微分方程II(H) - 期中测验

2020年4月16日,周四,9:45-12:00

注意事项:

- 1. 请完成不少于五个题, 成绩为得分最高的五个题的分数加和;
- 2. 开卷考试, 可查阅课本和上课讲义, 但请独立完成答题;
- 3. 请给出详细计算和证明过程。
- 请在中午12:00 前上传解答到Bb平台作业区-期中测验(和平时提交作业方式一样);

试卷正文:

- 1. [20 分]
 - (a) Let $\Omega = B(0, \frac{1}{2}) = \{x \in \mathbb{R}^n : |x| < 1/2\}$ be a ball of radius 1/2 in \mathbb{R}^n . Consider the function $u(x) = \log |\log |x||$. Such a function is smooth in the domain $\Omega \setminus \{0\}$ but approaches ∞ as |x| goes to zero. Whether u(x) belongs to some Sobolev space $W^{1,p}(\Omega)$? If so, for which values of p does u(x) belong to Sobolev space $W^{1,p}(\Omega)$?
 - (b) Let $\Omega = \{0 < x < 1, 0 < y < x^4\}$. Show that the function u(x, y) = 1/x belongs to $H^1(\Omega)$, but does not belong to $L^5(\Omega)$. Is this consistent with the Sobolev embedding theorem?
- 2. $[20 \, \mathcal{H}]$ Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. Prove the following properties of Sobolev spaces.
 - (a) Let $u \in W^{1,p}(\Omega)$ and $v \in W^{1,q}_0(\Omega)$, where $1 < p, q < \infty$ satisfies $\frac{1}{p} + \frac{1}{q} = 1$. Then $\int_{\Omega} D^{\alpha} uv dx = -\int_{\Omega} u D^{\alpha} v dx, \qquad |\alpha| = 1.$
 - (b) Assume $u \in W_0^{1,p}(\Omega)$, $1 \le p < \infty$. Let \bar{u} be the zero extension of u to $\mathbb{R}^n \setminus \Omega$ i.e., we define

$$\bar{u}(x) := \begin{cases} u(x), & x \in \Omega\\ 0, & x \in \mathbb{R}^n \setminus \Omega \end{cases}$$

Show that $\bar{u} \in W_0^{1,p}(\tilde{\Omega})$ for any open set $\tilde{\Omega}$ satisfying $\Omega \subset \subset \tilde{\Omega}$.

(c) Given two nonnegative functions $u, v \in W^{1,p}(\Omega)$, we define $\omega(x) = \min\{u(x), v(x)\}$ for $x \in \Omega$. Then $\omega \in W^{1,p}(\Omega)$.

3. $[20 \, \cancel{m}]$ Let B = B(0,1) be an open unit ball centered at the origin, and denote $B^+ = B \cap \{x_n > 0\}$ and $B^- = B \cap \{x_n < 0\}$. Given $u \in W^{1,p}(B^+)$, $1 \le p \le \infty$, we consider the reflection of u across the plane $\{x_n = 0\}$, i.e., we set

$$\bar{u}(x) := \begin{cases} u(x), & x \in B^+ \\ u(x_1, \cdots, x_{n-1}, -x_n), & x \in B^- \end{cases}$$

Show that $\bar{u} \in W^{1,p}(B)$ and

$$\|\bar{u}\|_{W^{1,p}(B)} \le 2\|u\|_{W^{1,p}(B^+)}.$$

(Hint: write down the weak derivatives of \bar{u} ; you may need to use a cut-off function.)

- 4. $[20 \, \mathcal{B}]$ Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with a C^1 boundary.
 - (a) Show that $H^2(\Omega) \subset H^1(\Omega)$ (Hint: use the fact $H^1(\Omega) \subset L^2(\Omega)$).
 - (b) For any $\varepsilon > 0$, prove that there exists a constant $C_{\varepsilon} > 0$ such that

$$\|Du\|_{L^2(\Omega)} \le \varepsilon \|u\|_{H^2(\Omega)} + C_\varepsilon \|u\|_{L^2(\Omega)}$$

holds for all $u \in H^2(\Omega)$, by a contradiction argument based on the compact embedding in item (a).

5. $[20 \ \mathcal{H}]$ Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with C^1 boundary $\partial \Omega$. Assume that $a^{ij}, b^i, c \in L^{\infty}(\Omega)$ and

$$a^{ij} = a^{ji}$$
 $(i, j = 1, \cdots, n),$ $(a^{ij}(x)) \ge \theta \mathbf{I} > 0$ a.e. $x \in \Omega$.

Let L denote a second-order elliptic partial differential operator of divergence form

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u.$$

Suppose that the uniqueness of weak solution to the following Dirichlet boundary value problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$
(1)

holds for each $f \in H^{-1}(\Omega)$ and $g \in H^1(\Omega)$. Show that there exists a constant C > 0 such that the unique weak solution $u \in H^1(\Omega)$ of (1) satisfies

$$||u||_{H^1(\Omega)} \le C \left(||f||_{H^{-1}(\Omega)} + ||g||_{H^1(\Omega)} \right).$$

6. $[20 \, \mathcal{F}]$ Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. Assume that $a^{ij}, b^i, c \in L^{\infty}(\Omega)$ and

$$a^{ij} = a^{ji}$$
 $(i, j = 1, \cdots, n),$ $(a^{ij}(x)) \ge \theta I > 0$ a.e. $x \in \Omega$.

Let L denote a second-order elliptic partial differential operator of divergence form

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u.$$

Prove that either (α) for each $f \in H^{-1}(\Omega)$ there exists a unique weak solution of

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

or else (β) there exists a nonzero weak solution of

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$