Advanced Probability Theory, STAT5101, Autumn 2020, Final

14:00-16:00, January 18, 2021

- 1. (20 points) Let $\mathscr{F}_1 \subset \mathscr{F}_2 \subset \ldots$ be a sequence of σ -algebras.
- (a) Prove that $\bigcup_i \mathscr{F}_i$ is an algebra.
- (b) Give an example to show that $\bigcup_i \mathscr{F}_i$ may not be a σ -algebra.

2. (20 points) Let X_1, X_2, \ldots be i.i.d random variables with finite expectation, prove that

$$\frac{\max_{1 \le k \le n} |X_k|}{n} \to 0 \ a.s. \quad \text{and} \quad \frac{1}{n} E(\max_{1 \le k \le n} |X_k|) \to 0$$

- 3. (20 points) Let F be the distribution function of a random variable X.
- (a) Prove that as $c \ge 0$, $\int_{-\infty}^{\infty} (F(x+c) F(x)) dx = c$.
- (b) Calculate $\int_0^\infty x(1-F(x)) dx$. (Express the result with the moment related to X)

4. (15 points) Let X_1, X_2, \ldots be random variables. Suppose $E(X_n) = 0$ and $E(X_m X_n) \le r(n-m)$ for $m \le n$ with $r(k) \to 0$ as $k \to \infty$, show that:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \to 0$$
 in probability

5. (25 points) Let X, Y be random variables.

(a) Let f_X , f_Y be density functions of X, Y. Prove that if $\forall x \in \mathbb{R}$, $f_X(x) \leq f_Y(x)$, then X and Y are identically distributed.

(b) Let $X \sim N(0, 1)$, find the value of

$$\lim_{x \to \infty} P(X > x + c/x | X > x)$$

- (c) If X and Y are independent and X is continuous, prove that P(X = Y) = 0.
- (d) Let $X \sim N(0,1)$, if $g: \mathbb{R} \to \mathbb{R}$ is continuous and bounded with $|g'(x)| \leq 1$, prove that

$$E(g'(X)) = E(Xg(X))$$

(e) Let $X, X_1, X_2, \ldots \in \{1, 2, 3, \cdots\}, X_n \to X$ in distribution, prove that

$$\sum_{i=1}^{\infty} |P(X_n = i) - P(X = i)| \to 0 \text{ as } n \to \infty$$