中国科学技术大学数学科学学院

2021~2022 学年第一学期期中试卷(A卷)

课程名称: 微分流形 课程编号: MATH5003P 开课院系: 数学科学学院 考试形式: 闭卷

姓名: ______ 学号: _____ 班级: _____

题号	 <u> </u>	四	五.	六	七	八	九	总 分
得分								

General facts about this exam:

- This is a closed-book examination.
- There are 9 problems (10 pages including this cover) in total.
- Read all the questions carefully before starting to work.
- Attempt to answer all questions for partial credit.
- You have two hours to complete this exam.

Unless otherwise stated, smoothness about this exam:

- All manifolds in this exam are smooth and are of dimensions at least 1.
- All maps in this exam are smooth.
- All vector fields in this exam are smooth.
- All distributions in this exam are smooth.
- All group actions in this exam are smooth.

装

鋖

第1页,共10页

Problem 1 (4 points each, 20 points in total)

Linearization is one of the major themes in this course. [Write down as much details as you can.]

- (1) Let M be a smooth manifold and $p \in M$. The tangent space T_pM can be viewed as the linearization of M at p. Write down the definition of T_pM .
- (2) Let $f: M \to N$ be a smooth map. The differential $df_p: T_pM \to T_{f(p)}N$ is the linearization of f at p. Write down the definition of $df_p: T_pM \to T_{f(p)}N$.
- (3) Let G be a Lie group. The Lie algebra \mathfrak{g} of G is the linearization of G. Write down the definition of the Lie algebra \mathfrak{g} of a Lie group G.
- (4) Any Lie group homomorphism φ : G → H can be linearized to a Lie algebra homomorphism dφ : g → h. Write down the definition of dφ : g → h.
- (5) The canonical submersion theorem tells us that locally, any submersion can be "linearized" to a simple linear one. Write down the canonical submersion theorem.
- (6) The local Frobenius theorem tells us that if V is a k-dimensional involutive distribution, then locally, V can be "linearized" to a simple linear one. Write down the local Frobenius theorem.

Problem 2 (2 points each, 20 points in total)

Which of the following statements are correct? Put a "T" before correct ones, and an "F" before wrong ones.

- () Any connected component of a smooth manifold M is an open subset in M.
- () Let K be a compact subset in M. Then there exists a smooth function f on M so that $K = f^{-1}(0)$.
- () The complex projective plane \mathbb{CP}^2 is non-orientable.
- () There exists no submersion from O(n) to SL(n).
- () The composition of two constant rank maps is still a constant rank map.
- () Any proper injective immersion $f: M \to N$ between two smooth manifolds is an embedding.
- () For any smooth map $f: S^2 \to \mathbb{R}^4$ and any $\varepsilon > 0$, there is an immersion $f_{\varepsilon}: S^2 \to \mathbb{R}^4$ so that $|f f_{\varepsilon}| < \varepsilon$.

() For any smooth manifolds M, N, the property "f ∈ C[∞](M, N) is an immersion" is a stable property.

() There exists no smooth vector field on S^2 so that $X_p = 0$ for exactly one point.

- () If X_1, X_2 are linearly independent smooth vector fields on M, then near each $p \in M$, there is a local chart (φ, U, V) so that $X_1 = \partial_{x_1}$ and $X_2 = \partial_{x_2}$ on U.
- () On any smooth manifold, there exists at most one Lie group structure.

装

线

第3页,共10页

Problem 3 (4 points each, 20 points in total)

For each of the following statements, write down an example.(No detail is needed.)

- (1) A smooth map $f : \mathbb{R}^2 \setminus \{(1,0)\} \to \mathbb{R}^2 \setminus \{(0,1)\}$ that is a local diffeomorphism everywhere but not a diffeomorphism.
- (2) A smooth function $f: S^2 \to \mathbb{R}$ and a regular point $p \in S^2$ of f, so that f(p) is not a regular value of f.
- (3) A continuous function f : ℝ → ℝ so that the graph Γ_f of f is a smooth submanifold of ℝ², but f itself is not a smooth function.
- (4) A smooth vector field on \mathbb{R}^2 that is not complete.
- (5) A smooth distribution on \mathbb{R}^4 that is not integrable.
- (6) A smooth function $f \in C^{\infty}(\mathbb{R})$ whose critical values form an uncountable set.

第4页,共10页

Problem 4 (10 points)

Define a map $f:\mathbb{RP}^1\to\mathbb{RP}^n\ (n\geq 2)$ by the formula

$$f([t:s]) := [t^{n}: t^{n-1}s: \dots : ts^{n-1}: s^{n}]$$

Prove: f is an embedding of \mathbb{RP}^1 to \mathbb{RP}^n .

