2018年秋季学期 微分流形期末考试 2018 Fall Final Exam：Differential Manifolds

整理人：章俊彦 zhangjy9610＠gmail．com
2019年1月11日 15：00－17：00 主讲教师：王作勤（Zuoqin Wang）

Problem 1 （ 20 points， 4 points each）

Write down the definitions of the following conceptions．
（1）A topological manifold is a topological space M such that ．．．
（2）A partition of unity subordinate to a locally finite covering $\left\{U_{i}\right\}$ of M is a family of smooth functions $\left\{\rho_{i}\right\}$ such that ．．．
（3）An immersion $f: M \rightarrow N$ is a smooth map such that \ldots
（4）A Lie group is a smooth manifold G such that ．．．
（5）An integral curve of a smooth vector field X is a map $\gamma: I \rightarrow M$ such that \ldots
（6）A vector bundle of rank r is a triple $\{\pi, E, M\}$ where $\pi: E \rightarrow M$ is a smooth surjective map such that ．．．

Problem 2 （20 points， 2 points each）

TRUE or FALSE．
（ ）If $f: M \rightarrow N$ is a smooth map，and Z is a smooth submanifold of N ，then $f^{-1}(Z)$ is a smooth submanifold of M ；
（ ） \mathbb{T}^{2} can be embedded into \mathbb{R}^{3} ；
（ ）There exists a smooth vector field X on $S^{2 n+1}$ so that $X_{p} \neq 0, \forall p \in S^{2 n+1}$ ；
（ ）The exponential map $\exp : \mathfrak{g} \rightarrow G$ is always surjective；
（ ）Any compact smooth manifold is orientable；
（ ）For any smooth vector field X and any smooth k－form ω ，one has $d \mathcal{L}_{X} \omega=\mathcal{L}_{X} d \omega$ ；
（ ）If $w \in B^{k}(M)$ is compactly supported，then $w \in B_{c}^{k}(M)$ ；
（ ）S^{2} is a Lie Group；
（ ）For any integer k ，one can find a smooth map $f: S^{1} \rightarrow S^{1}$ whose degree equals k ；
（ ）The Euler characteristic of $\mathbb{T}^{5} \times S^{6}$ is 0 ；
（ ）If M, N are compact，then $H_{d R}^{k}(M \times N)=H_{d R}^{k}(M) \times H_{d R}^{k}(N)$ ．

Problem 3 (15 points, 3 points each) Write down the inclusion relation:
(1) \qquad \subset \qquad \subset \qquad
$\mathrm{A}=\{$ smooth manifolds $\}, \mathrm{B}=\{$ Lie Groups $\}, \mathrm{C}=\{$ orientable manifolds $\}$;
(2) \qquad \subset \qquad \subset \qquad
$\mathrm{A}=\{$ tensor fields on $M\}, \quad \mathrm{B}=\{$ differential forms on $M\}, \mathrm{C}=\{$ volume forms on $M\} ;$
(3) \qquad \subset \qquad C \qquad
$\mathrm{A}=\{f: M \rightarrow N$ is a submersion $\}, \mathrm{B}=\{f: M \rightarrow N$ is a smooth map $\}, \mathrm{C}=\{f: M \rightarrow N$ is a local diffeomorphism $\}$;
(4) \qquad \subset \qquad \subset
$\mathrm{A}=\{$ vector bundles $\}, \mathrm{B}=\{$ distributions $\}, \quad \mathrm{C}=\{$ tangent bundles $\} ;$
(5) \qquad \subset \qquad \subset \qquad
$\mathrm{A}=\{$ manifolds with finite Betti numbers $\}, \mathrm{B}=\{$ compact manifolds $\}, \quad \mathrm{C}=\{$ manifolds with finite good cover $\}$;
(6) \qquad $\subset \quad \subset$ \qquad
$\mathrm{A}=\{f: M \rightarrow N$ is a diffeomorphism $\}, \mathrm{B}=\{f: M \rightarrow N$ is a homeoporphism $\}, \mathrm{C}=\{f: M \rightarrow N$ is a homotopy equivalence $\}$.

