中国科学技术大学数学科学学院

2021年春季学期《微分方程II(H)》期中测验-参考解答

2021年5月10日, 15:55 - 18:20, 二教2606

姓名:_____学号:____

注意事项:

1. 请将解答写在答题纸上, 试卷和答题纸一并上交;

- 2. 闭卷考试, 总分110分. 得分超过100分时, 成绩取整为100分;
- 3. 在试卷正文中,我们始终假定 $\Omega \subset \mathbb{R}^n$ 为有界集且具有 C^1 的边界 $\partial \Omega$.

试卷正文

1. $[15 \, \hat{\mathcal{P}}]$ Recall that for $u \in C^1(\bar{\Omega})$ the Gauss-Green theorem states that

$$\int_{\Omega} \frac{\partial u}{\partial x_i} dx = \int_{\partial \Omega} u(\nu \cdot e_i) d\sigma, \tag{1}$$

where ν denotes the unit outward normal to $\partial\Omega$, e_i denotes the *i*th coordinate vector of \mathbb{R}^n and $d\sigma$ is the area element on $\partial\Omega$.

(a) Show that for any $u \in W^{1,p}(\Omega), v \in W^{1,q}(\Omega)$, where $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, we have the following Green's formula

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u}{\partial x_i} v dx + \int_{\partial \Omega} u v (\nu \cdot e_i) d\sigma$$
⁽²⁾

where the value of u, v on the boundary $\partial \Omega$ is viewed as the Trace of u and v.

(b) Similarly, we have

$$\int_{\Omega} u \Delta v dx = -\int_{\Omega} \langle Du, Dv \rangle dx + \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} d\sigma$$
(3)

for any $u, v \in H^2(\Omega)$.

Solution.

(a) Firstly, for $u, v \in C^1(\overline{\Omega})$, we apply (1) to uv and obtain (2). Then for $u \in W^{1,p}(\Omega), v \in W^{1,q}(\Omega)$, there exist $u_m, v_\ell \in C^{\infty}(\overline{\Omega})$ such that

$$u_m \to u, \text{ in } W^{1,p}(\Omega),$$

 $v_\ell \to v, \text{ in } W^{1,q}(\Omega).$

For each $u_m, v_\ell \in C^{\infty}(\overline{\Omega})$, there holds

$$\int_{\Omega} u_m \frac{\partial v_\ell}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u_m}{\partial x_i} v_\ell dx + \int_{\partial \Omega} u_m v_\ell (\nu \cdot e_i) d\sigma.$$
(4)

Let $m, \ell \to \infty$. We have

$$\begin{split} \left| \int_{\Omega} \frac{\partial u_m}{\partial x_i} v_{\ell} dx - \int_{\Omega} \frac{\partial u}{\partial x_i} v dx \right| &\leq \int_{\Omega} \left| \frac{\partial u_m}{\partial x_i} - \frac{\partial u}{\partial x_i} \right| |v_{\ell}| dx + \int_{\Omega} \left| \frac{\partial u}{\partial x_i} (v_{\ell} - v) \right| dx \\ &\leq & \|u_{m,x_i} - u_{x_i}\|_{L^p(\Omega)} \|v_{\ell}\|_{L^q(\Omega)} + \|u_{x_i}\|_{L^p(\Omega)} \|v_{\ell} - v\|_{L^q(\Omega)} \\ &\to 0, \qquad \text{as } m, \ell \to \infty. \end{split}$$

Similarly,

$$\int_{\Omega} u_m \frac{\partial v_\ell}{\partial x_i} dx \quad \rightarrow \quad \int_{\Omega} u \frac{\partial v}{\partial x_i} dx$$

as $m, \ell \to \infty$. For the last term of (4), by Hölder inequality and Trace inequality

$$\left| \int_{\partial\Omega} u_m v_\ell(\nu \cdot e_i) d\sigma - \int_{\partial\Omega} uv(\nu \cdot e_i) d\sigma \right| \leq \int_{\partial\Omega} |u_m v_\ell - uv| d\sigma$$

$$\leq \int_{\partial\Omega} (|u_m||v_\ell - v| + |u_m - u||v|) d\sigma$$

$$\leq ||Tu_m||_{L^p(\partial\Omega)} ||Tv_\ell - Tv||_{L^q(\partial\Omega)} + ||Tu_m - Tu||_{L^p(\partial\Omega)} ||Tv||_{L^q(\partial\Omega)}$$

$$\leq C ||u_m||_{W^{1,p}(\Omega)} ||v_\ell - v||_{W^{1,q}(\Omega)} + C ||u_m - u||_{W^{1,p}(\Omega)} ||v||_{W^{1,q}(\Omega)}$$

$$\to 0$$

as $m, \ell \to \infty$. Therefore, letting $m, \ell \to \infty$ in (4) we obtain (2) for $u \in W^{1,p}(\Omega), v \in W^{1,q}(\Omega)$.

