RIEMANNIAN GEOMETRY (SPRING, 2020)
 FINAL EXAM

Name:
No.:
Department:

1. (20 marks) Let S^{n} be the unit sphere with the canonical round sphere metric. (You can give the answers without explanation.)
(i) Let $p \in S^{n}$ be a point. What is the cut locus of p ?
(ii) Let $\gamma:[0, \pi+2.5] \rightarrow S^{n}$ be a normal geodesic. What is the index of γ ?
(iii) What is the first non-zero eigenvalue of the Beltrami-Laplace operator on S^{n} ?
(iv) What is the injectivity radius of S^{n} ?
2. (20 marks)
(i) Consider the differential manifold $S^{1} \times S^{2}$. Decide whether there exists a Riemannian metric on it with Ricci curvature everywhere positive. Explain the reason of your judgement.
(ii) Consider the differential manifold $R P^{n} \times R P^{n}$. Decide whether there exists a Riemannian metric on it with sectional curvature everywhere positive. Explain the reason of your judgement.
3. (15 marks) Let (M, g) be a Riemannian manifold. Let ∇ be the Levi-Civita connection of the metric g.
(i) For $X, Y, Z \in \Gamma(T M)$, compute

$$
\nabla^{2} Z(Y, X)-\nabla^{2} Z(X, Y)
$$

Here we use ∇^{2}. for the second order covariant differentiation.
(ii) Use Ricci Identity to prove the Bochner formula: For any $f \in C^{\infty}(M)$, it holds that

$$
\frac{1}{2} \Delta|\operatorname{grad} f|^{2}-\langle\operatorname{grad}(\Delta f), \operatorname{grad} f\rangle=|\operatorname{Hess} f|^{2}+\operatorname{Ric}(\operatorname{grad} f, \operatorname{grad} f)
$$

[^0]4 (15 marks)
Let $f: M \rightarrow M$ be an isometry of a compact orientable Riemaniann manifold (M, g) with dimension n. Suppose n is odd and f reverses the orientation of M. Assume that there exists $p \in M$ such that

$$
d(p, f(p))=\inf _{q \in M} d(q, f(q)), \text { and } d(p, f(p)) \neq 0
$$

Let $\gamma:[0, \ell] \rightarrow M$ be a normal minimizing geodesic from $\gamma(0)=p$ to $\gamma(\ell)=f(p)$.
(i) Let $\bar{\gamma}:[0,2 \ell] \rightarrow M$ be a curve given by

$$
\bar{\gamma}(t)= \begin{cases}\gamma(t), & t \in[0, \ell] \\ f(\gamma(t-\ell)), & t \in[\ell, 2 \ell]\end{cases}
$$

Show that $\bar{\gamma}$ is a smooth curve.
(ii) Show that there exists a nontrivial parallel normal vector field $V(t), t \in$ $[0, \ell]$ along γ satisfying

$$
V(\ell)=d f_{p}(V(0))
$$

5 (30 marks)

Let $\left(M^{n}, g\right)$ be an n dimensional complete Riemannian manifold with Ric ≥ 0. Given $p \in M$, let $\gamma:[0, b] \rightarrow M$ be a normal geodesic with no cut point of $\gamma(0)=p$. Let $J_{1}, J_{2}, \ldots, J_{n-1}$ be Jacobi fields along γ satisfying

$$
\begin{aligned}
& J_{i}(0)=0, \quad i=1,2, \ldots, n-1 \\
& \left\langle J_{i}(b), J_{j}(b)\right\rangle=\delta_{i j}, \quad i, j=1,2, \ldots, n-1 \\
& \left\langle J_{i}(b), T(b)\right\rangle=0, \quad i=1,2, \ldots, n-1, \text { where } T(t):=\dot{\gamma}(t) .
\end{aligned}
$$

(i) Show that for any $i=1,2, \ldots, n-1$ and for any $t \in(0, b]$, we have

$$
J_{i}(t)=\left(d \exp _{p}\right)_{(t T(0))}\left(t \nabla_{T} J_{i}(0)\right)
$$

(ii) Let $\rho(x):=d(x, p)$. Show that

$$
\Delta \rho(\gamma(b))=\sum_{i=1}^{n-1}\left\langle\nabla_{T} J_{i}(b), J_{i}(b)\right\rangle
$$

(You can use the variational formulae for length functional without proof.)
(iii) Define

$$
\psi(t):=\frac{\left|J_{1}(t) \wedge \cdots \wedge J_{n-1}(t)\right|}{t^{n-1}\left|\nabla_{T} J_{1}(0) \wedge \cdots \wedge \nabla_{T} J_{n-1}(0)\right|}, \quad t \in(0, b] .
$$

Show that

$$
\frac{d}{d t}_{\mid t=b} \psi^{2}(t) \leq 0
$$

(Hint: Use Laplacian comparison theorem.)
(iv) Recall that there exists a function $\varphi: E(p) \subset T_{p} M \rightarrow \mathbb{R}$, such that,

$$
\operatorname{Vol}\left(B_{p}(r)\right)=\int_{E(p) \cap B(0, r)} \varphi d \operatorname{vol}_{T_{p} M}, \forall r>0
$$

where $d \mathrm{vol}_{T_{p} M}$ is the Euclidean volume measure on $T_{p} M, B(0, r)$ is the ball of radius r centered at the origin in $T_{p} M$, and $B_{p}(r)$ is the ball of radius r centered at p in M.

Use (iii) to show that

$$
\operatorname{Vol}\left(B_{p}(r)\right) \leq \omega_{n} r^{n}
$$

where ω_{n} is the volume of unit ball in \mathbb{R}^{n}. (You are NOT allowed to apply Bishop-Gromov Theorem directly.)

[^0]: Date: 2020.07.12.

