
2025年秋季学期偏微分方程作业三讲义

分离变量法

2025年 12月 24日

作业题1–8是必做题，作业题9选做。

作业题 1 (习题3.1.2). 考虑一维带阻尼的波动方程，其中常数𝑑 ∈ (0, 2)

⎧

⎪

⎨

⎪

⎩

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑑𝑢𝑡 = 0 𝑡 > 0, 0 < 𝑥 < 𝜋;

𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0 𝑡 ≥ 0.

求该方程具有分离形式的解𝑢(𝑡, 𝑥) = 𝑇 (𝑡)𝑋(𝑥),并说明𝑡 → +∞时这些解的行为。

证明. 设𝑢(𝑡, 𝑥) = 𝑇 (𝑡)𝑋(𝑥)，代入方程得：

𝑇 ′′(𝑡)𝑋(𝑥) − 𝑇 (𝑡)𝑋′′(𝑥) + 𝑑𝑇 ′(𝑡)𝑋(𝑥) = 0.

分离变量得：
𝑇 ′′(𝑡) + 𝑑𝑇 ′(𝑡)

𝑇 (𝑡)
=

𝑋′′(𝑥)
𝑋(𝑥)

= −𝜆,

其中𝜆为常数。于是得到两个常微分方程：

⎧

⎪

⎨

⎪

⎩

𝑋′′(𝑥) + 𝜆𝑋(𝑥) = 0,

𝑇 ′′(𝑡) + 𝑑𝑇 ′(𝑡) + 𝜆𝑇 (𝑡) = 0.

由边界条件𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0得𝑋(0) = 𝑋(𝜋) = 0。求解𝑋的特征值问题：

𝑋′′ + 𝜆𝑋 = 0, 𝑋(0) = 𝑋(𝜋) = 0.

解得特征值𝜆𝑛 = 𝑛2，特征函数𝑋𝑛(𝑥) = sin(𝑛𝑥)，𝑛 = 1, 2, 3,…。
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对每个𝑛，解𝑇𝑛(𝑡)满足：
𝑇 ′′
𝑛 + 𝑑𝑇 ′

𝑛 + 𝑛2𝑇𝑛 = 0.

特征方程为𝑟2+𝑑𝑟+𝑛2 = 0，根为𝑟 = −𝑑±
√

𝑑2−4𝑛2

2
。由于𝑑 ∈ (0, 2)且𝑛 ≥ 1，有𝑑2−4𝑛2 < 0（当𝑛 = 1时，

𝑑2 < 4成立），故两根为复根：

𝑟 = −𝑑
2
± 𝑖

√

𝑛2 − 𝑑2

4
.

因此，

𝑇𝑛(𝑡) = 𝑒−
𝑑
2 𝑡
(

𝐴𝑛 cos(𝜔𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑛𝑡)
)

其中𝜔𝑛 =
√

𝑛2 − 𝑑2

4
。于是分离变量形式的解为：

𝑢𝑛(𝑡, 𝑥) = 𝑒−
𝑑
2 𝑡
(

𝐴𝑛 cos(𝜔𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑛𝑡)
)

sin(𝑛𝑥).

当𝑡 → +∞时，由于𝑒−
𝑑
2 𝑡衰减至零，故每个𝑢𝑛均指数衰减到零。因此，所有分离变量解当𝑡 → +∞时

趋于零。
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作业题 2 (习题3.1.5). 设𝐴,𝐵是常数，求解如下方程

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0 𝑡 > 0, 0 < 𝑥 < 𝜋

𝑢(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0 0 ≤ 𝑥 ≤ 𝜋

𝑢𝑥(𝑡, 0) = 𝐴𝑡, 𝑢𝑥(𝑡, 𝜋) = 𝐵𝑡 𝑡 ≥ 0.

证明. 为将边界条件齐次化，构造一个函数 𝑣(𝑡, 𝑥)满足非齐次边界条件。取

𝑣(𝑡, 𝑥) = 𝐵 − 𝐴
2𝜋

𝑡𝑥2 + 𝐴𝑡𝑥.

令

𝑤(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − 𝑣(𝑡, 𝑥),

因此 𝑤满足：

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑡𝑡 −𝑤𝑥𝑥 = −𝑣𝑡𝑡 + 𝑣𝑥𝑥 =
𝐵 − 𝐴
𝜋

𝑡, 𝑡 > 0, 0 < 𝑥 < 𝜋,

𝑤𝑥(𝑡, 0) = 𝑤𝑥(𝑡, 𝜋) = 0,

𝑤(0, 𝑥) = 0, 𝑤𝑡(0, 𝑥) = −
(𝐵 − 𝐴

2𝜋
𝑥2 + 𝐴𝑥

)

.

求解 𝑤的定解问题。采用傅里叶余弦展开：

𝑤(𝑡, 𝑥) =
∞
∑

𝑛=0
𝑇𝑛(𝑡) cos(𝑛𝑥).

代入方程得：
∞
∑

𝑛=0

(

𝑇 ′′
𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡)

)

cos(𝑛𝑥) = 𝐵 − 𝐴
𝜋

𝑡.