(b) For $u, v \in H^2(\Omega)$, we have $v_{x_i} = \frac{\partial v}{\partial x_i} \in H^1(\Omega)$. Then the trace of v_{x_i} on $\partial\Omega$ is well defined and belongs to $L^2(\partial\Omega)$. Replacing v by v_{x_i} in (2), we have

$$\int_{\Omega} u \frac{\partial^2 v}{\partial x_i^2} dx = -\int_{\Omega} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} dx + \int_{\partial \Omega} u \frac{\partial v}{\partial x_i} (\nu \cdot e_i) d\sigma.$$
(5)

Then (3) follows from taking the sum of i from 1 to n in (5) and noting that

$$\frac{\partial v}{\partial \nu} = \langle Dv, \nu \rangle = \langle \sum_{i=1}^{n} \frac{\partial v}{\partial x_i} e_i, \nu \rangle.$$

2. [15 \Re] For $2 \le p < \infty$, apply the Green's formula (2) to prove the interpolation inequality

$$\|Du\|_{L^{p}(\Omega)}^{2} \leq C\|u\|_{L^{p}(\Omega)}\|D^{2}u\|_{L^{p}(\Omega)}$$
(6)

for $u \in W_0^{2,p}(\Omega)$, where C > 0 is a constant independent of u.

Solution. For $u \in W_0^{2,p}(\Omega)$, where $2 \leq p < \infty$, we have $Du \in L^p(\Omega)$ and $Du|Du|^{p-2} \in L^q(\Omega)$ where $\frac{1}{p} + \frac{1}{q} = 1$. Apply Green's formula (2), we have

$$\int_{\Omega} |Du|^p dx = \sum_{i=1}^n \int_{\Omega} \langle u_{x_i}, u_{x_i} |Du|^{p-2} \rangle dx$$
$$= -\sum_{i=1}^n \int_{\Omega} u D_{x_i} \left(u_{x_i} |Du|^{p-2} \right) dx + \int_{\partial \Omega} u u_{x_i} |Du|^{p-2} (\nu \cdot e_i) d\sigma.$$
(7)

The second term on the right hand side of (7) vanishes since $u \in W_0^{2,p}(\Omega)$ implies that the Trace of u vanishes on the boundary $\partial\Omega$ and the trace inequality implies

$$\left| \int_{\partial\Omega} u u_{x_i} |Du|^{p-2} (\nu \cdot e_i) d\sigma \right| \leq \int_{\partial\Omega} |u| |Du|^{p-1} d\sigma$$
$$\leq ||Tu||_{L^p(\partial\Omega)} ||T(Du)||_{L^p(\partial\Omega)}^{p-1}$$
$$\leq C ||Tu||_{L^p(\partial\Omega)} ||u||_{W^{2,p}(\Omega)}^{p-1} = 0.$$
(8)

On the other hand, for $u \in W_0^{2,p}(\Omega)$ we have (similar with Evans 书第5章习题18)

$$\sum_{i=1}^{n} D_{x_i} \left(u_{x_i} |Du|^{p-2} \right) = \Delta u |Du|^{p-2} + (p-2) \sum_{i=1}^{n} u_{x_i} |Du|^{p-3} D_{x_i} |Du|$$
$$= \Delta u |Du|^{p-2} + (p-2) \sum_{i=1}^{n} u_{x_i} |Du|^{p-4} \langle Du, D_{x_i} Du \rangle \qquad (9)$$

Using (8), (9) and applying the generalized Hölder inequality to (7) imply that

$$\begin{split} \int_{\Omega} |Du|^p dx &\leq C \int_{\Omega} |u| |D^2 u| |Du|^{p-2} dx \\ &\leq C \left(\int_{\Omega} |u|^p dx \right)^{1/p} \left(\int_{\Omega} |Du|^p dx \right)^{1/p} \left(\int_{\Omega} |Du|^p dx \right)^{\frac{p-2}{p}} \end{split}$$

which is equivalent to (6).

