Exam1 for Differential Equations

April 18, 2023

 ν always stands for the outward unit normal vector on the boundary, and Ω is always a bounded domain in \mathbb{R}^n .

1.(10 marks) Suppose $\Delta u = 0$ in $B_{2R} \subseteq \mathbb{R}^n, u > 0$. Prove that:

$$\sup_{B_R} |\nabla \log u| \le \frac{C_n}{R}$$

2.(15 marks) Suppose $\sum_{ij} a_{ij}(x)u_{ij} = 0$ in $B_2(0) \subseteq \mathbb{R}^n$, u > 0, $0 < \lambda I \leq (a_{ij}) \leq \Lambda I$, $a_{ij} \in C^1(\bar{B}_2)$. Prove that:

$$\sup_{B_1} |\nabla \log u| \le C(n, |a_{ij}|_{C^1(\bar{B}_2)}, \lambda, \Lambda)$$

3.(10 marks) Consider $Lu = a_{ij}(x)u_{ij} + b_i(x)u_i + c(x)u, \ \lambda I \leq (a_{ij}) \leq \Lambda I, \max_{\bar{\Omega}} |a_{ij}| + \max_{\bar{\Omega}} |b_i| \leq \Lambda, f \in C(\bar{\Omega}), \ \varphi \in C(\partial\Omega), \ c(x) \leq 0.$ If $u \in C^2(\Omega) \cap C(\bar{\Omega})$ solves the equation:

$$\begin{cases} Lu = f & in & \Omega\\ u = \varphi & on & \partial \Omega \end{cases}$$

prove that $\max_{\overline{\Omega}} |u(x)| \leq \max_{\partial\Omega} |\varphi| + C \max_{\overline{\Omega}} |f|.$ (Hint:We can assume $\Omega \subseteq \{0 < x_1 < d\}$, and consider $w = u + (e^{\alpha d} - e^{\alpha x_1})F.$) **4.(5 marks)** Consider the equation

$$\begin{cases} \Delta u = f & in \quad \Omega^c \\ u = \varphi & on \quad \partial \Omega \\ u \to 0 & as \ |x| \to \infty. \end{cases}$$

Prove the uniqueness of the solution.

5.(20 marks) Consider the equation

$$\begin{cases} \Delta u = f & in \quad \Omega \\ u = \varphi & on \quad \partial \Omega \end{cases}$$

Assume that $u \in C^2(\Omega) \cap C(\overline{\Omega}), \varphi \in C^1(\overline{\Omega}).$

(a) (5 marks) Reduce the gradient estimates to the boundary gradient estimates. That is:

$$\sup_{\Omega} |\nabla u| \le C(\sup_{\partial \Omega} |\nabla u| + 1)$$

where C depends on $|f|_{C^0}$, $|\varphi|_{C^0}$, Ω .

(b)(15 marks) Prove the boundary gradient estimates. That is: $\sup |\nabla u| \leq C$, where C depends

on $|f|_{C^1}|, |\varphi|_{C^1}, \Omega$. 6.(Green function)

(a)(10 marks) Find the green function G(x, y) in $B_R(0) \subset \mathbb{R}^2$, and calculate $\frac{\partial G(x,y)}{\partial \nu_y}$, $y \in \partial B_R(0)$. **Hint:** $\Gamma(x, y) = \frac{1}{2\pi} \log |x - y|.$

(b)(15 marks) Suppose that $\Omega \subset \mathbb{R}^n$ is a C^1 bounded domain, G(x, y) is the Green function on $\Omega, f \in C(\overline{\Omega}), \varphi \in C(\partial \Omega)$. Consider the equation:

$$\left\{ \begin{array}{ll} \Delta u=f & in & \Omega \\ u=\varphi & on & \partial \Omega \end{array} \right.$$

Prove that $u(x) = \int_{\Omega} G(x, y) f(y) dy + \int_{\partial \Omega} \varphi(y) \frac{\partial G(x, y)}{\partial \nu_y} d\sigma_y.$

7.(integration by parts)

(a) (5 marks) Consider the equation:

$$\left\{ \begin{array}{ll} \Delta u = 2 & in & \Omega \\ u = 0 & on & \partial \Omega \end{array} \right.$$

Prove that: $\frac{n-2}{2} \int_{\Omega} |Du|^2 dx + \frac{1}{2} \int_{\partial \Omega} (x \cdot \nu) |Du|^2 d\sigma = -2n \int_{\Omega} u dx$ **Hint:** Multiply $(x \cdot Du)$.

(b)(5 marks) Assume that $\Omega' \subset \subset \Omega$, $\Delta u = 0$ in Ω , $u \in L^2(\Omega)$. Prove that:

$$\int_{\Omega'} |Du|^2 dx \le C(n, dist(\Omega', \Omega)) \int_{\Omega} u^2 dx$$

Hint: Multiply $u\xi^2$.

(c) (5 marks) Assume that $\Omega' \subset \subset \Omega$, $\Delta u = f$ in Ω , $u \in L^2(\Omega)$, $f \in L^2(\Omega)$. Prove that:

$$\int_{\Omega'} |D^2 u|^2 dx \le C(n, dist(\Omega', \Omega)) \int_{\Omega} f^2 + u^2 dx$$

(d)(5 marks) Assume that $\Delta u = 0$ in B_2 , u > 0. Prove that:

$$\int_{B_1} |D\log u|^2 dx \le C(n)$$

Hint: Multiply $u^{-1}\xi^2$.

8.(Critical index problem)(15 marks)

Assume that $1 < \alpha < \frac{n-2}{n+2}, u > 0$. Consider the equation: $\Delta u + u^{\alpha} = 0$ in \mathbb{R}^n . Multiply this equation by $u^a \Delta u$ and find the appropriate constant a, such that we can prove:

$$|u^{a-2}|Du|^4 \le \partial_i (C_1 u^{a-1} |Du|^2 u_i + C_2 u^{a+\alpha} u_i + C_3 u^a u_{ij} u_j)$$