Exam2 for Differential Equations II(H)

May 15, 2022
ν always stands for the outward unit normal vector on the boundary.

1 Basic part(19:00-21:30)

1. (Convolution) Suppose $\eta(x) \in C_{0}^{\infty}\left(B_{1}\right), \eta(x)=\left\{\begin{array}{ll}C_{0} e^{\frac{1}{|x|^{2}-1}} & ,|x|<1 \\ 0 & ,|x| \geq 1\end{array}\right.$, such that $\int_{\mathbb{R}^{n}} \eta(x) d x=1$.

Let $f^{\epsilon}(x)=\left(\eta^{\epsilon} * f\right)(x)$, where $\eta^{\epsilon}(x)=\epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right)$. Prove that:
(a) If $f \in C^{0}(U)$, then for any subset $V \subset \subset U$, we have: $f^{\epsilon}(x) \rightarrow f$ in V.
(b) If $f \in L_{l o c}^{p}(U), 1<p<+\infty$. Prove that: $f^{\epsilon}(x) \rightarrow f$ in $L_{l o c}^{p}(U)$.
(c) If f is a convex function. Prove that $f^{\epsilon}(x)$ is also a convex function.
(d) If $f(t) \in C_{\text {loc }}^{1}(\mathbb{R}), f^{\prime}(t) \geq 0$. Prove that $f^{\epsilon}(t)$ is non-decreasing in \mathbb{R}.
(e) If $f(t) \in C^{0}(U), U \subset \mathbb{R}^{n}$. Prove that:

$$
\left|\frac{\partial}{\partial x_{i}} f^{\epsilon}(x)\right| \leq \frac{C}{\epsilon} \sup _{B(x, \epsilon)}|f|, \quad\left|\frac{\partial}{\partial \epsilon} f^{\epsilon}(x)\right| \leq \frac{C}{\epsilon} \sup _{B(x, \epsilon)}|f| .
$$

2.(Sobolev space)
(a) For which $\alpha \in \mathbb{R}, n \in \mathbb{N}$ does the function $f(x)=\frac{|\ln | x| |^{\alpha}}{|x|^{2}}$ belong to $H^{1}\left(B_{\frac{1}{2}}^{n}(0)\right)$?
(b) Prove the Trace Theorem: Assume U is bounded and ∂U is C^{1}. Then there exists a bounded linear operator $T: W^{1, p}(U) \rightarrow L^{p}(\partial U)$, such that:
(i) $T u=\left.u\right|_{\partial U}$ if $u \in W^{1, p}(U) \cap C(\bar{U})$
(ii) $\|T u\|_{L^{p}(\partial U)} \leq C\|u\|_{W^{1, p}(U)}$, for each $u \in W^{1, p}(U)$, with $C \sim n, p, U$.
(c) State the Rellich-Kondrachov Compactness Theorem, and apply it to prove the Poincare's inequality: Let U be a bounded, connected, open subset of $\mathbb{R}^{n}, \partial U$ is $C^{1}, 1 \leq p \leq+\infty$. Then there exists $C \sim n, p, U$, such that

$$
\left\|u-(u)_{U}\right\|_{L^{p}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $u \in W^{1, p}(U)$, where $(u)_{U}=\int_{U} u(x) d x /|U|$.
(d) Assume $1 \leq p<\infty, \mathrm{U}$ is bounded, $u \in W^{1, p}(U)$. Prove that $u^{+} \in W^{1, p}(U)$ and

$$
D u^{+}= \begin{cases}D u & \text {, a.e. } \operatorname{in}\{u>0\} \\ 0 & \text {, a.e. } \operatorname{in}\{u \leq 0\}\end{cases}
$$

3.(Fredholm alternative)

(a) Consider the eigenvalue problem:

$$
\begin{cases}\Delta u+\lambda u=0 & \text { in } U=[0, \pi] \times[0, \pi] \\ u=0 & \text { on } \partial U\end{cases}
$$

Find the first and the second eigenvalue λ_{1}, λ_{2} and the corresponding eigenfunctions u_{1}, u_{2}.
(b) Consider the equation:

$$
\left\{\begin{array}{lll}
\Delta u+5 u=x-a & \text { in } & U \\
u=0 & \text { on } & \partial U
\end{array}\right.
$$