- 3. $[15 \ \hat{\mathcal{P}}]$ Show that $H^1(\mathbb{R}^n) = H^1_0(\mathbb{R}^n)$. Solution. Let $\xi \in C^{\infty}(\mathbb{R}_+)$ be a cut-off function satisfying (see e.g., §5.5 in Evans)
 - $\xi(t) \equiv 1$ if $0 \le t \le 1$, $\xi(t) = 0$ if $t \ge 2$, $0 \le \xi \le 1$

and the derivative $|\xi'(t)| \leq C$. Let $u \in H^1(\mathbb{R}^n)$. Step 1. We consider $u^{(R)}(x) = u(x)\xi(|x|/R)$, which vanishes on $\{|x| > 2R\}$ and still belongs to $H^1(\mathbb{R}^n)$. Leibniz's formula implies

$$u_{x_{i}}^{(R)}(x) = u_{x_{i}}(x)\xi(\frac{|x|}{R}) + u(x)\xi'(\frac{|x|}{R})\frac{x_{i}}{|x|R}$$

$$\begin{split} \|u^{(R)} - u\|_{H^{1}(\mathbb{R}^{n})}^{2} &= \int_{\mathbb{R}^{n}} |u^{(R)} - u|^{2} dx + \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} |u^{(R)}_{x_{i}} - u_{x_{i}}|^{2} dx \\ &= \int_{|x| > R} |u^{(R)} - u|^{2} dx + \sum_{i=1}^{n} \int_{|x| > R} |u^{(R)}_{x_{i}} - u_{x_{i}}|^{2} dx \\ &\leq C \int_{|x| > R} \left(|u|^{2} + |Du|^{2} \right) dx \to 0 \end{split}$$

as $R \to \infty$ since $u \in H^1(\mathbb{R}^n)$. Step 2. Next, we consider mollification of $u^{(R)}(x)$:

$$u_{\varepsilon}^{(R)}(x) = [\eta_{\varepsilon} * u^{(R)}](x),$$

where η_{ε} is the mollifier (see Appendix C.5 of Evans book). Then 定理1 in §5.3 of Evans book implies that $u_{\varepsilon}^{(R)}(x) \in C_{c}^{\infty}(\mathbb{R}^{n})$ and converges to $u^{(R)}(x)$ as $\varepsilon \to 0$ in $H^{1}(V)$ for any compact subset $V \subset \subset \mathbb{R}^n$.

For any small $\delta > 0$, we first choose a large $k \in \mathbb{N}$ such that $\|u^{(k)} - u\|_{H^1} < \delta/2$, then choose a small $\varepsilon = \varepsilon(k)$ such that $\|u^{(k)}_{\varepsilon(k)} - u^{(k)}\|_{H^1} < \delta/2$. Then $u_k(x) := u^{(k)}_{\varepsilon(k)}(x) \in C_c^{\infty}(\mathbb{R}^n)$ is a sequence of functions in $C_c^{\infty}(\mathbb{R}^n)$ converging to $u \in H^1(\mathbb{R}^n)$. By definition, this means that $H^1(\mathbb{R}^n) = H^1_0(\mathbb{R}^n)$. 注: 也可先做磨光, 再取截断, 即Step 2 与Step 1 次序可交换.

- 4. [20 分]
 - (a) 叙述Sobolev inequality for p > n.
 - (b) 叙述Rellich-Kondrachov Compactness Theorem 定理内容
 - (c) Applying the fact $W^{1,p}(\Omega) \subset L^p(\Omega), 1 \leq p \leq \infty$ to show $W^{2,p}(\Omega) \subset W^{1,p}(\Omega)$.

Solution.

(a) Let Ω be a bounded open set with a C^1 boundary $\partial \Omega$. Assume $u \in W^{1,p}(\Omega)$ for n > p. Then u has a continuous version, still denoted by u, satisfying

$$\|u\|_{C^{0,\gamma}(\bar{\Omega})} \le C \|u\|_{W^{1,p}(\Omega)}$$

for some constant $C = C(n, p, \Omega)$, where $\gamma = 1 - n/p$.

1

- (b) Let Ω be a bounded open set with a C^1 boundary $\partial \Omega$. Suppose $1 \le p < n$. Then $W^{1,p}(\Omega) \subset L^q(\Omega)$ for each $1 \le q < p^*$.
- (c) Let $\{u_m\}_{m=1}^{\infty}$ be a bounded sequence in $W^{2,p}(\Omega)$. We need to show that a subsequence $\{u_{m_j}\}_{j=1}^{\infty} \subset \{u_m\}_{m=1}^{\infty}$ converges to a function u in $W^{1,p}(\Omega)$. Since both $\{u_m\}_{m=1}^{\infty}$ and $\{D^{\alpha}u_m\}_{m=1}^{\infty}$ are bounded in $W^{1,p}(\Omega)$, where α is a multi-index with $|\alpha| = 1$, the compactness of $W^{1,p}(\Omega) \subset L^p(\Omega)$ implies that, after passing to a subsequence,

