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章俊彦∗

极大值原理、格林函数

作业题 1 (习题4.1.3). 设𝑓 ∶ ℝ → ℝ是单调递增函数, Ω ⊂ ℝ𝑑是有界区域, 常数𝑇 > 0. 设𝑢 ∈
𝐶2

1 (Ω𝑇 ) ∩ 𝐶(Ω𝑇 )是如下方程的解

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑢 − Δ𝑢 + 𝑓 (𝑢) = 0, in Ω𝑇

𝑢(0,𝒙) = 𝜑(𝒙), 𝑡 = 0, 𝒙 ∈ Ω

𝑢(𝑡,𝒙) = 𝑔(𝑡,𝒙), 𝑡 ⩾ 0,𝒙 ∈ 𝜕Ω,

其中𝜑, 𝑔是给定的有界光滑函数。

(1) 设𝑓 ∈ 𝐶1,叙叙叙述述述并并并证证证明明明微分算子𝑢 ∶= 𝜕𝑡𝑢 − Δ𝑢 + 𝑓 (𝑢)的比较原理。
(2) 如果只假设𝑓连续，证明上述方程解的唯一性。

证明. （1）比较原理可叙述为

设𝑢, 𝑣 ∈ 𝐶2
1 (Ω𝑇 ) ∩ 𝐶(Ω𝑇 )满足

𝑢 ⩽ 𝑣 in Ω𝑇 , 𝑢 ⩽ 𝑣 on Γ𝑇 ,

则𝑢 ⩽ 𝑣在Ω𝑇恒成立。

证明该结论只需在比较原理的题给条件两端作差即可。令𝑤 ∶= 𝑢 − 𝑣，则我们得到

𝑢 − 𝑣 = 𝜕𝑡𝑤 − Δ𝑤 + 𝑓 (𝑢) − 𝑓 (𝑣) = 𝜕𝑡𝑤 − Δ𝑤 + 𝑓 ′(𝜁 )𝑤 for some 𝜁.

而𝑓单调递增且𝐶1, 则𝑓 ′ ⩾ 0恒成立，所以由𝑐 ⩾ 0的弱极大值原理(讲义的推论4.1.2)得知𝑢 ⩽
𝑣在Ω𝑇恒成立。
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（2）如果只假设𝑓连续，则此时无法用拉格朗日中值定理。现在可以用能量法证明，设𝜑, 𝑔给
定时，𝑢1, 𝑢2均为方程的解，则考虑𝑣 ∶= 𝑢1 − 𝑢2，其满足

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑣 − Δ𝑣 + 𝑓 (𝑢1) − 𝑓 (𝑢2) = 0, in Ω𝑇

𝑣(0,𝒙) = 0, 𝑡 = 0, 𝒙 ∈ Ω

𝑣(𝑡,𝒙) = 0, 𝑡 ⩾ 0,𝒙 ∈ 𝜕Ω,

两边乘以𝑣并积分得到

∫Ω
(𝜕𝑡𝑣)𝑣 − (Δ𝑣)𝑣 + (𝑓 (𝑢1) − 𝑓 (𝑢2)) (𝑢1 − 𝑢2)

⏟⏞⏟⏞⏟
=𝑣

d𝒙 = 0

第二项分部积分，并利用零边值，得到

1
2
d
d𝑡 ∫Ω

𝑣2 d𝒙 = − ∫Ω
|∇𝑣|2 d𝒙 − ∫Ω

(𝑓 (𝑢1) − 𝑓 (𝑢2))(𝑢1 − 𝑢2) d𝒙 ⩽ 0,

这里用到了𝑓是单调递增的（进而(𝑓 (𝑢1) − 𝑓 (𝑢2))(𝑢1 − 𝑢2) ⩾ 0恒成立）。而𝑣的初值是零，所以这表
明∫Ω 𝑣(𝑡,𝒙)

2 d𝒙 ≡ 0,即𝑢1 ≡ 𝑢2.

作业题 2 (习题4.1.4). 考虑一维热方程

𝑢𝑡 − 𝑢𝑥𝑥 = 0 in [0,+∞) × (0, 𝜋), 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0 (𝑡 ⩾ 0).

