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中国科学技术大学
2025–2026学年第一学期偏微分方程期末考试试题解析

考试时间：2026年元月16日 14:30–17:00 开课院系：数学科学学院

试题 1 (15分). 设Ω = ℝ2 × (0, +∞), 𝑔 ∈ 𝐶(𝜕Ω)是给定的有界函数，用格林函数方法求如下方程
的有界解。

∆𝑢 = 0 (𝒙 ∈ Ω) 𝑢 = 𝑔 (𝒙 ∈ 𝜕Ω).

解. 给定𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ Ω,记它关于平面{𝑥3 = 0}的对称点为𝒙̄ = (𝑥1, 𝑥2, −𝑥3). 因此我们取格林函数为

𝐺(𝒙, 𝒚) ∶= Φ(𝒚 − 𝒙) − Φ(𝒚 − 𝒙̄) = 1
4𝜋 ( 1

|𝒚 − 𝒙|
− 1
|𝒚 − 𝒙̄|

) .

现在可以用格林函数表示方程的解为

𝑢(𝒙) = −∫
𝜕Ω
𝑢(𝒚) 𝜕𝐺

𝜕𝑁
(𝒙, 𝒚) d𝑆𝒚, 𝑁 = (0, 0, −1).

代入格林函数表达式得到

𝜕𝐺
𝜕𝑁

(𝒙, 𝒚)
|||||||𝑦3=0

= −𝜕𝑦3𝐺(𝒙, 𝒚) = −
𝑥3
2𝜋

1
|𝒚 − 𝒙|3

= −
𝑥3
2𝜋

1

((𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + 𝑥23)
3
2

.

因此解的表达式为

𝑢(𝒙) =
𝑥3
2𝜋 ∫

ℝ2

𝑔(𝑦1, 𝑦2, 0)
|𝒙 − 𝒚|3

d𝑆𝒚 =
𝑥3
2𝜋 ∫

ℝ2

𝑔(𝑦1, 𝑦2, 0)

((𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + 𝑥23)
3
2

d𝑦1 d𝑦2.

试题 2 (20分). 考虑热方程的初值问题 𝜕𝑡𝑢−∆𝑢 = 0 (𝑡 > 0, 𝒙 ∈ ℝ𝑑), 𝑢(0, 𝒙) = 𝜑(𝒙) ∈ 𝒮(ℝ𝑑) (𝒙 ∈ ℝ𝑑).

(1) (15分)用傅立叶变换方法求出有界解𝑢(𝑡, 𝒙)的表达式。
(2) (5分)证明：存在常数𝐶 > 0，使得对任意𝑡 > 0, 𝒙 ∈ ℝ𝑑成立|𝑢(𝑡, 𝒙) − 𝜑(𝒙)| ⩽ 𝐶

√
𝑡.

解. (1)对𝒙变量作傅立叶变换，并记𝑢(𝑡, 𝒙)的傅立叶变换为𝑢̂(𝑡, 𝝃 ). 据傅立叶变换性质得到常微分方程

𝑢̂𝑡 + |𝝃 |2𝑢̂ = 0, 𝑢̂(0, 𝝃 ) = 𝜑̂(𝝃 ).

两边乘以𝑒𝑡|𝝃 |2（积分因子法），左边变成 d
d𝑡
(𝑒𝑡|𝝃 |2 𝑢̂)，这样就可算出热方程解的傅立叶变换为

𝑢̂(𝑡, 𝝃 ) = 𝑒−𝑡|𝝃 |2 𝜑̂(𝝃 ).
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下面计算上式的傅立叶逆变换，注意到对Φ(𝒙) = 𝑒−
|𝒙|2

2 , 有 Φ̂(𝝃 ) = Φ(𝝃 )成立。现在有𝑒−𝑡|𝝃 |2 = 𝑒−
(
√
2𝑡|𝝃 |)2

2 =

Φ̂(
√
2𝑡𝝃 ),据傅立叶变换的伸缩性质知(Φ̂(

√
2𝑡𝝃 ))∨ = 1

(
√
2𝑡)𝑑

Φ( 𝒙
√
2𝑡
) = 1

(
√
2𝑡)𝑑

𝑒−
|𝒙|2

4𝑡 . 把它代回𝑢̂的表达式，并利

用𝑓 ∗ 𝑔 = (
√
2𝜋)𝑑𝑓𝑔̂，就得到解的表达式

𝑢(𝑡, 𝒙) = (Φ̂(2𝑡⋅)𝜑̂)∨(𝒙) = 1

(2𝜋)
𝑑
2

((Φ̂(2𝑡⋅))∨ ∗ 𝜑)(𝒙) = 1

(4𝜋𝑡)
𝑑
2

∫
ℝ𝑑
𝑒−

|𝒙−𝒚|2

4𝑡 𝜑(𝒚) d𝒚.

(2)令𝐾(𝑡, 𝒙) ∶= 1

(4𝜋𝑡)
𝑑
2
𝑒−

|𝒙|2

4𝑡 为热核，则有

𝑢(𝑡, 𝒙) =∫
ℝ𝑑
𝜑(𝒚)𝐾(𝑡, 𝒙 − 𝒚) d𝒚 = ∫

ℝ𝑑
𝜑(𝒙 + 𝒚)𝐾(𝑡, 𝒚) d𝒚

𝒚=
√
𝑡𝒛

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ (4𝜋)−
𝑑
2 ∫

ℝ𝑑
𝑒−

|𝒛|2

4 𝜑(𝒙 +
√
𝑡𝒛) d𝒛.

又因为热核在全空间上的积分为1，所以作差得到

𝑢(𝑡, 𝒙) − 𝜑(𝒙) = (4𝜋)−
𝑑
2 ∫

ℝ𝑑
𝑒−

|𝒛|2

4
[
𝜑(𝒙 +

√
𝑡𝒛) − 𝜑(𝒙)

]
d𝒛.

据有限增量定理得

|𝑢(𝑡, 𝒙) − 𝜑(𝒙)| ⩽ (4𝜋)−
𝑑
2 ∫

ℝ𝑑
𝑒−

|𝒛|2

4 ⋅
√
𝑡|𝒛| ⋅ sup

ℝ𝑑
|∇𝜑| d𝒛 ⩽ 𝐶

√
𝑡.

试题 3-1 (20分). 用分离变量法求解方程，其中𝜔 > 0是常数。

⎧
⎪

⎨
⎪
⎩

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 2 sin 2𝑥 cos 𝑥 cos(𝜔𝑡) 𝑡 > 0, 𝑥 ∈ (0, 𝜋),

𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0 𝑡 ⩾ 0,

𝑢(0, 𝑥) = 𝑢𝑡(0, 𝑥) = 0 𝑥 ∈ [0, 𝜋].

解析. 本题选自章老师班上的作业题(讲义习题3.1.6)，更换了数字。

解. 分离变量法。齐次Dirichlet边界条件对应特征函数 sin(𝑛𝑥) (𝑛 ∈ ℕ∗),故将解展开为𝑢(𝑡, 𝑥) =
∞∑

𝑛=1
𝑇𝑛(𝑡) sin(𝑛𝑥).

据积化和差公式，方程右端项可写为𝑓(𝑡, 𝑥) = (sin 𝑥+sin 3𝑥) cos(𝜔𝑡).若将其展开为正弦级数
∞∑

𝑛=1
𝑓𝑛 sin(𝑛𝑥)，

则据三角函数的正交性知只有 𝑛 = 1和 𝑛 = 3时, 𝑓𝑛(𝑡) = 1 ⋅ cos(𝜔𝑡) = cos(𝜔𝑡),其余𝑓𝑛 (𝑛 ≠ 1, 3)皆为零。
此时方程可写为

∞∑

𝑛=1

[
𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡)

]
sin(𝑛𝑥) = cos(𝜔𝑡)(sin 𝑥 + sin 3𝑥).
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比较系数得𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 0, (𝑛 ≠ 1, 3), 𝑇′′1 (𝑡) + 𝑇1(𝑡) = cos(𝜔𝑡), 𝑇′′3 (𝑡) + 9𝑇3(𝑡) = cos(𝜔𝑡). 初始条件
为 𝑢(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0,故𝑇𝑛(𝑡) ≡ 0 (𝑛 ≠ 1, 3). 下面分别求解 𝑛 = 1和 𝑛 = 3的情形。

解法一：常数变易法 对常微分方程𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 𝑓𝑛(𝑡), 𝑇𝑛(0) = 𝑇′𝑛(0) = 0,通过常数变易法可解得

𝑇𝑛(𝑡) =
1
𝑛 ∫

𝑡

0
𝑓𝑛(𝜏) sin(𝑛(𝑡 − 𝜏)) d𝜏.