比较系数：当 𝑛 = 0时，𝑇 ′′
0 (𝑡) =

𝐵 − 𝐴
𝜋

𝑡；当 𝑛 ≥ 1时，𝑇 ′′
𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 0。

初始条件：

𝑤(0, 𝑥) = 0 ⇒ 𝑇𝑛(0) = 0, ∀𝑛 ≥ 0,

𝑤𝑡(0, 𝑥) = −𝐵 − 𝐴
2𝜋

𝑥2 − 𝐴𝑥 =
∞
∑

𝑛=0
𝑇 ′
𝑛(0) cos(𝑛𝑥).

计算余弦系数：

𝑇 ′
0(0) =

1
𝜋 ∫

𝜋

0

(

−𝐵 − 𝐴
2𝜋

𝑥2 − 𝐴𝑥
)

𝑑𝑥 = −𝜋
6
(𝐵 + 2𝐴),
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对于 𝑛 ≥ 1
𝑇 ′
𝑛(0) =

2
𝜋 ∫

𝜋

0

(

−𝐵 − 𝐴
2𝜋

𝑥2 − 𝐴𝑥
)

cos(𝑛𝑥)𝑑𝑥 = 2
𝜋𝑛2

(𝐴 − 𝐵(−1)𝑛).

解常微分方程：

• 对于 𝑛 = 0：
𝑇0(𝑡) =

𝐵 − 𝐴
6𝜋

𝑡3 − 𝜋
6
(𝐵 + 2𝐴)𝑡.

• 对于 𝑛 ≥ 1：
𝑇𝑛(𝑡) =

2
𝜋𝑛3

(𝐴 − 𝐵(−1)𝑛) sin(𝑛𝑡).

因此，

𝑤(𝑡, 𝑥) =
[𝐵 − 𝐴

6𝜋
𝑡3 − 𝜋

6
(𝐵 + 2𝐴)𝑡

]

+
∞
∑

𝑛=1

2
𝜋𝑛3

(𝐴 − 𝐵(−1)𝑛) sin(𝑛𝑡) cos(𝑛𝑥).

最终解为：

𝑢(𝑡, 𝑥) = 𝐵 − 𝐴
2𝜋

𝑡𝑥2 + 𝐴𝑡𝑥 + 𝐵 − 𝐴
6𝜋

𝑡3 − 𝜋
6
(𝐵 + 2𝐴)𝑡 +

∞
∑

𝑛=1

2
𝜋𝑛3

(𝐴 − 𝐵(−1)𝑛) sin(𝑛𝑡) cos(𝑛𝑥).

注记 0.1. 做此类边值非0的情形，应当首先将边值化为Dirichlet边值或者Neumann边值。这是因
为虽然{sin 𝑛𝑥}𝑛∈𝐍和{cos 𝑛𝑥}𝑛∈𝐍 构成𝐿2[0, 𝜋]的完备正交基，但是得到的傅立叶展开式并不一定是
逐点收敛到原函数。

(Dirichlet 定理) 设函数𝑓 (𝑥)以2𝜋为周期。如果在任何有限区间上𝑓 (𝑥)是分段可微的，那么它
的傅立叶级数在整个数轴上都收敛，且

𝑎0
2

+
∞
∑

𝑛=1
(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) =

𝑓 (𝑥 + 0) + 𝑓 (𝑥 − 0)
2

（《数学分析讲义》（第二册）P261）
当我们对边值非0的情形做奇延拓或偶延拓后，就可能出现间断点。导致最后计算出的傅立

叶级数只在区域内部收敛的解。但事实上如果我们将正确答案的所有项都进行傅里叶展开，就能

得到直接傅里叶展开计算的结果。

注记 0.2. 如果利用分离变量法计算发现方程没解，不能说明方程没解，只能说明没有你所写的
形式解。
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作业题 3 (习题3.1.6). 考虑具有固定端点且长度有限的弦发生的受迫振动方程

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = cos 𝑥 cos 5𝑥 sin(𝜔𝑡) 𝑡 > 0, 𝑥 ∈ (0, 𝜋)

𝑢(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0 𝑥 ∈ [0, 𝜋]

𝑢𝑥(𝑡, 0) = 𝑢𝑥(𝑡, 𝜋) = 0 𝑡 ≥ 0,

其中 𝜔 > 0是常数。求解方程并讨论 𝜔为何值时方程的解一致有界？即 sup
𝑡>0,𝑥∈(0,𝜋)

|𝑢(𝑡, 𝑥)| < ∞.

证明. 边界条件为Neumann型，我们使用傅里叶余弦展开。设解为：

𝑢(𝑡, 𝑥) =
∞
∑

𝑛=0
𝑇𝑛(𝑡) cos(𝑛𝑥).

将非齐次项cos 𝑥 cos 5𝑥 sin(𝜔𝑡)也展开为余弦级数。利用积化和差（避免去计算其傅里叶级数展开）：

cos 𝑥 cos 5𝑥 = 1
2
[cos(6𝑥) + cos(4𝑥)].

