𝑡−𝛼∕2|𝒙1 − 𝒙2|𝛼,

这就得到了抛物方程解的Hölder连续性。当然最后这个不等式的证明是高度非平凡的，我们实际
上需要对时间在𝑡∕2处作截断，然后还要用类似于证明 Caccioppoli不等式的技巧才能得到结论。

问题 2.7

问题 2.7.1 (De Giorgi证明局部有界性定理). 设𝑢 ∈ 𝐻1(𝐵(𝟎, 1))为方程(2.7.1)的非非非负负负弱弱弱下下下解解解。对𝑘 ∈
ℝ,定义水平集𝐴𝑘 ∶= {𝒙 ∈ 𝐵(𝟎, 1) ∶ 𝑢(𝒙) > 𝑘}以及截断函数 𝑢𝑘 ∶= (𝑢 − 𝑘)+.

(1) 设ℎ > 𝑘,利用 Caccioppoli不等式和 Sobolev嵌入定理证明

∫
𝐴ℎ
|∇𝑢|2 d𝒙 ⩽ 𝐶

(ℎ − 𝑘)2
|𝐴𝑘|

2
𝑑 ∫

𝐴𝑘
|∇𝑢|2 d𝒙.

(2) 选取 𝑘𝑛 = 𝑀(1 − 2−𝑛)，其中 𝑀 > 0为待定常数，令 𝑈𝑛 = ∫𝐴𝑘𝑛 |∇𝑢|
2 d𝒙. 证明：

∀𝑛 ⩾ 3, 𝑈𝑛+1 ⩽
𝐶 ⋅ 4𝑛
𝑀2 𝑈

1+ 2
𝑛−2

𝑛 .

(3) 设非负数列 {𝑌𝑛}满足 𝑌𝑛+1 ⩽ 𝐶0𝑏𝑛𝑌1+𝜀
𝑛 ，其中 𝐶0 > 0, 𝑏 > 1, 𝜀 > 0. 证明：存在 𝛿 > 0（仅依

赖 𝐶0, 𝑏, 𝜀），使得只要 𝑌0 ⩽ 𝛿，就有 𝑌𝑛 → 0.

(4) 选取合适的𝑀使得𝑢 ⩽ 𝑀几乎处处成立，进而得到𝑢 ∈ 𝐿∞(𝐵(𝟎, 1)).
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2.8 Derrick-Pohozaev恒等式

本节我们考虑一个半线性椭圆方程的边值问题。设空间维数𝑑 ⩾ 3, 𝑈 ⊂ ℝ𝑑是有界区域

⎧

⎨
⎩

−∆𝑢 = |𝑢|𝑝−1𝑢 in 𝑈,
𝑢 = 0 on 𝜕𝑈.

(2.8.1)

利用山路引理(Mountain-Pass)等变分工具，可以证明当1 < 𝑝 < 𝑑+2
𝑑−2
时，该方程存在非平凡解 𝑢 ≢

0. 本节证明，若𝑝 > 𝑑+2
𝑑−2
，且区域𝑈是关于原点的星形域(star-shaped domain)，则方程(2.8.1)只有

零解。

定义 2.8.1 (星形域). 若对任意的𝒙 ∈ 𝑈，线段 {𝜆𝒙 ∶ 0 ⩽ 𝜆 ⩽ 1}都位于 𝑈 中，则称区域 𝑈 是关于
原点的星星星形形形域域域。

显见，包含原点的凸集必定是关于原点的星形域，但反之未必。星形域具有如下性质

引理 2.8.1 (星形域的法线). 设 𝜕𝑈 ∈ 𝐶1，且有界区域 𝑈 是关于原点的星形域。那么对任意 𝒙 ∈
𝜕𝑈 都有 𝒙 ⋅ 𝑁(𝒙) ⩾ 0. 这里 𝑁(𝒙)表示 𝒙 ∈ 𝜕𝑈 处的单位外法向量。

证明. 因为 𝜕𝑈 ∈ 𝐶1，若 𝑥 ∈ 𝜕𝑈，则对任意 𝜀 > 0都存在 𝛿 > 0，使得 |𝒚 − 𝒙| < 𝛿. 并且𝒚 ∈ 𝑈 可
推出 𝑁(𝒙) ⋅ (𝒚−𝒙)

|𝒚−𝒙|
⩽ 𝜀. 特别地，令 𝒚 = 𝜆𝒙 (0 < 𝜆 < 1). 由于 𝑈 是星形域，故 𝒚 ∈ 𝑈，进而有

𝑁(𝒙) ⋅ 𝒙
|𝒙| = − lim

𝜆→1−
𝑁(𝒙) ⋅ (𝜆𝒙 − 𝒙)

|𝜆𝒙 − 𝒙| ⩾ 0.

接下来我们证明：如果有界区域 𝑈 是星形域，对于超临界增长，方程(2.8.1)只有零解。这个
证明基于一个神奇的想法：在方程两边同时乘以 𝒙 ⋅ ∇𝑢这个特殊乘子，然后再不断分部积分。这
个乘子实际上是将诺特定理（定理7.3.1）应用在方程的伸缩不变性时得到的，在本节末尾我们将
指出：𝒙 ⋅ ∇𝑢实际上是伸缩变换群的无穷小生成元。

定理 2.8.2 (非平凡解的不存在性). 设有界区域𝑈是边界𝐶1的星形域（关于原点），函数 𝑢 ∈ 𝐶2(𝑈)
是方程(2.8.1)的解，且𝑝 > 𝑑+2

𝑑−2
，则𝑢 ≡ 0在𝑈中恒成立。

证明. 方程两边同时乘以 𝒙 ⋅ ∇𝑢并在 𝑈 上积分，得到

∫
𝑈
(−∆𝑢)(𝒙 ⋅ ∇𝑢) d𝒙 = ∫

𝑈
|𝑢|𝑝−1𝑢(𝒙 ⋅ ∇𝑢) d𝒙. (2.8.2)
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上式左边记为𝐴,右边记为𝐵. 左边分部积分得到

𝐴 =
𝑑∑

𝑖,𝑗=1
∫
𝑈
(𝜕𝑖𝑢)𝜕𝑖(𝑥𝑗𝜕𝑗𝑢) d𝒙 −

𝑑∑

𝑖,𝑗=1
∫
𝜕𝑈
(𝜕𝑖𝑢)𝑁𝑖𝑥𝑗(𝜕𝑗𝑢) d𝑆𝒙 =∶ 𝐴1 + 𝐴2.

然后计算𝐴1，直接拆括号得到

𝐴1 =
𝑑∑

𝑖,𝑗=1
∫
𝑈
(𝜕𝑖𝑢)[𝛿𝑖𝑗(𝜕𝑗𝑢) + 𝑥𝑗(𝜕𝑖𝜕𝑗𝑢)] d𝒙 = ∫

𝑈
|∇𝑢|2 d𝒙 +

𝑑∑

𝑗=1
∫
𝑈
𝜕𝑗 (

|∇𝑢|2
2 ) 𝑥𝑗 d𝒙

= (1 − 𝑑
2) ∫𝑈

|∇𝑢|2 d𝒙 + ∫
𝜕𝑈

|∇𝑢|2
2 (𝑁(𝒙) ⋅ 𝒙) d𝑆𝒙.

现在我们来处理边界项，因为 𝑢|𝜕𝑈 = 0，所以∀𝒙 ∈ 𝜕𝑈，梯度向量 ∇𝑢(𝒙)必定平行于法向量
𝑁(𝒙)（因为 𝑢|𝜕𝑈 = 0 蕴含 𝑢 在边界上的切向导数为零）。因此 ∇𝑢(𝒙) = ±|∇𝑢(𝒙)|𝑁(𝒙). 将其代
入𝐴2得到

𝐴2 = −∫
𝜕𝑈
|∇𝑢|2(𝑁(𝒙) ⋅ 𝑥) d𝑆𝒙. (2.8.3)

上述各式相加，我们得到𝐴的化简

𝐴 = 2 − 𝑑
2 ∫

𝑈
|∇𝑢|2 d𝒙 − 1

2 ∫𝜕𝑈
|∇𝑢|2(𝑁(𝒙) ⋅ 𝒙) d𝑆𝒙.

接下来我们再计算𝐵,分部积分得到

𝐵 ∶=
𝑑∑

𝑗=1
∫
𝑈
|𝑢|𝑝−1𝑢𝑥𝑗(𝜕𝑗𝑢) d𝒙 =

𝑑∑

𝑗=1
∫
𝑈
𝜕𝑗 (

|𝑢|𝑝+1
𝑝 + 1 ) 𝑥𝑗 d𝒙 = − 𝑑

𝑝 + 1 ∫𝑈
|𝑢|𝑝+1 d𝒙.

而𝐴 = 𝐵，所以现在得到如下恒等式（称作Derrick–Pohozaev恒等式）

(𝑑 − 2
2 ) ∫

𝑈
|∇𝑢|2 d𝒙 + 1

2 ∫𝜕𝑈
|∇𝑢|2(𝑁(𝒙) ⋅ 𝒙) d𝑆𝒙 =

𝑑
𝑝 + 1 ∫𝑈

|𝑢|𝑝+1 d𝒙. (2.8.4)

据引理2.8.1，我们得到不等式

(𝑑 − 2
2 ) ∫

𝑈
|∇𝑢|2 d𝒙 ⩽ 𝑑

𝑝 + 1 ∫𝑈
|𝑢|𝑝+1 d𝒙. (2.8.5)

最后我们通过能量估计来导出矛盾。方程两边乘𝑢再分部积分，我们可以算出

∫
𝑈
|∇𝑢|2 d𝒙 = ∫

𝑈
|𝑢|𝑝+1 d𝒙.
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代入 (2.8.5)，我们得到

(𝑑 − 2
2 − 𝑑

𝑝 + 1) ∫𝑈
|𝑢|𝑝+1 d𝒙 ⩽ 0.

若方程的解 𝑢不恒为零，则必然有 𝑑−2
2
− 𝑑

𝑝+1
⩽ 0，即 𝑝 ⩽ 𝑑+2

𝑑−2
，这与假设矛盾。

最后我们简要地说明一下乘子𝒙 ⋅ ∇𝑢的来源。考虑ℝ𝑑上的伸缩变换群 (dilation group)，用参
数𝑡 ∈ ℝ表示为 𝑇𝑡 ∶ 𝒙 ↦→ 𝑒𝑡𝒙. 当𝑡 = 0时是恒等变换。而它作用在光滑函数𝑢上可定义为

𝒮𝑡𝑢(𝒙) ∶= 𝑢(𝑒𝑡𝒙).

其无穷小生成元 (infinitesimal generator)定义为该群作用关于𝑡在𝑡 = 0处的导数

𝐴𝑢 ∶= d
d𝑡
|||||||𝑡=0

𝒮𝑡𝑢(𝒙).

代入𝒮𝑡定义得
d
d𝑡𝑢(𝑒

𝑡𝒙) = ∇𝑢(𝑒𝑡𝒙) ⋅ (𝑒𝑡𝒙) ⇒ 𝐴𝑢(𝒙) = 𝒙 ⋅ ∇𝑢(𝒙).

可见𝒙 ⋅ ∇ 是空间伸缩变换流 𝒙(𝑡) ∶= 𝑒𝑡𝒙0 对应的向量场，它是一个从原点向外发出的径向向量
场。

而在PDE的实例中，函数𝑢往往具有物理量纲 (scaling dimension)，标准的伸缩变换往往伴随
着函数值的缩放。我们考虑

∀𝜆 > 0, 𝑢𝜆(𝒙) = 𝜆𝑘𝑢(𝜆𝒙) 𝜆=𝑒𝑡⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ (𝒮𝑡𝑢)(𝒙) = 𝑒𝑘𝑡𝑢(𝑒𝑡𝒙).

此时生成元为
d
d𝑡 |𝑡=0(𝑒

𝑘𝑡𝑢(𝑒𝑡𝒙) = 𝑘𝑢(𝒙) + 𝒙 ⋅ ∇𝑢(𝒙).

在讲义后面有关诺特定理的内容中，例7.3.2就给出了波动方程的例子，而伸缩变换 (𝒙, 𝑡) ↦→ (𝜆𝒙, 𝜆𝑡),
𝑢 ↦→ 𝜆

𝑑−1
2 𝑢(𝜆𝒙, 𝜆𝑡)保证了时空 𝐻̇1 范数的不变性。

再回到我们本节讨论的半线性椭圆方程(2.8.1)，如果我们要寻求它的伸缩不变性 (scaling in-
variance)，就不妨待定 𝑢𝜆(𝒙) = 𝜆𝛼𝑢(𝜆𝒙)使得：如果𝑢是解，则𝑢𝜆也是解。代入方程计算得

−∆(𝑢𝜆) = −𝜆𝛼+2(∆𝑢)(𝜆𝒙), |𝑢𝜆|𝑝−1𝑢𝜆 = 𝜆𝛼𝑝(|𝑢|𝑝−1𝑢)(𝜆𝒙).

要让二者相等，则必须有𝛼 + 2 = 𝛼𝑝,解得 𝛼 = 2∕(𝑝 − 1).
另一方面我们如果把𝑢看作有限能量解，则能量范数 ∫𝑈 |∇𝑢|2 d𝒙 也是伸缩不变，计算可得

𝛼 = (𝑑 − 2)∕2，进而得到临界指标 𝑝 = 𝑑+2
𝑑−2

.
总结来说，Pohozaev恒等式本质上是诺特定理（定理7.3.1）应用在伸缩不变性下的特例，乘

子 𝒙 ⋅ ∇𝑢 作用在方程上相当于在问“如果我把你拉伸一点点，能量会怎么变？”对应到本节讨论
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的例子，当𝑝大于临界指标时，该乘子提供的“拉伸”弱于高次非线性项的“聚集”，因此方程难
以存在非平凡的有限能量解。

习题 2.8

习题 2.8.1. ℝ𝑑中的质量临界Schrödinger方程的基态 (ground state) 𝑄是满足如下半线性椭圆方程
的径向正解，且在无穷远处衰减到零

−∆𝑄 + 𝑄 − |𝑄|
4
𝑑𝑄 = 0, 𝒙 ∈ ℝ𝑑.

(1) 模仿定理2.8.2的方法证明: ‖𝑄‖
2+ 4

𝑑

𝐿2+
4
𝑑 (ℝ𝑑)

= 2‖𝑄‖2𝐿2(ℝ𝑑).

(2) 已知如下 Galiargo-Nirenberg插值不等式成立

‖𝑢‖2+(4∕𝑑)𝐿2+(4∕𝑑)(ℝ𝑑) ⩽ 𝐶‖𝑢‖4∕𝑑𝐿2(ℝ𝑑)‖∇𝑢‖
2
𝐿2(ℝ𝑑).

证明：𝑄可使得该不等式取等号，并写出此时的最佳常数𝐶关于‖𝑄‖2𝐿2(ℝ𝑑)的表达式。

习题 2.8.2 (Rellich-Pohozaev恒等式). 设𝑈 ⊂ ℝ𝑑的边界光滑的有界区域，𝑉 ∈ 𝐶1(𝑈)是给定的位势
函数，𝜆 > 0是(−∆ + 𝑉(𝒙)𝐼)算子(带Dirichlet零边值)的一个特征值，𝑢 ∈ 𝐻2(𝑈) ∩ 𝐻1

0(𝑈)是对应的
特征函数，即

−∆𝑢 + 𝑉(𝒙)𝑢 = 𝜆𝑢 in 𝑈, 𝑢|𝜕𝑈 = 0.

证明：

𝜆 ∫
𝑈
𝑢2 d𝒙 = 1

2 ∫𝜕𝑈
(𝒙 ⋅ 𝑁(𝒙)) ( 𝜕𝑢𝜕𝑁)

2
d𝑆𝒙 + ∫

𝑈
(2𝑉(𝒙) + 𝒙 ⋅ ∇𝑉(𝒙))|𝑢|2 d𝒙.

注：这和习题2.4.3的结论是相通的。

问题 2.8

问题 2.8.1 (GNS不等式的最佳常数). 设空间维数𝑑 = 3,由GNS不等式(定理1.4.1)知，对𝑓 ∈ 𝐻1(ℝ3),
成立不等式 ‖𝑓‖𝐿6(ℝ3) ⩽ 𝐶‖∇𝑓‖𝐿2(ℝ3). 本题讨论该不等式最佳常数问题，也就是如下泛函(称作
Rayleight商商商)的极小值

𝐽[𝑓] ∶=
∫ℝ3 |∇𝑓|2 d𝒙
(∫ℝ3 |𝑓|6 d𝒙)1∕3

, 𝑓 ∈ 𝐻1(ℝ3), 𝑓 ≠ 0.

(1) 用变分法证明 𝐽[𝑢] 的极小化子（假设存在性已知）满足方程 −∆𝑢 = 𝜇𝑢5, 其中𝜇是一个常
数。

(2) 今假设已知极小化子 𝑢(𝑟) 是径向函数，且满足 𝑢(0) = 1, 𝑢(+∞) = 0. 计算此时极小化子的
表达式以及GNS不等式最佳常数𝐶的具体取值。该解实际上被称作 Talenti bubble.
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注： (2)的假设需要用到对称重排定理和Polya-Szegö不等式，已超出本讲义知识范围。实际
上，−∆𝑢 = 𝜇𝑢5的𝐻1正解是唯一的（即必须是关于某一点的径向函数）这是1989年由Caffarelli–
Gidas–Spruck用移动平面法（见 Evans [6,第九章]）证明的结论，可参见

• Luis A. Caffarelli, Basilis Gidas, Joel Spruck. Asymptotic symmetry and local behavior of semilin-
ear elliptic equations with critical sobolev growth. Commun. Pure Appl. Math., 42(3), 271–297,
1989.

另一方面，Talenti气泡解本质上是球球球面面面上上上的的的常常常数数数函函函数数数投投投影影影到到到平平平面面面上上上后后后的的的样样样子子子。
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本章我们始终假设𝑈 ⊂ ℝ𝑑是有界开集，且对𝑇 > 0定义抛物圆柱 (parabolic cylinder)𝑈𝑇 ∶=
(0, 𝑇] × 𝑈. 本章我们考虑如下初边值问题

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝑢 + 𝐿𝑢 = 𝑓 in 𝑈𝑇,
𝑢 = 0 on [0, 𝑇] × 𝜕𝑈,
𝑢 = 𝑔 on {𝑡 = 0} × 𝑈.

(3.0.1)

这里 𝑓 ∶ 𝑈𝑇 → ℝ和 𝑔 ∶ 𝑈 → ℝ是给定的函数，𝑢 ∶ 𝑈𝑇 → ℝ是未知函数 𝑢 = 𝑢(𝑡, 𝒙). 𝐿 是二阶偏
微分算子，它具有如下散度形式：

𝐿𝑢 = −
𝑑∑

𝑖,𝑗=1
𝜕𝑗(𝑎𝑖𝑗(𝑡, 𝒙)𝜕𝑖𝑢) +

𝑑∑

𝑖=1
𝑏𝑖(𝑡, 𝒙)𝜕𝑖𝑢 + 𝑐(𝑡, 𝒙)𝑢 (3.0.2)

或者非散度形式

𝐿𝑢 = −
𝑑∑

𝑖,𝑗=1
𝑎𝑖𝑗(𝑡, 𝒙)𝜕𝑖𝜕𝑗𝑢 +

𝑑∑

𝑖=1
𝑏𝑖(𝑡, 𝒙)𝜕𝑖𝑢 + 𝑐(𝑡, 𝒙)𝑢 (3.0.3)

其中系数 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 (1 ⩽ 𝑖, 𝑗 ⩽ 𝑑)为给定函数。

定义 3.0.1. 我们称微分算子𝜕𝑡 + 𝐿 (由 (3.0.2) 或 (3.0.3) 定义) 是 (一一一致致致)抛抛抛物物物的的的，是指存在常数
𝜃 > 0使得对任意的 (𝑡, 𝒙) ∈ 𝑈𝑇 和 𝝃 ∈ ℝ𝑑均有下式成立

𝑑∑

𝑖,𝑗=1
𝑎𝑖𝑗(𝒙)𝜉𝑖𝜉𝑗 ⩾ 𝜃|𝝃 |2. (3.0.4)

特别地，对于每个固定的 𝑡 ∈ [0, 𝑇]，算子 𝐿是一致椭圆型的。

一个简单的例子是假设 𝑎𝑖𝑗 = 𝛿𝑖𝑗 且 𝑏𝑖 = 𝑐 = 0，即热方程。我们将看到一般二阶抛物
型偏微分方程的解在许多方面与热方程的解相似。对于一般的二阶抛物型偏微分方程，二阶项

𝑎𝑖𝑗(𝑡, 𝒙)𝜕𝑖𝜕𝑗𝑢描述了扩散（diffusion），一阶项 𝑏𝑖𝜕𝑖𝑢描述了输运（transport），而零阶项 𝑐𝑢描述了

85
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产生或损耗（creation or depletion）。
目前已有许多其他（非线性）抛物型方程或方程组，例如Navier-Stokes方程、Keller-Segel方

程、Fokker-Planck方程、Black-Scholes方程（一类时间倒向抛物方程）等，它们被广泛应用于流
体力学、生物数学、动理学、金融学等诸多领域。

3.1 时空Sobolev空间

在介绍线性抛物方程之前，我们需要搞清楚含有时间变量的 Sobolev 空间的基本设定。特别
地，对于将 (𝑡, 𝒙) ∈ [0, 𝑇] × 𝑈 映射到 𝑢(𝑡, 𝒙) ∈ ℝ的函数 𝑢 ∶ [0, 𝑇] × 𝑈 → ℝ，我们可以将 𝑢 与一
个取值于Banach空间的映射关联起来：

𝐮 ∶ [0, 𝑇] → 𝑋

其定义为

[𝐮(𝑡)](𝒙) ∶= 𝑢(𝑡, 𝒙), 𝒙 ∈ 𝑈, 0 ⩽ 𝑡 ⩽ 𝑇.

这里 (𝑋, ‖ ⋅ ‖)是一个实 Banach空间。换句话说，我们将把函数𝑢(𝑡, 𝒙)看作是从 𝑡到某个（由关于
𝒙的函数构成的）Banach空间 𝑋 的映射 𝐮。这可以让我们更方便定义发展方程的弱解。

3.1.1 Banach空间值的函数

我们首先简略介绍Banach空间值函数。令 (𝑋, ‖ ⋅ ‖)是实 Banach空间，设 𝒇 ∶ [0, 𝑇] → 𝑋 是一
个 Banach空间值函数，其中 𝑇 > 0.

定义 3.1.1. 我们现在将 Lebesgue测度论中的一些概念扩展到 Banach空间值函数。

• （简单函数）如果对于 𝑡 ∈ [0, 𝑇]，有 𝐬(𝑡) =
𝑚∑
𝑖=1
𝜒𝐸𝑖(𝑡)𝑢𝑖 成立，则称 𝐬 ∶ [0, 𝑇] → 𝑋 为简简简单单单函函函

数数数 (simple function). 这里所有的 𝑢𝑖 ∈ 𝑋，且所有的 𝐸𝑖 都是 [0, 𝑇]的 Lebesgue可测子集。
• （强可测函数）如果存在一列简单函数 𝐬𝑘 ∶ [0, 𝑇] → 𝑋，使得对于几乎处处的 𝑡 ∈ [0, 𝑇]有
𝐬𝑘(𝑡) → 𝑓(𝑡)成立，则称 𝒇 ∶ [0, 𝑇] → 𝑋 是强强强可可可测测测 (strongly measurable)的。

• （弱可测函数）如果对于任何 𝑢∗ ∈ 𝑋′（𝑋的对偶空间），映射 𝑡 ↦→ ⟨𝑢∗, 𝒇(𝑡)⟩都是 Lebesgue
可测的，则称 𝒇 ∶ [0, 𝑇] → 𝑋 是弱弱弱可可可测测测 (weakly measurable)的。

• 如果存在一个零测集 𝑁 ⊂ [0, 𝑇]，使得 {𝒇(𝑡)|𝑡 ∈ [0, 𝑇]∖𝑁} 是可分的，则称 𝒇 ∶ [0, 𝑇] → 𝑋
的的的取取取值值值是是是几几几乎乎乎可可可分分分的的的 (almost separable valued).

定理 3.1.1 (Pettis’ lemma). 𝒇 ∶ [0, 𝑇] → 𝑋 是强可测的当且仅当 𝒇 是弱可测的且取值是几乎可分
的。

接下来，我们定义 Banach空间值函数的积分。

定义 3.1.2.
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• 设𝐬(𝑡) =
𝑚∑
𝑖=1
𝜒𝐸𝑖(𝑡)𝑢𝑖是一个简单函数，则

∫
𝑇

0
𝐬(𝑡) d𝑡 ∶=

𝑚∑

𝑖=1
ℒ1(𝐸𝑖)𝑢𝑖.

• 如果存在一列简单函数 {𝐬𝑘}使得

∫
𝑇

0
‖𝐬𝑘(𝑡) − 𝒇(𝑡)‖ d𝑡 → 0.

则称强可测函数 𝒇 ∶ [0, 𝑇] → 𝑋 是 Bôchner可可可积积积的。
• 如果 𝒇 ∶ [0, 𝑇] → 𝑋 是 Bôchner可积的，则定义

∫
𝑇

0
𝒇(𝑡) d𝑡 ∶= lim

𝑘→∞
∫
𝑇

0
𝐬𝑘(𝑡) d𝑡.

定理 3.1.2 (Bôchner引理). 强可测函数 𝒇 ∶ [0, 𝑇] → 𝑋 是 Bôchner 可积的当且仅当映射 𝑡 ↦→
‖𝒇(𝑡)‖在 [0, 𝑇]上是 Lebesgue可积的。这种情况下我们有

‖‖‖‖‖‖‖‖‖
∫
𝑇

0
𝒇(𝑡) d𝑡

‖‖‖‖‖‖‖‖‖
⩽ ∫

𝑇

0
‖𝒇(𝑡)‖ d𝑡,

且对于任意的 𝑢∗ ∈ 𝑋′，有
⟨
𝑢∗, ∫

𝑇

0
𝒇(𝑡) d𝑡

⟩
= ∫

𝑇

0
⟨𝑢∗, 𝒇(𝑡)⟩ d𝑡

成立。

3.1.2 含时间变量的Sobolev空间

现在我们可以引入涉及时间变量的 Sobolev空间。设(𝑋, ‖ ⋅ ‖)是实 Banach空间。

定义 3.1.3. 设𝑇 > 0是给定的数。

• 我们定义 𝐿𝑝(0, 𝑇; 𝑋)为所有满足如下条件的强可测函数 𝐮 ∶ [0, 𝑇] → 𝑋 构成的集合：

‖𝐮‖𝐿𝑝(0,𝑇;𝑋) ∶= (∫
𝑇

0
‖𝐮(𝑡)‖𝑝 d𝑡)

1
𝑝

< ∞ 1 ⩽ 𝑝 < ∞,

以及

‖𝐮‖𝐿∞(0,𝑇;𝑋) ∶= ess sup
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖ < ∞.
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• 我们定义 𝐶([0, 𝑇]; 𝑋)为所有满足如下条件的连续函数 𝐮 ∶ [0, 𝑇] → 𝑋 构成的集合：

‖𝐮‖𝐶([0,𝑇];𝑋) ∶= max
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖ < ∞.

定义 3.1.4. 设 𝑇 > 0为给定常数。

• （弱导数）令 𝐮 ∈ 𝐿1(0, 𝑇; 𝑋)。如果存在 𝐯 ∈ 𝐿1(0, 𝑇; 𝑋)使得

∫
𝑇

0
𝜑′(𝑡)𝐮(𝑡) d𝑡 = −∫

𝑇

0
𝜑(𝑡)𝐯(𝑡) d𝑡

对任意的 𝜑 ∈ 𝐶∞
𝑐 (0, 𝑇)都成立，则称 𝐯 为 𝐮的弱弱弱（（（时时时间间间）））导导导数数数，记作 𝐮′ = 𝐯。

• （Sobolev空间）我们定义 𝑊1,𝑝(0, 𝑇; 𝑋)为所有满足如下条件的函数 𝐮 ∈ 𝐿𝑝(0, 𝑇; 𝑋)构成的
集合：其弱（时间）导数 𝐮′ 存在且属于 𝐿𝑝(0, 𝑇; 𝑋)。其范数定义为

‖𝐮‖𝑊1,𝑝(0,𝑇;𝑋) ∶=
⎧

⎨
⎩

(∫𝑇0 ‖𝐮(𝑡)‖𝑝 + ‖𝐮′(𝑡)‖𝑝 d𝑡)
1
𝑝 1 ⩽ 𝑝 < ∞,

ess sup
0⩽𝑡⩽𝑇

(‖𝐮(𝑡)‖ + ‖𝐮′(𝑡)‖) 𝑝 = ∞.

Functions in 𝑊1,𝑝(0, 𝑇; 𝑋)中的函数满足微积分的一些基本性质。
命题 3.1.3 (含时Sobolev空间的基本运算). 令 𝐮 ∈ 𝑊1,𝑝(0, 𝑇; 𝑋)，其中 1 ⩽ 𝑝 ⩽ ∞。则：

(1) （可能在某个零测集上重新定义后）𝐮 ∈ 𝐶([0, 𝑇]; 𝑋);
(2) 对任意的 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇，有 𝐮(𝑡) = 𝐮(𝑠) + ∫ 𝑡𝑠 𝐮′(𝜏) d𝜏;
(3) 如下估计成立

max
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖ ⩽ 𝐶‖𝐮‖𝑊1,𝑝(0,𝑇;𝑋),

其中常数 𝐶 > 0仅依赖𝑇.

以下结论在证明线性抛物方程弱解的存在性和正则性时非常有用。

命题 3.1.4. 设𝑈 ⊂ ℝ𝑑 是有界开集。设 𝐮 ∈ 𝐿2(0, 𝑇;𝐻1
0(𝑈))且 𝐮′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈))。

(1) （可能在某个零测集上重新定义后）𝐮 ∈ 𝐶([0, 𝑇]; 𝐿2(𝑈)).
(2) 映射 𝑡 ↦→ ‖𝐮(𝑡)‖2𝐿2(𝑈) 是绝对连续的，且对几乎处处的 0 ⩽ 𝑡 ⩽ 𝑇有

d
d𝑡‖𝐮(𝑡)‖

2
𝐿2(𝑈) = 2⟨𝐮′(𝑡), 𝐮(𝑡)⟩.

(3) 如下估计成立
max
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖𝐿2(𝑈) ⩽ 𝐶
(
‖𝐮‖𝐿2(0,𝑇;𝐻1

0 (𝑈)) + ‖𝐮′‖𝐿2(0,𝑇;𝐻−1(𝑈))

)
,

其中常数𝐶 > 0仅依赖𝑇.
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命题 3.1.5. 设𝑈 ⊂ ℝ𝑑 是具有光滑边界 𝜕𝑈 的有界开集，并取 𝑚 ∈ ℕ. 设 𝐮 ∈ 𝐿2(0, 𝑇;𝐻𝑚+2(𝑈))且
𝐮′ ∈ 𝐿2(0, 𝑇;𝐻𝑚(𝑈)).

• （可能在某个零测集上重新定义后）𝐮 ∈ 𝐶([0, 𝑇];𝐻𝑚+1(𝑈)).
• 如下估计成立

max
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖𝐻𝑚+1(𝑈) ⩽ 𝐶
(
‖𝐮‖𝐿2(0,𝑇;𝐻𝑚+2(𝑈)) + ‖𝐮′‖𝐿2(0,𝑇;𝐻𝑚(𝑈))

)
,

其中常数𝐶 > 0仅依赖𝑇.

习题 3.1

习题 3.1.1. 设我们已有如下弱收敛成立

𝐮𝑘 ⇀ 𝐮 in 𝐿2(0, 𝑇;𝐻1
0(𝑈)),

𝐮′𝑘 ⇀ 𝐯 in 𝐿2(0, 𝑇;𝐻−1(𝑈)).

证明 𝐯 = 𝐮′.
习题 3.1.2. 设𝐻 为实 Hilbert 空间，并假设在 𝐿2(0, 𝑇;𝐻) 中有弱收敛 𝐮𝑘 ⇀ 𝐮。又已知存在常数
𝐶 > 0使得下式成立

ess sup
0⩽𝑡⩽𝑇

‖𝐮𝑘(𝑡)‖ ⩽ 𝐶, ∀𝑘 ∈ ℕ∗

证明：

ess sup
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖ ⩽ 𝐶.

3.2 弱解存在性定理：Galerkin逼近

根据第2.1节中的叙述，当系数、源项 𝑓 和初始数据 𝑔 的正则性不够好时，我们需要首先讨
论线性抛物方程的存在性理论。今假设方程组 (3.0.1)中的算子 𝐿 满足散度形式 (3.0.2)，并考虑
其Dirichlet边值问题

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝑢 + 𝐿𝑢 = 𝑓 in 𝑈𝑇,
𝑢 = 0 on [0, 𝑇] × 𝜕𝑈,
𝑢 = 𝑔 on {𝑡 = 0} × 𝑈,

其中

𝐿𝑢 = −
𝑑∑

𝑖,𝑗=1
𝜕𝑗(𝑎𝑖𝑗(𝑡, 𝒙)𝜕𝑖𝑢) +

𝑑∑

𝑖=1
𝑏𝑖(𝑡, 𝒙)𝜕𝑖𝑢 + 𝑐(𝑡, 𝒙)𝑢
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对任意 𝑡 ∈ [0, 𝑇] 是对称且一致椭圆的。源项 𝑓 ∈ 𝐿2(𝑈𝑇)，初值𝑔 ∈ 𝐿2(𝑈)，系数 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈
𝐿∞(𝑈𝑇)均已给定。

3.2.1 弱解的定义

若函数 𝑢(𝑡, 𝒙)是 (3.0.1)的光滑解，我们将 𝑢与如下映射对应起来：

𝐮 ∶ [0, 𝑇] → 𝐻1
0(𝑈), 𝑡 ↦→ 𝐮(𝑡)

其定义为 [𝐮(𝑡)](𝒙) ∶= 𝑢(𝑡, 𝒙)。换句话说，在定义弱解时，我们将把 𝑢 看作是从 𝑡 到空间 𝐻1
0(𝑈)

的映射 𝐮. 类似地我们通过 [𝒇(𝑡)](𝒙) ∶= 𝑓(𝑡, 𝒙) 定义 𝒇 ∶ [0, 𝑇] → 𝐿2(𝑈). 因此我们如果固定
𝑣 ∈ 𝐻1

0(𝑈)，那么就可以用这个 𝑣 乘以抛物方程并进行分部积分，得到

(𝐮′, 𝑣)𝐿2(𝑈) + 𝐵[𝐮, 𝑣; 𝑡] = (𝒇, 𝑣)𝐿2(𝑈), ∀0 ⩽ 𝑡 ⩽ 𝑇.

这里双线性型定义为

𝐵[𝐮, 𝑣; 𝑡] ∶= ∫
𝑈
𝑎𝑖𝑗(𝑡, 𝒙)𝜕𝑖𝑢𝜕𝑗𝑣 + 𝑏𝑖(𝑡, 𝒙)𝜕𝑖𝑢𝑣 + 𝑐(𝑡, 𝒙)𝑢𝑣 d𝒙, 𝑢, 𝑣 ∈ 𝐻1

0(𝑈), a.e. 0 ⩽ 𝑡 ⩽ 𝑇.

我们还要搞清楚时间导数 𝐮′ 属于哪个函数空间。事实上，从抛物方程本身，我们有

𝜕𝑡𝑢 = (𝑓 − 𝑏𝑖𝜕𝑖𝑢 − 𝑐𝑢)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=∶𝑔0

+𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢⏟⏟⏟
=∶𝑔𝑗

) = 𝑔0 +
𝑑∑

𝑗=1
𝜕𝑗𝑔𝑗,

其中所有 𝑔𝑗 (0 ⩽ 𝑗 ⩽ 𝑑)皆属于 𝐿2(𝑈). 因此时间导数 𝜕𝑡𝑢(𝑡, ⋅)属于 𝐻−1(𝑈)并满足估计

‖𝜕𝑡𝑢‖𝐻−1(𝑈) ⩽
⎛
⎜
⎝

𝑑∑

𝑗=0
‖𝑔𝑗‖2𝐿2(𝑈)

⎞
⎟
⎠

1
2

⩽ 𝐶(‖𝑢‖𝐻1
0 (𝑈) + ‖𝑓‖𝐿2(𝑈)).

此估计表明弱时间导数 𝐮′ 对于几乎处处的 𝑡 ∈ [0, 𝑇]而言应当属于 𝐻−1(𝑈)，因此 (𝐮′, 𝑣)𝐿2(𝑈) 应当
替换为 ⟨𝐮′, 𝑣⟩，其中 ⟨⋅, ⋅⟩是 𝐻−1(𝑈)与 𝐻1

0(𝑈)的配对。现在，我们可以定义 (3.0.1)的弱解了。

定义 3.2.1 (弱解). 若 𝐮 ∈ 𝐿2(0, 𝑇;𝐻1
0(𝑈))且 𝐮′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈))满足以下条件，则称其为 (3.0.1)

（其中 𝐿由 (3.0.2)定义）的一个弱解：

• 对于任意 𝑣 ∈ 𝐻1
0(𝑈)和几乎处处的 𝑡 ∈ [0, 𝑇]，有⟨𝐮′, 𝑣⟩ + 𝐵[𝐮, 𝑣; 𝑡] = (𝒇, 𝑣)𝐿2(𝑈) 成立;

• 𝐮(0) = 𝑔.

需指出的是，据命题 3.1.4(1)可知 𝐮 ∈ 𝐶([0, 𝑇]; 𝐿2(𝑈))，所以𝐮(0) = 𝑔作为映射 𝐮 ∶ [0, 𝑇] → 𝐿2(𝑈)
的逐点值是可以定义的。
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3.2.2 动机：分离变量法

让我们回想一下如何求解区间 (0, 𝜋)上具有 Dirichlet边界条件的一维热方程，即我们考虑如
下问题的古典解：

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝑢 − 𝜕2𝑥𝑢 = 𝑓(𝑡, 𝑥) 𝑡 > 0, 0 < 𝑥 < 𝜋
𝑢(0, 𝑥) = 𝑔(𝑥) 0 ⩽ 𝑥 ⩽ 𝜋
𝑢(𝑡, 0) = 0, 𝑢(𝑡, 𝜋) = 0 𝑡 ⩾ 0,

(3.2.1)

其中 𝑓, 𝑔足够正则。该方程通常使用分离变量法求解。首先我们假设 𝑓 = 0且 𝑢(𝑡, 𝑥) = 𝑇(𝑡)𝑋(𝑥)，
然后我们可以（从边界条件中）发现：

𝜆𝑛 = 𝑛2, 𝑋𝑛(𝑡) = sin 𝑛𝑥, 𝑇𝑛(𝑡) = 𝐴𝑛 cos 𝑛𝑡 + 𝐵𝑛 sin 𝑛𝑡 ⇒ 𝑢(𝑡, 𝑥) =
∞∑

𝑛=1
𝑇𝑛(𝑡)𝑋𝑛(𝑥),

其中系数 𝐴𝑛, 𝐵𝑛 由初始数据 𝑔(𝑥)确定。一般情况下，当 𝑓 ≢ 0时，我们只需在基 {sin 𝑛𝑥}下展开
𝑢, 𝑓：

𝑢(𝑡, 𝑥) =
∞∑

𝑛=1
𝑇𝑛(𝑡) sin 𝑛𝑥, 𝑓(𝑡, 𝑥) =

∞∑

𝑛=1
𝑓𝑛(𝑡) sin 𝑛𝑥,

并求解 ODE 𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 𝑓𝑛(𝑡)来确定 𝑇𝑛(𝑡)。分离变量法背后的原理是 {sin 𝑛𝑥}恰好给出了
𝐿2((0, 𝜋))的正交基。同时我们也发现 {sin 𝑛𝑥}恰好是 (0, 𝜋)上 −∆ = − d2

d𝑥2
（具有零 Dirichlet边界

条件）的特征函数，对应于特征值 𝑛2.
为了将这一思想“推广”到一般情况，我们可以作如下考量：

• 𝑈 必须是有界的，这保证了 𝐿的谱必须是离散的。
• 我们可在（由某些对称椭圆算子的特征函数系给出的）标准正交基 {𝑤𝑛}下展开解和源项。

然而我们现在需要研究的是一个系数、初值和源项都很粗糙的偏微分方程。我们必须证明：通过

“模仿分离变量法”得到的无穷级数确实在 𝐿2(0, 𝑇;𝐻1
0(𝑈))中收敛，且其时间导数在 𝐿2(0, 𝑇;𝐻−1(𝑈))

中。因此先对空间维数进行“有穷截断”是合理的，这种方法被称为“Galerkin逼近”。

3.2.3 Galerkin逼近：存在性和唯一性

设{𝑤𝑘}是 𝐿2(𝑈)的标准正交基，也是 𝐻1
0(𝑈)的正交基，且每个 𝑤𝑘 是光滑的。例如我们可以

选取 {𝑤𝑘}为 𝐻1
0(𝑈)中 −∆的归一化特征函数。Galerkin逼近的过程如下：

1. 构造有限维截断. 对 𝑚 ∈ ℕ∗，我们寻找一系列形式如下的函数 𝐮𝑚 ∶ [0, 𝑇] → 𝐻1
0(𝑈)：

𝐮𝑚(𝑡) ∶=
𝑚∑

𝑘=1
𝑑𝑘𝑚(𝑡)𝑤𝑘 (3.2.2)
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我们希望确定系数 𝑑𝑘𝑚(𝑡)使得

𝑑𝑘𝑚(0) = (𝑔, 𝑤𝑘), (3.2.3)

(𝐮′𝑚, 𝑤𝑘)𝐿2(𝑈) + 𝐵[𝐮𝑚, 𝑤𝑘; 𝑡] = (𝒇,𝑤𝑘)𝐿2(𝑈) (3.2.4)

对 1 ⩽ 𝑘 ⩽ 𝑚 和 0 ⩽ 𝑡 ⩽ 𝑇 成立。这表明 𝐮𝑚 可以逼近 𝐮在 {𝑤𝑘}1⩽𝑘⩽𝑚 所张成的子空间上的
投影。

2. 逼近序列（关于𝑚的）一致能量估计. 其弱极限的存在性由 Eberlein-Šmulian 定理保证，我
们希望该极限就是所需的弱解。

3. 验证弱极限恰好是唯一的弱解. 我们将用习题 3.1.1的结论来验证时间导数 𝐮′𝑘 的弱极限恰好
是 𝐮𝑘 的弱极限的时间导数。

第1步：逼近解序列的构造

首先证明逼近解序列的存在性。

定理 3.2.1. 对于每个 𝑚 ∈ ℕ，存在唯一的具有如下形式的函数 𝐮𝑚：

𝐮𝑚(𝑡) ∶=
𝑚∑

𝑘=1
𝑑𝑘𝑚(𝑡)𝑤𝑘 (3.2.5)

其满足

𝑑𝑘𝑚(0) = (𝑔, 𝑤𝑘), (3.2.6)

(𝐮′𝑚, 𝑤𝑘)𝐿2(𝑈) + 𝐵[𝐮𝑚, 𝑤𝑘; 𝑡] = (𝒇,𝑤𝑘)𝐿2(𝑈), 0 ⩽ 𝑡 ⩽ 𝑇, 1 ⩽ 𝑘 ⩽ 𝑚. (3.2.7)

证明. 据正交性，我们可以很直接地得到

(𝐮′𝑚(𝑡), 𝑤𝑘) =
d
d𝑡𝑑

𝑘
𝑚(𝑡), 𝐵[𝐮𝑚, 𝑤𝑘; 𝑡] =

𝑚∑

𝑙=1
𝑒𝑘𝑙(𝑡)𝑑𝑙𝑚(𝑡)

其中 𝑒𝑘𝑙(𝑡) = 𝐵[𝑤𝑙, 𝑤𝑘, 𝑡]. 设 𝐮𝑚 具有形式
𝑚∑
𝑘=1

𝑑𝑘𝑚(𝑡)𝑤𝑘, 𝑓𝑘(𝑡) ∶= (𝒇(𝑡), 𝑤𝑘). 那么我们得到如下线性

常微分方程组：

d
d𝑡𝑑

𝑘
𝑚(𝑡) +

𝑚∑

𝑙=1
𝑒𝑘𝑙(𝑡)𝑑𝑙𝑚(𝑡) = 𝑓𝑘(𝑡), 1 ⩽ 𝑘 ⩽ 𝑚, (3.2.8)

其初值为 𝑑𝑘𝑚(0) = (𝑔, 𝑤𝑘)。由于系数 𝑒𝑘𝑙(𝑡) 足够正则，常微分方程的标准存在性理论表明：对于
几乎处处的 0 ⩽ 𝑡 ⩽ 𝑇，存在唯一的绝对连续函数 𝐝𝑚(𝑡) = (𝑑1𝑚(𝑡),⋯ , 𝑑𝑚𝑚(𝑡))满足初值和该常微分
方程组。这样的话，定理内容中定义的 𝐮𝑚 自动满足我们所需的等式。
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第2步：逼近解序列的一致能量估计

定理 3.2.2. 存在仅依赖于 𝑈,𝑇 和 𝐿的系数的常数 𝐶 > 0，使得对于每个 𝑚 ∈ ℕ，有

sup
0⩽𝑡⩽𝑇

‖𝐮𝑚(𝑡)‖2𝐿2(𝑈) + ‖𝐮𝑚‖2𝐿2(0,𝑇;𝐻1
0 (𝑈))

+ ‖𝐮′𝑚‖2𝐿2(0,𝑇;𝐻−1(𝑈)) ⩽ 𝐶
(
‖𝒇‖2𝐿2(0,𝑇;𝐿2(𝑈)) + ‖𝑔‖2𝐿2(𝑈)

)
. (3.2.9)

在开始证明之前，我们必须强调：建立能量泛函 𝐸(𝑡) 的估计最重要的步骤是建立 Grönwall
型不等式

𝐸(𝑡) ⩽ 𝐶 (𝐸(0) + ∫
𝑡

0
𝐸(𝜏) d𝜏)

这通常是通过微分不等式 𝐸′(𝑡) ⩽ 𝐴𝐸(𝑡)推导出来的。

证明. 给定 𝑚 ∈ ℕ，我们已经有 (𝐮′𝑚, 𝑤𝑘)𝐿2(𝑈) + 𝐵[𝐮𝑚, 𝑤𝑘; 𝑡] = (𝒇,𝑤𝑘)𝐿2(𝑈) 对 1 ⩽ 𝑘 ⩽ 𝑚 成立。方
程两边同时乘以 𝑑𝑘𝑚(𝑡)并对 1 ⩽ 𝑘 ⩽ 𝑚求和得到

(𝐮′𝑚, 𝐮𝑚)𝐿2(𝑈)
⏟⎴⎴⏟⎴⎴⏟
= 1
2
d
d𝑡
‖𝐮𝑚(𝑡)‖2𝐿2(𝑈)

+𝐵[𝐮𝑚, 𝐮𝑚; 𝑡] = (𝒇, 𝐮𝑚)𝐿2(𝑈). (3.2.10)

这一步正是“模仿”在热方程 𝜕𝑡𝑢 − ∆𝑢 = 𝑓 两边乘以 𝑢并在 𝑈 上积分这一步骤。现在我们得到

1
2
d
d𝑡‖𝐮𝑚(𝑡)‖

2
𝐿2(𝑈) + ∫

𝑈
𝑎𝑖𝑗𝜕𝑖𝑢𝑚 𝜕𝑗𝑢𝑚 d𝒙 = (𝑓, 𝐮𝑚) − ∫

𝑈
𝑏𝑖𝜕𝑖𝑢𝑚 𝑢𝑚 d𝑥 − ∫

𝑈
𝑐𝑢2 d𝒙.

利用 Hölder不等式、𝐿的一致椭圆性和 Young不等式，对任意 𝛿 > 0有

1
2
d
d𝑡‖𝐮𝑚‖

2
𝐿2(𝑈) + 𝜃‖∇𝐮𝑚‖2𝐿2(𝑈) ⩽ 𝐶(‖𝑓‖𝐿2(𝑈)‖𝐮𝑚‖𝐿2(𝑈) + ‖∇𝐮𝑚‖𝐿2(𝑈)‖𝑏‖𝐿∞(𝑈)‖𝐮𝑚‖𝐿2(𝑈)

+ ‖𝑐‖𝐿∞‖𝐮𝑚‖2𝐿2(𝑈))

⩽ 𝛿‖∇𝐮𝑚‖2𝐿2(𝑈) + 𝐶(‖𝑓‖2𝐿2(𝑈) + ‖𝐮𝑚‖2𝐿2(𝑈)). (3.2.11)

选取 𝛿 ∈ (0, 𝜃∕2)充分小，使得 𝛿‖∇𝐮𝑚‖2𝐿2(𝑈)可以被左边吸收。我们知道存在 𝐶 > 0使得下式成立

d
d𝑡 (‖𝐮𝑚(𝑡)‖

2
𝐿2(𝑈) + 𝜃 ∫

𝑡

0
‖∇𝐮𝑚(𝜏)‖2𝐿2(𝑈)) ⩽ 𝐶(‖𝑓‖2𝐿2(𝑈) + ‖𝐮𝑚‖2𝐿2(𝑈)). (3.2.12)

而 𝑓(𝑡, ⋅) ∈ 𝐿2(𝑈) 是给定的，据Grönwall 不等式，我们可以证明存在一个依赖 𝑇,𝑈, 𝐿 的常数
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𝐶𝑇 > 0使得

‖𝐮𝑚(𝑡)‖2𝐿2(𝑈) + 𝜃 ∫
𝑡

0
‖∇𝐮𝑚(𝜏)‖2𝐿2(𝑈) ⩽ 𝐶𝑇 (‖𝐮𝑚(0)‖2𝐿2(𝑈) + ∫

𝑇

0
‖𝑓(𝑡, ⋅)‖2𝐿2(𝑈) d𝑡)

⩽ 𝐶𝑇 (‖𝑔‖2𝐿2(𝑈) + ∫
𝑇

0
‖𝑓(𝑡, ⋅)‖2𝐿2(𝑈) d𝑡) . (3.2.13)

现在还要估计‖𝐮′𝑚‖2𝐿2(0,𝑇;𝐻−1(𝑈)). 回忆𝐮𝑚(𝑡) =
𝑚∑
𝑘=1

𝑑𝑘𝑚(𝑡)𝑤𝑘 可推出 𝐮′𝑚(𝑡) =
𝑚∑
𝑘=1
(𝑑𝑘𝑚)′(𝑡)𝑤𝑘，而它属于

span{𝑤1⋯,𝑤𝑚}. 现在我们固定𝑡 ∈ [0, 𝑇]并选取测试函数𝜑 ∈ 𝐻1
0(𝑈),其满足 ‖𝜑‖𝐻1

0 (𝑈) ⩽ 1. 于是有

⟨𝐮′𝑚, 𝜑⟩ = ⟨𝐮′𝑚, 𝜑𝑚⟩ = 𝐵[𝐮𝑚, 𝜑𝑚; 𝑡] + (𝒇, 𝜑𝑚)
≤ 𝐶‖∇𝐮𝑚‖𝐿2(𝑈)‖∇𝜑𝑚‖𝐿2(𝑈) + (‖∇𝐮𝑚‖𝐿2(𝑈) + ‖𝑓‖𝐿2(𝑈))‖𝜑𝑚‖𝐿2(𝑈)
≤ 𝐶(‖𝑓‖𝐿2 + ‖∇𝐮𝑚‖𝐿2(𝑈)),

其中最后一步用了 ‖𝜑𝑚‖𝐻1
0 (𝑈) ⩽ ‖𝜑‖𝐻1

0 (𝑈) = 1和 Poincaré不等式。现在对全体满足 ‖𝜑‖𝐻1
0 (𝑈) ⩽ 1的

𝜑取上确界，据 𝐻−1(𝑈)范数的定义得

‖𝐮′𝑚(𝑡)‖2𝐻−1(𝑈) ⩽ 𝐶
(
‖𝑓‖2𝐿2 + ‖∇𝐮𝑚‖2𝐿2(𝑈)

)
, (3.2.14)

因此利用估计 (3.2.13)可得

‖𝐮′𝑚(𝑡)‖2𝐿2(0,𝑇;𝐻−1(𝑈)) ⩽ 𝐶𝑇 (‖𝑔‖2𝐿2(𝑈) + ∫
𝑇

0
‖𝑓(𝑡, ⋅)‖2𝐿2(𝑈) d𝑡) (3.2.15)

其中常数 𝐶𝑇 > 0取依赖于 𝑇,𝑈, 𝐿.

第三步：弱解的存在性和唯一性

最后一步是利用定理 3.2.2 中的一致能量估计得到弱极限。我们期待该极限就是方程 (3.0.1)
唯一的弱解。

定理 3.2.3. 方程 (3.0.1)存在唯一的弱解。

证明. 据定理3.2.2中得到的一致能量估计以及习题3.1.1可知：存在子列{𝐮𝑚𝑙 } ⊂ {𝐮𝑚}使得

𝐮𝑚𝑙

在 𝐿2(0,𝑇;𝐻1
0 (𝑈))中弱收敛,,,,,,,,,,,,,,,,,,,,,⇀ 𝐮, 𝐮′𝑚𝑙

在 𝐿2(0,𝑇;𝐻−1(𝑈))中弱收敛
,,,,,,,,,,,,,,,,,,,,,,⇀ 𝐮′,

据命题3.1.5又可得到 𝐮 ∈ 𝐶1([0, 𝑇];𝐻1
0(𝑈)). 接下来我们验证这个 𝐮 正是我们想要的弱解。固定
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𝑁 ∈ ℕ并选取具有如下形式的函数 𝐯 ∈ 𝐶1([0, 𝑇];𝐻1
0(𝑈))：

𝐯(𝑡) =
𝑁∑

𝑘=1
𝑑𝑘(𝑡)𝑤𝑘.

然后我们任取 𝑚 ⩾ 𝑁,在(3.2.7)两边同时乘以𝑑𝑘(𝑡)并对 𝑡 变量积分得

∫
𝑇

0
⟨𝐮′𝑚, 𝐯⟩ + 𝐵[𝐮𝑚, 𝐯; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝐯) d𝑡, (3.2.16)

令 𝑚 = 𝑚𝑙 并取弱极限得到

∫
𝑇

0
⟨𝐮′, 𝐯⟩ + 𝐵[𝐮, 𝐯; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝐯) d𝑡, ∀𝐯 ∈ 𝐿2(0, 𝑇;𝐻1

0(𝑈)), (3.2.17)

这里我们用到形如
∑𝑑𝑘(𝑡)𝑤𝑘 的函数在该空间中是稠密的这一事实。随后我们得到

⟨𝐮′, 𝑣⟩ + 𝐵[𝐮, 𝑣; 𝑡] = (𝒇, 𝑣), ∀𝑣 ∈ 𝐻1
0(𝑈), a.e. 𝑡 ∈ [0, 𝑇]. (3.2.18)

再用命题 3.1.3，就证得𝐮 ∈ 𝐶(0, 𝑇]; 𝐿2(𝑈))

下面证明𝐮的初值是𝑔. 分部积分时间变量可得

∫
𝑇

0
⟨𝐯′, 𝐮⟩ + 𝐵[𝐮, 𝐯; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝐯) d𝑡 + (𝐮(0), 𝐯(0)), ∀𝐯 ∈ 𝐶1(0, 𝑇;𝐻1

0(𝑈)) with 𝐯(𝑇) = 0,

(3.2.19)

以及

∫
𝑇

0
⟨𝐯′, 𝐮𝑚⟩ + 𝐵[𝐮𝑚, 𝐯; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝐯) d𝑡 + (𝐮𝑚(0), 𝐯(0)), ∀𝐯 ∈ 𝐿2(0, 𝑇;𝐻1

0(𝑈)). (3.2.20)

再次令 𝑚 = 𝑚𝑙 并取极限。由于在 𝐿2(𝑈)中 𝐮𝑚𝑙(0) → 𝑔 且 𝐯(0)是任意的，我们知 𝐮(0) = 𝑔 必须
成立。又因为我们只考虑线性方程，证明唯一性就只需验证当 𝒇 = 𝑔 = 0时 (3.0.1)的唯一弱解为
零。在 (3.2.17)中令 𝐯 为 𝐮本身，我们得到

d
d𝑡
1
2‖𝐮(𝑡)‖

2
𝐿2(𝑈) + 𝐵[𝐮, 𝐮; 𝑡] = ⟨𝐮′, 𝐮⟩ + 𝐵[𝐮, 𝐮; 𝑡] = 0. (3.2.21)

而又因为存在 𝐶1, 𝐶2 > 0使得

𝐵[𝐮, 𝐮; 𝑡] ⩾ 𝐶1‖𝐮‖2𝐻1
0 (𝑈)

− 𝐶2‖𝐮‖2𝐿2(𝑈) ⩾ −𝐶2‖𝐮‖2𝐿2(𝑈),
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所以用 Grönwall不等式立即得出 ‖𝐮‖𝐿2(𝑈) = 0，故 𝐮 = 0.

习题 3.2

习题 3.2.1 (Poisson方程的Galerkin逼近). 设 𝑓 ∈ 𝐿2(𝑈)，𝑢𝑚 =
𝑚∑
𝑘=1

𝑑𝑘𝑚𝑤𝑘 满足

∫
𝑈
∇𝑢𝑚 ⋅ ∇𝑤𝑘 d𝒙 = ∫

𝑈
𝑓 𝑤𝑘 d𝒙, ∀1 ⩽ 𝑘 ⩽ 𝑚,

其中 {𝑤𝑘}是 𝐻1
0(𝑈)的标准正交基。证明：{𝑢𝑚}存在子列在 𝐻1

0(𝑈)中弱收敛于Poisson方程 −∆𝑢 =
𝑓 (𝑡 > 0, 𝒙 ∈ 𝑈), 𝑢|𝜕𝑈 = 0的弱解 𝑢.

习题 3.2.2. 设 𝑔 ∈ 𝐿2(𝑈)并设 𝑢是如下问题的光滑解：

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝑢 − ∆𝑢 = 0 in 𝑈𝑇,
𝑢 = 0 on [0, 𝑇] × 𝜕𝑈,
𝑢 = 𝑔 on {𝑡 = 0} × 𝑈.

(3.2.22)

证明：对任意的𝑡 ⩾ 0有
‖𝑢(𝑡, ⋅)‖𝐿2(𝑈) ⩽ 𝑒−𝜆1𝑡‖𝑔‖𝐿2(𝑈).

这里 𝜆1 > 0是具有零 Dirichlet边界条件的 −∆在 𝑈 上的主特征值。

3.3 抛物正则性定理

在证得抛物方程 (3.0.1) 弱解的存在唯一性之后，我们自然会提出进一步的问题：这个弱解
是古典解吗？解的正则性如何？为了搞清楚这件事情，我们可以先尝试计算热方程的先验估计 (a
priori estimate).

⎧

⎨
⎩

𝜕𝑡𝑢 − ∆𝑢 = 𝑓 in [0, 𝑇] × ℝ𝑑,
𝑢(0, 𝒙) = 𝑔(𝒙) on {𝑡 = 0} × ℝ𝑑,

(3.3.1)

其中这里我们还假设 𝑢是一个当 |𝒙| → ∞时迅速衰减到 0的光滑解。在定理 3.2.2中，我们实际
上得到了 𝐿∞𝑡 𝐿2𝒙 ∩ 𝐿2𝑡𝐻1

𝒙 先验估计：

sup
0⩽𝑡⩽𝑇

∫
ℝ𝑑
𝑢(𝑡, 𝒙)2 d𝒙 + ∫

𝑇

0
∫
ℝ𝑑
|∇𝑢(𝑡, 𝒙)|2 d𝒙 d𝑡 ⩽ 𝐶 (∫

ℝ𝑑
𝑔(𝒙)2 d𝒙 + ∫

𝑇

0
∫
ℝ𝑑
(𝑓(𝑡, 𝒙))2 d𝒙 d𝑡) .
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然而热方程中的 Laplacian项包含二阶导数，当源项𝑓(𝑡, ⋅) ∈ 𝐿2(𝑈)时，我们自然会问：𝑢是否具有
𝐻2 正则性？（即𝑢是否在𝐿2意义下是二阶可微的？）事实上，我们可以取平方然后分部积分得到

∫
ℝ𝑑
𝑓2 d𝒙 =∫

ℝ𝑑
(𝑢𝑡 − ∆𝑢)2 d𝒙 = ∫

ℝ𝑑
(𝜕𝑡𝑢)2 − 2𝜕𝑡𝑢∆𝑢 + (∆𝑢)2 d𝒙

=∫
ℝ𝑑
(𝜕𝑡𝑢)2 + 2𝜕𝑡∇𝑢 ⋅ ∇𝑢 + (∆𝑢)2 d𝒙,

进而有

d
d𝑡 ∫ℝ𝑑

|∇𝑢(𝑡, 𝒙)|2 d𝒙 + ∫
ℝ𝑑
(𝜕𝑡𝑢)2 + (∆𝑢)2 d𝒙 = ∫

ℝ𝑑
𝑓2 d𝒙. (3.3.2)

对时间变量𝑡积分，得到

sup
0⩽𝑡⩽𝑇

∫
ℝ𝑑
|∇𝑢|2 d𝒙 + ∫

𝑇

0
(∫

ℝ𝑑
(𝜕𝑡𝑢)2 + (∆𝑢)2 d𝒙) d𝑡 ⩽ 𝐶 (∫

ℝ𝑑
|∇𝑔|2 d𝒙 + ∫

𝑇

0
∫
𝑈
𝑓(𝑡, 𝒙)2 d𝒙 d𝑡) .

(3.3.3)

这表明如果初值 𝑔 ∈ 𝐻1
0 且源项 𝑓 ∈ 𝐿2𝑡𝐿2𝒙，则解 𝐮 ∈ 𝐿2𝑡𝐻2

𝒙 ∩ 𝐿∞𝑡 𝐻1
𝒙 且 𝐮′ ∈ 𝐿2𝑡𝐿2𝒙。接下来我们想进

一步建立对时间变量𝑡逐点的 𝐻2 估计（而不是 𝐿2𝑡 型的）。这是可以实现的，但也要求初值 𝑔和源
项 𝑓 具有更高的正则性。事实上我们对热方程求 𝜕𝑡 得到

𝜕2𝑡 𝑢 − ∆𝜕𝑡𝑢 = 𝜕𝑡𝑓 in (0, 𝑇] × ℝ𝑑, 𝜕𝑡𝑢(0, ⋅) = 𝑓(0, ⋅) + ∆𝑔(⋅).

两边乘以𝜕𝑡𝑢再分部积分可得

d
d𝑡
1
2 ∫ℝ𝑑

|𝜕𝑡𝑢|2 d𝒙 + ∫
ℝ𝑑
|∇𝜕𝑡𝑢|2 d𝒙 ⩽ ‖𝜕𝑡𝑓‖𝐿2(ℝ𝑑)‖𝜕𝑡𝑢‖𝐿2(ℝ𝑑),

据Grönwall不等式得到

sup
0⩽𝑡⩽𝑇

∫
ℝ𝑑
|𝜕𝑡𝑢|2 d𝒙 + ∫

𝑇

0
∫
ℝ𝑑
|∇𝜕𝑡𝑢|2 d𝒙 d𝑡 ⩽ 𝐶 (∫

𝑇

0
∫
ℝ𝑑
(𝜕𝑡𝑓)2 d𝒙 d𝑡 + ∫

ℝ𝑑
|∇2𝑔|2 + 𝑓(0, ⋅)2 d𝒙) .

(3.3.4)

然后模仿命题 3.1.4的证明那样用微积分基本定理，我们有

sup
0⩽𝑡⩽𝑇

‖𝑓(𝑡, ⋅)‖2𝐿2(𝑈) ⩽ 𝐶
(
‖𝑓‖2𝐿2((0,𝑇)×ℝ𝑑) + ‖𝜕𝑡𝑓‖2𝐿2((0,𝑇)×ℝ𝑑)

)
. (3.3.5)
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这给出了 𝜕𝑡𝑢的正则性。对于 𝑢的 𝐿∞𝑡 𝐻2
𝒙正则性，我们使用椭圆正则性定理（定理 2.5.2，本质上

是用 ∆𝑢乘在方程两边然后积分）得到

∫
ℝ𝑑
|∇2𝑢|2 d𝒙 ⩽ 𝐶 ∫

ℝ𝑑
𝑓2 + (𝜕𝑡𝑢)2 d𝒙. (3.3.6)

因此我们得出结论：

sup
0⩽𝑡⩽𝑇

∫
ℝ𝑑
|𝜕𝑡𝑢|2 + |∇2𝑢|2 d𝒙 + ∫

𝑇

0
∫
ℝ𝑑
|∇𝜕𝑡𝑢|2 d𝒙 d𝑡

⩽ 𝐶 (∫
𝑇

0
∫
ℝ𝑑
(𝜕𝑡𝑓)2 + 𝑓2 d𝒙 d𝑡 + ∫

ℝ𝑑
|∇2𝑔|2 d𝒙) . (3.3.7)

根据如上对标准热方程的分析，我们期待对抛物方程 (3.0.1)证明如下正则性结果。为了技术
上的简便，我们假设𝑈 ⊂ ℝ𝑑是边界光滑的有界区域，{𝑤𝑘} ⊂ 𝐻1

0(𝑈)是 (−∆)算子(带Dirichlet边界
条件)的特征函数系 (据椭圆正则性定理实际上有{𝑤𝑘} ⊂ 𝐶∞(𝑈))，并假设系数 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 在 𝑈 中光
滑且与 𝑡 无关。

定理 3.3.1 (抛物正则性). 设𝐮 ∈ 𝐿2(0, 𝑇;𝐻1
0(𝑈)), 𝐮′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈)) 为 (3.0.1) 的弱解，初值

𝑔 ∈ 𝐻1
0(𝑈)，源项 𝒇 ∈ 𝐿2(0, 𝑇; 𝐿2(𝑈))。那么解 𝐮实际上满足

𝐮 ∈ 𝐿2(0, 𝑇;𝐻2(𝑈)) ∩ 𝐿∞(0, 𝑇;𝐻1
0(𝑈)), 𝐮′ ∈ 𝐿2(0, 𝑇; 𝐿2(𝑈)),

并有如下估计

ess sup
0⩽𝑡⩽𝑇

‖𝐮(𝑡)‖2𝐻1
0 (𝑈)

+ ‖𝐮‖2𝐿2(0,𝑇;𝐻2(𝑈)) + ‖𝐮′‖2𝐿2(0,𝑇;𝐿2(𝑈)) ⩽ 𝐶 (‖𝒇‖2𝐿2(0,𝑇;𝐻2(𝑈)) + ‖𝑔‖2𝐻1
0 (𝑈)

) , (3.3.8)

其中常数 𝐶 > 0依赖 𝑈,𝑇 和 𝐿的系数。

此外，如果我们还额外地假设 𝑔 ∈ 𝐻2(𝑈)以及 𝒇′ ∈ 𝐿2(0, 𝑇; 𝐿2(𝑈))，那么 𝐮满足

𝐮 ∈ 𝐿∞(0, 𝑇;𝐻2(𝑈)), 𝐮′ ∈ 𝐿∞(0, 𝑇; 𝐿2(𝑈)) ∩ 𝐿2(0, 𝑇;𝐻1
0(𝑈)), 𝐮′′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈))

并有如下估计

ess sup
0⩽𝑡⩽𝑇

(
‖𝐮(𝑡)‖2𝐻2(𝑈) + ‖𝐮′(𝑡)‖2𝐿2(𝑈)

)
+ ‖𝐮′‖2𝐿2(0,𝑇;𝐻1

0 (𝑈))
+ ‖𝐮′′‖2𝐿2(0,𝑇;𝐻−1(𝑈))

⩽ 𝐶
(
‖𝒇‖2𝐻1(0,𝑇;𝐿2(𝑈)) + ‖𝑔‖2𝐻2(𝑈)

)
. (3.3.9)

证明. 第一部分本质上是在方程两边同时乘以 𝐮′然后分部积分。然而目前我们不知道是否有 𝐮′ ∈
𝐿2(0, 𝑇; 𝐿2(𝑈))，所以我们首先应该对 (3.2.5)中定义的逼近序列 {𝐮′𝑚}做这件事情而不是𝐮本身。今
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在方程 (3.2.7)两边同时乘以 𝑑𝑘𝑚
′(𝑡)并对 1 ⩽ 𝑘 ⩽ 𝑚求和，得到

(𝐮′𝑚, 𝐮′𝑚) + 𝐵[𝐮𝑚, 𝐮′𝑚] = (𝒇, 𝐮′𝑚), a.e. 𝑡 ∈ [0, 𝑇].

因此现在需要计算 𝐵[𝐮𝑚, 𝐮′𝑚]. 代入算子 𝐿的具体形式，我们得到

𝐵[𝐮𝑚, 𝐮′𝑚] = ∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮′𝑚 d𝒙 + ∫

𝑈
𝑏𝑖𝜕𝑖𝐮𝑚 𝐮′𝑚 + 𝑐𝐮𝑚𝐮′𝑚 d𝒙.

由于 𝑎𝑖𝑗 = 𝑎𝑗𝑖 且系数与时间无关，我们发现二阶项给出了一个能量结构

∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮′𝑚 d𝒙 =

1
2
d
d𝑡 ∫𝑈

𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮𝑚 d𝒙.

然后用 Young不等式，对任意 𝛿 > 0有

||||||||
∫
𝑈
𝑏𝑖𝜕𝑖𝐮𝑚 𝐮′𝑚 + 𝑐𝐮𝑚𝐮′𝑚 d𝒙

||||||||
⩽ 𝛿‖𝐮′𝑚‖2𝐿2(𝑈) +

𝐶
𝛿 ‖𝐮𝑚‖

2
𝐻1
0 (𝑈)

以及

|(𝒇, 𝐮′𝑚)| ⩽ 𝛿‖𝐮′𝑚‖2𝐿2(𝑈) +
𝐶
𝛿 ‖𝒇‖

2
𝐿2(𝑈).

于是我们推出如下不等式

‖𝐮′𝑚‖2𝐿2(𝑈) +
1
2
d
d𝑡 ∫𝑈

𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮𝑚 d𝒙 ⩽ 2𝛿‖𝐮′𝑚‖2𝐿2(𝑈) +
𝐶
𝛿 (‖𝒇‖

2
𝐿2(𝑈) + ‖𝐮𝑚‖2𝐻1

0 (𝑈)
) .

现在选取𝛿 ∈ (0, 1
4
)充分小，使得含𝛿的项被不等式左边吸收掉，然后再对时间变量积分可得

∫
𝑇

0
‖𝐮′𝑚‖2𝐿2(𝑈) d𝑡 + sup

0⩽𝑡⩽𝑇
∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮𝑚 d𝒙

⩽ 𝐶 (∫
𝑈
𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮𝑚

|||||||𝑡=0
+ ∫

𝑇

0
‖𝒇‖2𝐿2(𝑈) + ‖𝐮𝑚‖2𝐻1

0 (𝑈)
d𝑡)

⩽ 𝐶 (‖𝒇‖2𝐿2(0,𝑇;𝐻2(𝑈)) + ‖𝑔‖2𝐻1
0 (𝑈)

) . (3.3.10)

最后，据𝐿的一致椭圆性有 ∫𝑈 𝑎𝑖𝑗𝜕𝑖𝐮𝑚 𝜕𝑗𝐮𝑚 d𝒙 ⩾ 𝜃‖∇𝐮𝑚‖2𝐿2(𝑈)，这样就得到

∫
𝑇

0
‖𝐮′𝑚‖2𝐿2(𝑈) d𝑡 + sup

0⩽𝑡⩽𝑇
‖∇𝐮𝑚‖2𝐿2(𝑈) ⩽ 𝐶 (‖𝒇‖2𝐿2(0,𝑇;𝐻2(𝑈)) + ‖𝑔‖2𝐻1

0 (𝑈)
) , (3.3.11)
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上式右边不依赖于 𝑚，因此我们可以令 𝑚 = 𝑚𝑙 →∞并取极限得到

𝐮 ∈ 𝐿∞(0, 𝑇;𝐻1
0(𝑈)), 𝐮′ ∈ 𝐿2(0, 𝑇; 𝐿2(𝑈))

它们满足如下估计（用习题3.1.2）

∫
𝑇

0
‖𝐮′‖2𝐿2(𝑈) d𝑡 + sup

0⩽𝑡⩽𝑇
‖∇𝐮‖2𝐿2(𝑈) ⩽ 𝐶 (‖𝒇‖2𝐿2(0,𝑇;𝐻2(𝑈)) + ‖𝑔‖2𝐻1

0 (𝑈)
) . (3.3.12)

现在可以证明 𝐮有 𝐿2𝑡𝐻2
𝒙 了。事实上现在我们已经得到

(𝐮′, 𝜑) + 𝐵[𝐮, 𝜑] = (𝒇, 𝜑) ∀𝜑 ∈ 𝐻1
0(𝑈), a.e. 𝑡 ∈ [0, 𝑇],

该式又可写作

𝐵[𝐮, 𝜑] = (𝐡, 𝜑) , 𝐡 ∶= 𝒇 − 𝐮′ ∈ 𝐿∞(0, 𝑇; 𝐿2(𝑈)).

据椭圆正则性定理（定理 2.5.5）可知：对几乎处处的 𝑡 ∈ [0, 𝑇]有 𝐮(𝑡) ∈ 𝐻2(𝑈)以及

‖𝐮‖2𝐻2(𝑈) ⩽ 𝐶(‖𝐡‖2𝐿2(𝑈) + ‖𝐮‖2𝐿2(𝑈)) ⩽ 𝐶(‖𝒇‖2𝐿2(𝑈) + ‖𝐮′‖2𝐿2(𝑈) + ‖𝐮‖2𝐿2(𝑈)).

这与之前得到的估计相结合就给出了我们要证明的估计，至此 (3.3.8)得证。

接下来我们假设 𝑔 ∈ 𝐻2(𝑈) ∩𝐻1
0(𝑈)和 𝒇 ∈ 𝐻1(0, 𝑇; 𝐿2(𝑈))来证明更高的抛物正则性 (3.3.9)。

同样地，我们首先对逼近方程 (3.2.7)（而不是原方程）求时间导数，这是因为我们目前还没有解
（在时间上）的可微性。现在有

(𝐮′′𝑚, 𝑤𝑘) + 𝐵[𝐮′𝑚, 𝑤𝑘] = (𝒇′, 𝑤𝑘),

两边同时乘以 𝑑𝑘𝑚
′(𝑡)并对 1 ⩽ 𝑘 ⩽ 𝑚求和得到

(𝐮′′𝑚, 𝐮′𝑚) + 𝐵[𝐮′𝑚, 𝐮′𝑚] = (𝒇′, 𝐮′𝑚).

据𝐿的一致椭圆性和 Grönwall不等式，我们推出

sup
0⩽𝑡⩽𝑇

‖𝐮′𝑚(𝑡)‖2𝐿2(𝑈) + ∫
𝑇

0
‖𝐮′𝑚‖2𝐻1

0 (𝑈)
d𝑡 ⩽ 𝐶(‖𝐮′𝑚(0)‖2𝐿2(𝑈) + ‖𝒇′‖2𝐿2(0,𝑇;𝐿2(𝑈)))

⩽ 𝐶(‖𝐮𝑚(0)‖2𝐻2(𝑈) + ‖𝒇‖2𝐻1(0,𝑇;𝐿2(𝑈))). (3.3.13)

现在我们必须寻求对 ‖𝐮𝑚(0)‖2𝐻2(𝑈) 的控制。现在需注意𝐿不一定是对称椭圆算子，所以我们也许
要通过 ‖∆𝐮𝑚(0)‖𝐿2(𝑈) 来控制 ‖𝐮𝑚(0)‖𝐻2(𝑈)。而这件事情可以通过将 𝐮𝑚 在标准正交基 {𝑤𝑘}中作展



3.3 抛物正则性定理 101

开来实现。事实上，据椭圆正则性定理（以及 𝐮𝑚|𝜕𝑈 = 0），我们有

‖𝐮𝑚(0)‖2𝐻2(𝑈) ⩽ 𝐶(‖𝐮𝑚(0)‖2𝐿2(𝑈) + ‖∆𝐮𝑚(0)‖2𝐿2(𝑈)).

因为 𝐮𝑚(0) =
𝑚∑
𝑘=1

𝑑𝑘𝑚(0)𝑤𝑘(𝒙)以及 −∆𝐮𝑚(0) =
𝑚∑
𝑘=1

𝑑𝑘𝑚(0)𝜆𝑘𝑤𝑘(𝒙) (注意 𝑤𝑘 是 (−∆)的特征函数),据

特征函数系的正交性可得

‖𝐮𝑚(0)‖2𝐿2(𝑈) =
𝑚∑

𝑘=1
(𝑑𝑘𝑚(0))2 ⩽ 𝜆−21

𝑚∑

𝑘=1
(𝑑𝑘𝑚(0)𝜆𝑘)2 = 𝜆−21 ‖∆𝐮𝑚(0)‖2𝐿2(𝑈),

从而

‖𝐮𝑚(0)‖2𝐻2(𝑈) ⩽ 𝐶(1 + 𝜆−21 )‖∆𝐮𝑚(0)‖2𝐿2(𝑈)
其中 𝜆1 > 0是具有 Dirichlet边界条件的 (−∆)的主特征值。接下来，我们分部积分两次并且利用
𝐮𝑚|𝜕𝑈 = ∆𝐮𝑚|𝜕𝑈 = 0得到（这里用到了特征函数本身是属于𝐶∞(𝑈)的）

‖𝐮𝑚(0)‖2𝐻2(𝑈) ⩽ 𝐶(𝐮𝑚(0), ∆2𝐮𝑚(0)).

由于 ∆2𝐮𝑚(0) ∈ Span{𝑤1,⋯ ,𝑤𝑚}以及 (𝐮𝑚(0), 𝑤𝑘) = (𝑔, 𝑤𝑘)，我们有

‖𝐮𝑚(0)‖2𝐻2(𝑈) ⩽ 𝐶(∆𝑔, ∆𝐮𝑚(0)) ⩽
1
2‖𝐮𝑚(0)‖

2
𝐻2(𝑈) + 𝐶‖𝑔‖2𝐻2(𝑈),

从而存在𝐶 > 0使得 ‖𝐮𝑚(0)‖𝐻2(𝑈) ⩽ 𝐶‖𝑔‖𝐻2(𝑈) 成立。现在我们得到𝐮′𝑚的一致估计

sup
0⩽𝑡⩽𝑇

‖𝐮′𝑚(𝑡)‖2𝐿2(𝑈) + ∫
𝑇

0
‖𝐮′𝑚‖2𝐻1

0 (𝑈)
d𝑡 ⩽ 𝐶(‖𝐮′𝑚(0)‖2𝐿2(𝑈) + ‖𝒇′‖2𝐿2(0,𝑇;𝐿2(𝑈)))

⩽ 𝐶(‖𝑔‖2𝐻2(𝑈) + ‖𝒇‖2𝐻1(0,𝑇;𝐿2(𝑈))). (3.3.14)

现在我们利用方程来证明 𝐿∞𝑡 𝐻2
𝒙 正则性。回忆我们已有

𝐵[𝐮𝑚, 𝑤𝑘] = (𝒇 − 𝐮′𝑚, 𝑤𝑘), 1 ⩽ 𝑘 ⩽ 𝑚.