(1) 证明: 对任意𝑎 ∈ ℝ, 𝑣(𝑡, 𝑥) = 𝑎𝑒−𝑡 sin 𝑥满足上述方程。

(2) 若初值选取为𝑢(0, 𝑥) =

{

𝑥 𝑥 ∈ [0, 𝜋2 ]

𝜋 − 𝑥 𝑥 ∈ [𝜋2 , 𝜋]
,证明：对应的解满足𝑒−𝑡 ⩽ max

𝑥∈[0,𝜋]
𝑢(𝑡, 𝑥) ⩽ 𝜋

2
𝑒−𝑡.

提示: (2)可以用比较原理，可以联想(1)中解的初值是什么。

证明. (1)代入计算即可，略。
(2)观察给定的初值函数的图像可知，它可以被sin 𝑥(即(1)中的解对应的初值)的常数倍从上下

两侧界住，具体我们有

∀𝑥 ∈ [0, 𝜋], sin 𝑥 ⩽ 𝑢(0, 𝑥) ⩽ 𝜋
2
sin 𝑥.

而由(1)知，初值为sin 𝑥, 𝜋
2
sin 𝑥时方程的解分别为𝑒−𝑡 sin 𝑥, 𝜋

2
𝑒−𝑡 sin 𝑥. 又因为它们边值全为零，所以

由热方程的比较原理知，对任意𝑇 > 0有

𝑒−𝑡 sin 𝑥 ⩽ 𝑢(𝑡, 𝑥) ⩽ 𝜋
2
𝑒−𝑡 sin 𝑥 ∀(𝑡, 𝑥) ∈ [0, 𝑇 ] × [0, 𝜋].
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再对𝑥变量取最大值即得结论。

作业题 3 (习题4.2.3，下调和函数的弱极值原理). 设Ω ⊂ ℝ𝑑是有界开集（未必是区域）。函数𝑢 ∈
𝐶2(Ω) ∩ 𝐶(Ω)是Ω中的下下下调调调和和和函函函数数数,即−Δ𝑢 ⩽ 0在Ω内恒成立。

(1) 证明：对任意球𝐵(𝒙, 𝑟) ⋐ Ω，成立𝑢(𝒙) ⩽ ⨏𝐵(𝒙,𝑟) 𝑢(𝒚) d𝒚.
(2) 证明：max

Ω
𝑢 = max

𝜕Ω
𝑢.

(3) 证明：若𝑣 ∈ 𝐶3(Ω) ∩ 𝐶1(Ω)是Ω内的调和函数，则|∇𝑣|在𝜕Ω上达到最大值。

提示：(1)先证明−Δ𝑢 < 0的情况，对一般情况考虑扰动𝑢𝜀(𝒙) = 𝑢(𝒙) + 𝜀|𝒙|2. (2)计算Δ(|∇𝑣|2).

证明. (1)给定𝒙 ∈ Ω和球𝐵(𝒙, 𝑟) ⋐ Ω,令𝜑(𝑟) = ⨏𝜕𝐵(𝒙,𝑟) 𝑢(𝒚) d𝑆𝒚. 模仿平均值原理证明得

𝜑′(𝑟) = 𝑟
𝑑 ⨏𝐵(𝒙,𝑟)

Δ𝑢(𝒚) d𝒚 ⩾ 0.

因此对任意𝑟 > 0,有𝜑(𝑟) ⩾ lim
𝑟→0+

𝜑(𝑟) = 𝑢(𝒙).

再看体积平均，我们有

∫𝐵(𝒙,𝑟)
𝑢(𝒚) d𝒚 = ∫

𝑟

0 ∫𝜕𝐵(𝒙,𝜌)
𝑢 d𝑆𝒚 d𝜌 = ∫

𝑟

0
𝑑𝛼(𝑑 − 1)𝜌𝑑−1𝜑(𝜌) d𝜌

⩽𝑑𝛼(𝑑 − 1) ∫

𝑟

0
𝜌𝑑−1𝑢(𝒙) d𝜌 = 𝛼(𝑑)𝑟𝑑𝑢(𝒙) = vol (𝐵(𝒙, 𝑟))𝑢(𝒙).