代入方程：
∞
∑

𝑛=0
(𝑇 ′′

𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡)) cos(𝑛𝑥) =
1
2
sin(𝜔𝑡) cos(6𝑥) + 1

2
sin(𝜔𝑡) cos(4𝑥).

比较系数得：对于𝑛 = 4：𝑇 ′′
4 (𝑡) + 16𝑇4(𝑡) =

1
2
sin(𝜔𝑡)，对于𝑛 = 6：𝑇 ′′

6 (𝑡) + 36𝑇6(𝑡) =
1
2
sin(𝜔𝑡)，对于

其他𝑛：𝑇 ′′
𝑛 (𝑡) + 𝑛2𝑇𝑛(𝑡) = 0。初始条件：𝑢(0, 𝑥) = 0 ⇒ 𝑇𝑛(0) = 0；𝑢𝑡(0, 𝑥) = 0 ⇒ 𝑇 ′

𝑛(0) = 0。
对于𝑛 ≠ 4, 6，方程齐次，初始条件为零，故𝑇𝑛(𝑡) = 0。
对于𝑛 = 4，解非齐次方程。若𝜔 ≠ 4，

𝑇4(𝑡) = − 𝜔
8(16 − 𝜔2)

sin(4𝑡) + 1
2(16 − 𝜔2)

sin(𝜔𝑡).

若𝜔 = 4，则发生共振。此时特解应设为𝐶𝑡 cos(4𝑡)或𝐶𝑡 sin(4𝑡)。设特解𝐶𝑡 cos(4𝑡)，代入确定常数。
或者直接用公式。此时解无界，因为会出现𝑡的线性项。
类似地，对于𝑛 = 6：若𝜔 ≠ 6，则

𝑇6(𝑡) = − 𝜔
12(36 − 𝜔2)

sin(6𝑡) + 1
2(36 − 𝜔2)

sin(𝜔𝑡).

若𝜔 = 6，则共振，解无界。
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因此，解为：

𝑢(𝑡, 𝑥) = 𝑇4(𝑡) cos(4𝑥) + 𝑇6(𝑡) cos(6𝑥).

当𝜔 ≠ 4且𝜔 ≠ 6时，𝑇4(𝑡)和𝑇6(𝑡)均为有界的振荡函数，故𝑢(𝑡, 𝑥)一致有界。当𝜔 = 4或𝜔 = 6时，相
应的𝑇𝑛(𝑡)含有随时间增长的无界项（如𝑡 cos(4𝑡)），故解无界。
所以，当𝜔 ∉ {4, 6}时，解一致有界。
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作业题 4 (习题3.2.3). 考虑具有Neumann边界条件的热传导方程，其中𝑘 ≥ 0是常数

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑘(1 − 𝑢) 𝑡 > 0, 0 < 𝑥 < 𝜋

𝑢(0, 𝑥) = 𝜑(𝑥) 0 ≤ 𝑥 ≤ 𝜋

𝑢𝑥(𝑡, 0) = 𝑢𝑥(𝑡, 𝜋) = 0 𝑡 ≥ 0.

求解这个方程，并计算 lim
𝑡→+∞

𝑢(𝑡, 𝑥). （提示：𝑘 = 0和𝑘 > 0答案不同。）

证明. 方程写为𝑢𝑡 − 𝑢𝑥𝑥 + 𝑘𝑢 = 𝑘。令𝑣(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − 1，则𝑣满足：

𝑣𝑡 − 𝑣𝑥𝑥 + 𝑘𝑣 = 0,

边界条件𝑣𝑥(𝑡, 0) = 𝑣𝑥(𝑡, 𝜋) = 0，初始条件𝑣(0, 𝑥) = 𝜑(𝑥) − 1。
方程𝑣𝑡 − 𝑣𝑥𝑥 + 𝑘𝑣 = 0。分离变量𝑣(𝑡, 𝑥) = 𝑇 (𝑡)𝑋(𝑥)，得：

𝑇 ′

𝑇
= 𝑋′′

𝑋
− 𝑘 = −𝜆,

即𝑋′′ + (𝜆 − 𝑘)𝑋 = 0，𝑇 ′ + 𝜆𝑇 = 0。边界条件𝑋′(0) = 𝑋′(𝜋) = 0。特征值问题：

𝑋′′ + 𝜇𝑋 = 0, 𝑋′(0) = 𝑋′(𝜋) = 0,

其中𝜇 = 𝜆 − 𝑘。解得𝜇𝑛 = 𝑛2，𝑛 = 0, 1, 2,…，特征函数𝑋𝑛(𝑥) = cos(𝑛𝑥)。对应的𝜆𝑛 = 𝑛2 + 𝑘。于是

𝑢(𝑡, 𝑥) =
∞
∑

𝑛=0
𝐴𝑛𝑒

−(𝑛2+𝑘)𝑡 cos(𝑛𝑥),

其中𝐴𝑛为𝜑(𝑥)的傅里叶余弦系数。
当𝑘 = 0, 𝑡 → +∞时，𝑛 ≥ 1项均指数衰减到零，故

lim
𝑡→+∞

𝑢(𝑡, 𝑥) = 1
𝜋 ∫

𝜋

0
𝜑(𝑥)𝑑𝑥.

