中国科学技术大学数学科学学院
 2021年春季学期《微分方程II（H）》期中测验－参考解答
 2021年5月10日，15：55－18：20，二教2606
 姓名：
 \qquad
 学号：
 \qquad

注意事项：

1．请将解答写在答题纸上，试卷和答题纸一并上交；
2．闭卷考试，总分 110 分．得分超过 100 分时，成绩取整为 100 分；
3．在试卷正文中，我们始终假定 $\Omega \subset \mathbb{R}^{n}$ 为有界集且具有 C^{1} 的边界 $\partial \Omega$ 。

试卷正文

1．［15 分］Recall that for $u \in C^{1}(\bar{\Omega})$ the Gauss－Green theorem states that

$$
\begin{equation*}
\int_{\Omega} \frac{\partial u}{\partial x_{i}} d x=\int_{\partial \Omega} u\left(\nu \cdot e_{i}\right) d \sigma \tag{1}
\end{equation*}
$$

where ν denotes the unit outward normal to $\partial \Omega, e_{i}$ denotes the i th coordinate vector of \mathbb{R}^{n} and $d \sigma$ is the area element on $\partial \Omega$ ．
（a）Show that for any $u \in W^{1, p}(\Omega), v \in W^{1, q}(\Omega)$ ，where $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$ ， we have the following Green＇s formula

$$
\begin{equation*}
\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x=-\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x+\int_{\partial \Omega} u v\left(\nu \cdot e_{i}\right) d \sigma \tag{2}
\end{equation*}
$$

where the value of u, v on the boundary $\partial \Omega$ is viewed as the Trace of u and v ．
（b）Similarly，we have

$$
\begin{equation*}
\int_{\Omega} u \Delta v d x=-\int_{\Omega}\langle D u, D v\rangle d x+\int_{\partial \Omega} u \frac{\partial v}{\partial \nu} d \sigma \tag{3}
\end{equation*}
$$

for any $u, v \in H^{2}(\Omega)$ ．

Solution．

（a）Firstly，for $u, v \in C^{1}(\bar{\Omega})$ ，we apply（1）to $u v$ and obtain（2）．Then for $u \in$ $W^{1, p}(\Omega), v \in W^{1, q}(\Omega)$ ，there exist $u_{m}, v_{\ell} \in C^{\infty}(\bar{\Omega})$ such that

$$
\begin{aligned}
u_{m} & \rightarrow u, \quad \text { in } W^{1, p}(\Omega) \\
v_{\ell} & \rightarrow v, \quad \text { in } W^{1, q}(\Omega)
\end{aligned}
$$

For each $u_{m}, v_{\ell} \in C^{\infty}(\bar{\Omega})$ ，there holds

$$
\begin{equation*}
\int_{\Omega} u_{m} \frac{\partial v_{\ell}}{\partial x_{i}} d x=-\int_{\Omega} \frac{\partial u_{m}}{\partial x_{i}} v_{\ell} d x+\int_{\partial \Omega} u_{m} v_{\ell}\left(\nu \cdot e_{i}\right) d \sigma \tag{4}
\end{equation*}
$$

Let $m, \ell \rightarrow \infty$. We have

$$
\begin{aligned}
\left|\int_{\Omega} \frac{\partial u_{m}}{\partial x_{i}} v_{\ell} d x-\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x\right| & \leq \int_{\Omega}\left|\frac{\partial u_{m}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right|\left|v_{\ell}\right| d x+\int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\left(v_{\ell}-v\right)\right| d x \\
& \leq\left\|u_{m, x_{i}}-u_{x_{i}}\right\|_{L^{p}(\Omega)}\left\|v_{\ell}\right\|_{L^{q}(\Omega)}+\left\|u_{x_{i}}\right\|_{L^{p}(\Omega)}\left\|v_{\ell}-v\right\|_{L^{q}(\Omega)} \\
& \rightarrow 0, \quad \text { as } m, \ell \rightarrow \infty
\end{aligned}
$$

