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1 课本第三章习题

3. Proof: (1)Since 0 is the Lebesgue density point of E, then

∀n ≥ 3,∃{rn} with rn
decreasingly−−−−−−−−→ 0, s.t. : m(B(0, rn) ∩ E) ≥ (1− 1

n
)m(B(0, rn)).

Since B(0, rn) is symmetric, then

∀n ≥ 3,∃{rn} with rn
decreasingly−−−−−−−−→ 0, s.t. : m(B(0, rn) ∩ −E) ≥ (1− 1

n
)m(B(0, rn)).

By the Inclusion-Exclusion Principle(容斥原理),

m(B(0, rn) ∩ E ∩ −E) ≥ (1− 2

n
)m(B(0, rn)) > 0.

Thus, for each distinct n, we can choose an xn from E ∩−E ∩B(0, rn). It is easily to see that xn,−xn ∈ E and

xn → 0(since rn → 0).

(2)Similarly as in (1), we can choose a sequence of {rn} which decreasingly tends to 0 such that

∀n ≥ 4,m(B(0, rn) ∩ E) ≥ (1− 1

n
)m(B(0, rn)).

∀n ≥ 4,m(B(0, rn) ∩ −E) ≥ (1− 1

n
)m(B(0, rn)).

∀n ≥ 4,m(B(0, rn) ∩ E
2

) ≥ (1− 1

n
)m(B(0, rn)).

Then

m(B(0, rn) ∩ E ∩ −E ∩ E
2

) ≥ (1− 3

n
)m(B(0, rn)) > 0.

Thus, for each distinct n, we can choose an xn from E ∩ −E ∩ E
2
∩ B(0, rn). It is easily to see that

xn,−xn, 2xn ∈ E and xn → 0(since rn → 0).

�

6. Proof: Note that

x ∈ E+
α ⇔ ∃h > 0, s.t.

1

h

∫ x+h

x

|f(y)|dy > α

⇔
∫ x+h

x

|f(y)|dy > hα

⇔ (

∫ x+h

0

−
∫ x

0

)|f(y)|dy − α(x+ h) + αx > 0

⇔ F (x+ h) > F (x),∃h > 0, where F (x) =

∫ x

0

|f(y)|dy − αx

Thus E+
α = {x : ∃h > 0, s.t. F (x + h) > F (x)}. Since F is continuous, by Rising Sum Lemma(太阳升引

理) E+
α =

⋃∞
j=1(aj , bj) (disjoint) and F (aj) = F (bj) implies

∫ bj
aj
|f(y)|dy = α(bj − aj). Take the summation with

respect to j, we have ∫
E+
α

|f(y)| = αm(E+
α ).
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7. Proof: m(E) > 0 is quite trivial. Suppose m(E) < 1 and we want to deduce a contradiction. Denote Ec

as [0, 1]− E.

Since Ec has positive measure, then there exists x ∈ Ec to be the Lebesgue density point of Ec. Fix α > 0,

and then ∀β > 1− 0.5α, there exists an interval I, s.t. m(I ∩ Ec) ≥ βm(I).

By the hypothesis of the problem, for the interval I chosen above, m(I ∩E) ≥ αm(I). Take the summation

of the two formulas above, we have m(I) ≥ (1 + 0.5α)m(I). This contradicts with m(I) > 0. Thus m(E) = 1.

�

9. Proof: Note that δ is Lipschitz continuous and thus it is absolutely continuous(see Exercise 32). Then

δ′ a.e. exists and δ′(x) = 0 a.e. x ∈ F , since δ = 0 in F . Thus a.e. x ∈ F has the following property:

0 = lim
|y|→0

|δ(x+ y)− δ(x)|
|y|

= lim
|y|→0

|δ(x+ y)|
|y|

.
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11. Proof: (1)Suppose f ∈ BV [0, 1], but a ≤ b, we want to deduce a contradiction. Set

xn =
1

(nπ + π/2)1/b
.

Then

Tf [0, 1] ≥
∞∑
n=1

|f(xn)− f(xn−1)| ≥
∞∑
n=1

1

(nπ + π/2)a/b
=∞(since a ≤ b).