当𝑘 > 0, 𝑡 → +∞时，所有项均指数衰减到零（包括𝑛 = 0项，因为𝑘 > 0，𝑒−𝑘𝑡 → 0），故

lim
𝑡→+∞

𝑢(𝑡, 𝑥) = 1.
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作业题 5 (习题3.2.5). 考虑如下热传导方程的初边值问题

𝑢𝑡 − 𝑢𝑥𝑥 = 0 𝑡 > 0, 𝑥 ∈ (0, 𝜋); 𝑢(0, 𝑥) = 𝜑(𝑥) ∈ 𝐶2([0, 𝜋]) 0 ≤ 𝑥 ≤ 𝜋; 𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0, 𝑡 ≥ 0.

(1) 证明：方程的解满足估计∫ 𝜋0 𝑢(𝑡, 𝑥)2 d𝑥 ≤ 𝑒−2𝑡 ∫ 𝜋0 𝜑(𝑥)2 d𝑥.
(2) 证明：存在常数𝐶 > 0使得|𝑢(𝑡, 𝑥)| ≤ 𝐶𝑒−𝑡对任意𝑡 > 0, 𝑥 ∈ [0, 𝜋]成立。

提示：无论使用能量法还是分离变量法，可能都需要使用Parseval恒等式；对(2)，思考为什么这
里假设了𝜑 ∈ 𝐶2([0, 𝜋])，具有该光滑性的函数的傅立叶系数具有怎样的阶？

证法一. (1)使用分离变量法。方程在Dirichlet边界条件下，解可展开为：

𝑢(𝑡, 𝑥) =
∞
∑

𝑛=1
𝑎𝑛𝑒

−𝑛2𝑡 sin(𝑛𝑥),

其中𝑎𝑛 =
2
𝜋
∫ 𝜋0 𝜑(𝑥) sin(𝑛𝑥)𝑑𝑥。由Parseval恒等式，

∫

𝜋

0
𝑢(𝑡, 𝑥)2𝑑𝑥 = 𝜋

2

∞
∑

𝑛=1
𝑎2𝑛𝑒

−2𝑛2𝑡 ≤ 𝜋
2

∞
∑

𝑛=1
𝑎2𝑛𝑒

−2𝑡 = 𝑒−2𝑡 ∫

𝜋

0
𝜑(𝑥)2𝑑𝑥,

因为𝑒−2𝑛2𝑡 ≤ 𝑒−2𝑡（𝑛 ≥ 1）。故得证。
(2)由于𝜑 ∈ 𝐶2([0, 𝜋])且满足边界条件𝜑(0) = 𝜑(𝜋) = 0（要求初始条件与边界条件相容）。更

精确地，由分部积分，

𝑎𝑛 =
2
𝜋 ∫

𝜋

0
𝜑(𝑥) sin(𝑛𝑥)𝑑𝑥 = 2

𝜋

[

−
𝜑(𝑥) cos(𝑛𝑥)

𝑛

]𝜋

0
+ 2

𝜋𝑛 ∫

𝜋

0
𝜑′(𝑥) cos(𝑛𝑥)𝑑𝑥.

由于𝜑(0) = 𝜑(𝜋) = 0，边界项为零。再次分部积分，

𝑎𝑛 =
2
𝜋𝑛 ∫

𝜋

0
𝜑′(𝑥) cos(𝑛𝑥)𝑑𝑥 = 2

𝜋𝑛

[

𝜑′(𝑥) sin(𝑛𝑥)
𝑛

]𝜋

0
− 2

𝜋𝑛2 ∫

𝜋

0
𝜑′′(𝑥) sin(𝑛𝑥)𝑑𝑥.

由于𝜑′在端点不一定为零，但sin(𝑛𝜋) = 0，所以第一项为零。故

|𝑎𝑛| ≤
2
𝜋𝑛2 ∫

𝜋

0
|𝜑′′(𝑥)|𝑑𝑥 ≤ 𝐶

𝑛2
.

