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3. Proof: (1)Since 0 is the Lebesgue density point of E, then

ecreasin, ]-
Vn > 3, 3H{r,} with r, ¢ 9ty 0,s.t. : m(B(0,r,) NE) > (1 — —)m(B(0,r,)).
n
Since B(0,7,) is symmetric, then

decreasingly
_—

Wn > 3,3{r} with 0,5.t.: m(B(0,1) N —E) > (1 %)m(B(O,rn)).

By the Inclusion-Exclusion Principle( % i #),

m(B(0,r) VB —E) > (1 — %)m(B(O, r)) > 0.

Thus, for each distinct n, we can choose an x,, from EN—FEN B(0,r,). It is easily to see that x,, —x, € E and
x, — 0(since r,, — 0).

(2)Similarly as in (1), we can choose a sequence of {r, } which decreasingly tends to 0 such that

¥n > 4,m(B(0,r,) N E) > (1 — %)m(B(O,rn)).

Wn > 4,m(B(0,r,) N—E) > (1 %)m(B(O,rn)).

By s - Ym0, r).

Vn >4, m(B(0,r,) N
n > 4m(B(0,r) N5 ~

Then
m(B(0,r,) N EN—E N %) > (1- %)m(B(O,rn)) > 0.

Thus, for each distinct n, we can choose an z, from £ N —FE N % N B(0,r,). It is easily to see that

Tpy — Ty, 2x, € F and x,, — 0(since r, — 0).

6. Proof: Note that

1 x+h
x€E+<:>3h>Osth/ If(y)|dy > «

<:>/ y)|dy > ha
<:>(/0 —/O)|f(y)|dy—a(x+h)+a:c>o
& F(x +h) > F(z),3h > 0, where F(x /|fy)|dy—ax

Thus Ef = {z : 3h > 0,s.t. F(x+ h) > F(x)}. Since F is continuous, by Rising Sum Lemma( HFt 5l
M) Er = UJ 1(aj,b;) (disjoint) and F(a;) = F(b;) implies f y)|dy = a(b; — a;). Take the summation with

respect to j, we have

[ 1wl = am(z)



O

7. Proof: m(E) > 0 is quite trivial. Suppose m(E) < 1 and we want to deduce a contradiction. Denote E°
as [0,1] — E.

Since E° has positive measure, then there exists x € E¢ to be the Lebesgue density point of £¢. Fix a > 0,
and then V3 > 1 — 0.5, there exists an interval I, s.t. m(I N E¢) > Bm(I).

By the hypothesis of the problem, for the interval I chosen above, m(I N E) > am(I). Take the summation
of the two formulas above, we have m(I) > (14 0.5a)m(I). This contradicts with m(I) > 0. Thus m(E) = 1.

O

9. Proof: Note that § is Lipschitz continuous and thus it is absolutely continuous(see Exercise 32). Then

0" a.e. exists and 0'(z) =0 a.e. © € F, since § =0 in F. Thus a.e. € F has the following property:

0= pim 9@y —d@)] _ L 10@+y)|
ly|—0 ly| lwl=o |yl

11. Proof: (1)Suppose f € BV|0,1], but a < b, we want to deduce a contradiction. Set
1
Ty = —.
(nm+ 7/2)1/b
Then

50,1 > S [f(wn) = Flan )] > S W — oo(since a < b).

This contradicts with f € BV[0,1]. Thus a > b.
(2)Suppose a > b. Note the f is differentiable in (0,1). Then for each partition 7 : 0 =z < -+ < x, = 1,

we have
n n xj 1
Z |f(z;) — flzj_1)] < Z/ |f(t)|dt < / az® ' + bz < oco(since —1<a—b—1<a-—1).
=1 j=1 7w 0

Take the supremum for all partition 7 and the LHS of the last formula is T[0, 1], which implies f is of bounded
variation.
(3)(1)z**tt < h < 1, then

‘f(fE—Fh) _ f<$>| < % 4+ ($+h)a < ha/a+1 + (2h1/a+1)a < 2a+1ha/a+1

(i))z®** > h, then by mean value formula,

1 | 1 |) S 2i S 2aha/a+1

|f(x+h)— f()|=|f(z+p)|h= ah(‘(m“‘p)ailsm <I+p)a| + T+ p T

Thus |f(z + h) — f(z)| < max{2°+L, 2a}he/o+1,

14. Proof: (1)By the definition of lim sup, we know

D*F(z) = inf sup Flath) -F@) oo Faeth) -Fa) oo Flath) - Fz)

