Your NAME:
 \qquad Your STUDENT ID:

About this exam:

- It is a closed-book exam.
- 6 problems. 120 minutes.
- If you cheat, you will fail.

For some of you who feel nervous, here are some randomly chosen formulae:
[Warning: It is very possible that most of them are NOT needed in this exam.]

$$
\begin{aligned}
& \frac{d E\left(\gamma_{s}\right)}{d s}(0)=-\int_{a}^{b}\left\langle V(t), \nabla_{i} \dot{\gamma}\right\rangle d t+\left.\langle V, \dot{\gamma}\rangle\right|_{a} ^{b} . \\
& \frac{d^{2} E\left(\gamma_{s}\right)}{d s^{2}}(0)=-\int_{a}^{b}\left\langle V(t), \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} V(t)+R(\dot{\gamma}, V) \dot{\gamma}(t)\right\rangle d t+\left.\left\langle V, \nabla_{\dot{\gamma}} V\right\rangle\right|_{a} ^{b}+\left.\left\langle\nabla_{V} f_{s}, \dot{\gamma}\right\rangle\right|_{a} ^{b} . \\
& \left(\nabla_{X} T\right)\left(\omega_{1}, \cdot, \omega_{r}, Y_{1}, \cdot, Y_{s}\right)=X\left(T\left(\omega_{1}, \cdot, \omega_{r}, Y_{1}, \cdot, Y_{s}\right)\right)-\sum_{i} T\left(\cdot, \nabla_{X} \omega_{i}, \cdots\right)-\sum_{j} T\left(\cdots, \nabla_{X} Y_{j}, \cdot\right) . \\
& 2 \Gamma_{i j}^{l}=g^{l k}\left(\partial_{j} g_{k i}+\partial_{i} g_{j k}-\partial_{k} g_{i j}\right) . \\
& R_{i j k}^{l}=-\Gamma_{j k}^{s} \Gamma_{i s}^{l}+\Gamma_{i k}^{s} \Gamma_{j s}^{l}-\partial_{i} \Gamma_{j k}^{l}+\partial_{j} \Gamma_{i k}^{l} \\
& \left(\nabla_{X} R\right)(Y, Z, W)+\left(\nabla_{Y} R\right)(Z, X, W)+\left(\nabla_{Z} R\right)(X, Y, W)=0 . \\
& R m=W+\frac{1}{m-2} E \boxtimes g+\frac{S}{2 m(m-1)} g \oslash g \\
& W=R m-\frac{1}{m-2}\left(\operatorname{Ric}-\frac{S}{2(m-1)} g\right) \circledast g \\
& T_{1} \otimes T_{2}(X, Y, Z, W)=T_{1}(X, Z) T_{2}(Y, W)-T_{1}(Y, Z) T_{2}(X, W)-T_{1}(X, W) T_{2}(Y, Z)+T_{1}(Y, W) T_{2}(X, Z) . \\
& \ddot{x}^{k}(t)+\dot{x}^{i}(t) \dot{x^{j}}(t) \Gamma_{i j}^{k}=0, \quad 1 \leq k \leq m . \\
& \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X+R(\dot{\gamma}, X) \dot{\gamma}=0
\end{aligned}
$$

© Good Luck! ©

1.(20') Write down the definitions of

(a) Isometry and local isometry:

- An isometry $f:(M, g) \rightarrow(N, h)$ is \qquad
- A local isometry $f:(M, g) \rightarrow(N, h)$ is \qquad
(b) Three definitions of the Laplace-Beltrami operator Δ :
- $\Delta=$
- $\Delta=$
- $\Delta=$
(c) The linear connection and the Levi-Civita connection
- A linear connection on M is \qquad
\qquad
- A Levi-Civita connection on (M, g) is \qquad
\qquad
(d) The conjugate points and cut points of $p=\gamma(0)$ along a geodesic $\gamma:[0,+\infty] \rightarrow M$:
- We say $q=\gamma\left(t_{0}\right)$ is a conjugate point of p along γ if \qquad
\qquad
- We say $q=\gamma\left(t_{0}\right)$ is a cut point of p along γ if \qquad
\qquad
(e) The length and energy of a curve $\gamma:[a, b] \rightarrow M$:
- $L(\gamma)=$
- $E(\gamma)=$

