
第二次习题课

助教: 周芾

2025 年 12 月 10 日

1 作业题

作业题 1. 本题考虑半平面内的调和函数求解.

(1) 给定 y > 0, 计算 Fy(ξ) = e−|ξ|y 关于频率变量 ξ ∈ R 的傅立叶逆变换.

(2) 计算如下边值问题有界解 的显式表达式uxx + uyy = 0 x ∈ R, y > 0,

u(x, 0) = φ(x) x ∈ R,

其中 φ ∈ S(R) 是给定的.

(3) 证明: 对任意 y > 0 有
∫
R |u(x, y)| dx ⩽

∫
R |φ(x)| dx.

证明. 这个题应该更明确的指出解 u ∈ C2(R× (0,∞))∩C(R× [0,∞)) 且有界, 不然会陷入
复杂的细节.

(1). 刘党政老师指出其实这里的 Fourier 变换应该用围道积分计算的, 去考虑一个扇形
围道然后圆弧上的积分取极限后为 0,但是数分书上也有用欧拉公式展开成三角函数然后积
分的办法. 不过无论如何, 我们这里当成常规的积分来做就行了. 直接计算如下

F−1(Fy(·)) =
1

(2π)
1
2

∫
R
e−|ξ|yeixξ dξ = 1

(2π)
1
2

[∫ ∞

0

e−ξ(y−ix) dξ +
∫ 0

−∞
eξ(y+ix) dξ

]
=

1

(2π)
1
2

(
1

y − ix +
1

y + ix

)
=

√
2

π

y

x2 + y2

(2). 对变量 x 做 Fourier 变换, 得到新的方程为ûyy − ξ2û = 0 ξ ∈ R, y > 0,

û(ξ, 0) = φ̂(ξ) ξ ∈ R.
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这里解 ODE能得到通解为 û(ξ, y) = C1e
|ξ|y +C2e

−|ξ|y, 但是由于我们要求有界解, 我们的解
应形如 û = Cξe

−|ξ|y. 带入初值得 û(ξ, y) = φ̂(ξ)e−|ξ|y, 求 Fourier 逆变换为

u(x, y) =
1

(2π)
1
2

φ ∗

(√
2

π

y

(·)2 + y2

)
(x) =

1

π

∫
R
φ(x− t)

y

t2 + y2
dt.

(3). 直接计算如下, 交换次序即可.∫
R
|u(x, y)| dx ≤ 1

π

∫
R

∫
R
|φ(t) y

(x− t)2 + y2
| dt dx

Fubini
==

1

π

∫
R

∫
R
|φ(t) y

(x− t)2 + y2
| dx dt ≤

∫
R
|φ(x)| dx.

作业题 2. 设 a > 0, b ∈ R 是给定的常数, 求解如下拟线性热方程.∂tu− a2∆u+ b|∇u|2 = 0 t > 0, x ∈ Rd

u(0,x) = φ(x) t = 0, x ∈ Rd.

证明. 很多同学没有说 b = 0 的情况, 不过我们这里默认 b ̸= 0 好了.
设 v = e−

b
a2
u, 也即 u = −a2

b
log(v). 这种时候我们直接考虑对 u = u(v) 求导, 然后看其

满足的方程. 求导得到

ut = −a
2

b

vt
v
, ∇u = −a

2

b

∇v
v
, ∆u = −a

2

b

v∆v − |∇v|2

v2
.

带回 u 满足的方程, 得到关于 v 的热方程vt − a2∆v = 0 t > 0, x ∈ Rd

v(0,x) = e−
b
a2
u t > 0, x ∈ Rd.

由讲义中 Poisson 公式, 我们得到解为

v(t, x) =
1

(4πa2t)
d
2

∫
Rd

e−
|x−y|2

4a2t v0(y) dy.