6>00<h<s h n€Ngcp<t h neNgn(o,2) h




This is obviously measurable. Note that the last step is correct, since for each h < 1/n, we can ”insert” a rational
number into the "gap”.
(2)Follow the hint, we have
J h)—J
lim sup (z+h) (z) = lim lim lim sup |

h—0 h m—00 k—00 N—=00 | /p<|h|<1/m

In(z+h) — In(z)

, where J,(z) = ZnNzl anjn(2) is the partial sum of the jump function.
O

15. Proof: Write F' = G; — G> where G; and G are increasing. As shown in Lemmas 3.12, 3.13, an
increasing function is a continuous increasing function plus a jump function. Hence G; = F; + J; where F} is
continuous and increasing, and J; is a jump function; similarly, Go = F5 + J5. Then F' = (F} — F3) + (J; — J5).
But J; — Js is a jump function, and jump functions are continuous only if they’re constant. Since F' is continuous,
this implies that J; — Js is constant; WLOG, J; — Jo = 0. (Otherwise we could re-define F| = F; + (J; — J») and

F} would also be continuous and increasing.) Hence F' = F} — F5.

16. Proof:(1)F(z) = Pp(a,z) — Np(a,z) + F(a), then F'(z) = Pp(a,z) — Np(a,z). Thus
b b
|F'(z)|dz < / Pi(a,z) + Np(a,z)dx < Pp(a,b) + Np(a,b) = Tr(a,b).

(2)(i)Suppose F € AC[a,b], then we can write F(z) = [ F'(t)dt + F(a). Thus for each partition 7 : a =
To < --- <z, =b, we have

n b
Z [F ;) = F(x-1)] S/ [F'(t)|dt < (by (1))Tr(a,b).

Take the supremum for all partition 7 we know LHS=T%(a,b). Thus we have f |F'(t)|dt = Tr(a,b).

(ii)Conversely, suppose the equality holds. Define G(z) = [ |F'(t)|dt — Tr(a,z). Then G( ) =G(b) =0.
AndVz < y,G(y)—G(z) = [V |F'(t)|dt—Tr(z,y) < 0(by (1)). Thus G(z) = 0in [a,b] and Tr(z) = [ |F'(t)|dt is
absolutely continuous. Thus Ve > 0,36 > 0, we have > " | |Tr(z,b;) — Tr(z,a;)| < € whenever Zi:1<bi —a;) < 9.
Note that |F'(b;) — F'(a;)| < Tr(a;,b;). We know F satisfies the definition of absolutely continuous.

17. Proof:

A *
I = /y|<6|f(a:—y)||K( )|dy < e /Wf(a:—y)IdySCf ().

Note that we take the supremum over all the balls containing x to ”construct” the Hardy-Littlewood Maximal

Function in the last step.

I = /|y|>6|f(:c— 1K (y |dy—2 / (z — )| K.()|dy

k6<‘y‘<2k+l
> Ale /
<Y e |f(z —y)ldy
; O
= A 1 /
= — TR |f(z —y)|dy
S A//f*(.T)



And sup, | K. * f| < I + I5. Done.
U

19. Proof: We first admit (1) is correct. Now we use (1) to prove (2). Note that each measurable set can
be decomposed as E = F'U Z, where F' is an F,-set and Z measures 0. By (1), f(Z) measures 0. As for f(F),
F can be decomposed as F = ;- Fi = Upey U~ (F. (N B(0,n)). This is a countable union of compave sets.
Note that a continuous function maps a compact set to be a compact set. Thus f(F) is also a countable union of
compace sets (an F,-set also). Thus f(FE) is measurable.

Now we prove (1). Suppose Z measures 0. Vé > 0,3 open set O, Z C O, m(0) < e. O can be decomposed
as U;il(aj,bj). Set m; = inf(y, 1,1 f(2), M; = supy,, , ) f(z). Then

0) =310 - Fml =31 | " dt|<2/ (e = | 17/

Since f’ is integrable and m(O) can be arbitrarily small, we know the RHS of last formula < € by the absolute

continuity of integral. Let € tend to 0 and we are done.
O

20. Proof: (1)Suppose C' is a Cantor-like set of [a,b] with positive measure and K := [a,b] — C. Define
F(x f Xk (t)dt. Then F' = 0 on a positive measure set. To see the strict monotonicity we merely note that
K intersects a open interval in positive measure.

