2017年春季学期 微分方程II习题课勘误

Date: 2017.3.25

第一次习题课中, 我们讲到了Sobolev函数的链式法则, 也就是书上的习题17. 事实上, 更一般的定理叙述如下:

Chain rule for Sobolev functions If $f \in W^{1,p}(U)$, $F \in C^1(\mathbb{R})$, $F' \in L^{\infty}(R)$, F(0) = 0, then $F(f) \in W^{1,p}(U)$ and $\partial_i F(f) = F'(f)\partial_i f$, \mathcal{L}^n -a.e. for all $i = 1, \dots, n$. When $\mathcal{L}^n(U) < \infty$, F(0) = 0 is not necessary.

F(0) = 0这个条件是用在U测度无限时证明 $F(f) \in W^{1,p}$ 的过程中的, 具体如下.

Proof: Note that $|F(f) - F(0)| \leq ||F'||_{\infty} |f|$, therefore we can only prove $|F(f) - F(0)| \in L^p$. When U is of finite n-dimensional Lebesgue measure, then we know any constant function is an L^p function. But when $\mathcal{L}^n(U) = \infty$, we must set F(0) = 0 since any nonzero constant is not an L^p function. Therefore we've proved $F(f) \in L^p$.

Note that the proof of the chain rule does not require $\partial_i F(f) \in L^p$. Therefore we can prove $\partial_i F(f) = F'(f)\partial_i f$. $\partial_i F(f) \in L^p$ is trivial since $F' \in L^\infty$ and $\partial_i f \in L^p$.

该叙述摘自Evans和Gariepy的Measure Theory and Fine Properties of Functions (Revised Version), Chapter 4, Theorem 4.4, on page 153.

第二次习题课中, 习题11我最后一步做的有问题. 11题的正确解法如下:

Proof: Let $u^{\epsilon}(x) = (\eta_{\epsilon} * u)(x), V \subset\subset U$. Then $Du^{\epsilon} = \eta_{\epsilon} * Du$ in V. Since u^{ϵ} is smooth in V, then there exists a constant C_{ϵ} such that $u^{\epsilon} = C_{\epsilon}$ in V.

Note that $||u^{\epsilon}||_p \leq ||\eta_{\epsilon}||_1 ||u||_p < \infty$ uniformly on ϵ . Therefore $\{C_{\epsilon}\}$ is a uniformly bounded sequence. Consequently, there exists a subsequence C_{ϵ_i} converges to some $C \in \mathbb{R}$ as $i \to \infty$. Finally $u^{\epsilon} \to u$ in $W^{1,p}(V)$ (also a.e.) yields that u = C a.e. in any $V \subset U$. Done.