Final exam of Advanced Algebraic Geometry MA5130 2020 Spring, USTC Instructor: Mao Sheng

In this exam, K denotes for a field with a nontrivial non-Archimedean absolute value $|\cdot|: K \to \mathbb{R}$. We always assume that K is complete with respect to the valuation. Let \bar{K} be an algebraic closure of K and \hat{K} be its completion. Denote again by $|\cdot|$ the unique extensions of the norm on K to \bar{K} and \hat{K} . In this exam, we assume $\operatorname{Char}(K) = 0$. Try to answer the questions as many as you can.

- 1. For an $f \in K[\zeta]$, denote |f| for its Gauss norm.
 - (i) Let $f = \zeta^n + c_1 \zeta^{n-1} + \dots + c_n$ be a monic polynomial, and $\alpha \in \overline{K}$ a root of f. Prove that

$$|\alpha| \le \sigma(f),$$

where $\sigma(f)$ is the spectral value of f.

(ii) Let $f, g \in K[\zeta]$ be monic polynomials of the same degree $n \ge 1$. Let α be a root of f. Prove the following inequality:

$$|g(\alpha)| \le |f - g| \cdot |f|^{n-1}$$

(iii) Let $f, g \in K[\zeta]$ be monic polynomials of the same degree $n \ge 1$. Then for each root α of f, there exists a root β of g such that

$$|\alpha - \beta| \le \sqrt[n]{|f - g|} \cdot |f|.$$

(iv) For an $\alpha \in \overline{K}$ whose minimal polynomial f is of degree ≥ 2 , we define $r(\alpha) = \min_{\gamma} |\alpha - \gamma|$, where γ runs over all roots $\neq \alpha$ of f. Prove that for any $\beta \in \overline{K}$ satisfying $|\beta - \alpha| < r(\alpha)$, it holds that

$$\alpha \in K(\beta).$$

(v) Consider an $\alpha \in \overline{K}$ whose minimal polynomial f is of degree $n \geq 2$. Prove that for any monic $g \in K[\zeta]$ of degree n satisfying $|f - g| < (|f|^{-1}r(\alpha))^n$, there exists a root β of g such that

$$K(\beta) = K(\alpha).$$

- (vi) Let $f \in K[\zeta]$ be an irreducible monic polynomial of degree $n \ge 2$. Prove that any monic polynomial $g \in K[\zeta]$ of degree n which is sufficiently close to f is also irreducible.
- 2. Consider the Tate algebra of *n*-variables $T_n = K\langle \zeta_1, \cdots, \zeta_n \rangle$.
 - (i) Let $g \in T_n$. Prove that g is a unit if and only if it is ζ_n -distinguished of order zero.
 - (ii) Let $g \in T_{n-1}[\zeta_n] \subset T_n$. Prove that g is prime in $T_{n-1}[\zeta_n]$ if and only if it is prime in T_n .
- 3. Let A, B be two affinoid K-algebras.
 - (i) Prove that if $f \in A$ is non-nilpotent, then $|f|_{sup}$, the sup-norm of f, is nonzero.
 - (ii) Let φ : A → B be a morphism of affinoid K-algebras. Prove that φ maps power-bounded (resp. topologically nilpotent) elements of A to power-bounded (resp. topologically nilpotent) elements of B.
 - (iii) Prove that there exist residues norms $|\cdot|_{\alpha}$ on A and $|\cdot|_{\beta}$ on B such that ϕ is contractive, that is,

$$|\phi(x)|_{\beta} \le |x|_{\alpha}, \quad \forall x \in A.$$

- 4. Let $X = \text{Sp } \hat{\mathbb{Q}}_p \langle \zeta \rangle$ be the associated affinoid K-space to the Tate algebra of one-variable. Answer the following questions and justify your answers.
 - (i) Is any Zariski open subset of X canonical open?
 - (ii) Is any Zariski open subset of X an affinoid subdomain?
 - (iii) Is the intersection of finitely many affinoid subdomains an affinoid subdomain?
 - (iv)* Is the union of finitely many affinoid subdomains an affinoid subdomain?

- (v) Is any Zariski open subset of X admissible open?
- (vi) Is any canonical open subset of X admissible open?
- (vii) Is any finite union of affinoid subdomains of X admissible open?
- 5. Let X = Sp A be an affinoid K-space. Let $X(\frac{f}{g}) \subset X$ be a rational domain, where $\frac{f}{g} = (\frac{f_1}{g}, \dots, \frac{f_n}{g})$. Then there exists a Laurent domain $X' \subset X$ such that $X(\frac{f}{g}) \subset X' \subset X$ and $X(\frac{f}{g}) \subset X'$ is a Weierstrass domain.
- 6. Let X be a rigid K-space. We call X connected if there do not exist non-empty admissible open subsets $X_1, X_2 \subset X$ such that $X_1 \cap X_2 = \emptyset$ and (X_1, X_2) is an admissible covering of X.
 - (i) Prove that an affinoid K-space X is connected if and only if A cannot be written as a non-trivial cartesian product of two K-algebras, that is, $A \ncong A_1 \times A_2$ where $A_i, i = 1, 2$ are two K-algebras.
 - (ii) Prove that Sp $\hat{\mathbb{Q}}_p \langle \zeta \rangle$ is totally disconnected in canonical topology while connected as rigid K-space.
- 7. Let $X = \mathbb{P}_{K}^{1,rig}$ be the rigid projective line over K.
 - (i) Prove that $\mathcal{O}_X(X) = K$ and hence X is connected as rigid K-space.
 - (ii)* Prove that the automorphism group of X (as rigid K-space) is isomorphic to $PGL_2(K)$, the projective linear group of K^2 .