Similarly,

$$
\int_{\Omega} u_{m} \frac{\partial v_{\ell}}{\partial x_{i}} d x \quad \rightarrow \quad \int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x
$$

as $m, \ell \rightarrow \infty$. For the last term of (4), by Hölder inequality and Trace inequality

$$
\begin{aligned}
&\left|\int_{\partial \Omega} u_{m} v_{\ell}\left(\nu \cdot e_{i}\right) d \sigma-\int_{\partial \Omega} u v\left(\nu \cdot e_{i}\right) d \sigma\right| \leq \int_{\partial \Omega}\left|u_{m} v_{\ell}-u v\right| d \sigma \\
& \leq \int_{\partial \Omega}\left(\left|u _ { m } \left\|v_{\ell}-v\left|+\left|u_{m}-u \| v\right|\right) d \sigma\right.\right.\right. \\
& \leq\left\|T u_{m}\right\|_{L^{p}(\partial \Omega)}\left\|T v_{\ell}-T v\right\|_{L^{q}(\partial \Omega)}+\left\|T u_{m}-T u\right\|_{L^{p}(\partial \Omega)}\|T v\|_{L^{q}(\partial \Omega)} \\
& \leq C\left\|u_{m}\right\|_{W^{1, p}(\Omega)}\left\|v_{\ell}-v\right\|_{W^{1, q}(\Omega)}+C\left\|u_{m}-u\right\|_{W^{1, p}(\Omega)}\|v\|_{W^{1, q}(\Omega)} \\
& \rightarrow 0
\end{aligned}
$$

as $m, \ell \rightarrow \infty$. Therefore, letting $m, \ell \rightarrow \infty$ in (4) we obtain (2) for $u \in W^{1, p}(\Omega), v \in$ $W^{1, q}(\Omega)$.
(b) For $u, v \in H^{2}(\Omega)$, we have $v_{x_{i}}=\frac{\partial v}{\partial x_{i}} \in H^{1}(\Omega)$. Then the trace of $v_{x_{i}}$ on $\partial \Omega$ is well defined and belongs to $L^{2}(\partial \Omega)$. Replacing v by $v_{x_{i}}$ in (2), we have

$$
\begin{equation*}
\int_{\Omega} u \frac{\partial^{2} v}{\partial x_{i}^{2}} d x=-\int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x+\int_{\partial \Omega} u \frac{\partial v}{\partial x_{i}}\left(\nu \cdot e_{i}\right) d \sigma \tag{5}
\end{equation*}
$$

Then (3) follows from taking the sum of i from 1 to n in (5) and noting that

$$
\frac{\partial v}{\partial \nu}=\langle D v, \nu\rangle=\left\langle\sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}} e_{i}, \nu\right\rangle
$$

2. [15 分] For $2 \leq p<\infty$, apply the Green's formula (2) to prove the interpolation inequality

$$
\begin{equation*}
\|D u\|_{L^{p}(\Omega)}^{2} \leq C\|u\|_{L^{p}(\Omega)}\left\|D^{2} u\right\|_{L^{p}(\Omega)} \tag{6}
\end{equation*}
$$

for $u \in W_{0}^{2, p}(\Omega)$, where $C>0$ is a constant independent of u.
Solution. For $u \in W_{0}^{2, p}(\Omega)$, where $2 \leq p<\infty$, we have $D u \in L^{p}(\Omega)$ and $D u|D u|^{p-2} \in$ $L^{q}(\Omega)$ where $\frac{1}{p}+\frac{1}{q}=1$. Apply Green's formula (2), we have

$$
\begin{align*}
\int_{\Omega}|D u|^{p} d x & \left.=\left.\sum_{i=1}^{n} \int_{\Omega}\left\langle u_{x_{i}}, u_{x_{i}}\right| D u\right|^{p-2}\right\rangle d x \\
& =-\sum_{i=1}^{n} \int_{\Omega} u D_{x_{i}}\left(u_{x_{i}}|D u|^{p-2}\right) d x+\int_{\partial \Omega} u u_{x_{i}}|D u|^{p-2}\left(\nu \cdot e_{i}\right) d \sigma \tag{7}
\end{align*}
$$

The second term on the right hand side of（7）vanishes since $u \in W_{0}^{2, p}(\Omega)$ implies that the Trace of u vanishes on the boundary $\partial \Omega$ and the trace inequality implies

$$
\begin{align*}
\left.\left|\int_{\partial \Omega} u u_{x_{i}}\right| D u\right|^{p-2}\left(\nu \cdot e_{i}\right) d \sigma \mid & \leq \int_{\partial \Omega}|u||D u|^{p-1} d \sigma \\
& \leq\|T u\|_{L^{p}(\partial \Omega)}\|T(D u)\|_{L^{p}(\partial \Omega)}^{p-1} \\
& \leq C\|T u\|_{L^{p}(\partial \Omega)}\|u\|_{W^{2, p}(\Omega)}^{p-1}=0 . \tag{8}
\end{align*}
$$