(2) 对𝜀 > 0, 令𝑢𝜀(𝒙) = 𝑢(𝒙) + 𝜀|𝒙|2, 则Δ𝑢𝜀 = Δ𝑢 + 2𝑑𝜀 > 0. 反证法：如果𝑢𝜀的最大值
在内点𝒙0 ∈ Ω得到，则Hess 𝑢𝜀(𝒙0)是半负定方阵，因此Δ𝑢𝜀(𝒙0) = TrHess 𝑢𝜀(𝒙0) ⩽ 0, 矛盾。因
此max

Ω
𝑢𝜀 = max

𝜕Ω
𝑢𝜀. 现在有

max
Ω
𝑢 ⩽ max

Ω
𝑢𝜀 = max

𝜕Ω
𝑢𝜀 ⩽ max

𝜕Ω
𝑢 + 𝜀max

𝜕Ω
|𝒙|2.

因为Ω有界，所以max
𝜕Ω

|𝒙|2 < ∞，从而在上述不等式中令𝜀 → 0即得结论。

(3)计算Δ(|∇𝑣|2). 我们知道|∇𝑣|2 =
𝑑
∑

𝑗=1
(𝜕𝑗𝑣)2. 求导得

𝜕𝑖(|∇𝑣|2) = 2
𝑑
∑

𝑗=1
(𝜕𝑗𝑣)(𝜕𝑖𝜕𝑗𝑣).
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再求导得

𝜕2𝑖 (|∇𝑣|
2) = 2

𝑑
∑

𝑗=1
(𝜕𝑗𝑣)(𝜕2𝑖 𝜕𝑗𝑣) + (𝜕𝑖𝜕𝑗𝑣)2.

对𝑖求和，得到Δ(|∇𝑣|2) = 2(∇𝑣) ⋅ ∇(Δ𝑣) + 2|∇2𝑣|2 = 2|∇2𝑣|2 ⩾ 0. 由(2)即得结论。

作业题 4 (习题4.2.5). 设Ω ∶= 𝐵(𝟎, 1) ⊂ ℝ𝑑, 𝑢 ∈ 𝐶3(Ω) ∩ 𝐶1(Ω)满足

Δ𝑢 − 2𝑢 = 1 in Ω, 𝑢|𝜕Ω = 𝑔(𝒙).

这里𝑔是𝜕Ω上的连续函数，证明：存在常数𝐶 > 0使得max
Ω

|𝑢| ⩽ max
𝜕Ω

|𝑔| + 𝐶.

提示：选取充分大的常数𝜆 > 0,使得Δ(𝑢2 + 𝜆|𝒙|2) ⩾ 0.

证明. 先计算Δ(𝑢2). 对1 ⩽ 𝑖 ⩽ 𝑑有𝜕𝑖(𝑢2) = 2𝑢𝜕𝑖𝑢, 故𝜕2𝑖 𝑢 = 2𝑢𝜕2𝑖 𝑢 + 2(𝜕𝑖𝑢)2. 对𝑖求和得Δ(𝑢2) =
2𝑢Δ𝑢 + 2|∇𝑢|2.代入方程得到

Δ(𝑢2) = 2|∇𝑢|2 + 4𝑢2 + 2𝑢 ⩾ 2|∇𝑢|2 + 4𝑢2 − 𝑢2 − 1 = 2|∇𝑢|2 + 3𝑢2 − 1.

又因为Δ(|𝒙|2) = 2𝑑,所以令𝑣(𝒙) = 𝑢2(𝒙) + 1
2𝑑
|𝒙|2便有Δ𝑣 ⩾ 0恒成立。据极大值原理得知

max
Ω
𝑢2 ⩽ max

Ω
𝑣 ⩽ max

𝜕Ω
𝑔2 + 1

2𝑑
.

作业题 5 (习题4.2.6). 设𝑢 ∈ 𝐶3(Ω) ∩𝐶(Ω)是开集Ω内的非非非负负负调和函数,球𝐵(𝒙0, 𝑅) ⋐ Ω.证明：对任
意1 ⩽ 𝑖 ⩽ 𝑑有|𝜕𝑥𝑖𝑢(𝒙0)| ⩽

𝑑
𝑅
𝑢(𝒙0).

证明. 由于𝑢是调和函数，所以𝜕𝑖𝑢也是调和函数，对𝜕𝑖𝑢用平均值原理再分部积分得：对任意𝒙0 ∈
ℝ𝑑 , 𝑅 > 0有

𝜕𝑖𝑢(𝒙0) =
1

𝛼𝑑𝑅𝑑 ∫𝐵(𝒙0,𝑅)
𝜕𝑖𝑢(𝒙) d𝒙 = 1

𝛼(𝑑)𝑅𝑑 ∫𝜕𝐵(𝒙0,𝑅)
𝑢𝑁𝑖 d𝑆 = 𝑑

𝑅 ⨏𝜕𝐵(𝒙0,𝑅)
𝑢𝑁𝑖 d𝑆.

