Advanced Probability, MATH5007P
Autumn 2020, Final with Solutions

Student ID: Name:

1. (10 points) Let Fi,Fs,... be independent o-fields and for any n > 0 define
T = 0{Fns1, Fni2,...}. Prove that the tail o-field T = () -, 7, is P-trivial, that
is, for any set A € T, P(A) =0 or 1. -

For any n > 1, F1, Fo, ..., Fn, T, are independent, by the grouping
lemma. Then Fi, Fa,...,Fn, T are independent, since 7 C 7,. Then
Fi, Fo, ..., T are independent, by the definition of independence. Then
To and T are independent, again by the grouping lemma. Then 7 and
T are independent, so for any A € T we have P(A) = P(A)P(A), that
is, P(A) =0 or 1.



2. (10 points) Let X3, X, ... be independent random variables with P(X,, = 1) = p,

and P(X, =0) =1 — p,. First show that X, 20 if and only if p, — 0, then show
that X,, — 0 a.s. if and only if 2@1 Prn < 00.

First recall that &, i ¢ if and only if E(|, —&| A1) — 0. So in this

problem we see that X, L5 0 if and only if E(X, A1) =p, = 0.

For the a.s. convergence, note that X, can take only two values: 0
and 1. So X, — 0 a.s. if and only if P(X,, = 1i.0.) = 0. Finally recall
the 2nd Borel-Cantelli lemma, which says that P(X,, = 1 i0.) =0 if

and only if >, P(X,, =1) =) o pn < 00.



3. (15 points) For the two-dimensional random vectors (X,Y) and (X,,,Y,,) for any

n > 1, first show that (X,,Y,) 4 (X,Y) implies that X, 4 X and Y, % Y. Next
assume that X and Y are independent, and X, and Y, are independent for any

n > 1. Then show that X, % X and Y, % Y imply that (X,,Y,)

& (X, Y).

From (X,,,Y},) 4 (X,Y) we get that as n — oo,

Eei(tXn‘FSYn) N Eei(tX+$Y), t, S & R

Taking s = 0 gives that
EelXn 5 B ¢ € R,

so X, 4 x , and similarly Y,, 4y,

For the reverse direction, from X, 9 X we get

Ee'Xn 5 Be™ ¢ e R,

and from Y, LY we get
Ee®'™ — B, seR.

So by independence we get

Eei(tXn+sYn) — FEe ZtXnEGZSYn N EeltXEele Ee i(tX+sY)

that is, (X,,Y,) % (X,Y).

, t,seR,



4. (20 points) Suppose that X, has a normal distribution with mean m,, € (—o0, 00)

and variance o2 € [0, 00) for each n > 1, and X, 4 X for some random variable X.
Prove that the limit X also has a normal distribution, with mean m and variance
o2, where m = lim,_ o, m, € (—00,00) and ¢? = lim, o, 02 € [0,00). (Note that
the convergences of m,, and ¢2 are not assumed.)

From X, 9 X we get that as n — oo,
pu(t) = BeXn = cimi=oifl2 o) = BetX, teR

Taking ¢ = 1 gives that lim,_,e [¢™7%/2| = lim,,_,» e 7+/2 € [0, 1].
Note that lim,,_, e /2 = 0is equivalent to lim,,_, afb = 00. In this

case clearly |, (t)| = 0 when ¢t # 0 and |, (t)| = 1 when ¢ = 0, which

contradicts the continuity of o at t = 0. So % = lim,, o, 02 € [0, 0).
Let Y,, = m,,n > 1. Then as n — oo,

dn(t) = B = ™t = o, (1) 2 5 ¢(t) = p(t)e” U2, teR.

Notice that ¢ is continuous at ¢ = 0. The extended continuity theorem

implies that Y, % Y for some random variable Y. By Skorohod’s

representation theorem, we can construct the random variables (Y),,>1

and Y’ on a common probability space, such that Y, 4 Y,,n>1,Y <

Y, and Y, — Y’ a.s. Since clearly a.s. Y, = m,,n > 1, we see that a.s.
m, — Y € (—00,00), which implies that m = lim,, o, m,, € (—00, 00).
Finally we get that as n — oo,

on(t) = EeitXn = gimat=0ut*/2 _, eimt_gzﬂﬂ, t eR.

So p(t) = Ee™X = ¢m="t"/2 { ¢ R, which shows that the limit X also

has a normal distribution, with mean m and variance 2.



5. (25 points) Suppose that Y;, > 0 for any n > 1, and, EY,* — 1 and EY” — 1

as n — oo for some 0 < a < B. Show that Y, —» 1. (Recall that the condition
sup,,>; B|Y,|[P < oo for some p > 1 implies that the sequence (Y},),>1 is uniformly
integrable. Also recall that for the sequence of nonnegative random variables (Y7,),>1,

Y, %Y for some random variable Y and the uniform integrability of (Y,),>1 imply
that EY, — EY.)

Clearly we may and do assume that sup,.; £Y,* < oo and also
sup,~; BY,’ < cc.

First we show that the sequence (Y,),>1 is tight, which follows from
the inequality
EY™ < SUPn>1 EY ™

l’f'a /’aOé

P(Y,>r) < ., r>0.