这里 v0 = e−
a2

b
u0 . 最后再取对数得到我们原本方程的解, 也即

u(t, x) = −a
2

b
log
(

1

(4πa2t)
d
2

∫
Rd

e−
|x−y|2

4a2t v0(y) dy
)
.
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作业题 3. 求解如下粘性 Burgers 方程ut − a2uxx + uux = 0 t > 0, x ∈ R

u(0, x) = φ(x) t = 0, x ∈ R.

这里 a ∈ R 是给定的常数.

证明. 题目应该忘了提一些基本的正则性要求, 不过我们姑且默认有好的正则性. 同时也假
设 a ̸= 0, 因为说的是粘性 Burgers 方程.

按提示, 我们设
v(t, x) =

∫ x

−∞
u(t, y) dy.

这里我们直接计算 vt, 因此有

vt(t, x) =

∫ x

−∞
ut(t, y) dy =

∫ x

−∞
(a2uxx − uux) dy = a2vxx(t, x)−

1

2
v2x(t, x).

这就是上一题中的方程, 其中 b = 1
2
. 带入上一题的结论, 我们有

v(t, x) = −2a2 log
(

1

(4πa2t)
1
2

∫
R
e−

|x−y|
4a2t v0(y) dy

)
.

最后再带入 u = vx 就能得到答案.

作业题 4. 考虑齐次热传导方程的初值问题

∂tu− k∆u = 0 in R+ × Rd, u(0,x) = φ(x) (x ∈ Rd).

设初值 φ ∈ S(Rd), 由泊松公式给出的解为 u(t,x).

(1) 证明: 存在常数 C > 0, 使得 |u(t,x)− φ(x)| ⩽ C
√
kt 对任意 t > 0,x ∈ Rd 成立.

(2) 证明: 存在常数 C > 0, 使得 sup
x∈Rd

|u(t,x)| ⩽ Ct−
d
4∥φ∥L2(Rd) 对任意 t > 0 成立.

证明. 这种积分估计是很经典的, 同学们务必掌握, 类似的思想在后续的分析学中都是极为
常见的.

(1). 首先我们知道解具有如下形式

u(t,x) = (φ ∗K(t, ·))(x) =
∫
Rd

φ(x− y)K(t,y) dy,

以及

φ(x) =

∫
Rd

φ(x)K(t,y) dy.
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因此做差为

|u(t,x)− φ(x)| =
∫
Rd

K(t, y)(φ(x− y)− φ(x)) dy

≤
∫
Rd

K(t,y)|φ(x− y)− φ(x)| dy

≤
∫
Rd

K(t,y)max |∇φ||y| dy (中值定理)

≤M

∫
Rd

1

(4πkd)
d
2

e−
|y|2
4kt |y| dy

= C
√
kt

∫
Rd

e−|z|2 |z| dz (变量替换 y = (4πkt)
1
2z)

= C
√
kt.

(2). 这里的估计方法是用 Fourier 变换.

|u(t,x)| =

∣∣∣∣∣ 1

(2π)
d
2

∫
Rd

û(t,x)eixξ dξ
∣∣∣∣∣

≤ C

∫
Rd

|û|dξ ≤ C

∫
Rd

|φ̂|e−k|ξ|2tdξ

≤ C||φ̂||L2 ||e−k|ξ|2t||L2 = Ct−
d
4 ||φ||L2

最后一步使用了 Plancherl 定理.

作业题 5. 给定点 x0, ξ0 ∈ Rd 以及函数 f ∈ S(Rd), 证明如下海森堡不确定性原理:(∫
Rd

|(x− x0)f(x)|2 dx
)(∫

Rd

|(ξ − ξ0)f̂(ξ)|2 dξ
)

⩾ d2

4

(∫
Rd

|f(x)|2 dx
)2

. (1)

这个不等式表明动量和位置不可能在给定的动量 ξ0 和给定的位置 ξ0 附近被同时确定.