这步的具体过程是令𝑇𝑛(𝑡) = 𝐶𝑛(𝑡)𝑦𝑛(𝑡) + 𝐷𝑛(𝑡)𝑧𝑛(𝑡), 这里𝑦𝑛(𝑡) = cos(𝑛𝑡), 𝑧𝑛(𝑡) = sin(𝑛𝑡). 代入方程后求
解𝐶′𝑛(𝑡)𝑦𝑛(𝑡) + 𝐷′

𝑛(𝑡)𝑧𝑛(𝑡) = 0和𝐶′𝑛(𝑡)𝑦′𝑛(𝑡) + 𝐷′
𝑛(𝑡)𝑧′𝑛(𝑡) = 𝑓𝑛(𝑡)得到𝐶𝑛(𝑡), 𝐷𝑛(𝑡)的表达式，此处略去。

将𝑓1(𝑡) = 𝑓3(𝑡) = cos(𝜔𝑡)代入，得到𝑛 = 1, 3时有

𝑇𝑛(𝑡) =
1
𝑛 ∫

𝑡

0
cos(𝜔𝜏) sin(𝑛(𝑡 − 𝜏)) d𝜏 = 1

2𝑛 ∫
𝑡

0
[sin((𝜔 − 𝑛)𝜏) + 𝑛𝑡) + sin(𝑛𝑡 − (𝜔 + 𝑛)𝜏)] d𝜏.

• 𝜔 ≠ 1, 3时，直接计算积分得到𝑇𝑛(𝑡) =
1

𝜔2−𝑛2
(cos(𝑛𝑡) − cos(𝜔𝑡)) (𝑛 = 1, 3).

• 𝜔 = 3时：若𝑛 = 1,则仍可以直接计算；若𝑛 = 3,则积分式中第一项与𝜏无关，计算可得

𝑇3(𝑡) =
1
6𝑡 sin 3𝑡, 𝑇1(𝑡) =

1
8(cos 𝑡 − cos 3𝑡).

• 𝜔 = 1时：若𝑛 = 3,则仍可以直接计算；若𝑛 = 1,则积分式中第一项与𝜏无关，计算可得

𝑇1(𝑡) =
1
2𝑡 sin 𝑡, 𝑇3(𝑡) =

1
8(cos 𝑡 − cos 3𝑡).

解法二：待定系数法 我们待定𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 𝑓𝑛(𝑡), 𝑇𝑛(0) = 𝑇′𝑛(0) = 0的解为

𝑇𝑛(𝑡) = 𝐴𝑛 cos(𝑛𝑡) + 𝐵𝑛 sin(𝑛𝑡) + 𝐶𝑛 cos(𝜔𝑡).

• 𝜔 ≠ 1, 3时可解得𝐶𝑛 = − 1
𝜔2−𝑛2

, 𝐴𝑛 = −𝐶𝑛, 𝐵𝑛 = 0,从而𝑇𝑛(𝑡) =
1

𝜔2−𝑛2
(cos(𝑛𝑡) − cos(𝜔𝑡)) (𝑛 = 1, 3).

• 𝜔 = 3时：若𝑛 = 1,则仍可以按照非共振的情况计算；若𝑛 = 3则重新待定𝑇3 = 𝐴3 cos(3𝑡)+𝐵𝑛 sin(3𝑡)+
𝑡(𝐶3 cos 3𝑡 + 𝐷3 sin 3𝑡).此时可解得𝐴3 = 𝐵3 = 𝐶3 = 0,𝐷3 =

1
6
. 所以

𝑇3(𝑡) =
1
6𝑡 sin 3𝑡, 𝑇1(𝑡) =

1
8(cos 𝑡 − cos 3𝑡).

• 𝜔 = 1时：若𝑛 = 3,则仍可以按照非共振的情况计算；若𝑛 = 1则重新待定𝑇1 = 𝐴1 cos 𝑡 + 𝐵1 sin 𝑡 +
𝑡(𝐶1 cos 𝑡 + 𝐷1 sin 𝑡).此时可解得𝐴1 = 𝐵1 = 𝐶1 = 0,𝐷1 =

1
2
. 所以

𝑇1(𝑡) =
1
2𝑡 sin 𝑡, 𝑇3(𝑡) =

1
8(cos(𝑡) − cos(3𝑡)).
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因此，方程的解为

𝑢(𝑡, 𝑥) =

⎧
⎪

⎨
⎪
⎩

cos(𝜔𝑡) − cos 𝑡
1 − 𝜔2

sin 𝑥 +
cos(𝜔𝑡) − cos 3𝑡

9 − 𝜔2
sin 3𝑥, 𝜔 ≠ 1, 3;

𝑡
6 sin 3𝑡 sin 3𝑥 +

cos 𝑡 − cos 3𝑡
8 sin 𝑥, 𝜔 = 3;

cos 𝑡 − cos 3𝑡
8 sin 3𝑥 + 𝑡

2 sin 𝑡 sin 𝑥, 𝜔 = 1.

试题 3-2 (20分). 用分离变量法求解方程

⎧
⎪

⎨
⎪
⎩

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0 𝑡 > 0, 𝑥 ∈ (0, 𝜋),

𝑢(𝑡, 0) = 2𝑡, 𝑢(𝑡, 𝜋) = 0 𝑡 ⩾ 0,

𝑢(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 1 + cos 𝑥 𝑥 ∈ [0, 𝜋].

解析. 本题选自赵老师班上的作业题(周蜀林教材习题4.41(5))，凑了一组满足相容性条件的初边值条
件。

解. 第一步：齐次化边界条件。令𝑣(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − (1 − 𝑥
𝜋
) ⋅ 2𝑡，计算可得𝑣满足如下具有齐次Dirichlet边界

条件的齐次波动方程

⎧
⎪

⎨
⎪
⎩

𝑣𝑡𝑡 − 𝑣𝑥𝑥 = 0 𝑡 > 0, 𝑥 ∈ (0, 𝜋),

𝑣(𝑡, 0) = 0, 𝑢(𝑡, 𝜋) = 0 𝑡 ⩾ 0,

𝑣(0, 𝑥) = 0, 𝑣𝑡(0, 𝑥) = cos 𝑥 + 2𝑥
𝜋
− 1 𝑥 ∈ [0, 𝜋].

第二步：分离变量求解𝑣。考虑具有变量分离形式的解𝑋(𝑥)𝑇(𝑡),代入𝑣的方程得到𝑇′′𝑋 − 𝑋′′𝑇 = 0，进
而得到存在常数𝜆 ∈ ℝ使得

−𝑋′′(𝑥) = 𝜆𝑋(𝑥), 𝑋(0) = 𝑋(𝜋) = 0, 𝑇′′(𝑡) + 𝜆𝑇(𝑡) = 0.

解得𝜆 = 𝑛(𝑛 ∈ ℕ∗), 𝑋𝑛 = sin 𝑛𝑥. 于是系数𝑇𝑛满足常微分方程𝑇′′𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 0，解得𝑇𝑛(𝑡) = 𝐴𝑛 cos 𝑛𝑡 +
𝐵𝑛 sin 𝑛𝑡. 至此我们得到

𝑣(𝑡, 𝑥) =
∞∑

𝑛=1
(𝐴𝑛 cos 𝑛𝑡 + 𝐵𝑛 sin 𝑛𝑡) sin(𝑛𝑥).