于是，

|𝑢(𝑡, 𝑥)| ≤
∞
∑

𝑛=1
|𝑎𝑛|𝑒

−𝑛2𝑡 ≤ 𝐶
∞
∑

𝑛=1

1
𝑛2
𝑒−𝑛2𝑡 ≤ 𝐶

∞
∑

𝑛=1

1
𝑛2
𝑒−𝑡.
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证法二. (1)使用能量法。令𝐸(𝑡) = 1
2
∫ 𝜋0 𝑢(𝑡, 𝑥)2 d𝑥。

𝐸′(𝑡) = ∫

𝜋

0
𝑢𝑢𝑡𝑑𝑥 = ∫

𝜋

0
𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥|

𝜋
0 − ∫

𝜋

0
𝑢2𝑥𝑑𝑥 = − ∫

𝜋

0
𝑢2𝑥𝑑𝑥

由于𝑢𝑥 =
∑∞

𝑛=1 𝑎𝑛𝑛𝑒
−𝑛2𝑡 cos(𝑛𝑥)

∫

𝜋

0
𝑢2𝑥𝑑𝑥 = 𝜋

2

∞
∑

𝑛=1
𝑎2𝑛𝑛

2𝑒−2𝑛2𝑡 ≥ 𝜋
2

∞
∑

𝑛=1
𝑎2𝑛𝑒

−2𝑛2𝑡 = ∫

𝜋

0
𝑢2𝑑𝑥

（注意这个不等式其实是一维Poicaré不等式）因此

𝐸′(𝑡) ≤ −2𝐸(𝑡)

由Gronwall不等式可得
𝐸(𝑡) ≤ 𝑒−2𝑡𝐸(0)

(2)同证法一

注记 0.3. 对于Dirichlet边值，具有𝐶𝑘(𝑘 ≤ 3)光滑性的函数的傅立叶系数的阶为

|𝑎𝑛| = 𝑂
( 1
𝑛𝑘
)

.

注意对于更高光滑性的的函数的傅立叶系数的阶不会再增加，原因同样是在对函数进行奇延拓后

在边界点处的点的光滑性只有𝐶1。

注记 0.4. 设函数𝑓 (𝑥)是定义在[−𝜋, 𝜋, ]的可微的函数。如果满足𝑓 (−𝜋) = 𝑓 (𝜋)。那么其傅立叶级
数就在[−𝜋, 𝜋, ]上绝对一致收敛于𝑓 (𝑥)。

证明：由于𝑓 ′(𝑥)是连续函数，因此属于𝐿2[−𝜋, 𝜋]。则有(𝑛𝑎𝑛) ∈ 𝓁2(ℕ)。

(

∞
∑

𝑛=1
|𝑎𝑛|

)2

≤

(

∞
∑

𝑛=1

1
𝑛2

)(

∞
∑

𝑛=1
(𝑛𝑎𝑛)

2

)

< ∞

因此如果初值仅仅为𝐶1函数，只要满足相容性条件，同样可以说明解满足指数衰减。
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作业题 6 (习题3.3.1). 设Ω ⊂ ℝ2是单位圆盘。求解方程Δ𝑢 = 2 in Ω, 𝑢|𝜕Ω = 2𝑥1𝑥2。

证法一. 注意到𝑣 = 1
2
(𝑥2

1 + 𝑥2
2 − 1)是方程Δ𝑢 = 2 in Ω, 𝑢|𝜕Ω = 0的解。

只需求解方程Δ𝑢 = 0 in Ω, 𝑢|𝜕Ω = 2𝑥1𝑥2。由于区域是单位圆盘，我们采用极坐标：𝑥1 =
𝑟 cos 𝜃, 𝑥2 = 𝑟 sin 𝜃。边界条件变为：当𝑟 = 1时，𝑢 = 2 cos 𝜃 sin 𝜃 = sin(2𝜃) =∶ ℎ(𝜃)。

方程Δ𝑢 = 0在极坐标下为：
1
𝑟
𝜕
𝜕𝑟

(

𝑟𝜕𝑢
𝜕𝑟

)

+ 1
𝑟2

𝜕2𝑢
𝜕𝜃2

= 0.

我们利用分离变量法求得圆盘内的调和函数具有如下形式（见教材109页）

𝑢(𝑟, 𝜃) = 1
2
𝐴0 +

∞
∑

𝑛=1
𝑟𝑛(𝐴𝑛 cos 𝑛𝜃 + 𝐵𝑛 sin 𝑛𝜃)

其中系数为

𝐴𝑛 =
1
𝜋 ∫

2𝜋

0
ℎ(𝜑) cos(𝑛𝜑)𝑑𝜑 = 0 𝐵𝑛 =

1
𝜋 ∫

2𝜋

0
ℎ(𝜑) sin(𝑛𝜑)𝑑𝜑 = 𝛿2,𝑛

因此解为𝑢 = 𝑟2 sin 2𝜃 = 2𝑥1𝑥2。

原方程的解为𝑢 = 1
2
(𝑥2

1 + 𝑥2
2 − 1) + 2𝑥1𝑥2。

证法二. 注意到𝑢 = 1
2
(𝑥2

1 + 𝑥2
2 − 1) + 2𝑥1𝑥2是方程的一个解。由方程解的唯一性可知𝑢 = 1

2
(𝑥2

1 + 𝑥2
2 −

1) + 2𝑥1𝑥2是方程的解。
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作业题 7 (习题3.3.4). 证明方程Δ𝑢 = 0, 𝒙 ∈ ℝ𝑑的解是旋转不变的，即对𝑑×𝑑正交方阵𝐎,令𝑣(𝒙) ∶=
𝑢(𝐎𝒙),则必有Δ𝑣 = 0.