证明. 由提示, 我们只要估计 ξ0 = x0 = 0 的情况. 这里的系数是给定的, 因此我们进行相
对仔细的计算

LHS =

(∫
Rd

|xf |2 dx
)(∫

Rd

|∇̂f |2dξ
)

≥
(∫

Rd

|xf |2 dx
)(∫

Rd

|∇f |2dξ
)

≥
∣∣∣∣∫

Rd

|x||f ||∇f | dx
∣∣∣∣2

≥
(
1

2

∫
Rd

x · ∇|f |2dx
)2

=

(
d

2

∫
Rd

|f |2 dx
)2
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最后一步用了散度定理, 注意 ∇ · (|f |2x) = d|f |2 + x · ∇|f |2, 因此积分后边界项为 0.
这个题目不少同学在做的时候默认这里的函数是实值函数, 但是海森堡不确定性原理

其实是在说波函数的事, 自然应该去考虑复值函数. 不过做题本身倒不影响了.

作业题 6. 设 Ω ⊂ Rd 是有界区域且边界光滑, u(t,x) ∈ C2
1((0,∞)× Ω) ∩ C([0,∞)× Ω) 是

如下方程的解 
∂tu−∆u = 0 t > 0, x ∈ Ω

u(0,x) = u0(x) x ∈ Ω

u = 0 t ⩾ 0, x ∈ ∂Ω,

其中 u0 ∈ C2(Ω) 给定。证明：存在常数 a > 0（仅和区域本身有关）使得∫
Ω

(u(t,x))2 dx ⩽ e−at
∫
Ω

(u0(x))
2 dx.

证明. 我们首先承认如下的零边值型 Poincare 不等式

||u||L2 ≤ C||∇u||L2 .

这里的常数 C 和区域有关.
用热方程的能量估计方法, 我们在方程两边同时乘上 u 然后积分有∫

Ω

uut − u∆u dx =
d
dt

1

2

∫
Ω

u2 dx+

∫
Ω

|∇u|2 dx = 0.

移项并使用 Poincare 不等式有 (其中系数 a 是整理出来的一个关于 C 的表达式)
d
dt

∫
Ω

u2 dx ≤ −a
∫
Ω

u2 dx.

由 Gronwall 不等式, 我们得到∫
Ω

(u(t,x))2 dx ⩽ e−at
∫
Ω

(u0(x))
2 dx.

现在我们来解释这个 Poincare 不等式的原因, 为了突出思想, 我们仅考虑二维的情形.
对于二维有界区域, 我们总能将其写为如下集合

Ω = {(x, y) : x ∈ I, ϕ(x) ≤ y ≤ ψ(x)}

这里 I 是 x 的定义域. 这时我们可以计算如下∫
Ω

u2 dx =

∫
I

∫ ψ(x)

ϕ(x)

u2 dy dx

≤
∫
I

Cϕ(x),ψ(x)

∫ ψ(x)

ϕ(x)

(u)2x dy dx

≤ C

∫
I

∫ ψ(x)

ϕ(x)

(∇u)2 dy dx = C

∫
Ω

(∇u)2 dx.
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这里关于常数 C 的计算是因为, 带下标的 C 是关于边界长度 (参考一维的情况, 这里的常
数是区间长度的 p = 2 次方) 的一个函数, 而这里我们假设了边界光滑 (因此可求长), 所以
能化归为一个和边界相关的常数. 从这里的讲法我们也可以看出, 这里的边界是可以考虑
Lipschitz 边界的, 这个内容在实分析中可以学到.

作业题 7. 考虑 Rd 中的 Klein-Gordon 方程的初值问题∂2t u−∆u+m2u = 0 t > 0, x ∈ Rd

u(0,x) = φ(x), ∂tu(0,x) = ψ(x) x ∈ Rd,

其中 φ, ψ ∈ S(Rd).

(1) 定义能量 E(t) = 1
2

∫
Rd(∂tu)

2 + |∇u|2 +m2u2 dx. 证明: E(t) 是守恒量.

(2) 用 φ̂ 和 ψ̂ 写出解的傅立叶变换 û(ξ) 的表达式.

(3) 证明: lim
t→+∞

∫
Rd |∇u|2 +m2u2 dx = E(0), 进而该方程也有能量渐近均分原理

lim
t→+∞

1

2

∫
Rd

|∇u|2 +m2u2 dx = lim
t→+∞

1

2

∫
Rd

(∂tu)
2 dx.