现在利用𝑢 ⩾ 0得知

|𝜕𝑖𝑢(𝒙0)| ⩽
𝑑
𝑅 ⨏𝜕𝐵(𝒙0,𝑅)

|𝑢| ⋅ |𝑁| d𝑆 = 𝑑
𝑅 ⨏𝜕𝐵(𝒙0,𝑅)

𝑢 d𝑆.

最后用调和函数平均值原理得上述不等式右边等于 𝑑
𝑅
𝑢(𝒙0).
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本题（以及讲义上的梯度估计）实际上可以把等式左边改成|∇𝑢(𝒙0)|. 事实上，我们直接考虑
向量值的积分，仿照证明可得

∇𝑢(𝒙0) =
𝑑
𝑅 ⨏𝜕𝐵(𝒙0,𝑅)

𝑢(𝒙)𝑁⃗(𝒙) d𝑆𝒙

⇒ |∇𝑢(𝒙0)| ⩽
𝑑
𝑅 ⨏𝜕𝐵(𝒙0,𝑅)

|𝑢(𝒙)| ⋅ |𝑁⃗(𝒙)|
⏟⏟⏟

=1

d𝑆𝒙
𝑢⩾0
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐

𝑑
𝑅 ⨏𝜕𝐵(𝒙0,𝑅)

𝑢(𝒙) d𝑆𝒙.

作业题 6 (习题4.2.8). 设𝑢是ℝ𝑑中的调和函数。证明：若𝑢满足以下两条件中任一个，则𝑢是常数。

(1) ∃常数 𝐶 > 0, 𝑝 > 0使得 |𝑢(𝒙)| ⩽ 𝐶 (log(1 + |𝒙|𝑝) + 1) ∀𝒙 ∈ ℝ𝑑 .
(2) ∃常数 𝐶 ∈ ℝ, 𝑢(𝒙) ⩾ 𝐶 ∀𝒙 ∈ ℝ𝑑 .

证明. (1)任取一点𝒙0 ∈ ℝ𝑑和𝑅 > 0,据梯度估计有

|∇𝑢(𝒙0)| ⩽
𝑑
𝑅

max
𝐵(𝒙0,𝑅)

|𝑢| ⩽ 𝐶𝑑
𝑅

(

log(1 + (|𝒙0| +𝑅)𝑝) + 1
)

.

令𝑅 → ∞知上式右边趋于零，因此𝑢的各个一阶偏导数皆为零，𝑢就是常值函数。
(2) 令𝑣 = 𝑢 − 𝐶, 则𝑣是ℝ𝑑上的非负调和函数。由上一题结论得：对任意𝒙0 ∈ ℝ𝑑 , 𝑅 > 0有

|𝜕𝑥𝑖𝑣(𝒙0)| ⩽
𝑑
𝑅
𝑣(𝒙0). 令𝑅 → ∞，右边趋于零，因此𝑣的各个一阶偏导数皆为零，𝑣就是常值函数，

所以𝑢 = 𝑣 + 𝐶也是常值函数。

作业题 7 (习题4.3.5). 设𝑢𝑖 ∈ 𝐶2(Ω) ∩ 𝐶(Ω) (𝑖 = 1, 2)是如下方程的解

−Δ𝑢𝑖 + 𝑐𝑖(𝒙)𝑢𝑖 = 0 in Ω, 𝑢𝑖|𝜕Ω = 𝑔𝑖(𝒙).

若𝑐2(𝒙) ⩾ 𝑐1(𝒙) ⩾ 0和𝑔1(𝒙) ⩾ 𝑔2(𝒙) ⩾ 0恒成立，证明：𝑢1(𝒙) ⩾ 𝑢2(𝒙)在Ω上恒成立。
提示：先证明𝑢𝑖 ⩾ 0,再考虑𝑢1 − 𝑢2满足的方程和边值条件。

证明. 第一步：证明 𝑢𝑖 ⩾ 0。 对每个 𝑖 = 1, 2，由于 𝑐𝑖 ⩾ 0 且 𝑔𝑖 ⩾ 0，应用极大值原理即可（定
理4.3.2），具体证明如下。假设 𝑢𝑖 在 Ω上的最小值是负数，则最小值必在某个内点 𝒙0 ∈ Ω处达
到。在最小值点 𝒙0 处，有 Δ𝑢𝑖(𝒙0) ⩾ 0且 𝑢𝑖(𝒙0) < 0。代入方程得

