2020年秋季学期 代数几何引论 期中考试
 Take－home exam，11月20－25日
 授课教师：张磊
 整理：顾振邦

Let k be an algebraically closed field．Please answer the following questions independently．

1．Let $P_{1}, P_{2}, \cdots, P_{n} \in \mathbb{P}_{k}^{2}$ and $[X, Y, Z]$ be the homogeneous coordinate of \mathbb{P}_{k}^{2} ． Prove that
（1）there exists a projective transform T such that $P_{1}^{T}, P_{2}^{T}, \cdots, P_{n}^{T} \subset\{Z \neq 0\}$ ；
（2）for a given curve C there exists a projective transform T such that none of $P_{1}^{T}, P_{2}^{T}, \cdots, P_{n}^{T}$ lies on C ．

2．Let $P=(0,0) \in \mathbb{A}^{2}$ and $F=3 x^{2}+y^{3}, G=x+x y+y^{4}, H=x y+y^{2}$ ．
（1）Compute $I_{P}(F \cap G)$ ；
（2）P is a simple point of G and write out a uniformizer；
（3）whether H satisfies Noether＇s condition for F and G at P ．
3．Let $P=(0,0) \in \mathbb{A}^{2}$ and $I=(x, y)_{P}$ ．Let $f, g \in k[x, y]$ be two elements prime to each other．Write that $f=f_{m_{1}}+f_{>m_{1}}$ and $g=g_{m_{2}}+g_{>m_{2}}$ where $f_{m_{1}}, g_{m_{2}}$ are the homogeneous part of minimal degree of f, g respectively．Show that
（1）there exists a number n such that $I^{n} \subseteq(f, g)_{P}$ ；
（2）if $I^{n} \subseteq\left(f_{m_{1}}, g_{m_{2}}\right)_{P}$ then $I^{n} \subseteq(f, g)_{P}$ ．
4．Let $C \subset \mathbb{P}^{2}$ be the cubic curve defined by $X^{3}+Y^{3}=Z^{3}($ char $k \neq 3)$ ．
（1）Show that C is nonsingular；
（2）for a fixed point $P \in C$ ，write out the equation of the tangent line L_{P} ；
（3）find all possible point $P \in C$ such that $I_{P}\left(L_{P} \cap C\right)=3$ ．
5．Assume char $k=0$ ．Show that
（1）a projective plane curve $F(X, Y, Z)=0$ is non－singular if and only if，for sufficiently large N the ideal $\left(F, F_{X}, F_{Y}, F_{Z}\right)$ contains X^{N}, Y^{N}, Z^{N} ；
（2）for any $d>0$ ，there exists a nonsingular projective plane curve of degree d ；
（3）the set of singular plane curves of degree $d=2$ is a proper closed subset of the linear system $V(d) \cong \mathbb{P}^{5}$ ．