证明. (1). 上课可能会提到能量中有动能项和势能项, 这个确实是物理解释, 但是同学们要
注意灵活应用. 一般来说波方程的能量是去乘一个 ut 然后分部积分做的, 初学的话可以多
练习一下计算.

直接计算能量的时间导数如下,

Et =

∫
Rd

ututt +∇u · ∇ut +m2uut dx

=

∫
Rd

ut∆u+∇u · ∇ut dx =

∫
Rd

∇ · (ut∇u) dx = 0.

因此能量守恒.
(2). 这个计算是标准的, 对 x 做 Fourier 变换, 得到二阶 ODE 如下

ûtt + (|ξ|2 +m2)û = 0.

因此解具有形式

û(t, ξ) = C1 cos(|ξ|2 +m2)
1
2 t+ C2 sin(|ξ|2 +m2)

1
2 t.

带入初值为

û(t, ξ) = φ̂(ξ) cos(|ξ|2 +m2)
1
2 t+

ψ̂(ξ)

(|ξ|2 +m2)
1
2

sin(|ξ|2 +m2)
1
2 t.
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(3). 在计算中我们会自然地希望如下式子成立,其形式类似于 Riemann-Lebesgue引理.

lim
t→∞

∫
Rd

f cos(|ξ|2 +m2)
1
2 tdξ = lim

t→∞

∫
Rd

f sin(|ξ|2 +m2)
1
2 tdξ = 0.

上面的函数 f ∈ S. 我们先承认这个式子, 然后进行计算. 对待证明的式子使用 Plancherel
定理, 我们只要证明∫

Rd

|ξû|2 + |mû|2dξ → 1

2

∫
Rd

|ψ̂|2 + (|ξ|2 +m2)|φ̂|2dξ.

这里的计算展示如下

LHS =

∫
Rd

ξ2φ̂2 cos2(|ξ|2 +m2)
1
2 t+

ψ̂2ξ2

|ξ|2 +m2
sin2(|ξ|2 +m2)t+

ξφ̂ψ̂

|ξ|2 +m2
sin 2(|ξ|2 +m2)

1
2 t dξ

+

∫
Rd

m2φ̂2 cos2(|ξ|2 +m2)
1
2 t+

ψ̂2m2

|ξ|2 +m2
sin2(|ξ|2 +m2)t+

m̂φψ̂

2(|ξ|2 +m2)
sin 2(|ξ|2 +m2)

1
2 t dξ

=
1

2

∫
Rd

(|ξ|2 +m2)φ̂2 + |ψ̂|2 + (一大坨带着 sin(|ξ|2 +m2)
1
2 t 和 cos(|ξ|2 +m2)

1
2 t 的积分)

这里就能看到, 如果这个引理真的成立, 那么我们的证明就结束了.
现在来看上述引理成立的原因. 注意到函数 f ∈ S, 我们首先使用极坐标换元, 将问题

转化为 1 维. ∫
Rd

f cos(|ξ|2 +m2)
1
2 t dξ =

∫ ∞

0

∫
Sr

f(rω) sin(|r|2 +m2)
1
2 tdω dr

=

∫ ∞

0

sin(|r|2 +m2)
1
2 t dr

∫
Sr

f(rω)dω.

这里的球面积分得到一个关于只关于 r 的径向函数 F (r) =
∫
Sr
f(rω)dω, 并且由于

f ∈ S, 这里的 F 是一个有界的 L1 函数.
我们相信这个式子和原本的 Riemann-Lebesgue 引理是有关系的, 因此我们进行积分换

元, 这里不妨设 m = 1, 这样我们的记号可以简洁一些.
令 ζ = ⟨ξ⟩, 那么有∫ ∞

0

f sin(|ξ|2 + 1)
1
2 tdξ =

∫ ∞

1

f sin ζt ζ√
ζ2 − 1

dζ.

