Advanced Probability, MATH5007P Autumn 2020, Final with Solutions

Student ID:	
-------------	--

Name:

1. (10 points) Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be independent σ -fields and for any $n \geq 0$ define $\mathcal{T}_n = \sigma\{\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, \ldots\}$. Prove that the tail σ -field $\mathcal{T} = \bigcap_{n\geq 0} \mathcal{T}_n$ is *P*-trivial, that is, for any set $A \in \mathcal{T}$, P(A) = 0 or 1.

For any $n \geq 1, \mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n, \mathcal{T}_n$ are independent, by the grouping lemma. Then $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n, \mathcal{T}$ are independent, since $\mathcal{T} \subset \mathcal{T}_n$. Then $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{T}$ are independent, by the definition of independence. Then \mathcal{T}_0 and \mathcal{T} are independent, again by the grouping lemma. Then \mathcal{T} and \mathcal{T} are independent, so for any $A \in \mathcal{T}$ we have P(A) = P(A)P(A), that is, P(A) = 0 or 1. 2. (10 points) Let X_1, X_2, \ldots be independent random variables with $P(X_n = 1) = p_n$ and $P(X_n = 0) = 1 - p_n$. First show that $X_n \xrightarrow{P} 0$ if and only if $p_n \to 0$, then show that $X_n \to 0$ a.s. if and only if $\sum_{n \ge 1} p_n < \infty$.

First recall that $\xi_n \xrightarrow{P} \xi$ if and only if $E(|\xi_n - \xi| \wedge 1) \to 0$. So in this problem we see that $X_n \xrightarrow{P} 0$ if and only if $E(X_n \wedge 1) = p_n \to 0$.

For the a.s. convergence, note that X_n can take only two values: 0 and 1. So $X_n \to 0$ a.s. if and only if $P(X_n = 1 \text{ i.o.}) = 0$. Finally recall the 2nd Borel-Cantelli lemma, which says that $P(X_n = 1 \text{ i.o.}) = 0$ if and only if $\sum_{n\geq 1} P(X_n = 1) = \sum_{n\geq 1} p_n < \infty$. 3. (15 points) For the two-dimensional random vectors (X, Y) and (X_n, Y_n) for any $n \ge 1$, first show that $(X_n, Y_n) \xrightarrow{d} (X, Y)$ implies that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$. Next assume that X and Y are independent, and X_n and Y_n are independent for any $n \ge 1$. Then show that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ imply that $(X_n, Y_n) \xrightarrow{d} (X, Y)$.

From
$$(X_n, Y_n) \xrightarrow{d} (X, Y)$$
 we get that as $n \to \infty$,
 $Ee^{i(tX_n + sY_n)} \to Ee^{i(tX + sY)}, \quad t, s \in \mathbb{R}$

Taking s = 0 gives that

$$Ee^{itX_n} \to Ee^{itX}, \quad t \in \mathbb{R}$$

so $X_n \xrightarrow{d} X$, and similarly $Y_n \xrightarrow{d} Y$. For the reverse direction, from $X_n \xrightarrow{d} X$ we get

$$Ee^{itX_n} \to Ee^{itX}, \quad t \in \mathbb{R},$$

and from $Y_n \xrightarrow{d} Y$ we get

$$Ee^{isY_n} \to Ee^{isY}, \quad s \in \mathbb{R}.$$

So by independence we get

$$Ee^{i(tX_n+sY_n)} = Ee^{itX_n}Ee^{isY_n} \to Ee^{itX}Ee^{isY} = Ee^{i(tX+sY)}, \quad t,s \in \mathbb{R},$$

that is, $(X_n, Y_n) \xrightarrow{d} (X, Y).$

3

4. (20 points) Suppose that X_n has a normal distribution with mean $m_n \in (-\infty, \infty)$ and variance $\sigma_n^2 \in [0, \infty)$ for each $n \ge 1$, and $X_n \xrightarrow{d} X$ for some random variable X. Prove that the limit X also has a normal distribution, with mean m and variance σ^2 , where $m = \lim_{n\to\infty} m_n \in (-\infty, \infty)$ and $\sigma^2 = \lim_{n\to\infty} \sigma_n^2 \in [0, \infty)$. (Note that the convergences of m_n and σ_n^2 are not assumed.)