$$u_m \to u, \quad \text{in } L^p(\Omega)$$

 $D^{\alpha}u_m \to v_{\alpha}, \quad \text{in } L^p(\Omega)$

as $m \to \infty$. We claim that v_{α} is the weak derivative of u. Indeed, for each test function $\phi \in C_c^{\infty}(\Omega)$, we have

$$\int_{\Omega} u_m D^{\alpha} \phi dx = -\int_{\Omega} D^{\alpha} u_m \phi$$

for each $m = 1, 2, \cdots$. Letting $m \to \infty$ yields that

$$\int_{\Omega} u D^{\alpha} \phi dx = -\int_{\Omega} v_{\alpha} \phi.$$

So we conclude that $v_{\alpha} = D^{\alpha}u$ is the weak derivative of u. In particular, we have that (after passing to a subsequence) $u_m \to u$ in $W^{1,p}(\Omega)$.

5. [15 $\hat{\mathcal{T}}$] Show that there exists a constant C > 0 depending on Ω, n and $1 \le p < \infty$ such that

$$||u||_{W^{1,p}(\Omega)} \le C (||Du||_{L^{p}(\Omega)} + ||Tu||_{L^{p}(\partial\Omega)})$$

for any $u \in W^{1,p}(\Omega)$, where $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ denotes the trace operator.

Solution. We argue by contradiction. Were the stated estimate false, for each integer $k = 1, \cdots$, there would exist a function $u_k \in W^{1,p}(\Omega)$ satisfying

$$||u_k||_{W^{1,p}(\Omega)} \ge k \left(||Du_k||_{L^p(\Omega)} + ||Tu_k||_{L^p(\partial\Omega)} \right).$$

We normalize u_k by considering $v_k = u_k (||u_k||_{W^{1,p}(\Omega)})^{-1}$. Then

$$\|v_k\|_{W^{1,p}(\Omega)} = 1, \quad \|Dv_k\|_{L^p(\Omega)} \le 1/k \to 0, \quad \|Tv_k\|_{L^p(\partial\Omega)} \le 1/k \to 0$$
(10)

Step 1. The compactness of $W^{1,p}(\Omega) \subset L^p(\Omega)$ implies that there exists a subsequence $\overline{\{v_{k_j}\}_{j=1}^{\infty}}$ of $\{v_k\}_{k=1}^{\infty}$ and a function $v \in L^p(\Omega)$ such that

 $v_{k_i} \to v$ in $L^p(\Omega)$.

Moreover, for each $\phi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} v\phi_{x_i} dx = \lim_{k_j \to \infty} \int_{\Omega} v_{k_j} \phi_{x_i} dx = -\lim_{k_j \to \infty} \int_{\Omega} v_{k_j, x_i} \phi dx = 0.$$

Consequently $v \in W^{1,p}(\Omega)$ with Dv = 0 a.e. and

$$\|v\|_{L^{p}(\Omega)}^{p} = \lim_{k_{j} \to \infty} \|v_{k_{j}}\|_{L^{p}(\Omega)}^{p}$$
$$= \lim_{k_{j} \to \infty} \left(\|v_{k}\|_{W^{1,p}(\Omega)}^{p} - \int_{\Omega} |Dv_{k}|^{p} dx \right) = 1.$$

Step 2. On the other hand,

$$\begin{aligned} \|Tv - Tv_{k_j}\|_{L^p(\partial\Omega)}^p &\leq C \|v - v_{k_j}\|_{W^{1,p}(\Omega)}^p \\ &= C \left(\|v - v_{k_j}\|_{L^p(\Omega)}^p + \|Dv - Dv_{k_j}\|_{L^p(\Omega)}^p \right) \\ &= C \left(\|v - v_{k_j}\|_{L^p(\Omega)}^p + \|Dv_{k_j}\|_{L^p(\Omega)}^p \right) \\ &\to 0, \quad \text{as} \quad k_j \to \infty. \end{aligned}$$

This together with the third inequality of (10) implies that Tv = 0. Since $v \in W^{1,p}(\Omega)$ and $\partial\Omega$ is C^1 , Tv = 0 implies that $v \in W_0^{1,p}(\Omega)$. Then by Poincaré inequality we have $\|v\|_{L^p(\Omega)} \leq C \|Dv\|_{L^p(\Omega)} = 0$, contradicting with $\|v\|_{L^p(\Omega)} = 1$.

