Stochastic Processes, MA04243, Spring 2019, Final

 Typesetting:
 Feng Shao
 fshao99@gmail.com

 Student ID:
 Name:

1. Let p be a transition probability on a countable state space S. For the Markov chain $X = (X_n)_{n \ge 0}$ with transition probability p, and $A \subset S$, define

$$V_A = \inf\{n \ge 0 : X_n \in A\}.$$

Also define $f(x) = E_x V_A$ for $x \in S$. Clearly f(x) = 0 for every $x \in A$. Now, first show that

$$f(x) = 1 + \sum_{y} p(x,y)f(y), \quad x \in A^c;$$

then for any bounded function g on S satisfying

$$g(x)=1+\sum_y p(x,y)g(y), \ x\in A^c,$$

show that $g(X_{n \wedge V_A}) + n \wedge V_A$ is a martingale.

2. Let $(B_t)_{t\geq 0}$ be a real Brownian motion started from 0 and for every $a\geq 0$ set

$$T_a = \inf\{t \ge 0 : B_t = a\}.$$

Show that the process $(T_a)_{a\geq 0}$ has stationary independent increments.

3. Let $(B_t)_{t\geq 0}$ be a real Brownian motion started from 0 and for every $a\geq 0$ set

$$T_a = \inf\{t \ge 0 : B_t = a\}.$$

Show that the process $(T_a)_{a\geq 0}$ has the following scaling property: For every $\lambda > 0, (T_{\lambda a})_{a\geq 0} \stackrel{d}{=} (\lambda^2 T_a)_{a\geq 0}$.

4. Let $B_t = (B_t^1, B_t^2, \dots, B_t^d)$ be a *d*-dimensional Brownian motion started from 0. Use |x| to denote the Euclidean distance between the two points x and 0 in \mathbb{R}^d and for every a > 0 set

$$U_a = \inf\{t \ge 0 : |B_t| = a\}.$$

Compute $E[U_a]$.

5. Let $(B_t)_{t\geq 0}$ be an (\mathscr{F}_t) -Brownian motion started from 0, and for a > 0 set

$$\sigma_a = \inf\{t \ge 0 : B_t \le t - a\}.$$

Assume that you have already shown that σ_a is a stopping time and that $\sigma < \infty$ a.s. Now using an appropriate exponential martingale, show that, for every $\lambda \ge 0$,

$$E[\exp(-\lambda\sigma_a)] = \exp(-a(\sqrt{1+2\lambda-1})).$$