Exam1 for Differential Equations II(H)

19:00-21:30 April 3, 2022

This exam is of full mark 120. ν always stands for the outward unit normal vector on the boundary.
1.(The monotonicity formula of Green's function) Suppose $u \in C^{2}(U), U \subset \mathbb{R}^{n}$ to be a bounded domain.
(a)(15 marks) If $\Delta u \geq 0$, prove that for any ball $B_{R}\left(x_{0}\right) \subset \subset U$, we have:

$$
u\left(x_{0}\right) \leq \frac{1}{\operatorname{Vol}\left(\partial B_{R}\left(x_{0}\right)\right)} \int_{\partial B_{R}\left(x_{0}\right)} u(y) d y
$$

(b)(10 marks) If $\Delta u=0$ in $B_{1}(0) \subset \mathbb{R}^{n}, 0<r<1, D(r)=\int_{B_{r}(0)}|\nabla u|^{2} d x$. Prove that:

$$
D^{\prime}(r)=\frac{n-2}{r} D(r)+2 \int_{\partial B_{r}(0)}\left(\frac{\partial u}{\partial \nu}\right)^{2}
$$

2. Consider the Dirichlet problem:

$$
\left\{\begin{array}{rll}
\Delta u=2 & \text { in } & U \\
u=0 & \text { on } & \partial U
\end{array}\right.
$$

where U is a bounded domain with smooth boundary in $\mathbb{R}^{n} . u \in C^{2}(U) \cap C^{1}(\bar{U})$ is a solution to it. Prove that:
(a)(5 marks) $u<0$ in U
(b) (5 marks) $\frac{\partial u}{\partial \nu}<0$ on ∂U
(c)(10 marks) Let $\varphi=|\nabla u|^{2}+\alpha u$, find the appropriate real number α, such that φ attains its maximum over \bar{U} on ∂U.
3.(10 marks) Consider a positive harmonic function $\Delta u=0, u>0$ in $B_{1}(0) \subset \mathbb{R}^{n}$, prove that there is a positive constant $C=C(n)$, such that:

$$
|\nabla \log u| \leq C
$$

in $B_{1}(0)$.
4.(Integrate by parts)
(a)(5 marks) Consider the Neumann problem:

$$
\left\{\begin{array}{rlll}
\Delta u+c u & =f & \text { in } & U \\
\frac{\partial u}{\partial \nu} & =\varphi & \text { on } & \partial U
\end{array}\right.
$$

where U is a bounded domain in \mathbb{R}^{n} with smooth boundary, and $c \leq 0$. Prove that if the solution exists, it is unique.
(b) (10 marks) Suppose U to be a bounded domain in \mathbb{R}^{n}, and $U^{\prime} \subset \subset U . u$ is a solution to $\Delta u=f$ in U.Prove that there is a positive constant $C \sim n, U, U^{\prime}$, such that:

$$
\int_{U^{\prime}}\left(\left|\nabla^{2} u\right|^{2}+|\nabla u|^{2}\right) d x \leq C\left(\int_{U}\left(f^{2}+u^{2}\right) d x\right)
$$

(c)(5 marks) Suppose $\Delta u=0$ in \mathbb{R}^{n}, and $u \in L^{2}\left(\mathbb{R}^{n}\right)$. Prove that u is constant valued.
5. Consider the Dirichlet problem:

$$
\left\{\begin{array}{rll}
\Delta u=f & \text { in } & U \\
u=g & \text { on } & \partial U
\end{array}\right.
$$

where $U \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary. $u \in C^{3}(U) \cap C^{1}(\bar{U})$ is a solution.
(a)(4 marks) Suppose $R=\sup _{x \in \partial U}\left|x-x_{0}\right|, V(x)=\frac{\left|x-x_{0}\right|^{2}-R^{2}}{2 n}$. Verify that: $\Delta V=1,\left.V\right|_{\partial U} \leq 0$.
(b) (6 marks) Let $f_{+}=\max (f, 0), f_{-}=\max (-f, 0)$. Prove that:

$$
\begin{aligned}
& u(x) \geq\left(\sup f_{+}\right) V(x)+\inf g \\
& u(x) \leq\left(\inf f_{+}\right) V(x)+\sup g
\end{aligned}
$$

(c)(6 marks) Prove that there is a positive constant $C \sim U, f, g, n$, such that:

$$
\sup _{\bar{U}}|\nabla u| \leq C\left(1+\sup _{\partial U}|\nabla u|\right)
$$

6.(10 marks) Let $\Delta u=0$ in $\Omega=\left\{x \in \mathbb{R}^{n}| | x \mid>1\right\} . u \in L^{2}(\bar{\Omega})$, and $\lim _{|x| \rightarrow+\infty} u(x)=0$. Prove that:

$$
\max _{\Omega}|u|=\max _{\partial \Omega}|u|
$$

Hint: Consider the set $B_{R}(0) \backslash B_{1}(0), R$ is sufficiently large.
7. Let $U \subset \mathbb{R}^{n}$ to be a bounded domain with smooth boundary, $\varphi \in C^{\infty}(\bar{U}) . \quad u \in C^{\infty}(\bar{U})$ is a solution to:

$$
\left\{\begin{array}{rll}
\Delta u=1 & \text { in } & U \\
\frac{\partial u}{\partial \nu}+u=\varphi & \text { on } & \partial U
\end{array}\right.
$$

Prove that:
(a)(6 marks) $\sup _{\bar{U}}|u| \leq \sup _{\partial U}|\varphi|+C$. Where $C \sim n, U$.
(b) (6 marks) Let $d_{0}>0$ is a small real number such that $U_{d_{0}}=\left\{x \in U \mid \operatorname{dist}(x, \partial U) \geq d_{0}\right\}$ is nonempty. Prove that:

$$
\sup _{U_{d_{0}}}|\nabla u| \leq \frac{C_{1}}{d_{0}}
$$

Where $C_{1} \sim n, \sup _{\bar{U}}|u|$.
(c)(7 marks) Prove that:

$$
\sup _{\bar{U} \backslash U_{d_{0}}}|\nabla u| \leq C_{2}
$$

Where $C_{2} \sim \varphi, u, U$.