From $X_n \xrightarrow{d} X$ we get that as $n \to \infty$,

$$\varphi_n(t) = Ee^{itX_n} = e^{im_n t - \sigma_n^2 t^2/2} \to \varphi(t) = Ee^{itX}, \quad t \in \mathbb{R}$$

Taking t = 1 gives that $\lim_{n \to \infty} |e^{im_n - \sigma_n^2/2}| = \lim_{n \to \infty} e^{-\sigma_n^2/2} \in [0, 1].$

Note that $\lim_{n\to\infty} e^{-\sigma_n^2/2} = 0$ is equivalent to $\lim_{n\to\infty} \sigma_n^2 = \infty$. In this case clearly $|\varphi_n(t)| \to 0$ when $t \neq 0$ and $|\varphi_n(t)| \to 1$ when t = 0, which contradicts the continuity of φ at t = 0. So $\sigma^2 = \lim_{n\to\infty} \sigma_n^2 \in [0,\infty)$.

Let $Y_n = m_n, n \ge 1$. Then as $n \to \infty$,

$$\phi_n(t) = Ee^{itY_n} = e^{im_n t} = \varphi_n(t)e^{\sigma_n^2 t^2/2} \to \phi(t) = \varphi(t)e^{\sigma^2 t^2/2}, \quad t \in \mathbb{R}.$$

Notice that ϕ is continuous at t = 0. The extended continuity theorem implies that $Y_n \xrightarrow{d} Y$ for some random variable Y. By Skorohod's representation theorem, we can construct the random variables $(Y'_n)_{n\geq 1}$ and Y' on a common probability space, such that $Y'_n \stackrel{d}{=} Y_n, n \geq 1, Y' \stackrel{d}{=}$ Y, and $Y'_n \to Y'$ a.s. Since clearly a.s. $Y'_n = m_n, n \geq 1$, we see that a.s. $m_n \to Y' \in (-\infty, \infty)$, which implies that $m = \lim_{n \to \infty} m_n \in (-\infty, \infty)$.

Finally we get that as $n \to \infty$,

$$\varphi_n(t) = Ee^{itX_n} = e^{im_n t - \sigma_n^2 t^2/2} \to e^{imt - \sigma^2 t^2/2}, \quad t \in \mathbb{R}$$

So $\varphi(t) = Ee^{itX} = e^{imt - \sigma^2 t^2/2}, t \in \mathbb{R}$, which shows that the limit X also has a normal distribution, with mean m and variance σ^2 .

5. (25 points) Suppose that $Y_n \geq 0$ for any $n \geq 1$, and, $EY_n^{\alpha} \to 1$ and $EY_n^{\beta} \to 1$ as $n \to \infty$ for some $0 < \alpha < \beta$. Show that $Y_n \xrightarrow{P} 1$. (Recall that the condition $\sup_{n\geq 1} E|Y_n|^p < \infty$ for some p > 1 implies that the sequence $(Y_n)_{n\geq 1}$ is uniformly integrable. Also recall that for the sequence of nonnegative random variables $(Y_n)_{n\geq 1}$, $Y_n \xrightarrow{d} Y$ for some random variable Y and the uniform integrability of $(Y_n)_{n\geq 1}$ imply that $EY_n \to EY$.)

Clearly we may and do assume that $\sup_{n\geq 1} EY_n^{\alpha} < \infty$ and also $\sup_{n\geq 1} EY_n^{\beta} < \infty$.