On the other hand，for $u \in W_{0}^{2, p}(\Omega)$ we have（similar with Evans 书第5章习题18）

$$
\begin{align*}
\sum_{i=1}^{n} D_{x_{i}}\left(u_{x_{i}}|D u|^{p-2}\right) & =\Delta u|D u|^{p-2}+(p-2) \sum_{i=1}^{n} u_{x_{i}}|D u|^{p-3} D_{x_{i}}|D u| \\
& =\Delta u|D u|^{p-2}+(p-2) \sum_{i=1}^{n} u_{x_{i}}|D u|^{p-4}\left\langle D u, D_{x_{i}} D u\right\rangle \tag{9}
\end{align*}
$$

Using（8），（9）and applying the generalized Hölder inequality to（7）imply that

$$
\begin{aligned}
\int_{\Omega}|D u|^{p} d x & \leq C \int_{\Omega}|u|\left|D^{2} u\right||D u|^{p-2} d x \\
& \leq C\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}\left(\int_{\Omega}|D u|^{p} d x\right)^{1 / p}\left(\int_{\Omega}|D u|^{p} d x\right)^{\frac{p-2}{p}}
\end{aligned}
$$

which is equivalent to（6）．
3．［15 分］Show that $H^{1}\left(\mathbb{R}^{n}\right)=H_{0}^{1}\left(\mathbb{R}^{n}\right)$ ．
Solution．Let $\xi \in C^{\infty}\left(\mathbb{R}_{+}\right)$be a cut－off function satisfying（see e．g．，$\S 5.5$ in Evans）

$$
\xi(t) \equiv 1 \quad \text { if } 0 \leq t \leq 1, \quad \xi(t)=0 \text { if } t \geq 2, \quad 0 \leq \xi \leq 1
$$

and the derivative $\left|\xi^{\prime}(t)\right| \leq C$ ．Let $u \in H^{1}\left(\mathbb{R}^{n}\right)$ ．
Step 1．We consider $u^{(R)}(x)=u(x) \xi(|x| / R)$ ，which vanishes on $\{|x|>2 R\}$ and still $\overline{\text { belongs }}$ to $H^{1}\left(\mathbb{R}^{n}\right)$ ．Leibniz＇s formula implies

$$
\begin{aligned}
& u_{x_{i}}^{(R)}(x)=u_{x_{i}}(x) \xi\left(\frac{|x|}{R}\right)+u(x) \xi^{\prime}\left(\frac{|x|}{R}\right) \frac{x_{i}}{|x| R} . \\
&\left\|u^{(R)}-u\right\|_{H^{1}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left|u^{(R)}-u\right|^{2} d x+\sum_{i=1}^{n} \int_{\mathbb{R}^{n}}\left|u_{x_{i}}^{(R)}-u_{x_{i}}\right|^{2} d x \\
&=\int_{|x|>R}\left|u^{(R)}-u\right|^{2} d x+\sum_{i=1}^{n} \int_{|x|>R}\left|u_{x_{i}}^{(R)}-u_{x_{i}}\right|^{2} d x \\
& \leq C \int_{|x|>R}\left(|u|^{2}+|D u|^{2}\right) d x \rightarrow 0
\end{aligned}
$$

as $R \rightarrow \infty$ since $u \in H^{1}\left(\mathbb{R}^{n}\right)$ ．
Step 2．Next，we consider mollification of $u^{(R)}(x)$ ：

