RIEMANNIAN GEOMETRY (MA0440301, SPRING, 2017)

 MID-TERM EXAMName:
No.:
Department:

1. (15 marks) Let (M, g) be a Riemannian manifold.
(1) Let U be a normal neighborhood of $p \in M$ with coordinates $\left(x^{1}, \ldots, x^{n}\right)$. Consider the radial function on $\left(U \backslash\{p\}, x^{1}, \ldots, x^{n}\right)$:

$$
r=\sqrt{\sum_{i}\left(x^{i}\right)^{2}} .
$$

Show that

$$
\operatorname{grad} r=\frac{\partial}{\partial r}
$$

(Hint: Use Riemannian polar coordinates.)
(2) For any $X, Y \in \Gamma(T M)$, prove that

$$
\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} \operatorname{grad} f, Y\right)
$$

where Hess $f:=\nabla^{2} f$ is the Hessian of f.
(3) Let (M, g) be compact without boundary, and φ_{1}, φ_{2} are two smooth functions on M such that

$$
\Delta \varphi_{i}+\lambda_{i} \varphi_{i}=0, \lambda_{i} \in \mathbb{R}
$$

Show that if $\lambda_{1} \neq \lambda_{2}$, then

$$
\int_{M} \varphi_{1} \varphi_{2} d \mathrm{vol}=0 .
$$

(Hint: use Green formula.)
2. (15 marks) Let (M, g) be a Riemannian manifold. For any $p \in M$, the injectivity radius of p is defined as
$i(p):=\sup \left\{\rho>0: \exp _{p}\right.$ is a diffeomorphism on $\left.B(0, \rho) \subset T_{p} M\right\}$.
The injectivity radius of M is then defined as

$$
i(M):=\inf _{p \in M} i(p)
$$

(1) Compute the injectivity radius of the sphere $S^{2}\left(\frac{1}{k}\right)$ of radius $\frac{1}{k}$.
(2) Prove that if M is compact, then the injectivity radius $i(M)$ is positive. (Hint: Use totally normal neighborhood.)
3. (25 marks) (Geodesic equation in Finsler geometry)

Finsler geometry is a natural generalization of Riemannian geometry. Let M be an n-dimensional smooth manifold. Let $T M:=\bigcup_{x \in M} T_{x} M$ be the tangent bundle of M. Each element of $T M$ has the form (x, y), where $x \in M$ and $y \in T_{x} M$. The natural projection $\pi: T M \rightarrow M$ is given by $\pi(x, y)=x$.

A Finsler structure of M is a function

$$
F: T M \rightarrow[0, \infty)
$$

with the following properties:
(i) Regularity: F is C^{∞} on $T M \backslash 0$.
(ii) Absolute homogeneity: $F(x, \lambda y)=|\lambda| F(x, y)$ for all $\lambda \in \mathbb{R}$.
(iii) Strong convexity: The $n \times n$ Hessian matrix

$$
\left(g_{i j}\right):=\left(\left[\frac{1}{2} F^{2}\right]_{y^{i} y^{j}}\right)
$$

is positive-definite at every point of $T M \backslash 0$. (Explanation of y^{i} : For any basis $\left\{\frac{\partial}{\partial x^{i}}\right\}$, express y as $y^{i} \frac{\partial}{\partial x^{i}}$. The Finsler structure F is then a function of $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$, and

$$
\left[\frac{1}{2} F^{2}\right]_{y^{i} y^{j}}:=\frac{\partial^{2}}{\partial y^{i} \partial y^{j}}\left[\frac{1}{2} F^{2}\right] .
$$

It can be checked that the positive-definiteness is independent of the choice of $\left\{\frac{\partial}{\partial x^{i}}\right\}$.)
Let $\gamma:[a, b] \rightarrow M$ be a smooth curve in M. Suppose the parametrization of γ is regular, i.e., $\dot{\gamma}(t) \neq 0, \forall t \in[a, b]$. We can define the length and energy of γ to be

$$
\begin{aligned}
L(\gamma) & :=\int_{a}^{b} F(\gamma(t), \dot{\gamma}(t)) d t \\
E(\gamma) & :=\frac{1}{2} \int_{a}^{b} F^{2}(\gamma(t), \dot{\gamma}(t)) d t
\end{aligned}
$$

respectively.
(1) Prove that $L(\gamma)$ does not depend on the choice of a regular parametrization.
(2) Prove that $L(\gamma)^{2} \leq 2(b-a) E(\gamma)$, and characterize the case when " $=$ " holds.
(3) Suppose that the image $\gamma([a, b])$ falls in a local coordinate $\left(U, x^{1}, \ldots, x^{n}\right)$. Denote by