−Δ𝑢𝑖(𝒙0) + 𝑐𝑖(𝒙0)𝑢𝑖(𝒙0) < 0,

这与方程 −Δ𝑢𝑖 + 𝑐𝑖𝑢𝑖 = 0矛盾。因此 𝑢𝑖 的最小值非负，即𝑢𝑖(𝒙) ⩾ 0, ∀𝒙 ∈ Ω.
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第二步：令 𝑤 = 𝑢1 − 𝑢2。将两个方程相减得

−Δ𝑤 + 𝑐1𝑤 = (𝑐2 − 𝑐1)𝑢2.

由条件 𝑐2 ⩾ 𝑐1 和 𝑢2 ⩾ 0 知 (𝑐2 − 𝑐1)𝑢2 ⩾ 0，从而−Δ𝑤 + 𝑐1𝑤 ⩾ 0 (𝒙 ∈ Ω), 边界条件为𝑤|𝜕Ω =
𝑔1 − 𝑔2 ⩾ 0.

第三步：证明 𝑤 ⩾ 0。再次对 −Δ𝑤 + 𝑐1𝑤 ⩾ 0应用极大值原理（定理4.3.2，同第一步）可得
𝑤的最小值非负，即

𝑤(𝑥) = 𝑢1(𝑥) − 𝑢2(𝑥) ⩾ 0, ∀𝑥 ∈ Ω.

这就完成了证明。

作业题 8 (习题5.2.1). 设Ω ⊂ ℝ𝑑 (𝑑 ⩾ 2)是边界光滑的有界区域，定义𝐷 ∶= sup{|𝒙 − 𝒚| ∶ 𝒙, 𝒚 ∈
Ω}为Ω的直径。记Φ(𝒙)为Laplace方程的基本解（见讲义上的定义3.3.1）。今固定𝒙 ∈ Ω,证明：

(1) 格林函数𝐺(𝒙, 𝒚) ∶= Φ(𝒙 − 𝒚) − 𝜓𝒙(𝒚)是唯一的，且满足∫𝜕Ω
𝜕𝐺
𝜕𝑁

(𝒙, 𝒚) d𝑆𝒚 = −1;
(2) 当 𝑑 ⩾ 3时,对任意𝒚 ≠ 𝒙, 𝒚 ∈ Ω有0 < 𝐺(𝒙, 𝒚) < Φ(𝒙 − 𝒚)成立;
(3) 当 𝑑 = 2时,对任意𝒚 ≠ 𝒙, 𝒚 ∈ Ω有0 < 𝐺(𝒙, 𝒚) < − 1

2𝜋
ln |𝒙−𝒚|

𝐷
成立.

证明. (1) 由于基本解给定，所以只要证明𝜓𝒙(𝒚)的唯一性。但现在给定𝒙 ∈ Ω的时候，𝜓𝒙(𝒚)的边
值也是给定的函数。又因为Ω有界，所以由极大值原理知𝜓𝒙(𝒚)唯一。然后设𝑢是边值恒为1的调和
函数，据上课讲的格林函数推导有

𝑢(𝒙) = − ∫𝜕Ω
𝑢(𝒚) 𝜕𝐺

𝜕𝑁
(𝒙, 𝒚) d𝑆𝒚 − ∫Ω

𝐺(𝒙, 𝒚)Δ𝑢(𝒚) d𝒚.

由有界区域调和函数Dirichlet问题解的唯一性知𝑢 ≡ 1(因为这是解，所以只能是唯一解)，代入上
式即得∫𝜕Ω

𝜕𝐺
𝜕𝑁

(𝒙, 𝒚) d𝑆𝒚 = −1.
(2)-(3) 我们先证明𝐺(𝒙, 𝒚) > 0. 据修正项𝜓𝒙(𝒚)的定义知𝜓𝒙(𝒚)是有界的。而另一方面我们知

道lim
𝒚→𝒙

Φ(𝒙− 𝒚) = +∞，这就表明 lim
𝒚→𝒙

𝐺(𝒙, 𝒚) = +∞,因此存在𝜀 > 0使得𝒚 ∈ 𝐵(𝒙, 𝜀)时恒有𝐺(𝒙, 𝒚) >
0.