注意到积分在 ζ = 1 附近有奇性, 我们做截断, 在其附近分析. 事实上, 由于 f 和三角函数

本身的有界性, 我们只要看奇性部分的上界.∫ 1+ε

1

1√
ζ2 − 1

dζ =
∫ 1+ε

1

1√
(ζ + 1)(ζ − 1)

dζ ≤
∫ 1+ε

1

1√
2(ζ − 1)

dζ =
√
2ε.

因此, 我们实际得到了

lim sup
t→∞

∫
Rd

f sin(|ξ|2 +m2)
1
2 tdξ ≤M

√
ε.

这里的常数M 来自函数 f 在 1附近的有界性. 这里我们令 ε→ 0就得到了想要的式子.
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作业题 8. 对 s ∈ R, f ∈ S(Rd), 定义范数 ∥f∥s := ∥⟨ξ⟩sf̂(ξ)∥L2(Rd), 其中 ⟨ξ⟩ :=
√

1 + |ξ|2.
今假设 s > d

2
, 证明:

(1) 存在常数 C > 0 使得对任意 f ∈ S(Rd) 成立 max
Rd

|f | ⩽ C∥f∥s.

(2) 存在常数 C > 0 使得对任意 f, g ∈ S(Rd) 成立 ∥fg∥s ⩽ C∥f∥s∥g∥s.

证明. 出于记号习惯, 以下用下标 Hs 代替下标 s, 这里的 Hs 是非齐次 Sobolev 空间, 是
PDE 中的常见术语.
(1). 这里我们用到一个思想, 将逐点估计转化成积分估计, 这个想法在调和函数的估计中会
大量使用.

我们进行如下计算

|f(x)| ≤
∣∣∣∣∫

Rd

|f̂ | dx
∣∣∣∣ = ∣∣∣∣∫

Rd

⟨ξ⟩−s⟨ξ⟩s|f̂ | dx
∣∣∣∣

≤ ||⟨ξ⟩−s||L2 ||⟨ξ⟩sf̂ ||L2 ≤ C||f ||Hs .

这里的常数实际上来自积分 ||⟨ξ⟩−s||L2 的计算, 这个积分的计算要用到极坐标换元公式, 积
分收敛的条件正是 s > d

2
, 希望同学们自己去算一下.

(2). 首先我们有 ⟨ξ⟩s ≤ C(⟨η⟩s + ⟨ξ − η⟩s), 这个是因为 Jensen 不等式, 我们可以直接
计算凸性. 接下来我们用这个结果进行计算

||fg||Hs = ||⟨ξ⟩sf̂g||L2 ≤ C||⟨ξ⟩sf̂ ∗ ĝ(ξ)||L2
ξ

≤ C

∣∣∣∣∣∣∣∣∫
Rd

(⟨η⟩s + ⟨ξ − η⟩s)f̂(η)ĝ(ξ − η)dη
∣∣∣∣∣∣∣∣
L2
ξ

≤ C

∣∣∣∣∣∣∣∣∫
Rd

⟨η⟩sf̂(η)ĝ(ξ − η)dη
∣∣∣∣∣∣∣∣+ C

∣∣∣∣∣∣∣∣∫
Rd

⟨ξ − η⟩sf̂(η)ĝ(ξ − η)dη
∣∣∣∣∣∣∣∣

≤ C||(⟨·⟩sf̂) ∗ ĝ||L2 + C||f̂ ∗ (⟨·⟩sĝ)||L2 .