第三步：通过𝑣的初值确定𝐴𝑛, 𝐵𝑛. 令𝑡 = 0,据𝑣(0, 𝑥) = 0和傅立叶系数唯一性得知全体𝐴𝑛皆为零。再通

过𝑣𝑡的傅立叶级数计算可得

𝑣𝑡(0, 𝑥) = cos 𝑥 + 2𝑥
𝜋 − 1 =

∞∑

𝑛=1
𝑛𝐵𝑛 sin 𝑛𝑥.
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所以只要计算𝜓(𝑥) ∶= cos 𝑥 + 2𝑥
𝜋
− 1的傅立叶级数展开即可，即

𝐵𝑛 =
1
𝑛𝜓𝑛 =

2
𝑛𝜋 ∫

𝜋

0
(cos 𝑥 + 2𝑥

𝜋 − 1) sin 𝑛𝑥 d𝑥.

直接计算如下

∫
𝜋

0
cos 𝑥 sin 𝑛𝑥 d𝑥 = 1

2 ∫
𝜋

0
sin(𝑛 + 1)𝑥 + sin(𝑛 − 1)𝑥 d𝑥 =

⎧

⎨
⎩

0 𝑛为奇数
2𝑛
𝑛2−1

𝑛为偶数
.

∫
𝜋

0

2𝑥
𝜋 sin 𝑛𝑥 d𝑥 = 2

𝜋 ∫
𝜋

0
𝑥(−cos 𝑛𝑥𝑛 )′ d𝑥 = 2

𝜋 ∫
𝜋

0

cos 𝑛𝑥
𝑛 d𝑥 − 2𝑥 cos 𝑛𝑥

𝜋𝑛

|||||||

𝜋

0
= (−1)𝑛+1 2𝑛 .

∫
𝜋

0
sin 𝑛𝑥 d𝑥 =

1 − (−1)𝑛

2 =
⎧

⎨
⎩

− 2
𝑛

𝑛为奇数

0 𝑛为偶数
.

代入𝐵𝑛表达式可得

𝐵𝑛 =
⎧

⎨
⎩

0 𝑛为奇数
4

𝜋𝑛2(𝑛2−1)
𝑛为偶数

.

进而方程的解为

𝑢(𝑡, 𝑥) = (1 − 𝑥
𝜋) ⋅ 2𝑡 +

∞∑

𝑘=1

1
𝜋𝑘2(4𝑘2 − 1)

sin(2𝑘𝑡) sin(2𝑘𝑥).

试题 4-1 (20分). 设𝑢(𝑡, 𝑥)满足如下热方程，初值𝜑 ∈ 𝐶([0, 𝜋])分段可微且满足相容性条件𝜑(0) =
𝜑(𝜋) = 0.

𝑢𝑡 − 𝑢𝑥𝑥 = 0 (𝑡 > 0, 𝑥 ∈ (0, 𝜋)), 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0 (𝑡 ⩾ 0), 𝑢(0, 𝑥) = 𝜑(𝑥) (𝑥 ∈ [0, 𝜋]).

(1) (15分)若𝜑(𝑥) = {
𝑥 𝑥 ∈ [0, 𝜋

2
]

𝜋 − 𝑥 𝑥 ∈ [ 𝜋
2
, 𝜋]

,证明：对任意𝑡 ⩾ 0有𝑒−𝑡 ⩽ max
𝑥∈[0,𝜋]

𝑢(𝑡, 𝑥) ⩽ 𝜋
2
𝑒−𝑡.

(2) (5分)若已知存在常数𝐶 > 0, 𝑎 > 1使得 max
𝑥∈[0,𝜋]

|𝑢(𝑡, 𝑥)| ⩽ 𝐶𝑒−𝑎𝑡对任意𝑡 ⩾ 0成立，则初值𝜑(𝑥)在

开区间(0, 𝜋)内是否一定有零点？证明你的结论。

解析. 本题选自章老师班上作业题(讲义习题4.1.4)，并增加第二问。第一问的做法即为比较原
理：我们注意到最小特征值𝜆 = 1的特征函数𝐴 sin 𝑥对应的解为𝐴𝑒−𝑡 sin 𝑥，而给定的初值可以
被sin 𝑥和𝜋

2
sin 𝑥从下方、上方分别界住，因此直接使用比较原理就完事了。第二问则是从分离变量

所得的正弦级数展开直接看出：因为sin 𝑛𝑥模态对应的衰减是𝑒−𝑛2𝑡，因此若给定的衰减率为𝑒−𝑎𝑡 (𝑎 >
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1)时，我们就必须让𝑛 = 1的傅立叶系数为零，这说明∫𝜋0 𝜑(𝑥) sin 𝑥 d𝑥 = 0,而sin 𝑥在(0, 𝜋)恒为正，所
以𝜑必须在(0, 𝜋)内变号，进而必有零点。

证明. (1)注意到sin 𝑥 ⩽ 𝜑(𝑥) ⩽ 𝜋
2
sin 𝑥. 而初值为𝐴 sin 𝑥时，方程的解为𝐴𝑒−𝑡 sin 𝑥. 据热方程的比较原理，

我们得到𝑒−𝑡 sin 𝑥 ⩽ 𝑢(𝑡, 𝑥) ⩽ 𝜋
2
𝑒−𝑡 sin 𝑥对任意𝑡 ⩾ 0, 𝑥 ∈ [0, 𝜋]恒成立。从而得到对任意𝑡 ⩾ 0有𝑒−𝑡 ⩽

max
𝑥∈[0,𝜋]

𝑢(𝑡, 𝑥) ⩽ 𝜋
2
𝑒−𝑡.

(2)据分离变量法，可得

𝑒𝑎𝑡𝑢(𝑡, 𝑥) = 𝑎1𝑒(𝑎−1)𝑡 sin 𝑥 + 𝑒(4−𝑎)𝑡
∞∑

𝑛=2
𝑎𝑛𝑒(4−𝑛

2)𝑡 sin 𝑛𝑥.

对固定的𝑡 > 0,上式右端的级数是一致收敛的。若要想一致有界，则必须𝑎1 = 0. 这就说明

𝑎1 =
2
𝜋 ∫

𝜋

0
𝜑(𝑥) sin 𝑥 d𝑥 = 0.

而sin 𝑥在开区间(0, 𝜋)内恒为正，所以𝜑(𝑥)必须在(0, 𝜋)内有零点，否则𝑎1非零。

试题 4-2 (20分). 设𝐵1 ⊂ ℝ3是单位开球，记Ω ∶= ℝ3∖𝐵1. 已知𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω)是如下定解问题的解

−∆𝑢 + 𝑐(𝒙)𝑢 = 0 (𝒙 ∈ Ω), 𝑢 = 𝑔(𝒙) (𝒙 ∈ 𝜕Ω), lim
|𝒙|→∞

𝑢(𝒙) = 1.

其中𝑐(𝒙) ⩾ 0且在Ω上局部有界(即在Ω的任一紧子集上都有界)。
(1) (15分)证明：sup

𝒙∈Ω
|𝑢(𝒙)| ⩽ max{1, max

𝒙∈𝜕Ω
|𝑔(𝒙)|}.

(2) (5分)若𝑐 = 0, 𝑔 = 0,如上方程是否必有解？若有，请构造一个例子；否则请证明不存在。

解析. 本题选自赵老师班上的作业题(周蜀林教材习题2.27)，并增加第二问。本题是极大值原理的直
接应用，第二问只要想到基本解的性质就很简单了。

证明. (1)证法一：令𝑀 = max {1,max
𝑥∈𝜕Ω

|𝑔(𝑥)|} .我们证明在 Ω上 𝑢(𝑥) ≤ 𝑀和 𝑢(𝑥) ≥ −𝑀.

首先证明 𝑢(𝑥) ≤ 𝑀。用反证法，假设存在 𝒙0 ∈ Ω使得 𝑢(𝒙0) > 𝑀. 对𝑅 > 1,记Ω𝑅 ∶= 𝐵(𝟎, 𝑅)∖𝐵1. 因为
lim

|𝒙|→∞
𝑢(𝒙) = 1 ⩽ 𝑀，所以存在 𝑅0 > 0，当 |𝒙| ⩾ 𝑅0时，𝑢(𝒙) ⩽

𝑢(𝒙0)+𝑀
2

< 𝑢(𝒙0).

