Shime ware minnerin

## Student ID:



Name.

1. (15 points) Let  $(X_n)_{n\geq 0}$  and  $(Y_n)_{n\geq 0}$  be nonnegative, integrable, and adapted to the filtration  $(\mathcal{F}_n)_{n\geq 0}$ . Suppose that

$$E(X_{n+1}|\mathcal{F}_n) \le X_n + Y_n, \quad n \ge 0,$$

with  $\sum_{n\geq 0} Y_n < \infty$  a.s. Prove that  $X_n$  converges a.s. to a finite limit.

2. (15 points) Define  $S_0 = 0$  and  $S_n = X_1 + \ldots + X_n$  for any  $n \ge 1$ , where  $X_1, X_2, \ldots$  are independent with  $EX_n = 0$  and  $var(X_n) = \sigma^2$  for any  $n \ge 1$ . Use the martingale  $(S_n^2 - n\sigma^2)_{n\ge 0}$  to prove that if T is a stopping time with  $ET < \infty$ , then

 $ES_T^2 = \sigma^2 ET.$ 

3. (15 points) Let  $X=(X_n,n\geq 0)$  be a Markov chain on the countable state space S. Define

$$T_x = \inf\{n \ge 1 : X_n = x\}, \quad x \in S,$$

and

$$N_{y,x} = \sum_{n=0}^{T_x - 1} \mathbf{1}\{X_n = y\}, \quad x, y \in S.$$

Also define

$$w_{x,y} = P_x(T_y < T_x), \quad x, y \in S.$$

Suppose that  $x, y \in S$ ,  $x \neq y$ , and  $\rho_{y,x} = P_y(T_x < \infty) = 1$ . Show that

$$P_x(N_{y,x} \ge k) = w_{x,y}(1 - w_{y,x})^{k-1}, \quad k \ge 1.$$

4. (15 points) Let p be a transition probability on the countable state space S, and for the Markov chain  $X = (X_n)_{n \geq 0}$  with the transition probability p, define

$$T_y = \inf\{n \ge 1 : X_n = y\}, \quad y \in S.$$

Prove that if the transition probability p is irreducible and positive recurrent, then

$$E_x T_y < \infty, \quad x, y \in S.$$

5. (20 points) Given a nonnegative supermartingale  $X = (X_n)_{n\geq 0}$  and some stopping times  $\tau_0 \leq \tau_1 \leq \cdots$ , show that the sequence  $(X_{\tau_n})_{n\geq 0}$  is again a supermartingale. (Hint: Truncate the times  $\tau_n$ , and use the conditional Fatou's lemma.)

6) (20 points) Let S be a countable state space. Prove that for every irreducible, positive recurrent subset  $S_k \subset S$ , there exists a unique invariant distribution  $\nu_k$  restricted to  $S_k$ , and every invariant distribution is a convex combination  $\sum_k c_k \nu_k$ .