Exam 2 for Differential Equations

May 25, 2023
ν always stands for the outward unit normal vector on the boundary, and U, Ω is always a bounded domain in \mathbb{R}^{n}.
1.(Sobolev space)
(a)(10 Marks) Suppose $\left.|\log | x\right|^{\alpha} \in W^{1,2}\left(B_{\frac{1}{2}}(0)\right), B_{\frac{1}{2}}(0) \subseteq R^{2}$. Show the range of α.
(b) (10 Marks) Suppose $u \in W_{0}^{1,2}(U), U$ is an open bounded domain in R^{n}. Prove that $u^{+} \in$ $W_{0}^{1,2}(U)$.
2.(Morrey inequality) Let $u \in C^{1}\left(R^{n}\right)$, prove the Morrey inequality in the following two steps:
(a)(10 Marks) $\frac{1}{|B(x, r)|} \int_{B(x, r)}|u(x)-u(y)| d y \leq C(n) \int_{B(x, r)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} d y$
(b)(10 Marks) $[u]_{C^{\alpha}\left(R^{n}\right)}+|u|_{L^{\infty}\left(R^{n}\right)} \leq C(n)\|u\|_{W^{1, p}\left(R^{n}\right)}$, where $p>n, \alpha=1-\frac{n}{p}$.
3. (20 Marks) Consider the equation

$$
\left\{\begin{array}{l}
-\Delta u=f \text { in } U \subseteq R^{n}, f \in L^{2}(U) \\
u \in W_{0}^{1,2}(U)
\end{array}\right.
$$

Using the method of minimizing sequence to prove the existence(15 Marks) and uniqueness(5 Marks) of the weak solution.
4.(Fredholm alternative)Suppose $U=[0, \pi] \times[0,2 \pi]$.
(a)(10 marks) Consider the eigenvalue problem:

$$
\left\{\begin{array}{lll}
\Delta u+\lambda u=0 & \text { in } & U \\
u=0 & \text { on } & \partial U
\end{array}\right.
$$

Find the eigenvalues λ_{k} and the corresponding eigenfunctions u_{k}.
(b)(10 marks) Consider the equation:

$$
\begin{cases}\Delta u+\frac{5}{4} u=2 x+y+a & \text { in } \\ u=0 & \text { on } \quad \partial U\end{cases}
$$

For which $a \in \mathbb{R}$ does this equation exist at least one solution ?
5. (a)(10 marks) Suppose $\eta(x) \in C_{0}^{\infty}(\mathbb{R}), \eta(x)=\left\{\begin{array}{ll}C_{0} e^{\frac{1}{|x|^{2}-1}} & ,|x|<1 \\ 0 & ,|x| \geq 1\end{array}\right.$, such that $\int_{\mathbb{R}} \eta(x) d x=1$.

Let $f^{\epsilon}(x)=\left(\eta^{\epsilon} * f\right)(x)$, where $\eta^{\epsilon}(x)=\epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right), f \in C^{0,1}(\mathbb{R}), f^{\prime}(t) \geq 0$ and f is a convex function. Prove that:

$$
\frac{d f^{\epsilon}(t)}{d t} \geq 0, \frac{d^{2} f^{\epsilon}(t)}{d t^{2}} \geq 0
$$

(b)(10 marks) Suppose $u \in H_{0}^{1}(\Omega)$ is a super-solution in the following sense:

$$
\int_{\Omega} \sum_{i, j} a_{i j} u_{i} v_{j} d x \geq 0
$$

, for any $v \geq 0$ in Ω and $v \in H_{0}^{1}(\Omega)$, where $0<\lambda I \leq\left(a_{i j}\right) \leq \Lambda I$. Prove that $u^{+}:=\max \{u, 0\}$ is also a super-solution.
6. (a)(10 marks) (Moser iteration) Suppose $a_{i j}(x) \in L^{\infty}\left(B_{R}(0)\right), \lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}$. Consider the equation:

$$
\left\{\begin{array}{lll}
-\sum_{i, j}\left(a_{i j}(x) u_{i}\right)_{j}=0 & , \text { in } & B_{R}(0) \\
u=0 & , \text { on } & \partial B_{R}(0)
\end{array}\right.
$$

Assume $u>0, u \in C^{\infty}\left(B_{R}(0)\right)$ is a weak solution of this equation. Prove that for any $p>1, \theta \in$ $(0,1)$, we have:

$$
\left(\int_{B_{\theta R}} u^{\frac{n p}{n-2}} d x\right)^{\frac{n-2}{n p}} \leq C\left(\int_{B_{R}} u^{p} d x\right)^{\frac{1}{p}}
$$

and give the expression of C.
(b)(10 marks) Suppose $a_{i j}(x) \in C^{1}(\bar{\Omega}), \partial \Omega \in C^{1}, f \in L^{2}(\Omega), \lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}$. Consider the equation:

$$
\begin{cases}-\sum_{i, j}\left(a_{i j}(x) u_{i}\right)_{j}=f & , \text { in } \quad \Omega \\ u=0 & , \text { on } \quad \partial \Omega\end{cases}
$$

Assume $u \in H_{0}^{1}(\Omega)$ is a weak solution of this equation. For any subset $V \subset \subset \Omega$, prove that: $u \in H^{2}(V)$ and

$$
\int_{V}\left|D^{2} u\right|^{2} d x \leq C \int_{\Omega}\left(f^{2}+u^{2}\right) d x
$$

where $C \sim V, \Omega$, coefficients of L.