今取 𝑅 > max{𝑅0, |𝒙0|}，函数 𝑢 在 Ω𝑅 上连续，故在某点 𝒑 ∈ Ω𝑅 取到最大值。由于在 |𝒙| = 𝑅 上
𝑢(𝒙) < 𝑢(𝒙0)，且在边界 |𝒙| = 1上 𝑢 = 𝑔 ⩽ 𝑀 < 𝑢(𝒙0)，所以 𝒑必满足 𝒑 ∈ Ω𝑅。并且 𝑢(𝒑) ≥ 𝑢(𝒙0) > 𝑀 >
0，也就是说我们实际证明了𝑢在Ω𝑅的内点取到非负最大值。

由于Ω𝑅是有界连通开集，据𝑐 ⩾ 0的强极大值原理可得 𝑢在Ω𝑅中是常数，由边界条件 𝑢|𝜕Ω = 𝑔及无穷
远条件 𝑢 → 1可知 𝑢 ≡ 1，显然满足 𝑢 ⩽ 𝑀，这与假设 𝑢(𝒙0) > 𝑀矛盾。所以 𝑢(𝒙) ⩽ 𝑀在 Ω上成立。
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同理，可以证明𝑢(𝒙) ⩾ −𝑀在 Ω上成立。
(1)证法二：同样作截断计算∆(𝑢2) = 2𝑢∆𝑢 + 2|∇𝑢|2 = 2𝑐𝑢2 + 2|∇𝑢|2 ⩾ 0. 因为𝑢2非负且在无穷远是

有界的，所以由下调和函数的弱极大值原理可得𝑢2在Ω𝑅的边界上取到非负最大值，即对任意𝒙 ∈ Ω𝑅成立

sup
Ω𝑅

𝑢(𝒙) ⩽ max{max
𝜕𝐵1

𝑔+, max
𝜕𝐵𝑅

𝑢+}.

又因为𝑢在无穷远处的极限是1，所以对任意𝜀 > 0存在充分大的半径𝑅𝜀 ≫ 1使得|𝑢 − 1| < 𝜀在|𝒙| ⩾ 𝑅𝜀时
恒成立。所以，对给定的𝜀 > 0, 𝒙 ∈ ℝ𝑑，我们取𝑅 > max{|𝒙|, 𝑅𝜀}便有 sup

Ω𝑅

𝑢(𝒙) ⩽ max{max
𝜕𝐵1

|𝑔|, 1 + 𝜀}. 因为

点𝒙是任意的，且𝜀可以任意小，所以令𝜀 → 0即得结论，同理可以证明−𝑢的下界。
(2)必有解，例如𝑢(𝒙) = 1− 1

|𝒙|
，即利用位势方程基本解来构造。（这个应该是唯一满足要求的解）

试题 5 (15分). 设常数𝑎 > 0，函数𝑢(𝑡, 𝑥)是如下有限区间(0, 1)上的粘性Burgers方程的古典解。

𝑢𝑡 − 𝑎𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0 (𝑡 > 0, 𝑥 ∈ (0, 1)), 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 (𝑡 ⩾ 0), 𝑢(0, 𝑥) = 𝜑(𝑥) (𝑥 ∈ [0, 1]).

其中初值𝜑(𝑥) ∈ 𝐶2([0, 1])满足相容性条件 𝜑(0) = 𝜑(1) = 𝜑′′(0) = 𝜑′′(1) = 0. 用能量法证明：
(1) (6分)若𝜑(𝑥) = 0,则方程的解𝑢(𝑡, 𝑥) = 0.
(2) (9分)该方程满足 max

𝑡⩾0,𝑥∈[0,1]
|𝑢𝑥(𝑡, 𝑥)| ⩽ 2026的解𝑢(𝑡, 𝑥)是唯一的。

解析. 本题需要注意粘性Burgers方程不是线性方程， 所以第一问并不蕴含第二问。 第二问中
的|𝑢𝑥|一致有界实际上是可以证明的，但这门课所学内容不足以证明它成立。实际上本题还可以
用Cole-Hopf变换+极值原理证明，但是这个内容并不在课程要求内；另一方面，我们希望考察同学
们使用能量法解题。（当然我确实改到有同学用Cole-Hopf变换硬解第一题，算对了也给了6分。）

证明. (1)方程两边乘以𝑢然后积分，分部积分并利用𝑢的零边值可得到

1
2
d
d𝑡
∫
1

0
𝑢(𝑡, 𝑥)2 d𝑥 + 𝑎 ∫

1

0
(𝑢𝑥(𝑡, 𝑥))2 d𝑥 + ∫

1

0

1
3𝜕𝑥(𝑢

3) d𝑥 = 0 ⇒ 1
2
d
d𝑡
∫
1

0
𝑢(𝑡, 𝑥)2 d𝑥 = −𝑎 ∫

1

0
(𝑢𝑥(𝑡, 𝑥))2 d𝑥 ⩽ 0.

所以∫10 𝑢(𝑡, 𝑥)
2 d𝑥关于𝑡单调递减，进而∫10 𝑢(𝑡, 𝑥)

2 d𝑥 ⩽ ∫10 𝜑(𝑥)
2 d𝑥 = 0.

(2)根据提示可算出𝑤的方程为𝑤𝑡 −𝑎𝑤𝑥𝑥 +
1
2
[(𝑢 + 𝑣)𝑤𝑥 + (𝑢𝑥 +𝑣𝑥)𝑤] = 0,𝑤的边值和初值都为零。𝑤满

足的方程两边乘以𝑤然后积分得

1
2
d
d𝑡
∫
1

0
𝑤(𝑡, 𝑥)2 d𝑥 + 𝑎 ∫

1

0
(𝑤𝑥(𝑡, 𝑥))2 d𝑥 +

1
2 ∫

1

0
(𝑢 + 𝑣)𝑤𝑥𝑤 + (𝑢𝑥 + 𝑣𝑥)𝑤2 d𝑥 = 0.

上式前两项不动，对第三个积分中的第一项分部积分且利用零边值可得

∫
1

0
(𝑢 + 𝑣)𝑤𝑥𝑤 d𝑥 = −∫

1

0
(𝑢 + 𝑣)𝑤𝑥𝑤 d𝑥 − ∫

1

0
(𝑢𝑥 + 𝑣𝑥)𝑤2 d𝑥 ⇒ ∫

1

0
(𝑢 + 𝑣)𝑤𝑥𝑤 d𝑥 = −12 ∫

1

0
(𝑢𝑥 + 𝑣𝑥)𝑤2 d𝑥.
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所以

1
2
d
d𝑡
∫
1

0
𝑤(𝑡, 𝑥)2 d𝑥 = −𝑎 ∫

1

0
(𝑤𝑥(𝑡, 𝑥))2 d𝑥 −

1
4 ∫

1

0
(𝑢𝑥 + 𝑣𝑥)𝑤2 d𝑥 ⩽ 0 + 1

4 ∫
1

0
(2 × 2026)𝑤2 d𝑥.

令𝐸(𝑡) = 1
2
∫10 𝑤(𝑡, 𝑥)

2 d𝑥,则𝐸′(𝑡) ⩽ 2026𝐸(𝑡). 由Grönwall不等式得𝐸(𝑡) ⩽ 𝐸(0)𝑒2026𝑡，而𝐸(0) = 0迫使𝐸(𝑡) ≡
0.

