1 课本第三章习题

3．Proof：（1）Since 0 is the Lebesgue density point of E ，then

$$
\forall n \geq 3, \exists\left\{r_{n}\right\} \text { with } r_{n} \xrightarrow{\text { decreasingly }} 0 \text {, s.t. : } m\left(B\left(0, r_{n}\right) \cap E\right) \geq\left(1-\frac{1}{n}\right) m\left(B\left(0, r_{n}\right)\right) \text {. }
$$

Since $B\left(0, r_{n}\right)$ is symmetric，then

$$
\forall n \geq 3, \exists\left\{r_{n}\right\} \text { with } r_{n} \xrightarrow{\text { decreasingly }} 0 \text {, s.t. : } m\left(B\left(0, r_{n}\right) \cap-E\right) \geq\left(1-\frac{1}{n}\right) m\left(B\left(0, r_{n}\right)\right) \text {. }
$$

By the Inclusion－Exclusion Principle（容斥原理），

$$
m\left(B\left(0, r_{n}\right) \cap E \cap-E\right) \geq\left(1-\frac{2}{n}\right) m\left(B\left(0, r_{n}\right)\right)>0
$$

Thus，for each distinct n ，we can choose an x_{n} from $E \cap-E \cap B\left(0, r_{n}\right)$ ．It is easily to see that $x_{n},-x_{n} \in E$ and $x_{n} \rightarrow 0$（since $r_{n} \rightarrow 0$ ）．
（2）Similarly as in（1），we can choose a sequence of $\left\{r_{n}\right\}$ which decreasingly tends to 0 such that

$$
\begin{aligned}
& \forall n \geq 4, m\left(B\left(0, r_{n}\right) \cap E\right) \geq\left(1-\frac{1}{n}\right) m\left(B\left(0, r_{n}\right)\right) . \\
& \forall n \geq 4, m\left(B\left(0, r_{n}\right) \cap-E\right) \geq\left(1-\frac{1}{n}\right) m\left(B\left(0, r_{n}\right)\right) . \\
& \forall n \geq 4, m\left(B\left(0, r_{n}\right) \cap \frac{E}{2}\right) \geq\left(1-\frac{1}{n}\right) m\left(B\left(0, r_{n}\right)\right) .
\end{aligned}
$$

Then

$$
m\left(B\left(0, r_{n}\right) \cap E \cap-E \cap \frac{E}{2}\right) \geq\left(1-\frac{3}{n}\right) m\left(B\left(0, r_{n}\right)\right)>0 .
$$

Thus，for each distinct n ，we can choose an x_{n} from $E \cap-E \cap \frac{E}{2} \cap B\left(0, r_{n}\right)$ ．It is easily to see that $x_{n},-x_{n}, 2 x_{n} \in E$ and $x_{n} \rightarrow 0$（since $r_{n} \rightarrow 0$ ）．

6．Proof：Note that

$$
\begin{aligned}
x \in E_{\alpha}^{+} & \Leftrightarrow \exists h>0, \text { s.t. } \frac{1}{h} \int_{x}^{x+h}|f(y)| d y>\alpha \\
& \Leftrightarrow \int_{x}^{x+h}|f(y)| d y>h \alpha \\
& \Leftrightarrow\left(\int_{0}^{x+h}-\int_{0}^{x}\right)|f(y)| d y-\alpha(x+h)+\alpha x>0 \\
& \Leftrightarrow F(x+h)>F(x), \exists h>0, \text { where } F(x)=\int_{0}^{x}|f(y)| d y-\alpha x
\end{aligned}
$$

Thus $E_{\alpha}^{+}=\{x: \exists h>0$ ，s．t．$F(x+h)>F(x)\}$ ．Since F is continuous，by Rising Sum Lemma（太阳升引理）$E_{\alpha}^{+}=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$（disjoint）and $F\left(a_{j}\right)=F\left(b_{j}\right)$ implies $\int_{a_{j}}^{b_{j}}|f(y)| d y=\alpha\left(b_{j}-a_{j}\right)$ ．Take the summation with respect to j ，we have

$$
\int_{E_{\alpha}^{+}}|f(y)|=\alpha m\left(E_{\alpha}^{+}\right) .
$$

7. Proof: $m(E)>0$ is quite trivial. Suppose $m(E)<1$ and we want to deduce a contradiction. Denote E^{c} as $[0,1]-E$.

Since E^{c} has positive measure, then there exists $x \in E^{c}$ to be the Lebesgue density point of E^{c}. Fix $\alpha>0$, and then $\forall \beta>1-0.5 \alpha$, there exists an interval I, s.t. $m\left(I \cap E^{c}\right) \geq \beta m(I)$.

