RIEMANNIAN GEOMETRY (MA0440301, SPRING, 2017)
MID-TERM EXAM

Name: No.: Department:

1. (15 marks) Let (M, g) be a Riemannian manifold.

(1) Let U be a normal neighborhood of p € M with coordinates (x!,...,2™).
Consider the radial function on (U \ {p},z!,..., 2"):

r= Z(ac’)2
Show that
gradr = ﬁ
or
(Hint: Use Riemannian polar coordinates.)
(2) For any X,Y € I'(T M), prove that

Hessf(X, Y) = g(VXgradf, Y)a

where Hessf := V2f is the Hessian of f.
(3) Let (M, g) be compact without boundary, and ¢1, @2 are two smooth func-
tions on M such that

Ag@i + /\Z‘(pz‘ = 0, )\i e R.
Show that if Ay # Ag, then

/ p1padvol = 0.
M

(Hint: use Green formula.)

2. (15 marks) Let (M,g) be a Riemannian manifold. For any p € M, the
ingjectivity radius of p is defined as

i(p) :=sup{p > 0: exp, is a diffeomorphism on B(0, p) C T, M }.
The injectivity radius of M is then defined as

(M) = piél{/li(p).

(1) Compute the injectivity radius of the sphere S?(4) of radius .
(2) Prove that if M is compact, then the injectivity radius i(M) is positive.
(Hint: Use totally normal neighborhood.)
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3. (25 marks) (Geodesic equation in Finsler geometry)
Finsler geometry is a natural generalization of Riemannian geometry. Let M be an
n-dimensional smooth manifold. Let TM :=J,,, T»M be the tangent bundle of
M. Each element of TM has the form (z,y), where x € M and y € T, M. The
natural projection m : TM — M is given by 7(x,y) = .

A Finsler structure of M is a function

F:TM — [0,00)
with the following properties:
(i) Regularity: F is C* on TM \ 0.
(ii) Absolute homogeneity: F(x,\y) = |AF(z,y) for all A € R.
(iii) Strong convezxity: The n x n Hessian matrix

(9i) = (BFQ} yyg)

is positive-definite at every point of TM \ 0. (Explanation of y*: For any

basis {%}, express y as v’ aii' The Finsler structure F' is then a function

of (z,... 2" y' ..., y"), and

57, = oy [57]
2 yiyd ' 8yl8y3 2 '
It can be checked that the positive-definiteness is independent of the choice
of {%})
Let 7 : [a,b] — M be a smooth curve in M. Suppose the parametrization of + is
regular, i.e., ¥(t) # 0, Vt € [a,b]. We can define the length and energy of v to be

wa=/ mwmwwwu

b
B0 =3 [ P 30)

respectively.

(1) Prove that L(vy) does not depend on the choice of a regular parametrization.
(2) Prove that L()? < 2(b—a)E(7), and characterize the case when ” =" holds.
(3) Suppose that the image ~([a,b]) falls in a local coordinate (U, z!,... a™).

Denote by

AE) 1= (1), .., a" (1)),
Show that the Euler-Lagrange equation for E(+) (defined to be the geodesic
equation) is

¥ %g’[ ([Fﬂwyi Yl — [Fz]xi) =0,V=1,...,n,

where (g”) is the inverse matrix of (g;;).

4. (25 marks) Let (M,g) be a Riemannian manifold. Let V9 be the Levi-Civita
connection of the metric g.

(1) Derive the following Koszul formula from the definition of Levi-Civita con-
nection: For any X,Y,Z € I'(TM),

29(V&Y.Z) =Xg(Y, 2) + Yg(Z,X) — Zg(X,Y)
(2) Show that for any constant ¢ > 0, we have VI = V9.
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(3) Show that for any constant ¢ > 0, the sectional curvature K(cg), Ricci
curvature tensor Ric(cg), and scalar curvature S(cg) of (M, cg) satisfy

K(eg) = ~K(9). Ric(eg) = Riclg), S(cg) = +S(g).

Suppose we have two Riemannian manifolds (M7, g1) and (Maz, g2). Then the prod-
uct My x My has a natural metric g = g1 + g2: At each (p, q) € My x My, a vector
Xp.q) € T(p,qy(M1 x M3) can be written as

Xpg) = (X1,0)(p,q) + (0, X2) (5,0,
where X; € I'(T'M;),i = 1,2. Then the metric g = g1 + g2 is given by
9(X,Y) == g1(X1, Y1) + g2(X2, ¥2), VX, Y.

(4) Show that V?Xl 0)(O,Y2) =0 for any X; € T'(TM;),Y, € T(TMy).
(5) Compute the sectional curvature K ((V,0)p.q), (0, W)(p.q)), where V' € T, My,
W € T, Ms. Does S? x 5% have positive sectional curvature everywhere with

the metric ¢ = gean + gean? (Here geqn is the canonical metric on S2.)

5. (20 marks) Let (M, g) be a complete Riemannian manifold, and let N C M
be a compact submanifold of M without boundary.
(1) Show that N with the induced metric from (M, g) is complete.
(2) Let po € M, po ¢ N, and let d(po, N) := inf,en d(po,¢) be the distance
from pg to N. Show that there exists a point ¢y € N such that

d(po, o) = d(po, N).
Moreover, a minimizing geodesic v : [a,b] — M which joins py to qo is
orthogonal to N at qo, that is, g(%(b),V) =0, for any V € T, N C T,, M.
(3) Given p € M. Suppose exp, is a diffeomorphism on B(0,r) C T,M. Then
we denote by B,(p) := exp,(B(0,r)) the normal ball with center p and
radius r. Consider the particular submanifold N := exp,(0B(0,r)). For
any po € By-(p), prove that there exists go € N such that

d(p,po) =1+ d(qo,Po)-