For which $a \in \mathbb{R}$ does this equation exist at least one solution ?
(c) Consider the equation:

$$
\left\{\begin{array}{lll}
\Delta u+3 u=x^{2}+y^{2} & \text { in } & U \\
u=0 & \text { on } \quad \partial U
\end{array}\right.
$$

Show that there exists a unique solution to this equation, and find the appropriate constant C, such that $\|u\|_{L^{2}(U)} \leq C$.
4. Suppose $a_{i j}(x) \in C^{1}(\bar{U}), \partial U \in C^{1}, f \in L^{2}(U), \lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}, c(x) \in L^{\infty}(U)$. Consider the equation:

$$
\left\{\begin{array}{lll}
-\sum_{i, j}\left(a_{i j}(x) u_{i}\right)_{j}+c(x) u=f & , \text { in } & U \\
u=0 & , \text { on } & \partial U
\end{array}\right.
$$

Assume $u \in H_{0}^{1}(U)$ is a weak solution of this equation.
(a) For any subset $V \subset \subset U$, prove that:

$$
\int_{V}|D u|^{2} d x \leq C \int_{U}\left(f^{2}+u^{2}\right) d x
$$

where $C \sim V, U$, coefficients of L.
Hint:Consider $v=\xi^{2} u$
(b) For any $x_{0} \in \partial U$, prove that:

$$
\int_{B_{r}\left(x_{0}\right) \cap U}|D u|^{2} d x \leq C \int_{U}\left(f^{2}+u^{2}\right) d x
$$

where $C \sim r$ and coefficients of L.
Hint:Consider $v=\xi^{2} u$
(c) For any subset $V \subset \subset U$, prove that:

$$
\int_{V}\left|D^{2} u\right|^{2} d x \leq C \int_{U}\left(f^{2}+u^{2}\right) d x
$$

where $C \sim V, U$, coefficients of L.
5.(Maximum principal) Assume U is a bounded, smooth and convex open subset in \mathbb{R}^{2}. Consider the Dirichlet problem:

$$
\left\{\begin{array}{lll}
\Delta u=-2 & \text { in } & U \\
u=0 & \text { on } & \partial U
\end{array}\right.
$$

(a) Prove that $u>0$ in U and $\left.\frac{\partial u}{\partial \nu}\right|_{\partial U}<0$
(b) Let $v=-\sqrt{u}<0$ in U, then we have

$$
\begin{cases}v \Delta v=-\left(1+|D v|^{2}\right) & \text { in } \quad U \\ v=0 & \text { on } \quad \partial U\end{cases}
$$

Prove that if $\varphi=v_{11} v_{22}-v_{12}^{2} \geq 0$ in U, then $\varphi \equiv 0$ or $\varphi>0$ in U.
(c) Based on (b), prove that v is strictly convex in U.

2 Additional part(21:30-22:30)

6. Consider a positive harmonic function $\Delta u+u=0, u>0$ in $B_{1}(0) \subset \mathbb{R}^{n}$, prove that there is a positive constant $C=C(n)$, such that: $|\nabla \log u| \leq C$ in $B_{\frac{1}{2}}(0)$.
7. Let $U \subset \mathbb{R}^{n}$ to be a bounded domain with smooth boundary, $\varphi \in C^{\infty}(\bar{U}) . u \in C^{\infty}(\bar{U})$ is a solution to:

$$
\left\{\begin{array}{lll}
\Delta u=1 & \text { in } & U \\
\frac{\partial u}{\partial \nu}=\varphi & \text { on } & \partial U
\end{array}\right.
$$

Prove that:
(a) Prove that there is a positive constant $C \sim U, g, n$, such that:

$$
\sup _{\bar{U}}|D u| \leq C\left(1+\sup _{\partial U}|D u|\right)
$$

(b) Let $d_{0}>0$ is a small real number such that $U_{d_{0}}=\left\{x \in U \mid \operatorname{dist}(x, \partial U) \geq d_{0}\right\}$ is nonempty. Prove that:

$$
\sup _{U_{d_{0}}}|D u| \leq \frac{C_{1}}{d_{0}}
$$

Where $C_{1} \sim n, \sup _{\bar{U}}|u|$.
(c) Prove that:

$$
\sup _{\bar{U} \backslash U_{d_{0}}}|D u| \leq C_{2}
$$

Where $C_{2} \sim \varphi, \sup _{\bar{U}}|u|, U$.