试题 6 (15分). 设𝑢 ∈ 𝐶2(ℝ3)是方程−∆𝑢 + 𝑢 = 0 (𝒙 ∈ ℝ3)的有界解。

(1) (6分)若𝑢是径向函数，即𝑢(𝒙)的取值仅依赖𝑟 ∶= |𝒙|. 证明：𝑢必为零。
(2) (9分)若去掉(1)中“𝑢是径向函数”的假设，证明：𝑢仍然必为零。
提示：证明(2)可考虑用𝑢在点𝒙处的球面平均替代𝑢(𝒙)本身。本题亦有多种其它解法不依赖该

提示，若用其它方法直接给出(2)的正确证明，则仍然可得15分。请注意，题设条件不足以使得定
义Fourier变换的积分式收敛，本题不允许使用缓增分布的Fourier变换及其性质证明结论。

解析. 本题的本质是(−∆)的特征值必须非负，而题给方程若有非零有界解则表明−1也是特征值，矛
盾。这一点也可以从傅立叶变换考虑，但是题给条件没有给出任何可积性的信息，因此需要在缓增

分布意义下作傅立叶变换才能得到(1 + |𝝃 |2)𝑢̂(𝝃 ) = 0在缓增分布意义下成立，进而𝑢̂(𝝃 ) = 0在缓增分
布意义下成立。

考虑径向解（解法一）是直接将方程化为常微分方程(𝑟𝑢)′′ = 𝑟𝑢,这个过程与推导 ℝ3 中波动方

程的 Kirchhoff 公式的想法类似；对非径向解，我们就固定一点并考虑该点处的球面平均即可化为
一样的方程。

此题也可用能量法做（解法二），但题目条件没给任何可积性，因此需要取合适的截断函数。此

题还可通过构造辅助函数然后用极大值原理做（解法三），当然这可能需要你有“比较集中的注意

力”（实际上用|𝒙|的偶数幂次加基本解来构造辅助函数是并不罕见的技巧）。需注意，这两个解法的
证明和计算过程都是不依赖维数的；解法一理论上也不依赖维数，但是对𝑑 ≠ 3去解𝜑的常微分方程
就比较复杂。

证法一：球面平均法（对应原题），该方法只有三维容易计算. (1)若𝑢是径向解，设𝑣(𝑟) = 𝑢(𝒙), |𝒙| = 𝑟.则
由Laplace算子的径向部分表达式∆𝑢(𝒙) = 𝑣′′(𝑟) + 2

𝑟
𝑣′(𝑟)知，原方程化作关于𝑟变量的常微分方程

𝑣′′(𝑟) + 2
𝑟 𝑣

′(𝑟) = 𝑣(𝑟). 本班同学再写不出来真要打屁股了！

接下来令𝑉(𝑟) ∶= 𝑟𝑣(𝑟),则可得到𝑉′(𝑟) = 𝑣(𝑟) + 𝑟𝑣′(𝑟), 𝑉′′(𝑟) = 2𝑣′(𝑟) + 𝑟𝑣′′(𝑟),进而上述常微分方程在两边
同时乘以𝑟2之后化为

𝑉′′(𝑟) = 𝑉(𝑟) ⇒ 𝑉(𝑟) = 𝐴𝑒𝑟 + 𝐵𝑒−𝑟.

因为𝑢有界，所以|𝑉(𝑟)|在𝑟 → +∞时关于𝑟只有线性增长，这表明𝐴 = 0. 另一方面仍由𝑢的有界性知𝑉(0) =
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0,这迫使𝐵 = 0,从而方程只有零解。
(2)固定𝒙 ∈ ℝ3,定义𝑢在𝜕𝐵(𝒙, 𝑟)上的积分平均 𝜑(𝑟) ∶= 1

4𝜋𝑟2
∫𝜕𝐵(𝒙,𝑟) 𝑢(𝒚) d𝑆𝒚,并令𝜑(0) = 𝑢(𝒙). 下面证明

断言. 对𝑟 > 0有 𝜑′′(𝑟) + 2
𝑟
𝜑′(𝑟) = 𝜑(𝑟).

断言的证明并不困难。首先我们计算𝜑′(𝑟). 令𝒚 = 𝒙 + 𝑟𝒛, 𝒛 ∈ 𝕊2,则𝜑(𝑟) = 1
4𝜋
∫𝕊2 𝑢(𝒙 + 𝑟𝒛) d𝑆𝒛,所以

𝜑′(𝑟) = 1
4𝜋 ∫

𝕊2
𝒛 ⋅ ∇𝑢(𝒙 + 𝑟𝒛) d𝑆𝒛 =

1
4𝜋𝑟2

∫
𝜕𝐵(𝒙,𝑟)

∇𝑢(𝒚) ⋅
𝒚 − 𝒙
𝑟 d𝑆𝒚 =

1
4𝜋𝑟2

∫
𝐵(𝒙,𝑟)

∆𝑢(𝒚) d𝒚.

利用积分的极坐标表示，得到

𝑟2𝜑′(𝑟) = 1
4𝜋 ∫

𝑟

0
∫
𝜕𝐵(𝒙,𝜌)

∆𝑢(𝒚) d𝑆𝒚 d𝜌.

对𝑟求导并代入方程，得到

d
d𝑟
(𝑟2𝜑′(𝑟)) = 1

4𝜋 ∫
𝜕𝐵(𝒙,𝑟)

∆𝑢(𝒚) d𝑆𝒚 = 𝑟2 ⨏
𝜕𝐵(𝒙,𝑟)

∆𝑢(𝒚) d𝑆𝒚 = 𝑟2 ⨏
𝜕𝐵(𝒙,𝑟)

𝑢(𝒚) d𝑆𝒚 = 𝑟2𝜑(𝑟).

直接计算得2𝑟𝜑′ + 𝑟2𝜑′′ = 𝑟2𝜑,两边除以𝑟2即得断言成立。
接下来令Φ(𝑟) ∶= 𝑟𝜑(𝑟),求二阶导并代入断言后有Φ′′(𝑟) = 𝑟𝜑′′(𝑟) + 2𝜑′(𝑟) = 𝑟𝜑(𝑟) = Φ(𝑟). 而Φ(0) =

0 ⋅ 𝑢(𝒙) = 0,解常微分方程得到 Φ(𝑟) = 𝐴(𝑒𝑟 − 𝑒−𝑟). 但是𝑢有界，从而𝜑有界，所以Φ至多关于𝑟是线性增长
的，因此𝐴 = 0是唯一可能的选择，这就得出球面平均𝜑 ≡ 0,进而也得到𝑢(𝒙) = lim

𝑟→0+
𝜑(𝑟) = 0.

证法二：能量法，该方法不依赖维数. 由于没有假设𝑢及其各阶导数的𝐿2可积性，故不能直接乘以𝑢然后直
接在ℝ3上积分。先考虑作截断，令𝐸(𝑅) ∶= 𝑖𝑛𝑡𝐵(𝟎,𝑅)|∇𝑢|2 + 𝑢2 d𝒙. 一方面，据移动区域求导公式，可得

𝐸′(𝑅) = ∫
𝜕𝐵(𝟎,𝑅)

|∇𝑢|2 + 𝑢2 d𝑆𝒙.

另一方面，在𝐸(𝑅)的第一项中分部积分并利用方程，可得

𝐸(𝑅) = ∫
𝜕𝐵(𝟎,𝑅)

𝑢 𝜕𝑢
𝜕𝑁

d𝑆𝒙.

在这个表达式右边用均值不等式，可得𝐸′(𝑅) ⩾ 2𝐸(𝑅).若𝑢不恒为零，则存在𝑅0 > 0使得𝐸(𝑅0) > 0,于是求
解上述微分不等式得到𝐸(𝑅) ⩾ 𝐸(𝑅0)𝑒2(𝑅−𝑅0)，它关于半径具有指数增长。
接下来我们证明𝐸(𝑅)关于𝑅至多只有线性增长，从而导出矛盾。这需要不出现边界积分项，为此我们

令𝜁 ∈ 𝐶∞𝑐 (ℝ3)是非负、径向的光滑截断函数，满足𝜁||𝒙|⩽1 = 1, 𝜁||𝒙|⩾2 = 0,且关于|𝒙|单调不增, |∇𝜁| ⩽ 𝐶对
某个常数𝐶 > 0成立。再令𝜁𝑅(𝒙) ∶= 𝜁(𝒙∕𝑅),今在方程两边乘以𝜁2𝑅𝑢积分可得

∫
ℝ𝑑
(𝜁2𝑅𝑢)∆𝑢 d𝒙 = ∫

ℝ3
(𝜁𝑅𝑢)2 d𝒙.



10

左边分部积分，并利用∇(𝜁𝑅(𝒙)) =
1
𝑅
∇𝜁(𝒙∕𝑅)，整理后得到

−2𝑅 ∫ℝ𝑑
𝜁𝑅𝑢(𝒙)∇𝜁(

𝒙
𝑅) ⋅ ∇𝑢(𝒙) d𝒙 = ∫

ℝ𝑑
(𝜁𝑅𝑢)2 + |𝜁𝑅∇𝑢|2 d𝒙.