该式两边乘以 𝜆𝑘𝑑𝑘𝑚(𝑡)并对 1 ⩽ 𝑘 ⩽ 𝑚求和后得到

𝐵[𝐮𝑚, −∆𝐮𝑚] = (𝒇 − 𝐮′𝑚, −∆𝐮𝑚), 𝑡 ∈ [0, 𝑇].

而 ∆𝐮𝑚|𝜕𝑈 = 0,所以 𝐵[𝐮𝑚, −∆𝐮𝑚] = (𝐿𝐮𝑚, −∆𝐮𝑚). 据问题 3.3.1知

‖𝐮𝑚‖2𝐻2(𝑈) ⩽ 𝐶(‖𝒇‖2𝐿2(𝑈) + ‖𝐮′𝑚‖2𝐿2(𝑈) + ‖𝐮𝑚‖2𝐿2(𝑈)). (3.3.15)
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结合 𝐮′𝑚 一致估计限，我们得到

sup
0⩽𝑡⩽𝑇

(
‖𝐮′𝑚(𝑡)‖2𝐿2(𝑈) + ‖𝐮𝑚(𝑡)‖2𝐻2(𝑈)

)
+ ∫

𝑇

0
‖𝐮′𝑚‖2𝐻1

0 (𝑈)
d𝑡 ⩽ 𝐶(‖𝐮𝑚(0)‖2𝐻2(𝑈) + ‖𝒇‖2𝐻1(0,𝑇;𝐿2(𝑈))). (3.3.16)

令 𝑚 = 𝑚𝑙 →∞，就导出了 𝐮所需的估计。
余下还要证明 𝐮′′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈)). 我们知道 𝐻−1(𝑈) 是 𝐻1

0(𝑈) 的对偶空间，所以我们选
取 𝜑 ∈ 𝐻1

0(𝑈) 并要求其满足 ‖𝜑‖𝐻1
0 (𝑈) ⩽ 1，将其𝜑 = 𝜑𝑚 + 𝜑⟂𝑚，其中 𝜑𝑚 ∈ Span{𝑤1,⋯ ,𝑤𝑚},

𝜑⟂𝑚 ∈ Span{𝑤𝑚+1, 𝑤𝑚+2,⋯}. 据定义有

‖𝐮′′𝑚‖𝐻1(𝑈) = sup
‖𝜑‖𝐻10

⩽1
|⟨𝐮′′𝑚, 𝜑⟩| = sup

‖𝜑‖𝐻10
⩽1

||||⟨𝒇
′, 𝜑𝑚⟩ − 𝐵[𝐮′𝑚, 𝜑𝑚; 𝑡]

||||

⩽ sup
‖𝜑‖𝐻10

⩽1

(
‖𝒇′‖𝐿2(𝑈)‖𝜑𝑚‖𝐿2(𝑈) + ‖𝐮′𝑚‖𝐻1

0 (𝑈)‖𝜑𝑚‖𝐻1
0 (𝑈)

)
⩽ ‖𝒇′‖𝐿2(𝑈) + ‖𝐮′𝑚‖𝐻1

0 (𝑈).

由于我们已经证明了 𝐮′𝑚 的一致估计，那么令 𝑚 = 𝑚𝑙 并取极限就立即得到 𝐮′′ ∈ 𝐿2(0, 𝑇;𝐻−1(𝑈))
和正则性估计 (3.3.9).

通过对 Sobolev可微指标𝑘的归纳，我们还可以证明更高阶的抛物正则性结果，证明略去。

定理 3.3.2 (高阶抛物正则性). 给定正整数 𝑚 ∈ ℕ∗. 对于抛物方程 (3.0.1)，设 𝑔 ∈ 𝐻2𝑚+1(𝑈) 且
对于 0 ⩽ 𝑘 ⩽ 𝑚 有 d𝑘𝒇

d𝑡𝑘
∈ 𝐿2(0, 𝑇;𝐻2𝑚−2𝑘(𝑈))。同时假设初值 𝑔 满足直直直到到到 𝑚 阶阶阶的的的相相相容容容性性性条条条件件件

(compatibiliy conditions up to 𝑚-th order)，即

𝑔0 = 𝑔 ∈ 𝐻1
0(𝑈), 𝑔𝑗 ∶=

d𝑗−1𝒇
d𝑡𝑗−1 (0) − 𝐿𝑔𝑗−1 ∈ 𝐻1

0(𝑈), 1 ⩽ 𝑗 ⩽ 𝑚.

则对 0 ⩽ 𝑘 ⩽ 𝑚 + 1有 d𝑘𝐮
d𝑡𝑘

∈ 𝐿2(0, 𝑇;𝐻2𝑚+2−2𝑘(𝑈))，并成立如下估计

𝑚+1∑

𝑘=0

‖‖‖‖‖‖‖
d𝑘𝐮
d𝑡𝑘

‖‖‖‖‖‖‖

2

𝐿2(0,𝑇;𝐻2𝑚+2−2𝑘(𝑈))
⩽ 𝐶 (

𝑚∑

𝑘=0

||||||||
d𝑘𝒇
d𝑡𝑘

||||||||

2

𝐿2(0,𝑇;𝐻2𝑚−2𝑘(𝑈))
+ ‖𝑔‖2𝐻2𝑚+1(𝑈)) , (3.3.17)

其中常数𝐶 > 0仅依赖 𝑚,𝑈, 𝑇 以及𝐿的系数。

注记 3.3.1. 相容性条件是必要的，它保证了全体 𝑔0, 𝑔1,⋯ , 𝑔𝑚 在边界 𝜕𝑈 上的迹都为零。否则方
程解的时间导数的初值未必是零，即初边值产生冲突。

定理 3.3.3 (𝐶∞ 抛物正则性). 对抛物方程 (3.0.1)，设 𝑔 ∈ 𝐶∞(𝑈)，𝑓 ∈ 𝐶∞(𝑈𝑇)，且初值 𝑔满足无无无
穷穷穷阶阶阶的的的相相相容容容性性性条条条件件件，即

𝑔0 = 𝑔 ∈ 𝐻1
0(𝑈), 𝑔𝑗 ∶=

d𝑗−1𝒇
d𝑡𝑗−1 (0) − 𝐿𝑔𝑗−1 ∈ 𝐻1

0(𝑈), 𝑗 = 1, 2,⋯
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那么 (3.0.1)具有唯一的解 𝑢 ∈ 𝐶∞(𝑈𝑇).

问题 3.3

问题 3.3.1. 设 𝑢 ∈ 𝐶∞(𝑈)满足 𝑢|𝜕𝑈 = ∆𝑢|𝜕𝑈 = 0. 证明：存在𝛽 > 0, 𝛾 ⩾ 0使得

𝛽‖𝑢‖2𝐻2(𝑈) ⩽ (𝐿𝑢,−∆𝑢)𝐿2(𝑈) + 𝛾‖𝑢‖2𝐿2(𝑈).

其中 𝐿𝑢 ∶= −𝜕𝑗(𝑎𝑖𝑗𝜕𝑗𝑢) + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢是一致椭圆的，且满足𝑎𝑖𝑗 = 𝑎𝑗𝑖.
注：此估计用于抛物正则性的证明。为了简化证明你也可以假设 𝑏𝑖 = 𝑐 = 0.

问题 3.3.2. 当 𝐿 = −𝜕𝑗(𝑎𝑖𝑗𝜕𝑖𝑢)（即 𝐿 是对称椭圆算子）时，试给出增强正则性 (3.3.9) 的简化证
明。

提示：把标准正交基 {𝑤𝑘}选取为 𝐿在 𝐻1
0(𝑈)中的特征函数而不是 (−∆)的特征函数。那么就

不再需要问题 ??中的不等式了。

3.4 抛物极大值原理

本节讨论二阶抛物算子的极大值原理和Harnack不等式，这里我们假设椭圆算子 𝐿具有非散
度形式会更方便：

𝐿𝑢 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢, 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∈ 𝐶(𝑈𝑇), 𝑎𝑖𝑗 = 𝑎𝑗𝑖.

我们定义抛物圆柱 𝑈𝑇 ∶= (0, 𝑇] × 𝑈 和抛物边界 Γ𝑇 ∶= 𝑈𝑇∖𝑈𝑇，其中 𝑈 ⊂ ℝ𝑑 是边界充分光滑的

有界开集。本讲义中我们仅证明弱极大值原理，强极大值原理的证明需要抛物 Harnack 不等式，
在此略去。

3.4.1 弱极值原理

给定区间 𝐼 ⊆ ℝ和开集𝑈 ⊆ ℝ𝑑，我们定义 𝐶2
1(𝐼×𝑈) ∶= {𝑢 ∶ 𝐼×𝑈 → ℝ ∶ 𝑢, 𝜕𝑥𝑖𝑢, 𝜕𝑥𝑖𝜕𝑥𝑗𝑢, 𝜕𝑡𝑢 ∈

𝐶(𝐼 × 𝑈), ∀1 ⩽ 𝑖, 𝑗 ⩽ 𝑑}，其中变量 𝑡 ∈ 𝐼, 𝒙 ∈ 𝑈. 本节我们假设 𝑈 是有界的。
定理 3.4.1 (弱极大值原理). 设 𝑢 ∈ 𝐶2

1(𝑈𝑇) ∩ 𝐶(𝑈𝑇)，且在 𝑈𝑇 中有 𝑐 = 0。若 𝜕𝑡𝑢 + 𝐿𝑢 ⩽ 0（类似
地，⩾ 0）在 𝑈𝑇 中恒成立，则有 max

𝑈𝑇

𝑢 = max
Γ𝑇

𝑢（类似地，min
𝑈𝑇

𝑢 = min
Γ𝑇

𝑢）。此时 𝑢 被称为下解

（上解）。

证明. 证明过程与定理 2.6.1 非常相似。我们首先增加假设为 𝜕𝑡𝑢 + 𝐿𝑢 < 0 在 𝑈𝑇 中恒成立，并

假设存在 (𝑡0, 𝒙0) ∈ 𝑈𝑇 使得 𝑢(𝑡0, 𝒙0) = max
𝑈𝑇

𝑢. 若 0 < 𝑡0 < 𝑇，那么 (𝑡0, 𝒙0) 是 𝑈𝑇 的内点，因此

𝜕𝑡𝑢(𝑡0, 𝒙0) = 0. 另一方面，我们可以模仿定理 2.6.1的证明计算出在 (𝑡0, 𝒙0)处有 𝐿𝑢 ⩾ 0。因此在



104 第三章 线性抛物方程

(𝑡0, 𝒙0)处必有 𝜕𝑡𝑢 + 𝐿𝑢 ⩾ 0，这与假设 𝜕𝑡𝑢 + 𝐿𝑢 < 0矛盾。若 𝑡0 = 𝑇，那么仍然有 𝜕𝑡𝑢(𝑡0, 𝒙0) ⩾ 0，
这再次导致在 (𝑡0, 𝒙0)处 𝜕𝑡𝑢 + 𝐿𝑢 ⩾ 0.

现在我们仅假设𝜕𝑡𝑢+𝐿𝑢 ⩽ 0在𝑈𝑇中成立。此时我们引进扰动 𝑢𝜀(𝑡, 𝒙) = 𝑢(𝑡, 𝒙)−𝜀𝑡（其中 𝜀 > 0
是一个小常数）。直接计算可得 𝜕𝑡𝑢𝜀+𝐿𝑢𝜀 = 𝜕𝑡𝑢+𝐿𝑢−𝜀 < 0在𝑈𝑇中恒成立，进而max

𝑈𝑇

𝑢𝜀 = max
Γ𝑇

𝑢𝜀.

现在取极限 𝜀 → 0，我们得到

max
𝑈𝑇

𝑢 = lim
𝜀→0

max
𝑈𝑇

(𝑢 − 𝜀𝑡) = lim
𝜀→0

max
Γ𝑇

(𝑢 − 𝜀𝑡) ⩽ max
Γ𝑇

𝑢.

而反向不等式是显而易见的，因为 Γ𝑇 ⊊ 𝑈𝑇.

当算子 𝐿中的零阶项系数 𝑐 ⩾ 0时，我们可以证明类似的结果。

定理 3.4.2 (𝑐 ⩾ 0的弱极大值原理). 设 𝑢 ∈ 𝐶2
1(𝑈𝑇) ∩ 𝐶(𝑈𝑇)且在 𝑈𝑇 中有 𝑐 ⩾ 0。若 𝜕𝑡𝑢 + 𝐿𝑢 ⩽ 0

在 𝑈𝑇 中恒成立（类似地，⩾ 0），则 max
𝑈𝑇

𝑢 ⩽ max
Γ𝑇

𝑢+（类似地，min
𝑈𝑇

𝑢 ⩾ min
Γ𝑇

𝑢−）。特别地，若

𝜕𝑡𝑢 + 𝐿𝑢 = 0在 𝑈𝑇 中恒成立，则有 max
𝑈𝑇

|𝑢| = max
Γ𝑇

|𝑢|.

3.4.2 强极值原理

证明抛物方程的强极大值原理需要用到抛物 Harnack不等式。

定理 3.4.3 (抛物 Harnack不等式). 设非非非负负负函函函数数数 𝑢 ∈ 𝐶2
1(𝑈𝑇)在 𝑈𝑇 中满足 𝜕𝑡𝑢 + 𝐿𝑢 = 0. 设 𝑉 ⋐ 𝑈

是连通子集，则那么对任意的 0 < 𝑡1 < 𝑡2 ⩽ 𝑇，存在常数 𝐶 > 0，使得

sup
𝑉
𝑢(𝑡1, ⋅) ⩽ inf

𝑉
𝑢(𝑡2, ⋅).

其中常数𝐶仅依赖 𝑉, 𝑡1, 𝑡2 和 𝐿的系数。

定理 3.4.3的证明需要用到对数梯度估计方法，具体参见 Evans [6, 391页定理 7.1.10],我们将
在下一小节利用 Li-Yau 梯度估计给出𝐿 = (−∆)情况的证明。现在我们用抛物 Harnack 不等式和
抛物弱极值原理来证明抛物强极值原理。

定理 3.4.4 (强极大值原理). 设有界开集 𝑈 是连通的，函数 𝑢 ∈ 𝐶2
1(𝑈𝑇) ∩ 𝐶(𝑈𝑇) 且在 𝑈𝑇 中有

𝑐 = 0. 若在 𝑈𝑇 中恒有 𝜕𝑡𝑢 + 𝐿𝑢 ⩽ 0（类似地，⩾ 0）且 𝑢 在点 (𝑡0, 𝒙0) ∈ 𝑈𝑇 处达到其在 𝑈𝑇 上的

最大值（类似地，最小值），那么 𝑢在 𝑈𝑡0 中恒为常值（注意不是 𝑈𝑇！）。
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定理 3.4.3的结论表明抛物方程具有“无限传播速度”。

证明. 设在 𝑈𝑇 中 𝜕𝑡𝑢 + 𝐿𝑢 ⩽ 0且 𝑢 在 (𝑡0, 𝒙0) ∈ 𝑈𝑇 处达到最大值。选取具有光滑边界的开子集

𝑊 ⋐ 𝑈，使得 𝒙0 ∈ 𝑊. 然后考虑抛物方程

𝜕𝑡𝑣 + 𝐿𝑣 = 0 in 𝑊𝑇, 𝑣 = 𝑢 on ∆𝑇 ∶= 𝑊𝑇∖𝑊𝑇.

据弱极大值原理，我们知道 𝑢 ⩽ 𝑣 ⩽ 𝑀 ∶= max
𝑈𝑇

𝑢，因此在 (𝑡0, 𝒙0)处有 𝑣 = 𝑀. 现在我们需要证明

𝑤 ∶= 𝑀 − 𝑣 ≡ 0在𝑊中恒成立，若能证得该结论，则强极值原理已经得证，这是因为 𝑊 ⋐ 𝑈 是
任意选取的。

由于 𝑐 = 0，我们知道在𝑊𝑇 中有 𝜕𝑡𝑤 +𝐿𝑤 = 0以及 𝑤 ⩾ 0. 据抛物 Harnack不等式，对于任
意满足 𝒙0 ∈ 𝑉 的子集 𝑉 ⋐ 𝑊 和 0 < 𝑡 < 𝑡0，都有

sup
𝑉
𝑤(𝑡, ⋅) ⩽ 𝐶 inf

𝑉
𝑤(𝑡0, ⋅).

另一方面，inf
𝑉
𝑤(𝑡0, ⋅) ⩽ 𝑤(𝑡0, 𝒙0) = 0迫使 𝑤 在 {𝑡} × 𝑉 上恒为 0这件事情对所有的 𝑡 ∈ (0, 𝑡0)都

成立。由于 𝑉 ⋐ 𝑊 和 𝑡 ∈ (0, 𝑡0)都是任意的，我们知道在𝑊𝑡0 中必有 𝑤 = 0恒成立，因此在 𝑣在
𝑊𝑡0 中恒为常值𝑀. 由于𝑣 = 𝑢在 ∆𝑇 上成立，我们就证明了在 [0, 𝑡0] × 𝜕𝑊 上 𝑢 = 𝑀 恒成立。

对 𝑐 ⩾ 0，我们也有类似的结果。
定理 3.4.5 (𝑐 ⩾ 0的强极值原理). 设有界开集 𝑈 是连通的，函数 𝑢 ∈ 𝐶2

1(𝑈𝑇) ∩ 𝐶(𝑈𝑇)且在 𝑈𝑇 中

有 𝑐 ⩾ 0. 若在 𝑈𝑇 中恒有 𝜕𝑡𝑢 + 𝐿𝑢 ⩽ 0（类似地，⩾ 0）且 𝑢 在点 (𝑡0, 𝒙0) ∈ 𝑈𝑇 处达到其在 𝑈𝑇 上

的非非非负负负最最最大大大值值值（类似地，非非非正正正最最最大大大值值值），那么 𝑢在 𝑈𝑡0 中恒为常值（注意不是 𝑈𝑇！）。
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3.4.3 *抛物Harnack不等式的证明

本节我们来证明定理3.4.3. 为了简化计算，我们假设𝐿 = −∆, 即考虑标准热方程的 Harnack
不等式，但是我们不利用热核的具体表达式和估计，以求得一个一般性的证明。

抛物 Harnack 的“演化特征”. 我们先考虑热方程的基本解：任固定 𝝃 ∈ ℝ𝑑，考虑𝐾(𝑡, 𝒙) =
1

(4𝜋𝑡)𝑑∕2
𝑒−

|𝒙−𝝃|2

4𝑡 .直接计算可得 𝐾 是热方程的解。对任意 (𝑡1, 𝒙1), (𝑡2, 𝒙2) ∈ (0,∞) × ℝ𝑑，计算可得

𝐾(𝑡1, 𝒙1)
𝐾(𝑡2, 𝒙2)

= (𝑡2𝑡1
)
𝑑∕2

𝑒
|𝒙2−𝝃|2

4𝑡2
− |𝒙1−𝝃|2

4𝑡1 .

由Young不等式知，对任意 𝑡2 > 𝑡1 > 0，

|𝒙2 − 𝝃|2
𝑡2

⩽ |𝒙2 − 𝒙1|2
𝑡2 − 𝑡1

+ |𝒙1 − 𝝃|2
𝑡1

, 等号成立当且仅当 𝝃 = 𝑡2𝒙1 − 𝑡1𝒙2
𝑡2 − 𝑡1

.

因此，

∀𝒙1, 𝒙2 ∈ ℝ𝑑, 𝑡2 > 𝑡1 > 0, 𝐾(𝑡1, 𝒙1) ⩽ (𝑡2𝑡1
)
𝑑∕2

exp {
|𝒙2 − 𝒙1|2
4(𝑡2 − 𝑡1)

} 𝐾(𝑡2, 𝒙2),

且当 𝝃 如上选取时等号成立。
这个简单的计算表明，热方程的 Harnack不等式具有“演化”特征：正解在某一时刻的取值

被其在稍后时刻的取值控制。因此如果我们要证明形如 𝑢(𝑡1, 𝒙1) ⩽ 𝐶𝑢(𝑡2, 𝒙2)的结论，那么常数 𝐶
应依赖 𝑡2∕𝑡1，|𝒙2 − 𝒙1|，以及最重要的 (𝑡2 − 𝑡1)−1 > 0.

对数梯度估计的动机 Harnack不等式需要估计 𝑢(𝑡1,𝒙1)
𝑢(𝑡2,𝒙2)

，求对数之后就只需计算 𝑣(𝑡1, 𝒙1)−𝑣(𝑡2, 𝒙2)，
因此我们自然需要估计 𝑣𝑡 和 |∇𝑣|. 现在我们再次从基本解考虑这个问题。在上面的基本解中
令𝝃 = 𝟎,即计算可得

𝐾(𝑡, 𝒙) = 1
(4𝜋𝑡)𝑑∕2

𝑒−
|𝒙|2

4𝑡 ⇒ 𝑣(𝑡, 𝒙) = log𝐾(𝑡, 𝒙) = −𝑑2 log(4𝜋𝑡) −
|𝒙|2
4𝑡 .

求导即得

𝜕𝑡𝑣 = − 𝑑
2𝑡 +

|𝒙|2
4𝑡2 , ∇𝑣 = − 𝒙

2𝑡 , ⇒ 𝜕𝑡𝑣 = − 𝑑
2𝑡 + |∇𝑣|2.

现在对热方程的任意正解，我们证明如下的微分 Harnack不等式。

定理 3.4.6 (Li-Yau对数梯度估计). 设 𝑢 ∈ 𝐶2,1((0, 𝑇] × ℝ𝑑) 是方程 𝑢𝑡 − ∆𝑢 = 0 的正正正解解解。那么
𝑣 = log 𝑢满足

𝜕𝑡𝑣 +
𝑑
2𝑡 ⩾ |∇𝑣|2 in (0, 𝑇] × ℝ𝑑.

若该结论成立，则通过简单的积分即可推导出 Harnack不等式。
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推论 3.4.7 (热方程的Harnack不等式). 设 𝑢 ∈ 𝐶2,1((0, 𝑇]×ℝ𝑑)是 𝑢𝑡 = ∆𝑢在 (0, 𝑇]×ℝ𝑑 中的正正正解解解。

则对任意的 (𝑡1, 𝒙1), (𝑡2, 𝒙2) ∈ (0, 𝑇] × ℝ𝑑 和 𝑡2 > 𝑡1 > 0成立如下不等式：

𝑢(𝑡1, 𝒙1)
𝑢(𝑡2, 𝒙2)

⩽ (𝑡2𝑡1
)
𝑑∕2

exp {
|𝒙2 − 𝒙1|2
4(𝑡2 − 𝑡1)

} .

证明. 令𝑣 = log 𝑢，任取𝒙1到𝒙2的路径 𝒙 = 𝒙(𝑡) (𝑡 ∈ [𝑡1, 𝑡2])满足 𝒙(𝑡𝑖) = 𝒙𝑖, 𝑖 = 1, 2. 据定理 3.4.6，
我们有

d
d𝑡𝑣(𝑡, 𝒙(𝑡)) = 𝑣𝑡 + ∇𝑣 ⋅ 𝒙′(𝑡) ⩾ |∇𝑣|2 + ∇𝑣 ⋅ 𝒙′(𝑡) − 𝑑

2𝑡 ⩾ −14|𝒙
′(𝑡)|2 − 𝑑

2𝑡 .

对𝑡积分得到

𝑣(𝑡1, 𝒙1) ⩽ 𝑣(𝑡2, 𝒙2) +
𝑑
2 (log 𝑡2 − log 𝑡1) +

1
4 ∫

𝑡2

𝑡1
|𝒙′(𝑡)|2 d𝑡.

接下来寻找“最佳路径”使得上式最后一个积分最小。我们要求沿路径满足 𝒙′(𝑡) = 0. 因此我们
可以设 𝒙(𝑡) = 𝒂𝑡 + 𝒃. 又因为 𝒙𝑖 = 𝒂𝑡𝑖 + 𝒃, 𝑖 = 1, 2，所以我们取

𝒂 = 𝒙2 − 𝒙1
𝑡2 − 𝑡1

, 𝒃 = 𝑡2𝒙1 − 𝑡1𝒙2
𝑡2 − 𝑡1

.

那么 ∫ 𝑡2𝑡1
|||𝒙′(𝑡)|||

2 d𝑡 = |𝒙2−𝒙1|2

𝑡2−𝑡1
.因此得到

𝑣(𝑡1, 𝒙1) ⩽ 𝑣(𝑡2, 𝒙2) +
𝑑
2 (log 𝑡2 − log 𝑡1) +

1
4
|𝒙2 − 𝒙1|2
𝑡2 − 𝑡1

,

等价地，即为Harnack不等式

𝑢(𝑡1, 𝒙1)
𝑢(𝑡2, 𝒙2)

⩽ (𝑡2𝑡1
)
𝑑∕2

exp {
|𝒙2 − 𝒙1|2
4(𝑡2 − 𝑡1)

} .

对数梯度估计的证明. 接下来我们证明定理3.4.6. 我们考虑 |∇𝑣|2 − 𝑣𝑡 并打算推导其上界。首先
我们推导 |∇𝑣|2−𝑣𝑡 满足的一个抛物型方程。但仔细的分析表明，该方程中的某些项无法被控制。
所以我们引入参数 𝛼 ∈ (0, 1) 并转而考虑 𝛼|∇𝑣|2 − 𝑣𝑡. 在我们应用极值原理后，令 𝛼 → 1 即得结
论。下面的证明可能是本课程中最难的证明之一，如果你不想看那就不看好了，反正考试是不可

能考你默写它的。

定理3.4.6. 不妨设 𝑢直到 {𝑡 = 0}都连续，否则在 [𝜀, 𝑇] × ℝ𝑑 上考虑该问题再令 𝜀 → 0即可。
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第一步：推导对数梯度的方程. 我们首先推导涉及 𝑣 = log 𝑢的导数的方程。直接计算可得

𝑣𝑡 = ∆𝑣 + |∇𝑣|2.

令 𝑤 = ∆𝑣，则有
𝑤𝑡 = ∆𝑣𝑡 = ∆(∆𝑣 + |∇𝑣|2) = ∆𝑤 + ∆|∇𝑣|2.

由 ∆|∇𝑣|2 = 2|∇2𝑣|2 + 2∇𝑣 ⋅ ∇(∆𝑣) = 2|∇2𝑣|2 + 2∇𝑣 ⋅ ∇𝑤，我们得到

𝑤𝑡 − ∆𝑤 − 2∇𝑣 ⋅ ∇𝑤 = 2|∇2𝑣|2. (3.4.1)

注意 ∇𝑣 是需要被控制的，且作为系数出现在方程 (3.4.1)中。所以我们需要推导 ∇𝑣 满足什么方
程。令 𝑤̃ = |∇𝑣|2，直接计算得

𝑤̃𝑡 = 2∇𝑣 ⋅ ∇𝑣𝑡 = 2∇𝑣 ⋅ ∇(∆𝑣 + |∇𝑣|2) = 2∇𝑣 ⋅ ∇(∆𝑣) + 2∇𝑣 ⋅ ∇𝑤̃
= ∆|∇𝑣|2 − 2|∇2𝑣|2 + 2∇𝑣 ⋅ ∇𝑤̃ = ∆𝑤̃ + 2∇𝑣 ⋅ ∇𝑤̃ − 2|∇2𝑣|2.

因此得到𝑤̃ = |∇𝑣|2满足的热方程

𝑤̃𝑡 − ∆𝑤̃ − 2∇𝑣 ⋅ ∇𝑤̃ = −2|∇2𝑣|2. (3.4.2)

由Cauchy不等式得

|∇2𝑣|2 =
𝑑∑

𝑖,𝑗=1
𝑣2𝑥𝑖𝑥𝑗 ⩾

𝑑∑

𝑖=1
𝑣2𝑥𝑖𝑥𝑖 ⩾

1
𝑑
⎛
⎜
⎝

𝑑∑

𝑖=1
𝑣𝑥𝑖𝑥𝑖

⎞
⎟
⎠

2

= 1
𝑑(∆𝑣)

2.

因此从(3.4.1)可以推出
𝑤𝑡 − ∆𝑤 − 2∇𝑣 ⋅ ∇𝑤 ⩾ 2

𝑑𝑤
2.

第二步：推导待证量的方程. 根据我们在证明定理之前的讨论，直接估计 |∇𝑣|2 − 𝑣𝑡 有困难，因
此引进常数 𝛼 ∈ (0, 1)并令 𝑓 ∶= 𝛼|∇𝑣|2 − 𝑣𝑡. 那么则

𝑓 = 𝛼|∇𝑣|2 − ∆𝑣 − |∇𝑣|2 = −∆𝑣 − (1 − 𝛼)|∇𝑣|2 = −𝑤 − (1 − 𝛼)𝑤̃.

据(3.4.1)-(3.4.2)可算出
𝑓𝑡 − ∆𝑓 − 2∇𝑣 ⋅ ∇𝑓 = −2𝛼|∇2𝑣|2.
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接下来我们用 𝑓 来估计 |∇2𝑣|2。注意到

|∇2𝑣|2 ⩾ 1
𝑑(∆𝑣)

2 = 1
𝑑(|∇𝑣|

2 − 𝑣𝑡)2 =
1
𝑑((1 − 𝛼)|∇𝑣|2 + 𝑓)2

= 1
𝑑(𝑓

2 + 2(1 − 𝛼)|∇𝑣|2𝑓 + (1 − 𝛼)2|∇𝑣|4) ⩾ 1
𝑑(𝑓

2 + 2(1 − 𝛼)|∇𝑣|2𝑓).

据此得到𝑓满足如下的不等式

𝑓𝑡 − ∆𝑓 − 2∇𝑣 ⋅ ∇𝑓 ⩽ −2𝛼𝑑 (𝑓2 + 2(1 − 𝛼)|∇𝑣|2𝑓). (3.4.3)

这里需要指出，右端的 |∇𝑣|2 在后面起着重要作用，所以我们不能直接假设𝛼 = 1.

第三步：作截断. 现在引入截断函数 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑)，且 𝜑 ⩾ 0，并令 𝑔 = 𝑡𝜑𝑓.我们推导 𝑔 满足什

么方程或不等式估计. 求导得:

𝑔𝑡 = 𝜑𝑓 + 𝑡𝜑𝑓𝑡, ∇𝑔 = 𝑡𝜑∇𝑓 + 𝑡𝑓∇𝜑, ∆𝑔 = 𝑡𝜑∆𝑓 + 2𝑡∇𝜑 ⋅ ∇𝑓 + 𝑡𝑓∆𝜑.

那么，

𝑡𝜑𝑓𝑡 = 𝑔𝑡 −
𝑔
𝑡 , 𝑡𝜑∇𝑓 = ∇𝑔 − ∇𝜑

𝜑 𝑔,

𝑡𝜑∆𝑓 = ∆𝑔 − 2∇𝜑𝜑 ⋅ (∇𝑔 − ∇𝜑
𝜑 𝑔) − ∆𝜑

𝜑 𝑔 = ∆𝑔 − 2∇𝜑𝜑 ⋅ ∇𝑔 + (2
|∇𝜑|2
𝜑2 − ∆𝜑

𝜑 ) 𝑔.

在 (3.4.3)两边乘以 𝑡2𝜑2，把上述等式代入换掉 𝑓𝑡, ∇𝑓 和 ∆𝑓，我们得到

𝑡𝜑(𝑔𝑡 −∆𝑔)+2𝑡(∇𝜑−𝜑∇𝑣) ⋅∇𝑔 ⩽ 𝑔 {𝜑 − 2𝛼
𝑑 𝑔 + 𝑡 (2

|∇𝜑|2
𝜑 − ∆𝜑 − 4𝛼(1 − 𝛼)

𝑑 𝜑|∇𝑣|2 − 2∇𝜑 ⋅ ∇𝑣)} .

为了消去右端的 |∇𝑣|，我们对最后两项进行配方。（这里我们需要 𝛼 < 1！否则无法控制右端的
−2∇𝜑 ⋅ ∇𝑣.）因此只要 𝑔是非负的，就有

𝑡𝜑(𝑔𝑡 − ∆𝑔) + 2𝑡(∇𝜑 − 𝜑∇𝑣) ⋅ ∇𝑔 ⩽ 𝑔 {𝜑 − 2𝛼
𝑑 𝑔 + 𝑡 (2

|∇𝜑|2
𝜑 − ∆𝜑 + 𝑑

4𝛼(1 − 𝛼)
|∇𝜑|2
𝜑 )} .

这里注意，右边除了 𝑔以外已经没有未知量。今选取 𝜑 = 𝜂2，其中 𝜂 ∈ 𝐶∞
𝑐 (ℝ𝑑)且 𝜂 ⩾ 0。对非负

的𝑔我们算得

𝑡𝜂2(𝑔𝑡 − ∆𝑔) + 2𝑡(2𝜂∇𝜂 − 𝜂2∇𝑣) ⋅ ∇𝑔 ⩽ 𝑔 {𝜂2 − 2𝛼
𝑑 𝑔 + 𝑡 (6|∇𝜂|2 − 2𝜂∆𝜂 + 𝑑

𝛼(1 − 𝛼)
|∇𝜂|2)} .
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现在取截断函数 𝜂0 ∈ 𝐶∞
0 (𝐵(𝟎, 1))，使得在 𝐵(𝟎, 1)中 0 ⩽ 𝜂0 ⩽ 1，且在 𝐵(𝟎, 1∕2)中 𝜂0 = 1. 任给

𝑅 ⩾ 1,我们取 𝜂(𝒙) = 𝜂0(𝒙∕𝑅)就得到

(6|∇𝜂|2 − 2𝜂∆𝜂 + 𝑑
𝛼(1 − 𝛼)

|∇𝜂|2) (𝒙) = 1
𝑅2 (6|∇𝜂0|

2 − 2𝜂0∆𝜂0 +
𝑑

𝛼(1 − 𝛼)
|∇𝜂0|2)

(𝒙
𝑅
)
.

因此我们得到在 (0, 𝑇) × 𝐵(𝟎, 𝑅)中，对非负的𝑔成立如下不等式

𝑡𝜂2(𝑔𝑡 − ∆𝑔) + 2𝑡(2𝜂∇𝜂 − 𝜂2∇𝑣) ⋅ ∇𝑔 ⩽ 𝑔 (1 − 2𝛼
𝑑 𝑔 + 𝐶𝛼𝑡

𝑅2 ) ,

这里的常数𝐶𝛼 > 0仅依赖 𝛼和 𝜂0. 我们要指出，左边出现了 ∇𝑣，但它是一阶项 ∇𝑔的系数，所以
在后面使用弱极值原理的时候这项根本没用。

第四步：使用弱极值得出结论. 现在作出如下断言

断言. 在(0, 𝑇] × 𝐵(𝟎, 𝑅)中成立如下不等式:

1 − 2𝛼
𝑑 𝑔 + 𝐶𝛼𝑡

𝑅2 ⩾ 0. (3.4.4)

反证法：今假设 ℎ ∶= 1− 2𝛼
𝑑
𝑔 + 𝐶𝛼𝑡

𝑅2
在 (𝑡0, 𝒙0) ∈ (0, 𝑇] × 𝐵(𝟎, 𝑅)处取得负的最小值。这样我们

得到

ℎ(𝑡0, 𝒙0) < 0, ℎ𝑡 ⩽ 0, ∇ℎ = 0, ∆ℎ ⩾ 0 at (𝑡0, 𝒙0).

据ℎ的定义可得 𝑔(𝑡0, 𝒙0) > 0. 而 𝑔 = 𝑡𝜂2𝑓 在 (0, 𝑇) × 𝐵(𝟎, 𝑅)的抛物边界上恒为零，所以 (𝑡0, 𝒙0)不
可能落在抛物边界上。接下来对ℎ求导，得到 ℎ𝑡 = − 2𝛼

𝑑
𝑔𝑡 +

𝐶𝛼
𝑅2
以及 ∇ℎ = − 2𝛼

𝑑
∇𝑔,因此得到

𝑔𝑡 ⩾ 0, ∇𝑔 = 0, ∆𝑔 ⩽ 0 at (𝑡0, 𝒙0).

这样在 (𝑡0, 𝒙0)处，我们得到矛盾

0 ⩽ 𝑡𝜂2(𝑔𝑡 − ∆𝑔) + 2𝑡(2𝜂∇𝜂 − 𝜂2∇𝑣) ⋅ ∇𝑔 ⩽ 𝑔 (1 − 2𝛼
𝑑 𝑔 + 𝐶𝛼𝑡

𝑅2 ) < 0.

因此断言正确，(3.4.4)在 (0, 𝑇) × 𝐵(𝟎, 𝑅)中成立。所以我们得到

1 − 2𝛼
𝑑 𝑡𝜂2(𝛼|∇𝑣|2 − 𝑣𝑡) +

𝐶𝛼𝑡
𝑅2 ⩾ 0 in (0, 𝑇] × 𝐵(𝟎, 𝑅). (3.4.5)

现在对任意固定的 (𝑡, 𝒙) ∈ (0, 𝑇]×ℝ𝑑，我们选取 𝑅 > |𝒙|. 代入截断函数 𝜂 = 𝜂0(⋅∕𝑅)并令 𝑅 → ∞，
我们得到

1 − 2𝛼
𝑑 𝑡(𝛼|∇𝑣|2 − 𝑣𝑡) ⩾ 0.
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再令 𝛼 → 1即可得到所需的估计。

我们只需在 (3.4.5)中取 𝑅 = 1就能得到有界区域内热方程正解的对数梯度估计。

定理 3.4.8 (局部 Li-Yau梯度估计). 设 𝑢 ∈ 𝐶2,1((0, 1] × 𝐵(𝟎, 1))是 𝑢𝑡 − ∆𝑢 = 0的正解，则对任意
𝛼 ∈ (0, 1)，𝑣 = log 𝑢满足

𝑣𝑡 − 𝛼|∇𝑣|2 + 𝑑
2𝛼𝑡 + 𝐶 ⩾ 0 在 (0, 1] × 𝐵(𝟎, 1∕2)中,

其中 𝐶 > 0是仅依赖 𝑑和 𝛼 的常数。

类似地我们可得到有界区域上热方程的Harnack不等式

推论 3.4.9. 设 𝑢 ∈ 𝐶2,1((0, 1] × 𝐵(𝟎, 1)) 是 𝑢𝑡 − ∆𝑢 = 0 的非负解，则对任意 (𝑡1, 𝒙1), (𝑡2, 𝒙2) ∈
(0, 1] × 𝐵(𝟎, 1∕2)以及 𝑡2 > 𝑡1 成立 Harnack不等式

𝑢(𝑡1, 𝒙1) ⩽ 𝐶𝑢(𝑡2, 𝒙2),

其中 𝐶 > 0是仅依赖 𝑑，𝑡2∕𝑡1 和 (𝑡2 − 𝑡1)−1 的常数。

习题 3.4

习题 3.4.1. 设 𝑢为热方程 𝜕𝑡𝑢 − ∆𝑢 + 𝑐𝑢 = 0在 ℝ+ ×𝑈 中的光滑解，在 {𝑡 = 0} × 𝑈 上 𝑢 = 𝑔，边
界条件为在 [0,∞) × 𝜕𝑈 上 𝑢 = 0。这里 𝑔(𝒙), 𝑐(𝑡, 𝒙)是给定的连续函数。

(1) 若存在常数 𝛾 使得 𝑐 ⩾ 𝛾 > 0，证明：存在常数 𝐴 > 0使得对任意的 (𝑡, 𝒙) ∈ (0, 𝑇] × 𝑈，均
有 |𝑢(𝑡, 𝒙)| ⩽ 𝐴𝑒−𝛾𝑡.

(2) 当 𝑔 ⩾ 0且 𝑐有界时，证明 𝑢是非负的。

习题 3.4.2. 证明定理 3.4.2，你可以参考定理 2.6.2的证明。

习题 3.4.3. 证明定理 3.4.5.（提示：考虑 𝜕𝑡𝑢 + 𝐿′𝑢，其中 𝐿′𝑢 ∶= 𝐿𝑢 − 𝑐𝑢. ）

问题 3.4

问题 3.4.1. 在习题 3.2.2中，如果再假设 𝑔 ∈ 𝐶1(𝑈)，证明：存在常数 𝐶 > 0使得对任意 𝑡 > 0都
有 sup

𝒙∈𝑈
|𝑢(𝑡, 𝒙)| ⩽ 𝐶𝑒−𝜆1𝑡.

提示：如果初值是对应于(−∆)算子(带Dirichlet边界条件时)的主特征值 𝜆1的特征函数 𝑤1，那

对应热方程的解是什么？然后用问题2.6.2的结论。
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3.5 消失粘性法

本节我们引入消失粘性法 (vanishing viscosity method)（也称为无粘极限 (inviscid limit)）来
证明一阶线性对称双曲方程组的局部存在性。事实上，无粘极限在双曲守恒律的研究中起着重要

作用，并派生了许多具有挑战性的问题。该方法的核心思想是添加一个带有小系数 𝜀 的粘性项
𝜀∆𝑢 以获得一个“正则化”的抛物系统，然后求解该抛物系统，最后再取极限 𝜀 → 0 以获得原
始双曲组的存在性。本节我们假设区域 𝑈 = ℝ𝑑，并同时指出：如果区域有边界，该方法可能不

适用，这是因为边界附近可能出现“边界层”(boundary layer). 例如在对带边区域中的 Navier-
Stokes 方程（描述粘性流体运动）取无粘极限时，如果N-S方程本身带有无滑动(non-slip)边界条
件，那么就会出现强边界层导致边界条件不匹配，取极限时可能需要在实解析函数或者一定阶数

的Gevrey函数类里面考虑（可以理解为𝐶∞或者Schwartz函数都不够用），该领域仍有许多未解决
的问题。

考虑如下一阶偏微分方程组：

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝐮 +
𝑑∑
𝑗=1

𝐁𝑗𝜕𝑗𝐮 = 𝒇 in (0,∞) × ℝ𝑑,

𝐮 = 𝒈 on {𝑡 = 0} × ℝ𝑑.
(3.5.1)

这里 𝐮 = (𝑢1,⋯ , 𝑢𝑚) ∶ [0,∞) × ℝ𝑑 → ℝ𝑚 是未知向量，𝐁𝑗 ∶ [0,∞) × ℝ𝑑 → 𝕄𝑚×𝑚, (1 ⩽ 𝑗 ⩽ 𝑑)是
系数矩阵，源项 𝒇 ∶ [0,∞) × ℝ𝑑 → ℝ𝑚 和初值 𝒈 ∶ ℝ𝑑 → ℝ𝑚 是给定的函数。

定义 3.5.1 (双曲性). 若对任意 𝒙, 𝒚 ∈ ℝ𝑑 和 𝑡 ⩾ 0，𝑚阶方阵 𝐁(𝑡, 𝒙; 𝒚) 都是可对角化的，则称
(3.5.1)是双双双曲曲曲方方方程程程组组组 (hyperbolic system). 这里 𝐁(𝑡, 𝒙; 𝒚)的定义为

𝐁(𝑡, 𝒙; 𝒚) ∶=
𝑑∑

𝑗=1
𝑦𝑗𝐁𝑗(𝑡, 𝒙) (𝒙 ∈ ℝ𝑑, 𝑡 ⩾ 0).

如果每个 𝐁𝑗 都是对称的，那么我们说 (3.5.1)是对对对称称称双双双曲曲曲 (symmetric hyperbolic)的。等价地，若
对所有的 𝒙, 𝒚, 𝑡，方阵 𝐁(𝑡, 𝒙; 𝒚)都有 𝑚个实特征值

𝜆1(𝑡, 𝒙; 𝒚) ⩽ 𝜆2(𝑡, 𝒙; 𝒚) ⩽ ⋯ ⩽ 𝜆𝑚(𝑡, 𝒙; 𝒚)

且对应的特征向量 {𝐫𝑘(𝑡, 𝒙; 𝒚)}构成 ℝ𝑚的一组基，则称 (3.5.1)是双曲方程组。进一步地，若所有
的 ⩽都被严格不等式 <替换，那么我们说 (3.5.1)是严严严格格格双双双曲曲曲 (strictly hyperbolic)的。

注记 3.5.1 (双曲性定义的动机). 为了简便，我们不妨假设每个 𝐁𝑗 是常系数的且 𝒇 = 0. 考虑具有
𝐮(𝑡, 𝒙) = 𝐯(𝒚 ⋅ 𝒙−𝜎𝑡)形式的 (3.5.1)的平平平面面面波波波解解解，其中 𝐯 ∶ ℝ → ℝ𝑚 足够光滑。将它代入 (3.5.1)，
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我们得到
⎛
⎜
⎝
−𝜎𝐼𝑚 +

𝑑∑

𝑗=1
𝑦𝑗𝐁𝑗

⎞
⎟
⎠
𝐯′ = 0.

因此 𝐯′ 是矩阵 𝐁(𝒚) 的特征值 𝜎 对应的特征向量。双曲性条件要求对每个给定的 𝒚 ∈ ℝ𝑑，存在

𝑚个不同的平面波解，由下式给出：

(𝒚 ⋅ 𝒙 − 𝜆𝑘(𝒚)𝑡)𝐫𝑘(𝒚) (1 ⩽ 𝑘 ⩽ 𝑚), 𝜆1(𝒚) ⩽ ⋯ ⩽ 𝜆𝑚(𝒚).

对于 ‖𝑦‖ = 1的特征值即为波速。

现在我们证明如下对称双曲组 (3.5.1)弱解的局部存在性。

⎧
⎪
⎨
⎪
⎩

𝜕𝑡𝐮 +
𝑑∑
𝑗=1

𝐁𝑗𝜕𝑗𝐮 = 𝒇 in (0,∞) × ℝ𝑑,

𝐮 = 𝒈 on {𝑡 = 0} × ℝ𝑑.
(3.5.2)

其中未知函数 𝐮 ∶ [0,∞) × ℝ𝑑 → ℝ𝑚，对 1 ⩽ 𝑗 ⩽ 𝑑，系数矩阵 𝐁𝑗 ∈ 𝐶2([0, 𝑇] × ℝ𝑑;𝕄𝑚×𝑚)都是对
称方阵，且满足

sup
[0,𝑇]×ℝ𝑑

|𝐁𝑗| + |∇𝑡,𝒙𝐁𝑗| + |∇2
𝒙,𝑡𝐁𝑗| < ∞ 1 ⩽ 𝑗 ⩽ 𝑑. (3.5.3)

初值 𝒈 ∈ 𝐻1(ℝ𝑑 → ℝ𝑚)，源项 𝒇 ∈ 𝐻1((0, 𝑇) × ℝ𝑑 → ℝ𝑚)均给定。
接下来我们定义方程组 (3.5.1)的弱解。

定义 3.5.2. 给定 𝐮, 𝐯 ∈ 𝐻1(ℝ𝑑 → ℝ𝑚)和 0 ⩽ 𝑡 ⩽ 𝑇，定义双线性型

𝐵[𝐮, 𝐯; 𝑡] ∶= ∫
ℝ𝑑

𝑑∑

𝑗=1
(𝐁𝑗(𝑡, ⋅)𝜕𝑗𝐮) ⋅ 𝐯 d𝒙.

满足以下条件的函数𝐮被称为对称双曲系统初值问题的弱解：

• 𝐮 ∈ 𝐿2(0, 𝑇;𝐻1(ℝ𝑑 → ℝ𝑚))且 𝐮′ ∈ 𝐿2(0, 𝑇; 𝐿2(ℝ𝑑 → ℝ𝑚));
• 对任意 𝐯 ∈ 𝐻1(ℝ𝑑 → ℝ𝑚)和几乎处处的 𝑡 ∈ [0, 𝑇]，成立 (𝐮′, 𝐯) + 𝐵[𝐮, 𝐯; 𝑡] = (𝒇, 𝐯);
• 𝐮(0) = 𝒈.

注意我们已经有 𝐮 ∈ 𝐶([0, 𝑇]; 𝐿2(ℝ𝑑 → ℝ𝑚))，因此 𝐮(0) = 𝒈可以逐点成立。

我们接下来证明

定理 3.5.1. (3.5.2)存在唯一的弱解。
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3.5.1 抛物正则化方程组的存在性

现在我们引入 𝜀-抛物正则化方程组，其中 0 < 𝜀 < 1, 𝒈𝜀 ∶= 𝜂𝜀 ∗ 𝑔.

⎧

⎨
⎩

𝜕𝑡𝐮𝜀 − 𝜀∆𝐮𝜀 +
𝑑∑
𝑗=1

𝐁𝑗𝜕𝑗𝐮𝜀 = 𝒇 in (0,∞) × ℝ𝑑,
𝐮𝜀 = 𝒈𝜀 on {𝑡 = 0} × ℝ𝑑.

(3.5.4)

消失粘性法的思想是：先对固定的 𝜀 > 0求解 𝜀-抛物正则化方程组，然后证明该解有关于 𝜀一
致的能量估计，最后取极限 𝜀 → 0得到双曲方程组（𝜀 = 0）(3.5.2)的解。

我们首先对固定的 𝜀 > 0求解抛物正则化方程。

定理 3.5.2. 对任意 𝜀 > 0， (3.5.4) 存在唯一解 𝐮𝜀 满足 𝐮𝜀 ∈ 𝐿2(0, 𝑇;𝐻3(ℝ𝑑 → ℝ𝑚)), 𝐮𝜀′ ∈
𝐿2(0, 𝑇;𝐻1(ℝ𝑑 → ℝ𝑚)).

求解抛物正则化方程的困难在于 𝜀-正则化项是高阶项，因此我们可以尝试将一阶项 𝐁𝑗𝜕𝑗𝐮𝜀视
作源项。这里还要指出 𝐮𝜀, 𝐮𝜀′ 的 𝐻3, 𝐻1 正则性是抛物正则性定理（定理 3.3.2）的直接结果。换
句话说，我们证明(3.5.4)解的存在性时应当选取较低阶的函数空间。

如何寻找合适函数空间？

如何“预测”解在何种函数空间中存在？考虑方程组 (3.5.4)之前，我们不妨先看一下热方程

𝜕𝑡𝑢 − 𝜀∆𝑢 = 𝑓 in ℝ+ × ℝ𝑑, 𝑢(0) = 𝑔 ∈ 𝐻1(ℝ𝑑) on {𝑡 = 0} × ℝ𝑑.

据Duhamel原理，我们有 𝑢(𝑡) = 𝑒𝜀𝑡∆𝑔+∫ 𝑡0 𝑒𝜀(𝑡−𝜏)∆𝑓(𝜏) d𝜏,其中 𝑒𝜀𝑡∆𝑔 ∶= (𝑒−𝜀𝑡|𝝃 |2 𝑔̂(𝝃 ))∨可以用Fourier变
换定义。这样对𝑠 ⩾ 0，我们有

‖𝑒𝜀𝑡∆𝑔‖𝐻𝑠(ℝ𝑑) = ‖𝑒−𝜀𝑡|𝝃 |2 𝑔̂(𝝃 )⟨𝝃 ⟩𝑠‖𝐿2 ⩽ 𝐶‖𝑔̂(𝝃 )⟨𝝃 ⟩𝑠‖𝐿2 = 𝐶‖𝑔‖𝐻𝑠 .

此外，令𝜼 =
√
𝜀𝑡𝝃，我们可算出 𝑒−𝜀𝑡|𝝃 |2⟨𝝃 ⟩𝑠 = 𝑒−𝜼2⟨(𝜀𝑡)−

1
2𝜼⟩𝑠 ⩽ 𝐶(𝜀𝑡)−

𝑠
2 . 因此当初值 𝑔 ∈ 𝐻1(ℝ𝑑)时，

我们期待 𝑒𝜀𝑡∆𝑔 ∈ 𝐿∞(0, 𝑇;𝐻1(ℝ𝑑)).

对非齐次部分，令 Φ(𝑡, 𝒙) ∶= 1

(4𝜋𝑡)
𝑑
2
𝑒−

|𝒙|2

4𝜀𝑡 为标准热方程（𝜀 = 1）的基本解，则有

∫
𝑡

0
𝑒𝜀(𝑡−𝜏)∆𝑓(𝜏) d𝜏 = ∫

𝑡

0
Φ(𝜀(𝑡 − 𝜏), ⋅) ∗ 𝑓(𝜏, ⋅) d𝜏.
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利用积分Minkowski不等式和卷积 Young不等式，我们有

‖‖‖‖‖‖‖‖‖
∫
𝑡

0
Φ(𝜀(𝑡 − 𝜏), ⋅) ∗ 𝑓(𝜏, ⋅)

‖‖‖‖‖‖‖‖‖𝐿2
⩽ ∫

𝑡

0
‖Φ(𝜀(𝑡 − 𝜏), ⋅) ∗ 𝑓(𝜏, ⋅)‖𝐿2 d𝜏

⩽ ∫
𝑡

0
‖Φ(𝜀(𝑡 − 𝜏), ⋅)‖𝐿1
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=1

‖𝑓(𝜏, ⋅)‖𝐿2 d𝜏 ⩽ ∫
𝑡

0
‖𝑓(𝜏, ⋅)‖𝐿2 d𝜏 ⩽

⎧

⎨
⎩

𝑇‖𝑓‖𝐿∞𝑡 𝐿2𝒙
𝑇

1
2 ‖𝑓‖𝐿2𝑡 𝐿2𝒙

.

类似地，我们可以证明

‖‖‖‖‖‖‖‖‖
∇𝒙 ∫

𝑡

0
Φ(𝜀(𝑡 − 𝜏), ⋅) ∗ 𝑓(𝜏, ⋅) d𝜏

‖‖‖‖‖‖‖‖‖𝐿2
=
‖‖‖‖‖‖‖‖‖
∫
𝑡

0
∇Φ(𝜀(𝑡 − 𝜏), ⋅) ∗ 𝑓(𝜏, ⋅) d𝜏

‖‖‖‖‖‖‖‖‖𝐿2

⩽ ∫
𝑡

0
‖∇Φ(𝜀(𝑡 − 𝜏), ⋅)‖𝐿1
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

⩽𝐶(𝜀(𝑡−𝜏))−
1
2

‖𝑓(𝜏, ⋅)‖𝐿2 d𝜏 ⩽ 𝐶𝜀𝑇1∕2‖𝑓‖𝐿∞𝑡 𝐿2𝒙 .

由于源项 𝑓 ∈ 𝐻1((0, 𝑇)×ℝ𝑑)，我们知道对任意给定的 𝑇 < ∞，有 𝑓 ∈ 𝐿∞(0, 𝑇; 𝐿2(ℝ𝑑))∩𝐿2((0, 𝑇)×
ℝ𝑑). 因此我们“预测”：应该在 𝐿∞(0, 𝑇;𝐻1(ℝ𝑑))中证明 𝜀-正则化方程组 (3.5.4)的局部存在性。

定理3.5.2的证明

我们用压缩映射原理证明 (3.5.4)解的存在性。令 𝑋 ∶= 𝐿∞(0, 𝑇;𝐻1(ℝ𝑑 → ℝ𝑚))并定义

𝒯 ∶ 𝐰 ↦→ 𝑒𝜀𝑡∆𝒈 + ∫
𝑡

0
𝑒𝜀(𝑡−𝜏)∆

⎛
⎜
⎝
𝒇(𝜏, ⋅) −

𝑑∑

𝑗=1
𝐁𝑗(𝜏, ⋅)𝜕𝑗𝐰(𝜏, ⋅)

⎞
⎟
⎠
d𝜏. (3.5.5)

我们要证明如下事实

• 𝒯 是 𝑋 到 𝑋 自身的映射，即 𝑅(𝒯) ⊆ 𝑋.
• 𝒯 是 𝑋 上的压缩映射，即存在常数 𝐶 ∈ (0, 1)使得对于任何 𝐰,𝐯 ∈ 𝑋 都有 ‖𝒯𝐰 − 𝒯𝐯‖𝑋 ⩽
𝐶‖𝐰 − 𝐯‖𝑋 成立。

若能证明这两点成立，那么压缩映射原理就表明 𝒯 在 𝑋 中具有唯一的不动点，这正是我们所需
的 𝜀-抛物正则化系方程组 (3.5.4)的解。
从先验估计可以直观地看到，对任意 𝐰 ∈ 𝑋 有

‖𝒯𝐰‖𝑋 ⩽ 𝐶‖𝑔‖𝐻1 + 𝐶𝜀𝑇
1
2 (‖𝒇‖𝐿∞𝑡 𝐿2𝒙 + ‖∇𝐰‖𝐿∞𝑡 𝐿2𝒙) < ∞.

这说明𝑅(𝒯) ⊆ 𝑋. 接下来我们证明 𝒯 是 𝑋 上的压缩映射。任给定 𝐰,𝐯 ∈ 𝑋，我们计算

𝒯𝐰 −𝒯𝐯 =
𝑑∑

𝑗=1
∫
𝑡

0
𝑒𝜀(𝑡−𝜏)∆𝐁𝑗𝜕𝑗(𝐰 − 𝐯)(𝜏) d𝜏.
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再次利用先验估计得到 ‖𝒯𝐰 − 𝒯𝐯‖𝑋 ⩽ 𝐶𝜀𝑇
1
2‖𝐰 − 𝐯‖𝑋.今选取充分小的 𝑇1 > 0使得 𝐶𝜀𝑇

1
2
1 < 0.5，

我们就证明了 𝒯 是 𝐿∞(0, 𝑇1; 𝐻1) 上的压缩映射。因此在 𝑋 = 𝐿∞(0, 𝑇1; 𝐻1) 中存在唯一的不动点
（记为 𝐮𝜀），它也是方程组 (3.5.4) 的解。然后我们在 [𝑇1, 2𝑇1], [2𝑇1, 3𝑇1],⋯ 中重复此论证，从而
得到 ℝ+ × ℝ𝑑 中解的存在性。这里要注意：压缩映射原理得到的解的存在时长 𝑇1 不依赖于 𝒇, 𝒈，
否则这个“重复”过程是不对的。

最后我们证明解 𝐮𝜀 满足正则性 𝐮𝜀 ∈ 𝐿2(0, 𝑇;𝐻3(ℝ𝑑 → ℝ𝑚)), 𝐮𝜀′ ∈ 𝐿2(0, 𝑇;𝐻1(ℝ𝑑 → ℝ𝑚)).事
实上，对a.e. 𝑡 ∈ [0, 𝑇]，源项 𝒇−∑𝐁𝑗𝜕𝑗𝐮𝜀 ∈ 𝐿2(ℝ𝑑 → ℝ𝑚)，据抛物正则性定理（定理 3.3.1）可得
𝐮𝜀 ∈ 𝐿∞(0, 𝑇;𝐻2(ℝ𝑑 → ℝ𝑚)), 𝐮𝜀′ ∈ 𝐿2(0, 𝑇;𝐻1(ℝ𝑑 → ℝ𝑚)),进而𝒇−∑𝐁𝑗𝜕𝑗𝐮𝜀 ∈ 𝐿∞(0, 𝑇;𝐻1(ℝ𝑑 →
ℝ𝑚)). 据定理3.3.2,我们就得到𝐮𝜀 ∈ 𝐿2(0, 𝑇;𝐻3(ℝ𝑑 → ℝ𝑚)).

3.5.2 一致估计与无粘极限

我们在上一小节得到的先验估计依赖于 𝜀−1，而取无粘极限需要对𝜀-抛物正则化方程组 (3.5.4)
建立关于粘性系数 𝜀的一致估计。

定理 3.5.3 (关于 𝜀一致的能量估计). 记 𝐮𝜀 为定理 3.5.2中求得的 (3.5.4)的解。则存在常数 𝐶 > 0
（不再依赖 𝜀），使得对任意的 𝜀 ∈ (0, 1)都有

sup
0⩽𝑡⩽𝑇

(
‖𝐮𝜀(𝑡)‖2𝐻1 + ‖𝐮𝜀′(𝑡)‖2𝐿2

)
⩽ 𝐶

(
‖𝒈‖2𝐻1 + ‖𝒇‖2𝐿2(0,𝑇;𝐻1) + ‖𝒇′‖2𝐿2(0,𝑇;𝐿2)

)
. (3.5.6)

证明. 我们计算如下能量估计

d
d𝑡
1
2 ∫ℝ𝑑

|𝐮𝜀|2 d𝒙 = ∫
ℝ𝑑
𝐮𝜀 ⋅ 𝜕𝑡𝐮𝜀 d𝒙 = ∫

ℝ𝑑
𝐮𝜀 ⋅ (𝜀∆𝐮𝜀) d𝒙 + ∫

ℝ𝑑
𝐮𝜀 ⋅ 𝒇 d𝒙 −

𝑑∑

𝑗=1
∫
ℝ𝑑
𝐮𝜀 ⋅ (𝐁𝑗𝜕𝑗𝐮𝜀) d𝒙.

对第一项分部积分得到∫ℝ𝑑 𝐮𝜀⋅(𝜀∆𝐮𝜀) d𝒙 = −𝜀 ∫ℝ𝑑 |∇𝐮𝜀|2 d𝒙.第二项则可以直接控制 ||||∫ℝ𝑑 𝐮𝜀 ⋅ 𝒇 d𝒙|||| ⩽
‖𝐮𝜀‖𝐿2‖𝒇‖𝐿2 .对第三项，我们可以利用 𝐁𝑗 的对称性来消掉 𝐮𝜀 上的导数 𝜕𝑗，分部积分得

∫
ℝ𝑑
𝐮𝜀 ⋅ (𝐁𝑗𝜕𝑗𝐮𝜀) d𝒙 = −∫

ℝ𝑑
(𝐁𝑗𝜕𝑗𝐮𝜀) ⋅ 𝐮𝜀 d𝒙 − ∫

ℝ𝑑
|𝐮𝜀|2(𝜕𝑗𝐁𝑗) d𝒙,

进而 ||||||||
∫
ℝ𝑑
𝐮𝜀 ⋅ (𝐁𝑗𝜕𝑗𝐮𝜀) d𝒙

||||||||
= 1
2
||||||||
∫
ℝ𝑑
|𝐮𝜀|2(𝜕𝑗𝐁𝑗) d𝒙

||||||||
⩽ 𝐶‖𝐮𝜀‖2𝐿2 .

如上三项相加，我们得到微分不等式

d
d𝑡
1
2 ∫ℝ𝑑

|𝐮𝜀|2 d𝒙 = −𝜀 ∫
ℝ𝑑
|∇𝐮𝜀|2 d𝒙 + 𝐶(‖𝐮𝜀‖2𝐿2 + ‖𝒇‖2𝐿2) ⩽ 𝐶(‖𝐮𝜀‖2𝐿2 + ‖𝒇‖2𝐿2).
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据Grönwall不等式可得

sup
0⩽𝑡⩽𝑇

‖𝐮𝜀(𝑡)‖2𝐿2 ⩽ 𝐶(‖𝒈‖2𝐿2 + ∫
𝑇

0
‖𝒇(𝑡)‖2𝐿2 d𝑡),

这里我们用到了卷积光滑子的性质 ‖𝒈𝜀‖𝐿2 ⩽ ‖𝒈‖𝐿2 .
类似地，∇𝐮𝜀 和 𝐮𝜀′ 的一致估计可以通过分别对抛物正则化方程求偏导数 𝜕𝑥𝑘 和 𝜕𝑡 然后模仿

上述论证来证明。我们不再叙述过程，仅列出结果：

sup
0⩽𝑡⩽𝑇

‖∇𝐮𝜀(𝑡)‖2𝐿2 ⩽ 𝐶(‖∇𝒈‖2𝐿2 + ‖𝒇‖2𝐿2(0,𝑇;𝐻1)),

sup
0⩽𝑡⩽𝑇

‖𝐮𝜀′(𝑡)‖2𝐿2 ⩽ 𝐶(‖∇𝒈‖2𝐿2 + 𝜀2‖∆𝒈𝜀‖2𝐿2 + ‖𝒇(0)‖2𝐿2 + ‖𝒇‖2𝐿2(0,𝑇;𝐻1) + ‖𝒇′‖2𝐿2(0,𝑇;𝐿2))

⩽ 𝐶(‖∇𝒈‖2𝐿2 + ‖𝒈𝜀‖2𝐿2 + ‖𝒇‖2𝐿2(0,𝑇;𝐻1) + ‖𝒇′‖2𝐿2(0,𝑇;𝐿2)),

这里面我们用到了卷积光滑子的另一性质 ‖∆𝒈𝜀‖𝐿2 ⩽ 𝐶𝜀−1‖∇𝒈‖𝐿2 以及 ‖𝒇(0)‖2𝐿2 ⩽ 𝐶(‖𝒇‖2𝐿2(0,𝑇;𝐿2) +
‖𝒇′‖2𝐿2(0,𝑇;𝐿2)).注意 ∆𝒈𝜀 是必要的，因为 𝐮𝜀′ 的初值是 𝒇 −∑𝐁𝑗𝜕𝑗𝒈𝜀 + 𝜀∆𝒈𝜀.

{𝐮𝜀}的一致有界性给出了该序列的（一个子列的）弱极限。

定理 3.5.1的证明. 结合如上一致能量估计和习题 3.1.1可知，存在子列 {𝜀𝑘}使得

𝐮𝜀𝑘 ⇀ 𝐮 in 𝐿2(0, 𝑇;𝐻1), 𝐮𝜀𝑘 ′ ⇀ 𝐮′ in 𝐿2(0, 𝑇; 𝐿2).

余下只需验证弱极限 𝐮确实是 (3.5.2)的唯一弱解。任取测试函数 𝝋 ∈ 𝐶1([0, 𝑇];𝐻1)，我们计算可
得（对 𝜀∆𝐮𝜀 这项分部积分）：

∫
𝑇

0
(𝐮𝜀′, 𝝋) + 𝜀∇𝐮𝜀 ∶ ∇𝝋 + 𝐵[𝐮𝜀, 𝝋; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝝋) d𝑡.

令 𝜀 = 𝜀𝑘 → 0，我们得到

∫
𝑇

0
(𝐮′, 𝝋) + 𝐵[𝐮, 𝝋; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝝋) d𝑡, ∀𝝋 ∈ 𝐶1([0, 𝑇];𝐻1),

因此我们得出结论：对于几乎处处的 𝑡 ∈ [0, 𝑇]和全体 𝝋 ∈ 𝐶1([0, 𝑇];𝐻1)，都有 (𝐮′, 𝝋)+𝐵[𝐮, 𝝋; 𝑡] =
(𝒇, 𝝋)成立。今选取𝜑使得𝝋(𝑇) = 0，然后在 (𝐮𝜀′, 𝝋)中分部积分时间导数 𝜕𝑡 得到

∫
𝑇

0
−(𝐮𝜀, 𝝋′) + 𝜀∇𝐮𝜀 ∶ ∇𝝋 + 𝐵[𝐮𝜀, 𝝋; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝝋) d𝑡 + (𝒈, 𝐯(0)).
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令 𝜀 = 𝜀𝑘 → 0，再次得到

∫
𝑇

0
(𝐮, 𝝋′) + 𝐵[𝐮, 𝝋; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝝋) d𝑡 + (𝒈, 𝝋(0)).

另一方面，在 (𝐮′, 𝝋)中分部积分𝜕𝑡得到

∫
𝑇

0
(𝐮, 𝝋′) + 𝐵[𝐮, 𝝋; 𝑡] d𝑡 = ∫

𝑇

0
(𝒇, 𝝋) d𝑡 + (𝐮(0), 𝝋(0)),

由于 𝝋(0)是任意的，所以 𝐮(0) = 𝒈. 由方程组的线性，取 𝝋 = 𝐮，𝒇 = 𝒈 = 0就得出唯一性。

注记 3.5.2. 本节最后，我们再次强调上述方法可能不适用于初边值问题，因为 𝜀-正则化问题的
边界条件可能与原始双曲方程组不同，甚至边界条件的数量也可能不同。这在从描述粘性流体运

动的 Navier-Stokes方程到描述无粘流体运动的 Euler方程的初边值问题无粘极限的研究中尤为明
显。前者可以给定无滑动(non-slip)条件 𝐮 = 0，而后者给定滑移(slip)条件 𝐮 ⋅ 𝑁 = 0. 这种边界条
件的不匹配实际上源于边界层线性：当忽略粘性时，边界层会粘附在边界上，并且其厚度随着粘

性趋于 0而趋于 0。
关于具有边界的区域中一阶对称双曲方程组的经典理论，可参考以下论文或书籍：

• Peter D. Lax, Phillips, R. S. Local boundary conditions for dissipative symmetric linear differential
operators. Commun. Pure. Appl. Math., 13(3), 427–455, 1960.

• Rauch, J. Symmetric Positive Systems with Boundary Characteristic of Constant Multiplicity.
Trans. Amer. Math. Soc., 291(1), 167-187, 1985.

• Métivier, G. Small viscosity and boundary layer methods: Theory, stability analysis, and applica-
tions. Springer Science & Business Media, 2004.
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4.1 拟线性双曲守恒律方程组

1

4.2 接触间断、稀疏波和激波阵面

2

4.3 非线性基本波：经典解

3

4.4 非线性基本波：间断解

4
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第五章 Sobolev空间的Fourier刻画

我们在第一章介绍了整数阶Sobolev空间。然而，如果仅使用整数阶Sobolev空间，许多估计
在Sobolev指标上并不是最佳的。此外在 ℝ𝑑 上的非线性色散方程和波动方程的研究中，Fourier分
析是一个强有力的工具，我们可以通过分析函数Fourier变换的不同频率来获得更精细的估计。因
此人们可能会问，对于 𝑠 ∈ ℝ和 Ω ⊂ ℝ𝑑，是否可以定义非整数阶Sobolev空间𝑊𝑠,𝑝(Ω)？
这个问题的答案是肯定的，但对于不同的区域 Ω 可能需要用不同方式来定义这种推广。当

Ω = ℝ𝑑 时，最有效的工具是Fourier变换，因为做Fourier变换可以将导数转化为多项式型的乘子。
而当区域带边时，其中一种推广被称为“Sobolev-Slobodeckĭı空间”，它是通过差商(differential quo-
tients)来定义的。

本讲义中，我们仅讨论 Ω = ℝ𝑑 且 𝑝 = 2 的情况，即应用最广泛的Sobolev空间 𝐻𝑠(ℝ𝑑)
及其齐次对应空间 𝐻̇𝑠(ℝ𝑑)。对一般的𝑊𝑠,𝑝空间，与之对应的Sobolev嵌入定理等结论均需要使用
Littlewood-Paley分解来证明，具体参见陶哲轩的非线性色散方程专著 [18]的附录A.

5.1 非整数阶Sobolev空间𝐻𝑠(ℝ𝑑)

给定 𝝃 ∈ ℝ𝑑，我们记 ⟨𝝃 ⟩ ∶=
√
1 + |𝝃 |2，它对应于

√
1 − ∆ 的Fourier乘子。现在给定 𝑠 ∈ ℝ，

我们可以利用Fourier变换来定义𝐻𝑠(ℝ𝑑).
定义 5.1.1 (非齐次Sobolev空间). 给定 𝑠 ∈ ℝ，我们定义𝑠阶Sobolev空间

𝐻𝑠(ℝ𝑑) ∶=
{
𝑢 ∈ 𝒮′(ℝ𝑑) ∶ ⟨𝝃 ⟩𝑠𝑢̂(𝝃 ) ∈ 𝐿2(ℝ𝑑)

}
. (5.1.1)

𝐻𝑠(ℝ𝑑) 是一个Hilbert空间，其范数 ‖𝑢‖𝐻𝑠(ℝ𝑑) ∶= ‖⟨𝝃 ⟩𝑠𝑢̂‖𝐿2 由内积 ⟨𝑢, 𝑣⟩𝐻𝑠 ∶= ∫ℝ𝑑⟨𝝃 ⟩2𝑠𝑢̂(𝝃 )𝑣(𝝃 ) d𝝃
诱导。

注记 5.1.1. 需注意，当 𝑠 为负数时，⟨𝝃 ⟩𝑠𝑢̂ ∈ 𝐿2(ℝ𝑑) 并不意味着 𝑢 是一个（局部可积的）函数。
另一方面，由于缓增分布的Fourier变换仍为缓增分布，因此我们确实应该对缓增分布而不是 𝐿2

函数来定义分数阶Sobolev空间。

当 𝑠 ∈ ℕ 时，上述定义与第一章中定义的整数阶Sobolev空间一致，这可以用Plancherel恒等
式和Fourier变换的基本性质证明。

命题 5.1.1. 分数阶Sobolev空间 𝐻𝑠(ℝ𝑑)满足以下性质：

121
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(1) 𝐶∞
𝑐 (ℝ𝑑)和 𝒮(ℝ𝑑)在 𝐻𝑠(ℝ𝑑)中都是稠密的。

(2) 当 𝑠 ∈ ℕ时，𝐻𝑠(ℝ𝑑)与第一章中定义的𝑊𝑠,2(ℝ𝑑)是等价的。

我们再介绍齐次Sobolev空间 𝐻̇𝑠(ℝ𝑑)，它包含了那些“第 𝑠 阶导数”（不包括任何低阶导数）
为 𝐿2(ℝ𝑑)函数的缓增分布。
定义 5.1.2 (齐次Sobolev空间). 给定 𝑠 ∈ ℝ，我们定义 𝑠阶齐次Sobolev空间为

𝐻̇𝑠(ℝ𝑑) ∶=
{
𝑢 ∈ 𝒮′∕𝒫(ℝ𝑑) ∶ |𝝃 |𝑠𝑢̂(𝝃 ) ∈ 𝐿2(ℝ𝑑)

}
. (5.1.2)

这里 𝒫 是多项式的集合。
注记 5.1.2. 商空间 𝒮′∕𝒫 实际上忽略了那些“Fourier变换支于 𝝃 = 𝟎 处的”缓增分布（特别地，
任何非零多项式都不属于 𝒮′∕𝒫）。事实上，任何支于单点的缓增分布必然是该点处的Dirac delta及
其导数的有限线性组合，因此其Fourier逆变换恰好是一个多项式。换句话说，实际上我们有

𝒮′∕𝒫 ≅ 𝒮′ℎ ∶=
{
𝑢 ∈ 𝒮′(ℝ𝑑) ∶ (𝑃(𝝃 )𝑢̂(𝝃 ))(𝟎) = 0, 𝑃 ∈ 𝒫

}
.

注意 𝒮′∕𝒫 在弱*拓扑下并非 𝒮′ 的闭子空间。
为了简化符号，我们也引入分数阶导数作为Fourier乘子。

定义 5.1.3. 给定 𝑓 ∈ 𝒮和 𝑠 ∈ ℝ，我们通过Fourier变换定义 𝑃(∇)𝑓：

𝑃(∇)𝑓(𝝃 ) ∶= 𝑃(𝑖𝝃 )𝑓(𝝃 ), 𝑃是一个多项式.

类似地，给定一个局部可积的复值函数 𝑚，我们将Fourier乘乘乘子子子定义为

𝑚(∇∕𝑖)𝑓(𝝃 ) ∶= 𝑚(𝝃)𝑓(𝝃 ).

特别地，我们将 ⟨∇⟩𝑓 和 |∇|𝑓 记为

⟨̂∇⟩𝑓(𝝃 ) ∶= ⟨𝝃 ⟩𝑓(𝝃 ), |̂∇|𝑓(𝝃 ) ∶= |𝝃 |𝑓(𝝃 ).

在此设定下，我们有

𝑓 ∈ 𝐻𝑠(ℝ𝑑) ⇔ ⟨∇⟩𝑠𝑓 ∈ 𝐿2(ℝ𝑑); 𝑓 ∈ 𝐻̇𝑠(ℝ𝑑) ⇔ |∇|𝑠𝑓 ∈ 𝐿2(ℝ𝑑).

命题 5.1.2. 齐次Sobolev空间 𝐻̇𝑠(ℝ𝑑)满足以下性质。

(1) 𝐻̇𝑠(ℝ𝑑)是Hilbert空间当且仅当 𝑠 < 𝑑
2
.

(2) 当 𝑠 < 𝑑
2
时，集合

𝒮0(ℝ𝑑) ∶=
{
𝑢 ∈ 𝒮(ℝ𝑑) ∶ 𝑢̂(𝝃 )在 𝝃 = 𝟎附近为零

}



5.1 非整数阶SOBOLEV空间𝐻𝑠(ℝ𝑑) 123

是 𝐻̇𝑠 的稠密子集。

(3) 𝐻̇𝑠(ℝ𝑑)的对偶空间是 𝐻̇−𝑠(ℝ𝑑).

证明. 这里我们只证明 (1)和 (2). 对 (1)，当 𝑠 < 𝑑
2
时，我们定义内积

(𝑢, 𝑣)𝐻̇𝑠 ∶= ∫
ℝ𝑑
|𝝃 |2𝑠𝑢̂(𝝃 )𝑣(𝝃 ) d𝝃 .

故只需证明完备性。

设 {𝑢𝑛} ⊂ 𝐻̇𝑠(ℝ𝑑)是Cauchy列，则据定义知 |𝝃 |𝑠𝑢𝑛(𝝃 )是 𝐿2(ℝ𝑑)中的Cauchy列。由 𝐿2 的完备
性可知，存在 𝑓 ∈ 𝐿2(ℝ𝑑)使得 |𝝃 |𝑠𝑢𝑛(𝝃 )

𝐿2
,,→ 𝑓. 现在记 𝑓 = |𝝃 |𝑠𝑔，我们要证明 𝑔是缓增分布。

事实上，这可通过将 𝑔(𝝃 )分解为 𝑔(𝝃 )𝜒|𝝃 |⩽1 和 𝑔(𝝃 )𝜒|𝝃 |>1 直接得出。对于低频部分，我们有

∫
𝐵(𝟎,1)

|𝑔(𝝃 )| d𝝃 = ∫
𝐵(𝟎,1)

|𝝃 |𝑠|𝑔(𝝃 )||𝝃 |−𝑠 d𝝃 ⩽ ‖|𝝃 |𝑠𝑔(𝝃 )‖𝐿2
⏟⎴⎴⏟⎴⎴⏟

=‖𝑓‖𝐿2<∞

(∫
𝐵(𝟎,1)

|𝝃 |−2𝑠 d𝝃)

1
2

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
<∞当且仅当 2𝑠<𝑑

< ∞.

因此(𝑔(𝝃 )𝜒|𝝃 |⩽1)∨ 是一个有界函数。对于高频部分，因为|𝝃 | > 1，所以 |𝝃 | ≃ ⟨𝝃 ⟩，进而

∫
|𝝃 |>1

⟨𝝃 ⟩2𝑠|𝑔(𝝃 )|2 d𝒙 ⩽ 𝐶 ∫
|𝝃 |>1

|𝝃 |2𝑠|𝑔(𝝃 )|2 d𝝃 ⩽ 𝐶 ∫
ℝ𝑑
|𝑓(𝝃 )|2 d𝒙 < ∞.

最后我们定义Cauchy列的极限 𝑢为 𝑢 ∶= ℱ−1(𝑔). 上述分析表明 𝑢𝑛
𝐻̇𝑠

,,→ 𝑢且 𝑢 ∈ 𝐻̇𝑠.

当 𝑠 ⩾ 𝑑
2
时，我们用反证法证明：(𝐻̇𝑠(ℝ𝑑), ‖ ⋅ ‖𝐻̇𝑠)是不完备的。首先作如下断言。

断言 (习题 5.1.4). 当 𝑠 ⩾ 𝑑
2
时，𝑁 ∶ 𝑢 ↦→ ‖𝑢̂‖𝐿1(𝐵(𝟎,1)) + ‖𝑢‖𝐻̇𝑠 是 𝐻̇𝑠(ℝ𝑑) 上的一个范数，且

(𝐻̇𝑠(ℝ𝑑), 𝑁)是Banach空间。

若该断言成立，且如果赋予 ‖ ⋅ ‖𝐻̇𝑠 范数的 𝐻̇𝑠(ℝ𝑑)也是完备的，那么 ‖ ⋅ ‖𝐻̇𝑠 必须与范数 𝑁 等
价（因为范数 𝑁 总是比 ‖ ⋅ ‖𝐻̇𝑠 强），这就导致下式必须成立：

‖𝑢̂‖𝐿1(𝐵(𝟎,1)) ⩽ 𝐶‖𝑢‖𝐻̇𝑠 .