By the hypothesis of the problem, for the interval I chosen above, $m(I \cap E) \geq \alpha m(I)$. Take the summation of the two formulas above, we have $m(I) \geq(1+0.5 \alpha) m(I)$. This contradicts with $m(I)>0$. Thus $m(E)=1$.
9. Proof: Note that δ is Lipschitz continuous and thus it is absolutely continuous(see Exercise 32). Then δ^{\prime} a.e. exists and $\delta^{\prime}(x)=0$ a.e. $x \in F$, since $\delta=0$ in F. Thus a.e. $x \in F$ has the following property:

$$
0=\lim _{|y| \rightarrow 0} \frac{|\delta(x+y)-\delta(x)|}{|y|}=\lim _{|y| \rightarrow 0} \frac{|\delta(x+y)|}{|y|}
$$

11. Proof: (1)Suppose $f \in B V[0,1]$, but $a \leq b$, we want to deduce a contradiction. Set

$$
x_{n}=\frac{1}{(n \pi+\pi / 2)^{1 / b}}
$$

Then

$$
T_{f}[0,1] \geq \sum_{n=1}^{\infty}\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \geq \sum_{n=1}^{\infty} \frac{1}{(n \pi+\pi / 2)^{a / b}}=\infty(\text { since } a \leq b)
$$

This contradicts with $f \in B V[0,1]$. Thus $a>b$.
(2)Suppose $a>b$. Note the f is differentiable in (0,1). Then for each partition $\pi: 0=x_{0}<\cdots<x_{n}=1$, we have

$$
\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \leq \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}}\left|f^{\prime}(t)\right| d t \leq \int_{0}^{1} a x^{a-1}+b x^{a-b-1}<\infty(\operatorname{since}-1<a-b-1<a-1)
$$

Take the supremum for all partition π and the LHS of the last formula is $T_{f}[0,1]$, which implies f is of bounded variation.
(3)(i) $x^{a+1}<h<1$, then

$$
|f(x+h)-f(x)| \leq x^{a}+(x+h)^{a} \leq h^{a / a+1}+\left(2 h^{1 / a+1}\right)^{a} \leq 2^{a+1} h^{a / a+1}
$$

(ii) $x^{a+1} \geq h$, then by mean value formula,

$$
|f(x+h)-f(x)|=\left|f^{\prime}(x+p)\right| h=a h\left(\left|(x+p)^{a-1} \sin \frac{1}{(x+p)^{a}}\right|+\left|\frac{1}{x+p}\right|\right) \leq \frac{2 a h}{x} \leq 2 a h^{a / a+1}
$$

Thus $|f(x+h)-f(x)| \leq \max \left\{2^{a+1}, 2 a\right\} h^{a / a+1}$.
14. Proof: (1)By the definition of limsup, we know

$$
D^{+} F(x)=\inf _{\delta>0} \sup _{0<h<\delta} \frac{F(x+h)-F(x)}{h}=\inf _{n \in \mathbb{N}} \sup _{0<h<\frac{1}{n}} \frac{F(x+h)-F(x)}{h}=\inf _{n \in \mathbb{N}} \sup _{\mathbb{Q}\left(0, \frac{1}{n}\right)} \frac{F(x+h)-F(x)}{h}
$$

This is obviously measurable. Note that the last step is correct, since for each $h<1 / n$, we can "insert" a rational number into the "gap".
(2)Follow the hint, we have

$$
\limsup _{h \rightarrow 0} \frac{J(x+h)-J(x)}{h}=\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \sup _{1 / k \leq|h| \leq 1 / m}\left|\frac{J_{N}(x+h)-J_{N}(x)}{h}\right|
$$