对左边用Cauchy-Schwarz不等式得到

− 2
𝑅 ∫ℝ𝑑

𝜁𝑅𝑢(𝒙)∇𝜁(
𝒙
𝑅) ⋅ ∇𝑢(𝒙) d𝒙 ⩽

2𝐶
𝑅 ∫

ℝ𝑑
|∇𝜁(𝒙𝑅)𝑢||𝜁𝑅∇𝑢(𝒙)| d𝒙

⩽ 2
𝑅 (∫ℝ𝑑

|∇𝜁(𝒙𝑅)𝑢|
2 d𝒙)

1
2

(∫
ℝ𝑑
|𝜁𝑅∇𝑢(𝒙)|2 d𝒙)

1
2

⩽ 2
𝑅 (∫ℝ𝑑

|∇𝜁(𝒙𝑅)𝑢|
2 d𝒙)

1
2

(∫
ℝ𝑑
|𝜁𝑅∇𝑢(𝒙)|2 + |𝜁𝑅𝑢(𝒙)|2 d𝒙)

1
2

.

若令𝐼(𝑅) ∶= ∫ℝ𝑑(𝜁𝑅𝑢)2 + |𝜁𝑅∇𝑢|2,则由|∇𝜁| ⩽ 𝐶就有

𝐼(𝑅) ⩽ 4
𝑅2

∫
ℝ𝑑
|∇𝜁(𝒙𝑅)𝑢|

2 d𝒙 ⩽ 4𝐶2

𝑅2
∫
𝑅<|𝒙|<2𝑅

𝑢2 d𝒙 ⩽ 4𝐶2

𝑅2
⋅ 𝛼(𝑑)(2𝑑 − 1)𝑅𝑑 ⋅ 𝑀2 ⩽ 𝐶′𝑅𝑑−2 (𝑀 ∶= max

ℝ𝑑
|𝑢|).

又因为𝐸(𝑅) ⩽ 𝐼(𝑅),所以𝐸𝑅 ⩽ 𝐶′𝑅𝑑−2,这与𝐸(𝑅) ⩾ 𝐸(𝑅0)𝑒2(𝑅−𝑅0)矛盾，因此𝐸(𝑅) = 𝐼(𝑅) ≡ 0,进而𝑢 ≡ 0.

证法三：构造辅助函数用极大值原理，该方法不依赖维数. 这里我们写𝑑 ⩾ 3的证明。设|𝑢| ⩽ 𝑀, 令𝑣 =
|𝒙|2 + 𝐴|𝒙|2−𝑑 (𝒙 ≠ 𝟎)，其中𝐴 > 0充分大（实际上𝐴 > 𝑑

√
𝑑即可）。计算得∆𝑣 = 2𝑑, 进而对任意𝜀 >

0有𝐿𝑢 ∶= −∆𝑢 + 𝑢 = 0 ⩽ 𝐿(𝜀𝑣) = 𝜀(|𝒙|2 − 2𝑑 + 𝐴|𝒙|−1), (∀𝒙 ≠ 0).
再考虑区域Ω𝜀 ∶= {𝒙 ∈ ℝ3 ∶ 𝜀2 < |𝒙| < 𝜀−2}. 则只要𝜀 > 0充分小，便有𝜀𝑣 ⩾ 𝑢在𝜕Ω𝜀上成立：

• |𝒙| = 𝜀−2时，𝜀𝑣(𝒙) = 𝜀1−4𝑑 + 𝐴𝜀2𝑑−3 ⩾ 𝑀; |𝒙| = 𝜀2时，𝜀𝑣(𝒙) = 𝜀5 + 𝐴𝜀5−2𝑑 ⩾ 𝑀.
由于算子𝐿中的零阶项系数为正，因此由椭圆算子的极大值原理得知𝑢(𝒙) ⩽ 𝜀(|𝒙|2 + 𝐴|𝒙|2−𝑑)在Ω𝜀中恒成

立。令𝜀 → 0+得到𝑢 ⩽ 0对任意𝑥 ≠ 𝟎成立。请注意，到这里不足以推出𝑢是常值函数！
同理我们可以证明−𝑢和𝑢满足同样的结论：−𝑢 ⩽ 0对任意𝑥 ≠ 𝟎成立。因此𝑢在ℝ𝑑∖{𝟎}恒成立，又因

为𝑢连续，所以𝑢必为零。

注记 1. 𝑑 = 2的情况实际上更简单，此时令𝑣(𝒙) = |𝒙|2 + 5,则𝐿(𝜀𝑣) = 𝜀(1 + |𝒙|2) ⩾ 0 = 𝐿𝑢. 现在考虑半径
为𝑅的球𝐵(𝟎, 𝑅),在|𝒙| = 𝑅上我们有𝜀𝑣 = 𝑅2 + 5 ⩾ |𝑢| (只需𝑅 = 𝑅𝜀 >

√
𝑀∕𝜀即可)。这样用极大值原理就得

到𝑢(𝒙) ⩽ 𝜀(|𝒙|2 + 5)对任意𝒙 ∈ 𝐵(0, 𝑅𝜀)恒成立。再令𝜀 → 0，以及对−𝑢考虑同样的计算即可。

试题 7 (15分，附加题). 设𝑑 ⩾ 2,函数𝑢 ∈ 𝐶∞(ℝ𝑑)是方程∆2𝑢 = 0 (𝒙 ∈ ℝ𝑑)的非负解。

(1) (6分)证明：∆𝑢 ⩾ 0在ℝ𝑑恒成立。

(2) (9分)证明：𝑢是次数不超过2的多项式。
提示：回忆平均值原理和梯度估计是怎么证明的，对后者如何利用某些量的非负性？
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解析. 本题第二问是2025年丘成桐大学生数学竞赛分析与微分方程个人赛决赛试题（丘赛决赛是口
试），据说考场上给的提示是本题第一问。在出考题时我是想改编下面这道讲义上未布置的题，然

后又想到丘赛决赛题恰好可以这么做，因此就有了这道考题。

习题4.2.9. 设𝑣是ℝ𝑑内的调和函数，且存在常数𝐶 > 0, 𝑝 > 0使得𝑣(𝒙) ⩾ −𝐶|𝒙|𝑝对任
意𝒙 ∈ ℝ𝑑成立，则𝑣是次数不超过𝑝的多项式。

我们知道如果ℝ𝑑上的调和函数𝑣满足|𝑣(𝒙)| ⩽ 𝐶|𝒙|𝑝, 则由梯度估计很容易得到结论；现在改成
单侧的界，结论也是正确的。应用到此题上只需令𝑣 = ∆𝑢,则𝑣是调和函数；在第一问的基础上，由
Liouville定理立刻得到𝑣 = 𝐶,进而借助技巧∆(|𝒙|2) = 2𝑑构造出𝑣 − 𝐶

2𝑑
|𝒙|2满足习题4.2.9在𝑝 = 2时的

条件。而习题4.2.9的证明与Evans或周蜀林书上的梯度估计没有太大差别，也就是我们上课说的“要
证明一个函数是次数不超过𝑝的多项式，只需证明其[𝑝] + 1阶及以上的导数皆为零”。在下面给出的
几个证明中都可以看出：本题第一问是关键步骤（据说是决赛现场给的提示），而它的证明基本是

如法炮制平均值原理的推导过程。

网上有人（在评价这届丘赛试题时）说：“压轴题比较钓鱼,读者首先要证明多调和函数的Nico-
lesco分解，考试只有40分钟根本来不及完成，也正如颁奖典礼的‘遗憾的是分析没有满分’，作者
表示这要是能满分就无敌了。”然而解决此题只需要修改平均值原理和梯度估计的证明，所以这题也

根本不是网上所说的“钓鱼题”。事实上丘赛决赛口试是难在“40分钟要大致解决三道难题”，对知
识面的“广度”和“对重要定理证明方法/重要工具从思想层面上的把握”要求非常高，而并非从犄
角旮旯翻出一些罕为人知的内容。该年口试难在同期题目还有泛函分析(H)考过两次(2016、2024)的
知名结论（是Grothendieck证明的）

“𝐿2([0, 1])的闭子空间如果落在𝐶([0, 1])里，则必是有限维的。”