我们接下来构造一个反例来推翻这个不等式。设 𝒜 = { 1
4
< |𝝃 | < 1

3
}是单位球内的一个圆环，满足

𝒜 ∩ 2𝒜 = ∅. 然后我们定义 𝑣𝑛 如下

𝑣𝑛 ∶=
𝑛∑

𝑘=1

2(𝑠+
𝑑
2
)𝑘

𝑘 𝜒2−𝑘𝒜.
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直接计算得

‖𝑣𝑛‖𝐿1(𝐵(𝟎,1)) = 𝐶
𝑛∑

𝑘=1

2(𝑠+
𝑑
2
)𝑘

𝑘 2−𝑘𝑑 = 𝐶
𝑛∑

𝑘=1

2(𝑠−
𝑑
2
)𝑘

𝑘 → ∞, (当 𝑛 → ∞时),

但我们又可算出下式结论导出矛盾：

‖𝑣𝑛‖2𝐻̇𝑠 =
𝑛∑

𝑘=1
∫
2−𝑘𝒜

|𝝃 |2𝑠𝑘−222𝑘(𝑠+
𝑑
2
) d𝝃 ⩽ 𝐶

𝑛∑

𝑘=1

1
𝑘2 < ∞.

(2)当 𝑠 < 𝑑
2
时，𝐻̇𝑠 是一个Hilbert空间。只需证明：如果 𝑢 ∈ 𝐻̇𝑠 满足

∀𝜑 ∈ 𝒮0, (𝑢, 𝜑)𝐻̇𝑠(ℝ𝑑) = ∫
ℝ𝑑
|𝝃 |2𝑠𝑢̂(𝝃 )𝜑̂(𝝃 ) d𝝃 = 0, 则 𝑢 = 0.

但这非常直接。事实上，给定𝑢 ∈ 𝐻̇𝑠，如果对任意的 𝜑 ∈ 𝒮0 都有 (𝑢, 𝜑)𝐻̇𝑠(ℝ𝑑) = 0，那么据 𝒮0 的
定义知 𝑢̂ = 0在 ℝ𝑑∖{𝟎}上成立。利用Plancherel恒等式即可推出 𝑢 = 0.

习题 5.1

习题 5.1.1. 证明 𝐻𝑠(ℝ𝑑)的完备性。

习题 5.1.2. 证明命题 5.1.2 (3)。确切地说，如果 |𝑠| < 𝑑
2
，证明

(1) 双线性泛函

𝐵 ∶ 𝒮0 × 𝒮0 → ℂ

(𝜙, 𝜑) ↦→ ∫
ℝ𝑑
𝜙(𝒙)𝜑(𝒙) d𝒙

可以延拓为 𝐻̇−𝑠 × 𝐻̇𝑠 上的连续双线性泛函。

(2) 如果 𝐿是 𝐻̇𝑠 上的连续线性泛函，则存在唯一的缓增分布 𝑢 ∈ 𝐻̇−𝑠 使得 ⟨𝐿, 𝜙⟩ = 𝐵[𝑢, 𝜙]对所
有 𝜙 ∈ 𝐻̇𝑠 成立，且 ‖𝐿‖(𝐻̇𝑠)∗ = ‖𝑢‖𝐻̇−𝑠。

习题 5.1.3. 设 𝑠0 ⩽ 𝑠 ⩽ 𝑠1，证明：𝐻̇𝑠0(ℝ𝑑) ∩ 𝐻̇𝑠1(ℝ𝑑) ⊆ 𝐻̇𝑠(ℝ𝑑)，且若 𝑠 = (1 − 𝜃)𝑠0 + 𝜃𝑠1, 则
‖𝑢‖𝐻̇𝑠(ℝ𝑑) ⩽ ‖𝑢‖1−𝜃𝐻̇𝑠0 (ℝ𝑑)‖𝑢‖

𝜃
𝐻̇𝑠1 (ℝ𝑑).该结论实际上对非齐次Sobolev空间也对。

习题 5.1.4. 当 𝑠 > 𝑑
2
时，证明：(𝐻̇𝑠(ℝ𝑑), 𝑁)是完备的，其中范数 𝑁 定义为

𝑁 ∶ 𝑢 ↦→ ‖𝑢̂‖𝐿1(𝐵(𝟎,1)) + ‖𝑢‖𝐻̇𝑠 .
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习题 5.1.5. 设 0 < 𝑠 < 1, 𝑢 ∈ 𝐻̇𝑠(ℝ𝑑). 证明：𝑢 ∈ 𝐿2loc(ℝ
𝑑)且满足

∫
ℝ𝑑
∫
ℝ𝑑

|𝑢(𝒙 + 𝒚) − 𝑢(𝒙)|2
|𝒚|𝑑+2𝑠 d𝒙 d𝒚 < ∞.

这给出了齐次Sobolev范数与Sobolev-Slobodeckĭı范数之间的等价性。
提示：将 𝑢̂ 分解为 {|𝝃 | ⩽ 1}部分和 {|𝝃 | > 1}部分。然后在Sobolev-Slobodeckĭı范数中对 𝒙变

量用Plancherel恒等式。

5.2 Sobolev嵌入定理的Fourier方法

本节证明Sobolev空间 𝐻𝑠(ℝ𝑑)和 𝐻̇𝑠(ℝ𝑑)的嵌入定理，即类似于定理 1.5.1的结果。

5.2.1 次临界和临界Sobolev嵌入定理

首先，我们证明“次临界” Gagliargo-Nirenberg-Sobolev型不等式。

定理 5.2.1 (次临界Sobolev嵌入). 设 0 ⩽ 𝑠 < 𝑑
2
，则 𝐻𝑠(ℝ𝑑) → 𝐿𝑞(ℝ𝑑)对 2 ⩽ 𝑞 < 2∗ ∶= 2𝑑

𝑑−2𝑠
成立，

且有不等式 ‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶(𝑠, 𝑞, 𝑑)‖𝑓‖𝐻𝑠(ℝ𝑑).

证明. 只需对所有 𝑓 ∈ 𝒮(ℝ𝑑)证明此不等式。给定 𝑓 ∈ 𝒮(ℝ𝑑)，我们有 𝑓 = (𝑓)∨. 由于 2 ⩽ 𝑞 < ∞，
其对偶指标 1 < 𝑞′ ⩽ 2，据Hausdorff-Young不等式知

‖𝑓‖𝐿𝑞 = ‖(𝑓)∨‖𝐿𝑞 ⩽ 𝐶‖𝑓‖𝐿𝑞′ .

我们将其写为 𝑓(𝝃 ) = ⟨𝝃 ⟩−𝑠(⟨𝝃 ⟩𝑠𝑓(𝝃 ))，再用Hölder不等式得到

‖𝑓‖𝐿𝑞′ = ‖⟨𝝃 ⟩−𝑠(⟨𝝃 ⟩𝑠𝑓(𝝃 ))‖𝐿𝑞′ ⩽ ‖⟨𝝃 ⟩−𝑠‖𝐿𝑟‖⟨𝝃 ⟩𝑠𝑓‖𝐿2 = ‖⟨𝝃 ⟩−𝑠‖𝐿𝑟‖𝑓‖𝐻𝑠 .

剩下只需验证 ‖⟨𝝃 ⟩−𝑠‖𝐿𝑟(ℝ𝑑) < ∞，而这等价于 𝑠𝑟 > 𝑑. 事实上我们只需从Hölder不等式中算出𝑟：

1
𝑞′ =

1
𝑟 +

1
2 ⇒

1
𝑟 =

1
𝑞′ −

1
2 =

1
2 −

1
𝑞 <

1
2 −

1
2∗ =

𝑠
𝑑 ,

这给出了我们需要的不等式𝑠𝑟 > 𝑑.

注记 5.2.1. 虽然 𝑞严格小于临界指标 2∗，但由于 ℝ𝑑 的无界性，上述嵌入仍然不是紧的。事实上

我们可以很容易地构造一个反例，设 𝑓 ∈ 𝐻𝑠(ℝ𝑑)且 ‖𝑓‖𝐻𝑠 = 1，定义 𝑓𝑛(𝒙) = 𝑓(𝒙 + 𝑛𝐞1),那么当
𝑛 → ∞时，𝑓𝑛 弱收敛于 0，但其 𝐿𝑞 范数保持与 𝑓本身相同。因此这个 {𝑓𝑛}没有任何强收敛的子
序列。
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当 0 < 𝑠 < 𝑑
2
时，临界嵌入 𝐻𝑠(ℝ𝑑) → 𝐿2∗(ℝ𝑑)（其中 2∗ ∶= 2𝑑

𝑑−2𝑠
）实际上是作为Hardy-

Littlewood-Sobolev不等式（定理C.3.4）的推论成立。为简单起见，我们对齐次Sobolev空间 𝐻̇𝑠(ℝ𝑑)
证明此结论。

定理 5.2.2 (临界Sobolev嵌入). 当 0 ⩽ 𝑠 < 𝑑
2
时，空间 𝐻̇𝑠(ℝ𝑑)连续嵌入到 𝐿2∗(ℝ𝑑)中，其中 2∗ ∶=

2𝑑
𝑑−2𝑠

.

证明. 同样只需对 𝑓 ∈ 𝒮证明即可。令 𝑔 ∶= (|𝝃 |𝑑−𝛾𝑓)∨，则 𝑓 = |𝝃 |−𝑑+𝛾𝑔̂，因此 𝑓 = (|𝝃 |−𝑑+𝛾)∨ ∗ 𝑔.
由习题 D.2.4知 (|𝝃 |−𝑑+𝛾)∨ = 𝐶𝑑,𝛾|𝒙|−𝛾。因此Hardy-Littlewood-Sobolev不等式表明

‖𝑓‖𝐿𝑞 = 𝐶𝑑,𝛾‖| ⋅ |−𝛾 ∗ 𝑔‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖𝑔‖𝐿𝑝(ℝ𝑑), 1 + 1
𝑞 = 1

𝑝 + 𝛾
𝑑 .

我们在上式中令 𝑝 = 2, 𝑠 = 𝑑 − 𝛾并利用Plancherel恒等式，右边变为

‖𝑔‖𝐿2 = ‖𝑔̂‖𝐿2 = ‖|𝝃 |𝑑−𝛾𝑓‖𝐿2 = ‖𝑓‖𝐻̇𝑑−𝛾 = ‖𝑓‖𝐻̇𝑠 .

此时 𝑞 恰好与临界指标 2∗ 一致：

1
𝑞 = 𝛾

𝑑 −
1
2 =

𝑑 − 𝑠
𝑑 − 1

2 =
1
2 −

𝑠
𝑑 = 1

2∗ ⇒ 𝑞 = 2∗.

5.2.2 Morrey嵌入定理和临界空间𝐻̇
𝑑
2

本节考虑 𝑠 ⩾ 𝑑
2
时 𝐻𝑠(ℝ𝑑) 的Sobolev嵌入定理。首先有一个相当简单也相当重要、相当实用

的结果：当 𝑠 > 𝑑
2
时，𝐻𝑠(ℝ𝑑)是一个Banach代数并且嵌入到 𝐿∞(ℝ𝑑)中。

定理 5.2.3 (Banach代数𝐻𝑠(ℝ𝑑) (𝑠 > 𝑑
2
)). 设 𝑠 > 𝑑

2
. 则：

(1) 𝐻𝑠(ℝ𝑑) → 𝐿∞(ℝ𝑑)，且对任意的 𝑓 ∈ 𝐻𝑠 有 ‖𝑓‖𝐿∞(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝐻𝑠(ℝ𝑑).
(2) 对任意 𝑓, 𝑔 ∈ 𝐻𝑠(ℝ𝑑)有 ‖𝑓𝑔‖𝐻𝑠 ⩽ 𝐶‖𝑓‖𝐻𝑠‖𝑔‖𝐻𝑠 .

证明. 同样只需对Schwartz函数证明这两个不等式。
(1)因为 𝑠 > 𝑑

2
，所以 ⟨𝝃 ⟩−𝑠 ∈ 𝐿2(ℝ𝑑)，这样就有

|𝑓(𝒙)| = |(𝑓)∨(𝒙)| = (2𝜋)−
𝑑
2

||||||||
∫
ℝ𝑑
𝑒𝑖𝒙⋅𝝃𝑓(𝝃 ) d𝝃

||||||||
⩽ 𝐶 ∫

ℝ𝑑
|𝑓(𝝃 )| d𝝃

= 𝐶 ∫
ℝ𝑑
⟨𝝃 ⟩−𝑠(⟨𝝃 ⟩𝑠𝑓(𝝃 )) d𝝃 ⩽ 𝐶‖⟨𝝃 ⟩−𝑠‖𝐿2‖⟨𝝃 ⟩𝑠𝑓‖𝐿2 ⩽ 𝐶‖𝑓‖𝐻𝑠 .

然后对 𝒙 ∈ ℝ𝑑 取上确界就得出 𝑓 ∈ 𝐿∞ 以及 ‖𝑓‖𝐿∞(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝐻𝑠(ℝ𝑑).
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(2)对 𝑓, 𝑔 ∈ 𝒮，我们有 𝑓𝑔 = (2𝜋)−
𝑑
2 (𝑓 ∗ 𝑔̂)，于是

‖𝑓𝑔‖𝐻𝑠(ℝ𝑑) = ‖⟨𝝃 ⟩𝑠𝑓𝑔(𝝃 )‖𝐿2 = (2𝜋)−
𝑑
2 ‖⟨𝝃 ⟩𝑠(𝑓 ∗ 𝑔̂)‖𝐿2

= (2𝜋)−
𝑑
2

‖‖‖‖‖‖‖‖
∫
ℝ𝑑
⟨𝝃 ⟩𝑠𝑓(𝝃 − 𝜼)𝑔̂(𝜼) d𝜼

‖‖‖‖‖‖‖‖𝐿2𝝃
.

接下来我们作出断言

断言. 对所有 𝝃 , 𝜼 ∈ ℝ𝑑 和 𝑠 > 0，成立

⟨𝝃 ⟩𝑠 ⩽ 𝐶𝑠(⟨𝝃 − 𝜼⟩𝑠 + ⟨𝜼⟩𝑠), 𝐶𝑠 = max{2𝑠∕2, 2𝑠−1}.

如果这个断言成立，据三角不等式，我们有

‖‖‖‖‖‖‖‖
∫
ℝ𝑑
⟨𝝃 ⟩𝑠𝑓(𝝃 − 𝜼)𝑔̂(𝜼) d𝜼

‖‖‖‖‖‖‖‖𝐿2𝝃
=𝐶

⎛
⎜
⎝

‖‖‖‖‖‖‖‖
∫
ℝ𝑑
⟨𝝃 − 𝜼⟩𝑠𝑓(𝝃 − 𝜼)𝑔̂(𝜼) d𝜼

‖‖‖‖‖‖‖‖𝐿2𝝃
+
‖‖‖‖‖‖‖‖
∫
ℝ𝑑
⟨𝜼⟩𝑠𝑓(𝝃 − 𝜼)𝑔̂(𝜼) d𝜼

‖‖‖‖‖‖‖‖𝐿2𝝃

⎞
⎟
⎠

= 𝐶
(
‖(⟨⋅⟩𝑠𝑓) ∗ 𝑔̂‖𝐿2 + ‖(⟨⋅⟩𝑠𝑔̂) ∗ 𝑓‖𝐿2

)

再用卷积Young不等式（定理 C.3.6），我们有

‖(⟨⋅⟩𝑠𝑓) ∗ 𝑔̂‖𝐿2 ⩽ ‖⟨𝝃 ⟩𝑠𝑓‖𝐿2‖𝑔̂‖𝐿1 ⩽ ‖𝑓‖𝐻𝑠‖⟨𝝃 ⟩−𝑠‖𝐿2‖⟨𝝃 ⟩𝑠𝑔̂‖𝐿2 ⩽ 𝐶‖𝑓‖𝐻𝑠‖𝑔‖𝐻𝑠 ,

这里再次用到了 𝑠 > 𝑑
2
以保证 ‖⟨𝝃 ⟩−𝑠‖𝐿2 < ∞. 对换 𝑓, 𝑔同理可得 ‖(⟨⋅⟩𝑠𝑔̂)∗𝑓‖𝐿2 .

最后只要证明上述断言。对于 𝑝 > 0，我们有

(1 + |𝝃 |2)𝑝 ⩽(1 + 2|𝝃 − 𝜼|2 + 2|𝜼|2)𝑝 ⩽ 2𝑝(1 + |𝝃 − 𝜼|2 + 1 + |𝜼|2)2

⩽max{2𝑝, 22𝑝−1}
(
(1 + |𝝃 − 𝜼|2)𝑝 + (1 + |𝜼|2)𝑝

)
.

令 𝑝 = 𝑠∕2即得证。

接下来，我们证明Morrey嵌入定理的类似结果。

定理 5.2.4 (Morrey嵌入). 设 𝑠 > 𝑑
2
且 𝑠 − 𝑑

2
∉ ℤ. 则 𝐻̇𝑠(ℝ𝑑) ⊂ 𝐶𝑘,𝜌(ℝ𝑑) 中，其中 𝑘 = [𝑠 − 𝑑

2
] 且

𝜌 = {𝑠 − 𝑑
2
}. 而且对任意的 𝑓 ∈ 𝐻̇𝑠(ℝ𝑑)，我们有

sup
|𝛼|=𝑘

sup
𝒙≠𝒚

|𝜕𝛼𝑓(𝒙) − 𝜕𝛼𝑓(𝒚)|
|𝒙 − 𝒚|𝜌 ⩽ 𝐶𝑑,𝑠‖𝑓‖𝐻̇𝑠 .

证明. 我们仅证明 𝑠 − 𝑑
2
的整数部分为 0 的情况。由于𝑠 > 𝑑

2
，我们模仿定理5.2.3(1)的证明可得

𝑓 ∈ 𝐿1，因此据 Riemann-Lebesgue引理知 𝑓 是一个有界连续函数。
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现在我们将 𝑓 分解为低频和高频部分。固定 𝐴 > 0（待定）并选取光滑函数 𝜃 ∈ 𝒮 使得
𝜃̂ ∈ 𝐶∞

𝑐 (ℝ𝑑)，0 ⩽ 𝜃̂ ⩽ 1且在 𝝃 = 𝟎附近 𝜃̂ = 1. 接下来我们定义

𝑓𝓁,𝐴 ∶=
(
𝜃̂( ⋅𝐴)𝑓

)∨
, 𝑓ℎ,𝐴 ∶= 𝑓 − 𝑓𝓁,𝐴.

换句话说，𝑓𝓁,𝐴 实际上是将频率变量 𝝃 局部化到 |𝝃 | = 𝐴附近。低频部分 𝑓𝓁,𝐴 当然是光滑的，据
微积分基本定理有

||||𝑓𝓁,𝐴(𝒙) − 𝑓𝓁,𝐴(𝒚)
|||| ⩽

‖‖‖‖∇𝑓𝓁,𝐴
‖‖‖‖𝐿∞ |𝒙 − 𝒚|.

利用Fourier反演公式和Cauchy-Schwarz不等式，我们得到

‖‖‖‖∇𝑓𝓁,𝐴
‖‖‖‖𝐿∞ ⩽ 𝐶 ∫

ℝ𝑑
|𝝃 | |||||𝑓𝓁,𝐴(𝝃 )

||||| d𝝃 = 𝐶 ∫
ℝ𝑑
|𝝃 |1−𝑠|𝝃 |𝑠 |||||𝑓𝓁,𝐴(𝝃 )

||||| d𝝃

⩽ 𝐶 (∫
|𝝃 |⩽𝐶𝐴

|𝝃 |2−2𝑠 d𝝃)

1
2

‖𝑓‖𝐻̇𝑠 ⩽ 𝐶

(1 − 𝜌)
1
2

𝐴1−𝜌‖𝑓‖𝐻̇𝑠 其中 𝜌 = 𝑠 − 𝑑∕2.

对高频部分 𝑓ℎ,𝐴，我们可直接控制逐点值，因为在远离原点处 |𝝃 |−𝑠 是 𝐿2 可积的。

‖‖‖‖𝑓ℎ,𝐴
‖‖‖‖𝐿∞ ⩽ ∫

ℝ𝑑

|||||𝑓ℎ,𝐴(𝝃 )
||||| d𝝃 ⩽ (∫

|𝝃 |⩾𝐴
|𝝃 |−2𝑠 d𝝃)

1
2

‖𝑓‖𝐻̇𝑠 ⩽ 𝐶

𝜌
1
2

𝐴−𝜌‖𝑓‖𝐻̇𝑠 ,

这样就得到得到

|𝑓(𝒙) − 𝑓(𝒚)| ⩽ ‖‖‖‖∇𝑓𝓁,𝐴
‖‖‖‖𝐿∞ |𝒙 − 𝒚| + 2 ‖‖‖‖𝑓ℎ,𝐴

‖‖‖‖𝐿∞ ⩽ 𝐶𝑠
(
|𝒙 − 𝒚|𝐴1−𝜌 + 𝐴−𝜌) ‖𝑓‖𝐻̇𝑠 .

现在令𝐴 = |𝒙 − 𝒚|−1得到最佳上界，我们便完成了定理的证明。

最后我们考虑 𝑠 = 𝑑
2
的情况。习题 1.4.2已经表明 𝐻̇𝑑∕2 函数可能不属于 𝐿∞. 避开这个反例的

一种方法是把 𝐿∞ 空间稍微扩大一点，答案由BMO空间给出。

定义 5.2.1. 有有有界界界平平平均均均振振振荡荡荡 (bounded mean oscillation)空间 𝐵𝑀𝑂(ℝ𝑑)是由全体满足下式的局部可
积函数 𝑓 构成的集合。

‖𝑓‖𝐵𝑀𝑂 ∶= sup
球𝐵

1
|𝐵| ∫𝐵

|||𝑓 − 𝑓𝐵||| d𝒙 < ∞ 其中 𝑓𝐵 ∶=
1
|𝐵| ∫𝐵

𝑓 d𝒙.

我们需要半范数 ‖ ⋅ ‖𝐵𝑀𝑂 在常数函数上为零。因此这不是一个范数。

现在我们陈述Sobolev嵌入定理。
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定理 5.2.5. 空间 𝐿1loc(ℝ
𝑑) ∩ 𝐻̇

𝑑
2 (ℝ𝑑)包含于 𝐵𝑀𝑂(ℝ𝑑)中，且存在 𝐶 > 0使得

‖𝑓‖𝐵𝑀𝑂 ⩽ 𝐶‖𝑓‖
𝐻̇

𝑑
2

对所有 𝑓 ∈ 𝐿1loc(ℝ
𝑑) ∩ 𝐻̇

𝑑
2 (ℝ𝑑)成立。

证明. 我们模仿定理 5.2.4 那样使用高低频分解 𝑓 = 𝑓𝓁,𝐴 + 𝑓ℎ,𝐴. 对任意球 𝐵，我们用Cauchy-
Schwarz不等式得到

∫
𝐵

|||𝑓 − 𝑓𝐵|||
d𝒙
|𝐵| ⩽

‖‖‖‖‖𝑓𝓁,𝐴 −
(
𝑓𝓁,𝐴

)
𝐵
‖‖‖‖‖𝐿2(𝐵, d𝒙

|𝐵|
)
+ 2

|𝐵|
1
2

‖‖‖‖𝑓ℎ,𝐴
‖‖‖‖𝐿2(𝐵) .

设 𝑅为球 𝐵的半径。我们有

‖‖‖‖‖𝑓𝓁,𝐴 −
(
𝑓𝓁,𝐴

)
𝐵
‖‖‖‖‖𝐿2(𝐵, d𝒙

|𝐵|
)
⩽ 𝑅 ‖‖‖‖∇𝑓𝓁,𝐴

‖‖‖‖𝐿∞ ⩽ 𝐶𝑅 ∫
ℝ𝑑
|𝝃 |1−

𝑑
2 |𝝃 |

𝑑
2
|||||𝑓𝓁,𝐴(𝝃 )

||||| d𝝃

⩽ 𝐶𝑅𝐴‖𝑓‖
𝐻̇

𝑑
2
.

高频部分则可以直接控制

‖‖‖‖𝑓ℎ,𝐴
‖‖‖‖𝐿2 =

‖‖‖‖‖𝑓ℎ,𝐴
‖‖‖‖‖𝐿2 ⩽

‖‖‖‖‖‖𝐴
− 𝑑
2 |𝝃 |

𝑑
2𝑓ℎ,𝐴

‖‖‖‖‖‖𝐿2
⩽ 𝐴− 𝑑

2 ‖|𝝃 |
𝑑
2𝑓𝜒|𝝃 |⩾𝐴‖𝐿2 .

我们推出

∫
𝐵

|||𝑓 − 𝑓𝐵|||
d𝒙
|𝐵| ⩽ 𝐶𝑅𝐴‖𝑓‖

𝐻̇
𝑑
2
+ 𝐶(𝐴𝑅)−

𝑑
2 (∫

|𝝃 |⩾𝐴
|𝝃 |𝑑|𝑓(𝝃 )|2 d𝝃)

1
2

.

最后选取 𝐴 = 𝑅−1 达到最佳上界即可完成证明。

对于非齐次Sobolev空间 𝐻𝑑∕2(ℝ𝑑)，我们有所谓的Moser-Trudinger不等式，它实际上给出了
到Orlicz型空间的嵌入。

定理 5.2.6. 存在两个仅依赖于 𝑑的常数 𝑐, 𝐶 > 0，使得以下不等式对任意 𝑓 ∈ 𝐻𝑑∕2(ℝ𝑑)成立：

∫
ℝ𝑑
exp

⎛
⎜
⎝
𝑐 (

|𝑓(𝒙)|
‖𝑓‖𝐻𝑑∕2

)
2⎞
⎟
⎠
− 1 d𝒙 ⩽ 𝐶.

5.2.3 紧嵌入、迹定理

由于 ℝ𝑑 无界，对 0 < 𝑠 < 𝑑
2
和 2 ⩽ 𝑞 < 2∗ 的次临界嵌入 𝐻𝑠(ℝ𝑑) → 𝐿𝑞(ℝ𝑑)都不是紧的，但

我们仍然有从 𝐻𝑠 到 𝐻𝑡（对于 𝑡 < 𝑠）的紧嵌入。需注意，这种紧嵌入一般来说不是由包含映射给
出的，除非函数本身具有紧支集。
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定理 5.2.7. 设 𝑡 < 𝑠，乘以一个 𝒮(ℝ𝑑)函数（不是包含映射！）是 𝐻𝑠(ℝ𝑑)到 𝐻𝑡(ℝ𝑑)的紧算子。

证明. 设 𝜑 ∈ 𝒮。我们需要证明：对任意满足 sup
𝑛
‖𝑓𝑛‖𝐻𝑠 ⩽ 1 的序列 {𝑓𝑛} ⊂ 𝐻𝑠(ℝ𝑑)，存在子列

{𝑓𝑛𝑘 }使得 𝑓𝑛𝑘 在 𝐻𝑡(ℝ𝑑)中强收敛。
首先，Eberlein-Šmulian定理保证了序列 {𝑓𝑛} （取子列后）弱收敛到某个 𝑓 ∈ 𝐻𝑠(ℝ𝑑)，且

‖𝑓‖𝐻𝑠 ⩽ 1. 我们不妨把该子列仍然记作 {𝑓𝑛}并令 𝑔𝑛 = 𝑓𝑛 − 𝑓。直接计算表明 sup
𝑛
‖𝜑𝑔𝑛‖𝐻𝑠 ⩽ 𝐶. 因

此现在需要证明 ‖𝜑𝑔𝑛‖𝐻𝑡(ℝ𝑑) → 0成立。
我们在 |𝝃 | = 𝑅处截断频率变量 𝝃 得到如下估计

∫
ℝ𝑑
⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )

||||
2
d𝝃 = ∫

|𝝃 |⩽𝑅
⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )

||||
2
d𝝃 + ∫

|𝝃 |⩾𝑅
⟨𝝃 ⟩2(𝑡−𝑠)⟨𝝃 ⟩2𝑠 ||||𝜑𝑔𝑛(𝝃 )

||||
2
d𝝃

⩽∫
|𝝃 |⩽𝑅

⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )
||||
2
d𝝃 +

𝐶 ‖𝜑𝑔𝑛‖
2
𝐻𝑠

(1 + 𝑅2)𝑠−𝑡
.

因为 {𝜑𝑔𝑛}在 𝐻𝑠(ℝ𝑑)中一致有界，故对给定的 𝜀 > 0，可选取 𝑅使得 𝐶
(1+𝑅2)𝑠−𝑡

‖𝜑𝑔𝑛‖
2
𝐻𝑠 ⩽

𝜀
2
.

现在证明

∫
|𝝃 |⩽𝑅

⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )
||||
2
d𝝃 → 0.

我们有

𝜑𝑔𝑛(𝝃 ) = (2𝜋)−
𝑑
2 ∫

ℝ𝑑
𝜑̂(𝝃 − 𝜼)𝑔𝑛(𝜼) d𝜼

= (2𝜋)−
𝑑
2 ∫

ℝ𝑑
⟨𝜼⟩2𝑠 ⟨𝜼⟩−2𝑠𝜑̂(𝝃 − 𝜼)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∈𝒮(ℝ𝑑)对每个 𝝃∈ℝ𝑑

𝑔𝑛(𝜼) d𝜼 = (2𝜋)−
𝑑
2
(
𝑔𝑛, (⟨⋅⟩−2𝑠𝜑̂(𝝃 − ⋅))∨

)
𝐻𝑠 .

据已知的弱收敛 𝑔𝑛
𝐻𝑠(ℝ𝑑)
,,,,,⇀ 0，我们知道上述 𝐻𝑠 内积必须收敛到 0. 这样我们现在对每个

𝝃 ∈ ℝ𝑑 都证明了逐点极限 𝜑𝑔𝑛(𝝃 ) → 0.
接下来我们断言一致有界性：

断言. sup
|𝝃 |⩽𝑅
𝑛∈ℕ

|𝜑𝑔𝑛(𝝃 )| < ∞.

如果断言成立，那么据控制收敛定理就可得到我们要证明的估计。

lim
𝑛→∞

∫
|𝝃 |⩽𝑅

⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )
||||
2
d𝝃 = ∫

|𝝃 |⩽𝑅
lim
𝑛→∞

⟨𝝃 ⟩2𝑡 ||||𝜑𝑔𝑛(𝝃 )
||||
2
d𝝃 = 0,

现在证明断言，我们有

|𝜑𝑔𝑛(𝝃 )|2 = (2𝜋)−𝑑
(
𝑔𝑛, (⟨⋅⟩−2𝑠𝜑̂(𝝃 − ⋅))∨

)2
𝐻𝑠 ⩽ ‖𝑔𝑛‖2𝐻𝑠‖⟨⋅⟩−𝑠𝜑̂(𝝃 − ⋅)‖2𝐿2 .



5.2 SOBOLEV嵌入定理的FOURIER方法 131

对上式最后一项继续做拆分，得到

∫⟨𝜼⟩−2𝑠|𝜑(𝝃 − 𝜼)|2 d𝜼 ⩽ ∫
|𝜼|⩽2𝑅

⟨𝜼⟩−2𝑠|𝜑(𝝃 − 𝜼)|2 d𝜼 + ∫
|𝜼|⩾2𝑅

⟨𝜼⟩−2𝑠|𝜑(𝝃 − 𝜼)|2 d𝜼.

第一个积分肯定是有界的，

∫
|𝜼|⩽2𝑅

⟨𝜼⟩−2𝑠|𝜑(𝝃 − 𝜼)|2 d𝜼 ⩽ 𝐶 ∫
|𝜼|⩽2𝑅

⟨𝜼⟩2|𝑠| d𝜼.

而在第二项中，我们必须用 𝜑 ∈ 𝒮 造出更高次的衰减因子以证明有界性。由于 𝜑̂ ∈ 𝒮(ℝ𝑑)，故存
在常数 𝐶 > 0使得

|𝜑(𝝃 − 𝜼)| ⩽ 𝐶⟨𝝃 − 𝜼⟩−2𝑁0 其中 𝑁0 =
𝑑
2 + |𝑠| + 1.

我们现在用 |𝝃 − 𝜼| ⩾ |𝜼|∕2（注意 |𝝃 | ⩽ 𝑅, |𝜼| ⩾ 2𝑅）就得到想要的有界性

∫
|𝜼|⩾2𝑅

⟨𝜼⟩−2𝑠|𝜑(𝝃 − 𝜼)|2 d𝜼 ⩽ 𝐶𝑁0 ∫
|𝜂|⩾2𝑅

⟨𝜼⟩2|𝑠|⟨𝝃 − 𝜼⟩−2𝑁0 d𝜼 ⩽ 𝐶 ∫
|𝜂|⩾2𝑅

⟨𝜼⟩2|𝑠|−2𝑁0 d𝜼 < ∞.

最后我们介绍迹定理。定理 1.3.1 中表明 𝑊1,𝑝(𝑈) 函数的边值可以定义为 𝐿𝑝(𝜕𝑈) 函数。设
𝑈 = ℝ𝑑

+ 为半空间，我们将看到只要 𝑠 > 1
2
（不能取等号𝑠 = 1

2
），𝐻𝑠(ℝ𝑑

+) 函数的迹实际上有

𝐻𝑠− 1
2 (ℝ𝑑−1)的可微性。

定理 5.2.8 (迹定理). 设 𝑠 > 1∕2. 定义限制映射 𝛾如下

𝛾 ∶
⎧

⎨
⎩

𝒮(ℝ𝑑) ,→ 𝒮(ℝ𝑑−1)
𝑓 ↦,→ 𝛾(𝑓) ∶ (𝑥2,⋯ , 𝑥𝑑) ↦→ 𝜙(0, 𝑥2,⋯ , 𝑥𝑑)

则 𝛾可被连续地延拓为 𝐻𝑠(ℝ𝑑) → 𝐻𝑠− 1
2 (ℝ𝑑−1)的满射。

作为推论，我们有一个更实用版本的迹定理。对 𝑠 ⩾ 0，我们定义

𝐻𝑠(ℝ𝑑
+) ∶=

{
𝑢 ∈ 𝐿2(ℝ𝑑) ∶ ⟨𝝃 ′⟩𝑟𝜕𝑘𝑑𝑢̂(𝝃

′, 𝑥𝑑) ∈ 𝐿2(ℝ𝑑), 𝑟 + 𝑘 ⩽ 𝑠, 𝑘 ⩾ 0, 𝑘 ∈ ℤ
}
.

这里Fourier变换是对切向变量 𝒙′ = (𝑥1,⋯ , 𝑥𝑑−1)定义的。

推论 5.2.9 (迹不等式). 设 𝑠 > 1∕2 且 𝑓 ∈ 𝐻𝑠(ℝ𝑑
+)，其中 ℝ𝑑

+ 是上半空间 {𝑥𝑑 > 0}. 则 Tr𝑓 ∈
𝐻𝑠− 1

2 (𝜕ℝ𝑑
+)且有估计 ‖Tr𝑓‖

𝐻𝑠− 1
2 (𝜕ℝ𝑑

+)
⩽ 𝐶‖𝑓‖𝐻𝑠(ℝ𝑑

+).

推论 5.2.9的证明非常容易，本质上就是“反过来用”分部积分的Gauss-Green公式。
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定理 5.2.9的证明. 不妨设 𝑓 ∈ 𝐶∞(ℝ𝑑
+)，然后直接硬算就完事了

‖Tr 𝑓‖2
𝐻𝑠− 1

2 (𝜕ℝ𝑑
+)
= ∫

𝜕ℝ𝑑
+

⟨𝝃 ′⟩2𝑠−1|𝑓(𝝃 ′, 0)|2 d𝝃 ′

= − 2Re ∫
∞

0
∫
ℝ𝑑−1

(⟨𝝃 ′⟩𝑠𝑓(𝝃 ′, 𝑥𝑑)) (⟨𝝃
′⟩𝑠−1𝜕𝑥𝑑𝑓(𝝃

′, 𝑥𝑑)) d𝝃
′ d𝑥𝑑

= − 2∫
∞

0
∫
ℝ𝑑−1

⟨∇′⟩𝑠𝑓 𝜕𝑥𝑑⟨∇′⟩𝑠−1𝑓 d𝒙′ d𝑥𝑑

⩽ 2‖𝑓‖2
𝐻𝑠(ℝ𝑑

+)
.

其中我们在第三行用了Fourier变换的基本性质 ∫ℝ𝑑 𝑓(𝒙)𝑔(𝒙) d𝒙 = ∫ℝ𝑑 𝑓(𝝃 )𝑔̂(𝝃 ) d𝝃 .

定理 5.2.8的证明. 我们先证明 𝛾的存在性，即我们要证明存在常数 𝐶 > 0使得

∀𝑓 ∈ 𝒮, ‖𝛾(𝑓)‖
𝐻𝑠− 1

2
⩽ 𝐶‖𝑓‖𝐻𝑠 .

为此，我们用Fourier变换重写迹算子：

𝑓(0, 𝒙′) = (2𝜋)−𝑑∕2 ∫
ℝ𝑑
𝑒−𝑖⋅0⋅𝜉1𝑒𝑖𝒙′⋅𝝃

′
𝑓(𝜉1, 𝝃

′) d𝜉1 d𝝃
′

= (2𝜋)
−(𝑑−1)

2 ∫
ℝ𝑑−1

𝑒𝑖𝒙′⋅𝝃
′
( 1
√
2𝜋

∫
ℝ
𝑓
(
𝜉1, 𝝃

′) d𝜉1) d𝝃
′

因此有

𝛾(𝑓)
(
𝝃 ′
)
= 1
√
2𝜋

∫
ℝ
𝑓
(
𝜉1, 𝝃

′) d𝜉1.

据Cauchy-Schwarz不等式，我们有

|||||𝛾(𝑓)(𝝃
′)|||||

2
⩽ 1
2𝜋 (∫

ℝ

(
1 + 𝜉21 + |||𝜉′|||

2)−𝑠 d𝜉1) (∫
ℝ
|𝑓(𝜉)|2⟨𝝃 ⟩2𝑠 d𝜉1) ,

其中第一个积分因为𝑠 > 1
2
从而是有限的。所以，在ℝ𝑑−1上对 d𝝃 ′积分后，我们推导出 ‖𝛾(𝑓)‖2

𝐻𝑠− 1
2
⩽

𝐶𝑠‖𝑓‖2𝐻𝑠，这完成了定理第一部分的证明。

现在我们证明“提升算子”（实际上它是迹算子的右逆）的存在性。设𝜒 ∈ 𝐶∞
𝑐 (ℝ)满足𝜒(0) =

1. 我们定义

𝑅𝑣(𝒙) ∶= (2𝜋)−
𝑑−1
2 ∫

ℝ𝑑−1
𝑒𝑖𝒙′⋅𝝃

′
𝜒(𝑥1⟨𝝃

′⟩)𝑣(𝝃 ′) d𝝃 ′,
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这实际上是 𝜒(𝑥1⟨𝝃
′⟩)𝑣(𝝃 ′)在 ℝ𝑑−1 中的Fourier逆变换。在 ℝ𝑑 中作Fourier变换得到

𝑅𝑣(𝝃 ) = 1
√
2𝜋

∫
ℝ
𝑒−𝑖𝑡𝜉1𝜒(𝑡⟨𝝃 ′⟩)𝑣

(
𝝃 ′
)
d𝑡 = ⟨𝝃 ′⟩−1𝜒̂ (

𝜉1
⟨𝝃 ′⟩

) 𝑣(𝝃 ′)

故它的 𝐻𝑠(ℝ𝑑)范数由下式给出

‖𝑅𝑣‖2𝐻𝑠(ℝ𝑑) =∫
ℝ𝑑
(1 + 𝜉21 + |𝝃 ′|2)𝑠⟨𝝃 ′⟩−2

|||||||||
𝜒̂ (

𝜉1
⟨𝝃 ′⟩

)
|||||||||

2

|𝑣(𝝃 ′)|2 d𝝃

=∫
ℝ𝑑−1

⎡
⎢
⎣
∫
ℝ
(1 +

𝜉21
⟨𝝃 ′⟩2

)
𝑠

⟨𝝃 ′⟩−1
|||||||||
𝜒̂ (

𝜉1
⟨𝝃 ′⟩

)
|||||||||

2

d𝜉1
⎤
⎥
⎦

(
⟨𝝃 ′⟩2𝑠−1|𝑣(𝝃 ′)|2

)
d𝝃 ′.

由于 𝜒̂ ∈ 𝒮，我们知道对任意 𝑁，存在常数 𝐶𝑁 使得 |𝜒̂(𝑡)| ⩽ 𝐶𝑁𝑡−𝑁，于是得到

∫
ℝ
(1 +

𝜉21
⟨𝝃 ′⟩2

)
𝑠

⟨𝝃 ′⟩−1
|||||||||
𝜒̂ (

𝜉1
⟨𝝃 ′⟩

)
|||||||||

2

d𝜉1 ⩽ 𝐶2
𝑁 ∫

ℝ
(1 +

𝜉21
⟨𝝃 ′⟩2

)
𝑠−2𝑁

⋅ 1 d𝜉1.

这里我们也使用了 ⟨𝝃 ′⟩−1 ⩽ 1。再选取充分大的 𝑁 使得 𝑠 − 2𝑁 < − 1
2
，我们就能让上述积分是有

限的。因此 ‖𝑅𝑣‖2𝐻𝑠(ℝ𝑑) 的右边得到如下控制

‖𝑅𝑣‖2𝐻𝑠 ⩽ 𝐶‖𝑣‖
𝐻𝑠− 1

2 (ℝ𝑑−1)
.

最后，容易看出 𝛾𝑅𝑣 = 𝑣 是恒成立的，证毕。

注记 5.2.2. 延拓映射𝑅的构造不是唯一的。特别地，在推论 5.2.9的设定下，给定 𝑔 ∈ 𝐻𝑠−1∕2(𝜕ℝ𝑑
+)，

其调和延拓（设为 𝐺，定义为 −∆𝐺 = 0 (𝒙 ∈ ℝ𝑑
+)且 𝐺|𝜕ℝ𝑑

+
= 𝑔）满足反向迹不等式：‖𝐺‖𝐻𝑠(ℝ𝑑

+) ⩽
𝐶‖𝑔‖

𝐻𝑠− 1
2 (𝜕ℝ𝑑

+)
，这可以通过分析Poisson积分（半空间中的调和延拓可以显式计算）来证明，甚至

对所有 𝑠 ⩾ 0都成立。

习题 5.2

习题 5.2.1. 证明：对任意 𝝃 , 𝜼 ∈ ℝ𝑑 和 𝑠 ∈ ℝ，成立不等式

(
1 + |𝝃 |2

)𝑠 (1 + |𝜼|2
)−𝑠 ⩽ 2|𝑠|

(
1 + |𝝃 − 𝜼|2

)|𝑠| .

习题 5.2.2. 设 𝜑 ∈ 𝐶(ℝ𝑑) 满足当 |𝒙| → ∞ 时 𝜑(𝒙) → 0，且 𝜑̂ 满足 ∫ℝ𝑑⟨𝝃 ⟩𝑎|𝜑̂(𝝃 )| d𝝃 < ∞. 证明：
|𝑠| ⩽ 𝑎时，映射 𝑀𝜑(𝑓) ∶= 𝜑𝑓 是 𝐻𝑠(ℝ𝑑) 上的有界算子。此外如果额外假设 𝜑 ∈ 𝒮，证明：对任
意𝑠 ∈ ℝ，𝑀𝜑 是 𝐻𝑠(ℝ𝑑)上的有界算子。（提示：用习题 5.2.1.）

习题 5.2.3. 证明：若对任意𝑠 ∈ ℝ都有𝑓 ∈ 𝐻𝑠(ℝ𝑑)，则 𝑓 ∈ 𝐶∞(ℝ𝑑).
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习题 5.2.4. 若 𝐻𝑠(ℝ𝑑) ⊂ 𝐶0(ℝ𝑑)，其中 𝐶0 表示在无穷远处收敛到零的连续函数，证明 𝑠 > 𝑑∕2.
提示：用闭图像定理证明包含映射 𝐻𝑠 → 𝐶0 是连续的，因此对 |𝛼| ⩽ 𝑘，𝜕𝛼𝛿 ∈ 𝐻−𝑠.

习题 5.2.5. 设 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑) 不恒为零，并设ℝ𝑑 中的序列 {𝐚𝑛} 满足 |𝐚𝑛| → ∞. 定义 𝜑𝑛(𝒙) ∶=

𝜑(𝒙 − 𝐚𝑛). 证明：对任意𝑠 ∈ ℝ, {𝜑𝑛}在𝐻𝑠中一致有界，但对任何 𝑡，该序列在 𝐻𝑡 中都没有收敛子

列。

习题 5.2.6. 设 1 < 𝑝 ⩽ 2. 证明：𝐿𝑝(ℝ𝑑)连续嵌入到 𝐻̇𝑠(ℝ𝑑)中，其中 𝑠
𝑑
= 1

2
− 1

𝑝
. (提示：使用对

偶和临界Sobolev嵌入。)

问题 5.2

问题 5.2.1. 给定 𝑚 ∈ ℕ∗，设 𝑃(𝜕) = ∑
|𝛼|⩽𝑚

𝑐𝛼𝜕𝛼 其中 𝑐𝛼 ∈ ℝ且存在𝑚阶多重指标𝛼 使得 𝑐𝛼 ≠ 0. 我

们定义微分算子 𝑃(𝜕)的主主主象象象征征征 (principal symbol) 𝑃𝑚 为

𝑃𝑚(𝝃 ) ∶=
∑

|𝛼|=𝑚
𝑐𝛼𝝃

𝛼.

我们称 𝑃(𝜕)是𝐦阶阶阶椭椭椭圆圆圆的的的，是指对任意 𝝃 ≠ 𝟎都有 𝑃𝑚(𝝃 ) ≠ 0. 今假设 𝑃(𝜕)是 𝑚阶微分算子。

(1) 证明：𝑃(𝜕)是椭圆的当且仅当存在 𝐶, 𝑅 > 0使得对 |𝝃 | ⩾ 𝑅有 |𝑃(𝝃 )| ⩾ 𝐶|𝝃 |𝑚.
(2) 若 𝑢 ∈ 𝐻𝑠(ℝ𝑑)且 𝑃(𝜕)𝑢 ∈ 𝐻𝑠(ℝ𝑑)，证明：𝑢 ∈ 𝐻𝑠+𝑚(ℝ𝑑).

注记 5.2.3. 这是椭圆正则性定理的推广。事实上当 𝑃(𝜕) 不是椭圆算子时，正则性定理可能不
再成立。但方程 𝑃(𝜕)𝑢 = 𝑓 仍然至少在 𝐿2(Ω) 中是可解的。该情况下的证明会困难得多，而且
必须分析解的Fourier支集。该结论被称为 Malgrange-Ehrenpreis定定定理理理，参见 Muscalu-Schlag [13,
10.4节].

问题 5.2.2. 回顾我们在定理 5.2.2 中对 0 ⩽ 𝑠 < 𝑑
2
得到了不等式 ‖𝑓‖𝐿2∗ (ℝ𝑑) ⩽ 𝐶‖𝑓‖𝐻̇𝑠(ℝ𝑑)。然而在

乘以特征 𝑒𝑖𝒙⋅𝜼 这一运算下它不不不是是是不变的。事实上，给定 𝜑 ∈ 𝒮并设其满足 𝜑̂ ∈ 𝐶∞
𝑐 (ℝ𝑑)，我们定

义 𝜑𝜀(𝒙) = 𝑒𝑖
𝑥1
𝜀 𝜑(𝒙). 证明：‖𝜑𝜀‖𝐿2∗ 不依赖 𝜀，但 ‖𝜑𝜀‖𝐻̇𝑠 的阶为 𝑂(𝜀−𝑠).

问题 5.2.3 (齐次Besov空间 𝐵̇−𝜎∞,∞). 设 𝜃 ∈ 𝒮满足 𝜃̂ ∈ 𝐶∞
𝑐 ，0 ⩽ 𝜃̂ ⩽ 1且在 𝝃 = 𝟎附近有 𝜃̂ = 1. 对

𝑓 ∈ 𝒮′ 和 𝜎 > 0，我们定义

𝐵̇−𝜎∞,∞(ℝ𝑑) ∶= {‖𝑓‖𝐵̇−𝜎∞,∞ ∶= sup
𝐴>0

𝐴𝑑−𝜎‖𝜃(𝐴⋅) ∗ 𝑓‖𝐿∞ < ∞} .

可以验证(𝐵̇−𝜎∞,∞(ℝ𝑑), ‖ ⋅ ‖𝐵̇−𝜎∞,∞(ℝ𝑑))是Banach空间。现假设 𝑠 < 𝑑
2
，证明：𝐻̇𝑠 连续嵌入到 𝐵̇

𝑠− 𝑑
2

∞,∞，且有

不等式

‖𝑓‖
𝐵̇
𝑠− 𝑑2
∞,∞

⩽ 𝐶
√

𝑑
2
− 𝑠

‖𝑓‖𝐻̇𝑠 , ∀𝑓 ∈ 𝐻̇𝑠,
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其中 𝐶 仅依赖 𝑑和 Spt 𝜃.

问题 5.2.4 (齐次Besov范数的不变性). 在问题 5.2.2和 5.2.3的假设下，再假设设 0 < 𝜎 ⩽ 𝑑. 证明
对任意 𝜀 > 0，‖𝜑𝜀‖𝐵̇−𝜎∞,∞ ⩽ 𝐶𝜀𝜎.
提示：当 𝐴𝜀 > 1时结论显见。当 𝐴𝜀 ⩽ 1时，利用 (−𝑖𝜀𝜕1)𝑑𝑒𝑖𝑥1∕𝜀 = 𝑒𝑖𝑥1∕𝜀 并分部积分 𝑑次。

问题 5.2.5 (加细版本的临界嵌入). 设 0 < 𝑠 < 𝑑
2
. 证明：存在仅依赖于 𝑑和 𝜃 的常数 𝐶，使得

‖𝑓‖𝐿2∗ ⩽
𝐶

(2∗ − 2)
1
2∗

‖𝑓‖
1− 2

2∗

𝐵̇
𝑠− 𝑑2
∞,∞

‖𝑓‖
2
2∗

𝐻̇𝑠 .

更多细节参见 Bahouri-Chemin-Danchin [2, Remark 1.44].

提示：不妨假设齐次Besov范数为 1，并模仿定理 5.2.4 那样作拆分 𝑓 = 𝑓𝓁,𝐴 + 𝑓ℎ,𝐴，于是
{|𝑓| > 𝛼} ⊆ {|𝑓𝓁,𝐴| > 𝛼∕2}∪{|𝑓ℎ,𝐴| > 𝛼∕2}.利用Besov范数的定义可以看出，适当选取𝐴可使得第一
个集合的测度为零。然后利用定理 C.1.8计算‖𝑓‖2∗𝐿2∗ ，并对 𝑝 = 2用习题 C.1.6中的Chebyshev不
等式。

问题 5.2.6 (加细版本的稠密性论证). 若 𝑠 ⩽ 𝑑
2
（或 < 𝑑

2
），证明：𝐶∞

𝑐 (ℝ𝑑∖{𝟎}) 在 𝐻𝑠(ℝ𝑑)（或
𝐻̇𝑠(ℝ𝑑)）中稠密。若𝑠 > 𝑑

2
，则 𝐶∞

𝑐 (ℝ𝑑∖{𝟎})在 𝐻𝑠(ℝ𝑑)中的闭包是如下集合

{𝑢 ∈ 𝐻𝑠(ℝ𝑑) ∶ 𝜕𝛼𝑢(𝟎) = 0 ∀满足|𝛼| < 𝑠 − 𝑑
2的多重指标𝛼} .

提示：设 𝑢𝑠 ∶= (⟨𝝃 ⟩2𝑠𝑢̂)∨. 若对任意的 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑∖{𝟎})有 (𝑢𝑠, 𝜑)𝐿2 = 0，则 Spt𝑢𝑠 = {𝟎}. 然后

再用定理D.2.7.

问题 5.2.7. 给定常系数微分算子 𝐿，我们称 𝑢 ∈ 𝒟′ 为 𝐿 的的的基基基本本本解解解是指 𝐿𝑢 = 𝛿 在分布意义下成
立。求出 ℝ𝑑 中Laplace算子 𝐿1 = −∆和热算子 𝐿2 = 𝜕𝑡 − ∆的基本解。

参考：Stein [17,第3.2节].

接下来的问题考虑ℝ1+𝑑中的波动算子□ ∶= 𝜕2𝑡 − ∆𝒙的基本解。即考虑方程

⎧

⎨
⎩

(𝜕2𝑡 − ∆)𝐸+ = 𝛿(𝑡, 𝒙), 𝑡 > 0, 𝒙 ∈ ℝ𝑑;
Spt𝐸+ ⊆ {(𝑡, 𝒙) ∈ ℝ1+𝑑 ∶ 𝑡 ⩾ 0}.

(5.2.1)

问题 5.2.8. 利用时空Fourier变换或对空间变量𝒙的Fourier变换，求解低维情形下的基本解。

(1) 当 𝑑 = 1时，证明基本解为：
𝐸+(𝑡, 𝑥) =

1
2𝐻(𝑡 − |𝑥|),

其中 𝐻(⋅)为 Heaviside阶梯函数。

(2) 当 𝑑 = 3时，已知半径为 𝑡 的球面上均匀测度 d𝜎𝑡 的空间Fourier变换为 d̂𝜎𝑡(𝝃 ) = 4𝜋𝑡 sin(𝑡|𝝃 |)
|𝝃 |
。
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证明：

𝐸+(𝑡, 𝑥) =
1
4𝜋𝑡𝛿(𝑡 − |𝒙|).

(3) 对𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3，定义切向分量为𝒙′ = (𝑥1, 𝑥2). 当𝑑 = 2时，考虑二维波动方程，将其
视为与第三个坐标 𝑥3 无关的三维问题。通过降维法证明：

𝐸2(𝑡, 𝒙′) = ∫
ℝ
𝐸3(𝑡, 𝒙′, 𝑥3) d𝑥3 =

1
2𝜋

𝐻(𝑡 − |𝒙′|)
√
𝑡2 − |𝒙′|2

.

问题 5.2.9. 现在考虑一般维数的波动算子，它可由低维向高维递推。设 𝐸𝑑(𝑡, 𝑥)为 𝑑维波动方程
基本解。已知Fourier变换的表达式 𝐸̂𝑑(𝑡, 𝝃 ) =

sin(𝑡|𝝃 |)
|𝝃 |

.

(1) 证明递推关系：

𝐸𝑑+2(𝑡, 𝒙) =
1
2𝜋𝑡

𝜕
𝜕𝑡𝐸𝑑(𝑡, 𝒙).

(2) 证明：当 𝑑 ⩾ 3为奇数时，Spt𝐸𝑑 ⊂ {(𝑡, 𝒙) ∶ 𝑡 = |𝒙|}; 当 𝑑 为偶数时，Spt𝐸+ = {(𝑡, 𝒙) ∶ 𝑡 ⩾
|𝒙|}. 并据此解释为什么偶数维波动方程不满足“强惠更斯原理”。

5.3 *Sobolev空间的Littlewood-Paley刻画

许多非线性发展方程可以通过将其视为描述低频、中频和高频之间的振荡和相互作用来分

析。欲使频率分析严格化，我们需要若干调和分析工具，特别是Fourier变换。然而仅做Fourier变
换并不能区分不同频段的行为，而这些行为在处理导数估计时实际上非常重要。因此一个自然的

想法是在频率空间中找到一个合适的分解（实际上是单位分解），这就是所谓的Littlewood-Paley理
论。

设 𝜑(𝝃 ) 为一个实值径向对称的 𝐶∞
𝑐 函数，支于球 {|𝝃 | ⩽ 2} 内，且在球 {|𝝃 | ⩽ 1} 上等于1.

这一“鼓包”函数的具体表达式并不重要，这里我们用 1, 2而不是其他数字是因为1和2都是二进
数(dyadic numbers). 现在我们定义Littlewood-Paley投影。

定义 5.3.1. 设 𝜑 如上定义，𝑁 ∈ ℤ, 𝑓 ∈ 𝒮. 我们定义 𝜓(𝝃 ) = 𝜑(𝝃 ) − 𝜑(2𝝃 ), 且对 𝑗 ∈ ℤ 定义
𝜑𝑗(𝝃 ) = 𝜑(𝝃∕2𝑗), 𝜓𝑗(𝝃 ) = 𝜓(𝝃∕2𝑗). 然后我们定义Littlewood-Paley投投投影影影如下：

𝑃𝑁𝑓 ∶= (𝜓𝑁(𝝃 )𝑓(𝝃 ))∨, 𝑃⩽𝑁𝑓 ∶= (𝜑𝑁(𝝃 )𝑓(𝝃 ))∨, 𝑃⩾𝑁𝑓 ∶=
(
(1 − 𝜑𝑁(𝝃 ))𝑓(𝝃 )

)∨
.

换句话说，𝑃𝑁 将 𝑓局部化到频段 |𝝃 | ∼ 2𝑁 附近。容易证明对所有 𝝃 ≠ 𝟎有 ∑
𝑁∈ℤ

𝜓𝑁(𝝃 ) = 1. 且

对于所有满足 |𝑁 − 𝑀| ⩾ 2的 𝑁,𝑀 ∈ ℤ，我们有 Spt𝜓𝑁 ∩ Spt𝜓𝑀 = ∅. 因此{𝜓𝑁}实际上给出了频
率空间的一个单位分解。
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5.3.1 Bernstein型不等式

现在我们介绍Bernstein型不等式，它给出Littlewood-Paley投影的基本性质。

命题 5.3.1 (Bernstein型不等式). 设 𝑁 ∈ ℤ， 𝑠 ⩾ 0且 1 ⩽ 𝑝 ⩽ 𝑞 ⩽ ∞. 则在 ℝ𝑑 中有

‖𝑃⩾𝑁𝑓‖𝐿𝑝 ⩽ 𝐶(𝑝, 𝑠, 𝑑)2−𝑁𝑠‖|∇|𝑠𝑃⩾𝑁𝑓‖𝐿𝑝 , (5.3.1)

‖𝑃⩽𝑁|∇|𝑠𝑓‖𝐿𝑝 ⩽ 𝐶(𝑝, 𝑠, 𝑑)2𝑁𝑠‖𝑃⩽𝑁𝑓‖𝐿𝑝 , (5.3.2)

‖𝑃𝑁|∇|±𝑠𝑓‖𝐿𝑝 ≃ 𝐶(𝑝, 𝑠, 𝑑)2±𝑁𝑠‖𝑃𝑁𝑓‖𝐿𝑝 , (5.3.3)

‖𝑃⩽𝑁𝑓‖𝐿𝑞 ⩽ 𝐶(𝑝, 𝑞, 𝑑)2𝑁𝑑(
1
𝑝
− 1
𝑞
)‖𝑃⩽𝑁𝑓‖𝐿𝑝 , (5.3.4)

‖𝑃𝑁𝑓‖𝐿𝑞 ⩽ 𝐶(𝑝, 𝑞, 𝑑)2𝑁𝑑(
1
𝑝
− 1
𝑞
)‖𝑃𝑁𝑓‖𝐿𝑝 (5.3.5)

证明. 这些不等式几乎都是卷积Young不等式（定理 C.3.6）的直接推论，在此我们只证明 (3) 和
(5).

对 (3)，我们有 𝑃𝑁𝑓 = 𝑃̃𝑁(𝑃𝑁𝑓), 其中 𝑃̃𝑁 ∶= 𝑃𝑁−2 + 𝑃𝑁−1 + ⋯ + 𝑃𝑁+2. (注意 𝜓𝑁−2 + ⋯ +
𝜓𝑁+2 = 1 在 Spt𝜓𝑁 上成立。) 所以我们知道 𝑃𝑁(|∇|±𝑠𝑓) = 𝑃̃𝑁(|∇|±𝑠𝑃𝑁𝑓) = (𝜓̃𝑁(𝝃 )|𝝃 |𝑠𝑃𝑁𝑓(𝝃 ))∨ =
(𝜓𝑁(𝝃 )|𝝃 |𝑠)∨ ∗ 𝑓. 据卷积Young不等式可得

‖𝑃𝑁(|∇|±𝑠𝑓)‖𝐿𝑝 ⩽ ‖(𝜓𝑁(𝝃 )|𝝃 |𝑠)∨‖𝐿1‖𝑃𝑁𝑓‖𝐿𝑝 .

现在我们计算

(𝜓𝑁(𝝃 )|𝝃 |𝑠)∨(𝒙) =𝐶 ∫
ℝ𝑑
𝑒𝑖𝒙⋅𝝃𝜓(2−𝑁𝝃 )|𝝃 |𝑠 d𝝃

𝝃=2𝑁𝜼===𝐶2𝑁𝑑 ∫
ℝ𝑑
𝑒𝑖𝒙⋅2𝑁𝜼𝜓(𝜼)2𝑁𝑠|𝜼|𝑠 d𝜼 = 𝐶2𝑁(𝑑+𝑠)𝜓̌(2𝑁𝒙),

于是

‖(𝜓𝑁(𝝃 )|𝝃 |𝑠)∨‖𝐿1 ⩽ 𝐶2𝑁(𝑑+𝑠)‖𝜓̌(2𝑁⋅)‖𝐿1 = 𝐶2𝑁𝑠‖𝜓̌‖𝐿1 ⩽ 𝐶2𝑁𝑠.

同样的证明适用于 |∇|−𝑠𝑓.
对 (5)，我们再次使用 𝑃𝑁𝑓 = 𝑃̃𝑁(𝑃𝑁𝑓)得到

‖𝑃𝑁𝑓‖𝐿𝑞 = ‖(𝜓𝑁−2 +⋯+ 𝜓𝑁+2)∨ ∗ 𝑃𝑁𝑓‖𝐿𝑞 ⩽ 𝐶‖𝜓∨𝑁‖𝐿𝑟‖𝑃𝑁𝑓‖𝐿𝑝 , 1 + 1
𝑞 = 1

𝑟 +
1
𝑝 .

然后就有

‖𝜓∨𝑁‖𝐿𝑟 = ‖(𝜓(⋅∕2𝑁))∨‖𝐿𝑟 = 2𝑁𝑑‖𝜓̌(2𝑁⋅)‖𝐿𝑟 = 2𝑁𝑑(1−
1
𝑟
)‖𝜓̌‖𝐿𝑟 .
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因为 1 − 1
𝑟
= 1

𝑝
− 1

𝑞
，故有

‖𝑃𝑁𝑓‖𝐿𝑞 ⩽ 𝐶(𝑝, 𝑞, 𝑑)2𝑁𝑑(
1
𝑝
− 1
𝑞
)‖𝑃𝑁𝑓‖𝐿𝑝 .

我们还有 𝐿𝑝 空间的Littlewood-Paley刻画。据单位分解的局部有限性，我们可以看出如下结
论给出了一个“几乎正交性 (almost orthogonality)”的刻画，它本质上是一个类似于勾股定理的
结论。然而其证明依赖于Hörmander-Mikhlin乘子定理，这是调和分析中的结论，所以我们在此
略过。

定理 5.3.2 (Littlewood-Paley平方函数定理). 对任意 1 < 𝑝 < ∞，存在常数 𝐶 = 𝐶(𝑝, 𝑑) > 0使得

∀𝑓 ∈ 𝒮, 𝐶−1‖𝑓‖𝐿𝑝 ⩽ ‖𝑆(𝑓)‖𝐿𝑝 ⩽ 𝐶‖𝑓‖𝐿𝑝 ,

其中 𝑆(𝑓)是 𝑓 的 Littlewood-Paley平平平方方方函函函数数数，定义为

𝑆(𝑓) ∶= (
∑

𝑁∈ℤ
|𝑃𝑁𝑓|2)

1
2

= ‖𝑃𝑁𝑓‖𝓁2(ℤ).

5.3.2 Sobolev空间的Littlewood-Paley刻画

有了Littlewood-Paley投影，我们就可以建立非整数阶导数在某些 𝐿𝑝 空间中更一般的估计。
我们现在按如下方式定义Sobolev空间𝑊𝑠,𝑝(ℝ𝑑)和 𝑊̇𝑠,𝑝(ℝ𝑑).
定义 5.3.2. 给定 𝑠 ∈ ℝ和 1 < 𝑝 < ∞，我们定义非齐次Sobolev空间𝑊𝑠,𝑝(ℝ𝑑)为

𝑊𝑠,𝑝(ℝ𝑑) ∶=
{
𝑓 ∈ 𝒮′(ℝ𝑑) ∶ ‖𝑓‖𝑊𝑠,𝑝(ℝ𝑑) ∶= ‖⟨∇⟩𝑠𝑓‖𝐿𝑝(ℝ𝑑) < ∞

}
.

定义齐次Sobolev空间 𝑊̇𝑠,𝑝(ℝ𝑑)为

𝑊̇𝑠,𝑝(ℝ𝑑) ∶=
{
𝑓 ∈ 𝒮′∕𝒫(ℝ𝑑) ∶ ‖𝑓‖𝑊̇𝑠,𝑝(ℝ𝑑) ∶= ‖|∇|𝑠𝑓‖𝐿𝑝(ℝ𝑑) < ∞

}
.

据Bernstein不等式（命题 5.3.1(3)）和Plancherel恒等式，我们有Sobolev范数的Littlewood-Paley刻
画

‖𝑓‖𝑊𝑠,𝑝(ℝ𝑑) ≃ ‖𝑃⩽1𝑓‖𝐿𝑝(ℝ𝑑) +
‖‖‖‖‖‖‖‖‖‖‖‖
(

∞∑

𝑁=1
22𝑁𝑠|𝑃𝑁𝑓|2)

1
2
‖‖‖‖‖‖‖‖‖‖‖‖𝐿𝑝(ℝ𝑑)

. (5.3.6)

第一个结论是𝑊𝑠,𝑝(ℝ𝑑)的Sobolev嵌入定理，它不再只对 𝑝 = 2这一特殊情况成立。



5.3 *SOBOLEV空间的LITTLEWOOD-PALEY刻画 139

定理 5.3.3 (非端点Gagliardo-Nirenberg-Sobolev不等式). 设 1 < 𝑝 < 𝑞 ⩽ ∞和 𝑠 > 0满足 1
𝑞
= 1

𝑝
− 𝜃𝑠

𝑑
，

其中 0 < 𝜃 < 1. 则存在常数 𝐶 = 𝐶(𝑑, 𝑝, 𝑞, 𝑠) > 0使得对任意 𝑓 ∈ 𝑊𝑠,𝑝(ℝ𝑑)有如下不等式成立

‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖𝑓‖1−𝜃𝐿𝑝 ‖𝑓‖𝜃𝑊̇𝑠,𝑝(ℝ𝑑).

证明. 我们采用Littlewood-Paley分解 𝑓 = ∑
𝑁 𝑃𝑁𝑓. 由Bernstein不等式和三角不等式，我们有

‖𝑓‖𝐿𝑞 ⩽
∑

𝑁
‖𝑃𝑁𝑓‖𝐿𝑞 ⩽ 𝐶(𝑑, 𝑝, 𝑞)

∑

𝑁
2𝑁(

𝑑
𝑝
− 𝑑
𝑞
)‖𝑃𝑁𝑓‖𝐿𝑝 =

∑

𝑁
2𝑁𝜃𝑠‖𝑃𝑁𝑓‖𝐿𝑝 .

另一方面，据命题 5.3.1(3)和 𝑃𝑁 的有界性，我们有

‖𝑃𝑁𝑓‖𝐿𝑝 ⩽ 𝐶(𝑑, 𝑝)‖𝑓‖𝐿𝑝 , ‖𝑃𝑁𝑓‖𝐿𝑝 ⩽ 𝐶(𝑑, 𝑝, 𝑠)2−𝑁𝑠‖𝑃𝑁|∇|𝑠𝑓‖𝐿𝑝 ⩽ 𝐶(𝑑, 𝑝, 𝑠)2−𝑁𝑠‖|∇|𝑠𝑓‖𝐿𝑝 .

将此代入前面的估计，我们知道存在整数 𝐾 使得下式成立

‖𝑓‖𝐿𝑞 ⩽ 𝐶(𝑑, 𝑝, 𝑠)
∑

𝑁⩽𝐾
2𝑁𝜃𝑠‖𝑓‖𝐿𝑝 +

∑

𝑁>𝐾
2𝑁𝜃𝑠 ⋅ 2−𝑁𝑠‖|∇|𝑠𝑓‖𝐿𝑝

⩽ 𝐶(𝑑, 𝑝, 𝑠) (‖𝑓‖𝐿𝑝
2𝐾𝜃𝑠

1 − 2−𝜃𝑠 + ‖𝑓‖𝑊̇𝑠,𝑝
2(𝐾+1)(𝜃−1)𝑠
1 − 2(𝜃−1)𝑠 )

.

现在我们通过选取合适的 𝐾 来找到最佳上界。让不等式右边两项相等，可以推出

2−𝐾𝑠 =
‖𝑓‖𝐿𝑝
‖𝑓‖𝑊̇𝑠,𝑝

⋅ 1 − 2(𝜃−1)𝑠
2(1−𝜃)𝑠 − 1

.

将此代回上述不等式以消去 𝐾项，我们得到不等式右边等于

2𝐶(𝑑, 𝑝, 𝑠)‖𝑓‖𝐿𝑝
‖𝑓‖𝜃𝑊̇𝑠,𝑝

‖𝑓‖𝜃𝐿𝑝
⋅ (1 − 2(𝜃−1)𝑠
2(1−𝜃)𝑠 − 1)

−𝜃

⩽ 𝐶‖𝑓‖1−𝜃𝐿𝑝 ‖𝑓‖𝜃𝑊̇𝑠,𝑝(ℝ𝑑).

此时的临界嵌入定理仍然是Hardy-Littlewood-Sobolev不等式的推论。

定理 5.3.4 (端点Gagliardo-Nirenberg-Sobolev不等式). 设 1 < 𝑝 < 𝑞 < ∞和 𝑠 > 0满足 1
𝑞
= 1

𝑝
− 𝑠

𝑑
.

则存在常数 𝐶 = 𝐶(𝑑, 𝑝, 𝑞, 𝑠) > 0使得对于任意 𝑓 ∈ 𝑊𝑠,𝑝(ℝ𝑑)，使得如下不等式成立

‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝑊̇𝑠,𝑝(ℝ𝑑).
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特别地，当
1
𝑞
⩾ 1

𝑝
− 𝑠

𝑑
时，我们有非齐次Sobolev空间的嵌入定理

‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝑊𝑠,𝑝(ℝ𝑑).

我们也可证明定理 5.2.3 (1)的类似结果.

定理 5.3.5. 设 1 < 𝑝 < ∞, 𝑠 > 0满足 𝑠𝑝 > 𝑑. 则

‖𝑓‖𝐿∞(ℝ𝑑) ⩽ 𝐶(𝑝, 𝑠, 𝑑)‖𝑓‖𝑊𝑠,𝑝(ℝ𝑑)

5.3.3 非整数阶Leibniz法则和链式法则

作为本章的末尾，我们来证明非整数阶导数的Leibniz法则和链式法则，以呼应课程开头对整
数阶Sobolev函数建立的运算法则。研究这些运算法则是必要的，因为很多研究中的问题必须要非
常精确的Sobolev估计。

例 5.3.1 (分数阶Leibnitz法则). 设 𝑓, 𝑔为 ℝ𝑑 上的函数，记 𝐷𝛼 为某个阶数 𝛼 > 0为正的微分算子
或拟微分算子。直观上，我们知道

• (高-低/低-高相互作用) 如果 𝑓 的频率显著高于 𝑔（例如 𝑓 = 𝑃𝑁𝐹, 𝑔 = 𝑃<𝑁−3𝐺），或者比 𝑔
“更粗糙”（例如对某些 𝑢， 𝑓 = ∇𝑢, 𝑔 = 𝑢），那么 𝑓𝑔将具有与 𝑓相当的频率，且我们期待
𝐷𝛼(𝑓𝑔) ≈ (𝐷𝛼𝑓)𝑔以及 𝑃𝑁(𝑓𝑔) ≈ (𝑃𝑁𝑓) 𝑔.

• (高-高/低-低相互作用) 如果 𝑓 和 𝑔 具有相近的频率（例如对于某些 𝐹,𝐺,有 𝑓 = 𝑃𝑁𝐹, 𝑔 =
𝑃𝑁𝐺），那么 𝑓𝑔应该具有比 𝑓低或相接近的频率，且我们期待 𝐷𝛼(𝑓𝑔) ≲ (𝐷𝛼𝑓) 𝑔 ≈ 𝑓 (𝐷𝛼𝑔)。

• (完整的Leibnitz法则)对 𝑓 和 𝑔没有额外的频率假设，我们期待

𝐷𝛼(𝑓𝑔) ≈ 𝑓 (𝐷𝛼𝑔) + (𝐷𝛼𝑓) 𝑔

例 5.3.2 (非整数阶链式法则). 设 𝑢为 ℝ𝑑 上的函数，𝐹 ∶ ℝ → ℝ是一个“适当光滑”的函数（例
如 𝐹(𝑢) = |𝑢|𝑝−1𝑢）。那么对任意具有正阶数 𝛼 > 0的微分算子 𝐷𝛼，我们有非整数阶的链式法则

𝐷𝛼(𝐹(𝑢)) ≈ 𝐹′(𝑢)𝐷𝛼𝑢

以及Littlewood-Paley刻画

𝑃<𝑁(𝐹(𝑢)) ≈ 𝐹(𝑃<𝑁𝑢), 𝑃𝑁(𝐹(𝑢)) ≈ 𝐹′(𝑃<𝑁𝑢)𝑃𝑁𝑢.

我们观察到当𝐷𝛼是𝑘阶（𝑘为整数）微分算子时，上述讨论在最高阶𝑘的层面上确实是完全正
确的（即忽略任何 𝑓, 𝑔, 𝑢的 ⩽ 𝑘−1阶导数的项）。事实上，上述两个原则是更一般原则的实例：
例 5.3.3 (最高阶项占主导的原则).



5.3 *SOBOLEV空间的LITTLEWOOD-PALEY刻画 141

• 当分配导数时，主导项通常是所有导数落在单个函数上的项；

• 如果各个函数的光滑度不同，主导项将是所有导数落在最粗糙（或最高频率）的那个函数
上的项。

对这些“原则”的完全严格处理需要用到仿微分计算 (paradifferential calculus)，这已经超出
了本讲义的知识范围。我们现在证明 𝐷 = 𝜕这一最简单情况下的非整数阶Leibniz法则，所得结论
通常被称作Moser型不等式。

定理 5.3.6 (Moser型不等式). 若 𝑠 ⩾ 0，则对任意的 𝑓, 𝑔 ∈ 𝐻𝑠(ℝ𝑑) ∩ 𝐿∞(ℝ𝑑)，都成立不等式

‖𝑓𝑔‖𝐻𝑠(ℝ𝑑) ⩽ 𝐶(𝑠, 𝑑)‖𝑓‖𝐻𝑠(ℝ𝑑)‖𝑔‖𝐿∞(ℝ𝑑) + ‖𝑓‖𝐿∞(ℝ𝑑)‖𝑔‖𝐻𝑠(ℝ𝑑)

特别地，若𝑠 > 𝑑∕2，该结论就退化为定理 5.2.3(2).

处理这种多线性估计的基本方法是使用Littlewood-Paley分解先扒出所有差不多是零的项（由
于不可能的频率相互作用），然后用Bernstein和Hölder不等式估计每个剩余分量，最后求和。一
般来说我们应该尝试在尽可能低频段用Bernstein不等式，因为这给出了最有效的估计。而在某些
情况下，需要用Cauchy-Schwarz不等式来完成求和。

证明. 设𝑠 > 0. 据Sobolev范数的平方函数刻画（命题 5.3.1），我们有

‖𝑓𝑔‖𝐻𝑠 ≲ 𝐶(𝑠, 𝑑)‖𝑃⩽1(𝑓𝑔)‖𝐿2 + (
∑

𝑁>1
22𝑁𝑠 ‖𝑃𝑁(𝑓𝑔)‖

2
𝐿2)

1∕2

.

我们只估计后一项，因为第一项可以通过使用 𝑃⩽1 的 𝐿2 有界性和Cauchy-Schwarz不等式直接控
制。我们对 𝑓 作高低频拆分

‖𝑃𝑁(𝑓𝑔)‖𝐿2 ⩽ 𝐶‖𝑃𝑁((𝑃<𝑁−3𝑓)𝑔)‖𝐿2 +
∑

𝑀>𝑁−3
‖𝑃𝑁((𝑃𝑀𝑓)𝑔‖𝐿2 .

对第一项，我们从Fourier支集（或者Littlewood-Paley投影的定义）可以观察到，在这项里面我们
可以用 𝑃𝑁−3<⋅<𝑁+3𝑔替换 𝑔，因此由Hölder不等式得

‖𝑃𝑁((𝑃<𝑁−3𝑓)𝑔)‖𝐿2 ⩽ 𝐶‖(𝑃<𝑁−3𝑓)𝑃𝑁−3<⋅<𝑁+3𝑔‖𝐿2 ⩽ 𝐶‖𝑓‖𝐿∞‖𝑃𝑁−3<⋅<𝑁+3𝑔‖𝐿2 .

这项对上述平方函数的总贡献是 𝐶(𝑠, 𝑑)(‖𝑓‖𝐿∞‖𝑔‖𝐻𝑠).
对第二项，我们容易证得下式

∑

𝑀>𝑁−3
‖𝑃𝑁((𝑃𝑀𝑓)𝑔)‖𝐿2 ⩽ 𝐶

∑

𝑀>𝑁−3
‖(𝑃𝑀𝑓)𝑔‖𝐿2 ⩽ 𝐶‖𝑔‖𝐿∞

∑

𝑀>𝑁−3
2−𝑀𝑠‖𝑃𝑀𝑓‖𝐿2
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所以由Cauchy-Schwarz不等式就得到

22𝑁𝑠
∑

𝑀>𝑁−3
‖𝑃𝑁((𝑃𝑀𝑓)𝑔)‖2𝐿2 ⩽ 𝐶‖𝑔‖2𝐿∞

∑

𝑀>𝑁−3
22(𝑁−𝑀)𝑠‖𝑃𝑀𝑓‖2𝐿2 .

最后对 𝑁 求和（并利用假设 𝑠 > 0），可见此项的总贡献是 𝐶(𝑠, 𝑑)(‖𝑓‖𝐻𝑠‖𝑔‖𝐿∞)，证毕。

定理 5.3.7 (Schauder型估计/仿线性化 (paralinearization)). 设 𝑉 是有穷维赋范线性空间，𝑠 ⩾ 0，
函数𝑓 ∈ 𝐻𝑠(ℝ𝑑 → 𝑉) ∩ 𝐿∞(ℝ𝑑 → 𝑉). 设 𝑘 为大于 𝑠 的最小整数，并设 𝐹 ∈ 𝐶𝑘

loc(𝑉 → 𝑉) 满足
𝐹(0) = 0. 则 𝐹(𝑓) ∈ 𝐻𝑠(ℝ𝑑 → 𝑉)也成立，且有如下形式的界

‖𝐹(𝑓)‖𝐻𝑠(ℝ𝑑) ⩽ 𝐶
(
𝐹, ‖𝑓‖𝐿∞(ℝ𝑑), 𝑉, 𝑠, 𝑑

)
‖𝑓‖𝐻𝑠(ℝ𝑑).

