Riemannian Geometry (Spring, 2023) Mid-term Exam

Name:

No.:

Department:

1. (15 marks) Let M be a smooth manifold. Let ∇ be an affine connection on M. We define for any $X, Y \in \Gamma(TM)$

$$\overline{\nabla}_X Y := \nabla_X Y - \frac{1}{2} T(X, Y),$$

where T is the torsion tensor of ∇ .

- (i) Prove that $\overline{\nabla}$ is an affine connection.
- (ii) Prove that ∇ is torsion free. 5
- (iii) A parametrized curve $\gamma = \gamma(t)$ on M is called a geodesic with respect to an affine connection ∇ if $\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0$ for any t. Prove that ∇ and $\overline{\nabla}$ have the same geodesics.
- 2. (20 marks) Let $c:[0,a]\to M$ be a piecewise smooth curve in a Riemannian manifold (M,g).
 - (i) Let $F:[0,a]\times(-\epsilon,\epsilon)\to M$ be a piecewise smooth variation of c. Derive the First Variation Formula of the energy functional. (\bigcirc
 - (ii) Let V(t) be a piecewise smooth vector filed along the curve c. Show that there exists a piecewise smooth variation $F:[0,a]\times(-\epsilon,\epsilon)\to M$ such that V(t) is the variational field of F; in addition, If V(0)=V(a)=0, it is possible to choose F as a proper variation, i.e., F(0,s)=c(0), F(a,s)=c(a) for all $s\in(-\epsilon,\epsilon)$.
 - (iii) Prove that a piecewise smooth curve $c:[0,a]\to M$ is a geodesic if and only if, for every proper piecewise smooth variation F of c, we have [0]

$$E'(0)=0.$$

- 3. (15 marks) Let (M,g) be a Riemannian manifold. Let ∇ be the Levi-Civita connection of the metric g.
 - (i) For $X, Y, Z \in \Gamma(TM)$, compute \mathcal{L}

$$\nabla^2 Z(Y,X) - \nabla^2 Z(X,Y).$$

Here we use ∇^2 for the second order covariant differentiation.

(ii) Use Ricci Identity to prove the Bochner formula: For any $f \in C^{\infty}(M)$, it holds that (\mathcal{S})

$$\frac{1}{2}\Delta|\operatorname{grad} f|^2 - \langle \operatorname{grad}(\Delta f), \operatorname{grad} f \rangle = |\operatorname{Hess} f|^2 + \operatorname{Ric}(\operatorname{grad} f, \operatorname{grad} f).$$

4. (20 marks)

Let M be the upper half-plane $\{(x,y) \in \mathbb{R}^2 : y > 0\}$, with the Riemannian metric

 $\frac{1}{y^2}(dx\otimes dx+dy\otimes dy).$

(i) Find a function $t \mapsto y(t), t \in (0, +\infty)$ such that the curve

$$\gamma: (0, +\infty) \to M, \ t \mapsto (x_0, y(t)), \text{ where } x_0 \in \mathbb{R},$$

is a geodesics parametrized by arclength. (•

(ii) Let $0 < a < b < +\infty$. Let γ be as in (i) and $\sigma : [a, b] \to M$ be a smooth curve connecting $\gamma(a)$ and $\gamma(b)$. Prove that

$$\operatorname{Length}(\sigma_{|[a,b]}) \geq \operatorname{Length}(\gamma_{|[a,b]}).$$

Characterize the case when the equality holds. (3

5. (30 marks)

Let (M^n, g) be a compact orientable Riemaniann manifold (M, g) with dimension n, where n is odd. Suppose that there exists an isometry $f: M \to M$ which reverses the orientation of M, and there exists $p \in M$ such that

$$d(p, f(p)) = \inf_{q \in M} d(q, f(q)), \text{ and } d(p, f(p)) \neq 0.$$

Let $\gamma:[0,\ell]\to M$ be a normal minimizing geodesic from $\gamma(0)=p$ to $\gamma(\ell)=f(p)$.

(i) Let $\overline{\gamma}:[0,2\ell]\to M$ be a curve given by

$$\overline{\gamma}(t) = \left\{ egin{array}{ll} \gamma(t), & t \in [0,\ell]; \\ f(\gamma(t-\ell)), & t \in [\ell,2\ell]. \end{array}
ight.$$

Show that $\overline{\gamma}$ is a smooth curve. $\sqrt{9}$

(ii) Show that there exists a nontrivial parallel normal vector field V(t), $t \in [0, \ell]$ along γ satisfying

$$V(\ell) = df_p(V(0)). \quad \text{(3)}$$

(iii) Show that M can not have positive sectional curvature. (\mathcal{I}