
Sol to HW1

TA: Yuanyi Zhang

November 28, 2025

Problem 1. 解方程 x∂tu + t∂xu = 0（t, x ∈ R），u(0, x) = e−x2
，并说明 tOx 平面中哪

些部分的解由初值唯一确定？

Solution. 显然是特征线法，特征线方程为（x ̸= 0）：

dx

dt
=
t

x

由 ODE 知识解出 x = ±
√
t2 + C（C ≥ 0）. 沿特征线 x(t)，u(t, x(t)) 的值不变，即

u(t, x(t)) = u(0, x(0)) = e−x(0)2 = e−C

由 C = x2 − t2 得

u(t, x) = et
2−x2

x2 − t2 ≥ 0 的区域内解由 t = 0 时初值唯一确定（取不取等不重要）. □

Remark. 同理得到 R2 上另一部分的解由 u(t, 0) 确定.

Problem 2. 考虑方程 3uy + uxy = 0.
a. 计算方程的通解.（提示：令 v = ∂yu）

b. 若假设 u(x, 0) = e−3x，uy(x, 0) = 0，方程的解是否存在？是否唯一？

Solution. a. 令 v = ∂yu，则方程化为：

3v + ∂xv = 0

这是关于 x 的一阶线性 ODE，分离变量得：

dv

v
= −3dx =⇒ ln v = −3x+ C(y) =⇒ v = eC(y)e−3x = g(y)e−3x
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其中 g(y) 为关于 y 的光滑函数。

由 v = ∂yu，对 y 积分：

u(t, x) =

∫
g(y)dy · e−3x + h(x) = f(y)e−3x + h(x)

其中 f(y) =
∫
g(y)dy，h(x) 为关于 x 的光滑函数，即通解为：

u(x, y) = f(y)e−3x + h(x)

b. 代入计算即可.
u(x, 0) = e−3x =⇒ h ≡ 0, f(0) = 1,

uy(x, 0) = 0 =⇒ f ′(0) = 0

显然这样的 f 存在但不唯一（考虑 f(y) = eλx
2
）. □

Remark. 无.

Problem 3. 证明方程 utt−c2uxx = 0的解必定满足“平行四边形法则”，即 u(A)+u(C) =

u(B)+u(D)，其中 A,B,C,D构成 xOt平面上的平行四边形，其边界方程为 x±ct =常数.

Solution. 由 D’Alembert 公式将 u 拆解为左行波和右行波的叠加：

u(t, x) = F (x− ct) +G(x+ ct)

立刻得到

u(A) + u(C) = (F (C1) +G(C4)) + (F (C2) +G(C3))

= (F (C1) +G(C3)) + (F (C2) +G(C4)) = u(B) + u(D)

□

Remark. 不少同学把 F 和 G 展开了，不用那么麻烦.

Problem 4. 考虑方程 20utt − utx − uxx = 0（t > 0, x ∈ R）
a. 计算通解.（提示：因式分解方程左边的微分算子）
b. 假设初值是 u(0, x) = x，∂tu(0, x) = e−x + 1

4
，计算方程的解 u(t, x).

Solution. 纯计算题.
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a. 方程因式分解为：

20

(
∂t −

1

4
∂x

)(
∂t +

1

5
∂x

)
u = 0

依次求解：

1. 令 v =
(
∂t +

1
5
∂x
)
u = 0，特征线 x− 1

5
t = C，解为 u = F

(
x− 1

5
t
)
；

2. 令
(
∂t − 1

4
∂x
)
v = 0，特征线 x + 1

4
t = D，解为 v = G

(
x+ 1

4
t
)
，积分得 u =

H
(
x+ 1

4
t
)
+ F

(
x− 1

5
t
)
。

通解为：

u(t, x) = F

(
x− 1

5
t

)
+G

(
x+

1

4
t

)
其中 F,G 为光滑函数。

b. 第一步代入 t = 0，由 u(0, x) = x 得到：

F (x) +G(x) = x (1)

第二步计算 ∂tu：

∂tu = −1

5
F ′

(
x− 1

5
t

)
+

1

4
G′

(
x+

1

4
t

)
代入 t = 0，由 ∂tu(0, x) = e−x + 1

4
得到：

−1

5
F ′(x) +

1

4
G′(x) = e−x +

1

4
(2)