证明. 设𝐎 = (𝑜𝑖𝑗)为正交矩阵，即𝐎𝑇𝐎 = 𝐼。记𝒚 = 𝐎𝒙，则𝑦𝑖 =
∑𝑑

𝑗=1 𝑜𝑖𝑗𝑥𝑗。计算𝑣(𝒙) = 𝑢(𝒚)的拉
普拉斯：

𝜕𝑣
𝜕𝑥𝑗

=
𝑑
∑

𝑘=1

𝜕𝑢
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑥𝑗

=
𝑑
∑

𝑘=1

𝜕𝑢
𝜕𝑦𝑘

𝑜𝑘𝑗 .

再次求导：

𝜕2𝑣
𝜕𝑥2

𝑗

=
𝑑
∑

𝑘,𝑙=1

𝜕2𝑢
𝜕𝑦𝑘𝜕𝑦𝑙

𝜕𝑦𝑙
𝜕𝑥𝑗

𝑜𝑘𝑗 =
𝑑
∑

𝑘,𝑙=1

𝜕2𝑢
𝜕𝑦𝑘𝜕𝑦𝑙

𝑜𝑙𝑗𝑜𝑘𝑗 .

于是

Δ𝑥𝑣 =
𝑑
∑

𝑗=1

𝜕2𝑣
𝜕𝑥2

𝑗

=
𝑑
∑

𝑗=1

𝑑
∑

𝑘,𝑙=1

𝜕2𝑢
𝜕𝑦𝑘𝜕𝑦𝑙

𝑜𝑙𝑗𝑜𝑘𝑗 =
𝑑
∑

𝑘,𝑙=1

𝜕2𝑢
𝜕𝑦𝑘𝜕𝑦𝑙

𝑑
∑

𝑗=1
𝑜𝑙𝑗𝑜𝑘𝑗 .

由于𝐎正交，
∑𝑑

𝑗=1 𝑜𝑙𝑗𝑜𝑘𝑗 = 𝛿𝑙𝑘（克罗内克delta）。所以

Δ𝑥𝑣 =
𝑑
∑

𝑘,𝑙=1

𝜕2𝑢
𝜕𝑦𝑘𝜕𝑦𝑙

𝛿𝑙𝑘 =
𝑑
∑

𝑘=1

𝜕2𝑢
𝜕𝑦2𝑘

= Δ𝑦𝑢 = 0.

因此Δ𝑣 = 0。
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作业题 8 (习题3.4.6，Dirichlet原理). 设Ω ⊂ ℝ𝑑是边界𝐶1的有界开集，给定函数𝑓 ∈ 𝐶(Ω), 𝑔 ∈
𝐶(𝜕Ω),定义能量泛函𝐼[𝑤] ∶= ∫Ω

1
2
|∇𝑤|

2 − 𝑤𝑓 d𝒙,其中𝑤 ∈  ∶= {𝑤 ∈ 𝐶2(Ω) ∶ 𝑤 = 𝑔 on 𝜕Ω}.证
明：𝑢是𝐼[⋅]在上的极小化子(即𝐼[𝑢] = inf

𝑤∈
𝐼[𝑤], 𝑢 ∈ )当且仅当𝑢是位势方程的解

−Δ𝑢 = 𝑓 in Ω 𝑢 = 𝑔 on 𝜕Ω.

提示：本题跟特征值理论没什么关系；令𝑗(𝜀) = 𝐼[𝑢+ 𝜀𝑣],其中𝑣 ∈ 𝐶∞
𝑐 (Ω),然后计算𝑗′(0) = 0.

证明. （必要性）设𝑢是𝐼在上的极小化子。对任意𝑣 ∈ 𝐶∞
𝑐 (Ω)，考虑𝑗(𝜀) = 𝐼[𝑢+ 𝜀𝑣]。由于𝑣在边

界为零，𝑢 + 𝜀𝑣 ∈ 。则
𝑗(𝜀) = ∫Ω

1
2
|∇𝑢 + 𝜀∇𝑣|2 − (𝑢 + 𝜀𝑣)𝑓 d𝒙.

计算导数：

𝑗′(𝜀) = ∫Ω
(∇𝑢 + 𝜀∇𝑣) ⋅ ∇𝑣 − 𝑣𝑓 d𝒙.

令𝜀 = 0得：
𝑗′(0) = ∫Ω

∇𝑢 ⋅ ∇𝑣 − 𝑣𝑓 d𝒙 = 0.

由散度定理（或分部积分），

∫Ω
∇𝑢 ⋅ ∇𝑣 d𝒙 = − ∫Ω

𝑣Δ𝑢 d𝒙 + ∫𝜕Ω
𝑣𝜕𝑢
𝜕𝑛

d𝑆.

由于𝑣 ∈ 𝐶∞
𝑐 (Ω)，边界项为零。所以

0 = ∫Ω
(−Δ𝑢 − 𝑓 )𝑣 d𝒙.