, where $J_{n}(x)=\sum_{n=1}^{N} \alpha_{n} j_{n}(x)$ is the partial sum of the jump function.
15. Proof: Write $F=G_{1}-G_{2}$ where G_{1} and G_{2} are increasing. As shown in Lemmas 3.12, 3.13, an increasing function is a continuous increasing function plus a jump function. Hence $G_{1}=F_{1}+J_{1}$ where F_{1} is continuous and increasing, and J_{1} is a jump function; similarly, $G_{2}=F_{2}+J_{2}$. Then $F=\left(F_{1}-F_{2}\right)+\left(J_{1}-J_{2}\right)$. But $J_{1}-J_{2}$ is a jump function, and jump functions are continuous only if they're constant. Since F is continuous, this implies that $J_{1}-J_{2}$ is constant; WLOG, $J_{1}-J_{2}=0$. (Otherwise we could re-define $F_{1}^{\prime}=F_{1}+\left(J_{1}-J_{2}\right)$ and F_{1}^{\prime} would also be continuous and increasing.) Hence $F=F_{1}-F_{2}$.
16. Proof: $(1) F(x)=P_{F}(a, x)-N_{F}(a, x)+F(a)$, then $F^{\prime}(x)=P_{F}^{\prime}(a, x)-N_{F}^{\prime}(a, x)$. Thus

$$
\int_{a}^{b}\left|F^{\prime}(x)\right| d x \leq \int_{a}^{b} P_{F}^{\prime}(a, x)+N_{F}^{\prime}(a, x) d x \leq P_{F}(a, b)+N_{F}(a, b)=T_{F}(a, b)
$$

(2)(i)Suppose $F \in A C[a, b]$, then we can write $F(x)=\int_{a}^{x} F^{\prime}(t) d t+F(a)$. Thus for each partition $\pi: a=$ $x_{0}<\cdots<x_{n}=b$, we have

$$
\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \leq \int_{a}^{b}\left|F^{\prime}(t)\right| d t \leq(b y(1)) T_{F}(a, b)
$$

Take the supremum for all partition π we know $\mathrm{LHS}=T_{F}(a, b)$. Thus we have $\int_{a}^{b}\left|F^{\prime}(t)\right| d t=T_{F}(a, b)$.
(ii)Conversely, suppose the equality holds. Define $G(x)=\int_{a}^{x}\left|F^{\prime}(t)\right| d t-T_{F}(a, x)$. Then $G(a)=G(b)=0$. And $\forall x<y, G(y)-G(x)=\int_{x}^{y}\left|F^{\prime}(t)\right| d t-T_{F}(x, y) \leq 0(b y(1))$. Thus $G(x)=0$ in $[a, b]$ and $T_{F}(x)=\int_{a}^{x}\left|F^{\prime}(t)\right| d t$ is absolutely continuous. Thus $\forall \epsilon>0, \exists \delta>0$, we have $\sum_{i=1}^{n}\left|T_{F}\left(x, b_{i}\right)-T_{F}\left(x, a_{i}\right)\right|<\epsilon$ whenever $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta$. Note that $\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right| \leq T_{F}\left(a_{i}, b_{i}\right)$. We know F satisfies the definition of absolutely continuous.

17. Proof:

$$
I_{1}:=\int_{|y|<\epsilon}|f(x-y)|\left|K_{\epsilon}(y)\right| d y \leq \frac{A}{|\epsilon|^{d}} \int_{|y|<\epsilon}|f(x-y)| d y \leq C f^{*}(x)
$$

Note that we take the supremum over all the balls containing x to "construct" the Hardy-Littlewood Maximal Function in the last step.

$$
\begin{aligned}
I_{2} & :=\int_{|y| \geq \epsilon}|f(x-y)|\left|K_{\epsilon}(y)\right| d y=\sum_{k=0}^{\infty} \int_{2^{k} \epsilon \leq|y|<2^{k+1} \epsilon}|f(x-y)|\left|K_{\epsilon}(y)\right| d y \\
& \leq \sum_{k=0}^{\infty} \frac{A^{\prime} \epsilon}{\left(2^{k} \epsilon\right)^{d+1}} \int_{|y|<2^{k+1} \epsilon}|f(x-y)| d y \\
& =\sum_{k=0}^{\infty} \frac{A^{\prime}}{2^{k-d}} \frac{1}{\left(2^{k+1} \epsilon\right)^{d}} \int_{|y|<2^{k+1} \epsilon}|f(x-y)| d y \\
& \leq A^{\prime \prime} f^{*}(x)
\end{aligned}
$$

And $\sup _{\epsilon}\left|K_{\epsilon} * f\right| \leq I_{1}+I_{2}$. Done.
19. Proof: We first admit (1) is correct. Now we use (1) to prove (2). Note that each measurable set can be decomposed as $E=F \cup Z$, where F is an F_{σ}-set and Z measures 0 . By (1), $\mathrm{f}(Z)$ measures 0 . As for $f(F)$, F can be decomposed as $F=\bigcup_{k=1}^{\infty} F_{k}=\bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty}\left(F_{k} \bigcap B(0, n)\right)$. This is a countable union of compave sets. Note that a continuous function maps a compact set to be a compact set. Thus $f(F)$ is also a countable union of compace sets (an F_{σ}-set also). Thus $f(E)$ is measurable.