由 (1) 得 G′(x) = 1− F ′(x)，代入 (2)：

−1

5
F ′(x) +

1

4
(1− F ′(x)) = e−x +

1

4

化简：

− 9

20
F ′(x) +

1

4
= e−x +

1

4
=⇒ F ′(x) = −20

9
e−x

积分得：

F (x) =
20

9
e−x + C1, G(x) = x− 20

9
e−x − C1

代入通解得：

u(t, x) =
20

9
e−(x−

1
5
t) + x+

1

4
t− 20

9
e−(x+

1
4
t)

□

Remark. 特征线解简单方程应该是期中必考项，建议算错的同学好好练习一下.
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Problem 5. 考虑第一象限中一个扇形区域内的波动方程utt − uxx = 0 t > x > 0;

u(t, t) = φ(t), ux(t, 0) = ψ(t) t ≥ 0.

a. 通过将初值 φ, ψ 代入通解 u(t, x) = F (x− t) + G(x + t), 计算 u(t, x) (用 φ, ψ 表

示).
b. 对哪些 (t, x), u(t, x) 的值完全由初值 φ, ψ 在 [0, 1] 区间内的部分决定？

Solution. 根据 D’Alembert 公式，设该方程的解为 u(x, t) = F (x+ t) +G(x− t) ．则

φ(t) = u(t, t) = F (2t) +G(0), ψ(t) = ux(0, t) = F ′(t) +G′(−t)

则

F (t) = φ

(
t

2

)
−G(0),

∫ t

0

ψ(ξ)dξ + C = F (t)−G(−t)

则

G(t) = F (−t)−
∫ −t

0

ψ(ξ)dξ − C

故

u(x, t) = φ

(
x+ t

2

)
−G(0) + φ

(
t− x

2

)
−G(0)−

∫ t−x

0

ψ(ξ)dξ − C

进一步求解 C ，在 G(t) 的表达式中令 t = 0 ，则

2G(0) = φ(0)− C.

因此方程的解为

u(x, t) = φ

(
x+ t

2

)
+ φ

(
t− x

2

)
−
∫ t−x

0

ψ(ξ)dξ − φ(0)

由于 φ(t), ψ(t) 在 [0, a](a > 0) 上给定，此定解条件的决定区域为0 ⩽ x+ t ⩽ 2a,

0 ⩽ t− x ⩽ a.

□

Remark. 前人之述备矣（见群文件 2023 秋微分方程引论习题课讲义 P115）.
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Problem 6. 考虑一维波方程的初值问题utt − c2uxx = 0 t > 0, x ∈ R

u(0, x) = φ(x), ut(0, x) = ψ(x) t = 0, x ∈ R,

其中 c > 0 是给定的常数, φ, ψ ∈ C∞
c (R). 定义

K(t) :=
1

2

∫
R
|∂tu(t, x)|2 dx, P (t) := c2

2

∫
R
|∂xu(t, x)|2 dx.

证明：

a. K(t) + P (t) 是守恒量，并据此证明方程平方可积解的唯一性.
b. 当 t 充分大时，有 K(t) = P (t). （提示：使用达朗贝尔公式）
本题中的记号 C∞

c (R) 是指全体具有紧支集的光滑函数，即 C∞
c (R) := {f ∈ C∞(R) :

supp f是紧集}, 其中 supp f := {f(x) ̸= 0}.

Solution. a. 直接做 d 维情形，波方程变为

utt − c2∆u = 0, t > 0, x ∈ Rd

K(t) :=
1

2

∫
Rd

|∂tu(t, x)|2 dx, P (t) :=
c2

2

∫
Rd

|∇u(t, x)|2 dx.