$$
u_{\varepsilon}^{(R)}(x)=\left[\eta_{\varepsilon} * u^{(R)}\right](x),
$$

where η_{ε} is the mollifier（see Appendix C． 5 of Evans book）．Then 定理 1 in $\S 5.3$ of Evans book implies that $u_{\varepsilon}^{(R)}(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and converges to $u^{(R)}(x)$ as $\varepsilon \rightarrow 0$ in $H^{1}(V)$ for
any compact subset $V \subset \subset \mathbb{R}^{n}$ ．
For any small $\delta>0$ ，we first choose a large $k \in \mathbb{N}$ such that $\left\|u^{(k)}-u\right\|_{H^{1}}<\delta / 2$ ，then choose a small $\varepsilon=\varepsilon(k)$ such that $\left\|u_{\varepsilon(k)}^{(k)}-u^{(k)}\right\|_{H^{1}}<\delta / 2$ ．Then $u_{k}(x):=u_{\varepsilon(k)}^{(k)}(x) \in$ $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is a sequence of functions in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ converging to $u \in H^{1}\left(\mathbb{R}^{n}\right)$ ．By definition， this means that $H^{1}\left(\mathbb{R}^{n}\right)=H_{0}^{1}\left(\mathbb{R}^{n}\right)$ ．
注：也可先做磨光，再取截断，即Step 2 与Step 1 次序可交换．
4．［20 分］
（a）叙述Sobolev inequality for $p>n$ ．
（b）叙述Rellich－Kondrachov Compactness Theorem 定理内容
（c）Applying the fact $W^{1, p}(\Omega) \subset \subset L^{p}(\Omega), 1 \leq p \leq \infty$ to show $W^{2, p}(\Omega) \subset \subset W^{1, p}(\Omega)$ ．

Solution．

（a）Let Ω be a bounded open set with a C^{1} boundary $\partial \Omega$ ．Assume $u \in W^{1, p}(\Omega)$ for $n>p$ ．Then u has a continuous version，still denoted by u ，satisfying

$$
\|u\|_{C^{0, \gamma}(\bar{\Omega})} \leq C\|u\|_{W^{1, p}(\Omega)}
$$

for some constant $C=C(n, p, \Omega)$ ，where $\gamma=1-n / p$ ．
（b）Let Ω be a bounded open set with a C^{1} boundary $\partial \Omega$ ．Suppose $1 \leq p<n$ ．Then $W^{1, p}(\Omega) \subset \subset L^{q}(\Omega)$ for each $1 \leq q<p^{*}$.
（c）Let $\left\{u_{m}\right\}_{m=1}^{\infty}$ be a bounded sequence in $W^{2, p}(\Omega)$ ．We need to show that a sub－ sequence $\left\{u_{m_{j}}\right\}_{j=1}^{\infty} \subset\left\{u_{m}\right\}_{m=1}^{\infty}$ converges to a function u in $W^{1, p}(\Omega)$ ．Since both $\left\{u_{m}\right\}_{m=1}^{\infty}$ and $\left\{D^{\alpha} u_{m}\right\}_{m=1}^{\infty}$ are bounded in $W^{1, p}(\Omega)$ ，where α is a multi－index with $|\alpha|=1$ ，the compactness of $W^{1, p}(\Omega) \subset \subset L^{p}(\Omega)$ implies that，after passing to a subsequence，

$$
\begin{aligned}
u_{m} & \rightarrow u, \\
D^{\alpha} u_{m} & \rightarrow v_{\alpha},
\end{aligned} \quad \text { in } L^{p}(\Omega)=\text { in } L^{p}(\Omega)
$$

as $m \rightarrow \infty$ ．We claim that v_{α} is the weak derivative of u ．Indeed，for each test function $\phi \in C_{c}^{\infty}(\Omega)$ ，we have

$$
\int_{\Omega} u_{m} D^{\alpha} \phi d x=-\int_{\Omega} D^{\alpha} u_{m} \phi
$$

for each $m=1,2, \cdots$ ．Letting $m \rightarrow \infty$ yields that

$$
\int_{\Omega} u D^{\alpha} \phi d x=-\int_{\Omega} v_{\alpha} \phi
$$

So we conclude that $v_{\alpha}=D^{\alpha} u$ is the weak derivative of u ．In particular，we have that（after passing to a subsequence）$u_{m} \rightarrow u$ in $W^{1, p}(\Omega)$ ．

5．［15 分］Show that there exists a constant $C>0$ depending on Ω, n and $1 \leq p<\infty$ such that

$$
\|u\|_{W^{1, p}(\Omega)} \leq C\left(\|D u\|_{L^{p}(\Omega)}+\|T u\|_{L^{p}(\partial \Omega)}\right)
$$

for any $u \in W^{1, p}(\Omega)$ ，where $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ denotes the trace operator．

Solution. We argue by contradiction. Were the stated estimate false, for each integer $k=1, \cdots$, there would exist a function $u_{k} \in W^{1, p}(\Omega)$ satisfying

$$
\left\|u_{k}\right\|_{W^{1, p}(\Omega)} \geq k\left(\left\|D u_{k}\right\|_{L^{p}(\Omega)}+\left\|T u_{k}\right\|_{L^{p}(\partial \Omega)}\right) .
$$