2. $\left(20^{\prime}\right)$ Which of the following statements are correct? Write a " T " before the correct ones and write an "F" before the wrong ones.
() Any two points on a Riemannian manifold can be connected by a geodesic.
() The distance function $f(x):=d(p, x)$ is absolutely continuous.
() If ∇^{1} and ∇^{2} are linear connections on M, and $a, b>0$, then $a \nabla^{1}+b \nabla^{2}$ is also a linear connection on M.
() If $X_{1}(p)=Y_{1}(p)$ and $X_{2}(p)=Y_{2}(p)$, then $\left(\nabla_{X_{1}} Y_{1}\right)(p)=\left(\nabla_{X_{2}} Y_{2}\right)(p)$.
() If $p=\gamma(a)$ has no conjugate point along $\gamma:[a, b] \rightarrow M$, then γ is a minimizing geodesic connecting p and $q=\gamma(b)$.
() The Riemann curvature tensor satisfies $\operatorname{Rm}(U, S, T, C)=\operatorname{Rm}(C, T, S, U)$.
() Any pseudo-Riemannian manifold admits a unique linear connection that is torsion free and compatible with the pseudo-Riemannian metric.
() S^{2} admits no Riemannian metric of non-positive sectional curvature.
() \mathbb{T}^{2} admits a Riemannian metric of positive Ricci curvature.
() $\mathbb{R P}^{2} \times \mathbb{R P}^{2}$ admits neither a metric of positive sectional curvature, nor a metric of negative sectional curvature.
3.(20') Let M be a smooth manifold and let ∇, ∇^{\prime} be two linear connections on M. For any vector fields $X, Y \in \Gamma(T M)$, define

$$
A(X, Y)=\nabla_{X} Y-\nabla_{X}^{\prime} Y
$$

(a) Prove: A is a 2-tensor.
(b) Suppose g is a Riemannian metric on M, and suppose ∇ is a g-compatible linear connection. Prove: ∇^{\prime} is g-compatible if and only if

$$
g(A(X, Y), Z)=-g(Y, A(X, Z)), \quad \forall X, Y, Z \in \Gamma(T M)
$$

(c) As in the Levi-Civita case, a curve γ is called a geodesic of ∇ if $\nabla_{\dot{\gamma}} \dot{\gamma}=0$. [The geodesic equations, exponential maps etc can be extended to this setting without any difficulty.] Prove: ∇ and ∇^{\prime} have the same geodesics if and only if

$$
A(X, Y)=-A(Y, X), \quad \forall X, Y \in \Gamma(T M)
$$

4. $\left(20^{\prime}\right)$ Endow $S^{2} \times S^{2}$ with the canonical product metric $g=\pi_{1}^{*} g_{1}+\pi_{2}^{*} g_{2}$, where $g_{1}=g_{2}=g_{\text {round }}$. Prove: It is an Einstein manifold, but it is not locally conformally flat.
5.(20') Let M, N be connected Riemannian manifolds of the same dimension and let $f_{1}, f_{2}: M \rightarrow N$ be local isometries. Moreover, suppose there exists a point $p \in M$ so that

$$
f_{1}(p)=f_{2}(p) \quad \text { and } \quad\left(d f_{1}\right)_{p}=\left(d f_{2}\right)_{p}
$$

Prove: $f_{1}=f_{2}$. [Hint: First prove this near p.]
6.(20') Let $M=\{(x, y) \mid y>0\}$ be the upper half plane. Define a Riemannian metric on M by

$$
g=y^{2 k}(d x \otimes d x+d y \otimes d y)
$$

where $k \in \mathbb{R}$ is a constant.
(a) Calculate the Christoffel symbols of (M, g).
(b) Prove: the vertical lines are geodesics, and $\frac{\partial}{\partial x}$ is a Jacobi field along any such geodesics.
(c) Find the (sectional) curvature of (M, g).
[Hint: You can use the results from (a) AND (b).]
(d) Find all k so that (M, g) is complete.

Blank page

Blank page