Problem 4 (20 points, 4 points each)

Let $M=\mathbb{R}^{4}$ with coordinate $\{x, y, z, w\}$. Let

$$
X=w \partial_{x}+y \partial_{z}, \quad Y=x^{2} \partial_{y}-\partial_{z}+\sin x \partial_{w}
$$

be vector fields on M. Let

$$
\omega=2 x d x+e^{y} d z-y d w, \quad \eta=d y \wedge d z-d x \wedge d w
$$

be differential forms on M. Let

$$
\begin{gathered}
\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4},(t, s) \mapsto(x, y, z, w)=\left(t^{2}, s, \cos t \sin t\right) \\
\psi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, \quad(x, y, z, w) \mapsto(x, y, z, w)=(u, v)=\left(x+y^{2}, z-e^{w}\right)
\end{gathered}
$$

be smooth maps. Compute the following:
(1) $[X, Y]=$ \qquad
(2) $d \omega=$ \qquad
(3) $\omega \wedge \eta=$ \qquad
(4) $\iota_{X} \eta=$ \qquad
(5) $\phi^{*} \omega=$ \qquad
(6) $d \psi_{(1,1,0,0)}(Y)=$ \qquad .

Problem 5 (15 points)

Let M be a smooth manifold, and $\theta \in \Omega^{1}(M)$ be an exact 1 -form.
(1) $\forall k$, define $d_{\theta}: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ by $d_{\theta}(\omega)=d \omega+\theta \wedge \omega$. Prove that

$$
d_{\theta}\left(d_{\theta}(\omega)\right)=0 \quad \forall \omega \in \Omega^{k}(M) .
$$

(2) Consider the complex

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{d_{\theta}} \Omega^{1}(M) \xrightarrow{d_{\theta}} \cdots \xrightarrow{d_{\theta}} \Omega^{n-1}(M) \xrightarrow{d_{\theta}} \Omega^{n}(M) \rightarrow 0 .
$$

Please define $Z_{\theta}^{k}(M), B_{\theta}^{k}(M), H_{\theta}^{k}(M)$.
(3) Prove that $H_{\theta}^{k}(M)$ is isomorphic to $H_{d R}^{k}(M)$.

Problem 6 (10 points)

Consider $M=\mathbb{R}^{3}$ with standard coordinates $\{x, y, z\}$. Consider the distribution $\mathcal{V}=\operatorname{Ker}(y d x-$ $d z$).
(1) Find vector fields X, Y so that $\mathcal{V}_{p}=\operatorname{Span}\left(X_{p}, Y_{p}\right)$ for all p;
(2) Is \mathcal{V} integrable? Justify your answer.

Problem 7 (15 points)

Let

$$
X=S^{4}=\left\{(x, y, z, u, v) \in \mathbb{R}^{5}: x^{2}+y^{2}+z^{2}+u^{2}+v^{2}=1\right\}
$$

be the standard 4 -sphere in \mathbb{R}^{5}, and let

$$
Y=\left\{(x, y, z, u, v) \in \mathbb{R}^{5}-\{0\}: x^{2}+y^{2}+z^{2}=u^{2}+v^{2}\right\}
$$

(1) Prove Y is a smooth submanifold of \mathbb{R}^{5};
(2) Prove that X, Y intersects transversally;
(3) Let $M=X \cap Y$. Compute all the de Rham cohomology groups of M.

Problem 8 (15 points)

Let G be a compact Lie group.
(1) Let Inv:G $\rightarrow G$ be the inversion $g \mapsto g^{-1}$. Prove that one has $\left(\operatorname{Inv}^{*} \omega\right)_{e}=(-1)^{k} \omega_{e} \forall \omega \in$ $\Omega^{k}(G)$; (Hint: first prove $k=1$.)
(2) Define the "left-invariant k-form" on G : Let $\omega \in \Omega^{k}(G)$ be a smooth k-form on G, we say ω is left-invariant if ...
(3) Prove that $d \omega=0$ if $\omega \in \Omega^{k}(G)$ is both left/right-invariant.

Problem 9 (20 points)

Let M be the extended complex plane $M=\mathbb{C} \cup\{\infty\}$.
(1) How to identify M with S^{2} ? (So M is a compact, connected, orientable manifold.)
(2) Let $a_{1}, \cdots, a_{n} \in \mathbb{C}$. Consider the map $F: M \rightarrow M$ defined by

$$
F(z)= \begin{cases}z^{n}+a_{1} z^{n-1}+\cdots, & z \in \mathbb{C} \\ \infty, & z=\infty\end{cases}
$$

Prove that F is a smooth map.
(3) Prove F is homotopic to

$$
F_{0}(z)= \begin{cases}z^{n}, & z \in \mathbb{C} \\ \infty, & z=\infty\end{cases}
$$

(4) Find the degree of F.
(5) Expalin why your results above imply the fundamental theorem of algebra: Any polynomial equation has at least one complex solution.