证明. 证明仿线性化估计的方法与上一定理相关，尽管不完全相同。粗略地说，我们用Taylor展
开将 𝐹(𝑓) 拆分为一个粗糙的误差（粗略估计）和一个光滑的主项（利用其导数信息进行估计），
然后使用诸如Hölder, Bernstein,和 Cauchy-Schwarz等工具来估计出现的项。

记 𝐴 ∶= ‖𝑓‖𝐿∞ . 由于 𝐹 ∈ 𝐶𝑘
loc, 𝐹(0) = 0，据微积分基本定理就得到 |𝐹(𝑓)| ⩽ 𝐶(𝐹,𝐴, 𝑉)|𝑓|.

这已经证明了𝑠 = 0的情况。据Bernstein不等式（命题 5.3.1），我们需要证明

(
∑

𝑁>1
22𝑁𝑠‖𝑃𝑁𝐹(𝑓)‖2𝐿2)

1∕2

⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑠)‖𝑓‖𝐻𝑠 , ∀𝑠 > 0.

我们首先在 𝑃𝑁𝐹(𝑓) 中扔掉 𝐹(𝑓) 的“粗糙”部分。固定 𝑁, 𝑠，并作拆分 𝑓 = 𝑃<𝑁𝑓 + 𝑃⩾𝑁𝑓.
注意，由Littlewood-Paley投影的定义知，𝑓和𝑃<𝑁𝑓都被𝐶(𝑉, 𝑑, 𝐴)控制。现在 𝐹 ∈ 𝐶𝑘

loc，因此在半

径为 𝐶(𝑉, 𝑑, 𝐴)的球上是Lipschitz的，故有𝐹(𝑓) = 𝐹(𝑃<𝑁𝑓) + 𝐶(𝑉, 𝑑, 𝐴, 𝐹)(|𝑃⩾𝑁𝑓|). 这就导出

‖𝑃𝑁𝐹(𝑓)‖𝐿2 ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑)‖𝑃𝑁𝐹(𝑃<𝑁𝑓)‖𝐿2 + ‖𝑃⩾𝑁𝑓‖𝐿2 .

为了控制后一项，由三角不等式和Cauchy-Schwarz观察到

22𝑁𝑠‖𝑃⩾𝑁𝑓‖2𝐿2 ⩽ 𝐶(𝑠)
∑

𝑁′⩾𝑁
2𝑁′𝑠2𝑁𝑠‖𝑃𝑁′𝑓‖2𝐿2

对 𝑁 求和并用 𝐻𝑠 范数的Littlewood-Paley刻画 (5.3.6)，我们看到此项可以被 ‖𝑓‖2𝐻𝑠 控制。因此只

需证明

(
∑

𝑁>1
22𝑁𝑠‖𝑃𝑁𝐹(𝑃<𝑁𝑓)‖2𝐿2)

1∕2

⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑠)‖𝑓‖𝐻𝑠 .

据Bernstein不等式，我们得到

‖𝑃𝑁𝐹(𝑃<𝑁𝑓)‖𝐿2 ≲ 𝐶(𝑑, 𝑘)2−𝑁𝑘‖∇𝑘𝐹(𝑃<𝑁𝑓)‖𝐿2 .
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反复用链式法则，并注意到 𝐹 的所有导数在半径为 𝐶(𝑉, 𝑑, 𝐴)的球上都是有界的，我们因此证得
逐点估计

|∇𝑘𝐹(𝑃<𝑁𝑓)| ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑, 𝑘) sup
𝑘1+⋯+𝑘𝑟=𝑘

|∇𝑘1(𝑃<𝑁𝑓)|⋯ |∇𝑘𝑟(𝑃<𝑁𝑓)|

其中𝑟 = 1,⋯ , 𝑘，非负整数𝑘1,⋯ , 𝑘𝑟满足𝑘1 +⋯+ 𝑘𝑟 = 𝑘. 我们用Littlewood-Paley分解作进一步拆
分

||||∇
𝑘𝐹 (𝑃<𝑁𝑓)

|||| ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑, 𝑘) sup
𝑘1+⋯+𝑘𝑟=𝑘1

∑

1⩽𝑁1,⋯,𝑁𝑟<𝑁

||||∇
𝑘1(𝑃̃𝑁1𝑓)

||||⋯
||||∇

𝑘𝑟(𝑃̃𝑁𝑟𝑓)
|||| ,

这里我们采用惯用的记号（即非齐次Littlewood-Paley分解）：当 𝑁 > 1时记 𝑃̃𝑁 ∶= 𝑃𝑁，而 𝑃̃1 ∶=
𝑃⩽1. 我们可以取 𝑁1 ⩽ 𝑁2⋯ ⩽ 𝑁𝑟，其中上面的 𝑘1,⋯ , 𝑘𝑟 可以取遍满足 𝑘1 +⋯+ 𝑘𝑟 = 𝑘 的非负整
数。现在据Bernstein不等式，我们有

‖‖‖‖∇
𝑘𝑖(𝑃̃𝑁𝑖𝑓)

‖‖‖‖𝐿∞ ⩽ 𝐶(𝑑, 𝑘)2𝑁𝑖𝑘𝑖‖𝑓‖𝐿∞ ⩽ 𝐶(𝑑, 𝑘, 𝐴)2𝑁𝑘𝑖 , 1 ⩽ 𝑖 ⩽ 𝑟 − 1.

类似可得
‖‖‖‖∇

𝑘𝑟(𝑃̃𝑁𝑟𝑓)
‖‖‖‖𝐿2 ⩽ 𝐶(𝑑, 𝑘)2𝑁𝑟𝑘𝑟‖𝑃̃𝑁𝑟𝑓‖𝐿2 .

因此我们有

‖‖‖‖∇
𝑘𝐹(𝑃<𝑁𝑓)

‖‖‖‖𝐿2 ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑, 𝑘) sup
𝑘1+⋯+𝑘𝑟=𝑘

∑

1⩽𝑁1⩽⋯⩽𝑁𝑟<𝑁
2𝑁1𝑘1 ⋯2𝑁𝑟𝑘𝑟 ‖‖‖‖𝑃̃𝑁𝑟𝑓

‖‖‖‖𝐿2 .

对 𝑁1 求和，然后对 𝑁2 求和……最后对 𝑁𝑟−1 求和，并记 𝑁′ ∶= 𝑁𝑟，我们得到

‖‖‖‖∇
𝑘𝐹(𝑃<𝑁𝑓)

‖‖‖‖𝐿2 ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑, 𝑘)
∑

1⩽𝑁′<𝑁
2𝑁′𝑘 ‖𝑃̃𝑁′𝑓‖𝐿2 .

由Cauchy-Schwarz不等式，我们得出

‖𝑃𝑁𝐹(𝑃<𝑁𝑓)‖
2
𝐿2 ⩽ 𝐶(𝐹,𝐴, 𝑉, 𝑑, 𝑘)

∑

1⩽𝑁′<𝑁
2𝑁′𝑘2−𝑁𝑘 ‖𝑃̃𝑁′𝑓‖2𝐿2 .

对 𝑁 求和，据 𝐻𝑠 范数的Littlewood-Paley刻画 (5.3.6)知，此项可以被 ‖𝑓‖2𝐻𝑠 控制，证毕。

习题 5.3

习题 5.3.1. 完成命题 5.3.1的证明。

习题 5.3.2. 证明定理 5.3.4. （提示：用Hardy-Littlewood-Sobolev不等式。）

习题 5.3.3. 证明定理 5.3.5.（提示：用Bernstein不等式和 𝑠 > 𝑑∕𝑝.）

习题 5.3.4 (Gagliardo-Nirenberg插值不等式). 设1 ⩽ 𝑞, 𝑟 ⩽ ∞, 0 ⩽ 𝑗 < 𝑚. 则存在常数𝜃 ∈ [ 𝑗
𝑚
, 1]和
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指标𝑝满足
‖𝜕𝑗𝑓‖𝐿𝑝 ⩽ 𝐶‖𝜕𝑚𝑓‖𝜃𝐿𝑟‖𝑓‖1−𝜃𝐿𝑞 ,

1
𝑝 − 𝑗

𝑑 = 𝜃 (1𝑟 −
𝑚
𝑑 ) +

1 − 𝜃
𝑞 .

问题 5.3

问题 5.3.1 (Littlewood-Paley投影的热半群刻画). 设 𝒜是中心为原点的但不包含原点的同心圆环，
且设 𝑓 ∈ 𝒮满足 Spt𝑓 ⊆ 𝜆𝒜. 证明：存在常数 𝑐, 𝐶 > 0使得对任意 1 ⩽ 𝑝 ⩽ ∞以及 𝑡, 𝜆 > 0有

‖𝑒𝑡∆𝑓‖𝐿𝑝 ⩽ 𝐶𝑒−𝑐𝑡𝜆2‖𝑓‖𝐿𝑝 .

问题 5.3.2 (热半群刻画的Bernstein型不等式). 设 𝑢0 ∈ 𝒮满足问题 5.3.1中 𝑓 的假设。考虑方程如
下热方程的解𝑢

𝜕𝑡𝑢 − 𝜈∆𝑢 = 0, 𝑢|𝑡=0 = 𝑢0;

以及如下热方程的解 𝑣
𝜕𝑡𝑣 − 𝜈∆𝑣 = 𝑓(𝑡, 𝒙), 𝑣|𝑡=0 = 0.

其中对任意 𝑡 > 0，𝑓(𝑡, ⋅)满足问题 5.3.1中对 𝑓 的假设。证明

‖𝑢‖𝐿𝑞𝑡 𝐿𝑏𝒙 ⩽ 𝐶(𝜈𝜆2)−
1
𝑞𝜆𝑑(

1
𝑎
− 1
𝑏
)‖𝑢0‖𝐿𝑎 , ‖𝑣‖𝐿𝑞𝑡 𝐿𝑏𝒙 ⩽ 𝐶(𝜈𝜆2)−1+

1
𝑝
− 1
𝑞𝜆𝑑(

1
𝑎
− 1
𝑏
)‖𝑓‖𝐿𝑝𝑡 𝐿𝑎𝒙

对任何 1 ⩽ 𝑎 ⩽ 𝑏 ⩽ ∞, 1 ⩽ 𝑝 ⩽ 𝑞 ⩽ ∞成立。
注记 5.3.1. Littlewood-Paley投影的热半群刻画可以进一步推广到无法定义Fourier变换的流形上，
它虽然没有欧氏空间的Fourier变换好用，但至少给出Bernstein型不等式这样的频率局部化的结论。
该工具在处理几何色散方程的动力学行为时尤为重要。
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在本科偏微分方程课程中，我们已经学习了如何求解 ℝ𝑑 或带特定边界条件的一维区间上的

标准线性波动方程 𝜕2𝑡 𝑢 − ∆𝑢 = 𝑓 的古典解。显式解还表明波的传播速度是有限的，这也被称
为Huygens原理。然而在许多物理模型中，波的传播满足具有变系数甚至是非线性的波动方程，
例如广义相对论中的弯曲时空（Einstein 方程）、可压缩流体中的声波（可压缩 Euler 方程）、弹
性介质的运动（弹性力学方程组）、可压缩等离子体中的磁声波（可压缩 MHD 方程）以及许多
其他广泛应用的物理模型。

本章我们先考虑具有给定变系数的线性波动方程，即研究以下关于 𝑢 ∶ 𝐼 × ℝ𝑑 → ℝ 在 ℝ1+𝑑

中的方程：

⎧

⎨
⎩

𝜕𝛼
(
𝑔𝛼𝛽𝜕𝛽𝑢

)
= 𝐹 in (0, 𝑇) × ℝ𝑑,

(𝑢, 𝜕𝑡𝑢) = (𝑢0, 𝑢1) on {𝑡 = 0} × ℝ𝑑.
(6.0.1)

这里指标 𝛼, 𝛽 取值是从 0 到 𝑑，其中第 0 个分量指代时间变量 𝑡. 𝐹 ∶ [0, 𝑇] × ℝ𝑑 → ℝ 是给
定的源项，𝐼 ⊆ ℝ 是时间变量取值的开区间。在此之后我们还将介绍拟线性波动方程的局部适
定性理论及其爆破准则，其证明方法实际上是常微分方程里面就学过的Picard迭代法，这也是证
明非线性偏微分方程存在性的一种常见方法。此后结合爆破准则和能量守恒，我们证明能量次临

界的半线性波动方程必有小初值整体解。而拟线性波动方程的长时间存在性和渐近行为等内容需

要用到Lorentz几何中的一些工具（例如由 Christodoulou, Klainerman等人开发的向量场方法）或
Alinhac ghost weight等技术，本讲义暂不涉及。

6.1 线性波动方程的正则性和存在性

为了计算简便，本章我们设波动方程具有如下形式

⎧

⎨
⎩

𝜕2𝑡 𝑢 − 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑢 = 𝐹 in (0, 𝑇) × ℝ𝑑,
(𝑢, 𝜕𝑡𝑢) = (𝑢0, 𝑢1) on {𝑡 = 0} × ℝ𝑑.

(6.1.1)

145
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我们要求 𝒈 ∶= [𝑔𝑖𝑗] ∶ 𝐼 × ℝ𝑑 → ℝ𝑑×𝑑 是对称正定方阵，并假设存在常数0 < 𝜆 ⩽ Λ < ∞使得

∀(𝑡, 𝒙) ∈ (0, 𝑇) × ℝ𝑑, 𝒛 ∈ ℝ𝑑, 𝜆|𝒛|2 ⩽ 𝑔𝑖𝑗(𝑡, 𝒙)𝑧𝑖𝑧𝑗 ⩽ Λ|𝒛|2. (6.1.2)

后面我们还要对 𝑔𝛼𝛽 ∶ 𝐼 × ℝ𝑑 → ℝ,𝐹 ∶ 𝐼 × ℝ𝑑 → ℝ,𝑢0 ∶ ℝ𝑑 → ℝ和 𝑢1 ∶ ℝ𝑑 → ℝ提出一些正则性
假设。

6.1.1 线性波动方程的正则性

在证明线性波动方程 (6.1.1) 的局部存在性之前，我们先证明变系数线性波动方程的能量估
计，这也可被视作解的正则性结论。需注意，这类方程可能不像标准波动方程那样成立能量守

恒，但我们仍然可以证明某些适当定义的“能量”具有可控增长的性质。我们首先引入记号：

|𝝏𝑢|2 ∶= (𝜕𝑡𝑢)
2 +

𝑑∑

𝑖=1

(
𝜕𝑥𝑖𝑢

)2
(6.1.3)

定理 6.1.1 (𝐿2 能量估计). 设 𝑢为 (6.1.1)的解，则存在常数 𝐶 = 𝐶(𝑑, 𝑇) > 0使得如下估计成立：

sup
𝑡∈[0,𝑇]

‖𝝏𝑢(𝑡, ⋅)‖2𝐿2(ℝ𝑑)

⩽ 𝐶 (‖(𝑢0, 𝑢1)‖
2
𝐻̇1(ℝ𝑑)×𝐿2(ℝ𝑑) + ∫

𝑇

0
‖𝐹(𝑡)‖2𝐿2(ℝ𝑑) d𝑡) exp (𝐶 ∫

𝑇

0
‖𝝏𝒈(𝑡, ⋅)‖2𝐿∞(ℝ𝑑) d𝑡) . (6.1.4)

这里 ‖ ⋅ ‖𝐻̇1 = ‖𝜕(⋅)‖𝐿2 表示齐次 Sobolev范数。

证明. 这个定理的证明实际上与标准波动方程的证明类似。我们在方程两边乘以 𝜕𝑡𝑢 然后积分得
到

∫
ℝ𝑑
𝜕𝑡𝑢𝜕2𝑡 𝑢 d𝒙 − ∫

ℝ𝑑
𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑢𝜕𝑡𝑢 d𝒙 = ∫

ℝ𝑑
𝐹𝜕𝑡𝑢 d𝒙.

第二项中分部积分可得

1
2
d
d𝑡 ∫ℝ𝑑

(𝜕𝑡𝑢)2 + 𝑔𝑖𝑗𝜕𝑗𝑢𝜕𝑖𝑢 d𝒙 = ∫
ℝ𝑑
𝐹𝜕𝑡𝑢 d𝒙 +

1
2 ∫ℝ𝑑

𝜕𝑡𝑔𝑖𝑗𝜕𝑗𝑢𝜕𝑖𝑢 d𝒙 − ∫
ℝ𝑑
𝜕𝑗𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑡𝑢 d𝒙.

令𝐸(𝑡) ∶= 1
2
∫ℝ𝑑(𝜕𝑡𝑢)2 +𝑔𝑖𝑗𝜕𝑗𝑢𝜕𝑘𝑢 d𝒙,据(6.1.2)知𝐸(𝑡) ≈ ‖𝝏𝑢(𝑡, ⋅)‖2𝐿2(ℝ𝑑),即二者可以被彼此的常数倍

控制。这样我们得到能量不等式

𝐸′(𝑡) ⩽ ‖𝐹(𝑡, ⋅)‖𝐿2(ℝ𝑑)‖𝜕𝑡𝑢(𝑡, ⋅)‖𝐿2(ℝ𝑑) + ‖𝝏𝒈(𝑡, ⋅)‖𝐿∞(ℝ𝑑)‖𝝏𝑢(𝑡, ⋅)‖2𝐿2(ℝ𝑑) (6.1.5)
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对时间变量𝑡积分，再用Young不等式得

𝐸(𝑡) ⩽ 𝐸(0) + ∫
𝑡

0
‖𝐹(𝜏, ⋅)‖𝐿2(ℝ𝑑)‖𝜕𝑡𝑢(𝜏, ⋅)‖𝐿2(ℝ𝑑) + ‖𝝏𝒈(𝜏, ⋅)‖𝐿∞(ℝ𝑑)‖𝝏𝑢(𝜏, ⋅)‖2𝐿2(ℝ𝑑) d𝜏

⩽ 𝐸(0) + 𝛿 sup
𝑡∈[0,𝑇]

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐿2(ℝ𝑑) +
1
4𝛿 ∫

𝑡

0
‖𝐹(𝜏, ⋅)‖2𝐿2(ℝ𝑑) d𝜏 + ∫

𝑡

0
‖𝝏𝒈(𝜏, ⋅)‖𝐿∞(ℝ𝑑)‖𝝏𝑢(𝜏, ⋅)‖2𝐿2(ℝ𝑑) d𝜏

⩽ 𝐸(0) + 𝛿𝐸(𝑡) + 𝐶 ∫
𝑡

0
‖𝐹(𝜏, ⋅)‖2𝐿2(ℝ𝑑) d𝜏 + 𝐶 ∫

𝑡

0
‖𝝏𝒈(𝜏, ⋅)‖𝐿∞(ℝ𝑑)𝐸(𝜏) d𝜏.

(6.1.6)
选取𝛿 > 0充分小使得𝛿𝐸(𝑡)被左边吸收掉。用Grönwall不等式，再对𝑡 ∈ [0, 𝑇]取上确界得

sup
𝑡∈[0,𝑇]

𝐸(𝑡) ⩽ 𝐶 (𝐸(0) + ∫
𝑇

0
‖𝐹(𝑡)‖2𝐿2(ℝ𝑑) d𝑡) exp (𝐶 ∫

𝑇

0
‖𝝏𝒈(𝑡, ⋅)‖2𝐿∞(ℝ𝑑) d𝑡)

即为所求。

对于常系数线性波动方程 𝜕2𝑡 𝑢 − ∆𝑢 = 0，我们知道如果 𝑢 是一个解，那么 𝜕𝑡𝑢 和 𝜕𝑥𝑖𝑢 也是
解。因此如果初值足够光滑且在 |𝒙| → ∞ 时趋于零（例如 𝑢0, 𝑢1 ∈ 𝐶∞

𝑐 (ℝ𝑑) 的情况），那么 𝑢 的
所有高阶导数在 𝐿2 中都是有界的。然而现在𝑢 是 (6.1.1)的解并不意味着它的导数也是 (6.1.1)的
解。不过我们模仿定理 6.1.1 的证明可以控制 𝑢 的高阶 Sobolev 范数，进而得到以下推论，其证
明留作练习。

推论 6.1.2. 设 𝑢 ∈ 𝐶([0, 𝑇];𝐻𝑘(ℝ𝑑)) ∩ 𝐶1([0, 𝑇];𝐻𝑘−1(ℝ𝑑))是 (6.1.1)的解且 2 ⩽ 𝑘 ∈ ℕ∗. 那么存在
常数 𝐶 = 𝐶(𝑑, 𝑘, 𝑇) > 0使得如下能量估计成立：

sup
𝑡∈[0,𝑇]

‖(𝑢(𝑡), 𝜕𝑡𝑢(𝑡))‖
2
𝐻𝑘×𝐻𝑘−1

⩽ 𝐶
⎡
⎢
⎣
‖(𝑢0, 𝑢1)‖

2
𝐻𝑘×𝐻𝑘−1 + ∫

𝑇

0
‖𝐹‖2𝐻𝑘−1 +

∑

|𝛼|+|𝛽|⩽𝑘−2

‖‖‖‖‖𝜕
𝛼
𝒙𝜕𝒈 𝜕

𝛽
𝒙𝜕2𝑢

‖‖‖‖‖
2

𝐿2
d𝑡
⎤
⎥
⎦
exp (𝐶 ∫

𝑇

0
‖𝝏𝒈‖2𝐿∞ d𝑡) .

(6.1.7)

6.1.2 线性波动方程的存在性

本节我们利用能量估计结合 Hahn-Banach 定理来证明 (6.1.1) 解的局部存在性。下面我们假
设 𝒈及其所有阶导数在 [0, 𝑇] ×ℝ𝑑 上都是有界的。假设源项 𝐹 ∶ [0, 𝑇] ×ℝ𝑑 → ℝ满足：对于给定
的 𝑘 ∈ ℕ有 𝐹 ∈ 𝐿2(0, 𝑇;𝐻𝑘−1(ℝ𝑑)). 首先我们回顾 Hahn-Banach定理。

定理 6.1.3 (Hahn-Banach 定理). 设 𝑋 是赋范线性空间，子空间𝑌 ⊆ 𝑋 满足对任意 𝑦 ∈ 𝑌 都有
‖𝑦‖𝑌 = ‖𝑦‖𝑋. 设 𝑓 ∈ 𝑌∗是 𝑌上的有界线性泛函，则存在 𝑓 ∈ 𝑋∗使得 𝑓|𝑌 = 𝑓以及 ‖𝑓‖𝑋 = ‖𝑓‖𝑌∗

成立。

我们还需要以下引理：
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引理 6.1.4. 令 𝐿∗𝜓 ∶= 𝜕𝛼(𝑎𝛼𝛽𝜕𝛽𝜓)是 𝐿𝑢 ∶= 𝜕𝛼(𝑎𝛼𝛽𝜕𝛽𝑢)的（形式）伴随算子。假设𝜓 ∈ 𝐶∞
𝑐 ((−∞, 𝑇)×

ℝ𝑑)，则对任意 𝑚 ∈ ℤ，存在 𝐶 = 𝐶(𝑚, 𝑇, 𝒈) > 0使得

‖𝜓(𝑡, ⋅)‖𝐻𝑚(ℝ𝑑) ⩽ 𝐶 ∫
𝑇

𝑡
‖𝐿∗𝜓(𝜏, ⋅)‖𝐻𝑚−1(ℝ𝑑) d𝜏

对所有 𝑡 ∈ [0, 𝑇]均成立。

证明. 对正整数𝑚 ⩾ 1，这是推论 6.1.2 的推论。我们现在对 𝑚 ⩽ 0 的情况进行归纳。假设结
果对于𝑚0 + 2的情况成立（其中𝑚0是某个负整数），我们希望证明在𝑚0的情况也成立。现在我

们(用Fourier变换)定义 Ψ = (1 − ∆)−1𝜓，或者等价地通过方程 (1 − ∆)Ψ = 𝜓 的解来定义Ψ，则
存在依赖于 𝑚0, 𝑇, 𝑎和 𝑏的常数𝐶 > 0使得

|||𝐿∗𝜓 − (1 − ∆)𝐿∗Ψ||| = |||𝐿∗(1 − ∆)Ψ − (1 − ∆)𝐿∗Ψ||| ⩽ 𝐶
∑

1⩽|𝛼|⩽3
|𝜕𝛼𝒙Ψ| .

因此得到

‖𝐿∗Ψ‖𝐻𝑚0+1 ⩽ 𝐶
(
‖𝐿∗𝜓‖𝐻𝑚0−1 + ‖Ψ‖𝐻𝑚0+2

)

据归纳假设，我们得到

‖Ψ(𝑡, ⋅)‖𝐻𝑚0+2(ℝ𝑑) ⩽ 𝐶 ∫
𝑇

𝑡

(
‖𝐿∗𝜓(𝜏, ⋅)‖𝐻𝑚0−1 + ‖Ψ(𝜏, ⋅)‖𝐻𝑚0+2

)
d𝜏 ⩽ 𝐶 ∫

𝑇

𝑡
‖𝐿∗𝜓(𝜏, ⋅)‖𝐻𝑚0−1 d𝜏.

在上式最后一行中我们使用了 Grönwall不等式，据此得到

‖𝜓(𝑡, ⋅)‖𝐻𝑚0 ⩽ 𝐶‖Ψ(𝑡, ⋅)‖𝐻𝑚0+2 ⩽ 𝐶 ∫
𝑇

𝑡
‖𝐿∗𝜓(𝜏, ⋅)‖𝐻𝑚0−1 d𝜏.

现在我们可以证明(6.1.1)的局部存在性：

定理 6.1.5 (线性波动方程的局部存在性). 设 𝑘 ∈ ℕ. 给定 𝐹 ∈ 𝐿2([0, 𝑇];𝐻𝑘−1(ℝ𝑑))，则方程
(6.1.1)存在唯一的解𝑢，它满足 (𝑢, 𝜕𝑡𝑢) ∈ 𝐿∞([0, 𝑇];𝐻𝑘(ℝ𝑑)) × 𝐿∞([0, 𝑇];𝐻𝑘−1(ℝ𝑑)).

证明. 我们从 (𝑢0, 𝑢1) = (0, 0)的情况开始该情况也给出了 (6.1.1)的唯一性。对像集 𝐿∗(𝐶∞
𝑐 ((−∞, 𝑇)×

ℝ𝑑))中的任一元素 𝐿∗𝜓，我们定义一个它到 ℝ的映射：

𝐿∗𝜓 ↦→ ∫
𝑇

0
∫
ℝ𝑑
𝜓𝐹 d𝒙d𝑡 =∶ ⟨𝐹, 𝜓⟩,

其中 𝐿∗(𝐶∞
𝑐 ((−∞, 𝑇) × ℝ𝑑)) 表示 𝐶∞

𝑐 ((−∞, 𝑇) × ℝ𝑑) 在映射 𝐿∗ 下的像。注意这个映射是良定的，
因为方程𝐿∗𝜓 = 𝑓在给定𝜓(𝑇, ⋅) = 0时解的唯一性已经在 𝐿2 能量估计（定理 6.1.1）中证明了。据



6.1 线性波动方程的正则性和存在性 149

对 𝐹 的假设和引理 6.1.4，我们有

|||||||||
∫
𝑇

0
∫
ℝ𝑑
𝜓𝐹 d𝒙d𝑡

|||||||||
⩽ 𝐶 (∫

𝑇

0
‖𝐹‖𝐻𝑘−1 d𝑡) ( sup

𝑡∈[0,𝑇]
‖𝜓‖𝐻−𝑘+1) ⩽ 𝐶 ∫

𝑇

0
‖𝐿∗𝜓(𝑡)‖𝐻−𝑘 d𝑡.

据 Hahn-Banach定理知，存在函数 𝑢 ∈ (𝐿1((−∞, 𝑇);𝐻−𝑘(ℝ𝑑)))∗ = 𝐿∞((−∞, 𝑇);𝐻𝑘(ℝ𝑑))作为
上面定义的映射的延拓，且满足𝑢|𝑡<0 = 0. 即：

⟨𝐹, 𝜓⟩ = ⟨𝑢, 𝐿∗𝜓⟩ , ∀𝜓 ∈ 𝐶∞
𝑐 ((−∞, 𝑇) × ℝ𝑑).

因此𝑢是分布意义下的解。利用方程可以得到 𝑢 ∈ 𝐶1 ([0, 𝑇]; 𝐿2(ℝ𝑑)
)
，进而 (𝑢, 𝜕𝑡𝑢)|{𝑡=0} = (0, 0).

接下来证明(𝑢, 𝜕𝑡𝑢) ∈ 𝐿∞([0, 𝑇];𝐻𝑘(ℝ𝑑)) × 𝐿∞([0, 𝑇];𝐻𝑘−1(ℝ𝑑)).首先我们不妨设𝐹是具有紧支
集的光滑函数，令𝑣 = 𝜕𝑡𝑢,这样波动方程变为

𝜕𝑡𝑣 = 𝐹 + 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑢 ∈ 𝐿∞(0, 𝑇;𝐻𝑘−2(ℝ𝑑)).

对𝑡积分即得𝑣 = 𝜕𝑡𝑢 ∈ 𝐿∞(0, 𝑇;𝐻𝑘−2(ℝ𝑑)), 然后利用方程可得𝜕2𝑡 𝑢 ∈ 𝐿∞(0, 𝑇;𝐻𝑘−2(ℝ𝑑)). 但是现在
因为假设了𝐹具有紧支集且光滑，所以我们可以用𝑘+1替换掉𝑘,就得到(𝑢, 𝜕𝑡𝑢) ∈ 𝐿∞([0, 𝑇];𝐻𝑘(ℝ𝑑))×
𝐿∞([0, 𝑇];𝐻𝑘−1(ℝ𝑑)).
然后我们需要移除对𝐹的光滑性假设。对一般的 𝐹 ∈ 𝐿1(0, 𝑇;𝐻𝑘−1)，我们可找到在 {𝑡 < 0}

上取值为零的函数列 {𝐹𝑛} ⊂ 𝐶∞
𝑐 ((−∞, 𝑇) × ℝ𝑑) 使得 ∫𝑇0 ‖𝐹(𝑡, ⋅) − 𝐹𝑛(𝑡, ⋅)‖𝐻𝑘−1 d𝑡 → 0. 这样的话，

若𝑢𝑛 ∈ 𝐿∞(0, 𝑇;𝐻𝑘) ∩ 𝑊1,∞(0, 𝑇;𝐻𝑘−1)满足具有零初值的 𝐿𝑢𝑛 = 𝐹𝑛，我们就可由正则性定理得

‖𝝏(𝑢𝑙 − 𝑢𝑛)‖𝐻𝑘−1 ⩽ 𝐶 ∫
𝑇

0
‖𝐹𝑙(𝑡, ⋅) − 𝐹𝑛(𝑡, ⋅)‖𝐻𝑘−1 d𝑡 → 0.

最后我们还需处理初值非零的情况，不妨设初值𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (ℝ𝑑)（否则仍然考虑类似上面的

逼近），令𝜂(𝑡, 𝒙) = 𝑢0(𝒙) + 𝑡𝑢1(𝒙),它正好满足𝑢的初值条件。这样的话方程𝐿𝑣 = 𝐹 − 𝐿𝜂就是一个
关于未知函数𝑣且具有零初值的波动方程组，于是𝑢 ∶= 𝑣 + 𝜂就给出了方程(6.1.1)的解，其正则性
也和零初值的时候相同。

注记 6.1.1. 上述定理仅给出了分布意义下的解的存在性。但是我们可以利用 𝑠 > 𝑑∕2时的 Sobolev
嵌入 𝐻𝑠(ℝ𝑑) → 𝐿∞(ℝ𝑑)得到：如果我们初值正则性足够好，那么解也具有定理 6.1.2 中对应的正
则性，因此当 𝑘 足够大时方程的解可以逐点定义。

习题 6.1

习题 6.1.1. 证明定理6.1.2.

习题 6.1.2. 证明：对于任任任意意意常数 𝐷 ∈ ℝ，以下方程至多有一个光滑解 𝑢 ∈ 𝐶∞([0, 𝑇] × 𝑈). 这里
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𝑈 ⊂ ℝ𝑑 是一个具有光滑边界的区域，且 𝜑, 𝜓 ∈ 𝐶∞
𝑐 (𝑈).

⎧
⎪
⎨
⎪
⎩

𝜕2𝑡 𝑢 + 𝐷𝜕𝑡𝑢 − ∆𝑢 = 0 in (0, 𝑇] × 𝑈,
𝑢 = 𝜑, 𝜕𝑡𝑢 = 𝜓 on {𝑡 = 0} × 𝑈,
𝑢 = 0 on [0, 𝑇] × 𝜕𝑈.

6.2 波动方程的有限传播速度

在本科 PDE课程中，我们已经学过标准波动方程 𝜕2𝑡 𝑢 − 𝑐2∆𝑢 = 0具有有限传播速度。
定理 6.2.1 (有限传播速度). 对于在ℝ+×ℝ𝑑中带有初值 (𝑢0, 𝑢1) ∈ 𝐶∞

𝑐 (ℝ𝑑)的波动方程 𝜕2𝑡 𝑢−𝑐2∆𝑢 =
0，如果存在 𝑡0 > 0和 𝒙0 ∈ ℝ𝑑使得初值𝑢0, 𝑢1在集合 {𝒙 ∈ ℝ𝑑 ∶ |𝒙 − 𝒙0| ⩽ 𝑐𝑡0}中有恒为零，那么
解 𝑢(𝑡, 𝒙)在过往光锥 (past light cone) 𝐾(𝑡0, 𝒙0)内恒为零。这里

𝐾(𝑡0, 𝒙0) ∶=
{
(𝑡, 𝒙) ∈ ℝ+ × ℝ𝑑 ∶ 0 ⩽ 𝑡 ⩽ 𝑡0, |𝒙 − 𝒙0| ⩽ 𝑐(𝑡0 − 𝑡)

}
.

波动方程的有限传播速度描述了一个与抛物型极大值原理（无限传播速度）“相反”的现象。这

一性质实际上否定了双曲型 PDE满足极大值原理的可能性。
我们自然会问：对于变系数波动方程是否还能证明有限传播速度的结果？答案是肯定的。固

定一点 (𝑡0, 𝒙0) ∈ ℝ+ ×ℝ𝑑，我们希望构造某种以 (𝑡0, 𝒙0)为顶点的“弯曲光锥” 𝐶，使得如果初值
在 𝐶 ∩ {𝑡 = 0}上为零，那么解 𝑢在 𝐶 内为零。

现在回忆：证明定理 6.2.1的关键思想是证明在切片 {(𝑡, 𝒙) ∶ |𝒙 − 𝒙0| ⩽ 𝑐(𝑡0 − 𝑡)}上的能量关
于时间𝑡单调递减。因此我们可以试着寻找适当的函数 𝑞(𝒙)，使得类似的证明对于变系数波动方
程也成立。准确地说，我们希望找到 𝑞(𝒙)，使得在切片 𝐾𝑡 ∶= {𝒙 ∶ 𝑞(𝒙) < 𝑡0 − 𝑡}上的某个能量函
数 𝑒(𝑡)关于 𝑡 递减。特别地，对标准波动方程这个 𝑞(𝒙)是 (𝒙 − 𝒙0)∕𝑐。
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6.2.1 动机：几何光学

事实上，过往光锥的边界可以理解为某个 Hamilton-Jacobi 方程的解 𝑝(𝑡, 𝒙) 的水平集，也就
是说光锥的边界由某个 Hamilton-Jacobi方程的特征曲线组成。
我们首先从 ℝ+ × ℝ𝑑 中的标准波动方程 𝜕2𝑡 𝑢 − ∆𝑢 = 0 来看这一事实。对𝑡 ⩾ 0, 𝒙 ∈ ℝ𝑑 和

𝜀 > 0，我们考虑具有形式 𝑢𝜀(𝑡, 𝒙) ∶= 𝑈𝜀(𝑡, 𝒙) ⋅ exp(𝑖𝑝𝜀(𝑡, 𝒙)𝜀−1)的复值解。将此式代入波动方程，
我们得到

0 = (𝜕2𝑡 − ∆)𝑢𝜀 =𝑒
𝑖𝑝𝜀

𝜀
(
𝜕2𝑡𝑈𝜀 + 2𝑖𝜀−1𝜕𝑡𝑝𝜀 𝜕𝑡𝑈𝜀 − 𝜀−2(𝜕𝑡𝑝𝜀)2𝑈𝜀 + 𝑖𝜀−1𝜕2𝑡 𝑝𝜀𝑈𝜀)

− 𝑒
𝑖𝑝𝜀

𝜀
(
∆𝑈𝜀 + 2𝑖𝜀−1∇𝑝𝜀 ⋅ ∇𝑈𝜀 − 𝜀−2𝑈𝜀|∇𝑝𝜀|2 + 𝑖𝜀−1𝑈𝜀 ∆𝑝𝜀

)
.

取上述等式的实部，我们发现

𝑈𝜀((𝜕𝑡𝑝𝜀)2 − |∇𝑝𝜀|2) = 𝜀2(𝜕2𝑡𝑈𝜀 − ∆𝑈𝜀). (6.2.1)

当 𝜀 → 0时，若在某种意义下我们有收敛 𝑝𝜀 → 𝑝以及 𝑈𝜀 → 𝑈 ≠ 0，那么形式上我们就可得到

𝜕𝑡𝑝 ± |∇𝑝| = 0 in ℝ+ × ℝ𝑑. (6.2.2)

据分离变量法，我们可以得到 𝑝(𝑡, 𝒙) = 𝑞(𝒙) + 𝑡 − 𝑡0，且 𝑞在 ℝ𝑑∖{𝒙0}中满足 |∇𝑞|2 = 1，𝑞 > 0且
𝑞(𝒙0) = 0，进而我们可以解出 𝑞(𝒙) = |𝒙 − 𝒙0|.

对于变系数的情况，我们也可以解出

𝜕𝑡𝑝 ±
(
𝑔𝑖𝑗𝜕𝑖𝑝𝜕𝑗𝑝

) 1
2 = 0 在 ℝ+ × ℝ𝑑. (6.2.3)

再用分离变量法得到

𝑝(𝑡, 𝒙) = 𝑞(𝒙) + 𝑡 − 𝑡0 (6.2.4)

𝑔𝑖𝑗𝜕𝑖𝑞𝜕𝑗𝑞 = 1, 𝑞 > 0在 ℝ𝑑∖{𝒙0}, 𝑞(𝒙0) = 0. (6.2.5)

事实上这个 𝑞 是在由 𝒈确定的黎曼度量下从 𝒙到 𝒙0 的距离。

6.2.2 有限传播速度的证明

我们定义 𝐾 ∶= {(𝑡, 𝒙) ∶ 𝑝(𝑡, 𝒙) < 0} = {(𝑡, 𝒙) ∶ 𝑞(𝒙) < 𝑡0 − 𝑡}，对 𝑡 > 0我们定义

𝐾𝑡 ∶= {𝒙 ∶ 𝑞(𝒙) < 𝑡0 − 𝑡}.

由于 ∇𝑞 ≠ 𝟎在远离 𝒙0 处成立，我们知道对 0 ⩽ 𝑡 ⩽ 𝑡0，𝜕𝐾𝑡 是一个光滑的 (𝑑 − 1)维超曲面。
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定理 6.2.2 (有限传播速度). 设 𝑢是 (6.1.1)的光滑解。若 𝑢 ≡ 𝜕𝑡𝑢 ≡ 0在𝐾0上成立，那么𝑢在𝐾中恒
为零。

注记 6.2.1. 据此我们知道，若𝑢是方程(6.1.1)在初值为(𝑢0, 𝑢1)时的解，那么𝑢(𝑡0, 𝒙0)仅依赖于 𝑢0和
𝑢1 在 𝐾0 内的取值。

证明. 我们定义能量

𝑒(𝑡) ∶= 1
2 ∫𝐾𝑡

(𝜕𝑡𝑢)2 +
𝑛∑

𝑖,𝑗=1
𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢 d𝒙 (0 ⩽ 𝑡 ⩽ 𝑡0)

为了计算 𝑒̇(𝑡)，我们利用余面积公式的推论（移动区域求导公式）得到

d
d𝑡 (∫𝐾𝑡

𝑓 d𝒙) = ∫
𝐾𝑡
𝜕𝑡𝑓 d𝒙 − ∫

𝜕𝐾𝑡

𝑓
|∇𝑞| d𝑆𝒙.

因此有

𝑒′(𝑡) = ∫
𝐾𝑡
𝜕𝑡𝑢 𝜕2𝑡 𝑢 + 𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑡𝜕𝑗𝑢 d𝒙 −

1
2 ∫𝜕𝐾𝑡

(
(𝜕𝑡𝑢)2 + 𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢

) 1
|∇𝑞| d𝑆𝒙. (6.2.6)

对第一项，我们分部积分并代入波动方程得到

∫
𝐾𝑡
𝜕𝑡𝑢 𝜕2𝑡 𝑢 + 𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑡𝜕𝑗𝑢 d𝒙 = ∫

𝐾𝑡
𝜕𝑡𝑢

(
𝜕2𝑡 𝑢 − 𝜕𝑗(𝑔𝑖𝑗𝜕𝑖𝑢)

)
d𝒙 + ∫

𝜕𝐾𝑡
𝑔𝑖𝑗𝜕𝑖𝑢𝑁𝑗 𝜕𝑡𝑢 d𝑆𝒙

= − ∫
𝐾𝑡
𝜕𝑡𝑢(𝜕𝑖𝑢 𝜕𝑗𝑔𝑖𝑗) d𝒙 + ∫

𝜕𝐾𝑡
𝑔𝑖𝑗𝜕𝑖𝑢𝑁𝑗 𝜕𝑡𝑢 d𝑆𝒙

其中 𝑁 = (𝑁1,⋯ ,𝑁𝑑)是 𝜕𝐾𝑡 的单位外法向量。直接计算可得第一项被 𝐶𝑒(𝑡)控制

|||||||||
− ∫

𝐾𝑡
𝜕𝑡𝑢(𝜕𝑖𝑢 𝜕𝑗𝑔𝑖𝑗) d𝒙

|||||||||
⩽ 𝐶𝑒(𝑡).

对第二项，我们希望它能够与 𝑒′(𝑡)中出现的边界项产生抵消。我们有

||||𝑔
𝑖𝑗𝜕𝑖𝑢𝑁𝑗

|||| ⩽
(
𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢

) 1
2
(
𝑔𝑖𝑗𝑁𝑖𝑁𝑗

) 1
2

这是广义 Cauchy-Schwartz不等式的推论：对于正定对称矩阵ℳ = 𝒫𝒫⊤ 和向量 𝒙, 𝒚，有

|𝒙⊤ℳ𝒚| = |(𝒫𝒙)⊤(𝒫𝒚)| ⩽ |𝒫𝒙||𝒫𝒚| =
√
(𝒫𝒙⊤)𝒫𝒙

√
(𝒫𝒚)⊤𝒫𝒚 =

√
𝒙⊤ℳ𝒙

√
𝒚⊤ℳ𝒚.
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然后我们回忆在 𝐾𝑡 上有 𝑞 = 𝑡0 − 𝑡 意味着在 𝜕𝐾𝑡 上有 𝑁 = ∇𝑞
|∇𝑞|
成立，因此

𝑔𝑖𝑗𝑁𝑖𝑁𝑗 =
𝑔𝑖𝑗𝜕𝑖𝑞𝜕𝑗𝑞
|∇𝑞|2 = 1

|∇𝑞|2 .

用 Young不等式，我们可得

|||||||||
∫
𝜕𝐾𝑡

𝑔𝑖𝑗𝜕𝑖𝑢𝑁𝑗 𝜕𝑡𝑢 d𝑆𝒙
|||||||||
⩽ ∫

𝜕𝐾𝑡

(
𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢

) 1
2
(
𝑔𝑖𝑗𝑁𝑖𝑁𝑗

) 1
2 |𝜕𝑡𝑢| d𝑆𝒙

⩽∫
𝜕𝐾𝑡

(
𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢

) 1
2 |∇𝑞|−1|𝜕𝑡𝑢| d𝑆𝒙

⩽ 1
2 ∫𝜕𝐾𝑡

(
𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢 + (𝜕𝑡𝑢)2

)
|∇𝑞|−1 d𝑆𝒙 = −𝑒′(𝑡) + ∫

𝐾𝑡
𝜕𝑡𝑢 𝜕2𝑡 𝑢 + 𝑎𝑖𝑗𝜕𝑖𝑢𝜕𝑡𝜕𝑗𝑢 d𝒙.

综上我们得到𝑒′(𝑡) ⩽ 𝐶𝑒(𝑡)，而 𝑒(0) = 0，据 Grönwall不等式得 𝑒(𝑡) = 0.

习题 6.2

习题 6.2.1. 对波动方程 𝜕2𝑡 𝑢 − 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑢 = 0验证 (6.2.3).

习题 6.2.2. 考虑半线性波动方程的初值问题

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 + 𝑓(𝑢) = 0 𝑡 > 0, 𝒙 ∈ ℝ𝑑;
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝑥) = 𝜓1(𝒙) 𝒙 ∈ ℝ𝑑.

(6.2.7)

这里 𝑓 是连续函数，且假设 𝑢在 |𝒙| → ∞时趋于零。

(1) 证明如下𝐸(𝑡)关于时间是守恒量

𝐸(𝑡) ∶= ∫
ℝ𝑑

1
2(|𝜕𝑡𝑢|

2 + |∇𝑢|2) + 𝐹(𝑢) d𝒙, 𝐹(𝑢) ∶= ∫
𝑢

0
𝑓(𝑠) d𝑠.

(2) 给定 𝑡0 > 0和 𝒙0 ∈ ℝ𝑑 并定义带有顶点 (𝒙0, 𝑡0)的时间倒向光锥 (time-backward light cone)为

𝐾(𝒙0, 𝑡0) ∶= {(𝑡, 𝒙) ∈ [0,∞) × ℝ𝑑 ∶ 0 ⩽ 𝑡 ⩽ 𝑡0, |𝒙 − 𝒙0| ⩽ 𝑡0 − 𝑡},

𝐾(𝒙0, 𝑡0)边界的弯曲部分为

Γ(𝒙0, 𝑡0) ∶= {(𝑡, 𝒙) ∈ [0,∞) × ℝ𝑑 ∶ 0 ⩽ 𝑡 ⩽ 𝑡0, |𝒙 − 𝒙0| = 𝑡0 − 𝑡}.
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定义光锥上的能量通量(energy flux)为

𝑒(𝑡) ∶= ∫
𝐵(𝒙0,𝑡0−𝑡)

1
2(|𝜕𝑡𝑢|

2 + |∇𝑢|2) + 𝐹(𝑢) d𝒙 0 ⩽ 𝑡 ⩽ 𝑡0.

证明：
1
√
2
∫
Γ(𝒙0,𝑡0)

1
2|(𝜕𝑡𝑢)𝜈 − ∇𝑢|2 + 𝐹(𝑢) d𝑆 = 𝑒(0) (6.2.8)

其中 𝜈 ∶= 𝒙−𝒙0
|𝒙−𝒙0|

.

(3) 设 𝐹 ⩾ 0，利用 (2)证明如果𝑢0, 𝑢1在𝐵(𝒙0, 𝑡0)中恒为零，那么𝑢在光锥𝐾(𝒙0, 𝑡0)内恒为零。
(4) 证明 (3) 对于拟线性波动方程 𝜕2𝑡 𝑢 − ∆𝑢 + 𝑓(𝑢, 𝝏𝑢) = 0 的光滑解 𝑢 也成立，其中 𝑓 连续且

𝑓(0, 𝟎) = 0.

提示：(2) 计算 𝑒′(𝑡) 并将其与待证等式的左端进行比较，尤其要思考系数 1∕
√
2 是如何出现

的。(4)考虑 𝐸(𝑡) = ∫𝐵(𝒙0,𝑡0−𝑡)
1
2
(|𝜕𝑡𝑢|2+ |∇𝑢|2) +𝑢2 d𝒙并注意到存在依赖于 ‖𝑢, 𝝏𝑢‖𝐿∞ 的常数 𝐶 > 0

使得 |𝑓(𝑢, 𝝏𝑢)| ⩽ 𝐶(|𝑢| + |𝝏𝑢|)成立。

6.3 拟线性波动方程的局部理论

在许多物理模型中出现的波动方程都是非线性的，尤其是拟线性波动方程，例如刻画无粘流

体运动的可压缩Euler方程组、刻画时空弯曲的Einstein方程组等等。特别地，它们的非线性项都
同时依赖于未知函数 𝑢和它的导数.

例 6.3.1 (可压缩欧拉方程). 设𝑑 = 1, 2, 3, 𝐮 ∶ ℝ×ℝ𝑑 → ℝ𝑑是流体速度，𝜌, 𝑝 ∶ ℝ×ℝ𝑑 → ℝ分别是
流体的密度和压力，其中𝜌 > 0. 可压缩理想流体满足Euler方程组

⎧
⎪
⎨
⎪
⎩

𝜌(𝜕𝑡 + 𝐮 ⋅ ∇)𝐮 = −∇𝑝
(𝜕𝑡 + 𝐮 ⋅ ∇)𝜌 + 𝜌∇ ⋅ 𝐮 = 0
𝑝 = 𝑝(𝜌)是是是严严严格格格递递递增增增函函函数数数，，，例例例如如如𝑝(𝜌) = 𝐴𝜌𝛾 − 𝐵.

对第一个式子求散度并代入第二个式子即得压力满足一个拟线性波动方程

𝜌′(𝑝)𝐷2
𝑡 𝑝 − ∆𝑝 = 𝜌(𝜕𝑖𝑢𝑗𝜕𝑗𝑢𝑖) + (𝜌−1𝜌′(𝑝) − 𝜌′′(𝑝))(𝐷𝑡𝑝)2 − 𝜌−1𝜌′(𝑝)|∇𝑝|2, 𝐷𝑡 ∶= 𝜕𝑡𝐮 ⋅ ∇.

另一方面，它的速度场也满足波动方程，这里我们以无旋情况为例，即𝐮 = ∇𝜙时，若令ℎ(𝜌) =
∫𝜌∗ 𝑝′(𝑟)∕𝑟 d𝑟为焓，则可算出𝜕𝑡𝜙 −

1
2
|∇𝜙|2 − ℎ = 0,此时第二个方程可以化作

𝜂−2𝜕2𝑡 𝜙 − 2𝜂−2∇𝜙 ⋅ ∇𝜕𝑡𝜙 + 𝜂−2(∇𝜙)⊤(∇𝜙)(∇𝜙) − ∆𝜙 = 0.



6.3 拟线性波动方程的局部理论 155

例 6.3.2 (真空爱因斯坦方程). 设𝒈(𝑡, 𝒙)是ℝ1+3上的Lorentz度量，即它的符号为(−,+,+,+). 真空
Einstein方程即为

Ric 𝒈 = 0 (0 ⩽ 𝜇, 𝜈 ⩽ 3).

如果在局部坐标下作展开，则可以得到

0 = −12𝑔
𝛼𝛽𝜕2𝛼𝛽𝑔𝜇𝜈 −

1
2𝑔

𝛼𝛽𝜕2𝜇𝜈𝑔𝛼𝛽 +
1
2𝑔

𝛼𝛽𝜕2𝛼𝜈𝑔𝛽𝜇 +
1
2𝑔

𝛼𝛽𝜕2𝛽𝜇𝑔𝛼𝜈 + 𝐹𝜇𝜈(𝒈, 𝝏𝒈).

特别地，如果右端项第二、第三和第四项不存在，那么这就变成了一个拟线性波动方程组，且

源项就只依赖𝑔 及其导数的函数。另一方面，如果我们选取特殊的波波波坐坐坐标标标条条条件件件 (wave coordinate
condition)，即假设局部坐标满足

□𝑔𝑥𝛼 ∶=
1

√
−det 𝒈

𝜕𝜇(𝑔𝜇𝜈
√
−det 𝒈𝜕𝜈𝑥𝛼) = 0,

此时右端项第二、第三和第四项都可以写成至多含有一阶导数的项，真空Einstein方程会变成约约约
化化化(reduced)真真真空空空Einstein方方方程程程 R̃ic 𝑔𝜇𝜈 = 0,其中

R̃ic 𝑔𝜇𝜈 = Ric 𝑔𝜇𝜈 −
1
2𝜕𝜇𝜆𝜈 −

1
2𝜕𝜈𝜆𝜇.

𝜆𝜎 = 𝑔𝜇𝛼𝜕𝜇𝑔𝛼𝜎 −
1
2𝑔

𝛼𝛽𝜕𝜎𝑔𝛼𝛽.

这是因为我们可以计算出在波坐标下𝜆 ≡ 𝟎. 所以可见，在波坐标下，真空Einstein方程是拟线性
波动方程组。

本节我们考虑具有如下形式的拟线性波动方程。

⎧

⎨
⎩

𝜕2𝑡 𝑢 − 𝑔𝑖𝑗(𝑢)𝜕𝑖𝜕𝑗𝑢 = 𝐹(𝑢, 𝝏𝑢) in (0, 𝑇) × ℝ𝑑,
(𝑢, 𝜕𝑡𝑢) = (𝑢0, 𝑢1) on {𝑡 = 0} × ℝ𝑑.

(6.3.1)

其中 𝑘 ∈ ℕ∗ 待定。此外我们还要求

• 𝒈, 𝐹 关于其变量都是光滑的, 𝐹(0, 𝟎) = 0.
• [𝑔𝑖𝑗]𝑑×𝑑是实对称正定方阵，其中𝜆(𝑧), Λ(𝑧)关于(𝑧) ∈ ℝ连续且取值为正。

∀𝑧 ∈ ℝ, 𝝃 ∈ ℝ𝑑, 𝜆(𝑧)|𝝃 |2 ⩽ 𝑔𝑖𝑗(𝑧)𝜉𝑖𝜉𝑗 ⩽ Λ(𝑧)|𝒛|2. (6.3.2)

6.3.1 拟线性波动方程的局部适定性

在如上假设下，我们证明方程(6.3.1)的局部适定性。

定理 6.3.1 (拟线性波动方程的局部适定性). 设 𝑠 ⩾ 𝑑 + 2，初值(𝑢0, 𝑢1) ∈ 𝐻𝑠(ℝ𝑑) × 𝐻𝑠−1(ℝ𝑑)具有
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紧支集，则在本节的假设下有如下结论成立。

(1) (局部解的存在性和唯一性)存在 𝑇 > 0 (依赖‖𝑢0‖𝐻𝑠(ℝ𝑑) 和 ‖𝑢1‖𝐻𝑠−1(ℝ𝑑)),使得方程 (6.3.1)有唯
一解并满足

(𝑢, 𝜕𝑡𝑢) ∈ 𝐿∞([0, 𝑇];𝐻𝑠(ℝ𝑑)) × 𝐿∞([0, 𝑇];𝐻𝑠−1(ℝ𝑑)).

(2) (对初值的连续依赖性) 设 𝑢(𝑛)0 , 𝑢(𝑛)1 满足 𝑢(𝑛)0
𝐻𝑠(ℝ𝑑)
,,,,,→ 𝑢0 以及 𝑢(𝑛)1

𝐻𝑠−1(ℝ𝑑)
,,,,,,,→ 𝑢1，则对充分小

的𝑇 > 0和任意的1 ⩽ 𝑠 < 𝑑 + 2成立下式

‖(𝑢(𝑛) − 𝑢, 𝜕𝑡(𝑢(𝑛) − 𝑢))‖𝐿∞([0,𝑇];𝐻𝑠(ℝ𝑑))×𝐿∞([0,𝑇];𝐻𝑠−1(ℝ𝑑)) → 0, 𝑛 → ∞.

这里 𝑢是以 (𝑢0, 𝑢1)为初值的解，𝑢(𝑛)是以 (𝑢(𝑛)0 , 𝑢(𝑛)1 )为初值的解。

注记 6.3.1. 如果波动方程的系数𝒈同时依赖𝑢, 𝝏𝑢, 则此时应当要求𝑠 ⩾ 𝑑 + 3，见 Sogge [14, 第一
章].

证明. 我们不妨取𝑠 = 𝑑 + 2这个最低正则性。证明的方法是用常微分方程里就学过的Picard迭代
法。据稠密性，我们不妨假设初值𝑢0, 𝑢1 ∈ 𝒮(ℝ𝑑)以方便求导。今构造逼近解序列{𝑢(𝑛)}如下：

• 𝑢(1) = 0.
• 对𝑛 ⩾ 2,归纳地定义𝑢(𝑛)为如下线性波动方程的唯一解

⎧

⎨
⎩

𝜕2𝑡 𝑢(𝑛) − 𝑔𝑖𝑗(𝑢(𝑛−1))𝜕𝑖𝜕𝑗𝑢(𝑛) = 𝐹(𝑢(𝑛−1), 𝝏𝑢(𝑛−1)) in (0, 𝑇) × ℝ𝑑,
(
𝑢(𝑛), 𝜕𝑡𝑢(𝑛)

)
= (𝑢0, 𝑢1) ∈ 𝐻𝑑+2(ℝ𝑑) × 𝐻𝑑+1(ℝ𝑑) on {𝑡 = 0} × ℝ𝑑,

(6.3.3)

换言之，第𝑛个逼近解由“以第(𝑛 − 1)组解为系数的”线性波动方程归纳定义，这也是常微
分方程里面用Picard迭代证明一阶ODE解的局部存在性的方法。

接下来需要证明两件事

• 逼近解序列{𝑢(𝑛)}在某个函数空间内具有关于𝑛一致的上界。
• 逼近解序列{𝑢(𝑛)}是某个函数空间中的Cauchy列，这往往选取和上一条中用到的函数空间种
类相同但阶数更低的函数空间）。

事实上，第二点的证明需要用到第一点的结论（从证明过程也可以看出为什么我们要先在低阶空

间里面证明强收敛以构造出极限）；而只要第二点得证，从逼近方程(6.3.3)中取形式极限就得到
了原方程(6.3.1).

逼近解序列的一致有界性. 这实际上就是推论6.1.2的翻版，我们对𝑛归纳来证明结论。对正整
数𝑛 ⩾ 2，我们定义能量泛函

𝐸𝑛(𝑡) ∶=
‖‖‖‖(𝑢

(𝑛)(𝑡), 𝜕𝑡𝑢(𝑛)(𝑡))
‖‖‖‖
2

𝐻𝑑+2×𝐻𝑑+1 =
‖‖‖‖𝑢

(𝑛)(𝑡)‖‖‖‖
2

𝐻𝑑+2(ℝ𝑑) +
‖‖‖‖𝜕𝑡𝑢

(𝑛)(𝑡)‖‖‖‖
2

𝐻𝑑+1(ℝ𝑑) .
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然后证明如下结论

命题 6.3.2. 存在仅依赖初值和维数的时间𝑇 > 0和常数𝐴 > 0，使得 sup
𝑡∈[0,𝑇]

𝐸𝑛(𝑡) ⩽ 𝐴.

命题6.3.2的证明. 首先当𝑛 = 2时，据逼近解构造𝑢(𝑛−1) = 𝑢(1) = 0, 所以(6.3.3)是常系数、齐次线
性波动方程，因此据线性方程能量估计直接可得：存在仅依赖初值的常数𝐴 > 0和时间𝑇 > 0使得
𝐸2(𝑡) ⩽ 𝐴. 接下来给定正整数𝑛 ⩾ 3，我们假设命题6.3.2对全体⩽ 𝑛 − 1的正整数成立，接下来证
明𝐸𝑛也有一样的估计。

首先据Sobolev嵌入定理以及𝑑 + 2 − [𝑑+2
2
] ⩾ 1 + [𝑑+1

2
]，存在常数𝐶 > 0使得

∑

|𝛼|⩽1+[ 𝑑+1
2
]

‖𝜕𝛼𝒙𝑢(𝑛−1)(𝑡, ⋅)‖2𝐿∞(ℝ𝑑) +
∑

|𝛼|⩽[ 𝑑+1
2
]

‖𝜕𝛼𝒙𝜕𝑡𝑢(𝑛−1)(𝑡, ⋅)‖2𝐿∞(ℝ𝑑) ⩽ 𝐶𝐸𝑛−1(𝑡) ⩽ 𝐶𝐴. (6.3.4)

为控制𝐸𝑛(𝑡)，我们需要在方程(6.3.3)两边求导𝜕𝛼𝒙 , 其中|𝛼| ⩽ 𝑑 + 1. 对微分算子𝑇和函数𝑓, 𝑔, 我们
记交换子为[𝑇, 𝑓]𝑔 = 𝑇(𝑓𝑔) − 𝑓(𝑇𝑔). 这样方程求导后变为

𝜕2𝑡 𝜕𝛼𝒙𝑢(𝑛) − 𝑔𝑖𝑗(𝑢(𝑛−1))𝜕𝑖𝜕𝑗𝜕𝛼𝒙𝑢(𝑛) = 𝜕𝛼𝒙𝐹(𝑢(𝑛−1), 𝝏𝑢(𝑛−1)) − [𝜕𝛼𝒙 , 𝑔𝑖𝑗(𝑢(𝑛−1))]𝜕𝑖𝜕𝑗𝑢(𝑛). (6.3.5)

下面分析如上波动方程的右端项。

交换子估计. [𝜕𝛼, 𝑔𝑖𝑗(𝑢(𝑛−1))]𝜕𝑖𝜕𝑗𝑢(𝑛) 是有限多项的线性组合，每一项都是 𝑢(𝑛−1) 或 𝑢(𝑛) 的导数
的乘积，其中 𝑢(𝑛−1) 或 𝑢(𝑛) 被求导次数超过 (|𝛼| + 3)∕2的因子至多有一个。实际上这个事实就是
硬拆括号然后用Sobolev嵌入定理算出来的，注意 [𝜕𝛼𝒙 , 𝑔𝑖𝑗(𝑢(𝑛−1))]𝜕𝑗𝜕𝑘𝑢(𝑛) 是形如下式的线性组合

𝐚(𝑢(𝑛−1))𝜕𝛼1𝒙 𝑢(𝑛−1)⋯𝜕𝛼𝑘𝒙 𝑢(𝑛−1)𝜕
𝛾
𝒙𝜕2𝒙𝑢(𝑛),

其中 |𝛼1| +⋯ + |𝛼𝑘| + |𝛾| = |𝛼|且 |𝛾| ⩽ |𝛼| − 1.

• 若|𝛾| ⩾ (|𝛼|−1)∕2，则 |𝛼1|+⋯+|𝛼𝑘| ⩽ (|𝛼|+1)∕2.这样对任意的 𝛼𝑗, 𝛽𝑗都有 |𝛼𝑗| ⩽ (|𝛼|+1)∕2.
• 若|𝛾| < (|𝛼| − 1)∕2，则|𝛼1| +⋯+ |𝛼𝑘| ⩽ |𝛼|. 这样在 {𝛼1,⋯ , 𝛼𝑘}中至多只有一个指标的长度
> |𝛼|∕2.

由于 |𝛼| ⩽ 𝑑 + 1，我们有

• 导数最多的那项取𝐿2后阶数不超过𝑑 + 2,因为(|𝛼| + 3)∕2 ⩽ 2 + (𝑑∕2) < 2 + 𝑑.
• 其它低阶项全取𝐿∞后再用Sobolev嵌入定理仍可以被𝐻𝑑+2范数控制：(|𝛼|+1)∕2+(𝑑+1)∕2 ⩽
𝑑 + 3

2
< 𝑑 + 2.

这样由求导后的方程可得，存在依赖于𝐴(但不依赖𝑛)的常数𝐶𝐴 > 0使得

|[𝜕𝛼𝒙 , 𝑔𝑖𝑗(𝑢(𝑛−1))]𝜕𝑖𝜕𝑗𝑢(𝑛)| ⩽ 𝐶𝐴
⎛
⎜
⎝

∑

|𝛽|⩽𝑑+1
(|𝜕𝛽𝝏𝑢(𝑛−1)| + |𝜕𝛽𝝏𝑢(𝑛)|) + 1

⎞
⎟
⎠
.
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因此据归纳假设以及上面讨论的导数阶数，我们有

‖[𝜕𝛼, 𝑔𝑖𝑗(𝑢(𝑛−1))]𝜕𝑖𝜕𝑗𝑢(𝑛)‖𝐿2 ⩽ 𝐶𝐴(𝐸𝑛(𝑡) + 1). (6.3.6)

源项估计. 据求导法则，我们知道𝜕𝛼𝒙𝐹(𝑢(𝑛−1), 𝝏𝑢(𝑛−1))是有限多项的线性组合，每一项是 𝑢(𝑛−1)

的导数的乘积，其中超过|𝛼|∕2 + 1阶导数落在 𝑢(𝑛−1) 上的因子至多有一个。实际上我们可以算出
𝜕𝛼𝒙𝐹(𝑢(𝑛−1), 𝜕𝑢(𝑛−1))是以下形式项的线性组合

𝑎(𝑢(𝑛−1), 𝜕𝑢(𝑛−1))𝜕𝛽1𝒙 𝑢(𝑛−1)⋯𝜕𝛽𝑘𝒙 𝑢(𝑛−1)𝜕
𝛾1
𝒙 𝝏𝑢(𝑛−1)⋯𝜕𝛾𝑙𝒙 𝝏𝑢(𝑛−1)

其中 |𝛽1| +⋯+ |𝛽𝑘| + |𝛾1| +⋯+ |𝛾𝑙| = |𝛼|. 因此除至多一个多重指标外，其余均满足 |𝛽𝑗| ⩽ |𝛼|∕2
和 |𝛾𝑗| ⩽ |𝛼|∕2. 据此结合方程，我们得到

|𝜕𝛼𝐹(𝑢(𝑛−1), 𝜕𝑢(𝑛−1))| ⩽ 𝐶𝐴
⎛
⎜
⎝

∑

|𝛽|⩽|𝛼|+1
|𝜕𝛽𝑢(𝑛−1)| + 1

⎞
⎟
⎠
⩽ 𝐶𝐴

⎛
⎜
⎝

∑

|𝛽|⩽𝑠+1
|𝜕𝛽𝑢(𝑛−1)| + 1

⎞
⎟
⎠
,

据归纳假设 (6.3.4)，可得

‖𝜕𝛼𝒙𝐹(𝑢(𝑛−1), 𝝏𝑢(𝑛−1))‖𝐿2 ⩽ 𝐶𝐴(𝐸𝑛−1(𝑡) + 1) ⩽ 𝐶𝐴. (6.3.7)

现在，据定理6.1.1以及归纳假设(6.3.4)(给出𝝏𝑔的界)知

𝐸𝑛(𝑡) ⩽ 𝐶 (𝐸𝑛(0) + 𝐶𝐴 ∫
𝑡

0
(𝐸𝑛(𝜏) + 1) d𝜏) 𝑒𝐶0𝑡 ⩽ (𝐶1 + 𝐶2 ∫

𝑡

0
𝐸𝑛(𝜏) d𝜏) 𝑒𝐶0𝑡.

其中上式出现的常数均只依赖初值(或者说𝐴)和维数。据Grönwall不等式知，存在时间𝑇 > 0，它
只依赖初值(或者说𝐴)和维数，使得 sup

𝑡∈[0,𝑇]
𝐸𝑛(𝑡) ⩽ 𝐴.

逼近解序列的收敛性. 接下来我们证明逼近解序列{𝑢(𝑛)}在阶数略低一些的空间是强收敛的。为
此我们考虑对第𝑛组逼近解和第(𝑛 − 1)组逼近解作差。记[𝑢](𝑛) ∶= 𝑢(𝑛) − 𝑢(𝑛−1)，它满足方程

⎧

⎨
⎩

𝜕2𝑡 [𝑢](𝑛) − 𝑔𝑖𝑗(𝑢(𝑛−1))[𝑢](𝑛) = 𝑅𝑛 in (0, 𝑇) × ℝ𝑑,
[𝑢](𝑛) = 𝜕𝑡[𝑢](𝑛) = 0 on {𝑡 = 0} × ℝ𝑑.

(6.3.8)

其中源项𝑅𝑛定义为

𝑅𝑛 ∶= [𝑔𝑖𝑗(𝑢(𝑛−1)) − 𝑔𝑖𝑗(𝑢(𝑛−2))]𝜕𝑖𝜕𝑗𝑢(𝑛−1) + 𝐹(𝑢(𝑛−1), 𝝏𝑢(𝑛−1)) − 𝐹(𝑢(𝑛−2), 𝝏𝑢(𝑛−2)).
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据中值定理，我们可得

|𝑅𝑛| ⩽ 𝐶
(
|[𝑢](𝑛−1)| + |[𝝏𝑢]|(𝑛−1)

)
(1 + |𝜕𝑢(𝑛−1)|).

我们现在定义[𝑢](𝑛)对应的能量泛函[𝐸](𝑛)(𝑡)为

[𝐸](𝑛)(𝑡) ∶= ‖‖‖‖𝑢
(𝑛)(𝑡)‖‖‖‖

2

𝐻1(ℝ𝑑) +
‖‖‖‖𝜕𝑡𝑢

(𝑛)(𝑡)‖‖‖‖
2

𝐿2(ℝ𝑑) .

则据定理6.1.1知

∀𝑛 ⩾ 3, [𝐸]𝑛(𝑡) ⩽ 𝐶 ∫
𝑡

0
[𝐸]𝑛−1(𝜏) d𝜏.

这样就存在不依赖𝑛的时间𝑇′ > 0使得对任意𝑡 ∈ [0, 𝑇′]有[𝐸]𝑛(𝑡) ⩽
1
2
[𝐸]𝑛−1(𝑡), 进而

∑
𝑛
[𝐸]𝑛(𝑡) < ∞.

这就说明{𝑢(𝑛)}收敛到某个函数𝑢,其满足𝑢 ∈ 𝐿∞(0, 𝑇;𝐻1(ℝ𝑑)), 𝜕𝑡𝑢 ∈ 𝐿∞(0, 𝑇; 𝐿2(ℝ𝑑)).

极限函数的正则性. 我们现在证明上面取到的极限𝑢满足𝑢 ∈ 𝐿∞([0, 𝑇],𝐻𝑑+2) ∩ 𝐶0,1([0, 𝑇],𝐻𝑑+1).
事实上由 (6.3.4)我们有

‖𝑢(𝑛−1)(𝑡, ⋅)‖2𝐻𝑑+2 + ‖𝜕𝑡𝑢(𝑛−1)(𝑡, ⋅)‖2𝐻𝑑+1 ⩽ 𝐴.

所以对每个固定的 𝑡，我们可以找到 {𝑢(𝑛−1)}的子列（不妨仍记为 {𝑢(𝑛−1)}）使得

𝑢(𝑛−1)(𝑡, ⋅)
𝐻𝑑+2(ℝ𝑑)
,,,,,,,⇀ 𝑢̃, 𝜕𝑡𝑢(𝑛−1)(𝑡, ⋅)

𝐻𝑑+1(ℝ𝑑)
,,,,,,,⇀ 𝑤̃.

由于 𝑢(𝑛−1)(𝑡, ⋅) → 𝑢(𝑡, ⋅)在 𝐻1 中强收敛，且 𝜕𝑡𝑢(𝑛−1)(𝑡, ⋅) → 𝜕𝑡𝑢(𝑡, ⋅)在 𝐿2 中强收敛，我们必然有
𝑢(𝑡, ⋅) = 𝑢̃和 𝜕𝑡𝑢(𝑡, ⋅) = 𝑤̃.据范数的弱下半连续性知

‖𝑢(𝑡, ⋅)‖2𝐻𝑑+2 ⩽ lim inf
𝑛→∞

‖𝑢(𝑛−1)(𝑡, ⋅)‖2𝐻𝑑+2 ⩽ 𝐴, ‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐻𝑑+1 ⩽ lim inf
𝑛→∞

‖𝜕𝑡𝑢(𝑛−1)(𝑡, ⋅)‖2𝐻𝑑+1 ⩽ 𝐴.

这就表明𝑢 ∈ 𝐿∞([0, 𝑇],𝐻𝑑+2) ∩ 𝐶0,1([0, 𝑇],𝐻𝑑+1).

验证极限函数是解. 同理我们可以证明𝑢满足和逼近解一样的能量估计，即

‖𝑢(𝑡, ⋅)‖2𝐻𝑑+2(ℝ𝑑) + ‖𝜕𝑡𝑢(𝑡, ⋅)‖
2
𝐻𝑑+1(ℝ𝑑) ⩽ 𝐴.
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现在可以证明逼近解𝑢(𝑛)到极限函数𝑢的逐点收敛了。据Sobolev插值不等式(习题5.1.3)知，对任意
的𝑠 ∈ [1, 𝑑 + 2)，我们有

sup
𝑡∈[0,𝑇]

‖‖‖‖(𝑢
(𝑛) − 𝑢, 𝜕𝑡𝑢(𝑛) − 𝜕𝑡𝑢)

‖‖‖‖𝐻𝑠×𝐻𝑠−1

⩽ 𝐶 sup
𝑡∈[0,𝑇]

‖‖‖‖(𝑢
(𝑛) − 𝑢, 𝜕𝑡𝑢(𝑛) − 𝜕𝑡𝑢)

‖‖‖‖
𝑑+2−𝑠
𝑑+1
𝐻1×𝐿2 sup𝑡∈[0,𝑇]

‖‖‖‖(𝑢
(𝑛) − 𝑢, 𝜕𝑡𝑢(𝑛) − 𝜕𝑡𝑢)

‖‖‖‖
𝑠−1
𝑑+1
𝐻𝑑+2×𝐻𝑑+1

⩽ 𝐶𝐴 sup
𝑡∈[0,𝑇]

‖‖‖‖(𝑢
(𝑛) − 𝑢, 𝜕𝑡𝑢(𝑛) − 𝜕𝑡𝑢)

‖‖‖‖
𝑑+2−𝑠
𝑑+1
𝐻1×𝐿2 → 0.

再用Sobolev嵌入定理，我们至少可以得到𝑢(𝑛)
𝐶2([0,𝑇]×ℝ𝑑)
,,,,,,,,,,→ 𝑢, 这就表明极限函数𝑢确实是方程的逐

点解。

解的唯一性和对初值的连续依赖性. 我们在此只证明唯一性，解对初值的连续依赖性可以类似
地证明，此处略去。设 𝑢和 𝑢̃是两个解。令 [𝑢] ∶= 𝑢 − 𝑢̃，则 𝑣 满足

𝜕2𝑡 [𝑢] − 𝑔𝑖𝑗(𝑢)𝜕𝑖𝜕𝑗[𝑢] = 𝑅, [𝑢](0, ⋅) = 0, 𝜕𝑡[𝑢](0, ⋅) = 0,

其中

𝑅 ∶= [𝐹(𝑢, 𝝏𝑢) − 𝐹(𝑢̃, 𝝏𝑢̃)] + [𝑔𝑖𝑗(𝑢) − 𝑔𝑖𝑗(𝑢̃)]𝜕𝑖𝜕𝑗𝑢̃.

显然|𝑅| ⩽ 𝐶(|[𝑢]| + |𝝏[𝑢]|), 其中 𝐶 依赖于 |𝝏𝑢̃| 的界以及 𝑔𝑖𝑗 和 𝐹 的导数的界。现在利用定
理6.1.2，我们得到

∑

|𝛼|⩽1
‖𝜕𝛼[𝑢](𝑡, ⋅)‖𝐿2 ⩽ ∫

𝑡

0
‖𝑅(𝜏, ⋅)‖𝐿2 d𝜏 ⩽ ∫

𝑡

0

∑

|𝛼|⩽1
‖𝜕𝛼[𝑢](𝜏, ⋅)‖𝐿2 d𝜏.

由 Grönwall不等式，
∑
|𝛼|⩽1

‖𝜕𝛼[𝑢]‖𝐿2 = 0. 因此 [𝑢] = 0，即 𝑢 = 𝑢̃.

注记 6.3.2. 事实上，定理6.3.1中对初值的正则性要求可以大幅下降，但是需要更复杂的调和分
析工具。此时的临界正则性则是 (𝑢0, 𝑢1) ∈ 𝐻

𝑑+1
2
+ × 𝐻

𝑑−1
2
+ (𝑑 ⩾ 3)和 (𝑢0, 𝑢1) ∈ 𝐻

7
4
+ × 𝐻

3
4
+ (𝑑 = 2)，

低于该正则性可以对一些特殊形式的拟线性波动方程构造出不适定的反例(破坏解对初值的连续
依赖性，即小初值瞬间演化出大解)，可参见

• Hart F. Smith, Daniel Tataru: Sharp local well-posedness results for the nonlinear wave equation.
Ann. Math., 162(1), 291–366, 2005.

• Hans Lindblad: Counterexample to local existence for semilinear wave equations. Amer. J. Math.,
118(1), 1–16, 1996.

特别地，后者构造的反例实际上是一个仅依赖𝑡和𝑥1变量的解，后来人们发现这个不适定的本质实
际上是产生了瞬时激波(见下方第一个参考文献)。该方法近年被用于构造可压缩流体方程（同样
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具有拟线性波动方程的结构）的低正则性瞬时激波反例，以寻求可压缩流体方程的低正则性解。

• Ross Granowski. Asymptotic Stable Ill-posedness of Geometric Quasilinear Wave Equations. PhD
Thesis, Princeton University, 2018.

• Xinliang An, Haoyang Chen, Silu Yin. Low regularity ill-posedness for elastic waves driven by
shock formation, Amer. J, Math. 145(4), 1111–1181, 2023.

• Xinliang An, Haoyang Chen, Silu Yin. Low regularity ill-posedness and shock formation for 3D
ideal compressible MHD, arXiv:2110.10647, 82 pages, to appear in Mem. Amer. Math. Soc.

• Xinliang An, Haoyang Chen, Silu Yin. The Cauchy problems for the 2D compressible Euler
equations and ideal MHD system are ill-posed in 𝐻

7
4 (𝑅2), arXiv:2206.14003, 35 pages, to appear

in Commun. Math. Phys.

同样地，近年也有将可压缩流体方程的局部解做到低正则性的结果。

• Marcelo Disconzi, Chenyun Luo, Giusy Mazzone, Jared Speck. Rough sound waves in 3D com-
pressible Euler flow with vorticity. Selecta Mathematica, 28(2), 41, 2022. 153 pages.

• Qian Wang. Rough solutions of the 3-D compressible Euler equations. Ann. Math., 195(2),
509–654, 2022.

需注意当(𝑢0, 𝑢1)的正则性低于𝐻
𝑑+1
2
+ × 𝐻

𝑑−1
2
+时，并非所有的拟线性波动方程都不适定，例如𝑑 =

3时□𝑢 = 𝑢2的局部解可以对初值(𝑢0, 𝑢1) ∈ 𝐻0+𝜀 × 𝐻−1+𝜀存在。参见

• Hans Lindblad: A sharp counterexample to local existence of low-regularity solutions to nonlinear
wave equations. Duke Math. J., 72(2), 503–539, 1993.