First we show that the sequence $(Y_n)_{n\geq 1}$ is tight, which follows from the inequality

$$P(Y_n > r) \le \frac{EY_n^{\alpha}}{r^{\alpha}} \le \frac{\sup_{n \ge 1} EY_n^{\alpha}}{r^{\alpha}}, \quad r > 0.$$

Next we show that the sequence $(Y_n^{\alpha})_{n\geq 1}$ is uniformly integrable, which follows from the inequality

$$\sup_{n\geq 1} E(Y_n^{\alpha})^{\beta/\alpha} = \sup_{n\geq 1} EY_n^{\beta} < \infty.$$

By the tightness of the sequence $(Y_n)_{n\geq 1}$, for any subsequence of \mathbb{N} we can find a further subsequence such that along this further subsequence $Y_n \xrightarrow{d} Y$ for some random variable Y. Clearly $Y_n^{\alpha} \xrightarrow{d} Y^{\alpha}$. Then by the uniform integrability of $(Y_n^{\alpha})_{n\geq 1}$ we get $EY^{\alpha} = 1$.

Notice that $Y_n^{\beta} \xrightarrow{d} Y^{\beta}$ along that further subsequence. By Fatou's lemma we get that along that further subsequence,

$$EY^{\beta} \le \liminf_{n \to \infty} EY^{\beta}_n = 1.$$

However by Jensen's inequality we get

$$EY^{\beta} = E(Y^{\alpha})^{\beta/\alpha} \ge (EY^{\alpha})^{\beta/\alpha} = 1.$$

So $EY^{\beta} = 1$ and in this case the inequality in the last display is an equality. Clearly $f(x) = x^{\beta/\alpha}, x \ge 0$ is a strictly convex function. Recall that Jensen's inequality for a strictly convex function is actually an equality if and only if the involved random variable is not random. So we get $Y^{\alpha} = EY^{\alpha} = 1$ a.s., that is, Y = 1 a.s.

Since for any subsequence of \mathbb{N} we can find a further subsequence such that along this further subsequence $Y_n \xrightarrow{d} 1$, we get $Y_n \xrightarrow{d} 1$ as $n \to \infty$, that is, $Y_n \xrightarrow{P} 1$ as $n \to \infty$. 6. (20 points) Let $N^1 = (N_t^1)_{t\geq 0}$ and $N^2 = (N_t^2)_{t\geq 0}$ be two independent Poisson processes. Recall that for any t > 0, $\Delta N_t^1 = N_t^1 - N_{t-}^1$ is the jump size of the Poisson process N^1 at time t, and similarly $\Delta N_t^2 = N_t^2 - N_{t-}^2$ is the jump size of the Poisson process N^2 at time t. Prove that

$$\sum_{t>0} \Delta N_t^1 \Delta N_t^2 = 0 \quad \text{a.s.};$$

in other words, the two processes almost surely do not jump simultaneously.

We use T_1^1, T_2^1, \ldots to denote the successive jump times of N^1 , and T_1^2, T_2^2, \ldots the successive jump times of N^2 . Then since $\Delta N_t^2 = 1$ when t is equal to one of T_1^2, T_2^2, \ldots , and $\Delta N_t^2 = 0$ otherwise, we get

$$\sum_{t>0} \Delta N_t^1 \Delta N_t^2 = \sum_{n\geq 1} \Delta N_{T_n^2}^1 \Delta N_{T_n^2}^2 = \sum_{n\geq 1} \Delta N_{T_n^2}^1.$$

So it suffices to show that $\Delta N_{T_n^2}^1 = 0$ a.s. for each $n \ge 1$. Then since $\Delta N_t^1 = 1$ when t is equal to one of T_1^1, T_2^1, \ldots , and $\Delta N_t^1 = 0$ otherwise, we only need to show that

$$P(T_m^1 = T_n^2) = 0, \quad m, n \ge 1.$$

This follows from Exercise 2.1.5 in Durrett PTE, once we get the independence between T_m^1 and T_n^2 from $T_m^1 \in \sigma(N^1)$ and $T_n^2 \in \sigma(N^2)$ (also recall that T_m^1 and T_n^2 have density functions). However in our case here it can also be argued more directly as follows:

