
Advanced Probability, MATH5007P
Autumn 2020, Final with Solutions

Student ID: Name:

1. (10 points) Let F1,F2, . . . be independent σ-fields and for any n ≥ 0 define
Tn = σ{Fn+1,Fn+2, . . .}. Prove that the tail σ-field T =

⋂
n≥0 Tn is P -trivial, that

is, for any set A ∈ T , P (A) = 0 or 1.

For any n ≥ 1, F1,F2, . . . ,Fn, Tn are independent, by the grouping
lemma. Then F1,F2, . . . ,Fn, T are independent, since T ⊂ Tn. Then
F1,F2, . . . , T are independent, by the definition of independence. Then
T0 and T are independent, again by the grouping lemma. Then T and
T are independent, so for any A ∈ T we have P (A) = P (A)P (A), that
is, P (A) = 0 or 1.
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2. (10 points) Let X1, X2, . . . be independent random variables with P (Xn = 1) = pn

and P (Xn = 0) = 1− pn. First show that Xn
P−→ 0 if and only if pn → 0, then show

that Xn → 0 a.s. if and only if
∑

n≥1 pn <∞.

First recall that ξn
P−→ ξ if and only if E(|ξn− ξ| ∧ 1)→ 0. So in this

problem we see that Xn
P−→ 0 if and only if E(Xn ∧ 1) = pn → 0.

For the a.s. convergence, note that Xn can take only two values: 0
and 1. So Xn → 0 a.s. if and only if P (Xn = 1 i.o.) = 0. Finally recall
the 2nd Borel-Cantelli lemma, which says that P (Xn = 1 i.o.) = 0 if
and only if

∑
n≥1 P (Xn = 1) =

∑
n≥1 pn <∞.
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3. (15 points) For the two-dimensional random vectors (X, Y ) and (Xn, Yn) for any

n ≥ 1, first show that (Xn, Yn)
d−→ (X, Y ) implies that Xn

d−→ X and Yn
d−→ Y . Next

assume that X and Y are independent, and Xn and Yn are independent for any

n ≥ 1. Then show that Xn
d−→ X and Yn

d−→ Y imply that (Xn, Yn)
d−→ (X, Y ).

From (Xn, Yn)
d−→ (X, Y ) we get that as n→∞,

Eei(tXn+sYn) → Eei(tX+sY ), t, s ∈ R.

Taking s = 0 gives that

EeitXn → EeitX , t ∈ R,

so Xn
d−→ X, and similarly Yn

d−→ Y .

For the reverse direction, from Xn
d−→ X we get

EeitXn → EeitX , t ∈ R,

and from Yn
d−→ Y we get

EeisYn → EeisY , s ∈ R.

So by independence we get

Eei(tXn+sYn) = EeitXnEeisYn → EeitXEeisY = Eei(tX+sY ), t, s ∈ R,

that is, (Xn, Yn)
d−→ (X, Y ).
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4. (20 points) Suppose that Xn has a normal distribution with mean mn ∈ (−∞,∞)

and variance σ2
n ∈ [0,∞) for each n ≥ 1, and Xn

d−→ X for some random variable X.
Prove that the limit X also has a normal distribution, with mean m and variance
σ2, where m = limn→∞mn ∈ (−∞,∞) and σ2 = limn→∞ σ

2
n ∈ [0,∞). (Note that

the convergences of mn and σ2
n are not assumed.)

From Xn
d−→ X we get that as n→∞,

ϕn(t) = EeitXn = eimnt−σ2
nt

2/2 → ϕ(t) = EeitX , t ∈ R.

Taking t = 1 gives that limn→∞ |eimn−σ2
n/2| = limn→∞ e

−σ2
n/2 ∈ [0, 1].

Note that limn→∞ e
−σ2

n/2 = 0 is equivalent to limn→∞ σ
2
n =∞. In this

case clearly |ϕn(t)| → 0 when t 6= 0 and |ϕn(t)| → 1 when t = 0, which
contradicts the continuity of ϕ at t = 0. So σ2 = limn→∞ σ

2
n ∈ [0,∞).