Now we prove (1). Suppose Z measures $0 . \forall \delta>0, \exists$ open set $O, Z \subseteq O, m(O)<\epsilon$. O can be decomposed as $\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$. Set $m_{j}=\inf _{\left[a_{j}, b_{j}\right]} f(x), M_{j}=\sup _{\left[a_{j}, b_{j}\right]} f(x)$. Then

$$
m(f(O))=\sum_{j=1}^{\infty}\left|f\left(M_{j}\right)-F\left(m_{j}\right)\right|=\sum_{j}\left|\int_{m_{j}}^{M_{j}} f^{\prime}(t) d t\right| \leq \sum_{j} \int_{a_{j}}^{b_{j}}\left|f^{\prime}(t)\right| d t=\int_{O}\left|f^{\prime}(t)\right| d t .
$$

Since f^{\prime} is integrable and $m(O)$ can be arbitrarily small, we know the RHS of last formula $<\epsilon$ by the absolute continuity of integral. Let ϵ tend to 0 and we are done.
20. Proof: (1)Suppose C is a Cantor-like set of $[a, b]$ with positive measure and $K:=[a, b]-C$. Define $F(x):=\int_{a}^{x} \chi_{K}(t) d t$. Then $F^{\prime}=0$ on a positive measure set. To see the strict monotonicity we merely note that K intersects a open interval in positive measure.
(2) Write $K=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$. Then $F(K)=\bigcup_{j}\left(F\left(a_{j}\right), F\left(b_{j}\right)\right)$ and $m(F(K))=\sum_{j=1}^{\infty}\left(F\left(b_{j}\right)-F\left(a_{j}\right)\right)$. Note that $m(F([a, b]))=F(b)-F(a)=\int_{K} 1 d x=m(K)$. Thus $\int_{C} \chi_{K}=0 . m(F(C))=0$. Note that C is of positive measure. Thus there exists unmeasurable subset $N \subseteq C$ and $F(N) \subseteq F(C)$ measures 0 . Set $E=F(N)$ and we are done.
(3)Each measurable set can be decomposed as the union of an F_{σ}-set D and a set Z measuring 0 . $F^{-1}(D)$ is measurable since F^{-1} maps closed set to closed set. As for $F^{-1}(Z) \cap\left\{F^{\prime}(x)>0\right\}$, you should prove the hint $m(O)=\int_{F^{-1}(O)} F^{\prime}(x) d x$ by decomposing $O=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$ and the rest is quite easy. After proving the hint, we choose a decreasing sequence of open sets $\left\{O_{n}\right\}$ covering Z with $m\left(O_{n}\right)<1 / n$. Then

$$
m\left(O_{n}\right)=\int_{F^{-1}\left(O_{n}\right)} F^{\prime}(x) d x=\int_{F^{-1}\left(O_{n}\right) \cap\left\{F^{\prime}>0\right\}} F^{\prime}(x) d x .
$$

Use DCT or MCT we know

$$
0=m\left(\bigcap_{n=1}^{\infty} O_{n}\right)=\int_{\bigcap_{n} F^{-1}\left(O_{n}\right) \cap\left\{F^{\prime}>0\right\}} F^{\prime}(x) d x .
$$

Thus $\left\{F^{\prime}>0\right\} \cap \bigcap_{n} F^{-1}\left(O_{n}\right)$ measures 0 and its subset $F^{-1}(Z) \cap\left\{F^{\prime}>0\right\}$ measures 0 . Done.

24. (1)Add an extra condition " F is bounded"!

Set F_{J} as the jump function of F. Then $G=F-F_{J}$ is continuous and increasing. Set $F_{A}(x)=\int_{a}^{x} F_{1}^{\prime}(t) d t$ and $F_{c}=F_{1}-F_{A} . F_{A} \in A C[a, b]$ is quite trivial. F_{c} is continuous and $F_{C}^{\prime}=F_{1}^{\prime}-F_{A}^{\prime}=F_{1}^{\prime}-F_{1}^{\prime}=0$ a.e. Next we need the check the fact that F_{C} is increasing. Since $\forall y>x, F_{1}(y)-F_{1}(x) \geq \int_{x}^{y} F_{1}^{\prime}(t) d t$ we know F_{C} is increasing. Done.
(2)Suppose also $F=G_{A}+G_{C}+G_{J}$. Since the "jump" of a function is uniquely defined by F itself. Thus $F_{J}=G_{J}+C$. Thus $F_{A}^{\prime}=G_{A}^{\prime}$ a.e., but F_{A}, G_{A} are absolutely continuous. Thus we have $F_{A}=G_{A}+C^{\prime}$ and $F_{C}=G_{C}-C-C^{\prime}$. Done.