由𝑣的任意性，得−Δ𝑢 = 𝑓在Ω内。又因为𝑢 ∈ ，所以𝑢 = 𝑔在𝜕Ω上。故𝑢是位势方程的解。
（充分性）设𝑢满足−Δ𝑢 = 𝑓在Ω内，且𝑢 = 𝑔在𝜕Ω上。对任意𝑤 ∈ ，令𝑣 = 𝑤 − 𝑢，则𝑣 ∈

𝐶2(Ω)且𝑣 = 0在𝜕Ω上。计算𝐼[𝑤]与𝐼[𝑢]的差：

𝐼[𝑤] − 𝐼[𝑢] = ∫Ω

(1
2
|∇𝑤|

2 −𝑤𝑓
)

−
(1
2
|∇𝑢|2 − 𝑢𝑓

)

d𝒙.

注意到

|∇𝑤|

2 = |∇𝑢 + ∇𝑣|2 = |∇𝑢|2 + 2∇𝑢 ⋅ ∇𝑣 + |∇𝑣|2.
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所以

𝐼[𝑤] − 𝐼[𝑢] = ∫Ω

(1
2
(|∇𝑢|2 + 2∇𝑢 ⋅ ∇𝑣 + |∇𝑣|2) − (𝑢 + 𝑣)𝑓 − 1

2
|∇𝑢|2 + 𝑢𝑓

)

d𝒙

= ∫Ω

(

∇𝑢 ⋅ ∇𝑣 + 1
2
|∇𝑣|2 − 𝑣𝑓

)

d𝒙.

由散度定理，

∫Ω
∇𝑢 ⋅ ∇𝑣 d𝒙 = − ∫Ω

𝑣Δ𝑢 d𝒙 + ∫𝜕Ω
𝑣𝜕𝑢
𝜕𝑛

d𝑆 = − ∫Ω
𝑣Δ𝑢 d𝒙,

因为𝑣在边界为零。又−Δ𝑢 = 𝑓，所以∫Ω ∇𝑢 ⋅ ∇𝑣 d𝒙 = ∫Ω 𝑣𝑓 d𝒙。于是

𝐼[𝑤] − 𝐼[𝑢] = ∫Ω

(

𝑣𝑓 + 1
2
|∇𝑣|2 − 𝑣𝑓

)

d𝒙 = 1
2 ∫Ω

|∇𝑣|2 d𝒙 ≥ 0.

因此𝐼[𝑤] ≥ 𝐼[𝑢]，即𝑢是极小化子。

注记 0.5. 这里默认不是空集。

注记 0.6. 有些同学可能不太理解为什么对任意𝑣 ∈ 𝐶∞
𝑐 (Ω)，有0 = ∫Ω(−Δ𝑢 − 𝑓 )𝑣 d𝒙就可以说明

−Δ𝑢 − 𝑓 = 0。首先需要知道如下光滑紧支撑函数𝜂

𝜂(𝑥) =

⎧

⎪

⎨

⎪

⎩

exp
(

1
‖𝑥−𝑥0‖2−𝑟2

)

𝑥 ∈ 𝐵(𝑥0, 𝑟)

0 𝑥 ∈ Ω ⧵ 𝐵(𝑥0, 𝑟)

注记 0.7. 细心的同学可以发现的定义其实可以修改为{𝑤 ∈ 𝐶1(Ω) ∶ 𝑤 = 𝑔 on 𝜕Ω}。在这个集
合中同样可以良好得定义泛函𝐼[𝑢]。所以如果

−Δ𝑢 = 𝑓 in Ω 𝑢 = 𝑔 on 𝜕Ω.

在𝐶2中没有解，而利用本题同样的方式在{𝑤 ∈ 𝐶1(Ω) ∶ 𝑤 = 𝑔 on 𝜕Ω}中找到了一个解，那么这个
解是什么呢？这一点可以解释为什么后来偏微分方程领域开始寻找“弱解”，而不再是光滑的经

典解。
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作业题 9 (选做). 考虑多孔介质流方程𝜕𝑡𝑢 − Δ(𝑢𝛾) = 0, (𝑡 > 0,𝒙 ∈ ℝ𝑑). 其中假设𝛾 > 1是常数，方
程的解𝑢 ≥ 0. 今假设方程的解具有变量分离形式𝑢(𝑡,𝒙) = 𝑣(𝑡)𝑤(𝒙) (𝑡 ≥ 0,𝒙 ∈ ℝ𝑑).

(1) 证明：存在常数𝜇, 𝜆 ∈ ℝ,使得𝑣(𝑡) = ((1 − 𝛾)𝜇𝑡 + 𝜆)
1

1−𝛾 .
(2) 若𝑤(𝒙) = |𝒙|𝑎,请计算𝑎与𝛾之间应该满足怎样的关系式。
(3) 若将(1)中的𝜆取为正数，证明：对由(1), (2)求得的解𝑢(𝑡,𝒙),存在时间𝑇∗ < ∞,使得𝑢(𝑡,𝒙)在𝒙 ≠

𝟎, 𝑡 → 𝑇∗时发生爆破。

证明. (1)将𝑢(𝑡,𝒙) = 𝑣(𝑡)𝑤(𝒙)代入方程𝜕𝑡𝑢 − Δ(𝑢𝛾) = 0。计算：

𝜕𝑡𝑢 = 𝑣′(𝑡)𝑤(𝒙), 𝑢𝛾 = 𝑣(𝑡)𝛾𝑤(𝒙)𝛾 .