This contradicts with f ∈ BV [0, 1]. Thus a > b.

(2)Suppose a > b. Note the f is differentiable in (0,1). Then for each partition π : 0 = x0 < · · · < xn = 1,

we have

n∑
j=1

|f(xj)− f(xj−1)| ≤
n∑
j=1

∫ xj

xj−1

|f ′(t)|dt ≤
∫ 1

0

axa−1 + bxa−b−1 <∞(since − 1 < a− b− 1 < a− 1).

Take the supremum for all partition π and the LHS of the last formula is Tf [0, 1], which implies f is of bounded

variation.

(3)(i)xa+1 < h < 1, then

|f(x+ h)− f(x)| ≤ xa + (x+ h)a ≤ ha/a+1 + (2h1/a+1)a ≤ 2a+1ha/a+1

.

(ii)xa+1 ≥ h, then by mean value formula,

|f(x+ h)− f(x)| = |f ′(x+ p)|h = ah(|(x+ p)a−1 sin
1

(x+ p)a
|+ | 1

x+ p
|) ≤ 2ah

x
≤ 2aha/a+1

.

Thus |f(x+ h)− f(x)| ≤ max{2a+1, 2a}ha/a+1.

�

14. Proof: (1)By the definition of lim sup, we know

D+F (x) = inf
δ>0

sup
0<h<δ

F (x+ h)− F (x)

h
= inf

n∈N
sup

0<h< 1
n

F (x+ h)− F (x)

h
= inf

n∈N
sup

Q∩(0, 1n )

F (x+ h)− F (x)

h
.
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This is obviously measurable. Note that the last step is correct, since for each h < 1/n, we can ”insert” a rational

number into the ”gap”.

(2)Follow the hint, we have

lim sup
h→0

J(x+ h)− J(x)

h
= lim

m→∞
lim
k→∞

lim
N→∞

sup
1/k≤|h|≤1/m

|JN (x+ h)− JN (x)

h
|

, where Jn(x) =
∑N

n=1 αnjn(x) is the partial sum of the jump function.

�

15. Proof: Write F = G1 − G2 where G1 and G2 are increasing. As shown in Lemmas 3.12, 3.13, an

increasing function is a continuous increasing function plus a jump function. Hence G1 = F1 + J1 where F1 is

continuous and increasing, and J1 is a jump function; similarly, G2 = F2 + J2. Then F = (F1 − F2) + (J1 − J2).
But J1−J2 is a jump function, and jump functions are continuous only if they’re constant. Since F is continuous,

this implies that J1− J2 is constant; WLOG, J1− J2 = 0. (Otherwise we could re-define F ′1 = F1 + (J1− J2) and

F ′1 would also be continuous and increasing.) Hence F = F1 − F2.

�

16. Proof:(1)F (x) = PF (a, x)−NF (a, x) + F (a), then F ′(x) = P ′F (a, x)−N ′F (a, x). Thus∫ b

a

|F ′(x)|dx ≤
∫ b

a

P ′F (a, x) +N ′F (a, x)dx ≤ PF (a, b) +NF (a, b) = TF (a, b).

(2)(i)Suppose F ∈ AC[a, b], then we can write F (x) =
∫ x
a
F ′(t)dt + F (a). Thus for each partition π : a =

x0 < · · · < xn = b, we have

n∑
j=1

|F (xj)− F (xj−1)| ≤
∫ b

a

|F ′(t)|dt ≤ (by (1))TF (a, b).

Take the supremum for all partition π we know LHS=TF (a, b). Thus we have
∫ b
a
|F ′(t)|dt = TF (a, b).

(ii)Conversely, suppose the equality holds. Define G(x) =
∫ x
a
|F ′(t)|dt − TF (a, x). Then G(a) = G(b) = 0.

And ∀x < y,G(y)−G(x) =
∫ y
x
|F ′(t)|dt−TF (x, y) ≤ 0(by (1)). Thus G(x) = 0 in [a, b] and TF (x) =

∫ x
a
|F ′(t)|dt is

absolutely continuous. Thus ∀ε > 0,∃δ > 0, we have
∑n

i=1 |TF (x, bi)−TF (x, ai)| < ε whenever
∑n

i=1(bi−ai) < δ.