Use $f_m^1 = f_m^1(x)_{x \in \mathbb{R}}$ to denote the density function of T_m^1 , and $f_n^2 = f_n^2(x)_{x \in \mathbb{R}}$ the density function of T_n^2 . By independence we see that the random vector (T_m^1, T_n^2) has the density function $(f_m^1(x)f_n^2(y))_{x,y \in \mathbb{R}}$, which implies that the distribution of (T_m^1, T_n^2) is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2 . The Lebesgue measure of the Borel set $\{(x, x); x \in \mathbb{R}\}$ in \mathbb{R}^2 is clearly 0, so $P(T_m^1 = T_n^2) = 0$.

7. (10 points) Let X and Y be two i.i.d. random variables in L^1 . Show that a.s.

$$E[X|X+Y] = E[Y|X+Y] = \frac{1}{2}(X+Y).$$

First E[X|X+Y] + E[Y|X+Y] = E[X+Y|X+Y] = X+Y, so we only need to show that E[X|X+Y] = E[Y|X+Y], that is, for any $B \in \mathcal{B}$,

$$E[X; X + Y \in B] = E[Y; X + Y \in B].$$

Since X and Y are i.i.d., we have $(X, Y) \stackrel{d}{=} (Y, X)$. Then notice that $E[X; X + Y \in B] = Ef((X, Y))$ and $E[Y; X + Y \in B] = Ef((Y, X))$ with $f((x, y)) = x\mathbf{1}\{x + y \in B\}$. So $(X, Y) \stackrel{d}{=} (Y, X)$ implies that Ef((X, Y)) = Ef((Y, X)), that is,

$$E[X; X + Y \in B] = E[Y; X + Y \in B].$$

Notice that the following argument is not correct: For any $B \in \mathcal{B}$,

$$E[X; X + Y \in B] = E[Y; X + Y \in B],$$

since $X \stackrel{d}{=} Y$ implies that E[X; A] = E[Y; A] for any $A \in \mathcal{A}$.

Consider X with P(X = 1) = P(X = -1) = 1/2, and Y = -X, then $X \stackrel{d}{=} Y$. But E[X; X = 1] = 1/2 and E[Y; X = 1] = -1/2. 8. (10 points) Let the nonnegative random variables X_1, X_2, \ldots in L^1 and σ -fields $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be such that $E[X_n | \mathcal{F}_n] \xrightarrow{P} 0$. Show that $X_n \xrightarrow{P} 0$.

First recall that $E[X_n | \mathcal{F}_n] \xrightarrow{P} 0$ is equivalent to $E(E[X_n | \mathcal{F}_n] \land 1) \to 0$.

Then apply Jensen's inequality for conditional expectations to the convex function $f(x) = -(x \wedge 1)$ to get

$$-(E[X_n|\mathcal{F}_n] \wedge 1) \le -E[X_n \wedge 1|\mathcal{F}_n],$$

that is, $E[X_n \wedge 1 | \mathcal{F}_n] \leq E[X_n | \mathcal{F}_n] \wedge 1$. This implies that

$$E(X_n \wedge 1) = E(E[X_n \wedge 1 | \mathcal{F}_n]) \le E(E[X_n | \mathcal{F}_n] \wedge 1) \to 0,$$

so $X_n \xrightarrow{P} 0$.

The use of Jensen's inequality can be avoided by using instead the following simple argument:

The inequality $X_n \wedge 1 \leq X_n$ implies that

$$E[X_n \wedge 1 | \mathcal{F}_n] \le E[X_n | \mathcal{F}_n],$$

and the inequality $X_n \wedge 1 \leq 1$ implies that

$$E[X_n \wedge 1 | \mathcal{F}_n] \le 1,$$

 \mathbf{SO}

$$E[X_n \wedge 1 | \mathcal{F}_n] \le E[X_n | \mathcal{F}_n] \wedge 1.$$