当然这道题也有很多证法，大部分泛函书上给出的是利用闭图像定理证明，但实际上也有纯实变方

法（几乎不依赖任何泛函分析）的证明。

在阅卷过程中，我改到本班有一位同学几乎做对了这道题，最终给了他12分（扣分扣在第
一问），他也是今年两个班245位同学中唯一一位获得总评100分的。值得一提的是，他证明第二
问的方法比下述证法一（我出考题时写的证法）要简单，因此在这里记录为证法二。本班除了

一位同学附加题获得12分之外，另有7位同学获得5–8分不等，至少证得了一部分“本质进展”。
另外，从赵老师班的梁儒彬助教那里我得知了23级李恩涵同学在决赛现场给出的用Harnack不
等式的做法，在征求到他的同意后我把他的证明放到证法三予以展示，该方法也是非常巧妙。

总之科大同学应该相信自己的能力，不要轻易受他人言论影响，更不要畏难。 对能力较强的同学

来说，在适度超前学习的过程中逐步拓宽知识面也是提升数学素养的一种途径，而参照丘赛大纲和

往年题确实也是一种可取的方法（这也是当年我们在信息、资源相对缺乏情况下的学习方法之一），

当然如果能在竞赛中获得奖项就更好了。

证法一. (1)先证明：∆𝑢 ⩾ 0恒成立。固定𝒙 ∈ ℝ𝑑,定义𝑢在点𝒙处的球面平均𝜑(𝑟) ∶= ⨏𝜕𝐵(𝒙,𝑟) 𝑢(𝒚) d𝑆𝒚.
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解法一：模仿调和函数平均值原理的证明可得

𝜑′(𝑟) = ⨏
𝜕𝐵(𝒙,𝑟)

𝜕𝑢
𝜕𝑁

(𝒚) d𝑆𝒚
散度定理
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 1

𝑑𝛼(𝑑)𝑟𝑑−1
∫
𝐵(𝒙,𝑟)

∆𝑢(𝒚) d𝒚 = 𝑟
𝑑
⨏
𝐵(𝒙,𝑟)

∆𝑢(𝒚) d𝒚.

又因为∆𝑢是调和函数，所以据平均值原理得𝜑′(𝑟) = 𝑟
𝑑
⨏𝐵(𝒙,𝑟) ∆𝑢(𝒚) d𝒚 = 𝑟

𝑑
∆𝑢(𝒙).

下面用反证法：假设存在点𝒙使得∆𝑢(𝒙) < 0。此时在𝜑′(𝑟) = 𝑟
𝑑
∆𝑢(𝒙)的两边对𝑟积分可得𝜑(𝑟) = 𝜑(0) +

𝑟2

2𝑑
∆𝑢(𝒙).注意到等式右边是二次项系数为负的二次函数，所以当𝑟充分大时右边必定为负值。但左边 𝜑(𝑟)

是 𝑢的球面平均，据条件 𝑢 ⩾ 0知道 𝜑 ⩾ 0必定成立，矛盾。所以必有∆𝑢 ⩾ 0恒成立。
解法二：模仿第六题第二问证明可得 𝜑′′(𝑟) + 𝑑−1

𝑟
𝜑′(𝑟) = ⨏𝜕𝐵(𝒙,𝑟) ∆𝑢 d𝑆 = ∆𝑢(𝒙). 解该常微分方程同样

可得𝜑(𝑟) = 𝜑(0) + 𝑟2

2𝑑
∆𝑢(𝒙).后面同解法一。

(2)欲证明𝑢是次数不超过2的多项式，只要证明𝑢的⩾ 3阶偏导数皆为零即可。由(1)得知，∆𝑢是ℝ𝑑上的

非负调和函数，所以必为常值(习题4.2.8(2))，即存在常数𝐶 ∈ ℝ使得∆𝑢 = 𝐶在ℝ𝑑上恒成立。接下来令𝑣 =
𝑢 − 𝐶

2𝑑
|𝒙|2,则

𝑣(𝒙) ⩾ − 𝐶
2𝑑
|𝒙|2, ∆𝑣 = 0.

据梯度估计，任给一点𝒙0 ∈ ℝ𝑑,对正整数𝑘 ⩾ 3和阶数为𝑘的多重指标𝛼,我们有

|𝜕𝛼𝑣(𝒙0)| ⩽
𝐶𝑘
𝑟𝑑+𝑘

∫
𝐵(𝒙0,𝑟)

|𝑣(𝒙)| d𝒙 ⩽
𝐶𝑘
𝑟𝑑+𝑘

[∫
𝐵(𝒙0,𝑟)

|𝑢(𝒙)| d𝒙 + 𝐶
2𝑑

∫
𝐵(𝒙0,𝑟)

|𝒙|2 d𝒙]

=
𝐶𝑘
𝑟𝑑+𝑘

[∫
𝐵(𝒙0,𝑟)

𝑢(𝒙) d𝒙 + 𝐶
2𝑑

∫
𝐵(𝒙0,𝑟)

|𝒙|2 d𝒙] (这里用到𝑢 ⩾ 0)

=
𝐶𝑘
𝑟𝑑+𝑘

[∫
𝐵(𝒙0,𝑟)

𝑣(𝒙) d𝒙 + 𝐶
𝑑
∫
𝐵(𝒙0,𝑟)

|𝒙|2 d𝒙] (这里用到𝑢 = 𝑣 + 𝐶
2𝑑
|𝒙|2).

由于𝑣是调和函数，据平均值原理得∫𝐵(𝒙0,𝑟) 𝑣(𝒙) d𝒙 = 𝛼(𝑑)𝑟𝑑𝑣(𝒙0). 而上式最后一个积分可以直接估计：
注意到𝐵(𝒙0, 𝑟) ⊂ 𝐵(𝟎, |𝒙0| + 𝑟),因此有

∫
𝐵(𝒙0,𝑟)

|𝒙|2 d𝒙 ⩽∫
𝐵(𝟎,|𝒙0|+𝑟)

|𝒙|2 d𝒙 =
𝑑𝛼(𝑑)
𝑑 + 2

(|𝒙0| + 𝑟)𝑑+2.

将以上估计代入梯度估计就得到：对正整数𝑘 ⩾ 3和阶数为𝑘的多重指标𝛼成立不等式

|𝜕𝛼𝑣(𝒙0)| ⩽ 𝐶𝑘 [𝑟−𝑘𝛼(𝑑)𝑣(𝒙0) +
2𝑑𝛼(𝑑)
𝑑 + 2

⋅
(|𝒙0| + 𝑟)𝑑+2

𝑟𝑑+𝑘
] .

令𝑟 → ∞,因为𝒙0是已经固定的点，所以可以看出上式在𝑘 ⩾ 3时必将趋向于0，这就证明了𝑢的3阶及以上各
阶偏导数皆为零。

证法二（该方法(2)来自本班最高分同学的答卷）. (1)同解法一。
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(2)由(1)得知，∆𝑢是ℝ𝑑上的非负调和函数，所以必为常值(习题4.2.8(2))，即存在常数𝐶 ∈ ℝ使得∆𝑢 =
𝐶在ℝ𝑑上恒成立。又因为𝑢是光滑函数，所以对该方程求导知𝑢的任意阶偏导数皆为ℝ𝑑上的调和函数。接下

来证明𝑢的⩾ 3阶偏导数皆为零即可。设1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑑, 𝒙0 ∈ ℝ𝑑, 𝑅 > 0，对𝜕𝑗𝜕𝑘𝑢用梯度估计得

|𝜕3𝑖𝑗𝑘𝑢(𝒙0)| ⩽
𝑑
𝑅 max

𝜕𝐵(𝒙0,𝑅)
|𝜕2𝑗𝑘𝑢(𝒙0)| =

𝑑
𝑅|𝜕

2
𝑗𝑘𝑢(𝒚0)|, for some 𝒚0 ∈ 𝜕𝐵(𝒙0, 𝑅).

接下来继续对𝜕𝑘𝑢在𝒚0处用梯度估计，再用平均值原理得：存在𝒛0 ∈ 𝜕𝐵(𝒚0, 𝑅)使得

|𝜕3𝑖𝑗𝑘𝑢(𝒙0)| ⩽
𝑑2

𝑅2
|𝜕𝑘𝑢(𝒛0)| =

𝑑2

𝑅2

|||||||||
⨏
𝐵(𝒛0,𝑅)

𝜕𝑘𝑢(𝒛) d𝒛
|||||||||
.