(2)Write K = (J;2, (a;,b;). Then F(K) = UJ;(F(a;), F(b;)) and m(F(K)) = 7=, (F(b;) — F(a;)). Note
that m(F([a,b])) = F(b) — F(a) = [, 1de = m(K). Thus [, xx = 0. m(F(C)) = 0. Note that C is of positive
measure. Thus there exists unmeasurable subset N C C and F(N) C F(C) measures 0. Set E = F(N) and we
are done.

(3)Each measurable set can be decomposed as the union of an F,-set D and a set Z measuring 0. F~(D)
is measurable since F~! maps closed set to closed set. As for F~1(Z) N {F'(z) > 0}, you should prove the hint

= [o x)dz by decomposing O = U 1(a;j,b;) and the rest is quite easy. After proving the hint, we

choose a decreasmg sequence of open sets {O,,} covering Z with m(0O,,) < 1/n. Then

m(O,,) :/ F'(z)dx :/ F'(z)dx.
F~1(0n) F~=1(On)N{F’'>0}

Use DCT or MCT we know

_ m(ﬁ 0,) = / F'(z)da.

N F=H(On)N{F">0}

Thus {F” > 0} N(),, F~'(0,,) measures 0 and its subset F~(Z) N {F’ > 0} measures 0. Done.

24. (1)Add an extra condition ”F' is bounded”!

Set F'y as the jump function of F'. Then G = F — F; is continuous and increasing. Set F4(z) = fax Fi(t)dt
and F, = F} — Fy. Fa € ACla,b] is quite trivial. F, is continuous and F(/J =F/—F) =F —F =0 a.e. Next we
need the check the fact that F is increasing. Since Vy > z, Fy(y) — Fi(z) > [, Y [ (t)dt we know F is increasing.
Done.

(2)Suppose also F = G4 + G¢ + G ;. Since the ”jump” of a function is uniquely defined by F' itself. Thus
F; = G;+ C. Thus F)y = G4 a.e., but F4,G4 are absolutely continuous. Thus we have Fy = G4 + C’ and
Fo=Go —C —C". Done.



23, 32:Suppose F € Cla,b].

(1)Prove that if DTF > 0,V € [a,b], then F is increasing.

(2)F is Lipschitz continuous with Lip-const M, iff F' € ACa,b] and |F'| < M.

Proof: (1)It suffices to prove F(b) > F(a), then use any sub-interval [a’,b'] C [a,b] to replace [a,b] to get
the result. We prove this by contradiction. Suppose F(b) < F(a), set G,.(z) = F(x) — F(a) + r(z — a). For r
sufficiently small, We have G,.(b) < 0 = G,(a). Set xq = sup{x : G,.(z) > 0}. Since DTG, = r+ DT F > 0, then
we know there exists x; > z¢ s.t. G,.(z1) > 0. Thus Jz5 > 21, G,(z2) = 0 since G, is continuous and G,.(b) < 0.
So the existence of x contradicts with the definition of xy. Therefore F'(b) > F(a). Done.

(2)If RHS holds, then |f(z) — F(y)| < [Y|F'(t)|dt < M|z — y|.

If LHS holds, Ve > 0, take 0 = &5. Then "' | |F(b;) — F(a;)| < € whenever »_"" | (b; — a;) < 0. Thus F is
absolutely continuous and F” a.e. exists. For the points where F’ exists, | lim;_o w| < M by the given

Lipschitz condition. Done.

2 Two Problems in 2015 Final Exam

7. BRAE LT AR W RER ERESREL, 2, 1R A, W FECNEEANEELC.

BB FOGER R el A s 8, Hom, 182 E AN, EWf a.c R AMHEL

ERR: & fu(z) = + f;*i f()de. Wf sz, HEHS AR, B0 f(z) = C. HELebegsuell 73 & H,
Lh— 0, ZATHA f(z) = CLae.

8. BiVe € (0,1), f € AC[e, 1]. Hifid

1
/ z|f'(z)|Pdz < 400, (p > 2).
0
WEB:lim, oy f(2)fF7E.
HUERR: R T EAUEMHlim, 0y |f(b) — f(a)] = 0, FHR US| EIEHRIAT. YA Db > a.

b b
£() — f(a)] < / £ (0)]dt = / V(@ | () ) da
. FHolder "% 1,

b 1
RHS < ( / a PP ) ( / | f () |Pdz) P — 0
0

as a,b — 0. RN ERALE BT, Fp > 2, M1 -2 > 0.



