2022年春季学期微分方程 II 期末试卷

2022年6月17日

1．Suppose U is open，bounded，and ∂U is smooth．Suppose $u \in L^{2}\left(0, T ; H^{2}(U)\right), u^{\prime} \in$ $L^{2}\left(0, T ; L^{2}(U)\right)$ ．Show that $u \in C\left([0, T] ; H^{1}(U)\right)$（after possibly being redefined on a set of measure zero）．

2．Let $k \in \mathbb{Z}, T>0$ ．
（a）Give the definition of weak solution to the wave equation

$$
(W)\left\{\begin{array}{l}
u_{t t}-\sum_{j, k=1}^{n} g^{j k}(t, x) \partial_{j} \partial_{k} u=F \quad \text { in } \quad[0, T) \times \mathbb{R}^{n} \\
u(x, 0)=f \quad \partial_{t} u(x, 0)=g \quad \text { in } \quad \mathbb{R}^{n}
\end{array}\right.
$$

Here $g^{j k}$ is smooth and symmetric on $[0, T] \times \mathbb{R}^{n}$ and there exists $0<\lambda<\Lambda<\infty$ such that

$$
\lambda|\xi|^{2} \leq g^{j k}(x, t) \xi_{j} \xi_{k} \leq \Lambda|\xi|^{2} \text { for any }(t, x) \in[0, T] \times \mathbb{R}^{n}
$$

（b）Assume there holds the energy estimate

$$
\sum_{|\alpha| \leq 1}\left\|\partial^{\alpha} u(t)\right\|_{H^{k}} \leq C\left(\sum_{|\alpha| \leq 1}\left\|\partial^{\alpha} u(0)\right\|_{H^{k}}+\int_{0}^{T}\|F(\tau)\|_{H^{k}} d \tau\right)
$$

when $f=g=0$ and $F \in C_{c}^{\infty}\left([0, T) \times \mathbb{R}^{n}\right)$ ，prove by the Hahn－Banach method that（W）has a unique weak solution $u \in C\left([0, T] ; H^{k+1}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, T] ; H^{k}\left(\mathbb{R}^{n}\right)\right)$ ．

3．Suppose $U \subset \mathbb{R}^{n}$ is a bounded open set with smooth boundary．Let $2<p<\frac{2 n}{n-2}, n \geq 3$ ． Consider the nonlinear elliptic equation

$$
\left\{\begin{array}{l}
-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } U \\
u>0 \quad \text { in } \quad U \\
u=0 \text { on } \partial U
\end{array}\right.
$$

Prove that for any $\lambda>-\lambda_{1}$ ，there exists a positive solution $u \in C^{2}(U) \cap C(\bar{U})$ ，where λ_{1} is the principal eigenvalue of $-\Delta$ in $H_{0}^{1}(U)$ ．
4. State the Hille-Yosida Theorem for the semigroups of operators and use this theorem to prove that there exists a unique solution $u \in X=L^{1}((0,+\infty), \mathbb{R})$ to the equation

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}+\frac{\partial u(x, t)}{\partial x}=0 \quad t>0, x>0 \\
u(t, 0)=0 \quad t>0 \\
u(0, \cdot)=\varphi \in L^{1}((0,+\infty), \mathbb{R})
\end{array}\right.
$$

5. Let $U=(0,1) \subset \mathbb{R}$. For any $\varepsilon>0$, take for granted that there is a smooth solution $u=u^{\varepsilon}(x, t)$ of the parabolic equation

$$
(P)\left\{\begin{array}{l}
u_{t}^{\varepsilon}-\varepsilon u_{x x}^{\varepsilon}-a(x, t) u_{x}^{\varepsilon}=0 \quad 0<x<1,0 \leq t<T \\
u^{\varepsilon}(0, t)=u^{\varepsilon}(1, t)=0 \quad 0 \leq t<T \\
u^{\varepsilon}(x, 0)=g(x) \in C_{c}^{\infty}(U)
\end{array}\right.
$$

(a) Suppose $\sup _{[0,1] \times[0, T]}\left(|a(x, t)|+\left|\partial_{t, x} a(x, t)\right|\right) \leq M$. Prove that there exists $C>0$ such that

$$
\max _{0 \leq t \leq T}\left(\left\|u^{\varepsilon}(t)\right\|_{H_{0}^{1}(U)}+\left\|u^{\varepsilon^{\prime}}(t)\right\|_{L^{2}(U)}\right) \leq C\|g\|_{H^{1}(U)}, \forall 0<\varepsilon \leq 1
$$

(b) There exists a weak solution $u \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ with $u^{\prime} \in L^{2}\left(0, T ; L^{2}(U)\right)$ of the above equation with $\varepsilon=0$ in the sense that

$$
\left(u^{\prime}, v\right)-\int_{U} a(x, t) u_{x} v \mathrm{~d} x=0
$$

for each $v \in H_{0}^{1}(U)$ and a.e. $\quad 0 \leq t \leq T$, and

$$
u(0)=g
$$

(Hint: Note that u^{ε} is a weak solution to the parabolic equation (P) and take some subsequence $\varepsilon_{k} \downarrow 0$.)