Note that |F (bi)− F (ai)| ≤ TF (ai, bi). We know F satisfies the definition of absolutely continuous.
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17. Proof:

I1 :=

∫
|y|<ε
|f(x− y)||Kε(y)|dy ≤ A

|ε|d

∫
|y|<ε
|f(x− y)|dy ≤ Cf∗(x).

Note that we take the supremum over all the balls containing x to ”construct” the Hardy-Littlewood Maximal

Function in the last step.

I2 :=

∫
|y|≥ε
|f(x− y)||Kε(y)|dy =

∞∑
k=0

∫
2kε≤|y|<2k+1ε

|f(x− y)||Kε(y)|dy

≤
∞∑
k=0

A′ε

(2kε)d+1

∫
|y|<2k+1ε

|f(x− y)|dy

=
∞∑
k=0

A′

2k−d
1

(2k+1ε)d

∫
|y|<2k+1ε

|f(x− y)|dy

≤ A′′f∗(x).
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And supε |Kε ∗ f | ≤ I1 + I2. Done.

�

19. Proof: We first admit (1) is correct. Now we use (1) to prove (2). Note that each measurable set can

be decomposed as E = F ∪ Z, where F is an Fσ-set and Z measures 0. By (1), f(Z) measures 0. As for f(F ),

F can be decomposed as F =
⋃∞
k=1 Fk =

⋃∞
k=1

⋃∞
n=1(Fk

⋂
B(0, n)). This is a countable union of compave sets.

Note that a continuous function maps a compact set to be a compact set. Thus f(F) is also a countable union of

compace sets (an Fσ-set also). Thus f(E) is measurable.

Now we prove (1). Suppose Z measures 0. ∀δ > 0,∃ open set O,Z ⊆ O,m(O) < ε. O can be decomposed

as
⋃∞
j=1(aj , bj). Set mj = inf [aj ,bj ] f(x),Mj = sup[aj ,bj ]

f(x). Then

m(f(O)) =
∞∑
j=1

|f(Mj)− F (mj)| =
∑
j

|
∫ Mj

mj

f ′(t)dt| ≤
∑
j

∫ bj

aj

|f ′(t)|dt =

∫
O

|f ′(t)|dt.

Since f ′ is integrable and m(O) can be arbitrarily small, we know the RHS of last formula < ε by the absolute

continuity of integral. Let ε tend to 0 and we are done.
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20. Proof: (1)Suppose C is a Cantor-like set of [a, b] with positive measure and K := [a, b] − C. Define

F (x) :=
∫ x
a
χK(t)dt. Then F ′ = 0 on a positive measure set. To see the strict monotonicity we merely note that

K intersects a open interval in positive measure.

(2)Write K =
⋃∞
j=1(aj , bj). Then F (K) =

⋃
j(F (aj), F (bj)) and m(F (K)) =

∑∞
j=1(F (bj) − F (aj)). Note

that m(F ([a, b])) = F (b)− F (a) =
∫
K

1dx = m(K). Thus
∫
C
χK = 0. m(F (C)) = 0. Note that C is of positive

measure. Thus there exists unmeasurable subset N ⊆ C and F (N) ⊆ F (C) measures 0. Set E = F (N) and we

are done.

(3)Each measurable set can be decomposed as the union of an Fσ-set D and a set Z measuring 0. F−1(D)

is measurable since F−1 maps closed set to closed set. As for F−1(Z) ∩ {F ′(x) > 0}, you should prove the hint

m(O) =
∫
F−1(O)

F ′(x)dx by decomposing O =
⋃∞
j=1(aj , bj) and the rest is quite easy. After proving the hint, we

choose a decreasing sequence of open sets {On} covering Z with m(On) < 1/n. Then

m(On) =

∫
F−1(On)

F ′(x)dx =

∫
F−1(On)∩{F ′>0}

F ′(x)dx.