分部积分可得

⨏
𝐵(𝒛0,𝑅)

𝜕𝑘𝑢(𝒛) d𝒛 =
1

𝛼(𝑑)𝑅𝑑
∫
𝜕𝐵(𝒛0,𝑅)

𝑢(𝒛)𝑁𝑘(𝒛) d𝑆𝒛 =
𝑑
𝑅 ⨏𝜕𝐵(𝒛0,𝑅)

𝑢(𝒛)𝑁𝑘(𝒛) d𝑆𝒛,

进而

|𝜕3𝑖𝑗𝑘𝑢(𝒙0)| ⩽
𝑑3

𝑅3

|||||||||
⨏
𝜕𝐵(𝒛0,𝑅)

𝑢(𝒛)𝑁𝑘(𝒛) d𝑆𝒛
|||||||||
⩽ 𝑑3

𝑅3
⨏
𝜕𝐵(𝒛0,𝑅)

|𝑢(𝒛)| d𝑆𝒛
𝑢⩾0
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 𝑑

3

𝑅3
⨏
𝜕𝐵(𝒛0,𝑅)

𝑢(𝒛) d𝑆𝒛.

而据(1)的证明过程知⨏𝜕𝐵(𝒛0,𝑅) 𝑢(𝒛) d𝑆𝒛 = 𝑢(𝒛0)+
𝐶
2𝑑
𝑅2,代入上式并令𝑅 → ∞知，对任意的1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑑, 𝒙0 ∈

ℝ𝑑有𝜕3𝑖𝑗𝑘𝑢(𝒙0) = 0,这说明𝑢的⩾ 3阶偏导数皆为零，所以𝑢是次数不超过2的多项式。

证法三：用Harnack不等式（该解法来自去年的参赛选手李恩涵同学）. (1)同解法一。
(2)令𝑣(𝒙) = 𝑢(𝒙) − 𝐶

2𝑑
|𝒙|2，则有∆𝑣 = 0恒成立，且𝑣具有单侧二次函数下界𝑣(𝒙) ⩾ − 𝐶

2𝑑
|𝒙|2. 现在只需

证明存在(充分大的)常数𝐴 > 0使得𝑣(𝒙) ⩽ 𝐴(1 + |𝒙|2),就可结合单侧下界即可推出 |𝑣(𝒙)| ⩽ 𝐴(1 + |𝒙|2),进
而据Liouville定理知𝑣是次数不超过2的多项式。
构造函数𝑓𝑟(𝒙) = 𝑣(𝑟𝒙) + 𝐶

𝑑
𝑟2,则调和函数𝑓𝑟(𝒙) > 0对𝒙 ∈ 𝐵(𝟎, 1), 𝑟 > 0恒成立。据Harnack不等式有

sup
𝒙∈𝐵(𝟎, 1

2
)

𝑓𝑟(𝒙) ⩽ 𝐶′𝑓𝑟(𝟎) ⩽ 𝐶′ (𝑣(𝟎) + 𝐶
𝑑
𝑟2) ⇒ 𝑣(𝑟𝒙) ⩽ 𝐶′𝑣(𝟎) + 𝐶

𝑑
(𝐶′ − 1)𝑟2.

今对任意给定的𝒚 ∈ ℝ𝑑,我们选取𝑟 = 2|𝒚|, 𝒙 = 𝒚
𝑟
,进而|𝒙| = 1

2
. 于是就有

𝑣(𝒚) ⩽ 𝐶′𝑣(𝟎) + 4𝐶
𝑑
(𝐶′ − 1)|𝒚|2 ⩽ 𝐶′𝑣(𝟎) + 4𝐶𝐶′

𝑑
|𝒚|2, 即为所求。
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失败的尝试：从径向解到球面平均. 这个证法是我在印完试卷回办公室的路上想到的（因为想到第六题用

了这个方法所以试了一下），后来算了一下，感觉这是一种失败的想法，因为球面平均关于半径的增长率

并非函数本身的增长率，用球面平均代替径向解的方法是在𝑟 → 0时好用，而非𝑟 → ∞.
我们采用第六题的思想，先计算径向有界解，然后再用球面平均替代径向解。设𝑣 = ∆𝑢,则∆𝑣 = 0. 利

用Laplace算子的径向部分表达式，我们可得两个常微分方程

𝑣′′(𝑟) + 𝑑 − 1
𝑟 𝑣′(𝑟) = 0, 𝑢′′(𝑟) + 𝑑 − 1

𝑟 𝑢′(𝑟) = 𝑣(𝑟).

首先可以直接算出𝑣的表达式 𝑣(𝑟) =
⎧

⎨
⎩

𝐴 ln 𝑟 + 𝐵 𝑑 = 2

𝐴𝑟2−𝑑 + 𝐵 𝑑 ⩾ 3
. 然后将其代入𝑢的方程，讨论如下情况

• 𝑑 = 2. 此时𝑢满足的方程可化简为 1
𝑟
(𝑟𝑢′)′ = 𝐴 ln 𝑟 + 𝐵,把𝑟乘过去并积分得到

𝑢′(𝑟) = 𝐴
2 𝑟 ln 𝑟 + (𝐵2 −

𝐴
4 ) 𝑟 +

𝐶
𝑟 ⇒ 𝑢(𝑟) = 𝐶1 + 𝐶2𝑟2 + 𝐶3 ln 𝑟 + 𝐶4𝑟2 ln 𝑟.

• 𝑑 ⩾ 3,此时𝑢满足的方程可以化简为 1
𝑟𝑑−1

(𝑟𝑑−1𝑢′)′ = 𝐴
𝑟𝑑−2

+ 𝐵,也即 d
d𝑟
(𝑟𝑑−1𝑢′(𝑟)) = 𝐴𝑟 + 𝐵𝑟𝑑−1,积分得

到𝑟𝑑−1𝑢′(𝑟) = 𝐴
2
𝑟2 + 𝐵

𝑑
𝑟𝑑 + 𝐶,进而

𝑢′(𝑟) = 𝐴
2 𝑟

3−𝑑 + 𝐵
𝑑
𝑟 + 𝐶𝑟1−𝑑.

所以此时需要进一步讨论3 − 𝑑 = 0,−1, ⩽ −2三种情况，也就是𝑑 = 3, 4, ⩾ 5的情况：

– 𝑑 = 3,此时𝑢(𝑟) = 𝐶1 + 𝐶2𝑟2 +
𝐶3
𝑟
+ 𝐶4𝑟.

– 𝑑 = 4,此时𝑢(𝑟) = 𝐶1 + 𝐶2𝑟2 + 𝐶3 ln 𝑟 +
𝐶4
𝑟2
.

– 𝑑 ⩾ 5,此时𝑢(𝑟) = 𝐶1 + 𝐶2𝑟2 + 𝐶3𝑟2−𝑑 + 𝐶4𝑟4−𝑑.

由于我们考虑的是方程的古典径向解，因此我们不允许方程的解在原点(𝑟 = 0)爆破，因此我们必须删去𝑟的
负幂次和ln 𝑟这样的项；又因为𝑢非负，所以𝑟的正奇数幂次也要删去。综上所述，无论维数𝑑 ⩾ 2到底是多
少，满足条件的径向解只可能是𝑢(𝑟) = 𝐶1 + 𝐶2𝑟2的形式。

对非径向的情况，我们固定𝒙 ∈ ℝ𝑑,定义𝑢在点𝒙处的球面平均𝜑(𝑟) ∶= ⨏𝜕𝐵(𝒙,𝑟) 𝑢(𝒚) d𝑆𝒚. 则𝜑(𝑟) = 𝐶1 +
𝐶2𝑟2. （所以我们绕了这么大的弯子才得到一些初步结论）。请注意这并不足以推出𝑢具有相同的阶（考虑
反例𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2），我们仍然需要证明∫𝐵(0,𝑅) 𝑢 d𝒙 = ∫𝐵(0,𝑅) |𝑢| d𝒙 ≤ 𝐶𝑅𝑑+2,之后再用证法二中(2)的
梯度估计。