在定理6.3.1中，我们已经构造了存在于𝐿∞(0, 𝑇;𝐻𝑑+2(ℝ𝑑)) × 𝐿∞(0, 𝑇;𝐻𝑑+1(ℝ𝑑))的唯一解。但
在物理上，人们更希望看到光滑解的存在性，因此我们希望证明一个“保持正则性”的结论，即：

只要我们证明了𝐻𝑑+2(ℝ𝑑)×𝐻𝑑+1(ℝ𝑑)初值能产生𝐿∞(0, 𝑇;𝐻𝑑+2(ℝ𝑑))×𝐿∞(0, 𝑇;𝐻𝑑+1(ℝ𝑑))的局部解，
那么具有更高阶Sobolev正则性的初值对应的解也能保持它的正则性。

定理 6.3.3 (正则性保持). 给定方程(6.3.1)的初值(𝑢0, 𝑢1) ∈ 𝐻𝑑+2(ℝ𝑑)×𝐻𝑑+1(ℝ𝑑)，定义解解解的的的极极极大大大存存存
在在在时时时间间间 (maximal time of existence) 𝑇∗为

𝑇∗ ∶= sup{𝑇 > 0 ∶ (6.3.1)存在唯一解𝑢 ∈ 𝐿∞(0, 𝑇;𝐻𝑑+2(ℝ𝑑)) × 𝐿∞(0, 𝑇;𝐻𝑑+1(ℝ𝑑))} > 0.

(1) 设𝑚 > 𝑑 + 2, 若(𝑢0, 𝑢1) ∈ 𝐻𝑚(ℝ𝑑) × 𝐻𝑚−1(ℝ𝑑), 则对任意𝑇 < 𝑇∗, 方程(6.3.1)的解属于
𝐿∞(0, 𝑇;𝐻𝑚(ℝ𝑑)) × 𝐿∞(0, 𝑇;𝐻𝑚−1(ℝ𝑑)).

(2) 若(𝑢0, 𝑢1) ∈ ∩∞𝑚=1𝐻𝑚(ℝ𝑑) × 𝐻𝑚−1(ℝ𝑑),则方程的解在[0, 𝑇∗) × ℝ𝑑中是光滑的。

该定理的证明与定理6.1.2类似，我们在此略去。
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6.3.2 拟线性波动方程的爆破准则

尽管我们已经构造了拟线性波动方程(6.3.1)的局部解，但对具有不同非线性结构的波动方程，
解的存在时长可以大相径庭。本节我们首先介绍两个经典例子，然后给出拟线性波动方程(6.3.1)解
的爆破判定准则。

我们首先来看一个可以显式计算的，且具有小初值整体解的例子。

例 6.3.3 (具有零条件的拟线性波动方程). 考虑如下形式的非线性波动方程，其中𝜑, 𝜓 ∈ 𝐶∞
𝑐 (ℝ3).

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = (𝜕𝑡𝑢)2 − |∇𝑢|2 𝑡 > 0, 𝒙 ∈ ℝ3,
𝑢(0, 𝒙) = 𝜀𝜑(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝜀𝜓(𝒙) 𝒙 ∈ ℝ3.

(6.3.9)

我们证明当0 < 𝜀 ≪ 1时，方程(6.3.9)的光滑解可以演化到𝑡 = ∞，即小初值整体解。
这个例子摘自Klainerman的经典结果

• Sergiu Klainerman. Global existence for nonlinear wave equations, Commun. Pure Appl. Math.
33(1), 43–101, 1980.

然而该结论的证明实际上是古典偏微分方程的内容。

证明. 令𝑣(𝑡, 𝒙) = 1 − 𝑒−𝑢(𝑡,𝒙)，直接计算可得𝜕𝑎𝑣 = 𝑒−𝑢𝜕𝑎𝑢, 𝜕2𝑎𝑣 = 𝑒−𝑢(𝜕2𝑎𝑢 − (𝜕𝑎𝑢)2), 𝑎 = 𝑡, 1, 2, 3.
因此有𝜕2𝑡 𝑣 − ∆𝑣 = 𝑒−𝑢(𝜕2𝑡 𝑢 − (𝜕𝑡𝑢)2 − ∆𝑢 + |∇𝑢|2) = 0.
现在𝑣(𝑡, 𝒙)满足标准的三维波动方程

⎧

⎨
⎩

𝜕2𝑡 𝑣 − ∆𝑣 = 0 𝑡 > 0, 𝒙 ∈ ℝ3,
𝑣(0, 𝒙) = 1 − 𝑒−𝜀𝜑(𝒙), 𝜕𝑡𝑣(0, 𝒙) = 𝜀𝑒−𝜀𝜑(𝒙)𝜓(𝒙) 𝒙 ∈ ℝ3.

(6.3.10)

据Kirchoff公式得到的𝑣(𝑡, 𝒙)是整体存在的光滑解

𝑣(𝑡, 𝒙) = 1
4𝜋𝑡2 ∫𝜕𝐵(𝒙,𝑡)

𝑣(0, 𝒚) + ∇𝑣(0, 𝒚) ⋅ (𝒚 − 𝒙) + 𝑡𝜕𝑡𝑣(0, 𝒚) d𝑆𝒚.

现在我们将𝑢从𝑢 = − log(1 − 𝑣)还原出来，这就要求𝑣(𝑡, 𝒙) < 1对任意 (𝑡, 𝒙) ∈ ℝ+ × ℝ3都成立。我

们接下来证明|𝑣| < 1恒成立。据波动方程的衰减估计(或Kirchhoff公式本身)得知,

∀𝑡 > 0, max
ℝ3

|𝑣(𝑡, ⋅)| ⩽ 𝐶(max
ℝ3

|𝑣(0, ⋅)| + max
ℝ3

|∇𝑣(0, ⋅)| + max
ℝ3

|𝜕𝑡𝑣(0, ⋅)|)(1 + 𝑡)−1

⩽ 𝐶𝜀(max
ℝ3

|𝜑| + max
ℝ3

|∇𝜑| + max
ℝ3

|𝜓|)(1 + 𝑡)−1.

注意这里用的衰减因子是(1 + 𝑡)−1而不是𝑡−1. 这就证明了当𝜀 > 0充分小时，必有|𝑣(𝑡, 𝒙)| < 1对任
意𝑡 > 0, 𝒙 ∈ ℝ3都成立。因此对任意 𝑡 > 0,我们可以从 𝑢(𝑡, 𝒙) = − log(1 − 𝑣(𝑡, 𝒙))还原出光滑的整
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体解 𝑢(𝑡, 𝒙).

注记 6.3.3. 这里我们选取𝑑 = 3是因为具有小初值的拟线性波动方程(6.3.1)在𝑑 ⩾ 4时才有整
体解，而这里给出了一个三维情况也具有初值整体解的例子。该非线性项的形式的“零条件”

(null condition)的一个特殊情况。所谓“零条件”是指方程𝜕2𝑡 𝑢 − ∆𝑢 = 𝐹(𝑢, 𝝏𝑢)的源项具有形
式𝐹(𝑢, 𝝏𝑢) = 𝑞𝛼𝛽𝜕𝛼𝑢𝜕𝛽𝑢 (0 ⩽ 𝛼, 𝛽 ⩽ 𝑑)，其中𝑞𝛼𝛽满足

只要 𝑚𝛼𝛽𝜉𝛼𝜉𝛽 = 0 (即𝝃 = (𝜉0, 𝜉1,⋯ , 𝜉𝑑)“长度”为零(null vector)),就有𝑞𝛼𝛽𝜉𝛼𝜉𝛽 = 0.

一般情况下拟线性波动方程的小初值长时间解需要用 Christodoulou–Klainerman 开发的向量场方
法来解决，即利用特殊的向量场来替换Sobolev嵌入不等式 ‖𝑢‖𝐿∞ ⩽ 𝐶‖𝑢‖𝐻𝑠 (𝑠 > 𝑑

2
)中的𝑠阶普通导

数，这样可以将该不等式中的常数𝐶替换为关于𝑡, |𝒙|的衰减因子，进而可以看出衰减最差的方向
出现在垂直于光锥的方向，衰减率为𝑂((1 + 𝑡)−

𝑑−1
2 ). 当𝑑 ⩽ 3时它关于𝑡不是可积的，因此无法求得

体解。而具有“零条件”时，这个“最差的方向”里面的一个坏项被消去，进而方程具有关于𝑡变
量可积的衰减速率𝑂((1 + 𝑡)−

𝑑+1
2 ).

注记 6.3.4. 需注意，上述结论必须要求初值的小性，也就是𝜀 ≪ 1是不可缺少的。读者可以自行
思考为什么大初值(例如𝜀 = 1)时方程的解会发生有限时间爆破？

例 6.3.4 (Fritz John的经典爆破反例). 考虑如下形式的非线性波动方程.

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = (𝜕𝑡𝑢)2 𝑡 > 0, 𝒙 ∈ ℝ3,
𝑢(0, 𝒙) = 0, 𝜕𝑡𝑢(0, 𝒙) = 𝜓(𝒙) 𝒙 ∈ ℝ3.

(6.3.11)

我们证明：对任意𝜀 > 0，必存在初值𝜓 ∈ 𝐶∞
𝑐 (ℝ3)使得方程(6.3.11)的解在𝑡 = 𝜀时发生爆破。

这个例子摘自Fritz John的经典结果

• Fritz John. Blow-up for quasi-linear wave equations in three-space dimensions. Commun. Pure
Appl. Math., 34(1), 29–51, 1981.

然而该结论的证明实际上是结合常微分方程和有限传播速度（注意这对非线性方程并不显然，我

们之前只证明了线性方程的情况）巧妙获得的结论。

证明. 首先如果我们考虑与空间变量无关的解，那么就变成了求解常微分方程𝑢′′(𝑡) = (𝑢′(𝑡))2. 若
初值𝜓 = 𝜀−1,则方程的解为𝑢(𝑡) = − ln(1−𝜀−1𝑡),进而满足要求。但我们注意到这个初值并非紧支，
所以我们考虑作截断。

固定𝑅 > 𝜀,选取截断函数𝜒,使得𝜒在𝐵(𝟎, 𝑅)中恒为1，并令𝜓(𝒙) = 𝜀−1𝜒(𝒙).
断言. 该方程对应的解必定在𝑡 = 𝜀之前发生爆破。

断言的证明需要用到有限传播速度的结论

命题 6.3.4 (非线性波动方程的有限传播速度). 考虑波动方程𝜕2𝑡 𝑢 − ∆𝑢 = 𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢), (𝑡 >
0, 𝒙 ∈ ℝ𝑑). 其中 𝐹(𝑡, 𝒙, 𝑧, 𝒑, 𝑨) ∶ ℝ×ℝ𝑑 ×ℝ×ℝ1+𝑑 ×ℝ(1+𝑑)2 → ℝ是光滑函数，且对任意的 𝑡, 𝒙, 𝑨
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都有 𝐹(𝑡, 𝒙, 0, 𝟎, 𝑨) = 0成立。给定(𝑡0, 𝒙0) ∈ ℝ+ × ℝ𝑑,定义过往光锥

𝐶𝑡0,𝒙0 ∶= {(𝑡, 𝒙) ∶ 0 ⩽ 𝑡 ⩽ 𝑡0 且 |𝒙 − 𝒙0| ⩽ 𝑡0 − 𝑡}.

如果在 𝐵(𝒙0, 𝑡0)上恒有 𝑢 = 𝜕𝑡𝑢 = 0,则𝑢 ≡ 0在 𝐶𝑡0,𝒙0 中恒成立。
若断言成立，那么我们考虑过往光锥𝐶0,𝟎的一个“锥台”

Ω ∶= {(𝑡, 𝒙) ∶ 0 ⩽ 𝑡 < 𝜀, 𝑡 + |𝒙| ⩽ 𝑅}.

那么𝑢在Ω内的取值完全被这个锥台底部的取值 𝑢|{𝑡=0}×𝐵(𝟎,𝑅) 确定，也就是初值𝜓|𝐵(𝟎,𝑅). 这就说明
在Ω内必有 𝑢(𝑡, 𝒙) = − ln(1 − 𝜀−1𝑡) (因为它已经是解，而它又是Ω中唯一的解),而这个解在𝑡 = 𝜀时
发生爆破。

我们现在来证明命题6.3.4，它的证明思路其实与线性方程的定理6.2.2类似。

命题6.3.4的证明. 对 0 ⩽ 𝑡 ⩽ 𝑡0，考虑能量函数

𝑒(𝑡) ∶= ∫
𝐵(𝒙0,𝑡0−𝑡)

(𝑢2 + |𝑢𝑡(𝑡, 𝒙)|2 + |∇𝑢(𝑡, 𝒙)|2) d𝒙.

对𝑡求导，利用移动区域求导公式，分部积分后代入波动方程有

𝑒′(𝑡) = 2 ∫
𝐵(𝒙0,𝑡0−𝑡)

(𝑢𝑢𝑡 + 𝑢𝑡𝑢𝑡𝑡 + ∇𝑢 ⋅ ∇𝑢𝑡) d𝒙 − ∫
𝜕𝐵(𝒙0,𝑡0−𝑡)

(𝑢2 + |𝑢𝑡|2 + |∇𝑢|2) d𝑆

= 2 ∫
𝐵(𝒙0,𝑡0−𝑡)

𝑢𝑡(𝑢 + 𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢)) d𝒙

+ 2∫
𝜕𝐵(𝒙0,𝑡0−𝑡)

𝑢𝑡
𝜕𝑢
𝜕𝑁 d𝑆 − ∫

𝜕𝐵(𝒙0,𝑡0−𝑡)
(𝑢2 + |𝑢𝑡|2 + |∇𝑢|2) d𝑆,

其中 𝑁是 𝜕𝐵(𝒙0, 𝑡0− 𝑡)的单位外法向量。利用Cauchy-Schwarz不等式有 2|𝑢𝑡∇𝑢 ⋅𝑁| ⩽ 2|𝑢𝑡‖∇𝑢| ⩽
|𝑢𝑡|2 + |∇𝑢|2.代入后可得

𝑒′(𝑡) ⩽ 2 ∫
𝐵(𝒙0,𝑡0−𝑡)

𝑢𝑡(𝑢 + 𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢)) d𝒙.

由于 𝐹(𝑡, 𝒙, 0, 0, 𝜕2𝑢) = 0，据微积分基本定理我们有

𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢) = 𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢) − 𝐹(𝑡, 𝒙, 0, 0, 𝝏2𝑢) = ∫
1

0
𝜕𝑠𝐹(𝑡, 𝒙, 𝑠𝑢, 𝑠𝝏𝑢, 𝝏

2𝑢) d𝑠

=∫
1

0

(
𝜕𝑧𝐹(𝑡, 𝒙, 𝑠𝑢, 𝑠𝝏𝑢, 𝝏

2𝑢)𝑢 + ∇𝒑𝐹(𝑡, 𝒙, 𝑠𝑢, 𝑠𝝏𝑢, 𝝏
2𝑢) ⋅ 𝝏𝑢

)
d𝑠.



6.3 拟线性波动方程的局部理论 165

这样就得到

|𝐹(𝑡, 𝒙, 𝑢, 𝜕𝑢, 𝜕2𝑢)| ⩽ |𝑢| ∫
1

0
|𝜕𝑧𝐹(𝑡, 𝒙, 𝑠𝑢, 𝑠𝝏𝑢, 𝝏

2𝑢)| d𝑠 + |𝝏𝑢| ∫
1

0

||||∇𝒑𝐹
|||| d𝑠.

令 𝐶 = max{𝐶0, 𝐶1}，其中

𝐶0 ∶= max
(𝑡,𝒙)∈𝐶𝑡0,𝒙0

∫
1

0
|𝜕𝑧𝐹(𝑡, 𝒙, 𝑠𝑢, 𝑠𝝏𝑢, 𝝏

2𝑢)| d𝑠, 𝐶1 ∶= max
(𝑡,𝒙)∈𝐶𝑡0,𝒙0

∫
1

0

||||∇𝒑𝐹
|||| d𝑠.

那么|𝐹(𝑡, 𝒙, 𝑢, 𝝏𝑢, 𝝏2𝑢)| ⩽ 𝐶(|𝑢| + |𝝏𝑢|).进而

𝑒′(𝑡) ⩽ 2(1 + 𝐶) ∫
𝐵(𝒙0,𝑡0−𝑡)

|𝑢𝑡|(|𝑢| + |𝝏𝑢|) d𝒙 ⩽ 2(1 + 𝐶)𝐸(𝑡).

据条件知𝑒(0) = 0，而非负函数𝑒(𝑡)关于𝑡单调递减，所以只能𝑒(𝑡) ≡ 0,因此在 𝐶𝑡0,𝒙0 中 𝑢 ≡ 0.

看完两个例子之后，我们发现非线性项的毫厘之差会对方程解的存在时长带来质的改变。于

是自然会问，对一般的拟线性波动方程(6.3.1)，可否找到波动方程的爆破（或延拓）判定准则？
这里我们列出如下三条。

定理 6.3.5 (爆破准则 (breakdown criteria)). 给定方程(6.3.1)的初值(𝑢0, 𝑢1) ∈ 𝐻𝑑+2(ℝ𝑑) ×𝐻𝑑+1(ℝ𝑑),
设𝑇∗是解的极大存在时间。若𝑇∗ < ∞,即方程的解发生有限时间爆破，则如下三条成立

lim inf
𝑡→𝑇∗

‖(𝑢, 𝜕𝑡𝑢)(𝑡, ⋅)‖𝐻𝑑+2(ℝ𝑑)×𝐻𝑑+1(ℝ𝑑) = ∞. (6.3.12)

lim sup
𝑡→𝑇∗

⎡
⎢
⎢
⎣

∑

|𝛼|⩽⌊ 𝑑+2
2
⌋

‖𝜕𝛼𝒙𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑) +
∑

|𝛼|⩽⌊ 𝑑
2
⌋

‖𝜕𝑡𝜕𝛼𝒙𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑)

⎤
⎥
⎥
⎦

= ∞. (6.3.13)

lim sup
𝑡→𝑇∗

∑

|𝛼|⩽1
‖𝝏𝛼𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑) = ∞. (6.3.14)

注记 6.3.5. 本定理可将初值正则性换成𝐻𝑠 × 𝐻𝑠−1 (∀𝑠 ⩾ 𝑑 + 2),对应的结论仍然成立。

注记 6.3.6. 如果波动方程的系数𝒈同时依赖𝑢, 𝝏𝑢,则此时的初值正则性应该提高为𝐻𝑑+3(ℝ𝑑)×𝐻𝑑+2(ℝ𝑑),
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而(6.3.12)-(6.3.14)此时变为

lim inf
𝑡→𝑇∗

‖(𝑢, 𝜕𝑡𝑢)(𝑡, ⋅)‖𝐻𝑑+3(ℝ𝑑)×𝐻𝑑+2(ℝ𝑑) = ∞. (6.3.15)

lim sup
𝑡→𝑇∗

⎡
⎢
⎢
⎣

∑

|𝛼|⩽⌊ 𝑑+6
2
⌋

‖𝜕𝛼𝒙𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑) +
∑

|𝛼|⩽⌊ 𝑑+4
2
⌋

‖𝜕𝑡𝜕𝛼𝒙𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑)

⎤
⎥
⎥
⎦

= ∞. (6.3.16)

lim sup
𝑡→𝑇∗

∑

|𝛼|⩽2
‖𝝏𝛼𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑) = ∞. (6.3.17)

见 Sogge [14,第一章].

如上三条爆破准则中的第2、3条的证明思路类似，但是第三条需要用到非常精细的不等式
(Gagliardo-Nirenberg插值不等式)。从实用性角度来看，第三条还是最好用的。我们接下来直接证
明第三条(6.3.14)，而第二条(6.3.13)是(6.3.14)结合Sobolev嵌入定理的直接推论。

证明. 用反证法。若 𝑇∗ < ∞但爆破准则不成立，即假设存在常数 𝐾 > 0，使得对任意 𝑡 ∈ [0, 𝑇∗)，
解及其一阶导数是一致有界的：

sup
𝑡∈[0,𝑇∗)

∑

|𝛼|⩽1

‖‖‖‖𝝏
𝛼𝑢(𝑡, ⋅)‖‖‖‖𝐿∞(ℝ𝑑) ⩽ 𝐾 < ∞. (6.3.18)

这意味着 𝑢 和 𝝏𝑢 均属于 𝐿∞([0, 𝑇∗) × ℝ𝑑). 接下来我们只需证明对充分大的𝑠,例如𝑠 > 𝑑
2
+ 1,方程

解的𝐻𝑠范数在𝑇∗时刻仍然有限。这样的话据局部适定性定理（定理6.3.1），这个解还可以往后演
化至少一小段时间，与𝑇∗的极大性矛盾。
令𝐸(𝑡) ∶= ‖(𝑢, 𝜕𝑡𝑢)‖2𝐻𝑑+2×𝐻𝑑+1 . 据变系数波动方程的能量估计（定理6.1.2）

𝐸(𝑡) ⩽ 𝐶 ⋅ 𝐼(𝑡) ⋅ exp (𝐶 ∫
𝑡

0
‖𝝏𝒈‖𝐿∞(ℝ𝑑) d𝜏) , (6.3.19)

其中 ℐ(𝑡)代表初值以及源项和交换子项的贡献。据链式法则，系数的时空导数为：

𝝏𝒈(𝑢) = 𝒈′(𝑢)𝝏𝑢. (6.3.20)

注意这里仅包含一阶导数 𝝏𝑢. 利用反证假设 (6.3.18)我们有 ‖𝑢‖𝐿∞ ⩽ 𝐾 且 ‖𝜕𝑢‖𝐿∞ ⩽ 𝐾。由于 𝒈(⋅)
是光滑的，其导数也是有界的，因此存在常数𝐶(𝐾) > 0 使得 ‖𝝏𝒈(𝑢)‖𝐿∞(ℝ𝑑) ⩽ ‖𝒈′(𝑢)‖𝐿∞‖𝝏𝑢‖𝐿∞ ⩽
𝐶(𝐾).这意味着能量估计中的指数因子在有限区间 [0, 𝑇∗)上是一致有界的：

exp (𝐶 ∫
𝑇∗

0
‖𝝏𝒈‖𝐿∞ d𝜏) ⩽ exp (𝐶 ⋅ 𝐶(𝐾) ⋅ 𝑇∗) < ∞.
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现在估计 𝐼(𝑡)中的非线性项。对源项用Moser不等式可得（其实直接拆括号硬算也可以）

‖𝐹(𝑢, 𝝏𝑢)‖2𝐻𝑑+1 ⩽ 𝐶(‖𝑢‖𝐿∞ , ‖𝝏𝑢‖𝐿∞)(1 + ‖𝑢‖2𝐻𝑑+1 + ‖𝝏𝑢‖2𝐻𝑑+1) ⩽ 𝐶(𝐾)𝐸𝑠(𝑡).

对交换子项，我们需要估计‖[𝜕𝛼, 𝑔𝑖𝑗]𝜕𝑖𝜕𝑗𝑢‖𝐿2 , 其中|𝛼| = 𝑑 + 1. 事实上，直接拆括号计算得
（注意这里我们求的是整数阶导数，并不需要用Moser不等式及其推论）

‖[𝜕𝛼, 𝑔𝑖𝑗]𝜕𝑖𝜕𝑗𝑢‖2𝐿2 ⩽ 𝐶(‖𝒈‖𝐻𝑑+1‖𝜕𝑢‖𝐿∞ + ‖𝜕𝒈‖𝐿∞‖𝑢‖𝐻𝑑+2).

在此说明一下，中间的交叉项均可使用Sobolev嵌入定理、Hölder不等式和Gagliardo-Nirenberg插
值不等式(习题5.3.4)控制，例如上述交换子会出现𝜕𝑑+1𝒈 ⋅ 𝜕2𝑢的项。此时我们先用Hölder不等式得
到‖𝜕𝑑+1𝒈 ⋅ 𝜕2𝑢‖𝐿2 ⩽ ‖𝜕𝑑+1𝒈‖𝐿𝑝‖𝜕2𝑢‖𝐿𝑞 ,其中1∕𝑝 + 1∕𝑞 = 1∕2,然后再利用 Gagliardo-Nirenberg插值
不等式就可以把‖𝜕2𝑢‖𝐿𝑞化成‖𝜕𝑢‖𝐿∞ ,剩下的项在正则性充分高时都可以被‖𝑢‖𝐻𝑑+2控制。

这样我们就得到

‖[𝜕𝛼𝑔𝑖𝑗]𝜕𝑖𝜕𝑗𝑢‖2𝐿2 ⩽ 𝐶(𝐾)𝐸(𝑡).

由于 (6.3.18)保证了 ‖𝑢‖𝐿∞ 和 ‖𝝏𝑢‖𝐿∞ 的有界性，我们可以得到线性的能量不等式：

𝐸(𝑡) ⩽ 𝐶(𝐾, 𝑇∗) (𝐸(0) + ∫
𝑡

0
𝐸(𝜏) d𝜏) .

据Grönwall不等式知，
sup

𝑡∈[0,𝑇∗)
𝐸(𝑡) ⩽ 𝐶(𝐾, 𝑇∗)𝐸(0)𝑒𝐶(𝐾,𝑇∗)𝑇∗ < ∞.

这表明高阶 Sobolev范数在 𝑇∗ 时刻不发散。根据局部存在性定理，解可以延拓到 𝑇∗ 之后，这与
𝑇∗ 的极大性矛盾。这说明如果 𝑇∗ < ∞，则一阶导数的 𝐿∞ 范数必然爆破。

习题 6.3

习题 6.3.1. 考虑如下三维次临界波动方程

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = ±𝑢3, (𝑡, 𝒙) ∈ [0, 𝑇) × ℝ3,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙) 𝒙 ∈ ℝ3.

证明：此时的爆破准则(6.3.14)可以改进为

lim sup
𝑡→𝑇∗

‖𝑢(𝑡, ⋅)‖𝐿∞(ℝ𝑑) = ∞.
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注意本题无需假设初值(𝑢0, 𝑢1) ∈ 𝐻𝑠 × 𝐻𝑠−1中的𝑠 ⩾ 𝑑 + 2 = 5，实际上该方程对𝑠 ⩾ 2均有局部解
（这里不需证明）。

习题 6.3.2. 设𝝓 ∶ ℝ × ℝ𝑑 → 𝕊𝑚 ⊂ ℝ𝑚+1满足如下波映射(wave map)方程

⎧

⎨
⎩

□𝝓 ∶= 𝝓(𝜕𝑡𝝓
⊤ ⋅ 𝜕𝑡𝝓 −

𝑑∑
𝑖=1
𝜕𝑖𝝓

⊤ ⋅ 𝜕𝑖𝝓) , (𝑡, 𝒙) ∈ (0, 𝑇) × ℝ𝑑,

𝝓(0, 𝒙) = 𝝓0(𝒙), 𝜕𝑡𝝓(0, 𝒙) = 𝝓1(𝒙).

初值满足|𝝓0|2 = 1, 𝝓⊤1 ⋅ 𝝓0 = 0，并假设具有紧支集。

(1) 证明

𝐸(𝑡) ∶= 1
2 ∫ℝ𝑑

⎛
⎜
⎝
|𝜕𝑡𝝓(𝑡, 𝒙)|2 +

𝑑∑

𝑖=1
|𝜕𝑖𝝓(𝑡, 𝒙)|2 d𝒙

⎞
⎟
⎠
.

(2) 设𝑑 = 1,𝑚 = 2，并假设光滑初值满足：存在𝒚 ∈ 𝕊2 使得 (𝝓0 − 𝒚, 𝝓1) ∈ 𝐻2(ℝ) × 𝐻2(ℝ). 证
明：此时波映射方程有光滑的整体解。这里可以默认爆破准则(6.3.14)成立。

提示：注意到|𝝓|2 ≡ 1是不变量。

6.4 能量次临界的半线性波动方程

本节我们考虑如下半线性波动方程解的长时间存在性，其中𝜇 = ±1.

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = 𝜇|𝑢|𝑝−1𝑢 𝑡 > 0, 𝒙 ∈ ℝ𝑑,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙) 𝒙 ∈ ℝ𝑑.

(6.4.1)

这里我们首先介绍一些术语。考虑ℝ+ × ℝ𝑑中的半线性波动方程𝜕2𝑡 𝑢 − ∆𝑢 = 𝜇|𝑢|𝑝−1𝑢.

• 系数𝜇 = 1时称之为聚焦(focusing)情况，𝜇 = −1时称之为散焦(defocusing)情况。
• 该方程具有守恒的能量

𝐸(𝑡) ∶= 1
2 ∫ℝ𝑑

(𝜕𝑡𝑢)2 + |∇𝑢|2 + (−𝜇)
𝑝 + 1 ∫ℝ𝑑

|𝑢|𝑝+1 d𝒙.

而波动方程具有如下伸缩不变性：如果𝑢(𝑡, 𝒙)是方程(6.4.1)的解，则

∀𝜆 > 0, 𝑢𝜆(𝑡, 𝒙) = 𝜆
2

𝑝−1𝑢(𝜆𝑡, 𝜆𝒙)也是方程(6.4.1)的解。

直接计算可得‖∇𝑢𝜆‖𝐿2 = 𝜆
2

𝑝−1
+1− 𝑑

2 ‖∇𝑢‖𝐿2 . 当𝑑 ⩾ 3时，𝜆的幂次为𝑠 = 2
𝑝−1

+ 1 − 𝑑
2
.
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– 若𝑠 > 0, 即𝑝 − 1 < 4
𝑑−2

: 此时称波动方程(6.4.1)是能量次临界 (energy-subcritical) 的。
此时若令𝜆 → ∞，则𝜆𝑠 → ∞. 不严谨地说，这表明如果要把解压缩到很小尺度就需要
“无限能量”，而这被解的能量守恒“禁止”。

– 若𝑠 < 0, 即𝑝 − 1 > 4
𝑑−2

: 此时称波动方程(6.4.1)是能量超临界 (energy-supercritical)的。
不严谨地说，此时能量守恒无法阻止解的“集中”（即𝜆 → ∞这个过程）。

– 若𝑠 = 0,即𝑝 − 1 = 4
𝑑−2

: 此时称波动方程(6.4.1)是能量临界 (energy-critical)的。此时非
线性部分和线性部分达到“平衡态”。能量既不惩罚集中也不鼓励集中，因此往往需要

非常细致的分析。

本节我们考虑𝑑 = 3, 1 ⩽ 𝑝 < 5的特殊情况，即三维能量次临界的波动方程。

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = 𝜇|𝑢|𝑝−1𝑢 (𝜇 = ±1, 1 ⩽ 𝑝 < 5) 𝑡 > 0, 𝒙 ∈ ℝ3,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙) 𝒙 ∈ ℝ3.

(6.4.2)

我们希望证明它具有小初值整体解

定理 6.4.1. 设(𝑢0, 𝑢1) ∈ 𝐻5(ℝ3) × 𝐻4(ℝ3)充分小且具有紧支集，则方程(6.4.2)存在整体解，并满
足(𝑢, 𝜕𝑡𝑢) ∈ 𝐿∞(0,∞,𝐻5(ℝ3)) × 𝐿∞(0,∞,𝐻4(ℝ3)).
注记 6.4.1. 这里我们选取初值在𝐻5(ℝ3)×𝐻4(ℝ3)是为了契合上节证明的局部适定性结论（定理6.3.1）。
注意到方程(6.4.2)是常系数的，且非线性项不依赖𝝏𝑢，实际上我们可以在𝐻1 × 𝐿2里面作出能量有
限解（弱解）的局部适定性，强解存在性也只需要初值落在𝐻2 × 𝐻1中，证明参见 Evans [6, 定
理12.2.1].

注记 6.4.2. 对能量临界情况(𝑝 = 5)，小初值整体解的证明非常困难，而且不可避免地需要使用
Strichartz 估计，可见 Sogge [14, 第3章]. 对大初值情况，散焦的临界波动方程仍然可以求得整体
解，而对聚焦情况则需要讨论初值的能量与基态能量直接的关系，可参见如下文章

• Manoussos G. Grillakis. Regularity for the wave equation with a critical nonlinearity. Commun.
Pure Appl. Math., 45(6), 749–774, 1992.

• Jalah Shatah, Michael Struwe. Well-Posedness in the Energy Space for Semilinear Wave Equations
with Critical Growth. Internat. Math. Res. Notices (1994), no. 7, 303–309.

• Carlos E. Kenig, Frank Merle. Global well-posedness, scattering and blow-up for the energy
critical focusing nonlinear wave equation. Acta Math., 201(2), 147–212, 2008.

6.4.1 次临界波动方程的小初值整体解

证明小初值整体解的关键在于建立正则性传播定理（低阶范数有界蕴含高阶范数有界）以及

解的爆破准则（解的存在时间仅有低阶范数决定）。本节我们只考虑更困难的聚焦情况（𝜇 = 1，
此时守恒的能量未必是非负的），散焦情况的证明更简单，就不再赘述了。
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命题 6.4.2 (正则性传播). 设𝑢是方程(6.4.2)在[0, 𝑇) × ℝ3上的经典解且

𝑀 ∶= sup
0⩽𝑡<𝑇

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) + ‖∇𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) < ∞,

则初值的高阶正则性得以保持，即对𝑠 ⩾ 2, (𝑢0, 𝑢1) ∈ 𝐻𝑠 × 𝐻𝑠−1必有

sup
0⩽𝑡<𝑇

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐻𝑠−1(ℝ3) + ‖𝑢(𝑡, ⋅)‖2𝐻𝑠(ℝ3) < ∞.

证明. 这里我们给出𝑝 ∈ [1, 3]情况下的能量法证明，并以𝑠 = 2为例。对更大的𝑠证明是一样的。
当3 < 𝑝 < 5时需要用到波动方程的Strichartz估计或者三维线性波方程的显式解 (Kirchhoff公式)，
这里略去。

设 𝑣 = 𝜕𝑢为任意空间一阶导数。对方程求导得线性化方程：

𝜕2𝑡 𝑣 − ∆𝑣 = 𝑝|𝑢|𝑝−1𝑣 (6.4.3)

定义二阶能量 𝐸2(𝑡) =
1
2
(‖∇𝑣‖2𝐿2 + ‖𝜕𝑡𝑣‖2𝐿2). 求时间导数，分部积分并利用 Cauchy-Schwarz不等式

可得

𝐸′
2(𝑡) = ∫

ℝ3
𝑝|𝑢|𝑝−1𝑣𝜕𝑡𝑣 d𝒙 ⩽ 𝐶‖𝑢𝑝−1𝑣‖𝐿2‖𝜕𝑡𝑣‖𝐿2 (6.4.4)

而 ‖𝜕𝑡𝑣‖𝐿2 ⩽
√
2𝐸2(𝑡)，我们只需估计非线性项。据Hölder不等式得

‖𝑢𝑝−1𝑣‖𝐿2 ⩽ ‖𝑢𝑝−1‖𝐿3‖∇𝑢‖𝐿6 = ‖𝑢‖𝑝−1𝐿3(𝑝−1)‖∇𝑢‖𝐿6 (6.4.5)

• 高阶项：由 Sobolev临界嵌入 𝐻1 → 𝐿6 （定理5.2.2），‖∇𝑢‖𝐿6 ⩽ 𝐶‖∇(∇𝑢)‖𝐿2 ⩽ 𝐶
√
𝐸2(𝑡).

• 低阶系数：由𝑝 ∈ [1, 3]知3(𝑝 − 1) ∈ [0, 6]（这也是我们假设𝑝 ⩽ 3的直接原因），由Sobolev
嵌入定理，‖𝑢‖𝐿3(𝑝−1) 也可由 ‖𝑢‖𝐻1 控制。据定理假设，一阶能量有界蕴含 ‖𝑢‖𝐻1 有界，故

‖𝑢‖𝑝−1𝐿3(𝑝−1) ⩽ 𝐶(𝑀).

代回能量不等式得
d
d𝑡

√
𝐸2(𝑡) ⩽ 𝐶(𝑀)

√
𝐸2(𝑡). 由 Grönwall不等式即得结论。

接下来证明爆破准则

命题 6.4.3 (爆破准则). 设方程(6.4.2)解的极大存在时间为𝑇∗ > 0 (定义同定理6.3.3). 若𝑇∗ < ∞,则

lim sup
𝑡→𝑇∗

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) + ‖∇𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) = +∞.

证明. 根据注记6.4.1知，对任意常数𝐾 > 0，只要方程(6.4.2)的初值(𝑢0, 𝑢1)满足‖𝑢0‖2𝐻1 + ‖𝑢1‖2𝐿2 ⩽
𝐾,则存在时间𝑇𝐾使得方程的（弱）解在[0, 𝑇𝐾] × ℝ3存在。
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现在用反证法，如果𝑇∗ < ∞但结论不成立，则存在常数𝐾 > 0使得

sup
𝑡∈(0,𝑇∗)

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) + ‖∇𝑢(𝑡, ⋅)‖2𝐿2(ℝ3) ⩽ 𝐾.

今选取𝑡∗ ∶= 𝑇∗ −
1
2
𝑇𝐾, 以(𝑢(𝑡∗, 𝒙), 𝜕𝑡𝑢(𝑡∗, 𝒙))为方程(6.4.2)的新初值，由局部适定性结论知，

此时方程的解至少可以再演化𝑇𝐾时间，这就说明方程(6.4.2)在以(𝑢0, 𝑢1)为初值时，所得的解至少
可以存在𝑡∗ + 𝑇𝐾 = 𝑇∗ +

1
2
𝑇𝐾 > 𝑇∗时间，这与𝑇∗的极大性矛盾。

接下来我们证明定理6.4.1.

定理6.4.1的证明. 首先我们定义能量泛函：

𝐸[𝑢](𝑡) = ∫
ℝ3
(12|𝜕𝑡𝑢|

2 + 1
2|∇𝑢|

2 − 1
𝑝 + 1|𝑢|

𝑝+1) 𝑑𝑥 (6.4.6)

对于经典解，直接计算可证得能量守恒：𝐸(𝑡) = 𝐸(0) = 𝐸0.
接下来，据 Sobolev 嵌入定理 𝐻1(ℝ3) → 𝐿𝑝+1(ℝ3)（𝑝 < 5，见定理5.2.1），存在常数 𝐶 > 0

使得 ‖𝑢‖𝐿𝑝+1 ⩽ 𝐶‖∇𝑢‖𝐿2 . 这里我们用到了有限传播速度（命题6.3.4）得出𝑢(𝑡, ⋅)也具有紧支集，进
而可以用Poincaré不等式把‖𝑢‖𝐻1替换作‖∇𝑢‖𝐿2 .
这样能量守恒律就变成

𝐸0 =
1
2‖𝜕𝑡𝑢‖

2
𝐿2 +

1
2‖∇𝑢‖

2
𝐿2 −

1
𝑝 + 1‖𝑢‖

𝑝+1
𝐿𝑝+1 ⩾

1
2‖∇𝑢‖

2
𝐿2 − 𝐴‖∇𝑢‖𝑝+1𝐿2 . (6.4.7)

令 𝑦(𝑡) = ‖∇𝑢(𝑡)‖𝐿2 ⩾ 0，定义函数 𝑓(𝑦) = 1
2
𝑦2 − 𝐴𝑦𝑝+1. 于是我们得到𝑓(𝑦(𝑡)) ⩽ 𝐸0.

考察函数 𝑓(𝑦) = 1
2
𝑦2 − 𝐴𝑦𝑝+1 在 𝑦 ⩾ 0上的性质：

• 𝑓(0) = 0.
• 𝑓′(𝑦) = 𝑦 − 𝐴(𝑝 + 1)𝑦𝑝。令 𝑓′(𝑦) = 0，解得唯一非零驻点 𝑦∗ = (1∕𝐴(𝑝 + 1))1∕(𝑝−1).
• 在 𝑦∗ 处达到极大值（相当于是一个“势垒”高度），记为 𝐻 = 𝑓(𝑦∗) > 0；当 𝑦 > 𝑦∗ 时，函
数单调递减趋于−∞.

现在假设初值足够小，满足：𝐸0 < 𝐻以及‖∇𝑢0‖𝐿2 < 𝑦∗ （初值位于“势阱”）。我们断言：
断言. 对任意 𝑡 ∈ [0, 𝑇∗)，都有 ‖∇𝑢(𝑡, ⋅)‖𝐿2 < 𝑦∗.也就是说解一直掉在“势阱”里面出不来。

断言的证明. 𝑦(𝑡) = ‖∇𝑢(𝑡)‖𝐿2是时间的连续函数。在 𝑡 = 0时，𝑦(0) < 𝑦∗。由于 𝑓(𝑦(𝑡)) ⩽ 𝐸0 < 𝐻，
且 𝑓(𝑦∗) = 𝐻，这意味着 𝑦(𝑡) 永远无法取到 𝑦∗ 这个值，因此无法穿过势垒到达右侧。所以解被
“困”在势阱，即 𝑦(𝑡) ∈ [0, 𝑦∗)对任意 𝑡 成立。

断言成立就表明 ‖∇𝑢(𝑡, ⋅)‖𝐿2 是一致有界的。再回到能量守恒公式：

1
2‖𝜕𝑡𝑢‖

2
𝐿2 = 𝐸0 −

1
2‖∇𝑢‖

2
𝐿2 +

1
𝑝 + 1‖𝑢‖

𝑝+1
𝐿𝑝+1 (6.4.8)
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右边每一项都是有界的（非线性项由 Sobolev嵌入被 ∇𝑢控制），因此 ‖𝜕𝑡𝑢(𝑡)‖𝐿2 也是一致有界的。
因此存在常数 𝑀，使得对于所有 𝑡 ∈ [0, 𝑇∗)，

‖∇𝑢(𝑡, ⋅)‖2𝐿2 + ‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐿2 ⩽ 𝑀 < ∞. (6.4.9)

现在，据爆破准则（命题6.4.3）知如果𝑇∗ < +∞，则与(6.4.9)矛盾，因此极大存在时间𝑇∗ =
+∞. 这说明解至少在𝐻1 × 𝐿2 中整体存在且有界。然后再用正则性传播的结论（命题6.4.2）知，
对𝑠 ⩾ 2, (𝑢0, 𝑢1) ∈ 𝐻𝑠 × 𝐻𝑠−1必有

sup
0⩽𝑡<𝑇

‖𝜕𝑡𝑢(𝑡, ⋅)‖2𝐻𝑠−1(ℝ3) + ‖𝑢(𝑡, ⋅)‖2𝐻𝑠(ℝ3) < ∞.

因此方程存在整体经典解。

6.4.2 散焦、次临界波动方程的大初值整体解

当𝜇 = −1, 1 ⩽ 𝑝 < 5时，即对三维的散焦次临界波动方程而言，大初值整体解也是存在的。
本节我们只给出𝑝 ⩽ 3的能量法证明，而当3 < 𝑝 < 5时需要用到波的传播本身的性质：要么使
用Strichartz估计，要么使用Kirchhoff公式得到Jörgens估计。后者可参考 Evans [6, 12.3节].
考虑如下方程

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = −|𝑢|𝑝−1𝑢 (1 ⩽ 𝑝 ⩽ 3) 𝑡 > 0, 𝒙 ∈ ℝ3,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙) 𝒙 ∈ ℝ3.

(6.4.10)

定理 6.4.4 (散焦大初值整体解). 设 1 ⩽ 𝑝 ⩽ 3. 对𝑠 ⩾ 2以及紧支初值 (𝑢0, 𝑢1) ∈ 𝐻𝑠(ℝ3) × 𝐻𝑠−1(ℝ3)
（即经典解），方程 (6.4.10)存在唯一的整体解 (𝑢, 𝑢𝑡) ∈ 𝐿∞(0,∞;𝐻𝑠(ℝ3)) × 𝐿∞(0,∞;𝐻𝑠−1(ℝ3)).

证明. 这里我们仍然以𝑠 = 2为例写证明。证明分为两步：首先利用散焦性质获得一阶能量的整体
先验界，然后利用 𝑝 ⩽ 3的条件进行二阶能量估计。

第一步：一阶能量的整体先验估计. 定义能量泛函：

𝐸1(𝑡) = ∫
ℝ3
(12|𝜕𝑡𝑢|

2 + 1
2|∇𝑢|

2 + 1
𝑝 + 1|𝑢|

𝑝+1) 𝑑𝑥 (6.4.11)

关键点：由于是散焦方程，上述能量必非负。由能量守恒 𝐸1(𝑡) = 𝐸1(0) =∶ 𝐸0得到

1
2‖∇𝑢(𝑡)‖

2
𝐿2 ⩽ 𝐸0 ⇐⇒ ‖∇𝑢‖𝐿2 ⩽

√
2𝐸0 (6.4.12)

1
𝑝 + 1‖𝑢(𝑡)‖

𝑝+1
𝐿𝑝+1 ⩽ 𝐸0 ⇐⇒ ‖𝑢‖𝐿𝑝+1 ⩽ ((𝑝 + 1)𝐸0)

1
𝑝+1 (6.4.13)
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此外，由 Sobolev嵌入 𝐻1(ℝ3) → 𝐿6(ℝ3)和 Poincaré不等式，我们有：

‖𝑢‖𝐿6 ⩽ 𝐶‖∇𝑢‖𝐿2 ⩽ 𝐶
√
2𝐸0 (6.4.14)

利用Hölder不等式 ‖𝑢‖𝐿𝑞 ⩽ ‖𝑢‖𝜃𝐿𝑝+1‖𝑢‖
1−𝜃
𝐿6 ，可知对任意 𝑞 ∈ [min(𝑝 + 1, 6),max(𝑝 + 1, 6)]，解的 𝐿𝑞

范数是一致有界的。特别地，由于 𝑝 ⩾ 1，所以对 𝑞 ∈ [2, 6]都有 ‖𝑢‖𝐿𝑞 被初值能量 𝐸0 控制。

第二步：二阶能量估计. 为了证明解一直在 𝐻2 中，定义二阶能量。设 𝑣 = ∇𝑢：

𝜕2𝑡 𝑣 − ∆𝑣 = −∇(|𝑢|𝑝−1𝑢) = −𝑝|𝑢|𝑝−1𝑣 (6.4.15)

定义 𝐸2(𝑡) =
1
2
(‖∇𝑣‖2𝐿2 + ‖𝜕𝑡𝑣‖2𝐿2). 求导并代入方程得到

𝐸′
2(𝑡) ⩽ ∫

ℝ3
𝑝|𝑢|𝑝−1|𝑣||𝜕𝑡𝑣| 𝑑𝑥 ⩽ 𝑝‖𝑢𝑝−1𝑣‖𝐿2

√
2𝐸2(𝑡)

我们需要估计 ‖𝑢𝑝−1𝑣‖𝐿2 = ‖𝑢𝑝−1∇𝑢‖𝐿2。据 Hölder不等式有

‖𝑢𝑝−1∇𝑢‖𝐿2 ⩽ ‖𝑢𝑝−1‖𝐿3‖∇𝑢‖𝐿6 .

• 控制 ‖∇𝑢‖𝐿6：由 Sobolev嵌入得‖∇𝑢‖𝐿6 ⩽ 𝐶‖∇2𝑢‖𝐿2 ⩽ 𝐶
√
𝐸2(𝑡)。

• 控制 ‖𝑢𝑝−1‖𝐿3：我们有‖𝑢𝑝−1‖𝐿3 = ‖𝑢‖𝑝−1𝐿3(𝑝−1) .而现在需要 𝑢 ∈ 𝐿3(𝑝−1)。这里就要用到 1 ⩽ 𝑝 ⩽ 3
的条件来得到 0 ⩽ 3(𝑝 − 1) ⩽ 6. 据第一步的结论，我们已经控制了 ‖𝑢‖𝐿𝑞 (2 ⩽ 𝑞 ⩽ 6). 因此
存在仅依赖于 𝐸0 的常数 𝐶(𝐸0)，使得 ‖𝑢‖𝑝−1𝐿3(𝑝−1) ⩽ 𝐶(𝐸0) < ∞.

第三步：封闭能量不等式 将上述估计代回能量不等式：

𝐸′
2(𝑡) ⩽ 𝐶 ⋅ 𝐶(𝐸0) ⋅

√
𝐸2(𝑡) ⋅

√
2𝐸2(𝑡) = 𝐶̃(𝐸0)𝐸2(𝑡). (6.4.16)

据 Grönwall不等式得 𝐸2(𝑡) ⩽ 𝐸2(0)𝑒𝐶̃(𝐸0)𝑡. 这表明对于任意有限时间 𝑡，二阶能量 𝐸2(𝑡)是有限的。
因此据正则性传播定理（命题6.4.2），解不会在有限时间内失去 𝐻2 正则性，因此经典解是整体

存在的。

6.4.3 Bootstrap方法

本讲义直到本节为止才给出第一个由“局部适定性→爆破准则→整体存在性”的完整逻辑链
条，使得我们从发展方程的局部解做到整体解。尽管本讲义规避了过于复杂的波动方程Strichartz估
计，只用了最基本的能量法来完成证明，但是该逻辑链条背后的思想仍然值得提炼。这个思想就
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是 PDE 分析中无处不在的逻辑工具——Bootstrap 方法（或称为连续性方法），而它的一个最基
本的例子就是Grönwall不等式。

在非线性偏微分方程的研究中，我们经常会遇到这样的逻辑困境：

1. 为了证明解的某个范数 𝑋(𝑡)保持有界（或很小），我们需要证明某些能量估计。
2. 但这些能量估计往往只有在假设 𝑋(𝑡)已经有界（或很小）的前提下才能成立。

这就形成了一个循环：“要证明它有界，必须先假设它有界”。打破这个循环的逻辑工具就是Boot-
strap，它可以让我们作出的“有界假设”进行“自动加强”，进而证明“有界假设”本身就是成
立的（即它不再是“额外假设”），这个过程往往也是用Grönwall不等式来实现。

我们现在介绍抽象Bootstrap原理。

命题 6.4.5 (抽象Bootstrap原理 [18, 第1.3节]). 设𝐼是时间区间，且对任意𝑡 ∈ 𝐼我们有𝑡时刻的“假
设”𝐻(𝑡)和“结论”𝐶(𝑡). 现在假设以下四条性质成立：

(a) （“假设”⇒“结论”）若对某个𝑡 ∈ 𝐼，“假设”𝐻(𝑡)成立，则“结论”𝐶(𝑡)也成立；
(b) （“结论”强于“假设”）若对某个𝑡 ∈ 𝐼，“结论”𝐶(𝑡)成立，则存在𝑡的开邻域𝒪(𝑡)，使得
“假设”𝐻(𝑡′)对任意𝑡′ ∈ 𝐼 ∩ 𝒪(𝑡)成立；

(c) （“结论”具有闭性/连续性）若序列{𝑡𝑛} ⊂ 𝐼收敛到𝑡 ∈ 𝐼, 且对任意𝑛都有“结论”𝐶(𝑡𝑛)成
立，则“结论”𝐶(𝑡)也成立；

(d) （基本假设）至少存在一个𝑡 ∈ 𝐼使得假设”𝐻(𝑡)成立。

那么则有“结论”𝐶(𝑡)对任意𝑡 ∈ 𝐼都成立。

抽象Bootstrap原理的证明是区间连通性的简单应用。

证明. 令Ω ∶= {𝑡 ∈ 𝐼 ∶ 结论𝐶(𝑡)成立}. 则(d)+(a)表明Ω非空。然后(b)+(a)表明Ω是开集，(c)表
明Ω是闭集。而区间𝐼连通，所以Ω = 𝐼.

注记 6.4.3. 在实际应用该原理时，𝐻(𝑡), 𝐶(𝑡)的选取一般应使得(b)–(d)容易验证，而(a)往往是最
关键的步骤，一般来说我们需要充分利用方程和非线性项的结构来证明。该Bootstrap原理表面，
为了证明“满足(c)的‘结论’𝐶(𝑡)”，只需要𝐻在(b)的意义下比𝐶更弱，且至少在一个时间点成
立，这样证明“𝐻(𝑡) ⇒ 𝐶(𝑡)”就容易多了。在研究PDE时，如果我们要证明对任意𝑡 ∈ [0, 𝑇]有某
个能量估计𝑋(𝑡) ⩽ 𝑀成立，我们作出的“假设”𝐻(𝑡)可以是“对任意𝑡 ∈ [0, 𝑇]有𝑋(𝑡) ⩽ 2𝑀”
这个更弱的不等式，然后利利利用用用方方方程程程和和和非非非线线线性性性项项项的的的结结结构构构来来来证证证明明明“““在在在𝐻(𝑡)的的的成成成立立立的的的前前前提提提下下下，，，我我我们们们
有有有𝑋(𝑡) ⩽ 𝑀对对对任任任意意意𝑡 ∈ [0, 𝑇]成成成立立立”””。。。
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基准情形

𝐻(𝑡0)
假设

𝐻(𝑡)

结论

𝐶(𝑡)
(闭性)

“非线性”

蕴含

可将 𝑡 延伸
至一个开集

(“连续性”)

假设 𝐻(𝑡) 与结论 𝐶(𝑡) 之间关系的示意图：这种推理并不是循环论证，
因为在每一次迭代循环中，我们都扩展了使假设和结论成立的时间集

合。闭性假设防止了迭代一直停留在某个中间时间点。

其实Grönwall不等式本身也是Bootstrap原理的一个特例，虽然它有非常简单的微积分证明。

引理 6.4.6 (Grönwall不等式). 设 𝑓 ∶ ℝ → ℝ为一个非负连续函数，𝑔 ∶ ℝ → ℝ为非负可积函数。
设存在常数𝐴 > 0使得对任意𝑡 ∈ [0, 𝑇]满足

𝑓(𝑡) ⩽ 𝐴 + ∫
𝑡

0
𝑓(𝑠)𝑔(𝑠) d𝑠. (6.4.17)

那么对任意 𝑡 ∈ [0, 𝑇]都有

𝑓(𝑡) ⩽ 𝐴 exp (∫
𝑡

0
𝑔(𝑠) d𝑠) . (6.4.18)

证明. 对任意 𝜀 > 0，考虑以下条件

𝑓(𝑡) ≤ (1 + 𝜀)𝐴 exp ((1 + 𝜀) ∫
𝑡

0
𝑔(𝑠)𝑑𝑠) . (6.4.19)

定义𝐵 ∶= {𝑡 ∈ [0, 𝑇] ∶ 条件 (6.4.19)对任意 𝑠 ∈ [0, 𝑡]成立}. 我们将证明 𝐵 是非空的、开的且闭
的，从而得出 𝐵 = [0, 𝑇]。

• 𝐵显然是非空的，因为 0 ∈ 𝐵.
• 由 𝑓 的连续性可知，𝐵显然是闭的.
• 唯一困难的部分是证明 𝐵是开的。由 𝑓 的连续性，只需证明如果 𝑡 ∈ 𝐵，那么我们有

𝑓(𝑡) ⩽ 𝐴 exp ((1 + 𝜀) ∫
𝑡

0
𝑔(𝑠) d𝑠) , (6.4.20)
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即得到一个比 (6.4.19)更强的界。为此注意到若 𝑡 ∈ 𝐵，则有

𝑓(𝑡) ⩽ 𝐴 + ∫
𝑡

0
𝑓(𝑠)𝑔(𝑠) d𝑠 ⩽ 𝐴 + (1 + 𝜀)𝐴 ∫

𝑡

0
𝑔(𝑠) exp ((1 + 𝜀) ∫

𝑠

0
𝑔(𝑟) d𝑟) d𝑠

⩽ 𝐴(1 + (exp ((1 + 𝜀) ∫
𝑡

0
𝑔(𝑠) d𝑠) − 1)) = 𝐴 exp ((1 + 𝜀) ∫

𝑡

0
𝑔(𝑠) d𝑠) .

因此 𝐵 = [0, 𝑇]，即 (6.4.19)对所有 𝑡 ∈ [0, 𝑇]和 𝜀 > 0成立。令 𝜀 → 0即得结论。

习题 6.4

习题 6.4.1. 证明定理6.4.1在𝜇 = −1, 𝑝 = 3的情况（散焦, cubic）。

习题 6.4.2. 考虑如下三维聚焦次临界波动方程

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = 𝑢3, (𝑡, 𝒙) ∈ [0, 𝑇) × ℝ3,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙).

证明：存在初值𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (ℝ3)满足

• 初始能量𝐸(0) ∶= ∫ℝ3
1
2
(|∇𝑢0|2 + |𝑢1|2) −

1
4
|𝑢0|4 d𝒙 > 0.

• 对应的解𝑢(𝑡, 𝒙)在𝑡 = 1发生爆破，即 lim
𝑡→1−

‖𝑢(𝑡, ⋅)‖𝐿∞(ℝ3) = +∞.

提示：模仿例6.3.4考虑ODE型爆破（Type I blow-up），即先看只依赖𝑡的解，该ODE的初值
是一个常数；然后对原方程把初值𝑢0, 𝑢1设置为该常值乘以截断函数𝜒𝐵(𝟎,𝑅)，选取适当的𝑅；最后
用有限传播速度证明唯一解只能是ODE爆破解。

问题 6.4

问题 6.4.1 (Strauss反例). 考虑如下三维波动方程，其中1 < 𝑝 < 1 +
√
2.

⎧

⎨
⎩

𝜕2𝑡 𝑢 − ∆𝑢 = |𝑢|𝑝, (𝑡, 𝒙) ∈ [0, 𝑇) × ℝ3,
𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜕𝑡𝑢(0, 𝒙) = 𝑢1(𝒙).

其中初值𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (ℝ3)且支于𝐵(𝟎, 𝑅)内，且满足∫ℝ3 𝑢0 d𝒙 > 0, ∫ℝ3 𝑢1 d𝒙 > 0.

(1) 令𝐼(𝑡) = ∫ℝ3 𝑢(𝑡, 𝒙) d𝒙,证明: 存在常数𝐶 > 0使得𝐼′′(𝑡) ⩾ 𝐶𝐼(𝑡)𝑝(1 + 𝑡)−3(𝑝−1).
(2) 设𝑣是𝜕2𝑡 𝑣 − ∆𝑣 = 0带有相同初值(𝑢0, 𝑢1)的解，证明：存在常数𝐶1, 𝐶2 > 0使得∫ℝ3 𝑣(𝑡, 𝒙) d𝒙 =

𝐶1 + 𝐶2𝑡.
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(3) 利用Duhamel原理将𝑢拆分为𝑣和非齐次部分，用(2)证明: 存在常数𝐶 > 0使得𝐼(𝑡) ⩾ 𝐶(1 +
𝑡)4−𝑝.

(4) 设𝜀 > 0, 𝜇 = (𝑝 − 1)2 + 𝜀(4 − 𝑝),则存在𝜀 > 0使得𝜇 ∈ (0, 2). 据此导出: 存在常数𝐶 > 0使得
d
d𝑡
(𝐼′(𝑡))2 ⩾ 𝐶(𝐼(𝑡)2+𝜀(1 + 𝑡)−𝜇)′.

(5) 用(3), (4)导出矛盾，证明该方程不可能有整体光滑解。

6.5 Schrödinger方程的衰减估计和Strichartz估计

设 𝑢 ∶ [0,∞) × ℝ𝑑 → ℂ为复值函数，我们考虑线性Schrödinger方程

𝑖𝜕𝑡𝑢 + ∆𝑢 = 0 in ℝ+ × ℝ𝑑, 𝑢(0, 𝒙) = 𝑢0(𝒙), 𝒙 ∈ ℝ𝑑. (6.5.1)

利用Fourier变换，很容易求解该方程

𝑢(𝑡, 𝒙) = 𝑒𝑖𝑡∆𝑢0, 𝑒𝑖𝑡∆𝑓 ∶= (𝑒−𝑖𝑡|𝝃 |2𝑓(𝝃 ))∨ = 1

(4𝑖𝜋𝑡)
𝑑
2

∫
ℝ𝑑
𝑒−

|𝒙−𝒚|2

4𝑖𝑡 𝑓(𝒚) d𝒚, (6.5.2)

这也可以看作是基本解 Φ与初值 𝑢0 的卷积，其中

Φ(𝑡, 𝒙) ∶= 1

(4𝑖𝜋𝑡)
𝑑
2

𝑒−
|𝒙|2

4𝑖𝑡 . (6.5.3)

线性Schrödinger方程具有如下不变性：

• (伸缩不变性, scaling invariance) 如果 𝑢 是 (6.5.1) 的解，则对任意 𝜆 > 0，𝜆
𝑑
2𝑢(𝜆2𝑡, 𝜆𝒙) 也是

(6.5.1)的解，其初值为 𝜆
𝑑
2𝑢0(𝜆𝒙).

• (伽利略变换下的不变性, Galilean invariance) 如果 𝑢 是 (6.5.1) 的解，则对任意 𝝃 0 ∈ ℝ𝑑，

𝑒−𝑖𝑡|𝝃 0|2𝑒𝑖𝒙⋅𝝃𝑢(𝑡, 𝒙 − 2𝑡𝝃 0)也是 (6.5.1)的解，其初值为 𝑒𝑖𝒙⋅𝝃 0𝑢0(𝒙).

人们更感兴趣的是非线性Schrödinger方程 (NLS)

𝑖𝜕𝑡𝑢 + ∆𝑢 = 𝐹(𝑢, 𝜕𝑢,⋯).

特别地，半线性Schrödinger方程 (𝐹 = 𝐹(𝑢))和拟线性Schrödinger方程 (𝐹 = 𝐹(𝑢, 𝜕𝑢))及其类似方
程（用分数阶Laplacian或带某些位势项的Laplacian）在许多物理模型中都会出现。当考虑半线性
情况时，我们假定非线性项为

𝐹(𝑢) = 𝜇|𝑢|𝑝−1𝑢, 𝜇 = ±1, 𝑝 ⩾ 1.

当 𝜇 = 1 时，我们称NLS为散焦的(defocusing)；当 𝜇 = −1 时，我们称NLS为聚焦的(focusing)。
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半线性NLS 𝑖𝜕𝑡𝑢 + ∆𝑢 = ±|𝑢|𝑝−1𝑢满足以下守恒律

• (质量守恒) d
d𝑡
∫ℝ𝑑 |𝑢(𝑡, 𝒙)|2 d𝒙 = 0.

• (能量守恒) d
d𝑡
∫ℝ𝑑

1
2
|∇𝑢(𝑡, 𝒙)|2 ± 1

𝑝+1
|𝑢(𝑡, 𝒙)|𝑝+1 d𝒙 = 0.

• (动量守恒) d
d𝑡

Im ∫ℝ𝑑 𝑢(𝑡, 𝒙)∇𝑢(𝑡, 𝒙) d𝒙 = 0.

据此守恒律，我们引进如下术语

• 当 𝑝 − 1 = 4
𝑑
时，我们称NLS为质量临界 (mass-critical)的，这是由于初值的 𝐿2(ℝ𝑑)范数满

足上述伸缩不变性。

• 当 𝑝 − 1 = 4
𝑑−2

(𝑑 ⩾ 3)时，我们称NLS为能量临界 (energy-critical)的，因为能量 𝐸(𝑡)中非
线性项的幂次是Sobolev嵌入的临界指标。

本章末尾，我们将证明质量临界NLS的小初值整体适定性和散射，这是NLS最简单的例子。

𝑖𝜕𝑡𝑢 + ∆𝑢 = ±|𝑢|
4
𝑑𝑢 in ℝ+ × ℝ𝑑, 𝑢(0, 𝒙) = 𝑢0(𝒙), 𝒙 ∈ ℝ𝑑. (6.5.4)

但在此之前，我们需要将线性Schrödinger方程的衰减估计和时空估计搞明白。
对于非齐次Schrödinger方程

𝑖𝜕𝑡𝑢 + ∆𝑢 = 𝐹 in ℝ+ × ℝ𝑑, 𝑢(0, 𝒙) = 𝑢0(𝒙), 𝒙 ∈ ℝ𝑑, (6.5.5)

利用Duhamel原理可以直接写出解的表达式

𝑢(𝑡, 𝒙) = 𝑒𝑖𝑡∆𝑢0 − 𝑖 ∫
𝑡

0
𝑒𝑖(𝑡−𝜏)∆𝐹(𝜏) d𝜏. (6.5.6)

为了证明NLS的存在性，我们需要证明Schrödinger半群 𝑒𝑖𝑡∆ 的衰减估计（关于 𝑡 变量逐点）和时
空（𝐿𝑝𝑡 𝐿𝑟𝒙-型）估计，后者又被称作 Strichartz估计。

我们首先证明衰减估计。

命题 6.5.1 (𝑒𝑖𝑡∆ 的衰减估计). 设 1 ⩽ 𝑝 ⩽ 2且 𝑓 ∈ 𝒮(ℝ𝑑)，则

‖𝑒𝑖𝑡∆𝑓‖𝐿𝑝′ (ℝ𝑑) ⩽ 𝐶𝑡𝑑(
1
2
− 1
𝑝
)‖𝑓‖𝐿𝑝(ℝ𝑑).

证明. 设 𝑇𝑓 = 𝑒𝑖𝑡∆𝑓. 由Plancherel恒等式知 ‖𝑇𝑓‖𝐿2 = ‖𝑓‖𝐿2。然后用卷积Young不等式得到

‖𝑇𝑓‖𝐿∞ = ‖Φ ∗ 𝑓‖𝐿∞ ⩽ ‖Φ‖𝐿∞‖𝑓‖𝐿1 ⩽ 𝐶𝑡−
𝑑
2 ‖𝑓‖𝐿1 .

据Riesz-Thorin内插定理（定理 C.3.5），我们知道 𝑇是 𝐿𝑝 → 𝐿𝑞 的有界线性算子，且对 1 ⩽ 𝑝 ⩽ 2
有如下估计

‖𝑇𝑓‖𝐿𝑞 ⩽ 𝐶′𝑡−
𝑑𝜃
2 ‖𝑓‖𝐿𝑝 ,

1
𝑝 = 𝜃

1 +
1 − 𝜃
2 , 1

𝑞 = 𝜃
∞ + 1 − 𝜃

2 .
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这正好给出了我们想要的结果，因为此时 𝜃 = 2
𝑝
− 1.

接下来我们介绍非齐次部分的时空估计。由Christ-Kiselev引理 [4]（亦参见Grillakis和Machedon在
[5,引理 1.10]中的论证，此处略去），证明∫ℝ⋯ d𝜏的估计可以等价为证明 ∫ 𝑡0⋯ d𝜏的估计。接下
来我们需要对指标 (𝑝, 𝑞)和 (𝑝̃, 𝑞)提出合适的要求，使得下式成立

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
⩽ 𝐶‖𝑓‖𝐿𝑝̃′𝑡 𝐿𝑞′𝒙 .

由于 𝑝, 𝑞 ⩾ 1，我们用积分的Minkowski不等式得到

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
⩽
‖‖‖‖‖‖‖‖
∫
ℝ
‖𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏)‖𝐿𝑞𝒙 d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡
.

据衰减估计，我们有

‖‖‖‖‖‖‖‖
∫
ℝ
‖𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏)‖𝐿𝑞𝒙 d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡
⩽ 𝐶

‖‖‖‖‖‖‖‖
∫
ℝ
|𝑡 − 𝜏|−𝑑(

1
2
− 1
𝑞
)‖𝑓(𝜏)‖𝐿𝑞′ d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡
.

被积函数现在是卷积形式，据 Hardy-Littlewood-Sobolev不等式，我们希望能得到如下形式的界

‖‖‖‖‖‖‖
| ⋅ |−𝑑(

1
2
− 1
𝑞
) ∗ ‖𝑓(⋅)‖𝐿𝑞′

‖‖‖‖‖‖‖𝐿𝑝𝑡
⩽ 𝐶‖𝑓‖𝐿𝑝′𝑡 𝐿𝑞′𝒙 .

其中的可积指标应该满足

0 < 𝛾 ∶= 𝑑(12 −
1
𝑞) < 1, 1 + 1

𝑝 = 1
𝑞′ +

𝛾
𝑑 ⇒ 2

𝑝 = 𝑑 (12 −
1
𝑞) .

这促使我们定义所谓的“容许对”。

定义 6.5.1 (Admissible pair). 我们称(𝑝, 𝑞)为NLS的的的容容容许许许对对对 (admissible pair for NLS)是指它满足

2
𝑝 = 𝑑 (12 −

1
𝑞)

并且 𝑑 = 1时，要求4 ⩽ 𝑝 ⩽ ∞；𝑑 = 2时，要求2 < 𝑝 ⩽ ∞；𝑑 ⩾ 3时，要求2 ⩽ 𝑝 ⩽ ∞. 此外若
𝑝 > 2，则称 (𝑝, 𝑞)为 非非非端端端点点点容容容许许许对对对 (non-endpoint admissble pair)；若 𝑝 = 2，则称 (2, 𝑞) 为 端端端
点点点容容容许许许对对对 (endpoint admissble pair).

现在我们可以证明Schrödinger半群 𝑒𝑖𝑡∆ 的Strichartz估计.



180 第六章 波动方程和SCHRÖDINGER方程

命题 6.5.2 (NLS的Strichartz估计). 设 (𝑝, 𝑞), (𝑝̃, 𝑞)为NLS的容许对, 𝑡 > 0, 𝑓 ∈ 𝒮,则有以下估计

‖𝑒𝑖𝑡∆𝑓‖𝐿𝑝𝑡 𝐿𝑞𝒙 ⩽ 𝐶‖𝑓‖𝐿2 . (6.5.7)
‖‖‖‖‖‖‖‖‖
∫
𝑡

0
𝑒−𝑖𝜏∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖‖𝐿2𝒙
⩽ 𝐶‖𝑓‖𝐿𝑝′𝑡 𝐿𝑞′𝒙 , (6.5.8)

‖‖‖‖‖‖‖‖‖
∫
𝑡

0
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
⩽ 𝐶‖𝑓‖𝐿𝑝̃′𝑡 𝐿𝑞′𝒙 . (6.5.9)

注记 6.5.1. 如果没有Strichartz估计，只借助能量、动量守恒的话，我们只能建立解在𝐻1空间中

的有界性，我们知道𝐻1有界序列会有弱极限，但我们不知道它是弥散了还是集中了，也不知道去

哪里找那个集中的“形状”。Strichartz范数作为一个时空范数关注整个时空，它度量的是波是否
在弥散，如果波函数在时空上积分大，就必须在局部“显形”。

我们只证明非端点容许对的估计。端点情况请参考著名论文：

• Markus Keel, Terence Tao: Endpoint Strichartz Estimates. American Journal of Mathematics,
120(5), 955-980, 1998.

非端点情况的证明用到了所谓的 𝑇𝑇∗-方法：估计 𝑇 的算子范数，可归结为估计 𝑇𝑇∗ 的算子范数，
而后者对NLS通常更容易，这是因为我们已经得到了如下估计

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
⩽ 𝐶‖𝑓‖𝐿𝑝′𝑡 𝐿𝑞′𝒙 . (6.5.10)

证明. 同样由Christ-Kiselev引理 [4]，只需证明 ℝ × ℝ𝑑 上的估计。我们首先证明 (6.5.8)，由于 𝐿2

是Hilbert空间，我们有

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒−𝑖𝜏∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖

2

𝐿2𝒙

= (∫
ℝ
𝑒−𝑖𝜏∆𝑓(𝜏) d𝜏, ∫

ℝ
𝑒−𝑖𝑡∆𝑓(𝑡) d𝑡)

𝐿2𝒙

= ∫
ℝ
∫
ℝ

(
𝑒−𝑖𝜏∆𝑓(𝜏), 𝑒−𝑖𝑡∆𝑓(𝑡)

)
𝐿2𝒙
d𝜏 d𝑡 = ∫

ℝ
(𝑓(𝜏), ∫

ℝ
𝑒𝑖(𝜏−𝑡)∆𝑓(𝑡) d𝑡)

𝐿2𝒙

d𝜏

⩽ ‖𝑓‖𝐿𝑝′𝑡 𝐿𝑞′𝒙
‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖(𝜏−𝑡)∆𝑓(𝑡) d𝑡

‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
⩽ 𝐶‖𝑓‖2

𝐿𝑝
′

𝑡 𝐿
𝑞′
𝒙
.



6.5 SCHRÖDINGER方程的衰减估计和STRICHARTZ估计 181

然后，(6.5.7)可以借助 (6.5.8)和 𝐿𝑝 范数的对偶表示 (C.1.1)来证明。

‖𝑒𝑖𝑡∆𝑓‖𝐿𝑝𝑡 𝐿𝑞𝒙 = sup
‖𝜑‖

𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

||||||||
∫
ℝ
∫
ℝ𝑑
𝑒𝑖𝑡∆𝑓(𝑡, 𝒙)𝜑(𝑡, 𝒙) d𝒙 d𝑡

||||||||

= sup
‖𝜑‖

𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

||||||||
∫
ℝ

(
𝑒𝑖𝑡∆𝑓, 𝜑

)
𝐿2𝒙
d𝑡
||||||||
= sup

‖𝜑‖
𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

||||||||||
(𝑓, ∫

ℝ
𝑒𝑖𝑡∆𝜑 d𝑡)

𝐿2𝒙

||||||||||

⩽ sup
‖𝜑‖

𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1
‖𝑓‖𝐿2

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖𝑡∆𝜑 d𝑡

‖‖‖‖‖‖‖‖𝐿2
⩽ 𝐶‖𝑓‖𝐿2

其中我们在倒数第二个不等式中用到了 (6.5.8)。对 (6.5.9)，我们再次用对偶表示得到

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖𝐿𝑝𝑡 𝐿𝑞𝒙
= sup

‖𝜑‖
𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

||||||||
∫
ℝ
∫
ℝ

(
𝑒𝑖(𝑡−𝜏)∆𝑓(𝜏), 𝜑(𝑡, ⋅)

)
𝐿2𝒙
d𝑡 d𝜏

||||||||

= sup
‖𝜑‖

𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

||||||||||
(∫

ℝ
𝑒−𝑖𝜏∆𝑓(𝜏) d𝜏, ∫

ℝ
𝑒−𝑖𝑡∆𝜑(𝑡, ⋅) d𝑡)

𝐿2𝒙

||||||||||
⩽ sup

‖𝜑‖
𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖𝜏∆𝑓(𝜏) d𝜏

‖‖‖‖‖‖‖‖𝐿2𝒙

‖‖‖‖‖‖‖‖
∫
ℝ
𝑒𝑖𝑡∆𝜑(𝑡) d𝑡

‖‖‖‖‖‖‖‖𝐿2𝒙
⩽ sup

‖𝜑‖
𝐿𝑝
′

𝑡 𝐿𝑞
′
𝒙
⩽1
‖𝑓‖𝐿𝑝̃′𝑡 𝐿𝑞′𝒙 ‖𝜑‖𝐿𝑝′𝑡 𝐿𝑞′𝒙 ⩽ 𝐶‖𝑓‖𝐿𝑝̃′𝑡 𝐿𝑞′𝒙 .

习题 6.5

习题 6.5.1. 考虑线性Schrödinger方程

𝑖𝜕𝑡𝑢 + ∆𝑢 = 0 in ℝ+ × ℝ𝑑, 𝑢(0, 𝒙) = 𝑢0(𝒙) ∈ 𝐿2(ℝ𝑑), 𝒙 ∈ ℝ𝑑.

证明：

lim
𝑡→∞

∫
|𝒙|⩽

√
𝑡
|𝑢(𝑡, 𝒙)|2 d𝒙 = 0.

习题 6.5.2. 设𝑑 = 3，考虑使用容许对(𝑝, 𝑞) = (4, 3). 令𝐹(𝑢)(𝑡, 𝒙) = |𝑢|2𝑢(𝑡, 𝒙)，证明如下带导数
的Strichartz估计 ‖‖‖‖‖‖‖‖

∫
ℝ
𝑒𝑖(𝑡−𝜏)∆𝐹(𝑢)(𝜏, ⋅) d𝜏

‖‖‖‖‖‖‖‖𝐿∞𝑡 𝐻1
𝒙

⩽ ‖𝑢‖3
𝐿4𝑡𝑊

1,3
𝒙
.
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6.6 质量临界非线性Schrödinger方程

本节我们考虑质量临界的非线性Schrödinger方程(mass critical NLS).

𝑖𝜕𝑡𝑢 + ∆𝑢 = ±|𝑢|
4
𝑑𝑢(=∶ 𝐹(𝑢)), 𝑢(0, 𝒙) = 𝑢0(𝒙). (6.6.1)

6.6.1 小初值整体解和散射

我们证明质量临界NLS(6.6.1)的小初值整体适定性和散射。粗略地说，整体适定性和散射意
味着 (6.6.1)有可以延续到无穷时间的解，且当 𝑡 → ±∞时，该解接近线性Schrödinger方程的解。

定义 6.6.1 (适定性). 初值问题被称为在区间 𝐼, 0 ∈ 𝐼 ⊂ ℝ上适定的，是指

• 初值问题存在唯一解，
• 解关于时间变量是连续的，
• 解对初值有连续依赖性。

定义 6.6.2 (散射 (scattering)). 我们称NLS的解在时间正向散射 (time-forward scattering)，是指解
在 𝑡 ∈ [0,∞)上存在，且存在函数 𝑢+ 使得

𝑢(𝑡) − 𝑒𝑖𝑡∆𝑢+ → 0, 𝑡 → +∞.

NLS的解被称为在时间倒向散射 (time-backward scattering)，是指解在 (−∞, 0]上存在，且存在 𝑢−
使得

𝑢(𝑡) − 𝑒𝑖𝑡∆𝑢− → 0, 𝑡 → −∞.

初值问题的解被称为是散射的，是指该问题整体适定，且在时间正向和倒向都散射，且 𝑢+ 和 𝑢−
对初值均有连续依赖性。

定理 6.6.1. 对任意 𝑑 ⩾ 1，存在充分小的 𝜀0(𝑑) > 0 使得当 ‖𝑢0‖𝐿2(ℝ𝑑) ⩽ 𝜀0时，方程 (6.6.1) 在

𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ × ℝ𝑑)中整体适定并在 𝐿2(ℝ𝑑)中散射。

证明. 我们首先证明存在性。设 𝑑 ⩾ 1，且为简单起见可以取𝑝 = 𝑞. 如果(𝑝, 𝑞)是容许对，则可算
出 𝑝 = 𝑞 = 2(𝑑+2)

𝑑
，所以我们考虑如下Banach空间

𝑋 ∶= {𝑢 ∶ ℝ × ℝ𝑑 → ℂ ∶ ‖𝑢‖
𝐿
2(𝑑+2)
𝑑

𝑡,𝑥 (ℝ×ℝ𝑑)
⩽ 𝐶𝜀0} .

其中 𝐶 为常数。据Strichartz估计，存在常数 𝐶(𝑑)使得

‖‖‖‖𝑒
𝑖𝑡∆𝑢0

‖‖‖‖𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ 𝐶𝜀0.
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现在我们定义映射

Φ(𝑢)(𝑡) = 𝑒𝑖𝑡∆𝑢0 − 𝑖 ∫
𝑡

0
𝑒𝑖(𝑡−𝜏)∆𝐹(𝑢(𝜏)) d𝜏.

若 𝑢 ∈ 𝑋 满足Φ(𝑢)(𝑡) = 𝑢(𝑡)，则 𝑢是 (6.6.1)的解。据压缩映射原理，欲证明 (6.6.1) 在 𝑋 中存
在唯一解，只需证明 Φ(𝑋) ⊆ 𝑋 且 Φ 是 𝑋 上的压缩映射。由 𝑝 = 𝑞 = 2(𝑑+2)

𝑑
的Strichartz估计

和Hölder不等式，若 𝑢 ∈ 𝑋则有
‖‖‖‖‖‖‖‖‖
∫
𝑡

0
𝑒𝑖(𝑡−𝜏)∆𝐹(𝑢(𝜏)) d𝜏

‖‖‖‖‖‖‖‖‖𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)

⩽ 𝐶‖𝐹(𝑢)‖
𝐿
2(𝑑+2)
𝑑+4

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ 𝐶‖𝑢‖

1+ 4
𝑑

𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ (𝐶𝜀0)

1+ 4
𝑑 .