装

ŗ

装

災

Problem 5 (15 points)

- (a) State the theorem of the existence of partition of unity (Yes, you need to define P.O.U.).
- (b) Let $U \subset \mathbb{R}^n$ be open. Define a bilinear map $R_0: \Gamma^{\infty}(TU) \times \Gamma^{\infty}(TU) \to \Gamma^{\infty}(TU)$ by

$$\begin{aligned} R_0(X,Y) &= \sum_{i,j} X^i(\partial_i Y^j) \partial_j, \quad \text{if } X = \sum_i X^i \partial_i, Y = \sum_j Y^j \partial_j. \end{aligned}$$

Prove: for any $f \in C^{\infty}(U)$ and any $X, Y \in \Gamma^{\infty}(TU)$, we have
 $R_0(fX,Y) = fR_0(X,Y) \quad \text{and} \quad R_0(X,fY) = fR_0(X,Y) + (Xf)Y. \end{aligned}$

c) Prove: for any smooth manifold M, there exists (not unique) a bilinear map $R : \Gamma^{\infty}(TM) \times \Gamma^{\infty}(TM) \to \Gamma^{\infty}(TM)$ so that for any $f \in C^{\infty}(M)$ and any $X, Y \in \Gamma^{\infty}(TM)$, R(fX,Y) = fR(X,Y) and R(X,fY) = fR(X,Y) + (Xf)Y.

Problem 6 (10 points)

Let M, N be smooth manifolds. Prove: A smooth map $f : M \to N$ is a diffeomorphism if and only if it is an invertible immersion.

装

卢

装

災

Problem 7 (20 points)

Consider the set

$$M = \left\{ (x_1, x_2, y_1, y_2) \in \mathbb{R}^4 : (x_1 - y_1)^2 + (x_2 - y_2)^2 = 2 \right\}.$$

- (a) Prove: M is a smooth submanifold of \mathbb{R}^4 .
- (b) Consider a constant vector field on \mathbb{R}^4 ,

$$X = a_1 \frac{\partial}{\partial x_1} + a_2 \frac{\partial}{\partial x_2} + b_1 \frac{\partial}{\partial y_1} + b_2 \frac{\partial}{\partial y_2}$$

Find out all (a_1, a_2, b_1, b_2) so that X is tangent to M at the point $(2, 2, 1, 1) \in M$.

- (c) Prove: M is diffeomorphic to $\mathbb{R}^2 \times S^1$.
- (d) Does the plane $P := \{(c, c, d, d) : c, d \in \mathbb{R}\}$ intersect M transversally in \mathbb{R}^4 ? Prove you claim.

Problem 8 (15 points)

(a) Consider the smooth manifold $G = GL(n, \mathbb{R}) \times \mathbb{R}^n$. Define a multiplication operation on G via

$$(X, x) \cdot (Y, y) := (XY, Xy + x).$$

Prove: G is a Lie group with respect to this multiplication. (The affine group of \mathbb{R}^n)

(b) Consider the vector space $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) \times \mathbb{R}^n$. Define a bracket on \mathfrak{g} via

$$[(A, a), (B, b)] := (AB - BA, Ab - Ba).$$

Prove: $(\mathfrak{g}, [\cdot, \cdot])$ is a Lie algebra.

(c) Define a map $e : \mathfrak{g} \to G$ by

$$e(A, a) := \left(e^A, \sum_{n=1}^{\infty} \frac{1}{n!} A^{n-1} a\right).$$

For any $(A, a) \in \mathfrak{g}$, let h(t) := e(tA, ta). Prove: $\{h(t) \mid t \in \mathbb{R}\}$ is a one-parameter subgroup of G.

装

线

Problem 9 (10 points)

In class we defined the exponential map for Lie groups. Now for any smooth manifold M and any $p \in M$, I want to define a local "exponent map" at p. Here is how I define it:

Take a coordinate chart (φ, U, V) around p. For any $X_p \in T_p M$, we can write $X_p = \sum c_i \partial_i |_p$. Define a local smooth vector field X on U by letting $X_q = \sum c_i \partial_i |_q$ for any $q \in U$. By the fundamental theorem of differential equations, there is an $\varepsilon_p > 0$ so that the integral curve of X starting at p exists for $|t| < \varepsilon_p$. It follows that for any $\varepsilon < \varepsilon_p$, the integral curve γ_{ε} of the vector field εX starting at p exists for $|t| < \varepsilon_p/\varepsilon$. I define $\exp_p(\varepsilon X_p) := \gamma_{\varepsilon}(1)$. By this way I can define \exp_p for all vectors in T_pM that are small enough.

Find out the mistake(s).

Your answer: [write down the mistake(s) with brief explanation/counterexample]