Stochastic Processes, MA04243, Spring 2020, Final

Student ID:

Name:

1. (10 points) Let $\left(X_{n}\right)_{n \geq 0}$ be a submartingale with $\sup _{n \geq 0} X_{n}<\infty$. For any $n \geq 1$, let $\xi_{n}=X_{n}-X_{n-1}$ and further suppose that $E\left(\sup _{n \geq 1} \xi_{n}^{+}\right)<\infty$. Prove that X_{n} converges a.s.
2. (10 points) Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with values in the countable state space S. Define $T_{y}=\inf \left\{n>0: X_{n}=y\right\}$ for any $y \in S$ and $\rho_{x y}=P_{x}\left(T_{y}<\infty\right)$ for any $x, y \in S$. Use the strong Markov property to prove that $\rho_{x z} \geq \rho_{x y} \rho_{y z}$ for any $x, y, z \in S$.
3. (15 points) Let $\left(B_{t}\right)_{t \geq 0}$ be a real Brownian motion started from 0. Using a proper zero-one law, show that, a.s.,

$$
\limsup _{t \downarrow 0} \frac{B_{t}}{\sqrt{t}}=+\infty, \quad \liminf _{t \downarrow 0} \frac{B_{t}}{\sqrt{t}}=-\infty
$$

4. (15 points) Let $\left(B_{t}\right)_{t \geq 0}$ be a real Brownian motion started from $x>0$. Set

$$
T_{0}=\inf \left\{t \geq 0: B_{t}=0\right\}
$$

Give the law of $\sup _{t \leq T_{0}} B_{t}$.
5. (15 points) Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with values in the finite state space $S=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$, and define

$$
\tau=\inf \left\{n>0: X_{n}=X_{0}\right\}
$$

Suppose that X is irreducible, and $\pi=(\pi(s))_{s \in S}$ is a stationary distribution of X. First show that $\pi(s)>0$ for any $s \in S$, then compute $E_{\pi} \tau$.
6. (15 points) Let $B=\left(B_{t}\right)_{t \geq 0}$ be a real Brownian motion started from 0. First show that a.s. local maxima exist for the sample paths of B, then show that for any $t \geq 0$, $P\left(A_{t}\right)=0$, where

$$
A_{t}=\{\text { the time } t \text { is a time of a local maximum for the sample paths of } B\} .
$$

7. (20 points) In this problem we interpret \mathbb{R}^{2} as the complex plane. Hence a 2-dimensional Brownian motion becomes a complex Brownian motion. A complexvalued stochastic process is called a martingale, if its real and imaginary parts are martingales. Let $\left(B_{t}\right)_{t \geq 0}$ be a complex Brownian motion started in i, the imaginary unit.
(a) Show that $\left(\exp \left(i \lambda B_{t}\right)\right)_{t \geq 0}$ is a martingale, for any $\lambda \in \mathbb{R}$.
(b) Let T be the first time when $\left(B_{t}\right)_{t \geq 0}$ hits the real axis. Using a proper optional stopping theorem, show that

$$
E\left[\exp \left(i \lambda B_{T}\right)\right]=\exp (-\lambda)
$$

