Exam₂ for Differential Equations II(H)

May 15, 2022

 ν always stands for the outward unit normal vector on the boundary.

1 Basic part(19:00-21:30)

1.(Convolution) Suppose $\eta(x) \in C_0^{\infty}(B_1), \eta(x) = \begin{cases} C_0 e^{\frac{1}{|x|^2 - 1}} & , |x| < 1\\ 0 & , |x| \ge 1 \end{cases}$, such that $\int_{\mathbb{R}^n} \eta(x) \, dx = 1$.

Let $f^{\epsilon}(x) = (\eta^{\epsilon} * f)(x)$, where $\eta^{\epsilon}(x) = \epsilon^{-n}\eta(\frac{x}{\epsilon})$. Prove that: (a) If $f \in C^0(U)$, then for any subset $V \subset \subset U$, we have: $f^{\epsilon}(x) \to f$ in V. (b) If $f \in L^p_{loc}(U), 1 . Prove that: <math>f^{\epsilon}(x) \to f$ in $L^p_{loc}(U)$. (c) If f is a convex function. Prove that $f^{\epsilon}(x)$ is also a convex function. (d) If $f(t) \in C^1_{loc}(\mathbb{R}), f'(t) \ge 0$. Prove that $f^{\epsilon}(t)$ is non-decreasing in \mathbb{R} . (e) If $f(t) \in C^0(U), U \subset \mathbb{R}^n$. Prove that:

$$\left|\frac{\partial}{\partial x_i}f^{\epsilon}(x)\right| \leq \frac{C}{\epsilon} \sup_{B(x,\epsilon)}|f|, \qquad \left|\frac{\partial}{\partial \epsilon}f^{\epsilon}(x)\right| \leq \frac{C}{\epsilon} \sup_{B(x,\epsilon)}|f|.$$

2.(Sobolev space)

(a) For which $\alpha \in \mathbb{R}, n \in \mathbb{N}$ does the function $f(x) = \frac{|\ln |x||^{\alpha}}{|x|^2}$ belong to $H^1(B^n_{\frac{1}{2}}(0))$?

(b) Prove the Trace Theorem: Assume U is bounded and ∂U is C^1 . Then there exists a bounded linear operator $T: W^{1,p}(U) \to L^p(\partial U)$, such that:

(i) $Tu = u|_{\partial U}$ if $u \in W^{1,p}(U) \cap C(\overline{U})$

(ii) $||Tu||_{L^p(\partial U)} \le C ||u||_{W^{1,p}(U)}$, for each $u \in W^{1,p}(U)$, with $C \sim n, p, U$.

(c) State the Rellich-Kondrachov Compactness Theorem, and apply it to prove the Poincare's inequality: Let U be a bounded, connected, open subset of \mathbb{R}^n , ∂U is C^1 , $1 \leq p \leq +\infty$. Then there exists $C \sim n, p, U$, such that

$$||u - (u)_U||_{L^p(U)} \le C ||Du||_{L^p(U)}$$

for each $u \in W^{1,p}(U)$, where $(u)_U = \int_U u(x) dx/|U|$. (d) Assume $1 \le p < \infty$, U is bounded, $u \in W^{1,p}(U)$. Prove that $u^+ \in W^{1,p}(U)$ and

$$Du^{+} = \begin{cases} Du & , a.e. \ in\{u > 0\} \\ 0 & , a.e. \ in\{u \le 0\} \end{cases}$$

3.(Fredholm alternative)

(a) Consider the eigenvalue problem:

$$\left\{ \begin{array}{ll} \Delta u + \lambda u = 0 & in \quad U = [0, \pi] \times [0, \pi] \\ u = 0 & on \quad \partial U \end{array} \right.$$

Find the first and the second eigenvalue λ_1, λ_2 and the corresponding eigenfunctions u_1, u_2 . (b) Consider the equation:

$$\begin{cases} \Delta u + 5u = x - a & in \quad U\\ u = 0 & on \quad \partial U \end{cases}$$

For which $a \in \mathbb{R}$ does this equation exist at least one solution ? (c) Consider the equation:

$$\left\{ \begin{array}{ll} \Delta u+3u=x^2+y^2 & in \quad U\\ u=0 & on \quad \partial U \end{array} \right.$$

Show that there exists a unique solution to this equation, and find the appropriate constant C, such that $||u||_{L^2(U)} \leq C$.