计算到这里, 我们能看到其中的对称性, 因此只估计其中一项, 为了方便看出我们是如何估
计的, 将 ⟨·⟩sf̂ 记为 F , 并估计如下

||(⟨·⟩sf̂) ∗ ĝ||L2 = ||F ∗ ĝ||L2 = ||F̂ g||L2 (用 Plancherel 定理)

≤ ||F̂ ||L2 ||g||L∞ ≤ ||F̂ ||L2 ||g||Hs

≤ ||F ||L2 ||g||Hs (用 Plancherel 定理)

= ||f ||Hs ||g||Hs .
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到这里, 我们就完成了计算, 有同学可能考虑使用关于卷积的 Young 不等式 (可以参考 Fol-
land 实分析 P240, 241), 这个是可以用的. 但在这里我们考虑的是 L2 空间, 上面能用相当
方便的 Fourier 分析, 因此这里也只展示这种方法, 希望同学们掌握.
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2 补充内容

在这个地方, 我们将引入少量的分布理论, 向同学们展示一些有趣的方程处理.
这里我们主要想考虑的问题是, 能不能对热方程

ut −∆u = 0

的时间和空间同时进行 Fourier 变换. 一般人得第一反应肯定是不行 (除非你没看清条件),
因为我们的 Fourier 变换是定义在完整的欧氏空间上的, 而这里我们的时间有基本的要求
t > 0. 但是, 一般不行不代表永远不行, 我们可以进行一些看起来比较随意的操作, 让 “热方
程” 至少看起来能在整个时间上定义.
为了行文的趣味性, 我们只在概念需要时进行新概念的引入.
为了形式延拓我们的解, 我们引入一个标准的 Heaviside 函数

H(x) =

0 x < 0;

1 x ≥ 0.

我们考虑新的函数 ũ(t, x) = H(t)u(x), 分析他会满足什么样的方程. 但是我们注意到, 这里
我们一定是要对这个 ũ 求时间导数的, 而函数 H(t) 在原点处连连续性都没有, 我们要怎么
求导呢? 为此, 我们引入弱导数的概念.

定义 2.1 (弱导数). 对给定区域 Ω 和函数 u, 函数 v ∈ L1
loc(Ω) 被称为 u 的弱导数, 当且仅

当对任意的 φ ∈ C∞
c (Ω), 有

⟨u, φ′⟩ = −⟨v, φ⟩

成立.

这里的 L1
loc(Ω) 是指在 Ω 的任意紧子集上绝对可积 (就是 L1 可积) 的函数. 如果不在

乎这些概念的话, 可以理解为在紧支光滑函数的测试意义下, 分部积分公式成立.
这里我们可以验证, H(x) 的弱导数就是我们熟知的 δ0“函数”(其实是叫做广义函数).
现在, 我们直接对 ũ 求时间导数, 可以得到如下方程

ũt = ∆ũ+ u0.

现在这个方程真的在 R×Rd 上有定义了, 因此我们对 (t,x) 做 Fourier 变换. 将他们的变换
记为 (η, ξ), (稍微混用一下记号) 得到

iη ˆ̃u = û0 − |ξ|2 ˆ̃u.
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那么我们现在就得到了一个代数方程, 解为

ˆ̃u =
û0

|ξ|2 + iη .

但是我们也可以提一个自然的问题: 我们这个延拓后的函数, 能不能真的变回原来的热核解
呢, 现在这个形式看不太出来啊! 为此, 我们考虑去对这个解做关于 t(> 0) 的 Fourier 反变
换.

ˆ̃u(t, ξ) =
1

2π

∫ ∞

−∞

û0(ξ)

|ξ|2 + iη
eitη dη.

这个积分同学们现在还不太会积, 需要用到留数定理, 去考虑一个上半平面的扇形围道, 然
后圆弧上的积分会在半径增大后消失, 从而线积分等于留数. 因此我们能算出来这个解为

ˆ̃u(t, ξ) = û0e
−|ξ|2t.

这个结果算出来我们就很安心了, 而对于 t < 0, 我们考虑对称的围道积分也能算出这个形
式的解, 而且这个时候的 Heaviside 函数则再次告诉我们, 我们没有额外假设什么反向演化
解的信息, 真的只是形式上做了上述的演算.

到这里有些同学可能已经满意了, 我们这个过程还是蛮严谨的, 没有引入什么大麻烦就
解决了问题, 但是这里还有一个纰漏, 我们实际上对一个性质不太好的函数用了 Fourier 变
换, 这对吗?