6. $[15 \ 3mu]$ Consider the bilinear form

$$B[u,v] = \int_{\Omega} \left(\sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^i u_{x_i} v + cuv \right) dx$$

for $u, v \in H_0^1(\Omega)$, where $a^{ij}, b^i, c \in L^{\infty}(\Omega)$, $a^{ij} = a^{ji}$ and $(a^{ij}(x)) \ge \theta I > 0$ a.e. $x \in \Omega$. Prove that there exist constants $\alpha, \beta > 0$ and $\gamma \ge 0$ such that

$$|B[u,v]| \le \alpha ||u||_{H_0^1(\Omega)} ||v||_{H_0^1(\Omega)},\tag{11}$$

$$\beta \|u\|_{H_0^1(\Omega)}^2 \le B[u, u] + \gamma \|u\|_{L^2(\Omega)}^2.$$
(12)

for all $u, v \in H_0^1(\Omega)$.

Solution. See Theorem 2 in §6.2 of Evans book

7. [15 分] Let

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + c(x)u,$$
(13)

where $a^{ij}, c \in L^{\infty}(\Omega), a^{ij} = a^{ji}$ and $(a^{ij}(x)) \ge \theta I > 0$ a.e. $x \in \Omega$.

(a) Show that there exists a constant $\mu \geq 0$ such that for each $f \in H^{-1}(\Omega)$ and $g \in H^1(\Omega)$, the boundary-value problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = g & \text{on } \Omega, \end{cases}$$
(14)

has a unique weak solution $u \in H^1(\Omega)$, provided that $c(x) \geq -\mu$, $x \in \Omega$.

(b) Show that the solution $u \in H^1(\Omega)$ in (a) satisfies

$$||u||_{H^1(\Omega)} \le C \left(||g||_{H^1(\Omega)} + ||f||_{H^{-1}(\Omega)} \right).$$

Solution.

(a) Step 1. Let

$$B[u,v] = \int_{\Omega} \left(\sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} + c u v \right) dx$$

be the bilinear form w.r.t the operator (13). From the proof of (12), we see that

$$\theta \|Du\|_{L^2}^2 \le B[u, u] - \int_{\Omega} c(x) u^2 dx$$

If $c(x) \ge 0$, then $\theta \|Du\|_{L^2}^2 \le B[u, u]$. If $\mu_0 = -\inf_{x \in \Omega} c(x) > 0$, then

$$\begin{aligned} \theta \|Du\|_{L^2}^2 \leq B[u, u] &- \int_{\Omega} c(x) u^2 dx \\ \leq B[u, u] + \mu_0 \|u\|_{L^2}^2 \\ \leq B[u, u] + \mu_0 c_0 \|Du\|_{L^2}^2, \end{aligned}$$

where we used the Poincaré inequality

$$\|u\|_{L^{2}(\Omega)} \le c_{0} \|Du\|_{L^{2}(\Omega)}$$
(15)

for $u \in H_0^1(\Omega)$. When μ_0 satisfies $\theta > \mu_0 c_0$, then

$$B[u,u] \geq (\theta - \mu_0 c_0) \|Du\|_{L^2}^2 \geq \frac{\theta - \mu_0 c_0}{1 + c_0} \|u\|_{H^1_0(\Omega)}^2.$$

Therefore, for any constant μ satisfying $\theta > \mu c_0$, the bilinear form B[u, v] satisfies the condition of Lax-Milgram theorem, provided that $c(x) \ge -\mu$. Step 2. Let $\tilde{u} = u - g$. The problem (14) is equivalent to

$$\begin{cases} L\tilde{u} = f - Lg & \text{in } \Omega\\ \tilde{u} = 0 & \text{on } \Omega. \end{cases}$$
(16)

Note that $f - Lg \in H^{-1}(\Omega)$. The Lax-Milgram theorem implies that there exists a unique weak solution $\tilde{u} \in H_0^1(\Omega)$ to the problem (16). In particular, $u = \tilde{u} + g \in$ $H^1(\Omega)$ is the unique weak solution to the problem (14). (b) From the energy estimate in (a),

$$\begin{split} \frac{\theta - \mu c_0}{1 + c_0} \|\tilde{u}\|_{H^1}^2 \leq & B[\tilde{u}, \tilde{u}] = \langle f - Lg, \tilde{u} \rangle \\ \leq & \|f - Lg\|_{H^{-1}(\Omega)} \|\tilde{u}\|_{H_0^1} \\ \leq & C\left(\|f\|_{H^{-1}} + \|g\|_{H^1}\right) \|\tilde{u}\|_{H_0^1}. \end{split}$$

This implies that

 $\|u\|_{H^1} = \|\tilde{u} + g\|_{H^1} \le C \left(\|f\|_{H^{-1}} + \|g\|_{H^1}\right).$