$$
\gamma(t):=\left(x^{1}(t), \ldots, x^{n}(t)\right) .
$$

Show that the Euler-Lagrange equation for $E(\gamma)$ (defined to be the geodesic equation) is

$$
\ddot{x} \ell+\frac{1}{4} g^{i \ell}\left(\left[F^{2}\right]_{x^{j} y^{i}} y^{j}-\left[F^{2}\right]_{x^{i}}\right)=0, \forall \ell=1, \ldots, n
$$

where $\left(g^{i \ell}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
4. (25 marks) Let (M, g) be a Riemannian manifold. Let ∇^{g} be the Levi-Civita connection of the metric g.
(1) Derive the following Koszul formula from the definition of Levi-Civita connection: For any $X, Y, Z \in \Gamma(T M)$,

$$
\begin{aligned}
2 g\left(\nabla_{X}^{g} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y]) .
\end{aligned}
$$

(2) Show that for any constant $c>0$, we have $\nabla^{c g}=\nabla^{g}$.
(3) Show that for any constant $c>0$, the sectional curvature $K(c g)$, Ricci curvature tensor $\operatorname{Ric}(c g)$, and scalar curvature $S(c g)$ of ($M, c g$) satisfy

$$
K(c g)=\frac{1}{c} K(g), \quad \operatorname{Ric}(c g)=\operatorname{Ric}(g), \quad S(c g)=\frac{1}{c} S(g) .
$$

Suppose we have two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$. Then the product $M_{1} \times M_{2}$ has a natural metric $g=g_{1}+g_{2}$: At each $(p, q) \in M_{1} \times M_{2}$, a vector $\left.X_{(p, q)} \in T_{(p, q)(} M_{1} \times M_{2}\right)$ can be written as

$$
X_{(p, q)}=\left(X_{1}, 0\right)_{(p, q)}+\left(0, X_{2}\right)_{(p, q)},
$$

where $X_{i} \in \Gamma\left(T M_{i}\right), i=1,2$. Then the metric $g=g_{1}+g_{2}$ is given by

$$
g(X, Y):=g_{1}\left(X_{1}, Y_{1}\right)+g_{2}\left(X_{2}, Y_{2}\right), \forall X, Y .
$$

(4) Show that $\nabla_{\left(X_{1}, 0\right)}^{g}\left(0, Y_{2}\right)=0$ for any $X_{1} \in \Gamma\left(T M_{1}\right), Y_{2} \in \Gamma\left(T M_{2}\right)$.
(5) Compute the sectional curvature $K\left((V, 0)_{(p, q)},(0, W)_{(p, q)}\right)$, where $V \in T_{p} M_{1}$, $W \in T_{q} M_{2}$. Does $S^{2} \times S^{2}$ have positive sectional curvature everywhere with the metric $g=g_{c a n}+g_{c a n}$? (Here $g_{c a n}$ is the canonical metric on S^{2}.)
5. (20 marks) Let (M, g) be a complete Riemannian manifold, and let $N \subset M$ be a compact submanifold of M without boundary.
(1) Show that N with the induced metric from (M, g) is complete.
(2) Let $p_{0} \in M, p_{0} \notin N$, and let $d\left(p_{0}, N\right):=\inf _{q \in N} d\left(p_{0}, q\right)$ be the distance from p_{0} to N. Show that there exists a point $q_{0} \in N$ such that

$$
d\left(p_{0}, q_{0}\right)=d\left(p_{0}, N\right)
$$

Moreover, a minimizing geodesic $\gamma:[a, b] \rightarrow M$ which joins p_{0} to q_{0} is orthogonal to N at q_{0}, that is, $g(\dot{\gamma}(b), V)=0$, for any $V \in T_{q_{0}} N \subset T_{q_{0}} M$.
(3) Given $p \in M$. Suppose $\exp _{p}$ is a diffeomorphism on $B(0, r) \subset T_{p} M$. Then we denote by $B_{r}(p):=\exp _{p}(B(0, r))$ the normal ball with center p and radius r. Consider the particular submanifold $N:=\exp _{p}(\partial B(0, r))$. For any $p_{0} \notin B_{r}(p)$, prove that there exists $q_{0} \in N$ such that

$$
d\left(p, p_{0}\right)=r+d\left(q_{0}, p_{0}\right)
$$