接下来,我们就来补充一些关于 Fourier分析的小知识,看看我们的 Fourier变换能做到
什么样的函数上.(接下来的内容只包含较少的证明, 受限于时间等原因只尽量讲清楚 idea)
首先最简单的,我们可以对 L1 函数逐点考虑 Fourier变换,这个是积分直接告诉我们的

(||f̂ ||L∞ ≤ ||f ||L1). 如果我们希望函数 f 的 Fourier 变换 f̂ 还是 L1 的, 那么我们就可以用
单位近似 (Approximation to Identity) 和控制收敛定理 (Dominated Convergence Theorem)
证明, 这个函数一定是几乎处处等同于一个连续函数 (注意, 只是说几乎处处等于, 不是几
乎处处连续), 这个就是著名的 Fourier 反演定理 (The Fourier Inversion Theorem). 如果同
学们已经在数分课上学了 Plancherl 定理, 我们这里用一下稠密性和泛函中的延拓定理, 就
能说明这个 Fourier 变换能保持 L2 内积, 因此是 L2 上的酉变换.

接下来我们提升一些难度, 必要的引入对偶空间.

定义 2.2 (对偶空间). 对于线性空间 V , 其对偶空间记为 V ′, 定义为 V ′ = {f : V → C :

f 为线性映射}.

我们这里的推广将从 Schwartz 函数空间 S 入手. 在之前的情况中, 我们实际上多次使
用了一个命题, 我们在这里给出一个不依赖 Fubini 定理的版本.

命题 2.1. 对于函数 f , g ∈ S, 我们有∫
f̂(y)g(y) dy =

∫
f(x)ĝ(x) dx
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我们因此引出下面的定义

⟨F̂ , ϕ⟩ = ⟨F, ϕ̂⟩,

这里的 F ∈ S ′, ϕ ∈ S. 用一些基本的推导, 我们可以知道, 这样推广定义的 Fourier 变换也
有之前的平移, 求导, 乘积性质. 这说明这样推广的 Fourier 变换是真的能拿来用的. 更好的
是, 如果我们类似推广 Fourier 反演的定义, 我们实际说明了 Fourier 变换是 S ′ 上的自同构!

接下来我们来看看这个怎么用. 我们直接看作业题 1. 有些同学在计算时可能会关心,
这里没有提足够的条件, 怎么能说明这个解是唯一的呢? 学了最大值原理后, 这个题可以
用对称开拓法加 Liouville 定理 (有界调和函数为常数), 考虑对 y < 0 考虑延拓 u(x, y) =

−u(x,−y), 即可完成证明.
但是我们非要换一个方法呢? 这个过程将超过同学们现有的知识水平, 因此仅简要讲

解大致思路.
1. 如果只用分布理论硬做, 我们会引入分布 A(ξ) sinh(|ξ|y) ∈ S ′, 这个分布的形式上就

已经比较糟糕, 其良定性要求 A(ξ) 实际是一个指数衰减且在原点处为 0 且平坦的函数 (用
来消除 sinh(|ξ|y) 在原点处不光滑导致的奇性). 为了说明这个分布实际为 0, 我们去考虑这
个分布的支集, 如果有非零支集, 我们能对这个分布做局部化, 这时 sinh(|ξ|y) 在局部化后
就变成了一个光滑函数, 接下来的证明就相对容易了, 因为这时完全放进了分布理论的框架
中. 而对于零支集的情况, 我们有结构定理说明这时的分布在 Fourier 变换后是一个多项式,
这时结合有界性, 证明就结束了.

2. 另一种思路是, 稍微用一些调和函数的东西, 同时加上基本的正则性假设 (如 u ∈
L1
loc, 也就是说 u 至少是一个正常一些的东西, 不然用不了平均值性质推出调和函数). 在奇
延拓后, 这个函数确实成为一个调和函数, 然后用 Fourier 变换, 可知其支撑在原点, 然后和
上面的方法类似.
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3 彩蛋

习题课最后讲, 没来的不告诉你.

13