因此我们只要选取常数𝜀0充分小，就能得到 Φ(𝑋) ⊆ 𝑋.
接下来证明 Φ是压缩映射，对 𝑢, 𝑣 ∈ 𝑋，我们计算

‖Φ(𝑢) − Φ(𝑣)‖
𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ 𝐶‖𝐹(𝑢) − 𝐹(𝑣)‖

𝐿
2(𝑑+2)
𝑑+4

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ 𝐶

‖‖‖‖‖‖|𝑢|
4
𝑑 + |𝑣|

4
𝑑
‖‖‖‖‖‖𝐿

𝑑+2
2

𝑡,𝒙 (ℝ×ℝ𝑑)
‖𝑢 − 𝑣‖

𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)
.

这里我们利用了如下简单事实

||𝑢|𝛼𝑢 − |𝑣|𝛼𝑣| ⩽ (1 + 𝛼)(|𝑢|𝛼 + |𝑣|𝛼)|𝑢 − 𝑣|.

对充分小的 𝜀0 > 0，有

‖Φ(𝑢) − Φ(𝑣)‖
𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)
⩽ 1
2‖𝑢 − 𝑣‖

𝐿
2(𝑑+2)
𝑑

𝑡,𝒙 (ℝ×ℝ𝑑)

这说明 Φ确实是𝑋上的压缩映射。因此存在唯一的 𝑢 ∈ 𝑋成为 Φ的不动点，它也是质量临界NLS
(6.6.1)的解。唯一性和对初值的连续依赖性可以用同样的方法证明，这里略去。

最后我们证明散射。设

𝑢+ = 𝑢0 − 𝑖 ∫
∞

0
𝑒−𝑖𝑡∆𝐹(𝑢(𝑡)) d𝑡, 𝑢− = 𝑢0 + 𝑖 ∫

0

−∞
𝑒−𝑖𝑡∆𝐹(𝑢(𝑡)) d𝑡.

再由Strichartz估计和Christ-Kiselev引理 [4]知，𝑢+, 𝑢− ∈ 𝐿2𝒙(ℝ𝑑)是良定的。又由控制收敛定理知

lim
𝑇→∞

‖𝐹(𝑢)‖
𝐿
2(𝑑+2)
𝑑+4

𝑡,𝒙 ([𝑇,∞)×ℝ𝑑)
= 0.

因此有
‖‖‖‖𝑒

𝑖𝑇∆𝑢+ − 𝑢(𝑇)‖‖‖‖𝐿2𝒙(ℝ𝑑) =
‖‖‖‖‖‖‖‖
∫
∞

𝑇
𝑒𝑖(𝑡−𝜏)∆𝐹(𝑢(𝜏))𝑑𝜏

‖‖‖‖‖‖‖‖𝐿2𝒙(ℝ𝑑)
→ 0
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这证明了对任意小初值 ‖𝑢0‖𝐿2 ⩽ 𝜀0，方程(6.6.1)都有整体解，且在正时间方向散射。证明解
在负时间方向散射也是完全一样的，在此略过。

6.6.2 NLS的位力恒等式

当 𝜇 = −1时，即对聚焦NLS而言

𝑖𝜕𝑡𝑢 + ∆𝑢 = 𝜇|𝑢|𝑝−1𝑢, 𝑢(0, 𝒙) = 𝑢0(𝒙), 𝜇 = ±1, (6.6.2)

能量

𝐸(𝑡) ∶= ∫
ℝ𝑑

1
2|∇𝑢|

2 − 1
𝑝 + 1|𝑢|

𝑝+1 d𝒙 (6.6.3)

尽管是守恒的，但它可能是负的。这种情况下我们可以借助位力恒等式 (Virial identity)证明方程
的解发生有限时间爆破。本节我们再次以质量临界NLS为例，即假设𝑝 − 1 = 4

𝑑
. 需注意，这个结

果并不与上节证明的小初值整体适定性相矛盾。

我们定义位力势 (Virial potential)如下

𝑉(𝑡) ∶= ∫
ℝ𝑑
|𝒙|2|𝑢(𝑡, 𝒙)|2 d𝒙. (6.6.4)

容易看出 𝑉(𝑡)必须是非负的。另一方面我们可以证明，对 (6.6.2)的任意解 𝑢，如果它满足 𝒙𝑢 ∈
𝐿2(ℝ𝑑)，则如下结论成立
命题 6.6.2 (NLS的Virial恒等式). 设 𝑢是 (6.6.2)的光滑解，且 𝑢0 ∈ 𝐻1(ℝ𝑑), |𝒙|𝑢0 ∈ 𝐿2(ℝ𝑑). 则有

𝑉′′(𝑡) = 8 ∫
ℝ𝑑
|∇𝑢|2 ± 4𝑑 ∫

ℝ𝑑
(1 − 2

𝑝 + 1) |𝑢|
𝑝+1 d𝒙. (6.6.5)

特别地，如果我们令 𝑝 − 1 = 4
𝑑
，那么就得到 𝑉′′(𝑡) = 16𝐸(𝑡)，据此可证明以下定理。

定理 6.6.3. 设 𝑢 ∶ [0, 𝑇∗) × ℝ𝑑 → ℂ 是聚焦、质量临界NLS（(6.6.1) 中 𝜇 = −1）的光滑解，且
𝑢0 ∈ 𝐻1(ℝ𝑑), |𝒙|𝑢0 ∈ 𝐿2(ℝ𝑑). 若以下条件之一成立，就必有 𝑇∗ < ∞：

(a) 𝐸(0) < 0;
(b) 𝐸(0) = 0, 𝑉′(0) < 0;
(c) 𝐸(0) > 0, (𝑉′(0))2 − 32𝐸(0)𝑉(0) > 0.

注记 6.6.1. 需注意这个结果并不违反定理 6.6.1中的小初值整体适定性，因为上述条件均与‖𝑢0‖𝐿2 ≪
1相矛盾。以(a)为例，我们实际上可以证得如下Gagliardo-Nirenberg插值不等式：对任意𝑢 ∈ 𝐻1(ℝ𝑑)有

‖𝑢‖
2+ 4

𝑑

𝐿2+
4
𝑑
⩽ 𝐶‖𝑢‖

4
𝑑
𝐿2‖∇𝑢‖

2
𝐿2
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1982年, Weinstein证明了该不等式的最佳常数为

𝐶∗ =
2 + (4∕𝑑)
2‖𝑄‖4∕𝑑𝐿2

.

这里的𝑄是基态解，即它是满足椭圆方程 −∆𝑄 = −𝑄+|𝑄|4∕𝑑𝑄的唯一径向正解。其证明方法是将
最佳常数转化为具有约束条件的变分问题，而它的极小化子满足如上椭圆方程，见如下文章

• Michael Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun.
Math. Phys., 87(4), 567–576, 1982.

由Pohozaev恒等式的推导方法(习题2.8.1)并代入能量(6.6.3)中可以算得

𝐸(𝑡) ⩾ 1
2‖∇𝑢‖

2
𝐿2
⎡
⎢
⎣
1 − (

‖𝑢‖𝐿2
‖𝑄‖𝐿2

)
4∕𝑑⎤
⎥
⎦
.

因此当‖𝑢0‖𝐿2 < ‖𝑄‖𝐿2时，才有𝐸(𝑡) ⩾ 0. 这说明如果𝐸 < 0，则初值的质量必定高于基态质量，与
小初值矛盾。

“命题 6.6.2 ⇒定理 6.6.3”的证明. 对聚焦质量临界NLS，由能量守恒，我们已经有𝑉′′(𝑡) = 16𝐸(𝑡) =
16𝐸(0). 然后对𝑡积分两次，就得到 𝑉(𝑡) = 𝑉(0) + 𝑉′(0)𝑡 + 8𝐸(0)𝑡2, 这是一个关于 𝑡 的常系数二次
函数。因此，只要 (a)-(c)中任一条成立，我们就会得到当 𝑡 → ∞时 𝑉(𝑡) → −∞，这与 𝑉(𝑡)的非
负性矛盾。所以如果 (a)-(c)中任一条成立，解的存在时长 𝑇∗ 必须是有限的。

余下只要证明位力恒等式 (6.6.5).

命题 6.6.2的证明. 第一步: 计算 𝑉′(𝑡). 注意 𝑢是复值函数，所以 |𝑢|2 = 𝑢𝑢̄, |∇𝑢|2 = ∇𝑢 ⋅ ∇𝑢. 接
下来我们将反复使用诸如 2Re (𝑧𝑤̄) = 𝑧𝑤̄+𝑧̄𝑤, Re (𝑖𝑧) = −Im (𝑧)等事实，其中 𝑧, 𝑤 ∈ ℂ.对𝑉(𝑡)求
导得到

𝑉′(𝑡) = 2Re ∫
ℝ𝑑
|𝒙|2𝑢̄𝜕𝑡𝑢 = 2Re ∫

ℝ𝑑
𝑖|𝒙|2𝑢̄∆𝑢 d𝒙 ± 2Re ∫

ℝ𝑑
𝑖|𝒙|2|𝑢|𝑝+1 d𝒙

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
=0

= − 2Im ∫
ℝ𝑑
|𝒙|2(𝑢̄∆𝑢 + |∇𝑢|2

⏟⏟⏟
Im |∇𝑢|2=0

) d𝒙 = −2Im ∫
ℝ𝑑
|𝒙|2∇ ⋅ (𝑢̄∇𝑢) d𝒙

= 2Im ∫
ℝ𝑑
∇(|𝒙|2)
⏟ ⏟ ⏟

=2𝒙

⋅(𝑢̄∇𝑢) d𝒙 = 4Im ∫
ℝ𝑑
(𝒙 ⋅ ∇)𝑢 𝑢̄ d𝒙.
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第二步：计算 𝑉′′(𝑡). 再求一次导并分部积分，我们得到

𝑉′′(𝑡) = 4Im ∫
ℝ𝑑
(𝒙 ⋅ ∇)𝑢 𝜕𝑡𝑢 d𝒙 + 4Im ∫

ℝ𝑑
(𝒙 ⋅ ∇)𝜕𝑡𝑢 𝑢̄ d𝒙

= 4Im ∫
ℝ𝑑
(𝒙 ⋅ ∇)𝑢 𝜕𝑡𝑢 d𝒙 − 4Im ∫

ℝ𝑑
𝜕𝑡𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙 − 4Im ∫

ℝ𝑑
(∇ ⋅ 𝒙)𝜕𝑡𝑢 𝑢̄ d𝒙

= − 8Im ∫
ℝ𝑑
𝜕𝑡𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙 − 4𝑑Im ∫

ℝ𝑑
𝜕𝑡𝑢 𝑢̄ d𝒙.

现在记 𝐽1 ∶= Im ∫ℝ𝑑 𝜕𝑡𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙, 𝐽2 ∶= Im ∫ℝ𝑑 𝜕𝑡𝑢 𝑢̄ d𝒙. 则有 𝑉′′(𝑡) = −8𝐽1 − 4𝑑𝐽2. 而 𝐽2 在代入
方程并分部积分后很容易计算

𝐽2 = − Re ∫
ℝ𝑑
𝑢̄(𝑖𝜕𝑡𝑢) d𝒙 = Re ∫

ℝ𝑑
𝑢̄∆𝑢 ∓ |𝑢|𝑝+1 d𝒙 = −Re ∫

ℝ𝑑
|∇𝑢|2 ± |𝑢|𝑝+1 d𝒙.

对 𝐽1，我们也代入NLS方程得到

𝐽1 =Im ∫
ℝ𝑑
(𝑖∆𝑢 ∓ 𝑖|𝑢|𝑝−1𝑢) (𝒙 ⋅ ∇)𝑢̄ d𝒙

=Re ∫
ℝ𝑑
∆𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙 ∓ Re ∫

ℝ𝑑
|𝑢|𝑝−1𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙.

现在记 𝐾1 ∶= Re ∫ℝ𝑑 ∆𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙, 𝐾2 ∶= Re ∫ℝ𝑑 |𝑢|𝑝−1𝑢 (𝒙 ⋅ ∇)𝑢̄ d𝒙. 则有 𝐽1 = 𝐾1 ∓ 𝐾2.

对 𝐾2，我们记 𝑔(𝑥) = 𝑥
𝑝−1
2 及其原函数 𝐺(𝑥) ∶= 2

𝑝+1
𝑥

𝑝+1
2 ，分部积分可得

𝐾2 =
1
2Re ∫

ℝ𝑑
(𝒙 ⋅ ∇)(|𝑢|2)𝑔(|𝑢|2) d𝒙 = 1

2Re ∫
ℝ𝑑
(𝒙 ⋅ ∇)𝐺(|𝑢|2) d𝒙

= − 1
2 ∫ℝ𝑑

(∇ ⋅ 𝒙)𝐺(|𝑢|2) d𝒙 = − 𝑑
𝑝 + 1 ∫ℝ𝑑

|𝑢|𝑝+1 d𝒙.

对 𝐾1，我们通过分部积分得到

𝐾1 = −
∑

𝑗,𝑘
Re ∫

ℝ𝑑
𝜕𝑗𝑢 𝜕𝑗(𝑥𝑘𝜕𝑘𝑢̄) d𝒙 = −

∑

𝑗,𝑘
Re ∫

ℝ𝑑
𝜕𝑗𝑢 𝛿𝑗𝑘𝜕𝑘𝑢̄ d𝒙 − Re ∫

ℝ𝑑
𝜕𝑗𝑢 𝑥𝑘𝜕𝑘𝜕𝑗𝑢̄ d𝒙

= − ∫
ℝ𝑑
|∇𝑢|2 d𝒙 − 1

2 ∫ℝ𝑑
(𝒙 ⋅ ∇)(|∇𝑢|2) d𝒙

= − (1 − 𝑑
2) ∫ℝ𝑑

|∇𝑢|2 d𝒙.
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将上述等式加起来，我们得到

𝐽1 = −(1 − 𝑑
2) ∫ℝ𝑑

|∇𝑢|2 d𝒙 ± 𝑑
𝑝 + 1 ∫ℝ𝑑

|𝑢|𝑝+1 d𝒙.

因此，

𝑉′′(𝑡) = −8𝐽1 − 4𝑑𝐽2 = 8∫
ℝ𝑑
|∇𝑢|2 ± 4𝑑 ∫

ℝ𝑑
(1 − 2

𝑝 + 1) |𝑢|
𝑝+1 d𝒙.

习题 6.6

习题 6.6.1 (拟共形守恒律). 如果 𝑢是方程 (6.6.1)的解，证明如下定义的量关于时间守恒。

‖(𝑥 + 2𝑖𝑡∇)𝑢(𝑡)‖2𝐿2(ℝ𝑑) +
8𝑡2
𝑝 + 2 ∫ℝ𝑑

|𝑢(𝑡, 𝒙)|𝑝+2 d𝒙, 𝑝 = 4
𝑑 .

习题 6.6.2. 证明非线性Schrödinger方程 (6.6.2)的质量、能量和动量守恒律。

• (质量守恒) d
d𝑡
∫ℝ𝑑 |𝑢(𝑡, 𝒙)|2 d𝒙 = 0.

• (能量守恒) d
d𝑡
∫ℝ𝑑

1
2
|∇𝑢(𝑡, 𝒙)|2 ± 1

𝑝+1
|𝑢(𝑡, 𝒙)|𝑝+1 d𝒙 = 0.

• (动量守恒) d
d𝑡

Im ∫ℝ𝑑 𝑢(𝑡, 𝒙)∇𝑢(𝑡, 𝒙) d𝒙 = 0.

问题 6.6

问题 6.6.1. 今考虑cubic NLS解的性质。

𝐢𝜕𝑡𝑢 + ∆𝑢 = 𝜇|𝑢|2𝑢 in [0, 𝑇] × ℝ3, 𝑢(0, 𝒙) = 𝑢0(𝒙). (NLS)

其中初值𝑢0 ∈ 𝐻1(ℝ3), 𝜇 = ±1.

(1) 利用习题6.5.2的结论证明：当‖𝑢0‖𝐻1(ℝ3) ≪ 1时，方程(NLS)有小初值整体解 𝑢 ∈ 𝐿∞𝑡 (ℝ;𝐻1
𝒙(ℝ3)∩

𝐿4𝑡 (ℝ;𝑊
1,3
𝒙 (ℝ3)).

(2) 现在设𝜇 = −1，初值还满足|𝒙|𝑢0 ∈ 𝐿2(ℝ3). 设𝑢 ∶ [0, 𝑇∗) × ℝ3 → ℂ是此时(NLS)在[0, 𝑇∗) ×
ℝ3上的解。定义能量𝐸(𝑡)和位力势𝑉(𝑡)如下

𝐸(𝑡) ∶= ∫
ℝ3

1
2|∇𝑢(𝑡, 𝒙)|

2 − 1
4|𝑢(𝑡, 𝒙)|

4 d𝒙, 𝑉(𝑡) ∶= ∫
ℝ3
|𝒙|2|𝑢(𝑡, 𝒙)|2 d𝒙.

证明：若𝐸(0) < 0，则𝑇∗ < +∞. (提示：(2)先写出位力恒等式，然后证明𝑉′′(𝑡) ⩽ 16𝐸(𝑡).)
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第七章 变分法简介

在对称椭圆算子的主特征值变分原理的证明中，变分法的思想已经出现：将特征值问题的解

等价为某个位势能量泛函的极小化子。类似的思想则可以用于从“最小作用量原理”的角度出发

推导出各种重要的偏微分方程。本章我们简要介绍欧拉-拉格朗日方程（最小作用量原理）及其简
单应用。在本章末尾我们还介绍了诺特定理的数学表述，它可以用来推导方程的各种守恒量、单

调量，这对非线性偏微分方程的研究起到重要作用。

7.1 一阶变分：欧拉-拉格朗日方程

今假设我们要求解某个微分方程 𝐴[𝑢] = 0, 其中𝐴[⋅]是一个(非线性)微分算子, 𝑢是未知函数。
显见，我们很难找到一般性的理论来求解非线性微分方程。但是变分法的思想告诉我们：对一部

分微分方程问题(我们称作“变分问题”)，我们可以将微分方程的解视作某个“能量泛函”𝐼[⋅]的
临界点，即𝐼′[𝑢] = 0,而能量泛函临界点的存在性往往可以通过泛函分析的方法求得。

本节简要介绍一阶变分的一般理论。设𝑈 ⊂ ℝ𝑑是边界光滑(如果非空)的开集，我们定义光滑
函数𝐿 ∶ ℝ𝑑 × ℝ × 𝑈 → ℝ为拉格朗日量 (Lagrangian),其具有形式

𝐿 = 𝐿(𝒑, 𝑧, 𝒙) = 𝐿(𝑝1,⋯ , 𝑝𝑑, 𝑧, 𝑥1⋯,𝑥𝑑), 𝒑 ∈ ℝ𝑑, 𝑧 ∈ ℝ, 𝒙 ∈ ℝ𝑑.

其中𝒑, 𝑧变量往往取成∇𝑤(𝒙), 𝑤(𝒙),这里𝑤(𝒙)是一个标量函数。我们还定义如下记号

∇𝒑𝐿 = (𝜕𝑝1𝐿,⋯ , 𝜕𝑝𝑑𝐿), ∇𝑧𝐿 = 𝜕𝑧𝐿, ∇𝒙𝐿 = (𝐿𝑥1 ,⋯ , 𝐿𝑥𝑑).

今考虑形如下式的泛函

𝐼[𝑤] ∶= ∫
𝑈
𝐿(∇𝑤(𝒙), 𝑤(𝒙), 𝒙) d𝒙,

其中 𝑤 ∶ 𝑈 → ℝ属于某个容许集 (admissible set),例如 𝒜 ∶= {𝑤 ∈ 𝐶∞(𝑈) ∶ 𝑤|𝜕𝑈 = 𝑔},其中𝑔是给
定的函数。

定理 7.1.1. 设𝒜 ∶= {𝑤 ∈ 𝐶∞(𝑈) ∶ 𝑤|𝜕𝑈 = 𝑔}, 其中𝑔是给定的光滑函数。若𝑢 ∈ 𝒜是𝐼[⋅]的极小化
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子(如果存在)，即 𝐼[𝑢] = min
𝑤∈𝒜

𝐼[𝑤],则𝑢满足如下欧欧欧拉拉拉-拉拉拉格格格朗朗朗日日日方方方程程程 (Euler-Lagrange equation)

−
𝑑∑

𝑖=1
𝜕𝑥𝑖(𝜕𝑝𝑖𝐿(∇𝑢, 𝑢, 𝒙)) + 𝜕𝑧𝐿(∇𝑢, 𝑢, 𝒙) = 0 in 𝑈. (7.1.1)

证明. 任取𝑣 ∈ 𝐶∞
𝑐 (𝑈),我们知道𝑢 ∈ 𝒜 ⇒ 𝑢 + 𝜀𝑣 ∈ 𝒜. 令

𝑗(𝜀) ∶= 𝐼[𝑢 + 𝜀𝑣], 𝜀 ∈ ℝ.

由于𝑢是𝐼[⋅]的极小化子,所以𝑗(𝜀)在𝜀 = 0取到最小值，所以𝑗′(0) = 0.
现在计算𝑗′(0). 据

𝑗(𝜀) = ∫
𝑈
𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙) d𝒙,

求导得

𝑗′(𝜀) = ∫
𝑈

𝑑∑

𝑖=1
𝜕𝑝𝑖𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙)𝜕𝑥𝑖𝑣 + 𝜕𝑧𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙)𝑣 d𝒙.

令 𝜀 = 0,我们得到

0 = 𝑗′(0) = ∫
𝑈

𝑑∑

𝑖=1
𝜕𝑝𝑖𝐿(∇𝑢, 𝑢, 𝒙)𝜕𝑥𝑖𝑣 + 𝜕𝑧𝐿(∇𝑢, 𝑢, 𝒙)𝑣 d𝒙.

最后，我们中第一项中分部积分一个𝜕𝑥𝑖就得到想要的结论。

7.1.1 若干实例：各种基本方程的导出

例 7.1.1 (Poisson方程). 给定函数𝑓 ∶ ℝ → ℝ, 定义其原函数为𝐹(𝑧) = ∫𝑧0 𝑓(𝑦) d𝑦. 我们现在考虑如
下能量泛函

𝐼[𝑤] = ∫
𝑈

1
2|∇𝑤|

2 − 𝐹(𝑤) d𝒙.

讨论. 由𝐿(𝒑, 𝑧, 𝒙) = 1
2
|𝒑|2 − 𝐹(𝑧)知,

𝜕𝑝𝑖𝐿 = 𝑝𝑖, 𝜕𝑧𝐿 = −𝑓(𝑧).

所以欧拉-拉格朗日方程为
−∆𝑢 = 𝑓(𝑢) in 𝑈.

一般来说，𝐹(𝑧)往往取成多项式形式，例如𝐹(𝑧) = ± 1
𝑝+1

𝑧𝑝+1,它对应的欧拉-拉格朗日方程为−∆𝑢 =
±𝑢𝑝. 若𝐹 ≡ 0,则这就是Laplace方程的Dirichlet原理。
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注记 7.1.1. 我们同样也可以在能量泛函中引进时间变量𝑡,即将变量𝒙换为(𝑡, 𝒙),梯度∇𝑤换成(𝜕𝑡𝑤, ∇𝑤),
这样就可以推导出波动方程。例如，考虑

𝐼[𝑤] = ∫
𝑇

0
∫
𝑈

1
2𝑤

2
𝑡 − (12|∇𝑤|

2 + 𝐹(𝑤)) d𝒙 d𝑡,

它对应的欧拉-拉格朗日方程即为波动方程

𝑢𝑡𝑡 − ∆𝑢 + 𝑓(𝑢) = 0.

例 7.1.2 (极小曲面 (minimal surface)). 考虑Plateau问题:三维空间中给定一条闭曲线，以它为边界
的曲面的面积最小值何时取到？

图 7.1: 极小曲面示例

讨论. 为了避免不必要的麻烦，我们考虑参数曲面的面积最小值，即计算如下泛函的极小化子

𝐼[𝑤] = ∫
𝑈

√
1 + |∇𝑤|2 d𝒙.

它对应的拉格朗日量为𝐿(𝒑, 𝑧, 𝒙) =
√
1 + |𝒑|2, 所以𝜕𝑝𝑖𝐿(𝒑, 𝑧, 𝒙) =

𝑝𝑖√
1+|𝒑|2

, 𝜕𝑧𝐿 = 0. 现在将(𝒑, 𝑧)换
成(∇𝑢, 𝑢),我们就得到极小化子𝑢满足的方程

∇ ⋅ ( ∇𝑢
√
1 + |∇𝑢|2

) ∶=
𝑑∑

𝑖=1
𝜕𝑥𝑖 (

𝜕𝑥𝑖𝑢√
1 + |∇𝑢|2

) = 0.

注记 7.1.2. 表达式∇ ⋅ ( ∇𝑢
√
1 + |∇𝑢|2

)实际上是函数𝑢的图像的平均曲率的𝑑倍，所以上面求得的极

小曲面的平均曲率为零。此外，这个量也有物理意义：流体的表面张力是正比于其界面的平均曲
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率的。

例 7.1.3 (调和映射 (harmonic map)). 我们现在将标量函数𝑤换成向量值函数𝐰 ∶ 𝑈 ⊂ ℝ𝑑 → ℝ𝑚.
考虑如下泛函

𝐼[𝐰] ∶= ∫
𝑈

1
2|∇𝐰|2 d𝒙

在容许集 𝒜 ∶= {𝐰 ∈ 𝐶2(𝑈 → ℝ𝑚) ∶ 𝑤|𝜕𝑈 = 𝐠, |𝐰| = 1}上的极小化子。这看上去是一个几何问
题，但实际上该问题的变种还能用来刻画液晶运动的稳态。我们证明极小化子𝐮满足如下拟线性
椭圆方程组

⎧

⎨
⎩

−∆𝐮 = |∇𝐮|2𝐮 in 𝑈
𝐮 = 𝐠 on 𝜕𝑈.

图 7.2: 到球面的调和映射

证明. 任取𝐯 ∈ 𝐶∞
𝑐 (𝑈 → ℝ𝑚), 由于|𝐮| = 1, 我们知道当𝜀很小时有|𝐮 + 𝜀𝐯| ≠ 0, 进而𝐯𝜀 ∶=

𝐮 + 𝜀𝐯
|𝐮 + 𝜀𝐯| ∈ 𝒜.

现在我们定义𝑗(𝜀) ∶= 𝐼[𝐯𝜀],则𝑗在𝜀 = 0取到最小值，所以𝑗′(0) = 0. 直接计算得

𝑗′(0) = ∫
𝑈
∇𝐮 ∶ ∇𝐯′(0) d𝒙,

这里的记号 ′ ∶= 𝑑
𝑑𝜀

; 𝐴 ∶ 𝐵 ∶= ∑
𝑖,𝑗
𝐴𝑖𝑗𝐵𝑖𝑗.

接下来计算

𝐯′(𝜀) = 𝐯
|𝐮 + 𝜀𝐯| −

((𝐮 + 𝜀𝐯) ⋅ 𝐯)(𝐮 + 𝜀𝐯)
|𝐮 + 𝜀𝐯|3 ⇒ 𝐯′(0) = 𝐯 − (𝐮 ⋅ 𝐯)𝐮.
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将其代入𝑗′(0)的表达式，得到

0 = ∫
𝑈
∇𝐮 ∶ ∇𝐯 − ∇𝐮 ∶ ∇((𝐮 ⋅ 𝐯)𝐮) d𝒙.

由于 |𝐮|2 = 1,我们求导得到
𝑚∑
𝑗=1
(𝜕𝑖𝑢𝑗)𝑢𝑗 = 0对任意1 ⩽ 𝑖 ⩽ 𝑑都成立，即 (∇𝐮)⊤𝐮 = 𝟎. 据此算得

∇𝐮 ∶ ∇((𝐮 ⋅ 𝐯)𝐮) =
∑

𝑖

∑

𝑗
𝜕𝑖𝐮𝑗𝜕𝑖(

∑

𝑘
𝐮𝑘𝐯𝑘𝐮𝑗)

= |∇𝐮|2(𝐮 ⋅ 𝐯) +
∑

𝑖

∑

𝑗
𝜕𝑖𝐮𝑗𝐮𝑗

⏟⎴⏟⎴⏟
=0

𝜕𝑖(
∑

𝑘
𝐮𝑘𝐯𝑘) = |∇𝐮|2(𝐮 ⋅ 𝐯).

现在有

∫
𝑈
∇𝐮 ∶ ∇𝐯 d𝒙 = ∫

𝑈
|∇𝐮|2(𝐮 ⋅ 𝐯) d𝒙 ∀𝐯 ∈ 𝐶∞

𝑐 (𝑈 → ℝ𝑚).

左边分部积分一次，最终得到如下恒等式

∫
𝑈
(−∆𝐮) ⋅ 𝐯 d𝒙 = ∫

𝑈
|∇𝐮|2(𝐮 ⋅ 𝐯) d𝒙 ∀𝐯 ∈ 𝐶∞

𝑐 (𝑈 → ℝ𝑚).

由𝐯的任意性得知，方程 −∆𝐮 = |∇𝐮|2𝐮在𝑈中恒成立。

7.1.2 二阶变分：凸性假设

若泛函𝐼[𝑤]在𝑢达到极小值，则𝑗(𝜀) ∶= 𝐼[𝑢 + 𝜀𝑣]满足𝑗′(0) = 0, 而进一步我们还有𝑗′′(0) ⩾ 0.
现在我们来看看二阶导数的信息能带来什么。回忆

𝑗(𝜀) = ∫
𝑈
𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀∇𝑣, 𝒙) d𝒙.

求两次导数得到

𝑗′′(𝜀) = ∫
𝑈

𝑑∑

𝑖,𝑗=1
𝜕𝑝𝑖𝜕𝑝𝑗𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙)𝜕𝑥𝑖𝑣𝜕𝑥𝑗𝑣

+ 2
𝑑∑

𝑖=1
𝜕𝑝𝑖𝜕𝑧𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙)𝜕𝑥𝑖𝑣𝑣

+ 𝜕2𝑧𝐿(∇𝑢 + 𝜀∇𝑣, 𝑢 + 𝜀𝑣, 𝒙)𝑣2 d𝒙.



194 第七章 变分法简介

令 𝜀 = 0,我们得到如下不等式对任意𝑣 ∈ 𝐶∞
𝑐 (𝑈)都成立:

0 ⩽ ∫
𝑈

𝑑∑

𝑖,𝑗=1
𝜕𝑝𝑖𝜕𝑝𝑗𝐿(∇𝑢, 𝑢, 𝒙)𝜕𝑥𝑖𝑣𝜕𝑥𝑗𝑣 + 2

𝑑∑

𝑖=1
𝜕𝑝𝑖𝜕𝑧𝐿(∇𝑢, 𝑢, 𝒙)𝜕𝑥𝑖𝑣𝑣 + 𝜕2𝑧𝐿(∇𝑢, 𝑢, 𝒙)𝑣2 d𝒙.

这实际上可以推出

𝑑∑

𝑖,𝑗=1
𝜕𝑝𝑖𝜕𝑝𝑗𝐿(∇𝑢, 𝑢, 𝒙)𝜉𝑖𝜉𝑗 ⩾ 0 𝜉 ∈ ℝ𝑑, 𝒙 ∈ 𝑈. (7.1.2)

该式被称作拉格朗日量𝐿的凸性假设。证明的过程可以参见 Evans [6]第八章第一节，此处略去细
节。其大致方法为：选取形如下式的测试函数𝑣,

𝑣(𝒙) = 𝜀𝜌 (
𝑥 ⋅ 𝜉
𝜀 ) 𝜂(𝒙), 𝒙 ∈ 𝑈,

其中𝜂 ∈ 𝐶∞
𝑐 (𝑈), 𝜌 ∶ ℝ → ℝ是一个定义如下的“锯齿状”函数: 𝜌(𝑥) =

⎧

⎨
⎩

𝑥 0 ⩽ 𝑥 ⩽ 1
2

1 − 𝑥 1
2
⩽ 𝑥 ⩽ 1

且满足

𝜌(𝑥 + 1) = 𝜌(𝑥) 𝑥 ∈ ℝ.
可见，凸性假设(7.1.2)应当成为极小化子存在性的必要条件之一，具体可参见[6,第8.2, 8.4节].

习题 7.1

习题 7.1.1. 求如下能量泛函的欧拉拉格朗日方程

𝐼[𝑤] ∶= ∫
𝑇

0
∫
𝑈

1
2𝑤

2
𝑡 −

1
2|∇𝑤|

2 − 𝑚2

2 𝑤2 d𝒙 d𝑡,

其中 𝑤(𝑡, 𝒙) ∈ 𝐶∞([0, 𝑇] × ℝ𝑑), 𝑚 > 0是给定的常数。
习题 7.1.2. 定义

𝐼[𝑤] = ∫
𝑇

0
∫
ℝ3

1
2𝑤

2
𝑡 − (12|∇𝑤|

2 + 1
6𝑤

6) d𝒙 d𝑡,

其中𝑤(𝑡, 𝒙)属于容许集𝒜 = {𝑤 ∈ 𝐶∞([0, 𝑇] × ℝ3) ∶ 𝑤(𝑡, ⋅) ∈ 𝒮(ℝ3) ∀𝑡 ∈ [0, 𝑇]}.求𝐼[𝑤]在𝒜上的极
小化子𝑢满足的方程，并证明

∫
ℝ3

1
2(𝑢𝑡)

2 + 1
2|∇𝑢|

2 + 1
6𝑢

6 d𝒙

是守恒量。

习题 7.1.3. 寻找拉格朗日量𝐿 = 𝐿(𝒑, 𝑧, 𝒙),使得方程−∆𝑢+∇𝜑⋅∇𝑢 = 𝑓 in𝑈是 𝐼[𝑤] ∶= ∫𝑈 𝐿(∇𝑤,𝑤, 𝒙) d𝒙
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对应的欧拉-拉格朗日方程. (提示：考虑带指数项的拉格朗日量。)

习题 7.1.4. 设𝜀 > 0, 𝑈𝑇 ∶= (0, 𝑇] × 𝑈. 证明：存在拉格朗日量𝐿(𝒑, 𝑧, 𝒙, 𝑡) (𝒑 ∈ ℝ𝑑+1, 𝒙 ∈ ℝ𝑑), 使
得如下椭圆正则化的热传导方程

𝜕𝑡𝑢 − ∆𝑢 − 𝜀𝜕2𝑡 𝑢 = 0

是能量泛函 𝐼𝜀[𝑤] ∶= ∬𝑈𝑇 𝐿(𝜕𝑡𝑤,∇𝑤,𝑤, 𝑡, 𝒙) d𝒙 d𝑡 对应的欧拉-拉格朗日方程. (提示：考虑带指数
项且依赖时间𝑡的拉格朗日量。)

习题 7.1.5. 设𝐿(𝒑, 𝒙)是光滑函数,且对𝒑-分量是一致凸的，即存在𝜃 > 0使得

𝑑∑

𝑖,𝑗=1
𝜕𝑝𝑖𝜕𝑝𝑗𝐿(∇𝑢, 𝑢, 𝒙)𝜉𝑖𝜉𝑗 ⩾ 𝜃|𝜉|2 (𝜉 ∈ ℝ𝑑, 𝒙 ∈ 𝑈).

证明𝐼[𝑤] ∶= ∫𝑈 𝐿(∇𝑢, 𝒙) d𝒙在𝒜 ∶= {𝑤 ∈ 𝐶∞(𝑈) ∶ 𝑤|𝜕𝑈 = 𝑔}上的极小化子是唯一的，其中𝑔 ∶
𝜕𝑈 → ℝ是给定的光滑函数。

提示：若𝑢1, 𝑢2是两个不同的极小化子，证明2𝐼[
𝑢1+𝑢2
2
] < 𝐼[𝑢1] + 𝐼[𝑢2],进而导出矛盾。

习题 7.1.6 (变分法推导Hamilton方程组). 本题用变分法考虑例??的另证。设拉格朗日量𝐿 ∶ ℝ𝑑 ×
ℝ𝑑 → ℝ是给定的光滑函数,并记为𝐿 = 𝐿(𝒗, 𝒙). 固定𝑡 > 0, 𝒙, 𝒚 ∈ ℝ𝑑,定义作用量为

𝐼[𝒘] ∶= ∫
𝑡

0
𝐿(𝒘̇(𝑠), 𝒘(𝑠)) d𝑠, 𝒘 ∈ 𝒜 ∶= {𝒘(⋅) ∈ 𝐶2([0, 𝑡]; ℝ𝑑) ∶ 𝒘(0) = 𝒚,𝒘(𝑡) = 𝒙}.

今假设曲线𝐱(⋅) ∈ 𝒜是𝐼[⋅]在𝒜上的极小化子，即𝐼[𝐱(⋅)] = inf
𝒘∈𝒜

𝐼[𝒘(⋅)].

(1) 证明：极小化子𝐱(⋅)满足常微分方程组

− d
d𝑠 [∇𝒗𝐿(𝐱̇(𝑠), 𝐱(𝑠))] + ∇𝒙𝐿(𝐱̇(𝑠), 𝐱(𝑠)) = 0, ∀𝑠 ∈ [0, 𝑡].

(2) 令𝐩(𝑠) ∶= ∇𝒗𝐿(𝐱̇(𝑠), 𝐱(𝑠))为对应于位置𝐱(𝑠)和速度𝐱̇(𝑠)的广义动量，并假设对任意𝒙,𝒑 ∈ ℝ𝑑,
方程𝒑 = ∇𝒗𝐿(𝒗, 𝒙)有唯一的光滑解𝒗 = 𝒗(𝒑, 𝒙). 令与拉格朗日量𝐿相关联的Hamilton量𝐻为

𝐻(𝒑, 𝒙) ∶= 𝒑 ⋅ 𝒗(𝒑, 𝒙) − 𝐿(𝒗(𝒑, 𝒙), 𝒙).

证明：(𝐱(⋅), 𝐩(⋅))是如下Hamilton方程的解

𝐱̇(𝑠) = ∇𝒑𝐻(𝐩(𝑠), 𝐱(𝑠)), 𝐩̇(𝑠) = −∇𝒙𝐻(𝐩(𝑠), 𝐱(𝑠)), 𝑠 ∈ [0, 𝑡].

且𝑠 ↦→ 𝐻(𝐩(𝑠), 𝐱(𝑠))是常值映射。

注记 7.1.3. 特别地，若令𝐿(𝒗, 𝒙) = 1
2
𝑚|𝒗|2 − 𝜙(𝒙),𝑚 > 0. 则对应的欧拉-拉格朗日方程为𝑚𝐱̈(𝑠) =

−∇𝜙(𝐱(𝑠))，即为牛顿第二定律，其中右端项为势能𝜙决定的力场。对应的𝐻(𝒑, 𝒙) = 1
2
𝑚|𝒑|2 +
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𝜙(𝒙)即为总能量，拉格朗日量即为动能、势能之差。

习题 7.1.7. 今不再固定习题7.1.6中的起点𝒚,即容许集𝒜 ∶= {𝒘(⋅) ∈ 𝐶2([0, 𝑡]; ℝ𝑑) ∶ 𝒘(𝑡) = 𝒙}.

(1) 证明习题7.1.6的(1)仍然成立，以及∇𝒗𝐿(𝐱̇(0), 𝐱(0)) = 0.

(2) 若𝐱(⋅) ∈ 𝒜是作用量𝐽[𝑤] ∶= ∫ 𝑡0 𝐿(𝒘̇(𝑠), 𝒘(𝑠)) d𝑠 + 𝑔(𝒘(0))的极小化子, 证明: 𝐱(⋅)是欧拉拉格
朗日方程的解，并确定𝑠 = 0处的边界条件。

7.2 变分不等式：椭圆自由边界问题

现在我们再来回顾Dirichlet原理: 如果我们把限制条件𝑤|𝜕𝑈 = 𝑔换成一个单侧的不等式 𝑤 ⩾ 𝑔
in 𝑈 (𝑔 ∈ 𝐶∞(𝑈)被称作障碍函数),即我们定义容许集为

𝒜 = {𝑤 ∈ 𝐶2(𝑈) ∶ 𝑤 ⩾ 𝑔 in 𝑈, 𝑤|𝜕𝑈 = 0},

并考虑同样的能量泛函𝐼[𝑤] ∶= ∫𝑈
1
2
|∇𝑤|2 −𝑤𝑓 d𝒙. 该能量泛函在𝒜上的极小化子的存在唯一性需

要使用泛函分析的方法证得，所以这里我们目前假设它是存在的。我们同样还假设𝒜是凸集(这个
也是可以证明的).然而，我们会发现现在的极小化子不再是位势方程边值问题的解吗，而是满足
所谓的变分不等式 (variational inequality)：

• 如果𝑢“超越了”障碍物，即当𝑢(𝑥) > 𝑔(𝑥)时，我们仍有位势方程−∆𝑢 = 𝑓成立；

• 一般地，只有 𝑢 ⩾ 𝑔和 −∆𝑢 ⩾ 𝑓在𝑈上恒成立。

定理 7.2.1 (变分不等式). 设𝑢 ∈ 𝒜是𝐼[𝑤]在𝒜上的唯一极小化子.则

∀𝑤 ∈ 𝒜, ∫
𝑈
(∇𝑢) ⋅ (∇(𝑤 − 𝑢)) d𝒙 ⩾ ∫

𝑈
𝑓(𝑤 − 𝑢) d𝒙.

该不等式的证明并不困难，我们在本小节末尾再写出详细过程。更重要的则是如何理解该不等

式。首先引进记号 𝒪 ∶= {𝒙 ∈ 𝑈 ∶ 𝑢(𝒙) > 𝑔(𝒙)}, 𝒞 ∶= {𝒙 ∈ 𝑈 ∶ 𝑢(𝒙) = 𝑔(𝒙)}.
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图 7.3: 障碍物问题中的自由边界

由于𝑢, 𝑔是连续函数，所以𝒪是开集, 𝒞是(相对)闭集。
断言 1: −∆𝑢 = 𝑓在𝒪中恒成立。

断言 1的证明. 任取测试函数𝑣 ∈ 𝐶∞
𝑐 (𝒪), 由于在𝒪中有𝑢(𝒙) > 𝑔(𝒙), 所以当|𝜀|充分小时, 我们仍有

𝑤(𝒙) ∶= 𝑢(𝒙) + 𝜀𝑣(𝒙) ⩾ 𝑔(𝒙),进而𝑤 ∈ 𝒜. 据变分不等式，我们有

𝜀 ∫
𝒪
(∇𝑢) ⋅ (∇𝑣) − 𝑓𝑣 d𝒙 ⩾ 0.

由于该不等式对任意小的𝜀 > 0和𝜀 < 0都成立, 那么该式的不等号就只能变成等号了，这说明𝑢满
足−∆𝑢 = 𝑓在𝒪中恒成立。

断言 2: 𝑢 ⩾ 𝑔和 −∆𝑢 ⩾ 𝑓在𝑈上恒成立。

断言 2的证明. 一般情况下，我们选取𝑣是非负测试函数，且𝜀 ∈ (0, 1]充分小。在变分不等式中分
部积分可得

∫
𝑈
(−∆𝑢 − 𝑓)𝑣 d𝒙 ⩾ 0 ∀𝑣 ∈ 𝐶∞

𝑐 (𝑈), 𝑣 ⩾ 0,

所以−∆𝑢 ⩾ 𝑓在𝑈上恒成立。

注记 7.2.1. 集合𝐹 ∶= 𝜕𝒪 ∩ 𝑈被称作自自自由由由边边边界界界 (free boundary), 这里的“自由”一词是指我们并
不知道这个交界面的具体位置在哪。而椭圆方程的自由边界问题在最优传输问题、空气动力学的

定常冲击喷流问题等许多实际模型中都有出现。

在本小节的最后，我们来证明变分不等式。

变分不等式的证明. 固定 𝑤 ∈ 𝒜,则对任意0 ⩽ 𝜀 ⩽ 1,由集合𝒜的凸性，我们有

𝑢 + 𝜀(𝑤 − 𝑢) = (1 − 𝜀)𝑢 + 𝜀𝑤 ∈ 𝒜.



198 第七章 变分法简介

所以如果令 𝑗(𝜀) = 𝐼[𝑢 + 𝜀(𝑤 − 𝑢)],就会得到𝑗(𝜀) ⩾ 𝑗(0)对任意𝜀 ∈ [0, 1]恒成立，这说明𝑗′(0) ⩾ 0.
现在我们用导数定义计算𝑗′(0). 对𝜀 ∈ (0, 1],我们有

𝑗(𝜀) − 𝑗(0)
𝜀 =1𝜀 ∫𝑈

|∇𝑢 + 𝜀∇(𝑤 − 𝑢)|2 − |∇𝑢|2
2 − 𝑓 (𝑢 + 𝜀(𝑤 − 𝑢) − 𝑢) d𝒙

=∫
𝑈
∇𝑢 ⋅ ∇(𝑤 − 𝑢) + 𝜀|∇(𝑤 − 𝑢)|2

2 − 𝑓(𝑤 − 𝑢) d𝒙.

令 𝜀 → 0+,结合𝑗′(0) ⩾ 0可得

∫
𝑈
∇𝑢 ⋅ ∇(𝑤 − 𝑢) − 𝑓(𝑤 − 𝑢) d𝒙 ⩾ 0.

习题 7.2

习题 7.2.1. 证明𝐼[𝑤] ∶= ∫𝑈
1
2
|∇𝑤|2 − 𝑤𝑓 d𝒙在容许集 𝒜 = {𝑤 ∈ 𝐶2(𝑈) ∶ 𝑤 ⩾ 𝑔 in 𝑈, 𝑤|𝜕𝑈 = 0}

上的极小化子是唯一的，其中𝑔 ∈ 𝐶∞(𝑈)是给定的函数。
习题 7.2.2. 证明：定理7.2.1中的变分不等式也可写作 −∆𝑢+𝛽(𝑢 − 𝑔) ∋ 𝑓,其中𝛽(⋅)为如下定义的
多值函数

𝛽(𝑧) ∶=

⎧
⎪
⎨
⎪
⎩

0 𝑧 > 0
(−∞, 0] 𝑧 = 0
∅ 𝑧 < 0

.

习题 7.2.3. 给定𝑓 ∈ 𝐿2(𝑈), 设𝑢是泛函 𝐼[𝑤] ∶= ∫𝑈
1
2
|∇𝑤|2 − 𝑤𝑓 d𝒙 在容许集 𝒜 = {𝑤 ∈ 𝐶2(𝑈) ∶

|∇𝑤| ⩽ 1 in 𝑈, 𝑤|𝜕𝑈 = 0}上的极小化子。证明：𝑢满足不等式

∫
𝑈
∇𝑢 ⋅ ∇(𝑤 − 𝑢) d𝒙 ⩾ ∫

𝑈
(𝑤 − 𝑢)𝑓 d𝒙 ∀𝑤 ∈ 𝒜.

7.3 诺特定理

我们现在考虑能量泛函在适当的区域/函数变化下的不变性，并证明相应的欧拉-拉格朗日方
程的解可以自动推出某些散度型守恒定律，这就是诺特定理 (Noether’s theorem)的实质内容。特
别地，利用诺特定理，我们可以得到一些“乘子”，它能帮助我们推导出方程中不易观察到的一

些守恒量、单调量。

本节我们假设𝑈 ⊆ ℝ𝑑是开集,并记𝐼[𝑤] = ∫𝑈 𝐿(∇𝑤,𝑤, 𝒙) d𝒙,其中𝑤 ∶ 𝑈 → ℝ, 𝐿 = 𝐿(𝒑, 𝑧, 𝒙)都
是光滑函数。
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7.3.1 定理的叙述与证明

在叙述定理之前，我们需要引进区域变分和函数变分的概念。

记号 7.3.1 (区域变分 (domain variation)). 设𝔛 ∶ ℝ𝑑 ×ℝ → ℝ𝑑, 𝔛 = 𝔛(𝒙, 𝜏)是一组随参数光滑变化
的光滑向量场,且对任意𝒙 ∈ ℝ𝑑都有𝔛(𝒙, 0) = 𝒙. 对充分小的参数𝜏,映射𝒙 ↦→ 𝔛(𝒙, 𝜏)被称作区区区域域域
变变变分分分 (domain variation). 同时我们记 𝐯(𝒙) ∶= 𝔛𝜏(𝒙, 0), 𝑈(𝜏) ∶= 𝔛(𝑈, 𝜏).
记号 7.3.2 (函数变分 (function variation)). 给定𝑢 ∶ ℝ𝑑 → ℝ,我们考虑函数𝑢的一族光滑的函函函数数数变变变
分分分(function variation) 𝑤 ∶ ℝ𝑑 × ℝ → ℝ𝑑, 𝑤 = 𝑤(𝒙, 𝜏)满足 𝑤(𝒙, 0) = 𝑢(𝒙)对任意𝒙 ∈ ℝ𝑑成立。我

们记 𝑚(𝒙) ∶= 𝑤𝜏(𝒙, 0),并称之为一个乘乘乘子子子(multiplier).

定义 7.3.1. 我们称泛函𝐼[⋅]在区域变分𝔛和函数变分𝑤下具有不变性，是指如下恒等式对任意的小
参数𝜏和任意开集 𝑈 ⊂ ℝ𝑑 都成立:

∫
𝑈
𝐿(∇𝑤(𝒙, 𝜏), 𝑤(𝒙, 𝜏), 𝒙) d𝒙 = ∫

𝑈(𝜏)
𝐿(∇𝑤,𝑤, 𝒙) d𝒙. (7.3.1)

接下来我们叙述并证明诺特定理，其表明能量泛函在区域变分和函数变分下的不变性可以让

我们从欧拉-拉格朗日方程中推出散度形式的恒等式。

定理 7.3.1 (诺特定理). 设𝐼[⋅]在区域变分𝔛和(对应函数𝑢的)函数变分𝑤下具有不变性，则

1. 如下恒等式成立

∇𝒙 ⋅
(
𝑚∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) − 𝐿(∇𝑢, 𝑢, 𝒙)𝐯

)
= 𝑚

(
∇𝒙 ⋅ ∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) − 𝜕𝑧𝐿(∇𝑢, 𝑢, 𝒙)

)
.

2. 特别地，若𝑢是𝐼[⋅]的临界点，并满足欧拉-拉格朗日方程 −∇𝒙 ⋅ (∇𝒑𝐿) + 𝜕𝑧𝐿 = 0,则有如下散
度形式的恒等式成立

∇𝒙 ⋅
(
𝑚∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) − 𝐿(∇𝑢, 𝑢, 𝒙)𝐯

)
= 0.

证明. 我们只需在恒等式(7.3.1)中对𝜏求导，再令𝜏 = 0即可。据此，得到等式

∫
𝑈
∇𝒑𝐿 ⋅ ∇𝒙𝑚 + 𝜕𝑧𝐿𝑚 d𝒙 = ∫

𝜕𝑈
𝐿(𝐯 ⋅ 𝑁) d𝑆𝒙

左边第一项分部积分，得到

∫
𝑈
∇𝒑𝐿 ⋅ ∇𝒙𝑚d𝒙 = −∫

𝑈
𝑚∇𝒙 ⋅ ∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) d𝒙 + ∫

𝜕𝑈
𝑚∇𝒑𝐿 ⋅ 𝑁 d𝑆𝒙

再用散度定理，得到

∫
𝜕𝑈
𝐿(𝐯 ⋅ 𝑁) d𝑆𝒙 − ∫

𝜕𝑈
𝑚∇𝒑𝐿 ⋅ 𝑁 d𝑆𝒙 = ∫

𝑈
∇𝒙 ⋅

(
𝐿𝐯 − 𝑚∇𝒑𝐿

)
d𝒙.
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二者联立，得到

∫
𝑈
𝑚
(
∇𝒙 ⋅ ∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) − 𝜕𝑧𝐿(∇𝑢, 𝑢, 𝒙)

)
= ∫

𝑈
∇𝒙 ⋅

(
𝑚∇𝒑𝐿(∇𝑢, 𝑢, 𝒙) − 𝐿(∇𝑢, 𝑢, 𝒙)𝐯

)
.

由于上式对任意开集𝑈 ⊂ ℝ𝑑都成立，所以左右两边的被积函数必定处处相等。

7.3.2 几个实例

在实际使用诺特定理的时候，我们需要先“预测”使用何种区域变分𝔛和函数变分𝑤以求得
能量泛函的变分不变性，进而可以用极小化子𝑢表示出我们想要的乘子𝑚. 本节介绍两个简单实
例，更复杂的例子参见习题和问题部分，它们大多选自 Evans [6,第8.6节].

例 7.3.1 (平移不变性). 设𝐿 = 𝐿(𝒑, 𝑧)不依赖𝒙变量, 则𝐼[𝑤] ∶= ∫𝑈 𝐿(∇𝑤,𝑤) d𝒙是平移不变的。给
定𝑘 ∈ {1,⋯ , 𝑑},定义𝔛(𝒙, 𝜏) ∶= 𝒙+ 𝜏𝑒𝑘 和 𝑤(𝒙, 𝜏) ∶= 𝑢(𝒙 + 𝜏𝑒𝑘). 然后我们可以按照区域变分和函
数变分的定义算出

𝐯 = 𝑒𝑘, 𝑚 = 𝜕𝑥𝑘𝑢.

因此，如果𝑢是𝐼[⋅]的一个临界点,则定理7.3.1可以推出

𝑑∑

𝑖=1
𝜕𝑥𝑖(𝜕𝑝𝑖𝐿 𝜕𝑥𝑘𝑢 − 𝐿𝛿𝑖𝑘) = 0, 𝑘 = 1,⋯ , 𝑑. (7.3.2)

应用. 例如，我们将该结论应用到波动方程上，考虑

𝐼[𝑤] = ∫
𝑇

0
∫
ℝ𝑑

1
2(𝜕𝑡𝑤)

2 − 1
2|∇𝑤|

2 + 𝐹(𝑤) d𝒙 d𝑡

并设 𝑢为极小化子。我们之前已经算过 𝑢满足半线性波动方程

𝜕2𝑡 𝑢 − ∆𝑢 + 𝑓(𝑢) = 0, 𝑓 = 𝐹′.

对此泛函，我们记 𝒑 = (𝜕𝑡𝑤, 𝜕1𝑤,⋯ , 𝜕𝑑𝑤), 𝒙 = (𝑡, 𝑥1,⋯ , 𝑥𝑑)并取 𝑘 = 0 (时间变量).则 𝐿(𝒑, 𝑧) =
1
2
𝑝20 −

1
2
(𝑝21 +⋯+ 𝑝2𝑑) + 𝐹(𝑧),对应 𝐯 = 𝑒0, 𝑚 = 𝜕𝑡𝑢. 据诺特定理，我们得到

∇𝒙 ⋅ (∇𝑢 𝑢𝑡) + 𝜕𝑡 (𝑢2𝑡 −
1
2(𝑢

2
𝑡 − |∇𝑢|2) + 𝐹(𝑢)) = 0.

这表明𝑒 ∶= 1
2
(𝑢2𝑡 + |∇𝑢|2) + 𝐹(𝑢) 满足 𝑒𝑡 − ∇𝒙 ⋅ (𝑢𝑡∇𝑢) = 0. 若𝑢充分光滑，则可以推出能量守

恒
d
d𝑡
∫𝑈 𝑒(𝑡, 𝒙) d𝒙 = 0.
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类似地如果取𝑘 ∈ ℕ∗(对应空间变量)，则𝐯 = 𝑒𝑘, 𝑚 = 𝜕𝑘𝑢. 据诺特定理我们得到

∇𝒙 ⋅ (∇𝑢 𝜕𝑘𝑢 − 𝑒𝑘 (
1
2(𝑢

2
𝑡 − |∇𝑢|2) − 𝐹(𝑢))) + 𝜕𝑡(𝜕𝑘𝑢𝜕𝑡𝑢) = 0.

对该式积分，并用散度定理知
d
d𝑡
∫ℝ𝑑 𝜕𝑘𝑢𝜕𝑡𝑢 = 0对任意1 ⩽ 𝑘 ⩽ 𝑑成立，这是波方程的动量守恒。

例 7.3.2 (波动方程的伸缩不变性). 回忆线性波动方程𝜕2𝑡 𝑢 − ∆𝑢 = 0对应如下泛函的极小化子

𝐼[𝑤] = 1
2 ∫

𝑇

0
∫
ℝ𝑑
(𝜕𝑡𝑤)2 − |∇𝑤|2 d𝒙 d𝑡.

我们不难证明，波动方程在如下伸缩变换(𝒙, 𝑡) ↦→ (𝜆𝒙, 𝜆𝑡), 𝑢 ↦→ 𝜆
𝑑−1
2 𝑢(𝜆𝒙, 𝜆𝑡)下具有不变性，其

中𝜆 > 0. 今假设 𝜆 = 𝑒𝜏 并定义如下区域变分和函数变分

𝔛(𝑡, 𝒙, 𝜏) = (𝑒𝜏𝑡, 𝑒𝜏𝒙), 𝑤(𝑡, 𝒙, 𝜏) ∶= 𝑒
(𝑑−1)𝜏

2 𝑢(𝑒𝜏𝑡, 𝑒𝜏𝒙).

则据定义可以算出

𝐯 = (𝑡, 𝒙), 𝑚 = 𝑡𝑢𝑡 + 𝒙 ⋅ ∇𝑢 + 𝑑 − 1
2 𝑢.

据诺特定理，经过漫长的无聊计算，我们可以求得散度型恒等式 𝜕𝑡𝑝 − div 𝐪 = 0,其中

𝑝 ∶= 𝑡2((𝜕𝑡𝑢)
2 + |∇𝑢|2) + (𝒙 ⋅ ∇𝑢)𝜕𝑡𝑢 +

𝑑 − 1
2 𝑢𝑢𝑡,

𝐪 ∶= (𝑡𝑢𝑡 + 𝒙 ⋅ ∇𝑢 + 𝑑 − 1
2 𝑢)∇𝑢 + 1

2(𝑢
2
𝑡 − |∇𝑢|2)𝒙.

该恒等式中证明三维能量临界波动方程的整体解存在性时起到了关键性的作用，具体证明见Evans
[6,第12.4节].

习题 7.3

习题 7.3.1 (𝑝-拉普拉斯算子的伸缩不变性). 给定𝑝 > 0,考虑 𝐼[𝑤] = ∫𝑈 |∇𝑤|𝑝 d𝒙. 证明：

(1) 极小化子 (假设存在) 𝑢满足𝑝-Laplacian方程div (|∇𝑢|𝑝−2∇𝑢) = 0.

(2) 𝐼[𝑤]在变换𝑥 ↦→ 𝜆𝒙, 𝑢 ↦→ 𝜆
𝑑−𝑝
𝑝 𝑢(𝜆𝒙) (𝜆 > 0)下保持不变.令𝜆 = 𝑒𝜏并用诺特定理证明

∇ ⋅ [(𝒙 ⋅ ∇𝑢 + 𝑑 − 𝑝
𝑝 𝑢)𝑝|∇𝑢|𝑝−2∇𝑢 − |∇𝑢|𝑝𝒙] = 0. (7.3.3)

习题 7.3.2 (单调性公式). 设𝐵(𝟎, 𝑟)落在区域𝑈内部.
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(1) 将恒等式(7.3.3)在球𝐵(𝟎, 𝑟)上积分，并用Gauss-Green公式证明：

(𝑑 − 𝑝) ∫
𝐵(𝟎,𝑟)

|∇𝑢|𝑝 d𝒙 = 𝑟 ∫
𝜕𝐵(𝟎,𝑟)

|∇𝑢|𝑝 − 𝑝|∇𝑢|𝑝−2(𝜕𝑟𝑢)2 d𝑆𝒙,

其中 𝜕𝑟𝑢 ∶=
𝒙
|𝒙|
⋅ ∇𝑢是𝑢的径向导数.

(2) 证明：𝑟 → 1
𝑟𝑑−𝑝

∫𝐵(𝟎,𝑟) |∇𝑢|𝑝 d𝒙关于𝑟不减.

问题 7.3

问题 7.3.1 (Almgren单调性公式). 设𝑢是区域𝑈 ⊆ ℝ𝑑上的调和函数，且满足𝐵(𝟎, 𝑅) ⊂ 𝑈, 𝑢(𝟎) = 0,
𝑢 ≢ 0. 对0 < 𝑟 < 𝑅,定义

𝑎(𝑟) ∶= 1
𝑟𝑑−1 ∫𝜕𝐵(𝟎,𝑟)

𝑢2 d𝑆𝒙, 𝑏(𝑟) ∶= 1
𝑟𝑑−2 ∫𝐵(𝟎,𝑟)

𝑢2 d𝒙.

在习题7.3.2的单调性公式中取𝑝 = 2,可以得到 𝑏′(𝑟) = 2
𝑟𝑑−2

∫𝜕𝐵(𝟎,𝑟)(𝜕𝑟𝑢)2 d𝑆𝒙.

(1) 证明: 𝑎′(𝑟) = 2
𝑟𝑑−1

∫𝜕𝐵(𝟎,𝑟) 𝑢 𝜕𝑟𝑢 d𝑆𝒙 =
2
𝑟
𝑏.

(2) 证明: 𝑏(𝑟)2 ⩽ 𝑟
2
𝑎(𝑟)𝑏′(𝑟).

(3) 定义频率函数𝑓 ∶= 𝑏
𝑎
,证明Almgren单单单调调调性性性公公公式式式 𝑓′(𝑟) ⩾ 0恒成立. (提示: 用(1)的结论.)

(4) 证明: 𝑎′(𝑟)
𝑎(𝑟)

⩽ 𝛽
𝑟
,进而𝑎(𝑟) ⩾ 𝛾𝑟𝛽对任意0 < 𝑟 < 𝑅成立。此处 𝛽 ∶= 2𝑏(𝑅)

𝑎(𝑅)
, 𝛾 ∶= 𝑎(𝑅)

𝑅𝛽
. 该结论给出

了非常值调和函数在零点附近增长速率的下界估计。 (提示: 先用(3),再用(1).)

问题 7.3.2 (波动方程的共形能量和Morawetz恒等式). 定义双曲反演(hyperbolic inversion)如下

(𝑡, 𝒙) ↦→ (𝑡, 𝒙̄) ∶= ( 𝒙
|𝒙|2 − 𝑡2 ,

𝑡
|𝒙|2 − 𝑡2) , ∀|𝒙| ≠ 𝑡. (7.3.4)

据此定义双曲Kelvin变换 𝒦𝑢 = 𝑢̄为 𝑢̄(𝑡, 𝒙) ∶= 𝑢(𝑡, 𝒙̄)||𝒙̄|2 − 𝑡2|
𝑑−1
2 .

(1) 证明：若𝜕2𝑡 𝑢 − ∆𝑢 = 0,则 𝜕2𝑡 𝑢̄ − ∆𝑢̄ = 0.
(2) 考虑如下区域变分和函数变分

𝔛(𝑡, 𝒙, 𝜏) ∶= 𝛾(𝑡 + 𝜏(|𝒙|2 − 𝑡2), 𝒙), 𝑤(𝑡, 𝒙, 𝜏) ∶= 𝛾
𝑑−1
2 𝑢(𝒙(𝑡, 𝒙, 𝜏)),

其中 𝛾 ∶= |𝒙|2−𝑡2

|𝒙|2−(𝑡+𝜏(|𝒙|2−𝑡2))2
. 这个过程相当于是对变量(𝑡, 𝒙)作双曲反演，然后再加上𝜏𝑒0, 最后

再作双曲反演。证明：对应的速度𝐯和乘子𝑚分别为

𝐯 = (|𝒙|2 + 𝑡2, 2𝑡𝒙), 𝑚 = (|𝒙|2 + 𝑡2)𝜕𝑡𝑢 + 2𝑡𝒙 ⋅ ∇𝑢 + (𝑑 − 1)𝑡𝑢.
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(3) 证明Morawetz恒恒恒等等等式式式 𝑐𝑡 − div 𝐫 = 0,其中

𝐫 ∶=
(
|𝒙|2 + 𝑡2)𝜕𝑡𝑢 + 2𝑡𝒙 ⋅ ∇𝑢 + (𝑑 − 1)𝑡𝑢

)
∇𝑢 + 𝑡((𝜕𝑡𝑢)2 − |∇𝑢|2)𝒙, (7.3.5)

𝑐 ∶=(𝑡 + |𝒙|)2
4 (𝜕𝑡𝑢 + 𝜕𝑟𝑢 +

𝑑 − 1
2|𝒙| 𝑢)

2
+ (𝑡 − |𝒙|)2

4 (𝜕𝑡𝑢 − 𝜕𝑟𝑢 −
𝑑 − 1
2|𝒙| 𝑢)

2
(7.3.6)

+ 𝑡2 + |𝒙|2
2 (|∇𝑢|2 − (𝜕𝑟𝑢)2 +

(𝑑 − 3)(𝑑 − 1)
4|𝒙|2 𝑢2) − (𝑑 − 1)div (|𝒙|

2 + 𝑡2
|𝒙|2 𝑢𝒙) .

Evans [6,第8.6节]原话是“After a longish calculation, we derive Morawetz’s identity.”

问题 7.3.3 (波动方程的局部能量衰减). 设𝑢是如下波动方程的光滑解

𝜕2𝑡 𝑢 −∆𝑢 = 0 in (0,∞) ×𝑈, 𝑢(𝑡, 𝒙) = 0 on (0,∞) × 𝜕𝑈, (𝑢, 𝜕𝑡𝑢)|𝑡=0 = (𝑢0, 𝑢1) ∈ 𝐶∞
𝑐 (𝑈). (7.3.7)

其中 𝑈 ∶= ℝ𝑑∖𝑂, 𝑂 ⊂ ℝ𝑑是有界开集，且关于原点是星型域。

回忆当𝑑 = 3,𝑈 = ℝ3, 𝑂 = ∅时, 线性波动方程的解具有𝑂(𝑡−1)的衰减速率。本题的目的是
在𝑈的有界子区域内建立𝑂(𝑡−2)的衰减估计，这被称作波波波动动动方方方程程程的的的局局局部部部能能能量量量衰衰衰减减减 (local energy de-
cay). 今假设 𝑂 ⊂ 𝐵(𝟎, 𝑅),维数𝑑 = 3.

(1) 证明：由问题7.3.2(3)给出的𝑐和𝐫满足如下关系,其中𝜈是𝜕𝑂的单位内法向量:

d
d𝑡 ∫𝑈

𝑐 d𝒙 = ∫
𝜕𝑂
𝐫 ⋅ 𝜈 d𝑆𝒙 ⩽ 0.

(2) 利用(1)和𝑐的表达式，证明：对任意𝑡 > 0都有

∫
𝐵(𝟎,𝑅)∖𝑂

(𝑡 + |𝒙|)2
4 (𝜕𝑡𝑢 + 𝜕𝑟𝑢 +

𝑑 − 1
2|𝒙| 𝑢)

2
+ (𝑡 − |𝒙|)2

4 (𝜕𝑡𝑢 − 𝜕𝑟𝑢 −
𝑑 − 1
2|𝒙| 𝑢)

2

+ |𝒙|2 + 𝑡2
2 (|∇𝑢|2 − (𝜕𝑟𝑢)2) d𝒙 ⩽ 𝐶.

(3) 证明：当𝑡 ⩾ 2𝑅时，有估计

∫
𝐵(𝟎,𝑅)∖𝑂

|∇𝑢|2 − (𝜕𝑟𝑢)2 d𝒙 ⩽
𝐶
𝑡2 , (7.3.8)

∫
𝐵(𝟎,𝑅)∖𝑂

(𝜕𝑡𝑢)2 + (𝜕𝑟𝑢)2 +
𝑑 − 1
|𝒙| 𝑢 𝜕𝑟𝑢 +

(𝑑 − 1)2
4|𝒙|2 𝑢2 d𝒙 ⩽ 𝐶

𝑡2 . (7.3.9)

(4) 利用 𝑢
|𝒙|
𝜕𝑟𝑢 = div ( 𝑢2

2|𝒙|2
𝒙) − 𝑑−2

2
𝑢2

|𝒙|2
和 (3)的第二个不等式证明：

∫
𝐵(𝟎,𝑅)∖𝑂

(𝜕𝑡𝑢)2 + (𝜕𝑟𝑢)2 d𝒙 ⩽
𝐶
𝑡2 , 𝑡 ⩾ 2𝑅.
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7.4 极小化子的存在性与正则性（暂时鸽置）

4

7.5 山路引理（暂时鸽置）

5



附录 A 常用记号

附录的第一部分记录了本讲义中常用的记号。

A.1 常用符号

• ℝ𝑑 = 𝑑维实欧几里德空间ℝ = ℝ1.
• ℝ𝑑中的点𝒙的坐标记为𝒙 = (𝑥1,⋯ , 𝑥𝑑).
• 给定集合𝑈 ⊂ ℝ𝑑，我们记𝜕𝑈 = 𝑈的边界, 𝑈 = 𝑈 ∪ 𝜕𝑈 = 𝑈的闭包.
• 𝐵(𝒙, 𝑟) ⊂ ℝ𝑑 ∶以𝒙 ∈ ℝ𝑑为球心，𝑟 > 0为半径的开球. 𝐵̄(𝒙, 𝑟) =开球𝐵(𝒙, 𝑟)的闭包, 𝐵̌(𝒙, 𝑟) =
𝐵(𝒙, 𝑟)∖{𝒙} =以𝒙 ∈ ℝ𝑑为球心、𝑟 > 0为半径的去心开球.

• 𝕊𝑑−1 = 𝜕𝐵(𝟎, 1) = ℝ𝑑中的(𝑑 − 1)维单位球面.

• 𝛼(𝑑) = ℝ𝑑中的单位球体积= 𝜋
𝑑
2

Γ(1+ 𝑑
2
)
. 𝑑𝛼(𝑑) = 𝕊𝑑−1的表面积.

• ℝ𝑑
+ = {𝒙 ∈ ℝ𝑑 ∶ 𝑥𝑑 > 0} =上半空间（不含边界）.

• 𝑒𝑖 = (0,⋯ , 0, 1,⋯ , 0) =第𝑖个标准坐标向量。
• 设 𝑈,𝑉 是ℝ𝑑中的两个开集，我们记𝑉 ⋐ 𝑈是指𝑉 ⊂ 𝑉 ⊂ 𝑈 且 𝑉 是𝑈的紧子集。此时我们
称𝑉紧包含于𝑈.

• 给定𝑇 > 0和开集𝑈 ⊂ ℝ𝑑，我们定义𝑈对应的抛物圆柱为𝑈𝑇 ∶= 𝑈×(0, 𝑇]、抛物边界为Γ𝑇 ∶=
𝑈𝑇∖𝑈𝑇.

A.2 函数相关的记号

• 函数𝑢 ∶ 𝑈 → ℝ又写作𝑢(𝒙) = 𝑢(𝑥1,⋯ , 𝑥𝑑) (𝒙 ∈ 𝑈). 我们称𝑢是𝑈内的光滑函数，是
指𝑢在𝑈内无穷阶连续可微.

• 设𝑢, 𝑣是两个函数，我们记𝑢 ≡ 𝑣是指𝑢恒等于𝑣. 我们记𝑢 ∶= 𝑣是指定义函数𝑢与𝑣相等.
• 函数𝑢 ∶ 𝑈 → ℝ的支集记作 Spt 𝑢 ∶= {𝒙 ∈ 𝑈 ∶ 𝑢(𝒙) ≠ 0}.
• 函数𝑢的正部（负部）定义为 𝑢+ ∶= max{𝑢, 0} (𝑢− ∶= −min{𝑢, 0}). 则有 𝑢 = 𝑢+ − 𝑢− 以及
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|𝑢| = 𝑢+ + 𝑢− 成立.符号函数定义为

sgn(𝑥) ∶=

⎧
⎪
⎨
⎪
⎩

1 𝑥 > 0,
0 𝑥 = 0
−1 𝑥 < 0.

• 对向量值函数 𝐮 ∶ 𝑈 → ℝ𝑚,我们记 𝐮(𝒙) = (𝑢1(𝒙),⋯ , 𝑢𝑚(𝒙)) (𝒙 ∈ 𝑈).
• 若 Σ是ℝ𝑑中的(𝑑−1)维超曲面，我们记∫Σ 𝑓(𝒙) d𝑆𝒙为函数𝑓在Σ上关于(𝑑−1)维曲面测度的积
分，其中下标𝒙表示的是对𝒙变量作积分，在讲义中我们常常忽略它（除非出现多个变量）。
设𝐶是ℝ𝑑中的曲线，我们记∫𝐶 𝑓d𝓁为函数𝑓沿着𝐶的（第一型）曲线积分.

• 平均值：

⨏
𝑈
𝑓 d𝒙 = 1

Vol(𝑈)
∫
Ω
𝑓(𝒙) d𝒙,

⨏
𝜕𝑈
𝑓 d𝑆𝒙 =

1
Area(𝜕𝑈)

∫
𝜕𝑈
𝑓(𝒙) d𝑆𝒙.

• 集合𝐸 ⊂ ℝ𝑑的示性函数记作 𝜒𝐸(𝒙) =
⎧

⎨
⎩

1 𝒙 ∈ 𝐸
0 𝒙 ∉ 𝐸

.

• 函数𝑓, 𝑔在ℝ𝑑上的卷积记为𝑓 ∗ 𝑔，其定义为积分式（如果收敛）

(𝑓 ∗ 𝑔)(𝒙) = ∫
ℝ𝑑
𝑓(𝒙 − 𝒚)𝑔(𝒚) d𝒚 = ∫

ℝ𝑑
𝑓(𝒚)𝑔(𝒙 − 𝒚) d𝒚.

• 我们说当𝒙 → 𝒙0时有𝑓 = 𝑂(𝑔)，是指存在常数 𝐶 使得 |𝑓(𝒙)| ≤ 𝐶|𝑔(𝒙)|对任意充分靠近𝒙0的
点𝒙成立.

• 我们说当𝒙 → 𝒙0时有𝑓 = 𝑜(𝑔)，是指 lim
𝒙→𝒙0

|𝑓(𝒙)|
|𝑔(𝒙)|

= 0.

A.3 求导相关的记号

设有函数 𝑢 ∶ 𝑈 → ℝ, 𝒙 ∈ 𝑈.

• 偏导数定义为 𝜕𝑢
𝜕𝑥𝑖
(𝒙) = lim

ℎ→0

𝑢(𝒙+ℎ𝑒𝑖)−𝑢(𝒙)
ℎ

（如果极限存在）。我们常将其简记为𝜕𝑥𝑖𝑢, 𝜕𝑖𝑢, 𝑢𝑥𝑖 . 类
似地，我们可以定义高阶偏导数。

• 高阶偏导数的记号:
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1. 设 𝛼 = (𝛼1,⋯ , 𝛼𝑑)是多重指标，长度定义为|𝛼| = 𝛼1 +⋯+ 𝛼𝑘，则偏导数𝜕𝛼𝑢定义为

𝜕𝛼𝑢(𝒙) ∶= 𝜕|𝛼|𝑢(𝒙)
𝜕𝑥𝛼11 ⋯𝜕𝑥𝛼𝑑𝑑

= 𝜕𝛼1𝑥1 ⋯𝜕𝛼𝑑𝑥𝑑𝑢.

2. 给定非负整数𝑘，记𝜕𝑘𝑢(𝒙) ∶= {𝜕𝛼𝑢(𝒙) ∶ |𝛼| = 𝑘}为𝑢的全体𝑘阶偏导数构成的集合，同
时我们把𝜕𝑘𝑢(𝒙)视作ℝ𝑑𝑘中的点，其到原点的距离为

|𝜕𝑘𝑢| =
⎛
⎜
⎝

∑

|𝛼|=𝑘
|𝜕𝛼𝑢|2

⎞
⎟
⎠

1
2

.

3. 若𝑘 = 1，我们将𝜕𝑢视作向量，并用梯度作为记号

∇𝑢 ∶= (𝜕𝑥1𝑢,⋯ , 𝜕𝑥𝑑𝑢) = 梯度向量.

4. 𝑢𝑟 ∶=
𝒙
|𝒙|
⋅ ∇𝑢是指 𝑢的径向导数.

5. 若𝑘 = 2,则

∇2𝑢 ∶=
⎡
⎢
⎢
⎣

𝑢𝑥1𝑥1 ⋯ 𝑢𝑥1𝑥𝑑
⋯

𝑢𝑥𝑑𝑥1 ⋯ 𝑢𝑥𝑑𝑥𝑑

⎤
⎥
⎥
⎦

表示𝑢的Hessian矩阵. ∆𝑢 =
𝑑∑
𝑖=1
𝑢𝑥𝑖𝑥𝑖 = Tr(∇2𝑢)是Laplace算子作用在𝑢上.

• 设 𝐮 ∶ ℝ𝑑 → ℝ𝑚是向量值函数，其偏导数定义如下。

1. 设𝛼为多重指标，则定义𝜕𝛼𝐮 = (𝜕𝛼𝑢1,⋯ , 𝜕𝛼𝑢𝑚). 类似我们定义𝜕𝑘𝐮和 |𝜕𝑘𝐮|.

2. 若 𝑘 = 1,我们记 ∇𝐮 ∶=
⎡
⎢
⎢
⎣

𝜕𝑥1𝑢1 ⋯ 𝜕𝑥𝑑𝑢1
⋯

𝜕𝑥1𝑢𝑚 ⋯ 𝜕𝑥𝑑𝑢𝑚

⎤
⎥
⎥
⎦

为𝐮的梯度矩阵.

3. 若 𝑚 = 𝑑,我们定义向量值函数 𝐮的散度为

div 𝐮 ∶= ∇ ⋅ 𝐮 = Tr ∇𝐮 =
𝑑∑

𝑖=1
𝜕𝑥𝑖𝑢𝑖.

4. 若 𝑚 = 𝑑 = 3,我们定义向量值函数𝐮的旋度为curl 𝐮 ∶= ∇ × 𝐮 = (𝜕𝑥2𝑢3 − 𝜕𝑥3𝑢2, 𝜕𝑥3𝑢1 −
𝜕𝑥1𝑢3, 𝜕𝑥1𝑢2 − 𝜕𝑥2𝑢1). 若 𝑚 = 𝑑 = 2, 向量值函数𝐮的旋度则是标量，定义为∇⟂ ⋅ 𝐮 =
−𝜕𝑥2𝑢1 + 𝜕𝑥1𝑢2.
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A.4 函数空间的记号

设 𝑈 是 ℝ𝑑 中的开集.

• 𝐶(𝑈) = {𝑢 ∶ 𝑈 → ℝ|𝑢是连续函数.}
• 𝐶(𝑈) = {𝑢 ∈ 𝐶(𝑈) ∶ 𝑢在𝑈的任何有界子集内都一致连续.}.
• 𝐶𝑘(𝑈) = {𝑢 ∶ 𝑈 → ℝ ∶ 𝜕𝛼𝑢存在，且在𝑈上是一致连续的, ∀0 ≤ |𝛼| ≤ 𝑘}.
• 𝐶𝑘(𝑈) = {𝑢 ∈ 𝐶𝑘(𝑈) ∶ 𝜕𝛼𝑢在𝑈的任何有界子集内都一致连续, ∀0 ≤ |𝛼| ≤ 𝑘}.
• 𝐶∞(𝑈) = {𝑢 ∶ 𝑈 → ℝ|𝑢在𝑈上是无穷阶连续可微的.} =

∞⋂
𝑘=0

𝐶𝑘(𝑈). 𝐶∞(𝑈) =
∞⋂
𝑘=0

𝐶𝑘(𝑈).