Use DCT or MCT we know

0 = m(
∞⋂
n=1

On) =

∫
⋂
n F
−1(On)∩{F ′>0}

F ′(x)dx.

Thus {F ′ > 0} ∩
⋂
n F
−1(On) measures 0 and its subset F−1(Z) ∩ {F ′ > 0} measures 0. Done.

�

24. (1)Add an extra condition ”F is bounded”!

Set FJ as the jump function of F . Then G = F − FJ is continuous and increasing. Set FA(x) =
∫ x
a
F ′1(t)dt

and Fc = F1−FA. FA ∈ AC[a, b] is quite trivial. Fc is continuous and F ′C = F ′1−F ′A = F ′1−F ′1 = 0 a.e. Next we

need the check the fact that FC is increasing. Since ∀y > x, F1(y)−F1(x) ≥
∫ y
x
F ′1(t)dt we know FC is increasing.

Done.

(2)Suppose also F = GA + GC + GJ . Since the ”jump” of a function is uniquely defined by F itself. Thus

FJ = GJ + C. Thus F ′A = G′A a.e., but FA, GA are absolutely continuous. Thus we have FA = GA + C ′ and

FC = GC − C − C ′. Done.
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23, 32:Suppose F ∈ C[a, b].

(1)Prove that if D+F ≥ 0,∀x ∈ [a, b], then F is increasing.

(2)F is Lipschitz continuous with Lip-const M , iff F ∈ AC[a, b] and |F ′| ≤M .

Proof: (1)It suffices to prove F (b) ≥ F (a), then use any sub-interval [a′, b′] ⊆ [a, b] to replace [a, b] to get

the result. We prove this by contradiction. Suppose F (b) < F (a), set Gr(x) = F (x) − F (a) + r(x − a). For r

sufficiently small, We have Gr(b) < 0 = Gr(a). Set x0 = sup{x : Gr(x) ≥ 0}. Since D+Gr = r +D+F > 0, then

we know there exists x1 > x0 s.t. Gr(x1) > 0. Thus ∃x2 > x1, Gr(x2) = 0 since Gr is continuous and Gr(b) < 0.

So the existence of x2 contradicts with the definition of x0. Therefore F (b) ≥ F (a). Done.

(2)If RHS holds, then |f(x)− F (y)| ≤
∫ y
x
|F ′(t)|dt ≤M |x− y|.

If LHS holds, ∀ε > 0, take δ = ε
M

. Then
∑n

i=1 |F (bi) − F (ai)| ≤ ε whenever
∑n

i=1(bi − ai) < δ. Thus F is

absolutely continuous and F ′ a.e. exists. For the points where F ′ exists, | limh→0
F (x+h)−F (x)

h
| ≤M by the given

Lipschitz condition. Done.

�

2 Two Problems in 2015 Final Exam

7. 假设有以下命题正确：设f是R上的连续函数, 2π, 1都是f的周期，则f恒为某个常数C.

现在假设f仅是R上的局部可积函数，且2π, 1都是它的周期，证明f a.e.是个常数.

证明：令fh(x) = 1
h

∫ x+ 1
h

x
f(t)dt. 则fh连续, 且周期与f相同, 那么则fh(x) = C. 据Lebegsue微分定理,

令h→ 0, 我们就有f(x) = C,a.e.

�

8. 设∀ε ∈ (0, 1), f ∈ AC[ε, 1]. 且满足∫ 1

0

x|f ′(x)|pdx < +∞, (p > 2).

证明:limx→0+ f(x)存在.

证明：只需要证明lima,b→0+ |f(b)− f(a)| = 0, 再用柯西列的方法证明即可. 为此不妨b > a.

|f(b)− f(a)| ≤
∫ b

a

|f ′(t)|dt =

∫ b

a

x−1/p(x1/p|f ′(x)|)dx

. 用Holder不等式,

RHS ≤ (

∫ b

a

x−p
′/pdx)1/p

′
· (
∫ 1

0

x|f ′(x)|pdx)1/p → 0

as a, b→ 0. 这是因为上式右边第一个积分是趋于0的, 因为p > 2, 则1− p′

p
> 0.

�
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