又因为我们在Ω∖𝐵(𝒙, 𝜀)中有Δ𝒚𝐺 = 0以及边界条件 𝐺|𝜕Ω = 0和𝐺|𝜕𝐵(𝒙,𝜀) > 0. 由强极值原理,我
们得到 𝐺(𝒙, 𝒚) > 0在 Ω∖𝐵(𝒙, 𝜀)恒成立.

然后再证不等式右边。对𝑑 ⩾ 3，我们只要证明𝜓𝒙(𝒚) > 0在Ω内恒成立：这由极大值原理即得
（因为𝜓𝒙(𝒚)的边值是正的），进而min

Ω
𝜓𝒙(𝒚) ⩾ min

𝒚∈𝜕Ω
Φ(𝒚 − 𝒙) > 0.

对𝑑 = 2，它等价于证明−𝜓𝒙(𝒚) < 1
2𝜋

ln𝐷在Ω上成立，这可以由极大值原理证得。事实上我
们有Δ( 1

2𝜋
ln𝐷 + 𝜓𝒙(𝒚)) = 0在Ω上成立，且 1

2𝜋
ln𝐷 + 𝜓𝒙(𝒚) = 1

2𝜋
ln( 𝐷

|𝒙−𝒚|
) < 0在边界𝜕Ω上成立。据

强极值原理得知 1
2𝜋

ln𝐷 + 𝜓𝒙(𝒚) < 0在Ω上成立.
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作业题 9 (习题5.2.3，球上的Harnack不等式). 设𝑢是闭球𝐵(𝟎, 𝑅) ⊂ ℝ𝑑上的非负调和函数。

(1) 结合讲义上的公式(5.2.9)证明

𝑅𝑑−2 𝑅 − |𝒙|
(𝑅 + |𝒙|)𝑑−1

𝑢(𝟎) ⩽ 𝑢(𝒙) ⩽ 𝑅𝑑−2 𝑅 + |𝒙|
(𝑅 − |𝒙|)𝑑−1

𝑢(𝟎)

(2) 用(1)证明：∀𝑟 ∈ (0, 𝑅),成立不等式 sup
𝐵(𝟎,𝑟)

𝑢 ⩽ (𝑅+𝑟
𝑅−𝑟

)𝑑 inf
𝐵(𝟎,𝑟)

𝑢.

证明. 据格林函数给出的表达式知道

𝑢(𝒙) = 𝑅2 − |𝒙|2

𝑑𝛼(𝑑)𝑅 ∫𝜕𝐵(𝟎,𝑅)
𝑢(𝒚)

|𝒙 − 𝒚|𝑑
d𝑆𝒚 = (𝑅2 − |𝒙|2)𝑅𝑑−2

⨏𝜕𝐵(𝟎,𝑅)
𝑢(𝒚)

|𝒙 − 𝒚|𝑑
d𝑆𝒚.

我们知道对任意𝒙 ∈ 𝐵(𝟎, 𝑟), 𝑟 < 𝑅以及任意𝒚 ∈ 𝜕𝐵(𝟎, 𝑅)有

𝑅 − |𝒙| ⩽ |𝒙 − 𝒚| ⩽ 𝑅 + |𝒙|.

代入积分式放缩分母，再用调和函数平均值原理得知

𝑅𝑑−2 𝑅2 − |𝒙|2

(𝑅 + |𝒙|)𝑑
𝑢(𝟎) ⩽ 𝑢(𝒙) ⩽ 𝑅𝑑−2 𝑅2 − |𝒙|2

(𝑅 − |𝒙|)𝑑
𝑢(𝟎).

(2)设𝒙, 𝒛 ∈ 𝐵(𝟎, 𝑟),则有

𝑢(𝒙) ⩽ 𝑅𝑑−2(𝑅 + 𝑟)
(𝑅 − 𝑟)𝑑−1

𝑢(𝟎) ⩽ 𝑅𝑑−2(𝑅 + 𝑟)
(𝑅 − 𝑟)𝑑−1

⋅ 𝑢(𝒛) (𝑅 + 𝑟)𝑑+1

𝑅𝑑−2(𝑅 − 𝑟)
=
(𝑅 + 𝑟
𝑅 − 𝑟

)𝑑
𝑢(𝒛).