Let Yn = mn, n ≥ 1. Then as n→∞,

φn(t) = EeitYn = eimnt = ϕn(t)e
σ2
nt

2/2 → φ(t) = ϕ(t)eσ
2t2/2, t ∈ R.

Notice that φ is continuous at t = 0. The extended continuity theorem

implies that Yn
d−→ Y for some random variable Y . By Skorohod’s

representation theorem, we can construct the random variables (Y ′n)n≥1

and Y ′ on a common probability space, such that Y ′n
d
= Yn, n ≥ 1, Y ′

d
=

Y , and Y ′n → Y ′ a.s. Since clearly a.s. Y ′n = mn, n ≥ 1, we see that a.s.
mn → Y ′ ∈ (−∞,∞), which implies that m = limn→∞mn ∈ (−∞,∞).

Finally we get that as n→∞,

ϕn(t) = EeitXn = eimnt−σ2
nt

2/2 → eimt−σ
2t2/2, t ∈ R.

So ϕ(t) = EeitX = eimt−σ
2t2/2, t ∈ R, which shows that the limit X also

has a normal distribution, with mean m and variance σ2.
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5. (25 points) Suppose that Yn ≥ 0 for any n ≥ 1, and, EY α
n → 1 and EY β

n → 1

as n → ∞ for some 0 < α < β. Show that Yn
P−→ 1. (Recall that the condition

supn≥1E|Yn|p < ∞ for some p > 1 implies that the sequence (Yn)n≥1 is uniformly
integrable. Also recall that for the sequence of nonnegative random variables (Yn)n≥1,

Yn
d−→ Y for some random variable Y and the uniform integrability of (Yn)n≥1 imply

that EYn → EY .)

Clearly we may and do assume that supn≥1EY
α
n < ∞ and also

supn≥1EY
β
n <∞.

First we show that the sequence (Yn)n≥1 is tight, which follows from
the inequality

P (Yn > r) ≤ EY α
n

rα
≤

supn≥1EY
α
n

rα
, r > 0.

Next we show that the sequence (Y α
n )n≥1 is uniformly integrable,

which follows from the inequality

sup
n≥1

E(Y α
n )β/α = sup

n≥1
EY β

n <∞.

By the tightness of the sequence (Yn)n≥1, for any subsequence of N we
can find a further subsequence such that along this further subsequence

Yn
d−→ Y for some random variable Y . Clearly Y α

n
d−→ Y α. Then by the

uniform integrability of (Y α
n )n≥1 we get EY α = 1.

Notice that Y β
n

d−→ Y β along that further subsequence. By Fatou’s
lemma we get that along that further subsequence,

EY β ≤ lim inf
n→∞

EY β
n = 1.

However by Jensen’s inequality we get

EY β = E(Y α)β/α ≥ (EY α)β/α = 1.

So EY β = 1 and in this case the inequality in the last display is
an equality. Clearly f(x) = xβ/α, x ≥ 0 is a strictly convex function.
Recall that Jensen’s inequality for a strictly convex function is actually
an equality if and only if the involved random variable is not random.
So we get Y α = EY α = 1 a.s., that is, Y = 1 a.s.

Since for any subsequence of N we can find a further subsequence

such that along this further subsequence Yn
d−→ 1, we get Yn

d−→ 1 as

n→∞, that is, Yn
P−→ 1 as n→∞.
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6. (20 points) Let N1 = (N1
t )t≥0 and N2 = (N2

t )t≥0 be two independent Poisson
processes. Recall that for any t > 0, ∆N1

t = N1
t −N1

t− is the jump size of the Poisson
process N1 at time t, and similarly ∆N2

t = N2
t −N2

t− is the jump size of the Poisson
process N2 at time t. Prove that∑

t>0

∆N1
t ∆N2

t = 0 a.s.;

in other words, the two processes almost surely do not jump simultaneously.

We use T 1
1 , T

1
2 , . . . to denote the successive jump times of N 1, and

T 2
1 , T

2
2 , . . . the successive jump times of N 2. Then since ∆N 2

t = 1 when
t is equal to one of T 2

1 , T
2
2 , . . ., and ∆N 2

t = 0 otherwise, we get∑
t>0

∆N 1
t ∆N 2

t =
∑
n≥1

∆N 1
T 2
n
∆N 2

T 2
n

=
∑
n≥1

∆N 1
T 2
n
.