• 𝐶𝑐(𝑈), 𝐶𝑘
𝑐 (𝑈), 𝐶∞

𝑐 (𝑈)分别表示 𝐶(𝑈), 𝐶𝑘(𝑈), 𝐶∞(𝑈)中具有紧支集的函数全体.
• 𝐶2

1(𝐼 × 𝑈) = {𝑢 ∶ 𝐼 × 𝑈 → ℝ ∶ 𝑢, 𝜕𝑥𝑖𝑢, 𝜕𝑥𝑖𝜕𝑥𝑗𝑢, 𝜕𝑡𝑢 ∈ 𝐶(𝐼 × 𝑈), ∀1 ≤ 𝑖, 𝑗 ≤ 𝑑}. 这里 𝐼 ⊂ ℝ是
（时间）区间， 𝑈 ⊂ ℝ𝑑 是区域.变量一般记为 𝑡 ∈ 𝐼 和 𝒙 ∈ 𝑈.
• 𝐿𝑝(𝑈) = {𝑢 ∶ 𝑈 → ℝ|𝑢是𝑈上的Lebesgue可测函数, ‖𝑢‖𝐿𝑝(𝑈) < ∞}其中

‖𝑢‖𝐿𝑝(𝑈) ∶= (∫
Ω
|𝑢|𝑝 d𝒙)

1∕𝑝

, (1 ≤ 𝑝 < ∞).

• 𝐿∞(𝑈) = {𝑢 ∶ 𝑈 → ℝ|𝑢是𝑈上的Lebesgue可测函数, ‖𝑢‖𝐿∞(𝑈) < ∞}其中

‖𝑢‖𝐿∞(𝑈) = ess sup
𝑈

𝑢 ∶= inf {𝑀 ∈ ℝ|集合 {𝒙|𝑢(𝒙) > 𝑀}的Lebesgue测度为零.}.

• 𝐿𝑝loc(𝑈) = {𝑢 ∶ 𝑈 → ℝ|𝑢 ∈ 𝐿𝑝(𝑉), ∀𝑉 ⋐ 𝑈}.
• ‖𝜕𝑘𝑢‖𝐿𝑝(𝑈) = ‖|𝜕𝑘𝑢|‖𝐿𝑝(𝑈).
• 函数空间 𝐶(𝑈 → ℝ𝑚), 𝐿𝑝(𝑈 → ℝ𝑚)的元素是向量值函数 𝐮 ∶ 𝑈 → ℝ𝑚，且它的每个分量属

于标量函数对应的那个函数空间.
• Schwartz空间

𝒮(ℝ𝑑) ∶= {𝑢 ∈ 𝐶∞(ℝ𝑑) ∶ ‖𝑢‖(𝑁,𝛼) < ∞ ∀𝑁 ∈ ℕ和多重指标 𝛼}.

该空间上可以定义一族半范数如下

‖𝑢‖(𝑁,𝛼) ∶= sup
𝒙∈ℝ𝑑

(1 + |𝒙|)𝑁|𝜕𝛼𝑢(𝒙)|.

则 (𝒮(ℝ𝑑), ‖ ⋅ ‖(𝑁,𝛼))是Fréchet空间.
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记号: 设 Ω ⊂ ℝ𝑑是ℝ𝑑中的开集，其边界𝜕Ω是𝐶1的（即局部可以写成𝐶1函数图像）， Ω是Ω的
闭包. 记 𝑁 = (𝑁1,⋯ ,𝑁𝑑) 是 𝜕Ω的单位外法向量. 记 ∇ ∶= (𝜕1,⋯ , 𝜕𝑑) 为梯度算子、∆ ∶= 𝜕2𝑥1 +
⋯+ 𝜕2𝑥𝑑 = ∇ ⋅ ∇为Laplace算子.设 𝑢, 𝑣, 𝑤 ∶ Ω → ℝ为标量函数，𝐮, 𝐯,𝐰 ∶ Ω → ℝ𝑑为向量值函数.
𝐵(𝒙, 𝑟) ⊂ ℝ𝑑 是以 𝒙 ∈ ℝ𝑑 为圆心，𝑟 > 0为半径的𝑑维开球.

B.1 分部积分公式

本节将承认如下事实成立，谁爱证谁去证。

引理 B.1.1. 设𝑢 ∈ 𝐶1(Ω)，则有

∫
Ω
𝜕𝑥𝑖𝑢 d𝒙 = ∫

𝜕Ω
𝑢 𝑁𝑖 d𝑆, 1 ⩽ 𝑖 ⩽ 𝑑.

据此引理，我们可得如下结论。

命题 B.1.2. 下述等式成立

1. (散度定理)设有向量值函数 𝐮 ∈ 𝐶1(Ω → ℝ𝑑)，则

∫
Ω
∇ ⋅ 𝐮 d𝒙 = ∫

𝜕Ω
𝐮 ⋅ 𝑁 d𝑆.

2. (分部积分)设有函数 𝑢, 𝑣 ∈ 𝐶1(Ω)，则下式成立

∫
Ω
𝜕𝑥𝑖𝑢 𝑣 d𝒙 = ∫

𝜕Ω
𝑢𝑣 𝑁𝑖 d𝑆 − ∫

Ω
𝑢 𝜕𝑥𝑖𝑣 d𝒙, 1 ⩽ 𝑖 ⩽ 𝑑.

回忆 ∆𝑢 ∶= div (∇𝑢) = ∇ ⋅ (∇𝑢) =
𝑑∑
𝑖=1
𝜕2𝑥𝑖𝑢. 结合散度定理，我们可证明如下恒等式成立。

命题 B.1.3 (高斯-格林公式及其推论). 设 𝑢, 𝑣 ∈ 𝐶2(Ω). 则有 Gauss-Green公式的如下形式成立.

1. ∫Ω ∆𝑢 d𝒙 = ∫𝜕Ω
𝜕𝑢
𝜕𝑁
d𝑆.

209
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2. ∫Ω∇𝑢 ⋅ ∇𝑣 d𝒙 = −∫Ω 𝑢∆𝑣 d𝒙 + ∫𝜕Ω 𝑢
𝜕𝑣
𝜕𝑁
d𝑆.

3. ∫Ω 𝑢∆𝑣 − 𝑣∆𝑢 d𝒙 = ∫𝜕Ω 𝑢
𝜕𝑣
𝜕𝑁

− 𝑣 𝜕𝑢
𝜕𝑁
d𝑆.

若 ∆𝑢 = 0 in Ω,我们就称 𝑢是 Ω中的调和函数. 对调和函数，命题 B.1.3可以导出下述结论

推论 B.1.4. 设 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω)是 Ω中的调和函数，则

1. ∫𝜕Ω
𝜕𝑢
𝜕𝑁
d𝑆 = 0.

2. ∫Ω |∇𝑢|2 d𝒙 = ∫𝜕Ω 𝑢
𝜕𝑢
𝜕𝑁
d𝑆.

当空间维数 𝑑 = 3，我们定义旋度为 curl 𝐮 ∶= ∇×𝐮 = (𝜕𝑥2𝑢3−𝜕𝑥3𝑢2, 𝜕𝑥3𝑢1−𝜕𝑥1𝑢3, 𝜕𝑥1𝑢2−𝜕𝑥2𝑢1).
这个量在物理模型中的很多偏微分方程里都会出现，尤其是与流体力学、电磁学相关的方程。

命题 B.1.5 (向量积的微积分恒等式). 设 𝐮, 𝐯,𝐰 ∈ 𝐶2(Ω → ℝ3), 𝑓 ∈ 𝐶1(Ω)，则有

1. ∇ × (∇𝑓) = 𝟎, ∇ ⋅ (∇ × 𝐮) = 0.
2. ∇ × (𝑓𝐮) = 𝑓(∇ × 𝐮) + (∇𝑓) × 𝐮.特别地, ∇ × (𝑓(|𝒙|)𝒙) = 𝟎对任意 𝑓 ∈ 𝐶1(ℝ → ℝ)都成立.

(因此，静电场是无旋场)
3. 设 Ω是单连通集.若 ∇ × 𝐮 = 0 in Ω,则存在势势势函函函数数数 𝜑使得 𝐮 = ∇𝜑.
4. ∇ ⋅ (𝐮 × 𝐯) = (∇ × 𝐮) ⋅ 𝐯 − (∇ × 𝐯) ⋅ 𝐮.
5. ∇ × (𝐮 × 𝐯) = 𝐮(∇ ⋅ 𝐯) − 𝐯(∇ ⋅ 𝐮) + (𝐯 ⋅ ∇)𝐮 − (𝐮 ⋅ ∇)𝐯
6. 𝐮 × (∇ × 𝐯) = (∇𝐯) ⋅ 𝐮 − 𝐮 ⋅ (∇𝐯).
7. ∇ × (∇ × 𝐮) = ∇(∇ ⋅ 𝐮) − ∆𝐮.
8. ∫Ω∇ × 𝐮d𝒙 = −∫𝜕Ω(𝐮 × 𝑁) d𝑆𝒙.
9. ∫Ω 𝐮 ⋅ (∇ × 𝐯) d𝒙 = −∫𝜕Ω(𝐮 × 𝐯) ⋅ 𝑁 d𝑆𝒙 + ∫Ω(∇ × 𝐮) ⋅ 𝐯 d𝒙.

B.2 积分的极坐标表示、移动区域上的积分

下述引理讲了如何把 𝑑维空间的积分转化为极坐标下的球面积分和对半径的积分，证明参
见Stein实分析[16]第六章。

引理 B.2.1 (积分的极坐标表示). 设 𝑢 ∶ ℝ𝑑 → ℝ在ℝ𝑑上是Lebesgue可积的，则有

1. 对任意点𝒙0 ∈ ℝ𝑑,成立

∫
ℝ𝑑
𝑢 d𝒙 = ∫

∞

0
(∫

𝜕𝐵(𝒙0,𝜌)
𝑢(𝒙) d𝑆𝒙) d𝜌.

2. 对任意正数 𝑅 > 0和点 𝒙0 ∈ ℝ𝑑,成立

∫
𝐵(𝒙0,𝑅)

𝑢 d𝒙 = ∫
𝑅

0
(∫

𝜕𝐵(𝒙0,𝜌)
𝑢(𝒙) d𝑆𝒙) d𝜌.
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积分的极坐标表示实际上是如下“余面积公式”的特例，当然如下定理所述的余面积公式也

只是几何测度论中的一个特例，原始版本参见Evans-Gariepy [7]的第三章。

定理 B.2.2 (余面积公式). 设 𝑢 ∶ ℝ𝑑 → ℝ是Lipschitz连续函数，且假设对几乎处处的𝑟 ∈ ℝ，水平
集{𝒙 ∈ ℝ𝑑|𝑢(𝒙) = 𝑟}都是光滑的(𝑑 − 1)维超曲面. 又假设𝑓 ∶ ℝ𝑑 → ℝ是Lebesgue可积函数，则

∫
ℝ𝑑
𝑓(𝒙)|∇𝑢(𝒙)| d𝒙 = ∫

+∞

−∞
(∫

{𝑢=𝑟}
𝑓(𝒙) d𝑆𝒙) d𝑟.

引理 B.2.1可由定理 B.2.2中取 𝑢(𝒙) = |𝒙 − 𝒙0|直接证得.定理 B.2.2的证明见[7]的第三章。
接下来我们介绍如何对移动区域上的积分式求导。今考虑一族边界光滑的区域 Ω(𝑡) ⊂ ℝ𝑑，

且光滑(𝐶∞)依赖于参数𝑡 ∈ ℝ. 设 𝐯 是边界 𝜕Ω(𝑡)，𝑁是𝜕Ω(𝑡)的单位外法向量。
定理 B.2.3. 设 𝑓 = 𝑓(𝑡, 𝒙)是光滑函数，则有

d
d𝑡 ∫Ω(𝑡)

𝑓 d𝒙 = ∫
𝜕Ω(𝑡)

𝑓(𝐯 ⋅ 𝑁) d𝑆𝒙 + ∫
Ω(𝑡)

𝜕𝑡𝑓 d𝒙.

B.3 Grönwall不等式

本节记录Grönwall不等式的两个不同版本，它们在建立发展型偏微分方程的能量估计时起到
了至关重要的作用。

定理 B.3.1 (Grönwall不等式的微分版本). 设𝜂 ∶ [0, 𝑇] → ℝ是非负的绝对连续函数，并满足微分
不等式 𝜂′(𝑡) ⩽ 𝜙(𝑡)𝜂(𝑡) + 𝜓(𝑡). 其中 𝜙(𝑡)和 𝜓(𝑡)是 [0, 𝑇]上非负的Lebesgue可积函数，则有

𝜂(𝑡) ⩽ 𝑒∫
𝑡
0 𝜙(𝑠)𝑑𝑠 [𝜂(0) + ∫

𝑡

0
𝜓(𝑠)𝑑𝑠] , ∀𝑡 ∈ [0, 𝑇].

特别地，若在[0, 𝑇]上成立𝜂′ ⩽ 𝜙𝜂且𝜂(0) = 0,则𝜂在[0, 𝑇]上恒为零。

证明. 从微分不等式中，我们得知

d
d𝑠
(
𝜂(𝑠)𝑒−∫

𝑠
0 𝜙(𝑟) d𝑟

)
= 𝑒−∫

𝑠
0 𝜙(𝑟) d𝑟 (𝜂′(𝑠) − 𝜙(𝑠)𝜂(𝑠)) ⩽ 𝑒−∫

𝑠
0 𝜙(𝑟) d𝑟𝜓(𝑠)

对几乎处处的0 ⩽ 𝑠 ⩽ 𝑇成立。因此对任意的0 ⩽ 𝑡 ⩽ 𝑇,由微积分基本定理知

𝜂(𝑡)𝑒−∫
𝑡
0 𝜙(𝑟) d𝑟 ⩽ 𝜂(0) + ∫

𝑡

0
𝑒−∫

𝑠
0 𝜙(𝑟)𝑑𝑟𝜓(𝑠) d𝑠 ⩽ 𝜂(0) + ∫

𝑡

0
𝜓(𝑠) d𝑠.

等价地，我们也有积分形式的Grönwall不等式。
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定理 B.3.2 (Grönwall不等式的积分形式). 设𝜉(𝑡)是[0, 𝑇]上的Lebesgue可积函数，且存在非负常数
𝐶1, 𝐶2 使得对几乎处处的𝑡 ∈ [0, 𝑇]满足积分不等式 𝜉(𝑡) ⩽ 𝐶1 ∫

𝑡
0 𝜉(𝑠) d𝑠 + 𝐶2.则有

𝜉(𝑡) ⩽ 𝐶2
(
1 + 𝐶1𝑡𝑒𝐶1𝑡

)
, a.e. 𝑡 ∈ [0, 𝑇].

特别地，若对几乎处处的𝑡 ∈ [0, 𝑇]有𝜉(𝑡) ⩽ 𝐶1 ∫
𝑡
0 𝜉(𝑠) d𝑠,则𝜉在[0, 𝑇]上几乎处处等于零。

证明. 令 𝜂(𝑡) ∶= ∫ 𝑡0 𝜉(𝑠) d𝑠,则有 𝜂′ ⩽ 𝐶1𝜂+𝐶2对几乎处处的𝑡 ∈ [0, 𝑇]成立。据微分版本的Grönwall不
等式有

𝜂(𝑡) ⩽ 𝑒𝐶1𝑡 (𝜂(0) + 𝐶2𝑡) = 𝐶2𝑡𝑒𝐶1𝑡,

于是得到

𝜉(𝑡) ⩽ 𝐶1𝜂(𝑡) + 𝐶2 ⩽ 𝐶2
(
1 + 𝐶1𝑡𝑒𝐶1𝑡

)
.

注记 B.3.1. 如上两个不等式（尤其是第二个）常用于建立演化方程（尤其是非线性方程）的各
类能量估计。特别地，我们在考虑一个演化方程解的长时间存在性时，往往需要对方程建立所谓

的“延拓准则”，即类似于“方程的解在𝑇∗时刻还能继续演化下去当且仅当某个量在𝑇∗时刻仍然
保持有界”这样的论断。此外，如果𝜙(𝑡)关于时间𝑡具有衰减性，则我们也可以用Grönwall不等式
计算演化方程解的寿命。在实际应用到诸多非线性问题的场景时，尤其是求解非线性方程的过程

中对逼近解做一致估计取极限时，我们往往需要更一般形式的Grönwall型不等式，即

𝐸(𝑡) ⩽ 𝑃(𝐸(0)) + 𝑃(𝐸(𝑡)) ∫
𝑡

0
𝑃(𝐸(𝑠)) d𝑠 ⇒ ∃𝑇 > 0, 使得 sup

𝑡∈[0,𝑇]
𝐸(𝑡) ⩽ 𝑃(𝐸(0)),

其中 𝑃(⋯)表示一个关于括号内各分量的（具有非负系数的）多项式，详情参见[18, Chapter 2].
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本章附录记录的是𝐿𝑝空间的基本性质和不等式，𝐿𝑝函数的光滑逼近以及𝐿𝑝空间的插值定理。
参考的教材是 Evans [6, Appendix B]和 Folland [8, Chapter 6].

C.1 𝐿𝑝不等式及其对偶空间

设(𝑋,ℳ, 𝜇)是测度空间，对1 ⩽ 𝑝 ⩽ ∞,我们定义𝐿𝑝(𝑋)如下

𝐿𝑝(𝑋,ℳ, 𝜇) ∶=
{
𝑓 ∶ 𝑋 → ℂ ∶ 𝑓 可测，且 ‖𝑓‖𝐿𝑝 < ∞

}
,

其中

‖𝑓‖𝐿𝑝 ∶=
⎧

⎨
⎩

(
∫𝑋 |𝑓|𝑝 d𝜇

) 1
𝑝 1 ⩽ 𝑝 < ∞

ess sup
𝑋

𝑓 = inf {𝑀 ∶ 𝜇{𝒙 ∶ |𝑓(𝒙)| > 𝑀} = 0} 𝑝 = ∞
.

在多数情况下，我们将𝐿𝑝(𝑋,ℳ, 𝜇)简记作𝐿𝑝(𝜇), 𝐿𝑝(𝑋)或者𝐿𝑝.当1 ⩽ 𝑝 ⩽ ∞时，线性空间 𝐿𝑝(𝑋,ℳ, 𝜇)
在带有 ‖ ⋅ ‖𝑋 范数时是Banach空间，证明参见 Folland [8,定理6.6, 6.8].

C.1.1 𝐿𝑝空间的基本不等式

如下两个不等式是会被反复用到的

• Hölder不等式: ‖𝑓𝑔‖𝐿1 ⩽ ‖𝑓‖𝐿𝑝‖𝑔‖𝐿𝑝′ ,其中 𝑝−1 + (𝑝′)−1 = 1, 1 ⩽ 𝑝, 𝑝′ ⩽ ∞.
• Minkowski不等式 (𝐿𝑝空间的三角不等式): ‖𝑓 + 𝑔‖𝐿𝑝 ⩽ ‖𝑓‖𝐿𝑝 + ‖𝑔‖𝐿𝑝 , 1 ⩽ 𝑝 ⩽ ∞.

𝐿𝑝空间满足如下包含关系。
命题 C.1.1. 设1 ⩽ 𝑝 ⩽ 𝑞 ⩽ 𝑟 ⩽ ∞，则有

(1) 𝐿𝑝 ∩ 𝐿𝑟 ⊂ 𝐿𝑞 ⊂ 𝐿𝑝 + 𝐿𝑟;
(2) 若𝜇(𝑋) < ∞,则𝐿𝑞 ⊂ 𝐿𝑝,且有 ‖𝑓‖𝐿𝑝 ⩽ ‖𝑓‖𝐿𝑞𝜇(𝑋)

1
𝑝
− 1
𝑞 ;

(3) 若存在常数𝑐0 > 0使得inf {𝜇(𝐹) ∶ 𝐹 ∈ ℳ,𝐹 ⊂ 𝑋, 𝜇(𝐹) > 0} ≥ 𝑐0 > 0,则 𝐿𝑝 ⊂ 𝐿𝑞. 特别地，我
们有𝓁𝑝(ℤ) ⊂ 𝓁𝑞(ℤ).

213
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证明. (1)利用Hölder不等式，我们得到

‖𝑓‖𝐿𝑞 ⩽ ‖𝑓‖𝜃𝐿𝑝‖𝑓‖1−𝜃𝐿𝑟 ,
1
𝑞 = 𝜃

𝑝 + 1 − 𝜃
𝑟 .

这说明𝐿𝑝 ∩𝐿𝑟 ⊂ 𝐿𝑞. 接下来验证𝐿𝑞 ⊂ 𝐿𝑝 +𝐿𝑟. 任给𝑓 ∈ 𝐿𝑞,我们将其分解为两部分 𝑓 = 𝑓𝜒𝐸 +𝑓𝜒𝐸𝑐 ,
其中 𝐸 ∶= {𝒙 ∶ |𝑓(𝒙)| > 1}. 于是直接计算可得

|𝑓𝜒𝐸|𝑝 = |𝑓|𝑝𝜒𝐸 ⩽ |𝑓|𝑞𝜒𝐸 ⇒ 𝑓𝜒𝐸 ∈ 𝐿𝑝, |𝑓|𝑞𝜒𝐸𝑐 ≥ |𝑓𝜒𝐸𝑐|𝑟 ⇒ 𝑓𝜒𝐸𝑐 ∈ 𝐿𝑟.

(2)若𝑞 = ∞,则结论是平凡的.若𝑞 < ∞,据Hölder不等式有

‖𝑓‖𝑝𝐿𝑝 = ∫
𝑋
|𝑓|𝑝 ⋅ 1d𝜇 ⩽ ‖|𝑓|𝑝‖𝐿𝑞∕𝑝‖1‖𝐿𝑞∕(𝑞−𝑝) = ‖𝑓‖𝑝𝐿𝑞𝜇(𝑋)

1− 𝑝
𝑞 .

(3)不妨设‖𝑓‖𝐿𝑝 = 1, 𝑐0 = 1. 则对任意𝜀 > 0,我们有

𝜇{𝒙 ∈ 𝑋 ∶ |𝑓(𝒙)| > 1 + 𝜀} ⩽ (1 + 𝜀)−𝑝 ∫
𝑋
|𝑓|𝑝 d𝜇 < 1 ⇒ 𝜇{𝒙 ∈ 𝑋 ∶ |𝑓(𝒙)| > 1 + 𝜀} = 0.

因此 𝜇{𝒙 ∈ 𝑋 ∶ |𝑓(𝒙)| > 1 = 0，进而容易得到 ∫𝑋 |𝑓|𝑞d𝜇 ⩽ ∫𝑋 |𝑓|𝑝d𝜇 = 1.

当𝜇(𝑋) < ∞时，𝐿𝑝(𝑋)范数会在𝑝 → ∞时收敛到𝐿∞(𝑋)范数。
命题 C.1.2. 设𝜇(𝑋) < ∞, 𝑓 ∈ 𝐿∞(𝑋). 则𝑓 ∈ 𝐿𝑝(𝑋)对任意𝑝 < ∞成立，且 lim

𝑝→∞
‖𝑓‖𝐿𝑝 = ‖𝑓‖𝐿∞ .

证明. 不等式的⩽部分是显然的(命题C.1.1(2)),即lim sup
𝑝→∞

‖𝑓‖𝐿𝑝 ⩽ ‖𝑓‖𝐿∞ . 对不等式的≥部分，对任

给的𝜀 > 0，据𝐿∞范数的定义知，存在𝛿 > 0使得

𝜇{𝒙 ∶ |𝑓(𝒙)| ≥ ‖𝑓‖𝐿∞ − 𝜀} ≥ 𝛿 ⇒ ∫
𝑋
|𝑓|𝑝 d𝜇 ≥ 𝛿(‖𝑓‖𝐿∞ − 𝜀)𝑝.

因此有 lim inf
𝑝→∞

‖𝑓‖𝐿𝑝 ≥ ‖𝑓‖𝐿∞ − 𝜀对任意𝜀 > 0成立。最后令𝜀 → 0即得结论。

注记 C.1.1. 如果函数𝑓 ∈ 𝐿𝑝 ∩ 𝐿∞ (进而由命题C.1.1(1)知𝑓 ∈ 𝐿𝑞对任意𝑞 > 𝑝成立)，则 𝜇(𝑋) < ∞
这个条件可以去掉。

C.1.2 𝐿𝑝范数的等价定义：对偶表示

设𝑝, 𝑝′是一对共轭指标，据Hölder不等式知每个函数𝑔 ∈ 𝐿𝑞实际上定义了𝐿𝑝空间上的一个线
性泛函𝜙𝑔(𝑓) ∶= ∫𝑋 𝑓𝑔,其算子范数不超过‖𝑔‖𝑝′ . 事实上𝑔 ↦→ 𝜙𝑔已经“几乎是”𝐿𝑝

′
到 (𝐿𝑝)∗的一个

等距同构。
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命题 C.1.3. 设𝑝, 𝑝′是共轭指标，且1 ⩽ 𝑝′ < ∞. 若𝑔 ∈ 𝐿𝑝′ ,则有

‖𝑔‖𝐿𝑝′ = ‖𝜙𝑔‖ = sup {
||||||||
∫
𝑋
𝑓𝑔
||||||||
∶ ‖𝑓‖𝐿𝑝 = 1} .

若测度𝜇是半有限(semi-finite)的1，则该结论对𝑝′ = ∞也成立。

证明. 不等式的≥是 Hölder不等式的直接推论。对⩽部分，当𝑝′ < ∞时，我们可选取

𝑓 =
|𝑔|𝑝′−1sgn 𝑔
‖𝑔‖𝑝−1𝑝′

.

当𝑝′ = ∞时, 对给定的𝜀 > 0我们考虑𝐸 ∶= {𝒙 ∶ |𝑔(𝒙)| ≥ ‖𝑔‖𝐿∞ − 𝜀}，则𝜇(𝐸) > 0. 由于𝜇是半有限
测度，所以存在子集𝐹 ⊂ 𝐸 且满足 0 < 𝜇(𝐹) < ∞，此时选取 𝑓 = 𝜇(𝐹)−1𝜒𝐹sgn 𝑔 即可。证明细节
可参考Folland [8, Prop. 6.13].

反之，若𝑓 ↦→ ∫ 𝑓𝑔是𝐿𝑝空间上的有界线性泛函，则𝑔 ∈ 𝐿𝑝′在“几乎所有”情况都是对的。
命题 C.1.4 ([8, Theorem 6.14]). 假设如下条件成立

• 𝜇是半有限测度；
• 𝑔是𝑋上的可测函数，且满足𝑓𝑔 ∈ 𝐿1对任意支于有限测度集上的简单函数 𝑓 成立；
• 𝑀𝑝′(𝑔) ∶= sup{| ∫ 𝑓𝑔| ∶ 𝑓 是简单函数 , ‖𝑓‖𝐿𝑝 = 1} < ∞.

则有𝑔 ∈ 𝐿𝑝′，且𝑀𝑝′(𝑔) = ‖𝑔‖𝐿𝑝′ .
据此，我们可得到𝐿𝑝空间的对偶空间定理。

定理 C.1.5 ([8, Theorem 6.15], 𝐿𝑝空间的对偶空间). 当1 < 𝑝 < ∞时, 对任意𝜙 ∈ (𝐿𝑝)∗, 都存
在𝑔 ∈ 𝐿𝑝′使得𝜙(𝑓) = ∫ 𝑓𝑔对任意𝑓 ∈ 𝐿𝑝成立，进而𝐿𝑝′和(𝐿𝑝)∗之间是等距同构的。特别地，𝐿𝑝(𝑋)
在1 < 𝑝 < ∞时是自反空间。若𝜇是𝜎-有限的，则同样的结论对𝑝 = 1也成立。

根据如上定理，我们可以证明 𝐿𝑝 范数具有如下等价表达式

‖𝑓‖𝐿𝑝 = sup
𝑔∈𝐿𝑝′

‖𝑔‖𝐿𝑝′⩽1

∫
𝑋
𝑓𝑔 d𝜇. (C.1.1)

据此定义，我们可以证明积分Minkowski不等式（又称“广义Minkowski不等式”）

定理 C.1.6 (积分Minkowski不等式). 设(𝑋,ℳ, 𝜇) 和 (𝑌,𝒩, 𝜈) 均为 𝜎-有限的测度空间，𝑓 ∶ 𝑋 ×
𝑌 → ℝ是一个(ℳ ⊗𝒩)-可测函数

1我们称测度𝜇是半有限的(semi-finite)是指：对任意满足 𝜈(𝐹) = ∞的集合𝐹 ∈ 𝒩, 存在子集 𝐾 ∈ 𝒩, 𝐾 ⊂ 𝐹满
足0 < 𝜈(𝐾) < ∞.
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(1) 若 𝑓 ≥ 0且 1 ⩽ 𝑝 < ∞,则有

⎡
⎢
⎣
∫
𝑋
(∫

𝑌
𝑓(𝒙, 𝒚) d𝜈(𝒚))

𝑝

d𝜇(𝒙)
⎤
⎥
⎦

1∕𝑝

⩽ ∫
𝑌
[∫

𝑋
𝑓(𝒙, 𝒚)𝑝 d𝜇(𝒙)]

1∕𝑝

d𝜈(𝒚).

(2) 若 1 ⩽ 𝑝 ⩽ ∞, 𝑓(⋅, 𝒚) ∈ 𝐿𝑝(𝜈)对几乎处处的𝒚 ∈ 𝑌成立，且函数𝒚 ↦→ ‖𝑓(⋅, 𝒚)‖𝐿𝑝属于𝐿1(𝜈),
则 𝑓(𝒙, ⋅) ∈ 𝐿1(𝜈)对几乎处处的𝒙 ∈ 𝑋成立，函数𝒙 → ∫𝑌 𝑓(𝒙, 𝒚) d𝜈(𝒚)属于𝐿𝑝(𝜇)并满足

‖‖‖‖‖‖‖‖
∫
𝑌
𝑓(⋅, 𝒚) d𝜈(𝒚)

‖‖‖‖‖‖‖‖𝐿𝑝
⩽ ∫

𝑌
‖𝑓(⋅, 𝒚)‖𝐿𝑝 d𝜈(𝒚).

证明. 我们只证明(1)，(2)是(1)和Fubini定理的直接推论(𝑓换成|𝑓|).
当𝑝 = 1时，(1)就是Tonelli定理。当1 < 𝑝 < ∞时，设𝑝′是𝑝的共轭指标，取𝑔 ∈ 𝐿𝑝′(𝜇)满

足‖𝑔‖𝐿𝑝′ ⩽ 1，则由Tonelli定理和Hölder不等式可得

∫
𝑋
(∫

𝑌
𝑓(𝒙, 𝒚) d𝜈(𝒚)) |𝑔(𝒙)| d𝜇(𝒙) =∬

𝑋×𝑌
𝑓(𝒙, 𝒚)|𝑔(𝒙)| d𝜇(𝒙) d𝜈(𝒚)

⩽ ‖𝑔‖𝐿𝑝′ ∫
𝑌
[∫

𝑋
𝑓(𝒙, 𝒚)𝑝 d𝜇(𝒙)]

1∕𝑝

d𝜈(𝒚).

上式左边对全体满足‖𝑔‖𝐿𝑝′ ⩽ 1的𝑔 ∈ 𝐿𝑝′(𝜇)取上确界，再由(C.1.1)即得结论。

C.1.3 𝐿𝑝范数的等价定义：分布函数表示

本节证明：一个函数的𝐿𝑝范数也可以等价地表示为对该函数水平集的测度作加权积分。这本
质上是Lebesgue测度等价定义的推广：一种通俗的理解是函数𝑓(不妨设为非负)的Lebesgue积分可
以通过划分𝑓的值域而不是𝑓的定义域(黎曼和)来定义。准确地说，设𝑓是(𝑋,ℳ, 𝜇)上的可测函数，
我们定义其分布函数(distribution function) 𝜆𝑓 ∶ ℝ+ → [0,∞]为

𝜆𝑓(𝛼) ∶= 𝜇{𝒙 ∈ 𝑋 ∶ |𝑓(𝒙)| > 𝛼}.

命题 C.1.7. 分布函数满足如下性质

(1) 𝜆𝑓是单调递减的右连续函数。
(2) 若𝑓 ⩽ 𝑔,则 𝜆𝑓 ⩽ 𝜆𝑔.
(3) 若 |𝑓𝑛|单调递增地收敛到 |𝑓|,则有𝜆𝑓𝑛也单调递增地收敛到 𝜆𝑓.
(4) 若 𝑓 = 𝑔 + ℎ,则 𝜆𝑓(𝛼) ⩽ 𝜆𝑔(𝛼∕2) + 𝜆ℎ(𝛼∕2).

𝐿𝑝范数的分布函数表示定理叙述如下
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定理 C.1.8. 设0 < 𝑝 < ∞，则有

∫
𝑋
|𝑓|𝑝 d𝜇 = 𝑝 ∫

∞

0
𝛼𝑝−1𝜆𝑓(𝛼) d𝛼.

证明. 注意到我们有 𝜆𝑓(𝛼) = ∫𝑋 𝜒{𝒙∶|𝑓(𝒙)|>𝛼} d𝜇，然后将待证式子右边的积分交换次序(因为被积函
数非负、可测，所以由Tonelli定理即可换序)。

习题 C.1

习题 C.1.1. 设1 ⩽ 𝑝 ⩽ 𝑟 ⩽ ∞，证明：

(1) (𝐿𝑝 ∩ 𝐿𝑟, ‖ ⋅ ‖𝐿𝑝 + ‖ ⋅ ‖𝐿𝑟)是Banach空间。
(2) (𝐿𝑝 + 𝐿𝑟, ‖ ⋅ ‖𝐿𝑝+𝐿𝑟)是Banach空间，其中

‖𝑓‖𝐿𝑝+𝐿𝑟 ∶= inf {‖𝑓0‖𝐿𝑝 + ‖𝑓1‖𝐿𝑟 ∶ 𝑓 = 𝑓0 + 𝑓1, 𝑓0 ∈ 𝐿𝑝, 𝑓1 ∈ 𝐿𝑟}.

习题 C.1.2. 设1 ⩽ 𝑝 < ∞.

(1) 若‖𝑓𝑛 − 𝑓‖𝐿𝑝 → 0,则 𝑓𝑛依测度收敛到𝑓，进而存在子列几乎处处收敛到𝑓.
(2) 若 𝑓𝑛依测度收敛到𝑓，且存在𝑔 ∈ 𝐿𝑝使得|𝑓𝑛(𝒙)| ⩽ 𝑔(𝒙)对任意𝑛和a.e. 𝒙成立，则‖𝑓𝑛 −

𝑓‖𝐿𝑝 → 0.
(3) 若𝑓𝑛, 𝑓 ∈ 𝐿𝑝满足𝑓𝑛几乎处处收敛于𝑓，则‖𝑓𝑛 − 𝑓‖𝐿𝑝当且仅当‖𝑓𝑛‖𝐿𝑝 → ‖𝑓‖𝐿𝑝 .

习题 C.1.3. 设sup
𝑛
‖𝑓𝑛‖𝐿𝑝 < ∞, 𝑓𝑛

a.e.
,,→ 𝑓. 证明：若1 < 𝑝 < ∞，则𝑓𝑛

𝐿𝑝
,,⇀ 𝑓. 对𝑝 = 1，同样结论是

否还成立？

习题 C.1.4. 设1 < 𝑝 < ∞，证明：𝑥𝑛
𝓁𝑝(ℤ)
,,,,⇀ 𝑥当且仅当sup

𝑛
‖𝑥𝑛‖𝓁𝑝 < ∞和𝑥𝑛逐点收敛于𝑥同时成

立。

习题 C.1.5. 证明：𝐿𝑝(ℝ𝑑) (带有Lebesgue测度)在1 ⩽ 𝑝 < ∞时是可分的，但在𝑝 = ∞时不可分。
提示：当𝑝 < ∞时，考虑有理矩形（端点坐标均为有理数）示性函数的有理系数线性组合。

当 𝑝 = ∞时考虑函数𝑓𝑟 ∶= 𝜒𝐵(𝟎,𝑟).

习题 C.1.6 (Chebyshev不等式). 证明：若𝑓 ∈ 𝐿𝑝(0 < 𝑝 < ∞),则对于任意𝛼 > 0有,

𝜇({𝑥 ∶ |𝑓(𝑥)| > 𝛼}) ⩽ [
‖𝑓‖𝑝
𝛼 ]

𝑝

.

习题 C.1.7. 设(𝑋,ℳ, 𝜇)和 (𝑌,𝒩, 𝜈)是 𝜎-有限的测度空间，𝑓 ∶ 𝑋 × 𝑌 → ℝ是(ℳ ⊗𝒩)-可测的函
数。假设存在𝐶 > 0使得∫𝑋 |𝐾(𝒙, 𝒚)| d𝜇(𝒙) ⩽ 𝐶对几乎处处的𝒚 ∈ 𝑌成立，∫𝑌 |𝐾(𝒙, 𝒚)| d𝜈(𝒚) ⩽ 𝐶对
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几乎处处的𝒙 ∈ 𝑋成立.若𝑓 ∈ 𝐿𝑝(𝜈), 1 ⩽ 𝑝 ⩽ ∞，证明

𝑇𝑓(𝒙) ∶= ∫
𝑌
𝐾(𝒙, 𝒚)𝑓(𝒚) d𝜈(𝒚)

对几乎处处的𝒙 ∈ 𝑋是绝对收敛的，且𝑇𝑓 ∈ 𝐿𝑝(𝜇)满足‖𝑇𝑓‖𝐿𝑝 ⩽ 𝐶‖𝑓‖𝐿𝑝 .
习题 C.1.8. 设(𝑋,ℳ, 𝜇)和 (𝑌,𝒩, 𝜈)是 𝜎-有限的测度空间，𝐾 ∈ 𝐿2(𝜇 × 𝜈). 若𝑓 ∈ 𝐿2(𝜈),证明：

𝑇𝑓(𝒙) ∶= ∫
𝑌
𝐾(𝒙, 𝒚)𝑓(𝒚) d𝜈(𝒚)

c对几乎处处的𝒙 ∈ 𝑋是绝对收敛的,且𝑇𝑓 ∈ 𝐿𝑝(𝜇)满足‖𝑇𝑓‖𝐿2 ⩽ ‖𝐾‖𝐿2‖𝑓‖𝐿2 .
习题 C.1.9. 证明如下结论

(1) 𝑓 ∈ 𝐿𝑝 当且仅当
∞∑

𝑘=−∞
2𝑘𝑝𝜆𝑓(2𝑘) < ∞.

(2) 若 𝑓 ∈ 𝐿𝑝,则 lim
𝛼→0

𝛼𝑝𝜆𝑓(𝛼) = lim
𝛼→∞

𝛼𝑝𝜆𝑓(𝛼) = 0.

问题 C.1

问题C.1.1 (非升重排). 对𝑋上的可测函数𝑓，其非非非升升升重重重排排排 (decreasing rearrangement) 𝑓∗ ∶ (0,∞) →
[0,∞]定义为

𝑓∗(𝑡) = inf
{
𝛼 ∶ 𝜆𝑓(𝛼) ⩽ 𝑡

}
(其中 inf ∅ = ∞)

证明如下结论

(1) 𝑓∗单调递减。若 𝑓∗(𝑡) < ∞,则 𝜆𝑓(𝑓∗(𝑡)) ⩽ 𝑡；且若𝜆𝑓(𝛼) < ∞,则 𝑓∗(𝜆𝑓(𝛼)) ⩽ 𝛼.
(2) 𝜆𝑓 = 𝜆𝑓∗ .
(3) 若𝜆𝑓(𝛼) < ∞对全体𝛼 > 0成立，且 lim

𝛼→∞
𝜆𝑓(𝛼) = 0 (进而𝑓∗(𝑡) < ∞对全体𝑡 > 0成立)。

设𝜙是(0,∞)上的可测函数，则有 ∫𝑋 𝜙◦|𝑓| d𝜇 = ∫∞0 𝜙◦𝑓∗(𝑡)𝑑𝑡.特别地，对0 < 𝑝 < ∞有‖𝑓‖𝐿𝑝 =
‖𝑓∗‖𝐿𝑝 .

(4) 若0 < 𝑝 < ∞，则𝑓的弱𝐿𝑝范数满足[𝑓]𝐿𝑝 ∶= (sup
𝛼>0

𝛼𝑝𝜆𝑓(𝛼))1∕𝑝 = sup
𝑡>0

𝑡1∕𝑝𝑓∗(𝑡).

问题 C.1.2 (Schur定理). 证明：{𝑥𝑛} ⊂ 𝓁1(ℕ)弱收敛于𝑥 ∈ 𝓁1(ℕ)当且仅当‖𝑥𝑛 − 𝑥‖𝓁1 → 0.

C.2 卷积与光滑化

本节讲述：给定一个𝐿𝑝函数𝑓（不知道它的连续性、可微性），如何利用卷积构造一族光滑函
数𝑓𝜀来逼近𝑓. 该构造在现代偏微分方程研究中仍然是常用技巧。

定义 C.2.1. 首先我们需要引进下面这些记号：
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• 设𝑈 ⊂ ℝ𝑑是开集，实参数𝜀 > 0，我们记𝑈𝜀 ∶= {𝒙 ∈ 𝑈 ∶ dist (𝒙, 𝜕𝑈) > 𝜀}.
• 定义隆隆隆起起起函函函数数数 (bump function) 𝜂 ∈ 𝐶∞(ℝ𝑑)如下

𝜂(𝒙) =
⎧

⎨
⎩

𝐶 exp ( 1
|𝒙|2−1

) |𝒙| < 1

0 |𝒙| ≥ 1
,

其中常数 𝐶 > 0保证积分值 ∫ℝ𝑑 𝜂 d𝒙 = 1. 这里我们称 𝜂 为标标标准准准光光光滑滑滑子子子 (standard mollifier).

• (光滑子)对每个实参数 𝜀 > 0，我们定义

𝜂𝜀(𝒙) ∶=
1
𝜀𝑑 𝜂

(𝒙
𝜀
)
.

并称 𝜂𝜀 是参数为 𝜀 > 0 的光滑子. 利用变量替换公式可以证明 ∫ℝ𝑑 𝜂𝜀 d𝒙 = 1 以及Spt 𝜂𝜀 ⊂
𝐵(𝟎, 𝜀).

给定 𝑓 ∈ 𝐿𝑝(𝑈),其中 1 ⩽ 𝑝 ⩽ +∞，我们利用卷积和光滑子引进它的一种光滑逼近 𝑓𝜀(𝒙) ∶=
(𝜂𝜀 ∗ 𝑓)(𝒙)。如下定理记录了卷积光滑逼近的若干常用性质。

定理C.2.1 (光滑子的性质). 设𝑓 ∶ 𝑈 → ℝ是局部可积函数（即在𝑈的任意紧子集上都是Lebesgue可
积的）. 则有

1. 𝑓𝜀 ∈ 𝐶∞(𝑈𝜀). (这个𝑈𝜀不可以换成𝑈! 这是因为作卷积后，Spt𝑓𝜀会比Spt𝑓“膨胀出”一圈厚
度为𝜀的区域，这可以通过卷积定义看出来)

2. 𝑓𝜀 → 𝑓 a.e., as 𝜀 → 0.

3. 若𝑓 ∈ 𝐶(𝑈),则在𝑈的任意紧子集上都有一致收敛 𝑓𝜀 ⇉ 𝑓.

4. 若1 ⩽ 𝑝 < ∞且 𝑓 ∈ 𝐿𝑝loc(𝑈),则 𝑓𝜀 → 𝑓 in 𝐿𝑝loc(𝑈).

证明. 首先证明光滑性，实际上这只要证明一阶导数的存在性，再用数学归纳法递推到任意阶导
数即可。固定点 𝒙 ∈ 𝑈𝜀、分量 𝑖 ∈ {1,⋯ , 𝑑}，则可以取充分小的实数 ℎ，使得 𝒙+ ℎ𝑒𝑖 ∈ 𝑈𝜀。接下

来我们计算差商

𝑓𝜀(𝒙 + ℎ𝑒𝑖) − 𝑓𝜀(𝒙)
ℎ = 1

𝜀𝑑 ∫𝑈
1
ℎ (𝜂 (

𝒙 + ℎ𝑒𝑖 − 𝒚
𝜀 ) − 𝜂 (𝒙 − 𝒚

𝜀 )) 𝑓(𝒚) d𝒚

= 1
𝜀𝑑 ∫𝑉

1
ℎ (𝜂 (

𝒙 + ℎ𝑒𝑖 − 𝒚
𝜀 ) − 𝜂 (𝒙 − 𝒚

𝜀 )) 𝑓(𝒚) d𝒚

这里 𝑉 ⋐ 𝑈. 而现在我们有如下一致收敛的结论：

1
ℎ (𝜂 (

𝒙 + ℎ𝑒𝑖 − 𝒚
𝜀 ) − 𝜂 (𝒙 − 𝒚

𝜀 )) ⇉ 1
𝜀 𝜕𝑥𝑖𝜂 (

𝒙 − 𝒚
𝜀 ) in 𝑉 as ℎ → 0.
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这就表明上述差商的积分数是收敛的，我们记ℎ → 0时上述积分式的极限函数为𝜕𝑥𝑖𝑓𝜀(𝒙)，其满足

∫
𝑈
𝜕𝑥𝑖𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚.

这就证明了一阶导数存在性，且证明了𝜕𝑖𝑓𝜀 = 𝜕𝑖(𝑓 ∗ 𝜂𝜀) = (𝜕𝑖𝑓) ∗ 𝜂𝜀.

接下来证明点态收敛，据卷积光滑逼近的定义，我们可以作如下化简：

|𝑓𝜀(𝒙) − 𝑓(𝒙)| =
|||||||||
∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)(𝑓(𝒚) − 𝑓(𝒙)) d𝒚
|||||||||
⩽ 1
𝜀𝑑 ∫𝐵(𝒙,𝜀)

𝜂 (𝒙 − 𝒚
𝜀 ) |𝑓(𝒚) − 𝑓(𝒙)| d𝒚

⩽ 𝐶 ⨏
𝐵(𝒙,𝜀)

|𝑓(𝒚) − 𝑓(𝒙)| d𝒚 → 0 a.e. 𝒙 ∈ 𝑈.

上述过程中的最后一步是由Lebesgue微分定理得到（见Stein实分析[16]第三章）。进一步，如果𝑓是
连续函数，则对任意紧子集𝑉 ⋐ 𝑈，我们可以插入一个开集𝑊 使得 𝑉 ⋐ 𝑊 ⋐ 𝑈. 此时 𝑓在𝑊上是
一致连续的，且由Lebesgues微分定理得到的收敛性对每个𝒙 ∈ 𝑉都成立，这样就证明来结论(3).

最后证明(4). 仍然按照上面的方法选取开集 𝑉 ⋐ 𝑊 ⋐ 𝑈，首先要证明 𝑓𝜀 ∈ 𝐿𝑝loc(𝑈) (1 ⩽ 𝑝 <
∞). 为此，固定 𝒙 ∈ 𝑉,用Hölder不等式可算出

|𝑓𝜀(𝒙)| =
|||||||||
∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)𝑓(𝒚) d𝒚
|||||||||
⩽ ∫

𝐵(𝒙,𝜀)
𝜂
1− 1

𝑝
𝜀 𝜂

1
𝑝
𝜀 |𝑓(𝒚)| d𝒚

⩽ (∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚) d𝒚)
1− 1

𝑝

(∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)|𝑓(𝒚)|𝑝 d𝒚)

1
𝑝

⩽ 1 ⋅ (∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)|𝑓(𝒚)|𝑝 d𝒚)

1
𝑝

.

接下来，两边取𝑝次方并在𝑉上积分可得

∫
𝑉
|𝑓𝜀(𝒙)|𝑝 d𝒙 ⩽∫

𝑉
∫
𝐵(𝒙,𝜀)

𝜂𝜀(𝒙 − 𝒚)|𝑓(𝒚)|𝑝 d𝒚d𝒙

⩽∫
𝑊
|𝑓(𝒚)|𝑝 (∫

𝐵(𝒚,𝜀)
𝜂𝜀(𝒙 − 𝒚) d𝒙) d𝒚 = ∫

𝑊
|𝑓|𝑝 < ∞.

在𝐿𝑝范数(1 ⩽ 𝑝 < ∞)下的收敛则可以由连续函数逼近得到，即给定 𝑉,𝑊 如上和误差 𝛿 > 0,我们
可以找到 𝑔 ∈ 𝐶(𝑊)使得 ‖𝑓 − 𝑔‖𝐿𝑝(𝑊) < 𝛿. 则

‖𝑓𝜀 − 𝑓‖𝐿𝑝(𝑉) ⩽ ‖𝑓𝜀 − 𝑔𝜀‖𝐿𝑝(𝑉) + ‖𝑔𝜀 − 𝑔‖𝐿𝑝(𝑉) + ‖𝑔 − 𝑓‖𝐿𝑝(𝑉)
⩽ 2‖𝑓 − 𝑔‖𝐿𝑝(𝑊) + ‖𝑔𝜀 − 𝑔‖𝐿𝑝(𝑉).
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利用 (3),我们有 lim sup
𝜀→0

‖𝑓𝜀 − 𝑓‖𝐿𝑝(𝑉) ⩽ 2𝛿.

C.3 𝐿𝑝空间的算子插值定理

本节给出𝐿𝑝空间的两个算子插值定理，它们被广泛用于调和分析和偏微分方程的研究中。今
假设(𝑋,ℳ, 𝜇)和(𝑌,𝒩, 𝜈)是𝜎-有限的测度空间，并取1 ⩽ 𝑝, 𝑞 ⩽ ∞.

定义 C.3.1. 设𝑇 ∶ 𝐿𝑝 → 𝐿𝑞是一个算子，我们引入如下定义

• 𝑇是次次次线线线性性性(sublinear)算子，是指|𝑇(𝑓0 + 𝑓1)(𝒙)| ⩽ |𝑇𝑓0(𝒙)| + |𝑇𝑓1(𝒙)| 以及 |𝑇(𝜆𝑓)(𝒙)| =
|𝜆||𝑇𝑓(𝒙)|对全体 𝒙 ∈ 𝑋 和 𝜆 ∈ ℂ成立；

• 𝑇是强强强(𝑝, 𝑞)型型型算子，是指存在常数𝐶𝑝,𝑞 > 0使得 ‖𝑇𝑓‖𝐿𝑞 ⩽ 𝐶𝑝,𝑞‖𝑓‖𝐿𝑝 ;

• 𝑇是弱弱弱(𝑝, 𝑞)型型型算子，是指存在常数𝐶𝑝,𝑞 > 0使得 𝜆𝛼(𝑇𝑓)
1
𝑞 ⩽ 𝐶𝑝,𝑞𝛼−1‖𝑓‖𝐿𝑝 .

特别地，强(𝑝, 𝑞)型算子必是弱(𝑝, 𝑞)型算子，弱(∞,∞)型算子定义为强(∞,∞)型算子。

C.3.1 Marcinkiewicz内插定理

我们首先证明Marcinkiewicz内插定理(Marcinkiewicz’s interpolation theorem).

定理 C.3.1 (Marcinkiewicz内插定理). 设(𝑋,ℳ, 𝜇)和(𝑌,𝒩, 𝜈)是测度空间，指标1 ⩽ 𝑝0, 𝑝1, 𝑞0, 𝑞1 ⩽
∞满足𝑝0 ⩽ 𝑞0, 𝑝1 ⩽ 𝑞1 以及 𝑞0 ≠ 𝑞1 且有插值关系

1
𝑝 = 1 − 𝜃

𝑝0
+ 𝜃
𝑝1
和

1
𝑞 = 1 − 𝜃

𝑞0
+ 𝜃
𝑞1
, 其中 0 < 𝜃 < 1.

若𝑇是𝐿𝑝0(𝜇)+𝐿𝑝1(𝜇)到𝑌上可测函数空间的次次次线线线性性性算算算子子子，，，且且且同同同时时时是是是弱弱弱(𝑝0, 𝑞0)和和和弱弱弱(𝑝1, 𝑞1)的的的,则𝑇是
强强强(𝑝, 𝑞)型型型算子。

证明. 我们只证明对角型的Marcinkiewicz内插定理，即𝑝0 = 𝑞0 和 𝑝1 = 𝑞1 同时成立的情况，一般
情况仅是计算更复杂，但方法相同，见 Folland [8,定理6.28].

给定𝑓 ∈ 𝐿𝑝和𝛼 > 0，我们把𝑓拆分为𝑓0 + 𝑓1，其中𝑓0 = 𝑓𝜒{𝑥∶|𝑓(𝑥)|>𝑐𝛼}, 𝑓1 = 𝑓𝜒{𝑥∶|𝑓(𝑥)|⩽𝑐𝛼},其中
常数𝑐稍后再确定其取值。于是我们得到𝑓0 ∈ 𝐿𝑝0(𝜇), 𝑓1 ∈ 𝐿𝑝1(𝜇). 进一步我们有

|𝑇𝑓(𝑥)| ⩽ |||𝑇𝑓0(𝑥)||| + |||𝑇𝑓1(𝑥)||| ⇒ 𝜆𝑇𝑓(𝛼) ⩽ 𝜆𝑇𝑓0(𝛼∕2) + 𝜆𝑇𝑓1(𝛼∕2)

接下来考虑两种情况
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情况1：𝑝1 = ∞. 取𝑐 = 1∕ (2𝐴1), 其中 𝐴1 来自不等式 ‖𝑇𝑔‖∞ ⩽ 𝐴1‖𝑔‖∞. 此时 𝜆𝑇𝑓1(𝛼∕2) = 0. 据

弱(𝑝0, 𝑝0)的假设，我们有 𝜆𝑇𝑓0(𝛼∕2) ⩽
( 2𝐴0

𝛼
‖𝑓0‖𝑝0

)𝑝0
,于是有

‖𝑇𝑓‖𝑝𝑝 ⩽ 𝑝 ∫
∞

0
𝛼𝑝−1−𝑝0 (2𝐴0)

𝑝0 ∫
{𝑥|𝑓(𝑥)|>𝑐𝛼}

|𝑓(𝑥)|𝑝0 d𝜇 d𝛼

= 𝑝 (2𝐴0)
𝑝0 ∫

𝑋
|𝑓(𝑥)|𝑝0 ∫

|𝑓(𝑥)|∕𝑐

0
𝛼𝑝−1−𝑝0 d𝛼 d𝜇 = 𝑝

𝑝 − 𝑝0
(2𝐴0)

𝑝0 (2𝐴1)
𝑝−𝑝0 ‖𝑓‖𝑝𝑝.

情况2：𝑝1 < ∞. 现在我们有 𝜆𝑇𝑓𝑖(𝛼∕2) ⩽
( 2𝐴𝑖

𝛼
‖𝑓𝑖‖𝑝𝑖

)𝑝𝑖
, 𝑖 = 0, 1

仿照情况1的证明即可算出结论

‖𝑇𝑓‖𝑝𝑝 ⩽ 𝑝 ∫
∞

0
𝛼𝑝−1−𝑝0 (2𝐴0)

𝑝0 ∫
{𝑥∶|𝑓(𝑥)|>𝑐𝛼}

|𝑓(𝑥)|𝑝0 d𝜇 d𝛼

+ 𝑝 ∫
∞

0
𝛼𝑝−1−𝑝1 (2𝐴1)

𝑝1 ∫
{𝑥∶|𝑓(𝑥)|⩽𝑐𝛼}

|𝑓(𝑥)|𝑝1 d𝜇 d𝛼

=(
𝑝2𝑝0
𝑝 − 𝑝0

𝐴𝑝0
0

𝑐𝑝−𝑝0 +
𝑝2𝑝1
𝑝1 − 𝑝

𝐴𝑝1
1

𝑐𝑝−𝑝1 ) ‖𝑓‖
𝑝
𝑝.

Marcinkiewicz内插定理的一个直接应用是证明Hardy-Littlewood极大函数的𝐿𝑝有界性。
定义 C.3.2 (Hardy-Littlewood极大函数). 对𝑓 ∈ 𝐿1loc(ℝ

𝑑)，我们定义其Hardy-Littlewood极大函数
为

𝑀𝑓(𝒙) ∶= sup
𝑟>0

1
|𝐵(𝒙, 𝑟)|

∫
𝐵(𝒙,𝑟)

|𝑓(𝒚)| d𝒚.

根据Hardy-Littlewood极大函数和Vitali覆盖引理(见Stein实分析[16]第三章)，我们得到

命题 C.3.2 ([16, Chapter 3]). Hardy-Littlewood极大算子𝑀是弱(1,1)型和强(∞,∞)型的次线性算
子。

据此结合Marcinkiewicz内插定理即得Hardy-Littlewood极大函数的𝐿𝑝有界性。
定理 C.3.3. 设1 < 𝑝 < ∞,则

‖𝑀𝑓‖𝐿𝑝(ℝ𝑑) ⩽ 𝐶 𝑝
𝑝 − 1‖𝑓‖𝐿𝑝(ℝ𝑑).

其中常数𝐶 𝑝
𝑝−1
可以通过模仿Marcinkiewicz内插定理的证明过程具体算出来。

Hardy-Littlewood极大函数𝐿𝑝有界性在偏微分方程中有一个极为重要的应用，即为非整数阶
Sobolev空间的临界嵌入定理，它是如下Hardy-Littlewood-Sobolev不等式的一个特例。
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定理 C.3.4 (Hardy-Littlewood-Sobolev不等式). 设𝑓 ∈ 𝐿𝑝(ℝ𝑑)，正数𝑝, 𝑞, 𝛾满足 0 < 𝛾 < 𝑑, 1 < 𝑝 <
𝑞 < ∞和 1 + 1

𝑞
= 1

𝑝
+ 𝛾

𝑑
. 则存在仅依赖𝑝, 𝑞, 𝑑的常数𝐶 > 0，使得如下不等式成立

‖| ⋅ |−𝛾 ∗ 𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑑).

证明. 我们对卷积定义的积分作适当的截断

| ⋅ |−𝛾 ∗ 𝑓(𝒙) = ∫
|𝒚|>𝑅

𝑓(𝒙 − 𝒚)|𝒚|−𝛾 d𝒚 + ∫
|𝒚|⩽𝑅

𝑓(𝒙 − 𝒚)|𝒚|−𝛾 d𝒚 =∶ 𝐼1 + 𝐼2.

其中截断的半径 𝑅 > 0可能依赖于 𝒙，它的取值暂且待定。

对𝐼1，我们注意到定理条件可以推出
1
𝛾𝑝′

= 1
𝑑
− 1

𝛾𝑞
< 1

𝑑
，于是𝐼1可以直接用Hölder不等式控制

𝐼1 ⩽ ‖𝑓(𝒙 − ⋅)‖𝐿𝑝
‖‖‖‖| ⋅ |

−𝛾𝜒𝐵(𝟎,𝑅)𝑐
‖‖‖‖𝐿𝑝′ = 𝐶‖𝑓‖𝐿𝑝𝑅

− 𝑑
𝑞 .

对𝐼2，我们通过对球𝐵(𝟎, 𝑅)作二进分解(dyadic decomposition)，并强行构造出Hardy-Littlewood极
大函数，来消除原点处的奇性

|𝐼2| ⩽
∞∑

𝑗=0
∫
2−(𝑗+1)𝑅⩽|𝒚|⩽2−𝑗𝑅

|𝒚|−𝛾|𝑓(𝒙 − 𝒚)| d𝒚 ⩽
∞∑

𝑗=0
(2−(𝑗+1)𝑅)−𝛾 ∫

2−(𝑗+1)𝑅⩽|𝒚|⩽2−𝑗𝑅
|𝑓(𝒙 − 𝒚)| d𝒚

⩽
∞∑

𝑗=0
2(𝑗+1)𝛾𝑅−𝛾(2−𝑗𝑅)𝑑 ∫

|𝒚|⩽2−𝑗𝑅

|𝑓(𝒙 − 𝒚)
(2−𝑗𝑅)𝑑

d𝒚

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
⩽𝐶𝑑𝑀𝑓(𝒙)

⩽
∞∑

𝑗=0
2𝛾2−𝑗(𝑑−𝛾)𝑅𝑑−𝛾𝑀𝑓(𝒙) = 𝐶𝑅𝑑−𝛾𝑀𝑓(𝒙).

这样，我们就得到

𝐼1 + 𝐼2 ⩽ 𝐶 (‖𝑓‖𝐿𝑝𝑅
− 𝑑
𝑞 + 𝑅𝑑−𝛾𝑀𝑓(𝒙)) .

今取 𝑅 ∶= ‖𝑓‖
𝑝
𝑑
𝐿𝑝

𝑀𝑓(𝒙)
𝑝
𝑑
使得上式两项的取值相等，这样就推出𝐼1 + 𝐼2 ⩽ 𝐶‖𝑓‖

1− 𝑝
𝑞

𝐿𝑝 (𝑀𝑓)
𝑝
𝑞 . 最后，利

用Hardy-Littlewood极大函数的𝐿𝑝有界性，我们得到最终结论

‖| ⋅ |−𝛾 ∗ 𝑓‖𝐿𝑞(ℝ𝑑) ⩽ ‖𝐼1 + 𝐼2‖𝐿𝑞 ⩽ 𝐶‖𝑓‖
1− 𝑝

𝑞
𝐿𝑝 ‖(𝑀𝑓)

𝑝
𝑞 ‖𝐿𝑞

⏟⎴⎴⏟⎴⎴⏟
=‖𝑀𝑓‖

𝑝
𝑞
𝐿𝑝

⩽ 𝐶‖𝑓‖𝐿𝑝 .
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C.3.2 Riesz-Thorin内插定理

Marcinkiewicz内插定理的一个缺点是𝐿𝑝有界性的算子范数缺少显式不等式的计算。然而，如
果我们对线性算子把“弱(𝑝0, 𝑞0)型”的假设加强为“强(𝑝0, 𝑞0)型”，即可得到一个更精确的内插
定理。

定理C.3.5 (Riesz-Thorin内插定理). 设(𝑋,ℳ, 𝜇)和(𝑌,𝒩, 𝜈)是测度空间，指标𝑝0, 𝑝1, 𝑞0, 𝑞1 ∈ [1,∞].
对 𝜃 ∈ [0, 1],我们定义插值指标 𝑝𝜃, 𝑞𝜃 为

1
𝑝𝜃

= 1 − 𝜃
𝑝0

+ 𝜃
𝑝1
, 1

𝑞𝜃
= 1 − 𝜃

𝑞0
+ 𝜃
𝑞1
.

若线性算子 𝑇 ∶ 𝐿𝑝0(𝜇) + 𝐿𝑝1(𝜇) → 𝐿𝑞0(𝜈) + 𝐿𝑞1(𝜈)同同同时时时是是是强强强(𝑝0, 𝑞0)和和和强强强(𝑝1, 𝑞1)型型型的的的，即满足

‖𝑇𝑓‖𝐿𝑞𝑖 ⩽ 𝑀𝑖‖𝑓‖𝐿𝑝𝑖 𝑖 = 0, 1,

则

‖𝑇𝑓‖𝐿𝑞𝜃 ⩽ 𝑀𝜃‖𝑓‖𝐿𝑝𝜃 , 𝑀𝜃 ∶= 𝑀1−𝜃
0 𝑀𝜃

1 .

若𝑞0 = 𝑞1 = ∞,则还要求 𝜈 是半有限测度。
该定理的证明主要依赖三线引理和复分析中的最大模原理，此处略去，证明细节参见 Folland

[8,定理 6.27].
Riesz-Thorin内插定理的一个应用是证明Fourier变换的强(𝑝, 𝑝′)有界性(1 ⩽ 𝑝 ⩽ 2), 其结论称

作 Hausdorff-Young不等式 (定理 D.1.10). 另一个重要应用则是卷积的Young不等式。

定理 C.3.6 (卷积Young不等式). 设 1 ⩽ 𝑝, 𝑞, 𝑟 ⩽ ∞ 满足 1 + 1
𝑞
= 1

𝑝
+ 1

𝑟
. 设 𝑓 ∈ 𝐿𝑝, 𝑔 ∈ 𝐿𝑟，则有

𝑓 ∗ 𝑔 ∈ 𝐿𝑞 以及
‖𝑓 ∗ 𝑔‖𝐿𝑞 ⩽ ‖𝑓‖𝐿𝑝‖𝑔‖𝐿𝑟 .

证明. 固定𝑔 ∈ 𝐿𝑟并定义𝑇𝑓 ∶= 𝑓 ∗ 𝑔. 则由积分Minkowski不等式(定理 C.1.6),我们得到‖𝑇𝑓‖𝐿𝑟 ⩽
𝑀‖𝑓‖𝐿1 . 又由Hölder不等式可得‖𝑇𝑓‖𝐿∞ ⩽ 𝑀‖𝑓‖𝐿𝑟′ . 于是，据Riesz-Thorin内插定理，取 (𝑝0, 𝑞0) =
(1, 𝑟), (𝑝1, 𝑞1) = (𝑟′,∞),计算所得即为最终结论。

习题 C.3

习题 C.3.1. 证明Hardy-Littlewood极大算子不是强(1,1)型的。
提示：若𝑓 ≢ 0，则存在𝑅 > 0使得∫𝐵(𝟎,𝑅) |𝑓| ≥ 𝜀 > 0. 然后证明𝑀𝑓(𝒙) ≥ 𝐶𝜀|𝒙|−𝑑对|𝑥| > 𝑅成

立，这只需注意到𝐵(𝟎, 𝑅) ⊂ 𝐵(𝒙, 2|𝒙|).)
习题 C.3.2. 设𝐵是ℝ𝑑的有界可测子集，证明： ∫𝐵𝑀𝑓 ⩽ 2|𝐵| + 𝐶 ∫ℝ𝑑 |𝑓| log+ |𝑓|. 其中 log+ 𝑡 ∶=
max(log 𝑡, 0).
习题 C.3.3. 设{𝜂𝜀}是一族逼近恒等，证明：sup

𝜀>0
|(𝜂𝜀 ∗ 𝑓)(𝒙)| ⩽ ‖𝜂‖𝐿1𝑀𝑓(𝒙).
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D.1 Fourier变换

给定 𝑓 ∈ 𝐿1(ℝ𝑑)，定义𝑓的Fourier变换为如下复值函数

𝑓(𝝃 ) ∶= 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝑒−𝑖𝒙⋅𝜉 d𝒙, (D.1.1)

其中 𝑖 =
√
−1, 𝑒𝑖𝜃 ∶= cos 𝜃 + 𝑖 sin 𝜃, 𝒙 ⋅ 𝝃 = 𝑥1𝜉1 +⋯+ 𝑥𝑑𝜉𝑑. 𝝃 = (𝜉1,⋯ , 𝜉𝑑)被称作“频率变量”.

我们同样可以定义𝑓 ∈ 𝐿1(ℝ𝑑)的Fourier逆变换

𝑓(𝒙) ∶= 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝝃 )𝑒𝑖𝒙⋅𝝃 d𝝃 . (D.1.2)

Fourier变换及其逆变换（作为算子）一般分别被记作ℱ 和 ℱ−1.
为什么我们能把 (D.1.2)称作Fourier“逆”变换呢？这是因为我们有如下反演公式。

命题 D.1.1 (Fourier反演公式). 设𝑓, 𝑓 ∈ 𝐿1(ℝ𝑑), 则存在𝑓0 ∈ 𝐶0(ℝ𝑑) (连续函数，且在无穷远处趋
于零)使得 𝑓 = 𝑓0 a.e. 以及 𝑓0 = (𝑓)∨ = (𝑓)∧.

该性质的证明依赖于Riemann-Lebesgue引理和Gauss核的恒等逼近（类似于前一节的卷积光滑
逼近，只是紧支光滑函数𝜂换成标准正态分布的密度函数），这里暂时跳过且证明不作要求。
从定义 (D.1.1)看出，𝑓 ∈ 𝐿1 未必蕴含了 𝑓 ∈ 𝐿1. 人们因此想找到一个更好的函数类，不妨记

为𝑋，使得Fourier变换把 𝑋 里面的元素映射到 𝑋 里面的元素，而且Fourier变换在𝑋上可逆。这样
的函数空间是存在的，其中一个例子为 Schwartz函数空间，其定义如下：

𝒮(ℝ𝑑) ∶= {𝑢 ∈ 𝐶∞(ℝ𝑑) ∶ ‖𝑢‖(𝑁,𝛼) < ∞ ∀𝑁 ∈ ℕ和多重指标 𝛼}. (D.1.3)

这里的‖𝑢‖(𝑁,𝛼)是半范数，定义为

‖𝑢‖(𝑁,𝛼) ∶= sup
𝒙∈ℝ𝑑

(1 + |𝒙|)𝑁|𝜕𝛼𝑢(𝒙)|.

据此，(𝒮(ℝ𝑑), ‖ ⋅ ‖(𝑁,𝛼))是Fréchet空间。
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粗略地说，Schwartz函数是光滑函数，并且它和它的导数在无穷远处的衰减速率比任意阶多
项式衰减都快，比如正态分布高斯核里面的 𝑒−|𝒙|2 就是一个Schwartz函数。

命题 D.1.2 (Folland [8, Prop. 8.3 and 8.17]). 对Schwartz函数空间，成立如下结论：

1. 若𝑓 ∈ 𝐶∞,则 𝑓 ∈ 𝒮当且仅当 𝒙𝛽𝜕𝛼𝑓 对任意多重指标 𝛼, 𝛽 都是有界的,当且仅当 𝜕𝛼(𝒙𝛽𝑓)对
任意多重指标 𝛼, 𝛽 都是有界的。这里𝒙𝛽 ∶= 𝑥𝛽11 ⋯𝑥𝛽𝑑𝑑 .

2. 𝐶∞
𝑐 和 𝒮都在 𝐿𝑝 (1 ⩽ 𝑝 < ∞)和 𝐶0 中稠密。

如上定义很难看出Fourier变换和偏微分方程有什么关系。然而，接下来我们证明Fourier变换
能把导数和乘子互相转化（对应把常系数线性偏微分方程和常微分方程互相转化），把卷积和乘

积相互转化（从而用Fourier变换求得的解往往具有卷积形式）。下面的各个性质中对函数𝑓, 𝑔有不
同的要求，但是为了行文上的简便，我们在证明这些结论时假设所有函数都是Schwartz函数，一
般情况基本可以用𝒮在𝐿𝑝空间中的稠密性证得。

命题 D.1.3. 设 𝑓, 𝑔 ∈ 𝐿1(ℝ𝑑)，则有

1. (导数 ↔ 乘子) 若 𝑓 ∈ 𝐶𝑘, 𝜕𝛼𝑓 ∈ 𝐿1 对任意 |𝛼| ⩽ 𝑘 成立，且 𝜕𝛼𝑓 ∈ 𝐶0 对任意 |𝛼| ⩽ 𝑘 − 1
成立,那么有 (̂𝜕𝛼𝒙𝑓)(𝝃 ) = (𝑖𝝃 )𝛼𝑓(𝝃 ). 类似地, 若 𝒙𝛼𝑓 ∈ 𝐿1 对任意 |𝛼| ⩽ 𝑘 成立,则 𝑓 ∈ 𝐶𝑘 且

((−𝑖𝒙)𝛼𝑓(𝒙))∧(𝝃 ) = 𝜕𝛼𝝃 𝑓(𝝃 ).

2. 若 𝑇 是 ℝ𝑑 上的可逆线性变换，且 𝑆 = (𝑇∗)−1 是𝑇的转置的逆,则 𝑓◦𝑇 = | det 𝑇|−1𝑓◦𝑆. 特别
地，我们有

• (平移) (𝑓(𝒙 − 𝐡))∧(𝜉) = 𝑒−𝑖𝐡⋅𝜉𝑓(𝝃 )对任意 𝐡 ∈ ℝ𝑑 成立.

• (伸缩) (𝑓(𝜆𝒙))∧(𝝃 ) = |𝜆|−𝑑𝑓(𝝃∕𝜆)对任意 𝜆 ∈ ℝ成立.

• (对称性)若 𝑓, 𝑓 ∈ 𝐿1,则 𝑓(𝝃 ) = 𝑓(−𝝃). 进而有 ℱ4 =Id.

3. (卷积 ↔ 乘积) 𝑓 ∗ 𝑔(𝝃 ) = (
√
2𝜋)𝑑𝑓(𝝃 )𝑔̂(𝝃 ). 这里 (𝑓 ∗ 𝑔)(𝒙) = ∫ℝ𝑑 𝑓(𝒙 − 𝒚)𝑔(𝒚) d𝒚 =

∫ℝ𝑑 𝑓(𝒚)𝑔(𝒙 − 𝒚) d𝒚 表示 𝑓, 𝑔 的卷积. 卷积定义中的积分式收敛一般只需要𝑓, 𝑔有一个是𝐿1

的，另一个是𝐿∞的.

4. (Riemann-Lebesgue引理)对任意 𝑓 ∈ 𝐿1(ℝ𝑑), 𝑓 ∈ 𝐶(ℝ𝑑)且满足 |𝑓(𝝃 )| → 0 as |𝝃 | → ∞.

证明. (1): 为了简便，我们只对一阶偏导数 𝜕𝛼 = 𝜕𝑗 证明，其中 𝑗 ∈ {1,⋯ , 𝑑}, 一般情况可以反复
利用一阶导数的结果得到. 据Fourier变换的定义和分部积分可得

(̂𝜕𝑥𝑗𝑓)(𝜉) =
1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝜕𝑥𝑗𝑓(𝒙)𝑒−𝑖𝒙⋅𝝃 d𝒙

𝜕𝑗= − 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝜕𝑥𝑗(𝑒−𝑖𝒙⋅𝝃 ) d𝒙 = (𝑖𝜉𝑗)

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝑒−𝑖𝒙⋅𝝃 d𝒙.
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(1)中第二个恒等式可以类似证得

(−𝑖𝑥𝑗𝑓(𝒙))∧(𝝃 ) =
1

(2𝜋)
𝑑
2

∫
ℝ𝑑
(−𝑖𝑥𝑗)𝑓(𝒙)𝑒−𝑖𝒙⋅𝝃 d𝒙 =

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝜕𝜉𝑗(𝑒−𝑖𝒙⋅𝝃 ) d𝒙 = 𝜕𝜉𝑗𝑓(𝝃 ).

(2): 利用Fourier变换的定义和变量替换 𝒚 = 𝑇𝒙,我们有

𝑓◦𝑇(𝝃 ) = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝑇𝒙)𝑒−𝑖𝝃 ⋅𝒙 d𝒙 = | det 𝑇|−1 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝑒−𝑖𝝃 ⋅𝑇−1𝒙 d𝒙

= | det 𝑇|−1 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝑒−𝑖(𝑆𝝃 )⋅𝒙 d𝒙 = | det 𝑇|−1𝑓(𝑆𝝃).

(3): 不妨假设 𝑓, 𝑔 ∈ 𝒮(ℝ𝑑),于是下面证明过程中的积分式全是收敛的，且可以直接换序。一
般情况可由命题 D.1.2的逼近性质给出.

𝑓 ∗ 𝑔(𝝃 ) = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
(∫

ℝ𝑑
𝑓(𝒙 − 𝒚)𝑔(𝒚) d𝒚)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
(𝑓∗𝑔)(𝒙)

𝑒−𝑖𝒙⋅𝝃 d𝒙

= 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
(∫

ℝ𝑑
𝑓(𝒙 − 𝒚)𝑔(𝒚) d𝒚) 𝑒−𝑖(𝒙−𝒚)𝝃𝑒−𝑖𝒚⋅𝝃 d𝒙

= (
√
2𝜋)𝑑 ⋅ 1

(2𝜋)
𝑑
2

∫
ℝ𝑑

⎛
⎜
⎝

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙 − 𝒚)𝑒−𝑖(𝒙−𝒚)⋅𝝃 d𝒙

⎞
⎟
⎠⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑓(𝝃 )

𝑔(𝒚)𝑒−𝑖𝒚⋅𝝃 d𝒚

= (
√
2𝜋)𝑑𝑓(𝝃 )𝑔̂(𝝃 ).

(4): 再次回忆Fourier变换的定义: 𝑓(𝝃 ) = 1

(2𝜋)
𝑑
2
∫ℝ𝑑 𝑓(𝒙)𝑒−𝑖𝒙⋅𝝃 d𝒙. 若𝑓 ∈ 𝐿1(ℝ𝑑)，则可以通过如

下计算证得连续性：

|𝑓(𝝃 − 𝐡) − 𝑓(𝝃 )| =
||||||||||

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓(𝒙)𝑒−𝑖𝒙⋅𝝃 (𝑒−𝑖𝒙⋅𝐡 − 1) d𝒙

||||||||||
⩽ 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
|𝑓(𝒙)||𝑒−𝑖𝒙⋅𝐡 − 1| d𝒙.

由于 |𝑒−𝑖𝒙⋅𝐡 − 1| ⩽ 2以及 𝑓 ∈ 𝐿1(ℝ𝑑),那么对任意𝒙 ∈ ℝ𝑑,上式最后一个积分里面的被积函数可被
2|𝑓| ∈ 𝐿1(ℝ𝑑) (不依赖𝐡)逐点控制。据控制收敛定理，我们可以交换lim

𝐡→𝟎
和 ∫ℝ𝑑 的顺序从而证得该

积分式收敛到零。

下面证明Lebesgue可积函数的Fourier变换在频率空间无穷远处收敛到零。这个证明有一个小
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技巧：在相函数中作变量替换 𝒙 = 𝒚 + 𝜋𝝃
|𝝃 |2
，把𝑓(𝝃 )用 𝒚变量重写，得到

𝑓(𝝃 ) = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓 (𝒚 +

𝜋𝝃
|𝝃 |2

) 𝑒−𝑖(𝒚+
𝜋𝝃
|𝝃 |2

)⋅𝝃 d𝒚 𝑒−𝑖𝜋=−1=== − 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑓 (𝒚 +

𝜋𝝃
|𝝃 |2

) 𝑒−𝑖𝒚⋅𝝃 d𝒚.

两式相加得到

2𝑓(𝝃 ) = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
(𝑓(𝒙) − 𝑓 (𝒙 +

𝜋𝝃
|𝝃 |2

)) 𝑒−𝑖𝒙⋅𝝃 d𝒙,

从而

|𝑓(𝝃 )| ⩽ 1
2

1

(2𝜋)
𝑑
2

∫
ℝ𝑑

|||||||||
𝑓(𝒙) − 𝑓 (𝒙 +

𝜋𝝃
|𝝃 |2

)
|||||||||
d𝒙 → 0 as 𝝃 → ∞.

最后一步取极限用到了𝐿1范数的平移连续性，即对任意𝑓 ∈ 𝐿1(ℝ𝑑)有lim
𝐡→𝟎

∫ℝ𝑑 |𝑓(𝒙+𝐡)−𝑓(𝒙)| d𝒙 =
0，而这里𝜋𝝃∕|𝝃 |2 → 0就充当了𝐡的角色。

显见，命题D.1.3(1)蕴含如下结果

推论 D.1.4 ([8,推论 8.23]). ℱ 和 ℱ−1 都将 𝒮连续地映射到 𝒮自身。

下一个引理表明：Fourier变换保持 𝐿2 内积.

引理 D.1.5. 若𝑓, 𝑔 ∈ 𝐿1,则 ∫ℝ𝑑 𝑓(𝒙)𝑔(𝒙) d𝒙 = ∫ℝ𝑑 𝑓(𝝃 )𝑔̂(𝝃 ) d𝝃 .

证明. 由Fubini定理，直接代入定义计算可得

∫
ℝ𝑑
𝑓(𝒙)𝑔(𝒙) d𝒙 = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
(∫

ℝ𝑑
𝑓(𝒚)𝑒−𝑖𝒙⋅𝒚 d𝒚) 𝑔(𝒙) d𝒙

Fubini定理=== ∫
ℝ𝑑
𝑓(𝒚)

⎛
⎜
⎝

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒−𝑖𝒙⋅𝒚𝑔(𝒙)

⎞
⎟
⎠
d𝒚 = ∫

ℝ𝑑
𝑓(𝒚)𝑔̂(𝒚) d𝒚.