所以

Δ(𝑢𝛾) = 𝑣(𝑡)𝛾Δ(𝑤𝛾).

方程变为：

𝑣′(𝑡)𝑤(𝒙) − 𝑣(𝑡)𝛾Δ(𝑤𝛾(𝒙)) = 0.

分离变量得：
𝑣′(𝑡)
𝑣(𝑡)𝛾

=
Δ(𝑤𝛾(𝒙))
𝑤(𝒙)

= 𝜇,

其中𝜇为常数（与𝑡,𝒙无关）。于是得到两个方程：

𝑣′(𝑡) = 𝜇𝑣(𝑡)𝛾 , (1)

Δ(𝑤𝛾(𝒙)) = 𝜇𝑤(𝒙). (2)

解(1)：这是常微分方程，分离变量：
𝑑𝑣
𝑣𝛾

= 𝜇𝑑𝑡.

积分得：
1

1 − 𝛾
𝑣1−𝛾 = 𝜇𝑡 + 𝐶,

即

𝑣(𝑡)1−𝛾 = (1 − 𝛾)(𝜇𝑡 + 𝐶).

记𝜆 = (1 − 𝛾)𝐶，则

𝑣(𝑡) = ((1 − 𝛾)𝜇𝑡 + 𝜆)
1

1−𝛾 .
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(2)设𝑤(𝒙) = |𝒙|𝑎，计算Δ(𝑤𝛾)。首先𝑤𝛾 = |𝒙|𝑎𝛾。在极坐标下，Δ(𝑟𝑎𝛾) = 1
𝑟𝑑−1

𝑑
𝑑𝑟

(

𝑟𝑑−1 𝑑
𝑑𝑟
𝑟𝑎𝛾

)

。计算：

𝑑
𝑑𝑟

𝑟𝑎𝛾 = 𝑎𝛾𝑟𝑎𝛾−1,

𝑟𝑑−1 𝑑
𝑑𝑟

𝑟𝑎𝛾 = 𝑎𝛾𝑟𝑑−1+𝑎𝛾−1 = 𝑎𝛾𝑟𝑑+𝑎𝛾−2,

𝑑
𝑑𝑟

(

𝑎𝛾𝑟𝑑+𝑎𝛾−2
)

= 𝑎𝛾(𝑑 + 𝑎𝛾 − 2)𝑟𝑑+𝑎𝛾−3,

所以

Δ(𝑤𝛾) = 𝑎𝛾(𝑑 + 𝑎𝛾 − 2)𝑟𝑑+𝑎𝛾−3 ⋅ 1
𝑟𝑑−1

= 𝑎𝛾(𝑑 + 𝑎𝛾 − 2)𝑟𝑎𝛾−2.

而𝑤(𝒙) = 𝑟𝑎，故方程(2)变为：
𝑎𝛾(𝑑 + 𝑎𝛾 − 2)𝑟𝑎𝛾−2 = 𝜇𝑟𝑎.

比较指数得：𝑎𝛾 − 2 = 𝑎，即𝑎(𝛾 − 1) = 2，所以

𝑎 = 2
𝛾 − 1

.

此时系数满足：

𝑎𝛾(𝑑 + 𝑎𝛾 − 2) = 𝜇.

将𝑎代入：𝑎𝛾 = 2𝛾
𝛾−1
，且

𝑑 + 𝑎𝛾 − 2 = 𝑑 +
2𝛾

𝛾 − 1
− 2 = 𝑑 − 2 +

2𝛾
𝛾 − 1

.

所以

𝜇 =
2𝛾

𝛾 − 1

(

𝑑 − 2 +
2𝛾

𝛾 − 1

)

.

(3)取𝜆 > 0，则
𝑣(𝑡) = ((1 − 𝛾)𝜇𝑡 + 𝜆)

1
1−𝛾 .

由于𝛾 > 1，1 − 𝛾 < 0，所以当(1 − 𝛾)𝜇𝑡 + 𝜆 → 0+时，𝑣(𝑡) → +∞。令

𝑇∗ =
𝜆

(𝛾 − 1)𝜇
(因为 (1 − 𝛾)𝜇 = −(𝛾 − 1)𝜇),

则当𝑡 → 𝑇 −
∗ 时，(1 − 𝛾)𝜇𝑡+ 𝜆 = (𝛾 − 1)𝜇(𝑇∗ − 𝑡) → 0+，从而𝑣(𝑡) → +∞。对于𝒙 ≠ 𝟎，𝑤(𝒙) = |𝒙|𝑎有

限，所以𝑢(𝑡,𝒙) = 𝑣(𝑡)𝑤(𝒙) → +∞，即发生爆破。


