2018年秋季学期 微分流形期末考试 2018 Fall Final Exam: Differential Manifolds

整理人: 章俊彦 zhangjy9610@gmail.com

2019年1月11日 15:00-17:00 主讲教师: 王作勤(Zuoqin Wang)

Problem 1 (20 points, 4 points each)

Write down the definitions of the following conceptions.

(1) A topological manifold is a topological space M such that ...

(2) A partition of unity subordinate to a locally finite covering $\{U_i\}$ of M is a family of smooth functions $\{\rho_i\}$ such that ...

(3) An <u>immersion</u> $f: M \to N$ is a smooth map such that ...

(4) A Lie group is a smooth manifold G such that ...

(5) An integral curve of a smooth vector field X is a map $\gamma : I \to M$ such that ...

(6) A vector bundle of rank r is a triple $\{\pi, E, M\}$ where $\pi : E \to M$ is a smooth surjective map such that ...

Problem 2 (20 points, 2 points each)

TRUE or FALSE.

() If $f: M \to N$ is a smooth map, and Z is a smooth submanifold of N, then $f^{-1}(Z)$ is a smooth submanifold of M:

() \mathbb{T}^2 can be embedded into \mathbb{R}^3 ;

() There exists a smooth vector field X on S^{2n+1} so that $X_p \neq 0$, $\forall p \in S^{2n+1}$;

() The exponential map exp : $\mathfrak{g} \to G$ is always surjective;

() Any compact smooth manifold is orientable;

() For any smooth vector field X and any smooth k-form ω , one has $d\mathcal{L}_X\omega = \mathcal{L}_Xd\omega$;

() If $w \in B^k(M)$ is compactly supported, then $w \in B^k_c(M)$;

() S^2 is a Lie Group;

() For any integer k, one can find a smooth map $f: S^1 \to S^1$ whose degree equals k;

() The Euler characteristic of $\mathbb{T}^5 \times S^6$ is 0;

() If M, N are compact, then $H^k_{dR}(M \times N) = H^k_{dR}(M) \times H^k_{dR}(N)$.

Problem 3 (15 points, 3 points each) Write down the inclusion relation:

(1)____C___C

A={ smooth manifolds }, B={ Lie Groups }, C={ orientable manifolds };

(2)____C___C___

A={ tensor fields on M }, B={ differential forms on M }, C={ volume forms on M };

(3)____C___C___

A={ $f : M \to N$ is a submersion }, B={ $f : M \to N$ is a smooth map }, C={ $f : M \to N$ is a local diffeomorphism };

A={ vector bundles }, B={ distributions }, C={ tangent bundles };

A={ manifolds with finite Betti numbers }, B={ compact manifolds }, C={ manifolds with finite good cover };

(6)____C___C

A={ $f : M \to N$ is a diffeomorphism }, B={ $f : M \to N$ is a homeoporphism }, C={ $f : M \to N$ is a homeoporphism }.

Problem 4 (20 points, 4 points each)

Let $M = \mathbb{R}^4$ with coordinate $\{x, y, z, w\}$. Let

$$X = w\partial_x + y\partial_z, \quad Y = x^2\partial_y - \partial_z + \sin x\partial_w$$

be vector fields on M. Let

$$\omega = 2xdx + e^{y}dz - ydw, \quad \eta = dy \wedge dz - dx \wedge dw$$

be differential forms on M. Let

$$\phi : \mathbb{R}^2 \to \mathbb{R}^4, \ (t,s) \mapsto (x, y, z, w) = (t^2, s, \cos t \sin t),$$
$$\psi : \mathbb{R}^4 \to \mathbb{R}^2, \ (x, y, z, w) \mapsto (x, y, z, w) = (u, v) = (x + y^2, z - e^w)$$

be smooth maps. Compute the following:

 $(1)[X, Y] = _____ (2)d\omega = _____ (3)\omega \land \eta = _____ (4)\iota_X \eta = _____ (5)\phi^*\omega = _____ (5)\phi^*\omega = _____ (6)d\psi_{(1,1,0,0)}(Y) = _____ .$

Problem 5 (15 points)

Let *M* be a smooth manifold, and $\theta \in \Omega^1(M)$ be an <u>exact</u> 1-form. (1) $\forall k$, define $d_{\theta} : \Omega^k(M) \to \Omega^{k+1}(M)$ by $d_{\theta}(\omega) = d\omega + \theta \wedge \omega$. Prove that

$$d_{\theta}(d_{\theta}(\omega)) = 0 \ \forall \omega \in \Omega^{k}(M).$$

(2) Consider the complex

$$0 \to \Omega^0(M) \xrightarrow{d_\theta} \Omega^1(M) \xrightarrow{d_\theta} \cdots \xrightarrow{d_\theta} \Omega^{n-1}(M) \xrightarrow{d_\theta} \Omega^n(M) \to 0.$$

Please define $Z^k_{\theta}(M), B^k_{\theta}(M), H^k_{\theta}(M)$.

(3) Prove that $H^k_{\theta}(M)$ is isomorphic to $H^k_{dR}(M)$.

Problem 6 (10 points)

Consider $M = \mathbb{R}^3$ with standard coordinates $\{x, y, z\}$. Consider the distribution $\mathcal{V} = Ker(ydx - dz)$.

(1) Find vector fields X, Y so that $\mathcal{V}_p = Span(X_p, Y_p)$ for all p;

(2) Is \mathcal{V} integrable? Justify your answer.

Problem 7 (15 points)

Let

•

$$X = S^{4} = \{(x, y, z, u, v) \in \mathbb{R}^{5} : x^{2} + y^{2} + z^{2} + u^{2} + v^{2} = 1\}$$

be the standard 4-sphere in \mathbb{R}^5 , and let

$$Y = \{(x, y, z, u, v) \in \mathbb{R}^5 - \{0\} : x^2 + y^2 + z^2 = u^2 + v^2\}$$

- (1) Prove *Y* is a smooth submanifold of \mathbb{R}^5 ;
- (2) Prove that *X*, *Y* intersects transversally;
- (3) Let $M = X \cap Y$. Compute all the de Rham cohomology groups of M.

Problem 8 (15 points)

Let *G* be a compact Lie group.

(1) Let $Inv : G \to G$ be the inversion $g \mapsto g^{-1}$. Prove that one has $(Inv^*\omega)_e = (-1)^k \omega_e \quad \forall \omega \in \Omega^k(G)$; (Hint: first prove k = 1.)

(2) Define the "left-invariant k- form" on G: Let $\omega \in \Omega^k(G)$ be a smooth k-form on G, we say ω is left-invariant if ...

(3) Prove that $d\omega = 0$ if $\omega \in \Omega^k(G)$ is both left/right-invariant.

Problem 9 (20 points)

Let M be the extended complex plane $M = \mathbb{C} \cup \{\infty\}$.

(1) How to identify M with S^2 ? (So M is a compact, connected, orientable manifold.)

(2) Let $a_1, \dots, a_n \in \mathbb{C}$. Consider the map $F : M \to M$ defined by

$$F(z) = \begin{cases} z^n + a_1 z^{n-1} + \cdots, & z \in \mathbb{C} \\ \infty, & z = \infty. \end{cases}$$

Prove that F is a smooth map.

(3) Prove F is homotopic to

$$F_0(z) = \begin{cases} z^n, & z \in \mathbb{C} \\ \infty, & z = \infty. \end{cases}$$

(4) Find the degree of F.

(5) Expalin why your results above imply the fundamental theorem of algebra: Any polynomial equation has at least one complex solution.