下面来证明定理 D.1.1，即Fourier反演公式。在此之前我们需要一个计算性质的引理。

引理 D.1.6. 令 Φ(𝒙) = 𝑒−
|𝒙|2

2 ,则有 Φ̂(𝝃 ) = Φ(𝝃 ).

证明. 首先我们考虑一维的情况，据Φ̂的定义可得

Φ̂(𝜉) = 1
√
2𝜋

∫
ℝ
𝑒−𝑖𝑥𝜉𝑒−

𝑥2

2 d𝑥 = 1
√
2𝜋

∫
ℝ

d
d𝑥 (

1
−𝑖𝜉

𝑒−𝑖𝑥𝜉) 𝑒−
𝑥2

2 d𝑥.
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分部积分一次，得到

Φ̂(𝜉) = − 1
√
2𝜋

∫
ℝ

1
𝑖𝜉
𝑒−𝑖𝑥𝜉(𝑥𝑒−

𝑥2

2 ) d𝑥 = −1
𝜉

1
√
2𝜋

∫
ℝ
𝑒−𝑖𝑥𝜉 (−𝑖𝑥Φ(𝑥)) d𝑥.

据命题D.1.3 (1)知，上式右边等于 −𝜉−1 d
d𝜉
Φ̂(𝜉). 这样我们就得到一个可以求解Φ̂的常微分方程

d
d𝜉
Φ̂ + 𝜉Φ̂(𝜉) = 0, Φ̂(0) = 1

√
2𝜋

∫
ℝ
Φ(𝑥) d𝑥 = 1,

它的解算出来是 Φ̂(𝜉) = 𝑒−
𝜉2

2 = Φ(𝜉)，这里Φ̂(0)值的计算留给读者自己算。
对一般维数 𝑑 > 1,我们利用 |𝒙|2 = 𝑥21 +⋯+ 𝑥2𝑑 和一维的结果得到

Φ̂(𝝃 ) =
𝑑∏

𝑗=1

1
√
2𝜋

∫
ℝ1
𝑒−

𝑥2𝑗
2 𝑒−𝑖𝑥𝑗𝜉𝑗 d𝑥𝑗 =

𝑑∏

𝑗=1
𝑒−

𝜉2𝑗
2 = Φ(𝝃).

定理D.1.1的证明. 令 Φ(𝒙) = 𝑒−
|𝒙|2

2 . 给定 𝑡 > 0,我们考虑对 (𝑓)∨ 作卷积光滑逼近：

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒−𝑡|𝝃 |2𝑒𝑖𝝃 ⋅𝒙𝑓(𝝃 ) d𝝃 = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
Φ(
√
2𝑡𝝃 )𝑒𝑖𝝃 ⋅𝒙𝑓(𝝃 ) d𝝃 .

接下来化简左边，据命题 D.1.3和引理 D.1.6,函数 𝜑(𝝃 ) ∶= 𝑒𝑖𝝃 ⋅𝒙𝑒−𝑡|𝝃 |2 的Fourier变换可以写成

𝜑̂(𝒚) = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒𝑖𝝃 ⋅(𝒙−𝒚)Φ(

√
2𝑡𝝃 ) d𝝃 = 1

(
√
2𝑡)𝑑

Φ(𝒙 − 𝒚
√
2𝑡

).

现在，可以使用引理 D.1.5得到如下的卷积形式

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒−𝑡|𝝃 |2𝑒𝑖𝝃 ⋅𝒙𝑓(𝝃 ) d𝝃 = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝜑(𝝃 )𝑓(𝝃 ) d𝝃

= 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝜑̂(𝒚)𝑓(𝒚) d𝒚 = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑

1
(
√
2𝑡)𝑑

Φ(𝒙 − 𝒚
√
2𝑡

)𝑓(𝒚) d𝒚

= (𝜂√2𝑡 ∗ 𝑓)(𝒙),

这里 𝜂(⋅) ∶= 1

(2𝜋)
𝑑
2
Φ(⋅) ∈ 𝒮, 𝜂𝜀(⋅) ∶=

1
𝜀𝑑
𝜂( ⋅

𝜀
). 而习题 2.1.1 表明 ∫ℝ𝑑 𝜂 = 1，从而𝜂√2𝑡是一族恒等逼

近。

现在我们用定理 C.2.1(4)的类似版本 (见 Folland [8,引理 8.25])可以证得 𝑓 ∗ 𝜂√2𝑡
𝐿1
,,→ 𝑓 in 𝐿1,
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进而存在子序列几乎处处收敛到𝑓. 另一方面，因为 𝑓 ∈ 𝐿1,所以我们用控制收敛定理就可得到想
要的极限

lim
𝑡→0

1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒−𝑡|𝝃 |2𝑒𝑖𝝃 ⋅𝒙𝑓(𝝃 ) d𝝃 = 1

(2𝜋)
𝑑
2

∫
ℝ𝑑
𝑒𝑖𝝃 ⋅𝒙𝑓(𝝃 ) d𝝃 = (𝑓)∨(𝒙).

这就说明 𝑓 = (𝑓)∨ a.e. 最后，Riemann-Lebesgue引理表明二者都是𝐶0函数，证毕。

推论 D.1.7 ([8,推论 8.27]). 若𝑓 ∈ 𝐿1 且 𝑓 = 0,则 𝑓 = 0 a.e.

推论 D.1.8 ([8,推论 8.28]). ℱ 是 𝒮上的自同胚。
我们最后以Plancherel定理结束这一小节，它表明Fourier变换是𝐿2-等距同构。

定理 D.1.9 (Plancherel定理). 若𝑓 ∈ 𝐿1 ∩ 𝐿2,则 𝑓 ∈ 𝐿2;且 ℱ|𝐿1∩𝐿2 可以唯一地延拓为𝐿2上的酉等距
同构。

证明. 令𝔛 ∶= {𝑓 ∈ 𝐿1|𝑓 ∈ 𝐿1}. 由于 𝑓 ∈ 𝐿1蕴含 𝑓 ∈ 𝐿∞,于是我们知道 𝔛 ⊂ 𝐿2. 又因为 𝒮 ⊂ 𝔛,所
以 𝔛在𝐿2中是稠密的.现给定 𝑓, 𝑔 ∈ 𝔛, 令 ℎ = ̄̂𝑔. 则由Fourier反演公式知 ℎ̂(𝝃 ) = 𝑔(𝝃 )，再用引理
D.1.5就可得到

∫
ℝ𝑑
𝑓𝑔̄ = ∫

ℝ𝑑
𝑓ℎ̂ = ∫

ℝ𝑑
𝑓ℎ = ∫ 𝑓 ̄̂𝑔.

因此,ℱ|𝔛保持了 𝐿2内积。特别地，令𝑔 = 𝑓就得到ℱ是𝐿2酉等距的，即‖𝑓‖𝐿2 = ‖𝑓‖𝐿2 (Plancherel恒
等式). 反演公式表明 ℱ(𝔛) = 𝔛，由B.L.T.定理（有界线性泛函的连续延拓定理）得知ℱ|𝔛 可以
唯一地延拓为 𝐿2 上的酉等距同构.最后，我们只要证明这个延拓之后的算子与 ℱ 在 𝔛是一样的，
这一步与定理 D.1.1的证明类似，此处不再赘述。

现在，我们对1 ⩽ 𝑝 ⩽ 2证明Fourier变换具有𝐿𝑝 → 𝐿𝑝′有界性。
定理D.1.10 (Hausdorff-Young不等式). 设1 ⩽ 𝑝 ⩽ 2, 𝑓 ∈ 𝐿𝑝(ℝ𝑑),则存在仅依赖𝑝, 𝑑的常数𝐶 > 0使
得‖𝑓‖𝐿𝑝′ (ℝ𝑑) ⩽ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑑).

该不等式是Riesz-Thorin内插定理的直接结论：在定理 C.3.5中取 𝑝0 = 𝑞0 = 2, 𝑀0 = 1 和
𝑝1 = 1, 𝑞1 = ∞, 𝑀1 = (2𝜋)−𝑑∕2 即得结论。

习题 D.1

习题 D.1.1. 设𝜑 ∶ ℝ𝑑 → ℂ是可测函数，满足|𝜑| = 1以及𝜑(𝒙 + 𝒚) = 𝜑(𝒙)𝜑(𝒚)对任意𝒙, 𝒚 ∈ ℝ𝑑成

立。证明：存在𝝃 ∈ ℝ𝑑使得𝜑(𝒙) = 𝑒𝑖𝒙⋅𝝃 .
习题D.1.2 (*海森堡不确定性原理). 给定点𝒙0, 𝝃 0 ∈ ℝ𝑑 以及函数 𝑓 ∈ 𝒮(ℝ𝑑),证明如下海森堡不确
定性原理：

(∫
ℝ𝑑
|(𝒙 − 𝒙0)𝑓(𝒙)|2 d𝒙)(∫

ℝ𝑑
|(𝝃 − 𝝃 0)𝑓(𝝃 )|2 d𝝃) ⩾

𝑑2
4 (∫

ℝ𝑑
|𝑓(𝒙)|2 d𝒙)

2

. (D.1.4)
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这个不等式表明动量和位置不可能同时在给定的动量𝝃 0和给定的位置𝜉0附近被确定。
提示：只需证明𝝃 0 = 𝒙0 = 0的情况即可，否则考虑𝑔(𝒙) = 𝑓(𝒙+𝒙0)𝑒−𝑖𝒙⋅𝝃 0并利用命题D.1.3(2)约

化到这一特殊情况。利用Plancherel恒等式可得 |𝝃𝑓(𝝃 )|2 = |∇̂𝑓(𝝃 )|2，之后再用Plancherel恒等式和
Cauchy-Schwarz不等式证明左边⩾ (∫ℝ𝑑 |(𝒙 ⋅ ∇𝑓)𝑓| d𝒙)2, 最后用(∇𝑓)𝑓 = 1

2
∇(𝑓2), 然后分部积分一

次。

习题 D.1.3. 证明：不等式

‖{𝑎𝑛}‖𝐿𝑞 ⩽ 𝐴‖𝑓‖𝐿𝑝 , for all 𝑓 ∈ 𝐿𝑝

只可能在1∕𝑝 + 1∕𝑞 ⩽ 1的情况下成立，其中𝑎𝑛 =
1
2𝜋
∫2𝜋0 𝑓(𝜃)𝑒−𝑖𝑛𝜃 d𝜃是𝑓的Fourier系数。

提示：令𝐷𝑁(𝜃) =
∑

|𝑛|⩽𝑁 𝑒
𝑖𝑛𝜃 是Dirichlet核，则𝑁 → ∞时，我们有‖𝐷𝑁‖𝐿𝑝 ≈ 𝑁1−1∕𝑝对𝑝 > 1成

立，以及 ‖𝐷𝑁‖𝐿1 ≈ log𝑁.

习题 D.1.4. 如下是Hasudorff-Young不等式的简单推广

(1) 设 {𝜑𝑛}是𝐿2(𝑋, 𝜇)中的标准序列，并假设sup
𝑛
|𝜑𝑛(𝑥)| ⩽ 𝑀. 记 𝑎𝑛 = ∫ 𝑓𝜑𝑛 d𝜇，证明：‖𝑎𝑛‖𝐿𝑞 ⩽

𝑀(2∕𝑝)−1‖𝑓‖𝐿𝑝(𝑋), 1 ⩽ 𝑝 ⩽ 2, 1∕𝑝 + 1∕𝑞 = 1.

(2) 设𝑓 ∈ 𝐿𝑝(𝕋𝑑), 𝑎𝑛 = (2𝜋)−
𝑑
2 ∫𝕋𝑑 𝑓(𝒙)𝑒−𝑖𝐧⋅𝒙 d𝒙, 𝐧 ∈ ℤ𝑑. 证明：‖ {𝑎𝑛} ‖𝐿𝑞(ℤ𝑑) ⩽ ‖𝑓‖𝐿𝑝(𝕋𝑑), 其

中1∕𝑞 ⩽ 1 − 1∕𝑝.

习题 D.1.5. 证明：存在常数𝐴 > 0使得对任意简单函数𝑓成立不等式‖𝑓‖𝐿𝑞(ℝ𝑑) ⩽ 𝐴‖𝑓‖𝐿𝑝(ℝ𝑑)，当且

仅当1∕𝑝 + 1∕𝑞 = 1.
提示：设 𝑓𝑟(𝒙) = 𝑓(𝑟𝒙), 𝑟 > 0，则 𝑓𝑟(𝝃 ) = 𝑓(𝝃∕𝑟)𝑟−𝑑.

习题 D.1.6. 证明：上一题的不等式成立的另一必要条件是 𝑝 ⩽ 2. 事实上，不等式

∫
|𝝃 |⩽1

|𝑓(𝝃 )| d𝝃 ⩽ 𝐴‖𝑓‖𝐿𝑝

成立蕴含了 𝑝 ⩽ 2.
提示：设 𝑓𝑠(𝒙) = 𝑠−𝑑∕2𝑒−|𝒙|2∕𝑠, 𝑠 = 𝜎 + 𝑖𝑡, 𝜎 > 0，然后令𝑠 = 1∕2, 𝑡 → ∞.

D.2 分布理论简介

分布（又称“广义函数”）理论的基本思想是：处理作用于“好”函数空间的线性泛函通常

比直接处理“坏”函数要容易得多；。我们所考虑的“好”函数集合在常见的基本运算下是封闭

的（比如分部积分、求导、乘以一个光滑函数、作卷积等），并且这些运算通过对偶性推广到分

布。这种精妙的思想经常被用在偏微分方程的理论构建中。

本章附录只讲述ℝ𝑑上的分布理论的基本知识，这是因为我们的目的仅是讨论何时可以在分布

意义下定义Fourier变换。首先我们回忆已经学过包含关系𝐶∞
𝑐 (ℝ𝑑) ⊂ 𝒮(ℝ𝑑) ⊂ 𝐶∞(ℝ𝑑)，以及他们
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作为Fréchet空间可以定义如下方式的收敛

• 𝑓𝑛
𝐶∞𝑐,,→ 𝑓 是指 𝑓𝑛, 𝑓 ∈ 𝐶∞

𝑐 有公共支集 𝐾 且 lim
𝑛→∞

‖𝜕𝛼(𝑓𝑛 − 𝑓)‖𝐿∞ = 0 对全体多重指标𝛼皆成
立。

• 𝑓𝑛
𝒮
,→ 𝑓 是指 𝑓𝑛, 𝑓 ∈ 𝒮 且 lim

𝑛→∞
sup
𝒙∈ℝ𝑑

(1 + |𝒙|)𝑁|𝜕𝛼(𝑓𝑛 − 𝑓)| = 0 对全体多重指标𝛼和非负整

数𝑁 ∈ ℕ皆成立。
• 𝑓𝑛

𝐶∞
,,→ 𝑓 是指 𝑓𝑛, 𝑓 ∈ 𝐶∞ 且 lim

𝑛→∞
sup
|𝒙|⩽𝑁

|𝜕𝛼(𝑓𝑛 − 𝑓)| = 0对全体多重指标𝛼和正整数𝑁 ∈ ℕ∗皆

成立。

本章剩余部分，我们记𝒟 ∶= 𝐶∞
𝑐 并称之为测试函数，同时还引进记号ℰ ∶= 𝐶∞. 现在我们定义他

们的对偶空间

𝒟′(ℝ𝑑) ∶= (𝐶∞
𝑐 (ℝ𝑑))∗, 𝒮′(ℝ𝑑) ∶= (𝒮(ℝ𝑑))∗, ℰ′(ℝ𝑑) ∶= (𝐶∞(ℝ𝑑))∗.

则可以根据定义验证他们有如下包含关系

ℰ′ ⊂ 𝒮′ ⊂ 𝒟′.

对偶空间𝒟′, 𝒮′, ℰ′都被赋予弱-*拓扑，因为它们分别是 𝒟 ∶= 𝐶∞
𝑐 , 𝒮和 𝐶∞的对偶空间，即

• 𝑇𝑛
𝒟′

,,→ 𝑇 是指 𝑇𝑛, 𝑇 ∈ 𝒟′ 且 ⟨𝑇𝑛, 𝑓⟩ → ⟨𝑇, 𝑓⟩对任意𝑓 ∈ 𝒟成立。

• 𝑇𝑛
𝒮′
,→ 𝑇 是指 𝑇𝑛, 𝑇 ∈ 𝒮′ 且 ⟨𝑇𝑛, 𝑓⟩ → ⟨𝑇, 𝑓⟩对任意𝑓 ∈ 𝒮′成立。

• 𝑇𝑛
ℰ′
,,→ 𝑇 是指 𝑇𝑛, 𝑇 ∈ ℰ′ 且 ⟨𝑇𝑛, 𝑓⟩ → ⟨𝑇, 𝑓⟩对任意𝑓 ∈ ℰ成立。

这里的⟨⋅, ⋅⟩是指对偶空间𝑋∗(即𝑋上的连续线性泛函)与𝑋中元素的配对。

定义D.2.1. 空间𝒟′, 𝒮′, ℰ′中的元素分别称作分分分布布布(distribution)或或或广广广义义义函函函数数数(generalized function)、
缓缓缓增增增分分分布布布(tempered distribution)、紧紧紧支支支分分分布布布(compactly supported distribution).

例 D.2.1. 这里我们给出一些常见的例子。

• 𝐿1loc函数都是分布。（事实上，“局部可积”某种程度上可以视作一个分布能视作一个函数的

“最低要求”）

• 设𝑈 ⊂ ℝ𝑑是开集，𝑈上的任何符号Radon测度都是分布，即在𝑈的任意紧子集上取值都有限
的符号Borel测度。我们可以定义对应的分布𝐹 ∈ 𝒟′为⟨𝐹, 𝜑⟩ = ∫Ω 𝜑(𝒙) d𝜇(𝒙).特别地，若𝜇是
总质量为1且仅仅支于原点的测度，则它实际上定义了原原原点点点处处处的的的Dirac delta𝛿0, 即⟨𝛿, 𝜑⟩ =
𝜑(𝟎). 请注意，𝛿不是函数，它只属于ℰ′.

• 若函数𝑔满足：存在𝑘 > 0使得|𝑔(𝒙)| ⩽ 𝐶(1 + |𝒙|)𝑘对任意𝒙 ∈ ℝ𝑑成立，则称𝑔为慢慢慢增增增函函函数数数
(slowly increasing function). 事实上，慢增函数必是缓增分布。

• log |𝒙| ∈ 𝒮′.
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• 主值积分𝑃.𝑉.( 1
𝑥
)的如下截断属于ℰ′，即

⟨𝑢, 𝜑⟩ ∶= lim
𝜀→0

∫
𝜀⩽|𝑥|⩽1

𝜑(𝑥)
𝑥 d𝑥.

D.2.1 分布的基本运算

本节我们介绍如何定义分布的几类基本运算，也就是讨论在何种意义下我们可以“假装”分

布可以像正常的函数一样求导、分部积分、计算卷积和傅立叶变换等基本操作。

定义 D.2.2. 分布的求导、乘法（乘以光滑函数）、卷积定义如下。

• （分布导数）设𝑇𝑓 = 𝜕𝛼𝑓，定义在𝐶|𝛼|(ℝ𝑑)上。若𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑)，分部积分给出∫(𝜕𝛼𝑓)𝜑 =

(−1)|𝛼| ∫ 𝑓(𝜕𝛼𝜑)；由于𝜑具有紧支集，故无边界项。因此，我们可以对任意𝐹 ∈ 𝒟′(ℝ𝑑)通过
下式定义其导数𝜕𝛼𝐹 ∈ 𝒟′(ℝ𝑑)：

⟨𝜕𝛼𝐹, 𝜑⟩ = (−1)|𝛼|⟨𝐹, 𝜕𝛼𝜑⟩.

特别地，通过此方法我们可以定义任意局部可积函数的导数，即使它们在经典意义下不可

微；这是分布理论之所以强大的主要原因之一。我们将在下文更详细地讨论这一点。

• （乘以光滑函数）给定𝜓 ∈ 𝐶∞(ℝ𝑑)，定义𝑇𝑓 = 𝜓𝑓。则𝑇∗ = 𝑇|𝐶∞𝑐 (ℝ𝑑)，因此对于𝐹 ∈ 𝒟′(ℝ𝑑)，
我们可以通过下式定义乘积𝜓𝐹 ∈ 𝒟′(ℝ𝑑)：

⟨𝜓𝐹, 𝜑⟩ = ⟨𝐹, 𝜓𝜑⟩.

此外，若𝜓 ∈ 𝐶∞
𝑐 (ℝ𝑑)，此公式对任意𝜑 ∈ 𝐶∞

𝑐
(
ℝ𝑑)有意义，并将𝜓𝐹定义为ℝ𝑑上的分布。

• （平移）给定𝑦 ∈ ℝ𝑑，令𝑇 = 𝜏𝒚.（回顾我们定义了𝜏𝒚𝑓(𝒙) = 𝑓(𝒙 − 𝒚).）由于∫ 𝑓(𝒙 −
𝒚)𝜑(𝒙) d𝑥 = ∫ 𝑓(𝒙)𝜑(𝒙 + 𝒚) d𝒙，我们有𝑇∗ = 𝜏−𝒚|𝐶∞

𝑐 (ℝ𝑑)。于是，对于𝐹 ∈ 𝒟′(ℝ𝑑)，我们
通过下式定义平移分布𝜏𝒚𝐹 ∈ 𝒟′：

⟨𝜏𝒚𝐹, 𝜑⟩ = ⟨𝐹, 𝜏−𝒚𝜑⟩.

例如，位于𝒚的点质量是𝜏𝒚𝛿.
• （与线性映射的复合）给定ℝ𝑑的一个可逆线性变换𝑆，令𝑉 = 𝑆−1(ℝ𝑑)并令𝑇𝑓 = 𝑓◦𝑆。则𝑇∗𝜑 =
| det 𝑆|−1𝜑◦𝑆−1，因此对于𝐹 ∈ 𝒟′(ℝ𝑑)，我们通过下式定义𝐹◦𝑆 ∈ 𝒟′(𝑆−1(ℝ𝑑))：

⟨𝐹◦𝑆, 𝜑⟩ = | det 𝑆|−1⟨𝐹, 𝜑◦𝑆−1⟩.

特别地，对于𝑆𝒙 = −𝒙，我们有𝑓◦𝑆 = 𝑓，𝑆−1 = 𝑆，且| det 𝑆| = 1，因此我们通过⟨𝐹̃, 𝜑⟩ ∶=
⟨𝐹, 𝜑̃⟩定义分布关于原点的反射，其中𝜑̃(𝒙) ∶= 𝜑(−𝒙).
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• （卷积，第一种方法）给定𝜓 ∈ 𝐶∞
𝑐 和𝑓 ∈ 𝐿1loc (ℝ

𝑑)，积分

𝑓 ∗ 𝜓(𝒙) = ∫ 𝑓(𝒙 − 𝒚)𝜓(𝒚) d𝒚 = ∫ 𝑓(𝒚)𝜓(𝒙 − 𝒚) d𝒚 = ∫ 𝑓
(
𝜏𝒙𝜓

)

对一切𝒙 ∈ ℝ𝑑有定义。同样的定义适用于𝐹 ∈ 𝒟′(ℝ𝑑)：卷积𝐹 ∗ 𝜓是由下式定义的函数：

𝐹 ∗ 𝜓(𝒙) = ⟨𝐹, 𝜏𝒙𝜓⟩.

由于当𝒙 → 𝒙0时𝜏𝒙𝜓̃ → 𝜏𝒙0𝜓̃在𝐶
∞
𝑐 中成立，𝐹 ∗ 𝜓是一个连续函数（实际上是𝐶∞的）。例如，

对于任意𝜓 ∈ 𝐶∞
𝑐 ，我们有

𝛿 ∗ 𝜓(𝒙) = ⟨𝛿, 𝜏𝒙𝜓⟩ = 𝜏𝒙𝜓(𝟎) = 𝜓(𝒙).

因此𝛿是是是卷卷卷积积积的的的乘乘乘法法法单单单位位位元元元。
• （卷积，第二种方法）设𝜓, 𝜓如上定义。若𝑓 ∈ 𝐿1loc且𝜑 ∈ 𝐶∞

𝑐 ，我们有

∫(𝑓 ∗ 𝜓)𝜑 = ∬ 𝑓(𝒚)𝜓(𝒙 − 𝒚)𝜑(𝒚) d𝒚 d𝒙 = ∫ 𝑓(𝜑 ∗ 𝜓).

也就是说，若𝑇𝑓 = 𝑓 ∗ 𝜓，则𝑇将𝐿1loc映射到𝐿
1
loc中。因此对于𝐹 ∈ 𝒟′(ℝ𝑑)，我们可以通过下

式将𝐹 ∗ 𝜓定义为𝑉上的分布：
⟨𝐹 ∗ 𝜓, 𝜑⟩ = ⟨𝐹, 𝜑 ∗ 𝜓⟩.

同样地，我们有𝛿 ∗ 𝜓 = 𝜓，因为

⟨𝛿 ∗ 𝜓, 𝜑⟩ = ⟨𝛿, 𝜑 ∗ 𝜓⟩ = (𝜑 ∗ 𝜓)(𝟎) = ∫ 𝜑(𝒙)𝜓(𝒙) d𝒙 = ⟨𝜓, 𝜑⟩.

这两种定义是等价的，证明可参考 Stein [17, Prop. 3.1.1].

附录C.2中我们介绍了卷积光滑逼近的方法，实际上我们有{𝜂𝜀}在𝒟′中弱-*收敛到原点处的Dirac
delta分布𝛿0.
命题 D.2.1 ([8, Prop. 9.5]). 如下事实成立

(1) 𝒟在𝒟′中是稠密的（弱-*拓扑意义下）。
(2) 给定𝐹 ∈ 𝒟′以及附录C.2中定义的逼近恒等族{𝜂𝜀}，就有𝜂𝜀 ∗ 𝐹 ⇀ 𝐹在𝒟′中成立。

我们接下来讨论分布支撑（support）的概念。若𝑓是一个连续函数，其支撑集定义为满足𝑓(𝒙) ≠
0的点集的闭包。换一种说法，它是使得𝑓在其上消失的最大开集的补集。
定义D.2.3. 对于分布𝐹，若对任意测试函数𝜑 ∈ 𝒟，只要其支撑集包含在某个开集中就有⟨𝐹, 𝜑⟩ =
0，则称𝐹在该开集中消失。因此，我们定义分布𝐹的支撑集为使𝐹消失的最大开集的补集，并记
作Spt𝐹.
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注记D.2.1. 这个定义是无歧义的，因为若𝐹在一族开集{𝒪𝑖}𝑖 ∈ ℐ上均消失，则𝐹在其并集𝒪 = ⋃
𝑖∈ℐ
𝒪𝑖上

也消失。事实上，假设𝜑是一个测试函数，其支集包含在紧集𝐾 ⊂ 𝒪中。由于𝒪覆盖紧集𝐾，我们

可以选取一个有限子覆盖（在可能重新更改集合𝒪𝑖的下标后）记为𝐾 ⊂
𝑁⋃
𝑘=1

𝒪𝑘。对单位分解应用

正则化可得到光滑函数𝜂𝑘（1 ⩽ 𝑘 ⩽ 𝑁），满足0 ⩽ 𝜂𝑘 ⩽ 1，Spt (𝜂𝑘) ⊂ 𝒪𝑘，且当𝒙 ∈ 𝐾时
𝑁∑
𝑘=1

𝜂𝑘(𝒙) =

1。那么𝐹(𝜑) = 𝐹(
𝑁∑
𝑘=1

𝜑𝜂𝑘) =
𝑁∑
𝑘=1

𝐹(𝜑𝜂𝑘) = 0，因为𝐹在每个𝒪𝑘上消失。因此𝐹在𝒪上消失。

注意以下关于分布支集的简单事实：𝜕𝛼𝑥𝐹和𝜓 ⋅ 𝐹（其中𝜓 ∈ 𝐶∞）的支撑集包含在𝐹的支撑集
中；Dirac 𝛿函数（及其导数）的支集是原点；最后，当𝐹与𝜑的支集不相交时，总有𝐹(𝜑) = 0。

命题 D.2.2 ([8, Prop. 9.3]). 以下事实成立。

• 设𝐹是支集为𝐶1的分布，𝜓 ∈ 𝒟且支集为𝐶2。则𝐹 ∗ 𝜓的支集包含于 𝐶1 + 𝐶2 ∶= {𝒙 + 𝒚 ∶ 𝒙 ∈
𝐶1, 𝒚 ∈ 𝐶2}.

• 若𝐹1和𝐹2具有紧支集，则𝐹1 ∗ 𝐹2 = 𝐹2 ∗ 𝐹1。（因此有时当仅𝐹1具有紧支撑时，我们也用𝐹1 ∗
𝐹表示𝐹 ∗ 𝐹1。）对于Dirac delta-函数𝛿，有𝐹 ∗ 𝛿 = 𝛿 ∗ 𝐹 = 𝐹。

• 若𝐹1具有紧支集，则对任意多重指标𝛼有

𝜕𝛼𝒙(𝐹 ∗ 𝐹1) = (𝜕𝛼𝒙𝐹) ∗ 𝐹1 = 𝐹 ∗ (𝜕𝛼𝒙𝐹1).

• 若𝐹和𝐹1的支集分别为𝐶和𝐶1，且𝐶是紧集，则𝐹 ∗ 𝐹1的支集包含在𝐶 + 𝐶1中。

D.2.2 缓增分布及其Fourier变换

从Hausdorff-Young不等式(定理D.1.10)的结论来看，我们甚至无法将𝐿𝑝(ℝ𝑑) (𝑝 > 2)中函数𝑓的
Fourier 变换定义为一个普通函数。为了扩展Fourier变换的定义，我们必须寻找一类合适的分布，
使得ℱ在此类上仍是一个自同构。事实上，我们将选择𝒮′而非𝒟′来定义Fourier变换，因为测试函
数集𝒟不满足ℱ(𝒟) ⊆ 𝒟。

命题 D.2.3. 给定不恒为零的𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑)，则𝜑̂在任何非空开集上均不为零。

对于缓增分布，可以验证

命题 D.2.4. 设𝐹 ∈ 𝒮′。则存在𝑁 ∈ ℕ∗、多重指标𝛼及常数𝐶 > 0，使得对所有𝜑 ∈ 𝒮有⟨𝐹, 𝜑⟩ ⩽
𝐶‖𝜑‖(𝑁,𝛼)。因此，给定任意𝐹 ∈ 𝒮′，其分布导数也属于𝒮′，且对所有多重指标𝛼，𝒙𝛼𝐹也属于𝒮′.

接下来我们定义缓增分布的Fourier变换

定义 D.2.4. 设𝐹 ∈ 𝒮′。定义其Fourier变换𝐹̂为

⟨𝐹̂, 𝜑⟩ = ⟨𝐹, 𝜑̂⟩, ∀𝜑 ∈ 𝒮.
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类似地我们可以定义Fourier逆变换𝐹̌如下

⟨𝐹̌, 𝜑⟩ = ⟨𝐹, 𝜑̌⟩, ∀𝜑 ∈ 𝒮.

Fourier反演公式𝜑 = (𝜑)∨ = (𝜑∨)∧即可推广至𝒮′：

⟨(𝐹)∨, 𝜑⟩ = ⟨𝐹, 𝜑∨⟩ = ⟨𝐹, (𝜑∨)∧⟩ = ⟨𝐹, 𝜑⟩,

进而 (𝐹)∨ = 𝐹,同理还有(𝐹∨)∧ = 𝐹. 因此Fourier变换是𝒮′上的同构。
命题 D.2.5. Schwartz函数的Fourier变换的性质可以继承到缓增分布上。具体而言，对𝐹 ∈ 𝒮′如下
性质成立

• (̂𝜏𝒚𝐹) = 𝑒−𝑖𝝃 ⋅𝒚𝐹, 𝜏𝜼𝐹 = 𝑒𝑖𝜼⋅𝒙𝐹.
• 𝜕𝛼𝐹 = ((−𝑖𝒙)𝛼𝐹)∧, (𝜕𝛼𝐹)∧ = (𝑖𝝃 )𝛼𝐹.
• (𝐹◦𝑇)∧ = | det 𝑇|−1𝐹◦ (𝑇∗)−1 (𝑇 ∈ 𝐺𝐿(𝑑,ℝ)),
• (𝐹 ∗ 𝜓)∧ = (2𝜋)

𝑑
2𝜓𝐹 (𝜓 ∈ 𝒮).

特别地，任何紧支撑分布都是缓增的。此外，若𝐹 ∈ ℰ′，则存在另一种定义𝐹的方式。事实
上，⟨𝐹, 𝜑⟩对任何𝜑 ∈ 𝐶∞都有意义，且如果我们取𝜑(𝒙) = 𝑒−𝑖𝝃 ⋅𝒙，则得到一个关于𝝃的函数，它完
全有资格被称为函数𝐹(𝝃 )。实际上，这两种定义是等价的：

命题 D.2.6. 若𝐹 ∈ ℰ′，则𝐹是𝐶∞的慢增函数，且由𝐹(𝝃 ) = (2𝜋)−
𝑑
2 ⟨𝐹, 𝐸−𝝃 ⟩给出，其中𝐸𝝃 (𝒙) =

𝑒𝑖𝝃 ⋅𝒙。
据此我们断言：任何支于单点的分布必是该点处Dirac 𝛿-函数及其分布导数的有限线性组合。

定理 D.2.7. 设𝐹是支于原点的分布，则𝐹具有如下有限和的形式:

𝐹 =
∑

|𝛼|⩽𝑁
𝑎𝛼𝜕𝛼𝑥𝛿.

即，

⟨𝐹, 𝜑⟩ =
∑

|𝛼|⩽𝑁
(−1)|𝛼|𝑎𝛼 (𝜕𝛼𝑥𝜑) (0), for 𝜑 ∈ 𝒟.

证明依赖于以下断言：

断言. 设𝐹1是一个支于原点的分布，存在常数𝑀满足以下两个条件：

(1) |||⟨𝐹1, 𝜑⟩||| ⩽ 𝑐|𝜑|(𝑁,𝛼)，对所有𝜑 ∈ 𝒟，𝑁 + |𝛼| ⩽ 𝑀成立。
(2) ⟨𝐹1, 𝒙𝛼⟩ = 0，对所有|𝛼| ⩽ 𝑀成立。

则𝐹1 = 0.

断言的证明. 为证明该断言，取𝜂 ∈ 𝒟，满足当|𝒙| ⩾ 1时𝜂(𝒙) = 0，且当|𝒙| ⩽ 1∕2时𝜂(𝒙) =
1，并记𝜂𝜀(𝒙) = 𝜂(𝒙∕𝜀)。由于𝐹1支撑在原点，有⟨𝐹1, 𝜂𝜀𝜑⟩ = ⟨𝐹1, 𝜑⟩。此外，同理，对所有|𝛼| ⩽
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𝑀有⟨𝐹1, 𝜂𝜀𝒙𝛼⟩ = ⟨𝐹1, 𝒙𝛼⟩ = 0，因此

⟨𝐹1, 𝜑⟩ =
⟨
𝐹1, 𝜂𝜖

⎛
⎜
⎝
𝜑(𝒙) −

∑

|𝛼|⩽𝑀

𝜑(𝛼)(0)
𝛼! 𝒙𝛼

⎞
⎟
⎠

⟩

其中𝜑(𝛼)(0) = 𝜕𝛼𝒙𝜑(0). 若𝑅(𝒙) = 𝜑(𝒙) − ∑
|𝛼|⩽𝑀

𝜑(𝛼)(0)
𝛼!

𝒙𝛼是余项，则当|𝛽| ⩽ 𝑀时，有|𝑅(𝒙)| ⩽ 𝑐|𝒙|𝑀+1

以及 |𝜕𝛽𝒙𝑅(𝒙)| ⩽ 𝑐𝛽|𝒙|𝑀+1−|𝛽|.
然而现在又有|𝜕𝛽𝒙𝜂𝜀(𝒙)| ⩽ 𝑐𝛽𝜀−|𝛽|，且|𝒙| ⩾ 𝜀时有𝜕𝛽𝒙𝜂𝜀(𝒙) = 0。因此据Leibniz法则，对任

意|𝛼| + 𝑁 ⩽ 𝑀有|||𝜂𝜀𝑅|||(𝑁,𝛼) ⩽ 𝑐𝜀，而假设(1)给出 |||⟨𝐹1, 𝜑⟩||| ⩽ 𝑐′𝜀，令𝜀 → 0即得所需结论。

定理 D.2.7的证明. 现在我们将上述引理应用于𝐹1 = 𝐹 − ∑
|𝛼|⩽𝑀 𝑎𝛼𝜕

𝛼
𝑥𝛿，其中𝑀 = 𝑁 + |𝛼|是

命题D.2.4中出现的𝑁和|𝛼|之和，而𝑎𝛼选为𝑎𝛼 = (−1)|𝛼|

𝛼!
⟨𝐹, 𝒙𝛼⟩。由于⟨𝜕𝛼𝒙𝛿, 𝒙𝛽⟩ = (−1)|𝛼|𝛼!（当𝛼 =

𝛽时）否则为零，于是𝐹1 = 0，定理证毕。

一个重要的结论是，每个分布至少局部上可以表示为连续函数及其分布导数的线性组合。Fourier变
换为此提供了一个简单的证明：

命题 D.2.8 (分布的局部结构定理[8, Prop. 9.14]).

(1) 若𝐹 ∈ ℰ′，则存在𝑁 ∈ ℕ、常数𝑐𝛼(|𝛼| ⩽ 𝑁)，以及当|𝒙| → ∞时趋于零的𝑓 ∈ 𝐶(ℝ𝑑)，使
得𝐹 = ∑

|𝛼|⩽𝑁
𝑐𝛼𝜕𝛼𝑓.

(2) 若𝐹 ∈ 𝒟′且𝑉是一个预紧开集（即𝑉̄是紧集），则存在如上所述的𝑁, 𝑐𝛼, 𝑓，使得在𝑉上成立𝐹 =
∑

|𝛼|⩽𝑁
𝑐𝛼𝜕𝛼𝑓.

习题 D.2

习题 D.2.1. 令 𝐻(𝑥) = 𝜒(0,∞) 为 Heaviside函数。证明其分布导数是原点处的Dirac 𝛿-函数。

习题 D.2.2. 若 𝐹 ∈ 𝒟′ 且一阶分布导数皆为零，即𝜕𝑗𝐹 = 0对 1 ⩽ 𝑗 ⩽ 𝑑 成立。证明: 𝐹是ℝ𝑑 上的

常值函数。（提示：考虑 𝐹 ∗ 𝜂𝜀.）
习题 D.2.3. 证明当 0 < 𝛼 < 𝑑时，|𝒙|−𝛼 在 ℝ𝑑 中的Fourier变换为 𝐶𝛼,𝑑|𝝃 |𝛼−𝑑.

提示：首先证明该函数的Fourier变换在 𝝃 = 𝟎之外等于一个光滑函数，然后利用伸缩和旋转
对称性确定该函数。

习题 D.2.4. ℝ𝑑 上的一个分布 𝐹 称为度度度为为为 𝜆 的的的齐齐齐次次次分分分布布布 (homogeneous of degree 𝜆)，是指对任
意𝑟 > 0有 𝐹◦𝑆𝑟 = 𝑟𝜆𝐹，其中 𝑆𝑟(𝒙) = 𝑟𝒙。证明如下结论。

(1) 𝛿 是度(−𝑑)齐次的分布。
(2) 若 𝐹 是度𝜆齐次分布，则 𝜕𝛼𝐹 是度(𝜆 − |𝛼|)齐次分布。
(3) 分布 d

d𝑥

(
𝜒(0,∞)(𝑥) log 𝑥

)
不是齐次分布，尽管它在 ℝ∖{0}上与一个度(−1)齐次函数吻合。
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问题 D.2

问题 D.2.1. 设连续函数𝑓是ℝ𝑑∖{𝟎}上度为(−𝑑)的齐次函数(即 𝑓(𝑟𝒙) = 𝑟−𝑑𝑓(𝒙))且在单位球面上均
值为零(即 ∫𝕊𝑑−1 𝑓 d𝑆 = 0)，则 𝑓 在原点附近不是局部可积的（除非 𝑓 = 0），但如下公式

⟨𝑃.𝑉.(𝑓), 𝜑⟩ = lim
𝜖→0

∫
|𝒙|>𝜖

𝑓(𝒙)𝜑(𝒙) d𝒙 (𝜑 ∈ 𝐶∞
𝑐 )

定义了一个分布 𝑃.𝑉.(𝑓)，它在 ℝ𝑑∖{𝟎}上与𝑓吻合，并且在习题 D.2.4的意义下是度(−𝑑)齐次的。
提示：对任意 𝑎 > 0，所指的极限等于 ∫|𝒙|⩽𝑎 𝑓(𝒙)[𝜑(𝒙) − 𝜑(𝟎)] d𝒙 + ∫|𝒙|>𝑎 𝑓(𝒙)𝜑(𝒙) d𝒙，且这

些积分绝对收敛。

问题 D.2.2 ([17, Theorem 3.2.5]). 假设 𝜆 > 𝑑，则函数 𝒙 ↦→ |𝒙|−𝜆 在 ℝ𝑑 的原点附近不是局部可

积的。如下是将其变为分布的方法：

(1) 若 𝜑 ∈ 𝐶∞
𝑐 ，令𝑃𝑘𝜑为𝜑在 𝑥 = 0处的𝑘阶Taylor多项式。给定 𝑘 > 𝜆 − 𝑑 − 1和 𝑎 > 0，定义

⟨
𝐹𝑘𝑎 , 𝜑

⟩
= ∫

|𝒙|⩽𝑎

[
𝜑(𝒙) − 𝑃𝑘𝜑(𝒙)

]
|𝒙|−𝜆 d𝒙 + ∫

|𝒙|>𝑎
𝜑(𝒙)|𝒙|−𝜆 d𝒙.

则𝐹𝑘𝑎 ∈ 𝒟′(ℝ𝑑)且在 ℝ𝑑∖{𝟎}上与 |𝒙|−𝜆 吻合。
(2) 若 𝜆 ∉ ℤ且我们取 𝑘 = [𝜆 − 𝑑]为不超过𝜆 − 𝑑 的最大整数，我们可以在 (1)中令 𝑎 → ∞得
到另一个分布 𝐹，它在 ℝ𝑑∖{𝟎}上与 |𝒙|−𝜆 一致：

⟨𝐹, 𝜑⟩ = ∫
[
𝜑(𝒙) − 𝑃𝑘𝜑(𝒙)

]
|𝒙|−𝜆 d𝒙

(3) 令 𝑑 = 1且令 𝑘 = [𝜆]为不超过 𝜆的最大整数。令

𝑓(𝒙) =
⎧

⎨
⎩

[(𝑘 − 𝜆)⋯ (1 − 𝜆)]−1(sgn 𝑥)𝑘|𝑥|𝑘−𝜆 if 𝜆 > 𝑘
(−1)𝑘−1[(𝑘 − 1)!]−1(sgn 𝑥)𝑘 log |𝑥| if 𝜆 = 𝑘

.

则 𝑓 ∈ 𝐿1loc(ℝ)，且分布导数 𝑓(𝑘) 在 ℝ∖{0}上与 |𝑥|−𝜆 一致。
(4) 据定理D.2.7，在 (1)-(3)中构造的任何两个分布之间的差是 𝛿及其导数的线性组合。具体是
哪些？

问题 D.2.3 ([17, Theorem 3.2.1]). 证明：分布𝑃.𝑉.(1∕𝑥)等于

d
d𝑥 log |𝑥|以及

1
2 (

1
𝑥 − 𝑖0 +

1
𝑥 + 𝑖0) ,

其在分布意义下的Fourier变换为 −𝑖
√

𝜋
2
sgn (𝜉).



附录 E 线性泛函分析

本附录的最后一部分记录了泛函分析中出现的一些基本概念和常用定理. 相关的证明可以在
Bühler-Salamon [3, Chapter 2-4]或 Evans [6, Appendix D]中找到.

E.1 Banach空间

设 𝑋 表示一个实线性空间.

定义 E.1.1. 如果映射 ‖ ‖ ∶ 𝑋 → [0,∞)满足以下条件,则称其为范范范数数数 (norm)：

• (三角不等式)对所有 𝑢, 𝑣 ∈ 𝑋, ‖𝑢 + 𝑣‖ ⩽ ‖𝑢‖ + ‖𝑣‖；
• 对所有 𝑢 ∈ 𝑋, 𝜆 ∈ ℝ, ‖𝜆𝑢‖ = |𝜆|‖𝑢‖；
• ‖𝑢‖ = 0当且仅当 𝑢 = 0.

下文中,我们假设 𝑋 是一个赋范线性空间.

定义 E.1.2. 如果赋范线性空间 (𝑋,‖ ⋅ ‖)是完备的,即 𝑋 中的每个 Cauchy列都收敛且极限仍属于
𝑋,则称 (𝑋, ‖ ⋅ ‖)为 Banach空空空间间间.

定义 E.1.3. 如果 𝑋 存在可数稠密子集,则称 𝑋 是可可可分分分的的的 (separable).

设 𝑋 和 𝑌 为实 Banach空间.

定义 E.1.4. 映射 𝐴 ∶ 𝑋 → 𝑌 是 线线线性性性算算算子子子 (linear operator),是指对任意 𝑢, 𝑣 ∈ 𝑋, 𝜆, 𝜇 ∈ ℝ 满
足𝐴[𝜆𝑢 + 𝜇𝑣] = 𝜆𝐴𝑢 + 𝜇𝐴𝑣. 𝐴的值域记作 𝑅(𝐴) ∶= {𝑣 ∈ 𝑌 ∣ 𝑣 = 𝐴𝑢对于某个 𝑢 ∈ 𝑋},其零空间
（核）记作 𝑁(𝐴) ∶= ker(𝐴) = {𝑢 ∈ 𝑋 ∣ 𝐴𝑢 = 0}. 𝐴的定义域记作 𝐷(𝐴).

称线性算子 𝐴 ∶ 𝑋 → 𝑌 是 有有有界界界的的的 (bounded)是指‖𝐴‖ ∶= sup
{
‖𝐴𝑢‖𝑌 ∣ ‖𝑢‖𝑋 ⩽ 1

}
< ∞. 易证

有界线性算子 𝐴 ∶ 𝑋 → 𝑌 是连续的,反之亦然.

定义 E.1.5. 如果在𝑋中有𝑢𝑘 → 𝑢且在𝑌中有𝐴𝑢𝑘 → 𝑣时可得到𝐴𝑢 = 𝑣成立, 则称线性算子 𝐴 ∶
𝑋 → 𝑌 为 闭闭闭算算算子子子 (closed operator). 等价地, 如果算子 𝐴 的图像 𝐺(𝐴) ∶= {(𝑢, 𝑣) ∈ 𝑋 × 𝑌 ∣
𝑥 ∈ 𝐷(𝐴), 𝑣 = 𝐴𝑢} 是 𝑋 × 𝑌 的闭线性子空间, 则 𝐴 是闭的. 在子空间 𝐷(𝐴) ⊂ 𝑋 上的图范数
是‖𝑢‖𝐴 ∶= ‖𝑢‖𝑋 + ‖𝐴𝑢‖𝑌.
如果 𝑋 的每个开子集在 𝑓 下的像是 𝑌 的开子集,则称线性算子 𝐴 ∶ 𝑋 → 𝑌 为 开开开映映映射射射 (open

map).
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E.1.1 Banach空间的几何

首先,我们注意到 Banach空间是有限维的当且仅当每个有界闭集都是紧的.这由以下 F. Riesz
引理给出.

引理 E.1.1 (Riesz引理). 设 (𝑋, ‖ ⋅ ‖)为赋范线性空间, 𝑌 ⊂ 𝑋 是一个不等于 𝑋 的闭线性子空间. 固
定常数 0 < 𝛿 < 1. 则存在向量 𝑥 ∈ 𝑋 使得‖𝑥‖ = 1, inf

𝑦∈𝑌
‖𝑥 − 𝑦‖ ⩾ 1 − 𝛿.

证明. 取 𝑥0 ∈ 𝑋∖𝑌. 由于 𝑌是闭的,故 𝑑 ∶= inf 𝑦∈𝑌 ‖𝑥0 − 𝑦‖ > 0. 选择 𝑦0 ∈ 𝑌使得‖𝑥0 − 𝑦0‖ ⩽
𝑑
1−𝛿

.

现在设𝑥 ∶= ‖𝑥0 − 𝑦0‖
−1 (𝑥0 − 𝑦0),则有 ‖𝑥‖ = 1且对于任意 𝑦 ∈ 𝑌成立下式

‖𝑥 − 𝑦‖ =
‖𝑥0 − 𝑦0−‖𝑥0 − 𝑦0‖𝑦‖

‖𝑥0 − 𝑦0‖
⩾ 𝑑
‖𝑥0 − 𝑦0‖

⩾ 1 − 𝛿.

有几个定理从不同方面刻画了 Banach空间的几何特性.

定理 E.1.2 (开映射定理). 设 𝑋,𝑌 为 Banach空间, 𝐴 ∶ 𝑋 → 𝑌 为有界满射. 则 𝐴是开映射.

开映射定理的一个推论是 𝐴为双射的特殊情况：
定理 E.1.3 (逆映射定理). 设 𝑋,𝑌 为 Banach空间, 𝐴 ∶ 𝑋 → 𝑌 为有界双射,则 𝐴−1 ∶ 𝑌 → 𝑋 也是
有界的.

研究 Banach空间 𝑋 上的线性算子时,其定义域往往不是整个空间而是 𝑋 的线性子空间. 在大
多数情况下,定义域是稠密线性子空间.

例 E.1.1. 设𝑋 ∶= 𝐶([0, 1])赋予一致范数, 𝐷(𝐴) ∶= 𝐶1([0, 1]), 定义线性算子 𝐴 ∶ 𝐷(𝐴) → 𝑋 为
𝐴𝑓 ∶= 𝑓′ (𝑓 ∈ 𝐶1([0, 1])). 据Weierstrass逼近定理,子空间 𝐷(𝐴) = 𝐶1([0, 1])在 𝑋 = 𝐶([0, 1])中是
稠密的.此外,由下式定义的 𝐴的图像

𝐺(𝐴) ∶= {(𝑓, 𝑔) ∈ 𝑋 × 𝑋 ∣ 𝑓 ∈ 𝐷(𝐴), 𝑔 = 𝐴𝑓}

是 𝑋 × 𝑋 的一个闭线性子空间. 也就是说, 如果 𝑓𝑛 ∈ 𝐶1([0, 1])满足 (𝑓𝑛, 𝐴𝑓𝑛)在 𝑋 × 𝑋 中收敛到
(𝑓, 𝑔),则 𝑓𝑛 一致收敛到 𝑓 且 𝑓′𝑛 一致收敛到 𝑔,因此 𝑓 是连续可微的且 𝑓′ = 𝑔.

定理 E.1.4 (闭图像定理). 设 𝑋 和 𝑌 为 Banach空间,且 𝐴 ∶ 𝑋 → 𝑌 为线性算子.则 𝐴是有界的当
且仅当它的图像是 𝑋 × 𝑌 的闭线性子空间.

闭图像定理断言,线性算子 𝐴 ∶ 𝑋 → 𝑌 是连续的当且仅当 𝐴具有闭图像.
接下来,我们介绍一致有界原理 (一致有界原理/共鸣定理).

定义 E.1.6. 映射族 {𝑓𝑖}𝑖∈𝐼（其中 𝑓𝑖 ∶ 𝑋 → 𝑌𝑖, 𝐼为角标集合,且每个映射取值于赋范线性空间 𝑌𝑖）

被称为 逐逐逐点点点有有有界界界 (pointwise bounded)的，是指

sup
𝑖∈𝐼

‖𝑓𝑖(𝑥)‖𝑌𝑖 < ∞ ∀𝑥 ∈ 𝑋.
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定义 E.1.7. 设 𝑋,𝑌 为赋范线性空间. 如果对于所有 𝑢 ∈ 𝑋 都有 𝐴𝑢 = lim
𝑡→∞

𝐴𝑛𝑢, 则称有界线性算

子序列 𝐴𝑛 ∶ 𝑋 → 𝑌(𝑛 ∈ ℕ)强强强收收收敛敛敛 (converge strongly)于有界线性算子 𝐴 ∶ 𝑋 → 𝑌.

一致有界定理陈述如下：

定理 E.1.5 (Banach-Steinhaus定理). 设 𝑋,𝑌 为 Banach空间,且 𝐴𝑛 ∶ 𝑋 → 𝑌, 𝑛 ∈ ℕ为有界线性算
子序列. 则以下各项等价：

(1) 对于每个 𝑢 ∈ 𝑋,序列 (𝐴𝑛𝑢)𝑛∈ℕ 在 𝑌 中收敛.
(2) sup

𝑛∈ℕ
‖𝐴𝑛‖ < ∞且存在稠密子集 𝐷 ⊂ 𝑋 使得对于每个 𝑢 ∈ 𝐷, {𝐴𝑛𝑢}𝑛∈ℕ 是 𝑌 中的 Cauchy列.

(3) sup
𝑛∈ℕ

‖𝐴𝑛‖ < ∞且存在有界线性算子 𝐴 ∶ 𝑋 → 𝑌 使得 𝐴𝑛 强收敛于 𝐴,且 ‖𝐴‖ ⩽ lim inf
𝑛→∞

‖𝐴𝑛‖.

即使 𝑌 不完备, (1) ⇔ (3)的等价性仍然成立.即使 𝑋 不完备, (2) ⇔ (3)的等价性仍然成立.

接下来我们介绍 Hahn-Banach 定理, 其用于研究Banach 空间 𝑋 的子空间上的有界线性泛函,
并表明每个这样的泛函都可以延拓为整个 𝑋 上的有界线性泛函. 即使 𝑋 只是一个实线性空间且有
界性被拟半范数的界所取代,该定理依然成立.

定义 E.1.8 (拟半范数). 设 𝑋 为一个实线性空间. 如果对于任意 𝑥, 𝑦 ∈ 𝑋, 𝜆 ⩾ 0，函数 𝑝 ∶ 𝑋 → ℝ
满足

𝑝(𝑥 + 𝑦) ⩽ 𝑝(𝑥) + 𝑝(𝑦), 𝑝(𝜆𝑥) = 𝜆𝑝(𝑥),

则称其为 拟拟拟半半半范范范数数数 (quasi-seminorm). 如果它是一个拟半范数且对所有 𝑥 ∈ 𝑋, 𝜆 ∈ ℝ 满足
𝑝(𝜆𝑥) = |𝜆|𝑝(𝑥), 则称其为 半半半范范范数数数 (seminorm). 半范数取非负值, 因为对所有 𝑥 ∈ 𝑋 有 2𝑝(𝑥) =
𝑝(𝑥) + 𝑝(−𝑥) ⩾ 𝑝(0) = 0. 因此,半范数相比范数而言，只是不满足非退化性，即可能存在非零元
素 𝑥 ∈ 𝑋 使得 𝑝(𝑥) = 0.

定理 E.1.6 (Hahn-Banach定理). 设 𝑋 为赋范线性空间, 𝑝 ∶ 𝑋 → ℝ为拟半范数. 设 𝑌 ⊂ 𝑋 为线性
子空间, 𝜙 ∶ 𝑌 → ℝ为线性泛函,使得对所有 𝑥 ∈ 𝑌 满足 𝜙(𝑥) ⩽ 𝑝(𝑥). 则存在线性泛函 Φ ∶ 𝑋 → ℝ
使得

Φ|𝑌 = 𝜙, Φ(𝑥) ⩽ 𝑝(𝑥) ∀𝑥 ∈ 𝑋.

我们在证明线性波动方程局部存在性时将使用的是：

推论 E.1.7. 设 𝑋 为 ℝ上的赋范线性空间, 𝑌 ⊂ 𝑋 为线性子空间, 𝜙 ∶ 𝑌 → ℝ为线性泛函,且存在
𝑐 ⩾ 0使得对于所有 𝑥 ∈ 𝑌 有 |𝜙(𝑥)| ⩽ 𝑐‖𝑥‖. 则存在有界线性泛函 Φ ∶ 𝑋 → ℝ使得

Φ|𝑌 = 𝜙, |Φ(𝑥)| ⩽ 𝑐‖𝑥‖ 对于所有 𝑥 ∈ 𝑋.

证明. 在 Hahn-Banach定理中设 𝑝(𝑥) ∶= 𝑐‖𝑥‖,则存在线性泛函 Φ ∶ 𝑋 → ℝ满足 Φ|𝑌 = 𝜙 且对所
有 𝑥 ∈ 𝑋 有 Φ(𝑥) ⩽ 𝑐‖𝑥‖. 由于 Φ(−𝑥) = −Φ(𝑥),由此推导出对所有 𝑥 ∈ 𝑋 有 |Φ(𝑥)| ⩽ 𝑐‖𝑥‖.

对于复线性空间,类似的结果也成立.

推论 E.1.8. 设 𝑋 为 ℂ上的赋范线性空间, 𝑌 ⊂ 𝑋 为线性子空间, 𝜓 ∶ 𝑌 → ℂ为复线性泛函,且存
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在 𝑐 ⩾ 0使得对于所有 𝑥 ∈ 𝑌 有 |𝜓(𝑥)| ⩽ 𝑐‖𝑥‖. 则存在有界复线性泛函 Ψ ∶ 𝑋 → ℂ使得

Ψ|𝑌 = 𝜓, |Ψ(𝑥)| ⩽ 𝑐‖𝑥‖ 对于所有 𝑥 ∈ 𝑋.

E.1.2 弱收敛

据 Riesz 引理, 有界性不再像有限维情况（Bolzzano-Weierstrass 定理）那样给出紧性. 然而,
我们可以引入 弱收敛 (weak convergence) 和 弱-* 收敛 (weak-* convergence) 的概念, 使得在这种
“弱”意义下的紧性只要有界性成立就能自动满足. 在我们的 PDE课程中,不需要引入弱拓扑.相
反,我们只需要序列弱收敛. 本节设 𝑋 是实 Banach空间.

定义 E.1.9 (弱收敛). 如果对于每个有界线性泛函 𝑓 ∈ 𝑋∗ 都有 ⟨𝑓, 𝑢𝑘⟩ → ⟨𝑓, 𝑢⟩, 我们就说序列
{𝑢𝑘}∞𝑘=1 ⊂ 𝑋 弱收敛于 𝑢 ∈ 𝑋,记作 𝑢𝑘 ⇀ 𝑢.

定义 E.1.10 (弱-* 收敛). 如果对于每个 𝑢 ∈ 𝑋 都有 ⟨𝑓𝑘, 𝑢⟩ → ⟨𝑓, 𝑢⟩, 我们就说序列 {𝑓𝑘}∞𝑘=1 ⊂ 𝑋∗

弱-*收敛于 𝑓 ∈ 𝑋∗,记作 𝑓𝑘
∗
,⇀ 𝑓.

易证：若 𝑢𝑘 → 𝑢,则 𝑢𝑘 ⇀ 𝑢. 事实上任何弱收敛序列都是有界的.此外如果 𝑢𝑘 ⇀ 𝑢,则‖𝑢‖ ⩽
lim inf 𝑘→∞ ‖𝑢𝑘‖.
定理 E.1.9 (Eberlein-Šmulian). 设 𝑋 为自反 Banach空间, 并假设序列 {𝑢𝑘}∞𝑘=1 ⊂ 𝑋 是有界的.则存
在子序列 {𝑢𝑘𝑗 }

∞
𝑗=1 ⊂ {𝑢𝑘}

∞
𝑘=1 和 𝑢 ∈ 𝑋 使得 𝑢𝑘𝑗 ⇀ 𝑢在 𝑋 中成立.

换句话说, 自反 Banach 空间中的有界序列是弱预紧的. 特别地, Hilbert 空间中的有界序列包
含一个弱收敛子序列. 如果我们去掉自反性假设,我们就有弱-*收敛.

定理 E.1.10 (Banach-Alaoglu). 设 𝑋 为赋范空间. 则对偶空间 𝑋∗（装备其通常算子范数）中的闭

单位球在弱-*拓扑下是紧的.

Mazur定理断言 𝑋 的凸闭子集是弱闭的.此外,我们有

定理 E.1.11 (Mazur). 设 (𝑋, ‖ ⋅ ‖)为赋范线性空间,且 {𝑥𝑗}𝑗∈ℕ ⊂ 𝑋 为弱收敛于某个 𝑥 ∈ 𝑋 的序列.
则存在由 𝑥𝑗 的有限凸组合构成的序列 {𝑦𝑘}𝑘∈ℕ ⊂ 𝑋,其形式为 𝑦𝑘 =

∑
𝑗⩽𝑘

𝜆(𝑘)𝑗 𝑥𝑗,使得 𝑦𝑘 → 𝑥 强收敛,

即 ‖𝑦𝑘 − 𝑥‖ → 0.

E.2 Hilbert空间

在讲义中，许多情况下我们只需要用基于 𝐿2 的 Sobolev空间 𝐻𝑘(Ω). 此时Banach空间还具有
内积结构.设 𝐻 为实线性空间.

定义 E.2.1. 如果映射 (⋅, ⋅) ∶ 𝐻 × 𝐻 → ℝ满足以下条件,则称其为内积：

• (𝑢, 𝑣) = (𝑣, 𝑢)对所有 𝑢, 𝑣 ∈ 𝐻,
• 映射 𝑢 ↦→ (𝑢, 𝑣)对于每个 𝑣 ∈ 𝐻 是线性的,
• (𝑢, 𝑢) ⩾ 0对所有 𝑢 ∈ 𝐻,
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• (𝑢, 𝑢) = 0当且仅当 𝑢 = 0.

由内积定义的范数为 ‖𝑢‖ ∶= (𝑢, 𝑢)1∕2. Hilbert 空间 𝐻 是赋予了如上内积的 Banach 空间. 如果 𝐻
是复线性空间,则 (𝑢, 𝑣) = (𝑣, 𝑢).

定义 E.2.2. 设 𝑆 是 𝐻 的子空间,记𝑆⟂ = {𝑢 ∈ 𝐻 ∣ (𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝑆}是与 𝑆 正交的子空间.

对于 Hilbert空间 𝐻,可以通过以下定理将其对偶空间 𝐻∗ 与 𝐻 等同起来.

定理 E.2.1 (Riesz 表示定理). 𝐻∗ 可以规范地与 𝐻 等同；更准确地说, 对于每个 𝑢∗ ∈ 𝐻∗, 存在唯
一的元素 𝑢 ∈ 𝐻 使得 ⟨𝑢∗, 𝑣⟩ = (𝑢, 𝑣), ∀𝑣 ∈ 𝐻. 映射 𝑢∗ ↦→ 𝑢是从 𝐻∗ 到 𝐻 的线性同构.

应当注意, 𝐻∗ ≇ 𝐻 并不是通过恒等映射实现的！

E.3 紧算子的谱理论

有界线性算子研究中最重要的概念之一是紧算子,它可以从有界性中产生紧性. 紧算子的定义
有几种等价方式.

引理 E.3.1. 设 𝑋 和 𝑌 为 Banach空间, 𝐾 ∶ 𝑋 → 𝑌 为有界线性算子.则以下各项等价：

• 如果 (𝑥𝑛)𝑛∈ℕ 是 𝑋 中的有界序列,则序列 (𝐾𝑥𝑛)𝑛∈ℕ 有 Cauchy子序列.

• 如果 𝑆 ⊂ 𝑋 是有界集,则集合 𝐾(𝑆) ∶= {𝐾𝑥 ∣ 𝑥 ∈ 𝑆}具有紧闭包.

• 集合
{
𝐾𝑥 ∣ 𝑥 ∈ 𝑋, ‖𝑥‖𝑋 ⩽ 1

}
是 𝑌 的紧子集.

定义 E.3.1 (紧算子). 设 𝑋 和 𝑌 为 Banach空间. 有界线性算子 𝐾 ∶ 𝑋 → 𝑌 被称为：

• 紧紧紧算算算子子子：如果它满足上述引理的等价条件；

• 有有有限限限秩秩秩 (finite rank)：如果其像是 𝑌 的有限维子空间；
• 全全全连连连续续续 (completely continuous)：如果 𝑋 中每个弱收敛序列在 𝐾 下的像在 𝑌 的范数拓扑中
收敛.

命题 E.3.2 (紧≈全连续). 设 𝑋 和 𝑌 为 Banach空间. 则每个紧算子 𝐾 ∶ 𝑋 → 𝑌 都是全连续的.如
果此外 𝑋 是自反的,则有界线性算子 𝐾 ∶ 𝑋 → 𝑌 是紧的当且仅当它是全连续的.

命题 E.3.3 (复合与对偶). 设 𝑋,𝑌 和 𝑍 为 Banach空间. 则以下成立：

(1) 设 𝐴 ∶ 𝑋 → 𝑌 和 𝐵 ∶ 𝑌 → 𝑍 为有界线性算子,且假设 𝐴是紧的或 𝐵是紧的.则 𝐵𝐴 ∶ 𝑋 → 𝑍
是紧的.

(2) 设 𝐾𝑖 ∶ 𝑋 → 𝑌 为紧算子序列, 其在算子范数拓扑下收敛于有界线性算子 𝐾 ∶ 𝑋 → 𝑌. 则 𝐾
是紧的.

(3) 设 𝐾 ∶ 𝑋 → 𝑌 为有界线性算子, 𝐾∗ ∶ 𝑌∗ → 𝑋∗ 为其对偶算子.则 𝐾 是紧的当且仅当 𝐾∗ 是紧

的.
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E.3.1 Riesz-Fredholm理论: 紧算子的核与像

设 𝑋 为 Banach空间, ℭ(𝑋)表示 𝑋 上所有紧算子的集合. 则我们有

定理 E.3.4 (Fredholm二择一). 设 𝑋 为 Banach空间, 𝐾 ∈ ℭ(𝑋). 则

(1) dim𝑁(𝐼 − 𝐾) < ∞,其中 𝑁(𝐼 − 𝐾) = {𝑥 ∈ 𝑋|(𝐼 − 𝐾)𝑥 = 0}.
(2) 𝑅(𝐼 − 𝐾)是闭的.
(3) 𝑅(𝐼 − 𝐾) = 𝑁(𝐼 − 𝐾∗)⟂ 且 𝑅(𝐼 − 𝐾∗) = ⟂𝑁(𝐼 − 𝐾).
(4) 𝑁(𝐼 − 𝐾) = {0}当且仅当 𝑅(𝐼 − 𝐾) = 𝑋.
(5) dim𝑁(𝐼 − 𝐾) = dim(𝑁(𝐼 − 𝐾∗)).

此处,对于 𝑀 ⊂ 𝑋, 𝐹 ⊂ 𝑋′,我们记

⟂𝑀 ∶= {𝑓 ∈ 𝑋′|⟨𝑓, 𝑥⟩ = 0, ∀𝑥 ∈ 𝑀}, 𝐹⟂ ∶= {𝑥 ∈ 𝑋|⟨𝑓, 𝑥⟩ = 0, ∀𝑓 ∈ 𝑋′}.

注记 E.3.1. Fredholm二择一用于处理方程 𝑢 −𝐾𝑢 = 𝑓的可解性. 它表明要么对于每个 𝑓 ∈ 𝑋,方
程 𝑢 − 𝐾𝑢 = 𝑓 都有唯一解；要么齐次方程 𝑢 − 𝐾𝑢 = 0存在 𝑛个线性无关解. 在后一种情况下,非
齐次方程 𝑢 − 𝐾𝑢 = 𝑓 是可解的,当且仅当 𝑓 满足 𝑛个正交条件 𝑓 ∈ 𝑁(𝐼 − 𝐾∗)⟂.

E.3.2 Riesz-Schauder理论: 紧算子的谱

我们最后记录紧算子的谱定理.

定义 E.3.2. 设 𝑋 为 Banach空间, 𝐴 ∶ 𝑋 → 𝑋 是有界线性算子.

• 𝐴的预预预解解解集集集 (resolvent set)定义为 𝜌(𝐴) ∶= {𝜂 ∈ ℝ|𝐴 − 𝜂𝐼 是 1-1且满的}.
• 𝐴的谱谱谱 (spectrum)定义为 𝜎(𝐴) ∶= ℝ∖𝜌(𝐴).

给定 𝜂 ∈ 𝜌(𝐴),根据闭图像定理,我们知道 (𝐴 − 𝜂𝐼)−1 是 𝑋 上的有界线性算子.

• 如果 𝑁(𝐴 − 𝜂𝐼) ≠ {0},我们说 𝜆 ∈ 𝜎(𝐴)是 𝐴的特特特征征征值值值 (eigenvalue). 所有特征值的集合记为
𝜎𝑝(𝐴),称为“点谱”.

• 如果 𝜆 是一个特征值且对于某个 𝑤 ≠ 0有 𝐴𝑤 = 𝜆𝑤, 则我们说 𝑤 是 𝐴 与 𝜆 关联的特特特征征征向向向
量量量 (eigenvector).

我们现在有

定理 E.3.5 (Riesz-Schauder). 设 𝑋 为 Banach空间, 𝐾 ∈ ℭ(𝑋). 则

(1) 0 ∈ 𝜎(𝐾),除非 dim𝑋 < ∞.
(2) 𝜎(𝐾)∖{0} = 𝜎𝑝(𝐾)∖{0}.
(3) 𝜎𝑝(𝐾)的聚点（如果存在）必须为 0.
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E.3.3 Hilbert空间上的对称算子

设 𝐻 为实 Hilbert空间.

定义 E.3.3. 如果对所有 𝑥, 𝑦 ∈ 𝐻 满足 (𝐴𝑥, 𝑦) = (𝑥, 𝐴𝑦), 我们说有界线性算子 𝐴 ∶ 𝐻 → 𝐻 是对对对
称称称的的的 (symmetric). 此处 (⋅, ⋅)是 𝐻 的内积. 显而易见, 𝐴是对称的当且仅当 𝐴 = 𝐴∗.

命题 E.3.6. 设 𝐴 ∶ 𝐻 → 𝐻 为有界线性算子. 则 𝐴 是对称的当且仅当对于任何 𝑥 ∈ 𝐻 都有
(𝐴𝑥, 𝑥) ∈ ℝ. 在这种情况下,我们进一步有：

(1) 𝜎(𝐴) ⊂ ℝ且对于任何 𝑥 ∈ 𝐻, 𝜆 ∈ ℂ（满足 Im 𝜆 ≠ 0）,有 ‖(𝜆𝐼 − 𝐴)−1𝑥‖ ⩽ ‖𝒙‖
|Im 𝜆|

.

(2) 设 𝐻1 ⊂ 𝐻 是 𝐻 的 𝐴-不变闭子空间,则 𝐴𝐻1 在 𝐻1 上也是对称的.
(3) 对于任何 𝜆, 𝜆′ ∈ 𝜎𝑝(𝐴)且 𝜆 ≠ 𝜆′,我们有 𝑁(𝜆𝐼 − 𝐴) ⟂ 𝑁(𝜆′𝐼 − 𝐴).
(4) ‖𝐴‖ = sup

‖𝑥‖=1
|(𝐴𝑥, 𝑥)|.

现在设 𝑆 ∶ 𝐻 → 𝐻 为线性、有界、对称算子,并记

𝑚 ∶= inf
𝑢∈𝐻
‖𝑢‖=1

(𝑆𝑢, 𝑢),𝑀 ∶= sup
𝑢∈𝐻
‖𝑢‖=1

(𝑆𝑢, 𝑢)

命题 E.3.7 (谱的上、下界). 我们有 𝜎(𝑆) ⊂ [𝑚,𝑀]且 𝑚,𝑀 ∈ 𝜎(𝑆).

证明. 设 𝜂 > 𝑀. 则 (𝜂𝑢 − 𝑆𝑢, 𝑢) ⩾ (𝜂 − 𝑀)‖𝑢‖2 (𝑢 ∈ 𝐻). 因此 Lax-Milgram定理断言 𝜂𝐼 − 𝑆 是
1-1且满的,故 𝜂 ∈ 𝜌(𝑆). 同理,若 𝜂 < 𝑚,则 𝜂 ∈ 𝜌(𝑆). 这证明了 𝜎(𝑆) ⊂ [𝑚,𝑀].

我们接着证明 𝑀 ∈ 𝜎(𝑆). 由于配对 [𝑢, 𝑣] ∶= (𝑀𝑢 − 𝑆𝑢, 𝑣) 是对称的, 且对所有 𝑢 ∈ 𝐻 有
[𝑢, 𝑢] ⩾ 0, Cauchy-Schwarz 不等式蕴含 |(𝑀𝑢 − 𝑆𝑢, 𝑣)| ⩽ (𝑀𝑢 − 𝑆𝑢, 𝑢)1∕2(𝑀𝑣 − 𝑆𝑣, 𝑣)1∕2 对所有
𝑢, 𝑣 ∈ 𝐻. 特别地,对于某些常数 𝐶,有 ‖𝑀𝑢 − 𝑆𝑢‖ ⩽ 𝐶(𝑀𝑢 − 𝑆𝑢, 𝑢)1∕2 (𝑢 ∈ 𝐻).
现在设 {𝑢𝑘}∞𝑘=1 ⊂ 𝐻 满足 ‖𝑢𝑘‖ = 1(𝑘 = 1,…) 且 (𝑆𝑢𝑘, 𝑢𝑘) → 𝑀. 则我们有 ‖𝑀𝑢𝑘 − 𝑆𝑢𝑘‖ → 0.

此时若 𝑀 ∈ 𝜌(𝑆),则
𝑢𝑘 = (𝑀𝐼 − 𝑆)−1 (𝑀𝑢𝑘 − 𝑆𝑢𝑘) → 0

这产生矛盾. 因此 𝑀 ∈ 𝜎(𝑆),同理 𝑚 ∈ 𝜎(𝑆).

定理 E.3.8 (紧对称算子的特征向量). 设 𝐻 为可分 Hilbert 空间, 并假设 𝑆 ∶ 𝐻 → 𝐻 是紧对称算
子.则存在由 𝑆 的特征向量构成的 𝐻 的可数标准正交基.

证明. 设 {𝜂𝑘} 为 𝑆 的非零不同特征值序列. 设 𝜂0 = 0. 记 𝐻0 = 𝑁(𝑆),𝐻𝑘 = 𝑁 (𝑆 − 𝜂𝑘𝐼) (𝑘 = 1,…).
根据 Fredholm二择一,有 0 ⩽ dim𝐻0 ⩽ ∞且 0 < dim𝐻𝑘 < ∞.

设 𝑢 ∈ 𝐻𝑘, 𝑣 ∈ 𝐻𝑙 且 𝑘 ≠ 𝑙. 则 𝑆𝑢 = 𝜂𝑘𝑢, 𝑆𝑣 = 𝜂𝑙𝑣,故 𝜂𝑘(𝑢, 𝑣) = (𝑆𝑢, 𝑣) = (𝑢, 𝑆𝑣) = 𝜂𝑙(𝑢, 𝑣). 由
于 𝜂𝑘 ≠ 𝜂𝑙,我们推导出 (𝑢, 𝑣) = 0. 因此我们看到子空间 𝐻𝑘 和 𝐻𝑙 是正交的.
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现在设 𝐻̃ 是包含 𝐻0, 𝐻1, …的 𝐻 的最小子空间. 因此

𝐻̃ = {
𝑚∑

𝑘=0
𝑎𝑘𝑢𝑘 ∶ 𝑚 ∈ {0, …}, 𝑢𝑘 ∈ 𝐻𝑘, 𝑎𝑘 ∈ ℝ} .

我们接下来证明 𝐻̃在𝐻中稠密.显然 𝑆(𝐻̃) ⊆ 𝐻̃. 此外 𝑆
(
𝐻̃⟂) ⊆ 𝐻̃⟂：事实上,若 𝑢 ∈ 𝐻̃⟂且 𝑣 ∈ 𝐻̃,

则 (𝑆𝑢, 𝑣) = (𝑢, 𝑆𝑣) = 0.
现在算子 𝑆 ≡ 𝑆||||𝐻̃⟂ 是紧且对称的.此外 𝜎(𝑆) = {0},因为 𝑆的任何非零特征值也将是 𝑆的特征

值. 根据引理,对于所有 𝑢 ∈ 𝐻̃⟂,有 (𝑆𝑢, 𝑢) = 0. 但如果 𝑢, 𝑣 ∈ 𝐻̃⟂,

2(𝑆𝑢, 𝑣) = (𝑆(𝑢 + 𝑣), 𝑢 + 𝑣) − (𝑆𝑢, 𝑢) − (𝑆𝑣, 𝑣) = 0

因此 𝑆 = 0. 由此可见 𝐻̃⟂ ⊂ 𝑁(𝑆) ⊂ 𝐻̃,从而 𝐻̃⟂ = {0}. 因此 𝐻̃ 在 𝐻 中稠密.
为每个子空间 𝐻𝑘(𝑘 = 0,…)选择一组标准正交基,注意到由于 𝐻 是可分的, 𝐻0 具有可数标准

正交基. 我们由此获得了一组特征向量的标准正交基.

在 Hilbert空间上,对称紧算子的谱和结构与欧几里得空间中的实对称矩阵非常相似. 特别地,
我们回顾任何实对称矩阵都是可对角化的,且对角线上的元素正是特征值,这也意味着实对称矩阵
的特征向量给出了欧几里得空间的正交（规范化后为正交规范）基. 此外,二次型的临界值也是特
征值. 这些性质对于 Hilbert空间上的对称紧算子同样成立.

命题 E.3.9. 设 𝐴 ∈ ℭ(𝐻)对称. 则存在 𝑥0 ∈ 𝐻, ‖𝑥0‖ = 1,使得

𝜆 ∶= |(𝐴𝑥0, 𝑥0)| = sup
‖𝑥‖=1

|(𝐴𝑥, 𝑥)|, 𝐴𝑥0 = 𝜆𝑥0.

命题 E.3.10. 设 𝐴 ∈ ℭ(𝐻) 对称. 则存在至多可数的实数序列 {𝜆𝑘}𝑘∈ℕ∗ , 其唯一的可能聚点（如果
存在）是 0,使得 {𝜆𝑘}正是 𝐴的特征值. 此外,存在 𝐻 的标准正交基 {𝑒𝑘}使得

𝑥 =
∑

𝑘⩾1
(𝑥, 𝑒𝑘)𝑒𝑘, 𝐴𝑥 =

∑

𝑘
𝜆𝑘(𝑥, 𝑒𝑘)𝑒𝑘.

命题 E.3.11 (Courant极大极小刻画). 设 𝐴 ∈ ℭ(𝐻)对称且具有特征值 𝜆+1 ⩾ 𝜆+2 ⩾ ⋯ ⩾ 0 > ⋯ ⩾
𝜆−2 ⩾ 𝜆−1 . 则

𝜆+𝑛 = inf
𝐸𝑛−1

sup
𝑥∈𝐸⟂𝑛−1
𝑥≠0

(𝐴𝑥, 𝑥)
(𝑥, 𝑥)

, 𝜆−𝑛 = sup
𝐸𝑛−1

max
𝑥∈𝐸⟂𝑛−1
𝑥≠0

(𝐴𝑥, 𝑥)
(𝑥, 𝑥)

.

此处 𝐸𝑛−1 可以是 𝐻 的任何 (𝑛 − 1)维闭子空间.
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