Final Exam for Differential Equations

July 5, 2023
ν always stands for the outward unit normal vector on the boundary, and U is always a bounded domain in \mathbb{R}^{n}.
1.(25 Marks)
(a)(10 Marks) Consider $\Delta u=0, u>0$ in $B_{1}(0) \subseteq R^{n}, u \in C^{3}$. Prove that $\sup _{B_{\frac{1}{2}}(0)}|D \log u| \leq C_{n}$.
(b)(15 Marks) Consider $u_{t}=\Delta u, u>0$ in $U_{T}, u \in C_{2}^{3}\left(U_{T}\right), V \subset \subset U$ is conneted. Then for each $0<t_{1}<t_{2} \leq T$, we have $\sup _{V} u\left(\cdot, t_{1}\right) \leq C \inf _{V} u\left(\cdot, t_{2}\right)$, where C depends on V, t_{1}, t_{2}, n.

2.(20 Marks)

(a)(5 Marks) Consider

$$
\begin{cases}\Delta u=1 & \text { in } U \subseteq R^{n} \\ u=0 & \text { on } \partial U\end{cases}
$$

$u \in C^{2}(U) \cap C(\bar{U})$, denote $d=\operatorname{diam}(U)$, prove that: $-\frac{d^{2}}{2 n} \leq u \leq 0$.
(b)(5 Marks) Consider

$$
\begin{cases}\Delta u=f & \text { in } U \subseteq R^{n} \\ u=\varphi & \text { on } \partial U\end{cases}
$$

Prove that $\max _{\bar{U}}|u(x)| \leq \max _{\partial U}|\varphi|+C \max _{\bar{U}}|f|$.
(c)(10 Marks) Consider $\Delta u=f$ in $U \subseteq R^{n}, f \in C^{1}(\bar{U}), u \in C^{3}(U) \cap C^{1}(\bar{U})$. Prove that $\sup _{\bar{U}}|D u(x)| \leq C\left(1+\sup _{\partial U}|D u|\right)$, where $C \sim U, f, n$.
3. (15 Marks) Let $u \in H^{1}\left(B_{1}(0)\right), B_{1}(0) \subseteq R^{2}, f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}^{2}, W=\left\{u \in H^{1}\left(B_{1}(0)\right)\right.$: $\left.u-f \in H_{0}^{1}\left(B_{1}(0)\right)\right\}$. Compute $\inf _{u \in W} \int_{B_{1}(0)}|D u|^{2} d x$.
4. (35 marks) Let $T>0, U_{T}=U \times(0, T]$. Assume the functions w_{k} are normalized eigenfunctions for $-\Delta$ in $H_{0}^{1}(U)$ such that $\left\{w_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis of $L^{2}(U)$. Assume $0 \leq t \leq T, u_{m}(x, t)=$ $\sum_{k=1}^{m} d_{k}(t) w_{k}(x)$ satisfy $d_{k}(0)=\left(g, w_{k}\right)$ and

$$
\int_{U}\left(u_{m}^{\prime}(x, t) w_{k}(x)+\nabla u_{m} \nabla w_{k}\right) d x=\int_{U} f w_{k} d x, 1 \leq k \leq m
$$

where $f \in L^{2}\left(0, T ; L^{2}(U)\right), g \in L^{2}(U)$.
(a)(10 marks)Prove that:

$$
\sup _{0 \leq t \leq T}\left\|u_{m}(\cdot, t)\right\|_{L^{2}(U)}+\left\|u_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)} \leq C\left(\|g\|_{L^{2}(U)}+\|f\|_{L^{2}\left(0, T ; L^{2}(U)\right)}\right)
$$

where $C \sim U, T$.
(b)(5 marks)If $g \in H_{0}^{1}(U)$, prove that: $\left\|u_{m}(\cdot, 0)\right\|_{H_{0}^{1}(U)} \leq\|g\|_{H_{0}^{1}(U)}$
(c)(10 marks)Suppose $f \in L^{2}\left(0, T ; H^{2}(U)\right), g \in H_{0}^{1}(U)$. Assume $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right), u^{\prime} \in$ $L^{2}\left(0, T ; H^{-1}(U)\right)$ be a weak solution to:

$$
\left\{\begin{array}{lr}
u_{t}=\Delta u+f(x, t) & (x, t) \in U_{T} \\
u(x, t)=0 & (x, t) \in \partial U \times[0, T] \\
u(x, 0)=g(x) & x \in U
\end{array}\right.
$$

Prove that:

$$
\underset{0 \leq t \leq T}{\operatorname{ess} \sup }\|u(\cdot, t)\|_{H_{0}^{1}(U)} \leq C\left(\|g\|_{H_{0}^{1}(U)}+\|f\|_{L^{2}\left(0, T ; L^{2}(U)\right)}\right)
$$

where $C \sim U, T$.
(d)(10 marks)If $g \in H^{2}(U) \cap H_{0}^{1}(U), f \in H^{1}\left(0, T ; L^{2}(U)\right)$, prove that:

$$
\underset{0 \leq t \leq T}{\operatorname{ess} \sup }\left\|u_{m}^{\prime}(\cdot, t)\right\|_{L^{2}(U)}^{2} \leq C\left(\|g\|_{H^{2}(U)}^{2}+\|f\|_{H^{1}\left(0, T ; L^{2}(U)\right)}^{2}\right)
$$

where $C \sim U, T$.
5. (15 marks) Suppose $a_{i j}(x, t) \in C^{1}\left(\overline{U \times \mathbb{R}_{+}}\right), \lambda|\xi|^{2} \leq a_{i j}(x, t) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}, c(x, t) \in L^{\infty}\left(U \times \mathbb{R}_{+}\right)$, $g \in H_{0}^{1}(U), h \in L^{2}(U)$. Assume $u \in C^{\infty}\left(U \times \mathbb{R}_{+}\right)$is a solution to:

$$
\begin{cases}u_{t t}=\sum_{i, j}\left(a_{i j}(x, t) u_{i}\right)_{j}+c(x, t) u & \text { in } U \times \mathbb{R}_{+} \\ u=0 & \text { on } \partial U \\ u=g, u_{t}=h & t=0\end{cases}
$$

Prove that:

$$
\int_{U}\left(u^{2}+|D u|^{2}+u_{t}^{2}\right) d x \leq e^{C t} \int_{U}\left(g^{2}+|D g|^{2}+h^{2}\right) d x
$$

where $C \sim U$, coefficients of L.
6. (10 marks) Assume $u \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)$is a solution of $u_{t t}=\Delta u$ in $\mathbb{R}^{n} \times \mathbb{R}_{+}$. If $u=u_{t}=0$ in $B_{R}(0) \times\{t=0\}$, prove that: $u=0$ in $\{(x, t):|x|+t<R\}$