23，32：Suppose $F \in C[a, b]$ ．
（1）Prove that if $D^{+} F \geq 0, \forall x \in[a, b]$ ，then F is increasing．
（2）F is Lipschitz continuous with Lip－const M ，iff $F \in A C[a, b]$ and $\left|F^{\prime}\right| \leq M$ ．
Proof：（1）It suffices to prove $F(b) \geq F(a)$ ，then use any sub－interval $\left[a^{\prime}, b^{\prime}\right] \subseteq[a, b]$ to replace $[a, b]$ to get the result．We prove this by contradiction．Suppose $F(b)<F(a)$ ，set $G_{r}(x)=F(x)-F(a)+r(x-a)$ ．For r sufficiently small，We have $G_{r}(b)<0=G_{r}(a)$ ．Set $x_{0}=\sup \left\{x: G_{r}(x) \geq 0\right\}$ ．Since $D^{+} G_{r}=r+D^{+} F>0$ ，then we know there exists $x_{1}>x_{0}$ s．t．$G_{r}\left(x_{1}\right)>0$ ．Thus $\exists x_{2}>x_{1}, G_{r}\left(x_{2}\right)=0$ since G_{r} is continuous and $G_{r}(b)<0$ ． So the existence of x_{2} contradicts with the definition of x_{0} ．Therefore $F(b) \geq F(a)$ ．Done．
（2）If RHS holds，then $|f(x)-F(y)| \leq \int_{x}^{y}\left|F^{\prime}(t)\right| d t \leq M|x-y|$ ．
If LHS holds，$\forall \epsilon>0$ ，take $\delta=\frac{\epsilon}{M}$ ．Then $\sum_{i=1}^{n}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right| \leq \epsilon$ whenever $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta$ ．Thus F is absolutely continuous and F^{\prime} a．e．exists．For the points where F^{\prime} exists，$\left|\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}\right| \leq M$ by the given Lipschitz condition．Done．

2 Two Problems in 2015 Final Exam

7．假设有以下命题正确：设 f 是 \mathbb{R} 上的连续函数， $2 \pi, 1$ 都是 f 的周期，则 f 恒为某个常数 C ．
现在假设 f 仅是 \mathbb{R} 上的局部可积函数，且 $2 \pi, 1$ 都是它的周期，证明 f a．e．是个常数。
证明：令 $f_{h}(x)=\frac{1}{h} \int_{x}^{x+\frac{1}{h}} f(t) d t$ 。则 f_{h} 连续，且周期与 f 相同，那么则 $f_{h}(x)=C$ 。据Lebegsue微分定理，令 $h \rightarrow 0$ ，我们就有 $f(x)=C$ ，a．e．

8．设 $\forall \epsilon \in(0,1), f \in A C[\epsilon, 1]$ ．且满足

$$
\int_{0}^{1} x\left|f^{\prime}(x)\right|^{p} d x<+\infty,(p>2)
$$

证明： $\lim _{x \rightarrow 0+} f(x)$ 存在。
证明：只需要证明 $\lim _{a, b \rightarrow 0+}|f(b)-f(a)|=0$ ，再用柯西列的方法证明即可．为此不妨 $b>a$ 。

$$
|f(b)-f(a)| \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t=\int_{a}^{b} x^{-1 / p}\left(x^{1 / p}\left|f^{\prime}(x)\right|\right) d x
$$

．用Holder不等式，

$$
R H S \leq\left(\int_{a}^{b} x^{-p^{\prime} / p} d x\right)^{1 / p^{\prime}} \cdot\left(\int_{0}^{1} x\left|f^{\prime}(x)\right|^{p} d x\right)^{1 / p} \rightarrow 0
$$

as $a, b \rightarrow 0$ ．这是因为上式右边第一个积分是趋于 0 的，因为 $p>2$ ，则 $1-\frac{p^{\prime}}{p}>0$ ．