我们定义该方程的能量为 E(t) = K(t) + P (t). 证明其关于时间导数为 0 的思路是利用方
程消去关于时间的二阶项（u2t 求导产生），观察剩余项的结果.

dE

dt
=

∫
Rd

ututt dx+ c2
∫
Rd

∇u · ∇ut dx

=

∫
Rd

(ututt − c2ut∆u) dx+ c2
∫
Rd

(ut∇ · ∇u+∇u · ∇ut) dx

=

∫
Rd

(ututt − c2ut∆u) dx+ c2
∫
Rd

∇ · (ut∇u) dx

=

∫
Rd

ut(utt − c2∆u) dx+ c2
∫
∂Rd

ut
∂u

∂n
dx

由波方程知第一项为 0；对第二项，由初值紧支可假设 suppφ ∪ suppψ ⊂ B(0, R)，则由

有限传播速度知 ut,∇u 对任意 t > 0 仍然紧支（事实上 supput ∪ supp∇u ⊂ B(0, R+ ct)，

考虑决定区域即可），因此第二项同样为 0.

5



要证给定初值解的唯一性，只需说明零解唯一. 这由如下推导即得：

u(0, x) = 0 =⇒ ∇u(0, x) = 0

=⇒ E(t) = E(0) = 0

=⇒ ut = ∇u ≡ 0

=⇒ u = u(0, 0) = 0

b. 由 D’Alembert 公式：

u(t, x) =
1

2
[φ(x− ct) + φ(x+ ct)] +

1

2c

∫ x+ct

x−ct

ψ(s)ds

计算导数：

ut =
c

2
[−φ′(x− ct) + φ′(x+ ct)] +

1

2
[ψ(x+ ct) + ψ(x− ct)]

ux =
1

2
[φ′(x− ct) + φ′(x+ ct)] +

1

2c
[ψ(x+ ct)− ψ(x− ct)]

作差整理得：

u2t − c2u2x = (ψ(x+ ct) + φ′(x+ ct))(ψ(x− ct)− φ′(x− ct)) =: F (x+ ct)G(x− ct) (3)

这里

F (x) := ψ(x) + φ′(x), G(x) := ψ(x)− φ′(x)

则

suppF ⊂ B(0, R), suppG ⊂ B(0, R)

其中 R 在 a. 已给出. 那么给定充分大的 t，有

suppF (x+ ct) ⊂ B(−ct, R), suppG(x− ct) ⊂ B(ct, R), B(−ct, R) ∩ B(ct, R) = ∅,

即

u2t − c2u2x = F (x+ ct)G(x− ct) = 0, x ∈ R

即 K(t) = P (t).
□

Remark. a. 中说明第二项积分为 0 时需要表明紧支性；有用 D’Alembert 公式做第
一题的，要注意这个方法不具有推广意义；b. 证明错误的同学很多，不少同学直接由
limt→∞ φ(x + ct) = 0（其他项同理）得出 (3) 等号右边是 0 的结果，这里的问题在于
极限的成立是在给定 x的前提下，并不意味着给定（不管多大的）t时右侧对 x整体是 0，
也不能推出积分为 0. 右侧为 0 的原理是任意给定 t 大时 F 和 G 的支撑集分离.
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Problem 7. 设复值函数 u(t,x) = ei(y·x−σt), 其中 σ ∈ C, x,y ∈ Rd. 对如下方程具有该
形式的解，计算 σ 与 y 之间的关系（该关系称作“色散关系”）。

a. 波动方程 ∂2t u−∆u = 0.
b.Klein-Gordon 方程 ∂2t u−∆u+m2u = 0, 这里 m > 0 是常数.
c.Schrödinger 方程 i∂tu+∆u = 0.
d. Airy 方程 ∂tu+ ∂3xu = 0, 本例中 d = 1.

Solution. 代入计算即可，结果分别是

σ2 = |y|2, σ2 = |y|2 +m2, σ = |y|2, σ = −y3

□

Remark. 原题是 σ 与 |y| 的关系，可能引起误解了，因为这个被扣分可以找助教.

Problem 8. 证明：对任意常数D ∈ R, 如下方程至多只有一个光滑解 u ∈ C∞([0, T ] ×
[0, 1]). 

∂2t u+D∂tu− ∂2xu = 0 t ∈ (0, T ), x ∈ (0, 1);

u(0, x) = φ(x), ∂tu(0, x) = ψ(x) x ∈ [0, 1];

u(t, 0) = u(t, 1) = 0 t ∈ [0, T ].

Solution. 同 T6 使用能量法，证明零解唯一.