We normalize u_{k} by considering $v_{k}=u_{k}\left(\left\|u_{k}\right\|_{W^{1, p}(\Omega)}\right)^{-1}$. Then

$$
\begin{equation*}
\left\|v_{k}\right\|_{W^{1, p}(\Omega)}=1, \quad\left\|D v_{k}\right\|_{L^{p}(\Omega)} \leq 1 / k \rightarrow 0, \quad\left\|T v_{k}\right\|_{L^{p}(\partial \Omega)} \leq 1 / k \rightarrow 0 \tag{10}
\end{equation*}
$$

Step 1. The compactness of $W^{1, p}(\Omega) \subset \subset L^{p}(\Omega)$ implies that there exists a subsequence $\overline{\left\{v_{k_{j}}\right\}_{j=1}^{\infty}}$ of $\left\{v_{k}\right\}_{k=1}^{\infty}$ and a function $v \in L^{p}(\Omega)$ such that

$$
v_{k_{j}} \rightarrow v \quad \text { in } L^{p}(\Omega)
$$

Moreover, for each $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega} v \phi_{x_{i}} d x=\lim _{k_{j} \rightarrow \infty} \int_{\Omega} v_{k_{j}} \phi_{x_{i}} d x=-\lim _{k_{j} \rightarrow \infty} \int_{\Omega} v_{k_{j}, x_{i}} \phi d x=0 .
$$

Consequently $v \in W^{1, p}(\Omega)$ with $D v=0$ a.e. and

$$
\begin{aligned}
\|v\|_{L^{p}(\Omega)}^{p} & =\lim _{k_{j} \rightarrow \infty}\left\|v_{k_{j}}\right\|_{L^{p}(\Omega)}^{p} \\
& =\lim _{k_{j} \rightarrow \infty}\left(\left\|v_{k}\right\|_{W^{1, p}(\Omega)}^{p}-\int_{\Omega}\left|D v_{k}\right|^{p} d x\right)=1 .
\end{aligned}
$$

Step 2. On the other hand,

$$
\begin{aligned}
\left\|T v-T v_{k_{j}}\right\|_{L^{p}(\partial \Omega)}^{p} & \leq C\left\|v-v_{k_{j}}\right\|_{W^{1, p}(\Omega)}^{p} \\
& =C\left(\left\|v-v_{k_{j}}\right\|_{L^{p}(\Omega)}^{p}+\left\|D v-D v_{k_{j}}\right\|_{L^{p}(\Omega)}^{p}\right) \\
& =C\left(\left\|v-v_{k_{j}}\right\|_{L^{p}(\Omega)}^{p}+\left\|D v_{k_{j}}\right\|_{L^{p}(\Omega)}^{p}\right) \\
& \rightarrow 0, \quad \text { as } \quad k_{j} \rightarrow \infty .
\end{aligned}
$$

This together with the third inequality of (10) implies that $T v=0$. Since $v \in W^{1, p}(\Omega)$ and $\partial \Omega$ is $C^{1}, T v=0$ implies that $v \in W_{0}^{1, p}(\Omega)$. Then by Poincaré inequality we have $\|v\|_{L^{p}(\Omega)} \leq C\|D v\|_{L^{p}(\Omega)}=0$, contradicting with $\|v\|_{L^{p}(\Omega)}=1$.
6. [15 分] Consider the bilinear form

$$
B[u, v]=\int_{\Omega}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x
$$

for $u, v \in H_{0}^{1}(\Omega)$, where $a^{i j}, b^{i}, c \in L^{\infty}(\Omega), a^{i j}=a^{j i}$ and $\left(a^{i j}(x)\right) \geq \theta I>0$ a.e. $x \in \Omega$. Prove that there exist constants $\alpha, \beta>0$ and $\gamma \geq 0$ such that

$$
\begin{align*}
|B[u, v]| & \leq \alpha\|u\|_{H_{0}^{1}(\Omega)}\|v\|_{H_{0}^{1}(\Omega)}, \tag{11}\\
\beta\|u\|_{H_{0}^{1}(\Omega)}^{2} & \leq B[u, u]+\gamma\|u\|_{L^{2}(\Omega)}^{2} . \tag{12}
\end{align*}
$$

for all $u, v \in H_{0}^{1}(\Omega)$.
Solution. See Theorem 2 in $\S 6.2$ of Evans book
7. [15 分] Let