其中第一个不等式是用(1)不等式右边得到，第二个不等式是用(1)不等式左边得到。

作业题 10 (问题4.1.1，选做). 习题4.1.4中，假设初值𝑢(0, 𝑥) = 𝑢0(𝑥) ∈ 𝐶1([0, 𝜋])且满足𝑢0(0) =
𝑢0(𝜋) = 0，证明：存在常数𝐶 > 0，使得对应的解满足 sup

𝑥∈[0,𝜋]
|𝑢(𝑡, 𝑥)| ⩽ 𝐶𝑒−𝑡.

提示：将𝑢0(𝑥)与习题4.1.4(1)初值的常数倍相比较，这是本题假设初值𝐶1的原因所在。

注记 0.1. 本题是习题4.1.4的一般情况，其实对高维有界区域(边界充分光滑)也是对的。本质上该
题做法是将给定的𝐶1初值与(−Δ)算子的第第第一一一特特特征征征值值值的的的特特特征征征函函函数数数作比较，而这里要求𝐶1是因为要

用Hopf引理(对一般维数而言)证明初值确实能被第一特征函数的常数倍从上下两侧界住。对一维
情况，大家对𝑢0(𝑥)(注意它的边值是0，且𝐶1到到到边边边界界界，进而边界附近一阶导数也是有界的)和sin 𝑥分
别在区间端点作泰勒展开就能看出来。
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证明. 首先，由 𝑢0 ∈ 𝐶1([0, 𝜋])及 𝑢0(0) = 𝑢0(𝜋) = 0，可证存在常数𝑀 > 0使得 |𝑢0(𝑥)| ⩽ 𝑀 sin 𝑥
对所有 𝑥 ∈ [0, 𝜋]成立。考虑函数

𝑔(𝑥) =
𝑢0(𝑥)
sin 𝑥

, 𝑥 ∈ (0, 𝜋).

在 𝑥 = 0处，据洛必达法则有

lim
𝑥→0+

𝑔(𝑥) = lim
𝑥→0+

𝑢0(𝑥)
sin 𝑥

=
𝑢′0(0)
cos 0

= 𝑢′0(0).

故可定义 𝑔(0) = 𝑢′0(0). 类似地在 𝑥 = 𝜋 处，

lim
𝑥→𝜋−

𝑔(𝑥) = lim
𝑥→𝜋−

𝑢0(𝑥)
sin 𝑥

=
𝑢′0(𝜋)
cos𝜋

= −𝑢′0(𝜋),

故定义 𝑔(𝜋) = −𝑢′0(𝜋). 由于 𝑢0 ∈ 𝐶1([0, 𝜋])，𝑔 在 [0, 𝜋] 上连续，从而存在最大值和最小值。取
𝑀 = max

𝑥∈[0,𝜋]
|𝑔(𝑥)|，则 |𝑢0(𝑥)| ⩽𝑀 sin 𝑥。

构造比较函数 𝑣(𝑡, 𝑥) = 𝑀𝑒−𝑡 sin 𝑥。直接计算得𝑣𝑡 = −𝑀𝑒−𝑡 sin 𝑥, 𝑣𝑥𝑥 = −𝑀𝑒−𝑡 sin 𝑥. 故
𝑣𝑡 − 𝑣𝑥𝑥 = 0，且 𝑣(𝑡, 0) = 𝑣(𝑡, 𝜋) = 0，𝑣(0, 𝑥) =𝑀 sin 𝑥。因此 𝑣是热方程的解。
由 |𝑢0(𝑥)| ⩽ 𝑀 sin 𝑥，有−𝑀 sin 𝑥 ⩽ 𝑢0(𝑥) ⩽ 𝑀 sin 𝑥,即 −𝑣(0, 𝑥) ⩽ 𝑢(0, 𝑥) ⩽ 𝑣(0, 𝑥)。根据热方

程的极大值原理（比较原理），对于所有 𝑡 > 0和 𝑥 ∈ [0, 𝜋]，成立 −𝑣(𝑡, 𝑥) ⩽ 𝑢(𝑡, 𝑥) ⩽ 𝑣(𝑡, 𝑥),亦即

|𝑢(𝑡, 𝑥)| ⩽ 𝑣(𝑡, 𝑥) =𝑀𝑒−𝑡 sin 𝑥 ⩽𝑀𝑒−𝑡.


