2022 年春季学期微分方程 II 期末试卷

2022 年 6 月 17 日

- 1. Suppose U is open, bounded, and ∂U is smooth. Suppose $u \in L^2(0,T;H^2(U)), u' \in L^2(0,T;L^2(U))$. Show that $u \in C([0,T];H^1(U))$ (after possibly being redefined on a set of measure zero).
 - 2. Let $k \in \mathbb{Z}$, T > 0.
 - (a) Give the definition of weak solution to the wave equation

$$(W) \begin{cases} u_{tt} - \sum_{j,k=1}^{n} g^{jk}(t,x)\partial_{j}\partial_{k}u = F & in \quad [0,T) \times \mathbb{R}^{n} \\ u(x,0) = f \quad \partial_{t}u(x,0) = g & in \quad \mathbb{R}^{n} \end{cases}$$

Here g^{jk} is smooth and symmetric on $[0,T]\times\mathbb{R}^n$ and there exists $0<\lambda<\Lambda<\infty$ such that

$$\lambda |\xi|^2 \leq g^{jk}(x,t)\xi_i\xi_k \leq \Lambda |\xi|^2$$
 for any $(t,x) \in [0,T] \times \mathbb{R}^n$.

(b) Assume there holds the energy estimate

$$\sum_{|\alpha| \le 1} ||\partial^{\alpha} u(t)||_{H^{k}} \le C(\sum_{|\alpha| \le 1} ||\partial^{\alpha} u(0)||_{H^{k}} + \int_{0}^{T} ||F(\tau)||_{H^{k}} d\tau)$$

when f = g = 0 and $F \in C_c^{\infty}([0,T) \times \mathbb{R}^n)$, prove by the Hahn-Banach method that (W) has a unique weak solution $u \in C([0,T]; H^{k+1}(\mathbb{R}^n)) \cap C^1([0,T]; H^k(\mathbb{R}^n))$.

3. Suppose $U \subset \mathbb{R}^n$ is a bounded open set with smooth boundary. Let 2 . Consider the nonlinear elliptic equation

$$\begin{cases}
-\Delta u + \lambda u = |u|^{p-2}u & in \quad U \\
u > 0 & in \quad U \\
u = 0 & on \quad \partial U
\end{cases}$$

Prove that for any $\lambda > -\lambda_1$, there exists a positive solution $u \in C^2(U) \cap C(\bar{U})$, where λ_1 is the principal eigenvalue of $-\Delta$ in $H_0^1(U)$.

4. State the Hille-Yosida Theorem for the semigroups of operators and use this theorem to prove that there exists a unique solution $u \in X = L^1((0, +\infty), \mathbb{R})$ to the equation

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \frac{\partial u(x,t)}{\partial x} = 0 & t > 0, x > 0 \\ u(t,0) = 0 & t > 0 \\ u(0,\cdot) = \varphi \in L^1((0,+\infty), \mathbb{R}). \end{cases}$$

5. Let $U=(0,1)\subset\mathbb{R}$. For any $\varepsilon>0$, take for granted that there is a smooth solution $u=u^{\varepsilon}(x,t)$ of the parabolic equation

$$(P) \begin{cases} u_t^{\varepsilon} - \varepsilon u_{xx}^{\varepsilon} - a(x,t) u_x^{\varepsilon} = 0 & 0 < x < 1, 0 \le t < T \\ u^{\varepsilon}(0,t) = u^{\varepsilon}(1,t) = 0 & 0 \le t < T \\ u^{\varepsilon}(x,0) = g(x) \in C_c^{\infty}(U). \end{cases}$$

(a) Suppose $\sup_{[0,1]\times[0,T]}(|a(x,t)|+|\partial_{t,x}a(x,t)|)\leq M.$ Prove that there exists C>0 such that

$$\max_{0 < t < T} (||u^{\varepsilon}(t)||_{H^1_0(U)} + ||u^{\varepsilon'}(t)||_{L^2(U)}) \le C||g||_{H^1(U)}, \forall 0 < \varepsilon \le 1.$$

(b) There exists a weak solution $u \in L^2(0,T;H^1_0(U))$ with $u' \in L^2(0,T;L^2(U))$ of the above equation with $\varepsilon = 0$ in the sense that

$$(u',v) - \int_{U} a(x,t)u_{x}v dx = 0$$

for each $v \in H_0^1(U)$ and a.e. $0 \le t \le T$, and

$$u(0) = g.$$

(Hint: Note that u^{ε} is a weak solution to the parabolic equation (P) and take some subsequence $\varepsilon_k \downarrow 0$.)