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+c(x) u \tag{13}
\end{equation*}
$$

where $a^{i j}, c \in L^{\infty}(\Omega), a^{i j}=a^{j i}$ and $\left(a^{i j}(x)\right) \geq \theta I>0$ a.e. $x \in \Omega$.
(a) Show that there exists a constant $\mu \geq 0$ such that for each $f \in H^{-1}(\Omega)$ and $g \in H^{1}(\Omega)$, the boundary-value problem

$$
\left\{\begin{array}{rll}
L u= & & \text { in } \Omega \tag{14}\\
u= & g & \\
\text { on } \Omega
\end{array}\right.
$$

has a unique weak solution $u \in H^{1}(\Omega)$, provided that $c(x) \geq-\mu, x \in \Omega$.
(b) Show that the solution $u \in H^{1}(\Omega)$ in (a) satisfies

$$
\|u\|_{H^{1}(\Omega)} \leq C\left(\|g\|_{H^{1}(\Omega)}+\|f\|_{H^{-1}(\Omega)}\right) .
$$

Solution.

(a) Step 1. Let

$$
B[u, v]=\int_{\Omega}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+c u v\right) d x
$$

be the bilinear form w.r.t the operator (13). From the proof of (12), we see that

$$
\theta\|D u\|_{L^{2}}^{2} \leq B[u, u]-\int_{\Omega} c(x) u^{2} d x
$$

If $c(x) \geq 0$, then $\theta\|D u\|_{L^{2}}^{2} \leq B[u, u]$. If $\mu_{0}=-\inf _{x \in \Omega} c(x)>0$, then

$$
\begin{aligned}
\theta\|D u\|_{L^{2}}^{2} & \leq B[u, u]-\int_{\Omega} c(x) u^{2} d x \\
& \leq B[u, u]+\mu_{0}\|u\|_{L^{2}}^{2} \\
& \leq B[u, u]+\mu_{0} c_{0}\|D u\|_{L^{2}}^{2}
\end{aligned}
$$

where we used the Poincaré inequality

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq c_{0}\|D u\|_{L^{2}(\Omega)} \tag{15}
\end{equation*}
$$

for $u \in H_{0}^{1}(\Omega)$. When μ_{0} satisfies $\theta>\mu_{0} c_{0}$, then

$$
B[u, u] \geq\left(\theta-\mu_{0} c_{0}\right)\|D u\|_{L^{2}}^{2} \geq \frac{\theta-\mu_{0} c_{0}}{1+c_{0}}\|u\|_{H_{0}^{1}(\Omega)}^{2}
$$

Therefore, for any constant μ satisfying $\theta>\mu c_{0}$, the bilinear form $B[u, v]$ satisfies the condition of Lax-Milgram theorem, provided that $c(x) \geq-\mu$.
Step 2. Let $\tilde{u}=u-g$. The problem (14) is equivalent to

$$
\left\{\begin{align*}
L \tilde{u} & =f-L g & & \text { in } \Omega \tag{16}\\
\tilde{u} & =0 & & \text { on } \Omega
\end{align*}\right.
$$

Note that $f-L g \in H^{-1}(\Omega)$. The Lax-Milgram theorem implies that there exists a unique weak solution $\tilde{u} \in H_{0}^{1}(\Omega)$ to the problem (16). In particular, $u=\tilde{u}+g \in$ $H^{1}(\Omega)$ is the unique weak solution to the problem (14).
(b) From the energy estimate in (a),

$$
\begin{aligned}
\frac{\theta-\mu c_{0}}{1+c_{0}}\|\tilde{u}\|_{H^{1}}^{2} & \leq B[\tilde{u}, \tilde{u}]=\langle f-L g, \tilde{u}\rangle \\
& \leq\|f-L g\|_{H^{-1}(\Omega)}\|\tilde{u}\|_{H_{0}^{1}} \\
& \leq C\left(\|f\|_{H^{-1}}+\|g\|_{H^{1}}\right)\|\tilde{u}\|_{H_{0}^{1}} .
\end{aligned}
$$

This implies that

$$
\|u\|_{H^{1}}=\|\tilde{u}+g\|_{H^{1}} \leq C\left(\|f\|_{H^{-1}}+\|g\|_{H^{1}}\right)
$$

