Stochastic Processes, MA04243, Spring 2020, Final

Student ID:

Name:

1. (10 points) Let $(X_n)_{n\geq 0}$ be a submartingale with $\sup_{n\geq 0} X_n < \infty$. For any $n\geq 1$, let $\xi_n = X_n - X_{n-1}$ and further suppose that $E(\sup_{n\geq 1}\xi_n^+) < \infty$. Prove that X_n converges a.s.

2. (10 points) Let $X = (X_n)_{n\geq 0}$ be a Markov chain with values in the countable state space S. Define $T_y = \inf\{n > 0 : X_n = y\}$ for any $y \in S$ and $\rho_{xy} = P_x(T_y < \infty)$ for any $x, y \in S$. Use the strong Markov property to prove that $\rho_{xz} \geq \rho_{xy}\rho_{yz}$ for any $x, y, z \in S$.

3. (15 points) Let $(B_t)_{t\geq 0}$ be a real Brownian motion started from 0. Using a proper zero-one law, show that, a.s.,

$$\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = +\infty, \quad \liminf_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty.$$

4. (15 points) Let $(B_t)_{t\geq 0}$ be a real Brownian motion started from x>0. Set

$$T_0 = \inf\{t \ge 0 : B_t = 0\}.$$

Give the law of $\sup_{t < T_0} B_t$.

5. (15 points) Let $X = (X_n)_{n\geq 0}$ be a Markov chain with values in the finite state space $S = (s_1, s_2, \ldots, s_m)$, and define

$$\tau = \inf\{n > 0 : X_n = X_0\}.$$

Suppose that X is irreducible, and $\pi = (\pi(s))_{s \in S}$ is a stationary distribution of X. First show that $\pi(s) > 0$ for any $s \in S$, then compute $E_{\pi}\tau$.

6. (15 points) Let $B = (B_t)_{t\geq 0}$ be a real Brownian motion started from 0. First show that a.s. local maxima exist for the sample paths of B, then show that for any $t \geq 0$, $P(A_t) = 0$, where

 $A_t = \{$ the time t is a time of a local maximum for the sample paths of $B\}.$

(a) Show that $(\exp(i\lambda B_t))_{t>0}$ is a martingale, for any $\lambda \in \mathbb{R}$.

(b) Let T be the first time when $(B_t)_{t\geq 0}$ hits the real axis. Using a proper optional stopping theorem, show that

$$E[\exp(i\lambda B_T)] = \exp(-\lambda).$$

^{7. (20} points) In this problem we interpret \mathbb{R}^2 as the complex plane. Hence a 2-dimensional Brownian motion becomes a complex Brownian motion. A complex-valued stochastic process is called a martingale, if its real and imaginary parts are martingales. Let $(B_t)_{t\geq 0}$ be a complex Brownian motion started in i, the imaginary unit.