4.Suppose $a_{ij}(x) \in C^1(\overline{U}), \ \partial U \in C^1, \ f \in L^2(U), \ \lambda |\xi|^2 \leq a_{ij}(x)\xi_i\xi_j \leq \Lambda |\xi|^2, \ c(x) \in L^\infty(U).$ Consider the equation:

$$\begin{cases} -\sum_{i,j} (a_{ij}(x)u_i)_j + c(x)u = f &, in \quad U\\ u = 0 &, on \quad \partial U \end{cases}$$

Assume $u \in H_0^1(U)$ is a weak solution of this equation. (a) For any subset $V \subset \subset U$, prove that:

$$\int_{V} |Du|^2 dx \le C \int_{U} (f^2 + u^2) dx$$

where $C \sim V, U$, coefficients of L. **Hint:**Consider $v = \xi^2 u$ (b) For any $x_0 \in \partial U$, prove that:

$$\int_{B_r(x_0)\cap U} |Du|^2 dx \le C \int_U (f^2 + u^2) dx$$

where $C \sim r$ and coefficients of L. **Hint:**Consider $v = \xi^2 u$ (c) For any subset $V \subset \subset U$, prove that:

$$\int_{V} |D^2 u|^2 dx \le C \int_{U} (f^2 + u^2) dx$$

where $C \sim V, U$, coefficients of L.

5.(Maximum principal) Assume U is a bounded, smooth and convex open subset in \mathbb{R}^2 . Consider the Dirichlet problem:

$$\begin{cases} \Delta u = -2 & in \quad U \\ u = 0 & on \quad \partial U \end{cases}$$

- (a) Prove that u > 0 in U and $\frac{\partial u}{\partial \nu}|_{\partial U} < 0$
- (b) Let $v = -\sqrt{u} < 0$ in U, then we have

$$\left\{ \begin{array}{ll} v\Delta v = -(1+|Dv|^2) & in \quad U\\ v=0 & on \quad \partial U \end{array} \right.$$

Prove that if $\varphi = v_{11}v_{22} - v_{12}^2 \ge 0$ in U, then $\varphi \equiv 0$ or $\varphi > 0$ in U. (c) Based on (b), prove that v is strictly convex in U.

2 Additional part(21:30-22:30)

6. Consider a positive harmonic function $\Delta u + u = 0$, u > 0 in $B_1(0) \subset \mathbb{R}^n$, prove that there is a positive constant C = C(n), such that: $|\nabla \log u| \leq C$ in $B_{\frac{1}{2}}(0)$.

7. Let $U \subset \mathbb{R}^n$ to be a bounded domain with smooth boundary, $\varphi \in C^{\infty}(\overline{U})$. $u \in C^{\infty}(\overline{U})$ is a solution to:

$$\begin{cases} \Delta u = 1 & in \quad U\\ \frac{\partial u}{\partial \nu} = \varphi & on \quad \partial U \end{cases}$$

Prove that:

(a) Prove that there is a positive constant $C \sim U, g, n$, such that:

$$\sup_{\bar{U}} |Du| \le C(1 + \sup_{\partial U} |Du|)$$

(b) Let $d_0 > 0$ is a small real number such that $U_{d_0} = \{x \in U | \text{dist}(x, \partial U) \ge d_0\}$ is nonempty. Prove that:

$$\sup_{U_{d_0}} |Du| \le \frac{C_1}{d_0}$$

Where $C_1 \sim n$, $\sup_{\bar{U}} |u|$. (c) Prove that:

$$\sup_{\bar{U}\setminus U_{d_0}} |Du| \le C_2$$

Where $C_2 \sim \varphi$, $\sup_{\bar{U}} |u|, U$.