1.
given a dihedral group $D_7 = <\sigma, \tau | \sigma^7 = \tau^2 = e, \tau \sigma \tau = \sigma^{-1} >.$

(1) prove that D_7 is the only non-abelian group of order 14.

(2) construct a injective group homomorphism $D_7 \hookrightarrow S_7$

2.let α be an algebraic number with monic minimal polynomial f(x) over \mathbb{Q} . (1)given a monic polynomial $h(x) \in \mathbb{Q}[x]$ s.t. $h(\alpha) = 0$, prove that f(x)|h(x)(2)prove: $f(x) \in \mathbb{Z}[x]$ iff \exists monic polynomial $h(x) \in \mathbb{Z}[x]$ s.t. $h(\alpha) = 0$

3.let \mathbb{F}_q be the finite field of order $q = p^r$, where r is a positive integer, p is prime integer.calculate the order of group $GL_n(\mathbb{F}_q)$, then find a Sylow p-subgroup.

4. let R be a commutative ring. given a R-module commutative diagram with exact rows as follow.

prove:

(1) suppose f, h is injective , then g is injective.

(2) suppose f, h is surjective, then g is surjective.

(3)suppose $0 \to M' \to M$ and $N \to N'' \to 0$ are exact sequences.prove that any two of f, g, h are isomorphic implies the rest one is also isomorphic

5.prove: $Q(\sqrt{2} + \sqrt{3})/Q$ is Galois extension.calculate its Galois group.

6.
given a PID R, finitely generated R-module M, N such that
 $M \oplus M \cong N \oplus N$. prove: $M \cong N$.

7.let G be finitely generated abelian group with n generators, H is a subgroup of G. prove: H is finitely generated abelian group with $\leq n$ generators.(do not use theorem about classification of finitely generated abelian group.) 8.construct examples as required:

(1)non-zero R-module M and N s.t. $M \otimes_R N = 0$.

(2)field extension E/F is normal extension ,but not Galois.