E(t) : = 2−1

∫
R
u2t +∇u2 dx

dE

dt
=

∫
R
ututt +∇u · ∇ut dx

=

∫
R
ut(utt +Dut −∆u) +

∫
R
ut∇ · ∇u+∇u · ∇ut dx−

∫
R
Du2t dx

= −
∫
R
Du2t dx

D ≥ 0 时，
dE

dt
≤ 0 =⇒ 0 ≤ E(t) ≤ E(0) = 0,

D < 0 时，

dE

dt
= −

∫
R
Du2t dx ≤ −

∫
R
Du2t dx−

∫
R
D∇u2 dx = −DE(t),
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用 Gronwall 不等式即证. □

Remark. 高维操作同理.注意讨论 D 的正负.

Problem 9. 考虑二维波动方程的初值问题

∂2t u−∆u = 0 (t > 0,x ∈ R2), u(0,x) = 0, ∂tu(0,x) = ψ(x) (x ∈ Rd).

其中初值 ψ ∈ C∞
c (R2).

a. 用积分的极坐标表示证明

u(t,x) =
1

2π

∫ t

0

r√
t2 − r2

∫
∂B(0,1)

ψ(x+ rz) dSz dr.

b. 证明: 存在常数 C > 0（不依赖 ψ），使得如下估计（对 t ≥ T0）成立

|u(t,x)| ≤ C√
t

(∫
R2

|ψ(y)| dy +

∫
R2

|∇ψ(y)| dy
)
.

Solution. a. 由 Possion 公式：

u(t,x) =
1

2πc

∫
B(x,ct)

ψ(y)√
(ct)2 − |y − x|2

dy

令 y = x+w，其中 w ∈ B(0, ct)，则

u(t,x) =
1

2πc

∫
B(0,ct)

ψ(x+w)√
(ct)2 − |w|2

dw =
1

2π

∫ t

0

r√
t2 − r2

∫
∂B(0,1)

ψ(x+ rz) dSz dr.

b. 提示可能引起误解，这里并不是要取 ε→ 0. 按提示将 u 分为
∫ t−ε

0
+
∫ t

t−ε
两部分，

|I1| : =
∣∣∣∣∫ t−ε

0

r√
t2 − r2

∫
∂B(0,1)

ψ(x+ rz) dSz dr
∣∣∣∣

≤
∫ t−ε

0

r√
t2 − (t− ε)2

∫
∂B(0,1)

|ψ(x+ rz)| dSz dr

≤ 1√
ε(2t− ε)

∫
B(0,t−ε)

|ψ(y)| dy

≤ 1√
ε(2t− ε)

∫
R2

|ψ(y)| dy,
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|I2| : =
∣∣∣∣∫ t

t−ε

r√
t2 − r2

∫
∂B(0,1)

ψ(x+ rz) dSz dr
∣∣∣∣

=

∣∣∣∣∫ t

t−ε

r√
t2 − r2

∫
∂B(0,1)

∫ r

0

∇ψ(x+ sz) ds dSz dr
∣∣∣∣

≤
∫ t

t−ε

1√
t2 − r2

∫ r

0

∫
∂B(0,1)

s|∇ψ(x+ sz)| ds dSz dr

≤
∫ t

t−ε

dr√
t2 − r2

∫
R2

|∇ψ(y)| dy

=
(
arcsin 1− arcsin (1− εt−1)

) ∫
R2

|∇ψ(y)| dy

= arccos (1− εt−1)

∫
R2

|∇ψ(y)| dy

我们的目的是选出 ε 使得
√
t/(ε(2t− ε)),

√
t(arccos (1 − εt−1)) 对任意的 t ≥ T0 同时有

常数的上界，取 ε = T0/2 即可. □

Remark. 最终取出的 C 应当是与 ε,t 无关的常数，但会与 T0 有关；提示中给出的分解

其实可以直觉上理解为将平面波分成波前与波后两部分估计，波后部分是由于平面波的

有后效性，波前性质与三维相似；关于 arccos (1− εt−1) 的估计，可以设其为 y，则有

1− εt−1 = cos y ≤ 1− αy2 =⇒ y ≤ (αt/ε)−1/2
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注：本题也可将I_2中的分母中根号里面的项放缩为t(t-r)进而避开反三角函数的计算。