Next we show that the sequence (Y,%),>; is uniformly integrable,
which follows from the inequality

sup B(Y*)?/* = sup BY,” < 0.

n>1 n>1
By the tightness of the sequence (Y},),>1, for any subsequence of N we
can find a further subsequence such that along this further subsequence
Y, %Y for some random variable Y. Clearly Y,* 4 Yo, Then by the
uniform integrability of (Y,%),>1 we get EY* = 1.
Notice that Y 4 ys along that further subsequence. By Fatou’s
lemma we get that along that further subsequence,

EY? <liminf EY” = 1.

n—oo

However by Jensen’s inequality we get
EYP = BE(y®Pe > (BYy*)Ple =1,

So EY” = 1 and in this case the inequality in the last display is
an equality. Clearly f(x) = 2P/ x> 0 is a strictly convex function.
Recall that Jensen’s inequality for a strictly convex function is actually
an equality if and only if the involved random variable is not random.
So we get Y = EY* =1 a.s., thatis, Y =1 a.s.

Since for any subsequence of N we can find a further subsequence
such that along this further subsequence Y,, LN 1, we get Y, 91 as

. P
n — oo, that is, ¥,, — 1 as n — oo.

5



6. (20 points) Let N' = (N});>o and N? = (N?);>o be two independent Poisson
processes. Recall that for any ¢t > 0, AN}! = N} — N} is the jump size of the Poisson
process N at time ¢, and similarly AN? = N? — N2 is the jump size of the Poisson
process N? at time t. Prove that

Z AN}AN? =0 as,;
>0

in other words, the two processes almost surely do not jump simultaneously.

We use T, Ty, ... to denote the successive jump times of N!, and
T2, T2, ... the successive jump times of N?. Then since AN? = 1 when
t is equal to one of T2, T%,..., and AN? = 0 otherwise, we get

> AN!AN? =Y ANRANF, =Y " ANp..
>0 n>1 n>1

So it suffices to show that AN:}2 = 0 a.s. for each n > 1. Then since
AN} =1 when t is equal to one of T}, T}, ..., and AN} = 0 otherwise,
we only need to show that

P(T,=T?=0, m,n>1.

This follows from Exercise 2.1.5 in Durrett PTE, once we get the
independence between T and T2 from T}, € o(N') and T? € o(N?)
(also recall that T'! and T have density functions). However in our
case here it can also be argued more directly as follows:

Use f1 = fl(2).er to denote the density function of Tl}, and f2 =
f2(x)zer the density function of T?. By independence we see that
the random vector (T, T) has the density function (f} (2)f2(y))zyer,
which implies that the distribution of (T7}, T?) is absolutely continuous

with respect to the Lebesgue measure on R?. The Lebesgue measure
of the Borel set {(z,z);x € R} in R? is clearly 0, so P(T)}, = T?) = 0.



7. (10 points) Let X and Y be two i.i.d. random variables in L'. Show that a.s.

EFX|IX+Y]=E}Y|X+Y]= %(X+Y).

First E[X|X + Y]+ EY|X+Y]=FEX+Y|X+Y]=X+Y, so
we only need to show that E[X|X +Y] = E[Y|X +Y], that is, for any
B e B,

E[X;X+Y € B|=E[Y;X +Y € B

Since X and Y are i.i.d., we have (X,Y) L (Y, X). Then notice that
EX;X+Y e Bl =FEf((X,Y)) and E[Y; X +Y € B] = Ef((Y, X))
with f((z,y)) = 21{x +y € B}. So (X,Y) £ (Y, X) implies that
Ef((X,Y))=Ef((Y, X)), that is,

E[X;X+Y € B|=E[Y; X +Y € B].

Notice that the following argument is not correct:
For any B € B,

E[X;X+Y €B|=E[Y;X+Y € B|,

since X <Y implies that E[X;A] = E]Y; A] for any A € A.
Consider X with P(X =1) = P(X = —1) =1/2, and Y = —X,
then X 2V, But E[X; X = 1] =1/2 and E[Y; X = 1] = —1/2.



8. (10 points) Let the nonnegative random variables X, X5, ... in L' and o-fields
Fi1,Fa, ... be such that E[X,|F,] = 0. Show that X, - 0.

First recall that E[X,,|F,] L, 0is equivalent to E(E[X,|F.]A1) = 0.
Then apply Jensen’s inequality for conditional expectations to the
convex function f(z) = —(z A 1) to get

_(E[Xn|~’rn] A 1) < _E[Xn N 1‘]:71];
that is, E[X, A 1|F,] < E[X,|F.] A 1. This implies that
BE(X, A1) = B(E[X, A|F]) < E(E[X,|F] A1) — 0,

so X, £> 0.

The use of Jensen’s inequality can be avoided by using instead the
following simple argument:
The inequality X,, A1 < X,, implies that

E[X, N1|F,)] < B[ X,|F,
and the inequality X,, A1 < 1 implies that
E[X, N1|F,] <1,

SO
E[X, AN F,] < E[X,|F.] AL



