Exam1 for Differential Equations

April 18, 2023
ν always stands for the outward unit normal vector on the boundary, and Ω is always a bounded domain in \mathbb{R}^{n}.

1. (10 marks) Suppose $\Delta u=0$ in $B_{2 R} \subseteq \mathbb{R}^{n}, u>0$. Prove that:

$$
\sup _{B_{R}}|\nabla \log u| \leq \frac{C_{n}}{R}
$$

2.(15 marks) Suppose $\sum_{i j} a_{i j}(x) u_{i j}=0 \quad$ in $B_{2}(0) \subseteq \mathbb{R}^{n}, u>0,0<\lambda I \leq\left(a_{i j}\right) \leq \Lambda I, a_{i j} \in$ $C^{1}\left(\bar{B}_{2}\right)$.Prove that:

$$
\sup _{B_{1}}|\nabla \log u| \leq C\left(n,\left|a_{i j}\right|_{C^{1}\left(\overline{B_{2}}\right)}, \lambda, \Lambda\right)
$$

3.(10 marks) Consider $L u=a_{i j}(x) u_{i j}+b_{i}(x) u_{i}+c(x) u, \lambda I \leq\left(a_{i j}\right) \leq \Lambda I, \max _{\bar{\Omega}}\left|a_{i j}\right|+\max _{\bar{\Omega}}\left|b_{i}\right| \leq \Lambda$, $f \in C(\bar{\Omega}), \varphi \in C(\partial \Omega), c(x) \leq 0$. If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ solves the equation:

$$
\begin{cases}L u=f & \text { in } \quad \Omega \\ u=\varphi & \text { on } \quad \partial \Omega\end{cases}
$$

prove that $\max _{\bar{\Omega}}|u(x)| \leq \max _{\partial \Omega}|\varphi|+C \max _{\bar{\Omega}}|f|$.
(Hint:We can assume $\Omega \subseteq\left\{0<x_{1}<d\right\}$, and consider $w=u+\left(e^{\alpha d}-e^{\alpha x_{1}}\right) F$.)
4. (5 marks) Consider the equation

$$
\begin{cases}\Delta u=f & \text { in } \quad \Omega^{c} \\ u=\varphi & \text { on } \quad \partial \Omega \\ u \rightarrow 0 & \text { as }|x| \rightarrow \infty\end{cases}
$$

Prove the uniqueness of the solution.
5.(20 marks) Consider the equation

$$
\left\{\begin{array}{lll}
\Delta u=f & \text { in } & \Omega \\
u=\varphi & \text { on } & \partial \Omega
\end{array}\right.
$$

Assume that $u \in C^{2}(\Omega) \cap C(\bar{\Omega}), \varphi \in C^{1}(\bar{\Omega})$.
(a)(5 marks) Reduce the gradient estimates to the boundary gradient estimates. That is:

$$
\sup _{\Omega}|\nabla u| \leq C\left(\sup _{\partial \Omega}|\nabla u|+1\right)
$$

,where C depends on $|f|_{C^{0}}\left|,|\varphi|_{C^{0}}, \Omega\right.$.
(b)(15 marks) Prove the boundary gradient estimates. That is: $\sup _{\partial \Omega}|\nabla u| \leq C$, where C depends on $|f|_{C^{1}}\left|,|\varphi|_{C^{1}}, \Omega\right.$.

6.(Green function)

(a)(10 marks) Find the green function $G(x, y)$ in $B_{R}(0) \subset \mathbb{R}^{2}$, and calculate $\frac{\partial G(x, y)}{\partial \nu_{y}}, y \in \partial B_{R}(0)$.

Hint: $\Gamma(x, y)=\frac{1}{2 \pi} \log |x-y|$.
(b)(15 marks) Suppose that $\Omega \subset \mathbb{R}^{n}$ is a C^{1} bounded domain, $G(x, y)$ is the Green function on $\Omega, f \in C(\bar{\Omega}), \varphi \in C(\partial \Omega)$. Consider the equation:

$$
\left\{\begin{array}{lll}
\Delta u=f & \text { in } & \Omega \\
u=\varphi & \text { on } & \partial \Omega
\end{array}\right.
$$

Prove that $u(x)=\int_{\Omega} G(x, y) f(y) d y+\int_{\partial \Omega} \varphi(y) \frac{\partial G(x, y)}{\partial \nu_{y}} d \sigma_{y}$.
7.(integration by parts)
(a)(5 marks) Consider the equation:

$$
\left\{\begin{array}{lll}
\Delta u=2 & \text { in } & \Omega \\
u=0 & \text { on } & \partial \Omega
\end{array}\right.
$$

Prove that: $\frac{n-2}{2} \int_{\Omega}|D u|^{2} d x+\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|D u|^{2} d \sigma=-2 n \int_{\Omega} u d x$
Hint: Multiply ($x \cdot D u$).
(b)(5 marks) Assume that $\Omega^{\prime} \subset \subset \Omega, \Delta u=0$ in $\Omega, u \in L^{2}(\Omega)$. Prove that:

$$
\int_{\Omega^{\prime}}|D u|^{2} d x \leq C\left(n, \operatorname{dist}\left(\Omega^{\prime}, \Omega\right)\right) \int_{\Omega} u^{2} d x
$$

Hint: Multiply $u \xi^{2}$.
(c)(5 marks) Assume that $\Omega^{\prime} \subset \subset \Omega, \Delta u=f$ in $\Omega, u \in L^{2}(\Omega), f \in L^{2}(\Omega)$. Prove that:

$$
\int_{\Omega^{\prime}}\left|D^{2} u\right|^{2} d x \leq C\left(n, \operatorname{dist}\left(\Omega^{\prime}, \Omega\right)\right) \int_{\Omega} f^{2}+u^{2} d x
$$

(d)(5 marks) Assume that $\Delta u=0$ in $B_{2}, u>0$. Prove that:

$$
\int_{B_{1}}|D \log u|^{2} d x \leq C(n)
$$

Hint: Multiply $u^{-1} \xi^{2}$.

8.(Critical index problem)(15 marks)

Assume that $1<\alpha<\frac{n-2}{n+2}$, $u>0$. Consider the equation: $\Delta u+u^{\alpha}=0$ in \mathbb{R}^{n}. Multiply this equation by $u^{a} \Delta u$ and find the appropriate constant a, such that we can prove:

$$
u^{a-2}|D u|^{4} \leq \partial_{i}\left(C_{1} u^{a-1}|D u|^{2} u_{i}+C_{2} u^{a+\alpha} u_{i}+C_{3} u^{a} u_{i j} u_{j}\right)
$$