So it suffices to show that ∆N 1
T 2
n

= 0 a.s. for each n ≥ 1. Then since

∆N 1
t = 1 when t is equal to one of T 1

1 , T
1
2 , . . ., and ∆N 1

t = 0 otherwise,
we only need to show that

P (T 1
m = T 2

n) = 0, m, n ≥ 1.

This follows from Exercise 2.1.5 in Durrett PTE, once we get the
independence between T 1

m and T 2
n from T 1

m ∈ σ(N 1) and T 2
n ∈ σ(N 2)

(also recall that T 1
m and T 2

n have density functions). However in our
case here it can also be argued more directly as follows:

Use f 1m = f 1m(x)x∈R to denote the density function of T 1
m, and f 2n =

f 2n(x)x∈R the density function of T 2
n . By independence we see that

the random vector (T 1
m, T

2
n) has the density function (f 1m(x)f 2n(y))x,y∈R,

which implies that the distribution of (T 1
m, T

2
n) is absolutely continuous

with respect to the Lebesgue measure on R2. The Lebesgue measure
of the Borel set {(x, x);x ∈ R} in R2 is clearly 0, so P (T 1

m = T 2
n) = 0.

6



7. (10 points) Let X and Y be two i.i.d. random variables in L1. Show that a.s.

E[X|X + Y ] = E[Y |X + Y ] =
1

2
(X + Y ).

First E[X|X + Y ] + E[Y |X + Y ] = E[X + Y |X + Y ] = X + Y , so
we only need to show that E[X|X+Y ] = E[Y |X+Y ], that is, for any
B ∈ B,

E[X;X + Y ∈ B] = E[Y ;X + Y ∈ B].

Since X and Y are i.i.d., we have (X, Y )
d
= (Y,X). Then notice that

E[X;X + Y ∈ B] = Ef((X, Y )) and E[Y ;X + Y ∈ B] = Ef((Y,X))

with f((x, y)) = x1{x + y ∈ B}. So (X, Y )
d
= (Y,X) implies that

Ef((X, Y )) = Ef((Y,X)), that is,

E[X;X + Y ∈ B] = E[Y ;X + Y ∈ B].

Notice that the following argument is not correct:
For any B ∈ B,

E[X;X + Y ∈ B] = E[Y ;X + Y ∈ B],

since X
d
= Y implies that E[X;A] = E[Y ;A] for any A ∈ A.

Consider X with P (X = 1) = P (X = −1) = 1/2, and Y = −X,

then X
d
= Y . But E[X;X = 1] = 1/2 and E[Y ;X = 1] = −1/2.
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8. (10 points) Let the nonnegative random variables X1, X2, . . . in L1 and σ-fields

F1,F2, . . . be such that E[Xn|Fn]
P−→ 0. Show that Xn

P−→ 0.

First recall that E[Xn|Fn]
P−→ 0 is equivalent to E(E[Xn|Fn]∧1)→ 0.

Then apply Jensen’s inequality for conditional expectations to the
convex function f(x) = −(x ∧ 1) to get

−(E[Xn|Fn] ∧ 1) ≤ −E[Xn ∧ 1|Fn],

that is, E[Xn ∧ 1|Fn] ≤ E[Xn|Fn] ∧ 1. This implies that

E(Xn ∧ 1) = E(E[Xn ∧ 1|Fn]) ≤ E(E[Xn|Fn] ∧ 1)→ 0,

so Xn
P−→ 0.

The use of Jensen’s inequality can be avoided by using instead the
following simple argument:

The inequality Xn ∧ 1 ≤ Xn implies that

E[Xn ∧ 1|Fn] ≤ E[Xn|Fn],

and the inequality Xn ∧ 1 ≤ 1 implies that

E[Xn ∧ 1|Fn] ≤ 1,

so
E[Xn ∧ 1|Fn] ≤ E[Xn|Fn] ∧ 1.
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