微分方程II（H）－期中测验

2020年4月16日，周四，9：45－12：00

注意事项：

1．请完成不少于五个题，成绩为得分最高的五个题的分数加和；
2．开卷考试，可查阅课本和上课讲义，但请独立完成答题；
3．请给出详细计算和证明过程。
4．请在中午12：00 前上传解答到 Bb 平台作业区－期中测验（和平时提交作业方式一样）；

试卷正文：

1．［20 分］
（a）Let $\Omega=B\left(0, \frac{1}{2}\right)=\left\{x \in \mathbb{R}^{n}:|x|<1 / 2\right\}$ be a ball of radius $1 / 2$ in \mathbb{R}^{n} ． Consider the function $u(x)=\log |\log | x| |$ ．Such a function is smooth in the domain $\Omega \backslash\{0\}$ but approaches ∞ as $|x|$ goes to zero．Whether $u(x)$ belongs to some Sobolev space $W^{1, p}(\Omega)$ ？If so，for which values of p does $u(x)$ belong to Sobolev space $W^{1, p}(\Omega)$ ？
（b）Let $\Omega=\left\{0<x<1,0<y<x^{4}\right\}$ ．Show that the function $u(x, y)=1 / x$ belongs to $H^{1}(\Omega)$ ，but does not belong to $L^{5}(\Omega)$ ．Is this consistent with the Sobolev embedding theorem？

2．［20 分］Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set．Prove the following properties of Sobolev spaces．
（a）Let $u \in W^{1, p}(\Omega)$ and $v \in W_{0}^{1, q}(\Omega)$ ，where $1<p, q<\infty$ satisfies $\frac{1}{p}+\frac{1}{q}=1$ ． Then

$$
\int_{\Omega} D^{\alpha} u v d x=-\int_{\Omega} u D^{\alpha} v d x, \quad|\alpha|=1
$$

（b）Assume $u \in W_{0}^{1, p}(\Omega), 1 \leq p<\infty$ ．Let \bar{u} be the zero extension of u to $\mathbb{R}^{n} \backslash \Omega$ i．e．，we define

$$
\bar{u}(x):= \begin{cases}u(x), & x \in \Omega \\ 0, & x \in \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Show that $\bar{u} \in W_{0}^{1, p}(\tilde{\Omega})$ for any open set $\tilde{\Omega}$ satisfying $\Omega \subset \subset \tilde{\Omega}$ ．
（c）Given two nonnegative functions $u, v \in W^{1, p}(\Omega)$ ，we define $\omega(x)=\min \{u(x), v(x)\}$ for $x \in \Omega$ ．Then $\omega \in W^{1, p}(\Omega)$ ．

3．［20 分］Let $B=B(0,1)$ be an open unit ball centered at the origin，and denote $B^{+}=B \cap\left\{x_{n}>0\right\}$ and $B^{-}=B \cap\left\{x_{n}<0\right\}$ ．Given $u \in W^{1, p}\left(B^{+}\right), 1 \leq p \leq \infty$, we consider the reflection of u across the plane $\left\{x_{n}=0\right\}$ ，i．e．，we set

$$
\bar{u}(x):= \begin{cases}u(x), & x \in B^{+} \\ u\left(x_{1}, \cdots, x_{n-1},-x_{n}\right), & x \in B^{-}\end{cases}
$$

Show that $\bar{u} \in W^{1, p}(B)$ and

$$
\|\bar{u}\|_{W^{1, p}(B)} \leq 2\|u\|_{W^{1, p}\left(B^{+}\right)}
$$

（Hint：write down the weak derivatives of \bar{u} ；you may need to use a cut－off func－ tion．）

4．［20 分］Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with a C^{1} boundary．
（a）Show that $H^{2}(\Omega) \subset \subset H^{1}(\Omega)$（Hint：use the fact $\left.H^{1}(\Omega) \subset \subset L^{2}(\Omega)\right)$ ．
（b）For any $\varepsilon>0$ ，prove that there exists a constant $C_{\varepsilon}>0$ such that

$$
\|D u\|_{L^{2}(\Omega)} \leq \varepsilon\|u\|_{H^{2}(\Omega)}+C_{\varepsilon}\|u\|_{L^{2}(\Omega)}
$$

holds for all $u \in H^{2}(\Omega)$ ，by a contradiction argument based on the compact embedding in item（a）．

5．［20 分］Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with C^{1} boundary $\partial \Omega$ ．Assume that $a^{i j}, b^{i}, c \in L^{\infty}(\Omega)$ and

$$
a^{i j}=a^{j i} \quad(i, j=1, \cdots, n), \quad\left(a^{i j}(x)\right) \geq \theta \mathrm{I}>0 \text { a.e. } x \in \Omega .
$$

Let L denote a second－order elliptic partial differential operator of divergence form

$$
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u
$$

Suppose that the uniqueness of weak solution to the following Dirichlet boundary value problem

$$
\left\{\begin{array}{rll}
L u= & f & \text { in } \Omega \tag{1}\\
u= & g & \text { on } \partial \Omega
\end{array}\right.
$$

holds for each $f \in H^{-1}(\Omega)$ and $g \in H^{1}(\Omega)$ ．Show that there exists a constant $C>0$ such that the unique weak solution $u \in H^{1}(\Omega)$ of（1）satisfies

$$
\|u\|_{H^{1}(\Omega)} \leq C\left(\|f\|_{H^{-1}(\Omega)}+\|g\|_{H^{1}(\Omega)}\right)
$$

6. [20 分] Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set. Assume that $a^{i j}, b^{i}, c \in L^{\infty}(\Omega)$ and

$$
a^{i j}=a^{j i} \quad(i, j=1, \cdots, n), \quad\left(a^{i j}(x)\right) \geq \theta \mathrm{I}>0 \text { a.e. } x \in \Omega
$$

Let L denote a second-order elliptic partial differential operator of divergence form

$$
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u
$$

Prove that either (α) for each $f \in H^{-1}(\Omega)$ there exists a unique weak solution of

$$
\left\{\begin{aligned}
L u= & f \text { in } \Omega \\
u= & 0
\end{aligned} \text { on } \partial \Omega,\right.
$$

or else (β) there exists a nonzero weak solution of

$$
\left\{\begin{array}{rll}
L u=0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

