School for Mathematical Sciences, USTC 2021 Algebraic Geometry Final Exam

Time: 14:30-16:30. Good luck!

Problem 1

Let X be a projective nonsingular variety over k. For any n > 0 we define the nth plurigenus of X to be $P_n = \dim_k \Gamma(X, \omega_X^{\otimes n})$. And for any $q, 0 \leq q \leq \dim X$ we define the Hodge numbers $h^{q,0} = \dim_k \Gamma(X, \Omega_{X/k}^q)$. where $\Omega_{X/k}^q = \Lambda^q \Omega_{X/k}$ is the sheaf of regular q-forms on X. Show that P_n and $h^{q,0}$ are birational invariants of X, i.e., if X and X' are birationally equivalent nonsingular projective varieties, then $P_n(X) = P_n(X')$ and $h^{q,0}(X) = h^{q,0}(X')$.

Problem 2

Let $X = \mathbb{P}^n_k$. Show that $H^q(X, \Omega_X^p) = 0$ for $p \neq q$ and $H^q(X, \Omega_X^p) = k$ for $p = q, 0 \leq p, q \leq n$.

Problem 3

Let $f: X \to Y$ be a morphism of ringed spaces, let \mathcal{F} be an \mathcal{O}_X -module, and let \mathcal{E} be a locally free \mathcal{O}_Y -module of finite rank. Prove the projection formula:

$$R^i f_*(\mathcal{F} \otimes f^* \mathcal{E}) \cong R^i f_*(\mathcal{F}) \otimes \mathcal{E}.$$

Problem 4

Let $f: X \to Y$ be a proper, flat morphism of varieties over k. Suppose for some point $y \in Y$ that the fiber X_y is smooth over k(y). Then show that there is an open neighbourhood U of y in Y such that $f: f^{-1}(U) \to U$ is smooth.

Problem 5

Let X be a normal, projective variety over an algebraically closed field k. Let |D| be a linear system (of effective Cartier divisors) without base points, and assume that |D| is not composite with a pencil, which means that if $f: X \to \mathbb{P}^n_k$ is the morphism determined by |D|, then dim $f(X) \ge 2$. Then show that every divisor in |D| is connected.

Problem 6

Let $\{X_t\}$ be a family of hypersurfaces of the same degree in \mathbb{P}^n_k . Show that for each i, the function $h^i(X_t, \mathcal{O}_{X_t})$ is a constant function of t.